W
@
N

s

T

UNIVERSITAT e
BARCELONA

Ontology based data integration in Life Sciences

Dmitry Repchevskiy

OMOM

Aquesta tesi doctoral esta subjecta a la llicencia Reconeixement 3.0. Espanya de Creative
Commons.

Esta tesis doctoral estd sujeta a la licencia _Reconocimiento 3.0. Espafia de Creative
Commons.

This doctoral thesis is licensed under the Creative Commons Attribution 3.0. Spain License.

I

n Life Suen

,,,,,,

) u(l)

W8S HbePDBHInding

=
|

’=,

UNIVERSITY OF BARCELONA
FACULTY OF BIOLOGY
Doctorate Program: Biomedicine
Research Line: Bioinformatics
2010-2015

Ontology based data integration in life sciences

Submitted by Dmitry Repchevskiy in fulfillment of the requirements for
the doctoral degree by the University of Barcelona

Supervisor:

Dr. Josep Lluis Gelpi Buchaca

Department of Biochemistry and Molecular Biology
University of Barcelona

Dmitry Repchevskiy
Barcelona Supercomputing Center
National Institute of Bioinformatics

@ (] Barcelona ° | >
Supercomputing I n B
. . Cent nstituto Naciona
@ UanerSltat de Barcelona Ceen:ceﬂ\/gcfoﬂa/ de Supercomputacion !7»‘ IEIH-\LPF‘"‘ matica

ACKNOWLEDGEMENTS

“It is not the consciousness of men that determines their being, but, on the
contrary, their social being that determines their consciousness. ”

Karl Marx

Without any doubts this thesis wouldn’t be possible without many
people that | had a pleasure to work with. If only I tried to enumerate all
their invaluable help, all the chats and communications we had, this thesis
would require a second volume. First and foremost, |1 would like to thank
my supervisor Josep Lluis Gelpi, who gave me a lot of freedom in
defining projects | worked on. Not all of them have been included into
this thesis and some of them never reached the end, but the real
experience gathered in these years allowed me to go get into this final
point. I would also like to thank my colleague José Maria Fernandez from
Spanish National Cancer Research Centre (CNIO), who always found a
time to discuss technological aspects of my projects and to our entire
group just to be with me all these long years. Finally, the greatest thank to
my colleagues Romina and Laia whose invaluable support has been so
important for me over these years.

SUMMARY

As many other science disciplines, Life Sciences operate with an enormous
amount of information. The genomic revolution was a big bang in biological and
especially genetic data creation. Exponentially growing data had thrown up a
bunch of problems with its storage, processing and interoperability. None of
these problems could be resolved without a substantial progress in computer
technology. On the merge of biology and information technology, a new field,
coined as bioinformatics, had arisen. Many heterogeneous data sources
continuously generate a huge amount of different types of data. This data comes
from clinical studies, micro-array experiments, DNA sequencing, or publications
(data mining). In most of the cases, this information has little value without
further processing and analysis, including normalization and filtering. To handle
this data deluge, many institutions spend a considerable amount of resources to
maintain core databases (UniProt, Protein Data Bank, Ensembl, etc.), and are in
a continuous search for new approaches in data storage, annotation, and
integration. Independently on the origin, biological data requires a structure, the
definition of an appropriate storage format, and metadata provision. Sometimes
metadata is included into the format, but very often is provided externally in
form of annotations. In many cases such annotations, describing a specific
knowledge domain, are organized to form an ontology (for instance the Gene
Ontology Database) and may be a valuable source of information. Although
ontologies are often used to annotate biological data, modern ontology languages
provide enough expressibility to structurally describe biological objects that
makes them a great choice for biological data interoperability. Another use of
ontologies for interoperability purpose is the semantic description of biological
services. The power of semantic integration in Life Sciences brought a lot of
interest from major bioinformatics institutions that embrace ontologies and more
generally all Linked Data technologies as a common platform for biological data
integration.

TABLE OF CONTENTS

INTRODUCTIONcoiiiiiinmnittiiiiinnnniieeiiissennnseessissssnsssesssssssssssssssssssssssssssssssssssssnns 1

1.1. HETEROGENEOUS DATA INTEGRATIONceittiieriieniienieenieenieeeeeaeesaeesieesieeaens 1
[0 ol [o 4 1 To L X3S 4
1.2. XML TECHNOLOGY ..outiiiieiiieiitenieenie ettt sitesite st esbeebestesatesitesaeesbeesaeseesneenns 8
1.3. ONTOLOGIES IN LIFE SCIENCES......utttiitiieeeireeeeitreeesrveeeseseeesnseesssssseesennns 10
OBO fOrMQL ...ttt sttt ettt e en 11
1.4. SEMANTICWEB ..ottt et e e e tae e et e e e e ata e e s anaa e e snaeaeans 12
1.4.1. Resource Description Framework (RDF)..........cccccveeeeeesiuvesieeeseseseannnn, 13
1.4.2. RDF in Attributes (RDFQ)oeeeeuvvieeeieeeeiiieeeecieeeeieeeecveeeesvaa e 15
1.4.3. RDF SCR@MQA (RDFS) ..ot eeea e 15
1.4.4. SPARQL 1.1 u.uooiieeiieeieeeiie ettt ettt et eit et stat s sita st e staenitaesasaanase s 16
1.4.5. OWL 2 Web Ontology LaNGUAQGE............coocueeeseercieiesieeiieesieeeieeesieeeae 17
1.4.6. The Semantic Web Rule Language (SWRL)ceeccueeeeecivveeeciveeecrennn. 20
1.4.7. Rule Interchange FOrmat (RIF)cccueecveecieeiieesieesieesieesveeeee e 20
1.4.8. L[] e I D o L (o SRR 21
1.5. WWEB SERVICES.....c.utiiititiettenitenteetestestesitesaeesaeeaestesaeesseesbeebeenseensesnsesaeesas 22
1.5.1. 1 SRR 23
1.5.2. SOAP. et e e et a e e et a ettt —— 25
1.5.3. WWSDL o..veseieeiie et ettt ettt ettt ettt s e st s s e e sataassaesasesstaesaseaeas 25
1.5.4. REST ettt ettt ettt ettt ettt et ettt ettt 26
1.5.5. WADL ..ot ettt ettt ste ettt ste st s e e sate e s e e ssa s sateesasesstaasseeens 28
1.6. SEMANTIC WEB SERVICESecviiteriieiirieeieerentenresiesnesieeseeseseesseseeene s eseeeenees 29
1.6.1. OWL=S.a ettt sttt st s et st s e st e st e e saae s abaesstastaeesseasases 31
1.6.2. IMOBY=S ..ottt ettt ettt sttt ettt et 32
1.6.3. WSO ..ottt ettt sttt ettt st e st e s e e ssassseesasessseesaseaens 35
1.6.4. WSIMO-LItE ..ottt ettt 35
1.6.5. SADI ..oooieeeteste ettt ettt e st s et taenatees 35
1.6.6. WSDL 2.0 RDF MOPPING c.ccevvvvveveveriiiiiieiiieiesesesesesesesssssssssssssssssssssssssninnnns 36
OBJECTIVESuuuueereiiiiiiiinnnneeiiiiissssssseesssssssssssssesssssssssssssssssssssssssssssesssssssssssssssssssssss 37
MATERIALS AND IMETHODS.....cccciitttiiiiineiiiieniiiieneiiiesiiiessimssimsssimssssissssssassss 39
TECHNOLOGICAL CHOICES uttteuteesuteenuteenueesiteesteessreesseesuseesseesuseesnseesssessnseesssesssseesane 41
Semantic Web Services ONtolOGY ..uuweeeeccceeeeiiieeeeeciiieiee et ee e 41
BioMoby integration liDrari€sceeeeceeeeecieeeeeieeeeciee e e sseeeessiee e 41
RESULTS ..oiiiiiiiiiiieiiiieeiiiiesiiiiesssiiissssssisnssssiesssesmesssstssssssssssssssssssssssssssssssnssssssnsssssnnsns 43
PART | — BIOMOBY ONTOLOGY MODEL INTEGRATIONceeuveerureesireeseeesureesseesureesseesseesnseesane 44

4.1.1. New lightweight Java API for BioMoby Registry access and Web Services
execution. 46

4.1.2. BioNemus. Creating SAWSDL bioinformatics services based on BioMoby

ONEOIOGY MOUEI......ceeiieei e
4.1.3. SAWSDL-based BioMoby ontology integration
PART Il = XML SCHEMA GENERATION FROM OWL 2 ONTOLOGIES.evevrrriieiiiriierieee e 62
4.2.1. IMPIEMENTALION.eveeieeeeeeeeeeie ettt ee e e e e e s e e 62
4.2.2. OWL 2 Model to XML Schema transformationcccccceeeveenueennne. 62
4.2.3. Practical applications for bioinformatics Semantic Web Service
(o (30 T=1 o) oYy 0 1= 1 | S USSP 69
PART Il — ONTOLOGY-BASED SERVICE DESCRIPTION FOR BIOINFORMATICS INTEGRATION.......ce.nnu. 71
4.3.1. BioSWR: Semantic Web services Registry for Bioinformatics................ 72
PART IV — WEB SERVICES INTEGRATION INTO WORKFLOWS EXECUTION TOOLS. .ccvveerveerveesveennne 79
4.4.1. BioSWR Registry integration into the Taverna Workbench. 79
4.4.2. Galaxy Gears. Web Services integration into Galaxy workbench.......... 81
DISCUSSIONiiinnnieiiiiiiissnereeiisisssssnsssessssssssssssssessssssssssssnsssssssssssssssssesssssssssssnssenss 85
CONCLUSION......cooiiinrretiiiiiisssnnseessssssssssssssesssssssssssnssesssssssssssnsssssssssssssnssessssssssssnnsanss 93
270 M0 T 2-Y o] o 97

LIST OF FIGURES AND TABLES

“Use a picture. It's worth a thousand words.”

Arthur Brisbane

Figures

Figure 1. NCBI databases SEarch ... 1
Figure 2. CORBA @rChIECIUIEcvuieerieiecieiriees b 2
Figure 3. Web Services ArchiteClUIE ... 3
Figure 4. PDB file format XamPple..........ocviiriice e 4
Figure 5. ASN.1 and XML interoperabilityccocverriininnecsese e 6
Figure 6. XML standards timeliNe ..o 8
Figure 7. SEMantic WED SEACKc.ccvieiiriirece e 12
FIGUIE 8 RDF rIPIEvuieeeeeiiei et 13
Figure 9. RDF graph @Xamplec.ccveiirinneneei et 13
Figure 10. SPARQL Update via HTTP Protocolccoeuierinininiennienenie e 16
Figure 11. The Structure 0f OWL 2.........ciirere e 17
Figure 12. Example of different OWL 2 SYNtaXesccoeueerierneinienenieene e 18
Figure 13. RIF QIAIECES.o.cvevevcieieieis et 20
Figure 14. Web Services StaCK..........ocueieiiiciiiiceisice et 22
Figure 15. HTTP REQUESH/RESPONSEcocvuiucriiiiieiicie ettt nans 23
Figure 16. SOAP ENVEIOPEcoovcviicieie ettt st 25
Figure 17. WSDL 1.1/ 2.0 MOGELoeveiieiiccrcistcte ettt 26
Figure 18. EVOIUtIoN towards SWS.........cccciiiiiiiesice et sb st 29
Figure 19. MObYLIte JAVA APcocviiieeecccse e 47
Figure 20 Generated Web Application internals...........cccceverrcriernecneereenees s 50
Figure 21. BioNemus functional WOrKfIOW ..o 52
Figure 22. SOBO ontology iN PrOTEGEc.cuoiieririeeirieiereesreesnee e 69
Figure 23. BioSWR general architeCturec.cveeeirieienierrccrnce e 73
Figure 24. Example of Semantic Rules definitions ... 74
Figure 25. SPARQL QUETY XaMPIEcviiiieriirierrneee e 75
Figure 26. Insert SAWSDL reference via SPARQL UPDATE QUETYcovuvierniinieriirierenienene 76
Figure 27. Taverna 3.0 BioOSWR OSGI PlUG-in........ceurirerrieirnierreeseese e 80
Figure 28. Galaxy Gears Java graphical 00!ccoerriernicnieeer s 81
Figure 29. wsdl-generic library architeCture..............coeuveeriernccrrce s 82
Figure 30. Generated Galaxy tool INtErface...........oceurirurrierrcrree s 83

Figure 31. Developed frameworks and librariesocererneecrniernccnsee s 91

file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043799
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043800
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043801
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043804
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043805
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043806
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043807
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043808
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043809
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043810
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043811
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043812
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043813
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043814
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043815
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043816
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043817
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043818
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043819
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043820
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043821
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043822
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043823
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043824
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043825
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043826
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043827
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043828
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043829

Tables

Table 1. XML EXI ENCOING EXAMPIE......cccvuivierireiiereeiriieieiseiee ettt 5
Table 2. ASN.1 BER ENcoding €Xampleccureeiinineinieeineiseseiee e 6
Table 3. BSON Serialization €XamPplecccvieuririerrierneier et 7
Table 4. OBO STANZAS......c.criieerieererireieer ettt 11
Table 5. Phylogenetic character data definition example from EDAM ontology (OBO format) 11
Table 6. RDFa Lite PrOPEIHESc.cuvvrireerireieirecieiricie ettt et 15
Table 7. RDFS VOCADUIAIYcccuiiieiriieiescicite et 15
Table 8 SPARQL inSert QUErY EXaMPIE........cou ittt seeeeenes 16
Table 9. Phylogenetic character data definition example from EDAM ontology (OWL 2) 19
Table 10. HTTP MENOGAScorerviereriieieiriseisrieieisseis st sttt snsessnnes 23
Table 11. REST data €lEemMENLScccoverirerriereere ettt sesessnnes 27
Table 12. HTTP methods in RESTIUI APc..veireerce et snsessenes 27
Table 13. WADL description of RCSB getCurrent Web Service.coovieeveceiicscccsieeienns 28
Table 14. BioMoby services description. Example: runTcoffeeEvaluateAlignments service......... 33
Table 15. BioMoby MessSage EXamPpIec.vviereueiirsisisceeee e 34
Table 16. Tools and libraries used in the ProJECtSccvvvvevceccicie e 42
Table 17. Correspondence between basic BioMoby objects and BioNemus typesccc...... 50
Table 18. Correspondence between BioMoby and BioNemus elementscccoceceveeniiiecrnnnes 51
Table 19 XML Schema definition for the MD_Trajectory BioMoby objectcccococvviinirirerennes 51
Table 20. BioNemus commandling Parameterscccovvvveeececrieieeiiss e 53
Table 21. Java code example for BLAST web service eXecution...........cccovvvvveeeeeeisisccesccienns 54
Table 22. BLAST WeD Service ClIent..........cceriecrrce e 55
Table 23. Java getEntryFromPDB RESTful web service eXecutioncccocevniernennnceninenns 56
Table 24. JavaScript getEntryFromPDB RESTful web service executionc.cocoevnevnerceninenes 56
Table 25. web services by the QUENOMIEY ..o 57
Table 26. Embedding MOBY-S datatype definitions in WSDL 2.0 description.............cccceovreeunenee 59
Table 27. WSDL 2.0 description creation from BioMoby service identifier..........c.cooevvvnncnnenns 60
Table 28. Getting BioMoby service input parameters...........oceverrirrnieinneeienee e 60
Table 29. OWL 2 Class representation in XML SChemacccocveeriiiieie e 63
Table 30. OWL 2 Properties representation in XML Schema..........ccccccvviiiiviiccccccssececcnns 64
Table 31. OWL 2 Datatype representation in XML SChema..........ccccooeericrneinniesneenneeinenes 64
Table 32. XML Schema type extension eXampleccvrrriennireniesneceesee e 65
Table 33. XML Schema type restriction eXampleoccveurriernicenesreceee e 66
Table 34. XML Schema type inheritance split example..........cccoeerienierneceeeeenes 67
Table 35. XML Schema type inheritance breakage examplecccoerernernnienneenneenenns 68
Table 36. Delete annotation SPARQL QUETYc.vuevmvieieriiniieirieeiseeeis e 76
Table 37. Java example for SPARQL UPDATE query eXeCution..........ccoceueereecereneeeeninceseneneeninenns 76
Table 38. BIOSWR REST APLL.......oviiririiinieisissis et ssss st sss s ssesnnes 77
Table 39. WSDL 2.0 and WADL descriptions of the PDBdescription RESTful service 78

Table 40. The complete list of the developed toOlSccorurricerricere e 92

ACRONYMS AND ABBREVIATIONS

. =
« lim R" = H.]
—+00

Claude Elwood Shannon

Acronyms and Abbreviations

AJAX
ASCII
ASN.1
BPEL
CDR
CORBA
DL
DTD
ECN
EXI

FI
GIOP
HDT
HTML
1ISO
ITU
ITU-T
JAXB
JAX-WS
JSON
IMS
LD
MSM
OBO
OSGi
OWL
OWL-S
PCX
QL
RDF
RDFa
RDFS
REST
RIA
RIF
RL
RPC

Asynchronous JavaScript and XML

American Standard Code for Information Interchange
Abstract Syntax Notation One

Business Process Execution Language
Common Data Representation

Common Object Request Broker Architecture
Description Logic

Document Type Definition

Encoding Control Notation

Efficient XML Interchange

Fast Infoset

General Inter-ORB Protocol

Header Dictionary Triples

Hypertext Markup Language

International Organization for Standardization
International Telecommunication Union

ITU Telecommunication Standardization Sector
Java Architecture for XML Binding

Java API for XML-Based Web Services
JavaScript Object Notation

Java Message Service

Linked Data

Minimal Service Model

Open Biomedical Ontologies

Open Services Gateway initiative

Web Ontology Language

Semantic Markup for Web Services

Personal Computer Exchange

Query Language

Resource Description Framework

RDF in Attributes

RDF Schema

Representational State Transfer

Rich Internet Applications

Rule Interchange Format

Rule Language

Remote Procedure Call

Acronyms and Abbreviations

SADI Semantic Automated Discovery and Integration
SAWSDL Semantic Annotations for WSDL and XML Schema
SCUFL Simple Conceptual Unified Flow Language
SGML Standard Generalized Markup Language

SMTP Simple Mail Transfer Protocol

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language

SWRL Semantic Web Rule Language

SWS Semantic Web Services

TCP Transmission Control Protocol

XML Extensible Markup Language

XPath XML Path Language

XQuery XML Query

XSLT Extensible Stylesheet Language Transformations
uDDI Universal Description Discovery and Integration
WAR Web Application Archive

WebDAV Web Distributed Authoring and Versioning
WSDL Web Services Description Language

WS-I Web Services Interoperability Organization
WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

WSMO-Lite Lightweight Semantic Descriptions for Services on the Web
WSRF Web Services Resource Framework

Www World Wide Web

W3C World Wide Web Consortium

INTRODUCTION

“When partners can’t agree
Their dealings come to naught
And trouble is their labor’s only fruit”

Ivan Krylov

1 introduction

1.1. Heterogeneous data integration

The exponentially increasing amount of biological data and its heterogeneity
require the usage of an appropriate architecture for management, integration, and
interoperability.

Probably the most widespread example of distributed system widely used in
biological and medical research is the World Wide Web. Using a system of
interlinked hypertext documents, researchers can instantly access many of
publicly available databanks and, what is more important, explore biological
entities interconnections via hyperlinks. Many organizations developed very
powerful Web portals providing an easy access to their biological databases
(Figure 1).

Search across databases |aim2 | Clear | Help
- Result counts displayed in gray indicate one or more terms not found
131 W B Books: online books
/4 PubMed Central ull OMIM: online Mendelian Inheritance
407] I jourma artices 3] X e
(W] Site Search: NCBI web and FTP
sites

Nucleotide:
-

H
(=}
3

®

N

[
0

11

=

®
=]
.

R
.

Genome:

-
-
-

a] Pp unisTS: markers and mapping data @

Structure: th
macromol

1] Bg Popset: population study data sets &

Taxonomy: org

XOL

©
-]
V]
7]
2
&

Epigenomics: Epigenetic maps and)

N
©
t,

data sets

31] (W) Gene: aene-cantered inform+i-n a4 TA PubChem BioAssay: bioactivity

Figure 1. NCBI databases search

However, the human-oriented nature of Web poses a serious limitation for
computer data processing and integration. HTML-based Web interfaces are
designed for data presentation rather than storage, and its automatic extraction
proved cumbersome and error-prone (Neerincx & Leunissen, 2005). An
automated access to bioinformatics data and tools is especially important for
complex, multi-step analysis that can involve many heterogeneous sources.
Direct machine-to-machine interaction requires an architecture that provides
functionalities such as transmission protocol, identifiers location, interface
description, naming resolution, etc.

2 heterogeneous data integration

One of such architectures was the Common Object Request Broker
Architecture (CORBA) (Figure 2), which due to its platform independence
represented a clear step forward toward a Service Oriented Architecture (SOA)
in bioinformatics (Achard & Barillot, 1997).

CLIENT SERVANT

" IDL | ORB DL ps| L Obiect
stubsl interface " skeletons Adapter

Figure 2. CORBA architecture

The extensive list of supported languages, including C++ and Java, made this
architecture quite popular in distributed software development. Although Java
platform has its own mechanism for development of distributed systems —
Remote Method Invocation (RMI), Java 1.2 included a complete CORBA 2.0
ORB implementation, while RMI was modified to operate over Internet Inter-
Orb Protocol (IIOP). Since Java is platform independent, RMI was another
technology of choice for distributed development in bioinformatics (Moller,
Leser, Fleischmann, & Apweiler, 1999).

Although in the late nineties, CORBA reined biological data integration
projects, Web service technologies quickly surpassed it in popularity. This
popularity was generally attributed to the simplicity and provoked a lot of
criticism (Gokhale, Kumar, & Sahuguet, 2002) from CORBA advocates. Instead
of using a binary protocol, Web services are based on Simple Object Access
Protocol (SOAP) protocol. SOAP relies on XML and XML Schema, which are
more expressive than Internet Definition Language (IDL) used by CORBA, but
less effective in data transmission.

Howbeit, Web services today is a widespread and very complex technology
with close to hundred specifications.

3 introduction

Web services can be completely described using Web Services Description
Language (WSDL). Although Universal Description Discovery and Integration
(UDDI) registry is already the standard way for Web services discovering
(Figure 3), many bioinformatics projects were specially oriented to provide an
architecture for discovery and distribution of biological data through web
services (Bhagat, et al., 2010). Even, in many cases, bioinformatics service
providers just publish the WSDL file somewhere on their web site.

ubDI

WSDL wsDL

Client SOAP Web Service

Figure 3. Web Services Architecture

As more bioinformatics databases and tools are available in a form of Web
services, more complex interactions or workflows are possible. The latter
requires another level of abstraction to define Web services cooperation. The de-
facto standard for modeling executable workflows - Business Process Execution
Language (BPEL) did not become very popular in Life Sciences because of the
high degree of bioinformatics services being already in use. Although a lot of
work has been done to provide recommendations for bioinformatics Web
services development (Pettifer, et al., 2010), the growing popularity of RESTful
services led to the situation where many Web services lack WSDL description
and, as a consequence, cannot participate in BPEL defined interactions. It should
be noted that many of the RESTful Web services could be described via WSDL
HTTP Binding, but since most of the Web services tools are oriented to SOAP
protocol, this possibility is rarely used. To address these issues, a specially
oriented to bioinformatics Web services tool - Taverna (Hull, et al., 2006) was
developed at the University of Manchester. Taverna uses its own dataflow-
centric workflow language — Simple Conceptual Unified Flow Language
(SCUFL) (Oinn, et al., 2006) that allows different types of services to be used
within the same workflow.

4 data formats

Data formats

One of the challenges in heterogeneous data integration is the selection of an
appropriate message serialization format. Usually the format is strictly defined
by the selected architecture (e.g. CORBA uses General Inter-ORB Protocol
(GIOP) protocol, which defines a Common Data Representation (CDR) format
for data serialization), while sometimes the choice of the format is more liberal.
Serialization formats may be arbitrarily divided into binary based and text based
Oones.

Historically the choice of the appropriate format was based on the encoded
data itself, images were encoded in binary formats like Personal Computer
Exchange (PCX), text files using American Standard Code for Information
Interchange (ASCII) encoding.

All data formats, including text-based ones, abide some structural rules. Even a
simple text file follows natural language grammar. For instance, ASCII-based
PDB file format defines its own structural rules (Figure 4).

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

SEQRES 1 A 489 MET LYS ILE GLU GLU GLY LYS LEU VAL ILE TRP ILE ASN
SEQRES 2 A 489 GLY ASP LYS GLY TYR ASN GLY LEU ALA GLU VAL GLY LYS

ATOM 1 N LYS A 1 9.112 -16.667 12.147 1.00 89.02 N
ATOM 2 CA LYS A 1 8.780 -11.792 11.281 1.00 98.52 C
ATOM g B LYS A 1 9.630 -11.751 10.014 1.0 89.12 c

Figure 4. PDB file format example

Formats developed to encompass different types of data (text, numerical data,
dates, etc.) usually define the supported type system as part of the format
specification. Some encoding formats provide a clean separation between
structural description and serialization.

Despite the overwhelming number of protocols in use, the number of
commonly adopted data formats is quite small. Rapid information growth
presents new challenges to provide more efficient encodings for existent formats
(Binary JSON, Efficient XML Interchange, etc.).

! http://www.wwpdb.org/docs.html

http://www.wwpdb.org/docs.html

5 introduction

Extensible Markup Language (XML)

XML was introduced in 1998 as a simple human-readable format oriented to
the internet interoperability. Being a profile of SGML, XML puts little
restrictions on document structure. In 2001 XML Schema 1.0 recommendation
was published. The same year, XML Information Set recommendation was
published putting a borderline between XML document structure and its
serialization format.

Binary XML serialization formats have been proposed by different
standardization bodies: Fast Infoset® by ITU-T and Efficient XML Interchange®
(EXI) by W3C (Table 1). Although EXI provides better than ASN.1 BER (see
below) encoding compression, latter is more suitable for parsing large
documents, providing a node length so parser could skip large chunks of the
document.

Nowadays, XML is a backbone technology for the most parts of Web
standards.

XML Schema XML Document
<xs:element name="Person"> <Person>
<xs:complexType> <name>Socrates</name>
<xs:sequence> <birth>-470</birth>
<xs:element name="name" </Person>

type="xs:string"/>
<xs:element name="birth"
type="xs:integer"/>
</xs:sequence>
</xs:complexType>
</xs:element>

EXI encoding

80 | [10 0 0000 X] EXI Header

00 | SE (<Person>)

00 | SE (<name>)

4S’ CO’ ‘C’ ‘rS Ga’ ‘t’ Ge’ Gs’
00 | SE (<hirth>)
01 [D5 [03 |

Table 1. XML EXI Encoding example

? http://www.itu.int/rec/T-REC-X.891-200505-/en
® http://www.w3.org/TR/exi/

http://www.itu.int/rec/T-REC-X.891-200505-I/en
http://www.w3.org/TR/exi/

6 data formats

Abstract Syntax Notation One (ASN.1)

ASN.1 was one of the earliest notations to define a variety data types that has
been widely adopted especially by telecommunication industry. Its abstract
nature does not impose the way how information is encoded, and there are many
defined encoding rules (BER, DER, PER, XER, etc.) (Dubuisson, 2000).

ASN.1 provides a high degree of interoperability with XML (Figure 5).

ITU-T X.694
i ASN.1
‘ XML Schema definitions
ITU-T X.693 (XER
‘XML Document () ASN.1
value

Figure 5. ASN.1 and XML interoperability

XML Schema may be mapped into ASN.1 notation. Defined in Table 2
“Person” value being encoded via XML Encoding Rules results the same XML

document as in Table 1.
ASN.1 is defined by International Telecommunication Union (ITU) and
commonly used to describe messages in communication protocols.

ASN.1 Notation BER Encoding
Person ::= SEQUENCE { | 16 | [UNIVERSAL 16] constructed;
Sch name UTF8String, 14 | length = 14
chema birth Integer 00 | name UTF8String: tag = [0] primitive;
} 08 | length=8
person Person ..= { ‘S’ ‘07 ‘C, Crﬂ 6a7 ‘t’ ‘e’ ‘S’
| name "Socrates", 01 | birth INTEGER: tag = [1] primitive;
valve | pih 470 02 [length = 2
} FE | 2A | (-470)

Table 2. ASN.1 BER Encoding example

ASN.1 robustness and effectiveness didn't pass unnoticed by the biomedical
community (Ostell, Wheelan, & Kans, 2001) and the format is still in use along
other emerged formats.

7 introduction

JavaScript Object Notation (JSON)

JSON is a format that became very popular on the WEB 2.0 wave. Natively
understood by JavaScript, along with the XML it is widely used in
Asynchronous JavaScript requests (AJAX). The simplicity of the format makes
this format a popular choice where XML may look ponderous, for instance in
Representational State Transfer (REST) Web services oriented to dynamic web
applications.

Like early XML specifications, JSON promotes a minimalistic text-based
approach for data structure description. In its development JSON runs into the
same issues W3C consortium came across a decade ago. The simplicity of JSON
left apart such moments as name resolution, document schema, extensive and
rich type system, etc. Many of these issues are intended to be solved by different
enthusiasts, for instance Binary JSON (BSON)* format (Table 3).

JSON BSON
{ 37 |Length=37
“Person” : { 0x03 | Embedded document
“name” : “Socrates’, P [r[s[o[n[0x00]
“birth” : -470 } 28 | Length=28
} 0x02 | UTF-8 String
‘n’|‘a’|‘m’| ‘e’ | 0x00 |
09 |value length=9
‘S’loc | ‘r @ |t |e s’ | 0x00
[0x10] 32-bit Integer
o [[t | ‘h [0x00 |
FF|[FF] FE|2A
0x00 | Document End

Table 3. BSON Serialization example

Probably the most illustrious example of BSON usage is the open source
document database MongoDB?®.

* http://bsonspec.org/
> https://www.mongodb.org/

http://bsonspec.org/
https://www.mongodb.org/

8 XML Technology

1.2. XML Technology

Among many data formats XML is indeed the most common one. XML is a
subset of Standard Generalized Markup Language (SGML) that was developed
as a lightweight alternative for use on the World Wide Web. Unlike Hypertext
Markup Language (HTML) which is designed for content visualization, XML is
designed to describe data. XML is well suited for automatic processing and is
widely used as a data interchange format.

Since its introduction in 1998, XML became a power technology comprised of
many specifications.

XML Namespaces

XML Infoset Xbuery 1.0 XQuery 3.0
XPath 1.0 XPath 2.0 XPath 3.0
XSLT 1.0 - XSIT 2.0 " N
XML Schema 1.0 XML Schema 1.1
XML 1.0 XML 1.1

[‘4 +

2000 2002 2004 2006 2008 2010 2012 2014 2016

Figure 6. XML standards timeline

The term “XML” is usually used to refer to essential set of standards related to
XML:

o Extensible Markup Language (XML) describes a class of data
objects called XML documents.

e XML Information Set (XML Infoset) describes an abstract data
model of an XML document in terms of a set of information items.

e Namespaces in XML 1.0 provide a simple method for qualifying
element and attribute names used in XML documents by associating
them with namespaces identified by URI references.

Other related standards that are important parts of the XML ecosystem:

o XML Schema describes XML documents defining constraints on
their data model. Unlike Document Type Definitions (DTDs), XML
Schema is itself represented in an XML vocabulary.

e XML Path Language (XPath) is a language for addressing specific
parts of an XML document.

9 introduction

o Extensible Stylesheet Language Transformations (XSLT) is a
declarative language for transforming XML documents. XSLT
language uses XPath for XML nodes matching.

o XML Query (XQuery) is a functional query language for data stored
in XML form. XQuery extends XPath language with so-called
“FLWOR” expressions providing similar to SQL functionality for
querying XML documents.

XML is generally known as a bandwidth inefficient, human readable, text
based format. Fast Infoset (FI) binary encoding format has been defined by the
ITU Telecommunication Standardization Sector (ITU-T) and the International
Organization for Standardization (ISO) standards bodies as an efficient
alternative to the XML document format. Recognizing the need for a compact
XML representation, W3C has been developed the Efficient XML Interchange
(EXI, Table 2) format which significantly reduces XML document size. Unlike
FI, which is based on ASN.1 Encoding Control Notation (ECN), EXI uses built-
in datatype representations and employs quite sophisticated technics like channel
multiplexing and compression. As a result EXI provides better compression,
providing support for many APIs like DOM®, SAX" or StAX®.

® http://www.w3.0rg/DOM/
” http://www.saxproject.org/
® https://jcp.org/en/jsr/detail?id=173

http://www.w3.org/DOM/
http://www.saxproject.org/
https://jcp.org/en/jsr/detail?id=173

10 ontologies and semantics

1.3. Ontologies in Life Sciences

The need to establish a common vocabulary for biological data made
ontologies an essential part of Life Sciences. Ontologies are intensively used in
medical and health care domains (Stearns, Price, Spackman, & Wang, 2001)
(Rector, Rogers, Zanstra, Van Der Haring, & OpenG., 2003). Probably the most
well-known example of ontology-based integration initiative in bioinformatics is
the Gene Ontology project. Its highly adopted Open Biomedical Ontologies
(OBO) file format became very popular in Life Sciences community with many
ontologies being developed for a wide range of domains. This popularity led to
creation of the OBO Foundry (Smith, et al., 2007) initiative. OBO Foundry
ontologies are usually designated as bio-ontologies.

The OBO language is situated somewhere apart from a World Wide Web
Consortium (W3C) initiative that promotes a Web Ontology Language (OWL)
as a complete set of specifications for authoring ontologies. The domination of
OBO language in biological domain quickly disappears, as the community is
developing more OWL based ontologies. This trend may be observed at
BioPortal (Noy, et al., 2009) open repository of biomedical ontologies®. A lot of
efforts are also invested into transition of OBO ontologies to the OWL language
(Hoehndorf, Oellrich, Dumontier, Kelso, Rebholz-Schuhmann, & Herre, 2010)
(Golbreich, Horridge, Horrocks, Motik, & Shearer, 2007) (Horrocks, 2007).

Ontologies are considered a crucial part of the Semantic Web. Providing
access to biological databases via Linked Data endpoints significantly increases
the capacity of automatic agents to answer complex biological questions. Data
mining tools may perform complex distributed queries involving many
heterogeneous biological sources. Semantic Web has received a very positive
response from the Life Sciences community, which readily embraces new ways
to access data and actively share this knowledge (Garcia Godoy, Lopez-
Camacho, Navas-Delgado, & Aldana-Montes, 2013). The integration of
heterogeneous biological data via Linked Data technologies (where ontologies
play a crucial part), is a major strategy for the European Life Science
Infrastructure for Biological Information (ELIXIR) initiative (Crosswell &
Thornton, 2012).

° http://www.bioontology.org/BioPortal

http://www.bioontology.org/BioPortal

11 introduction

OBO format

The OBO ontology language is a description logic language based on a simple
flat file format. Structurally OBO document consists of a header and a list of
stanzas. Stanzas describe Description Logic (DL) entities such as concept, role
and individual (Table 4). Each stanza contains a list of statements in a form of
tag-value pairs. Built-in OBO semantics contains an extensive set of tags to
describe the entities. It also provides a limited set of XML Schema built-in
datatypes.

Stanza OWL 2 analog Description

[Term] Class Terms model real word concepts.

Typedefs define relations (aka roles,

[Typedef] | ObjectProperty properties, predicates).

Instances represent concrete objects that

[Instance] Individual
belong to some class.

Table 4. OBO Stanzas

OBO language represents a subset of the OWL concepts sharing many
similarities with it. The simplicity of the format made it very popular for
ontology development.

While OBO format is quite simple and can be easily edited in any text editor
(Table 5), GO Consortium provides biologists with OBO-Edit ontology editing
tool (Day-Richter, Harris, Haendel, & Lewis, 2007).

[Term]

id: EDAM_data:0871

name: Phylogenetic character data

comment: As defined, this concept would also include molecular sequences, microsatellites,
polymorphisms (RAPDs, RFLPs, or AFLPs), restriction sites and fragments
subset: bioinformatics

subset: data

subset: edam

synonym: "Character" RELATED []

created_in: "betal12orEarlier"

def: "Basic character data from which a phylogenetic tree may be generated."
[http://edamontology.org]

namespace: data

is_a: EDAM_data:2523 ! Phylogenetic raw data

Table 5. Phylogenetic character data definition example from EDAM ontology
(OBO format)

12 ontologies and semantics

1.4. Semantic Web

Semantic Web'® is W3C initiative to bring heterogeneous data to the Web.
Under the Semantic Web umbrella, W3C promotes a large collection of
Semantic Web technologies (Figure 7).

RIF
SPARQL OWL 2
RDFS

RDF
XML

IRI/URI

Figure 7. Semantic Web Stack

In contrast to traditional Web which is based mainly on HTML documents,
Semantic Web (sometimes referred as Web 3.0) is based on linked data in a
format that can be easily processed by software agents.

The special interest in Semantic Web from Life Sciences community is
illustrated by the activity in Semantic Web Health Care and Life Sciences
(HCLS) Interest Group'. Semantic Web opens exciting possibilities for
biological data integration and interoperability (Neumann, Miller, & Wilbanks,
2004). Improving life science data integration with Semantic Web technologies
(Katayama, et al., 2013) is a challenging task in bioinformatics.

1% http://www.w3.org/standards/semanticweb/
" http://www.w3.org/blog/hcls/

http://www.w3.org/standards/semanticweb/
http://www.w3.org/blog/hcls/

13 introduction

1.4.1. Resource Description Framework (RDF)

RDF is a framework for representing information in the World Wide Web. The
information is represented as a collection of triples consisting of a subject, a
predicate and an object (Figure 8).

. predicate _
subject > object

Figure 8 RDF triple

Predicates denote relationships between nodes (subjects and objects) and are
identified by URI references. Nodes may be also represented by the so-
called blank node, which lacks any intrinsic name but still has a local identifier.
Objects may also be literals (or constant values).

The collection of triplets forms an RDF graph (Figure 9) which may be
serialized in different formats (i.e. Turtle, N3, Manchester, JSON-LD).
RDF/XML syntax defines the way to serialize RDF graphs in XML format.

(\ urn:isid:inb.bsc.es#wsdl.service(getEntryFromPDB) /

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#ype o -

Y http://www.w3 org/ns/wsdl-rdf#endpoint

/ http:/iwww.w3.org/ns/wsdl-rdf#Service :,n

-:/lej-rnzlsid:inb.bsc.es#\.\/sdl.endpoinl(getEntryFromPDB!getEniryFromPDéjj::i:: p)

http:ffwww.w&otgmsfwsdl-rdf#usesBindingx__,.,-»

[— “~ . \"‘.‘. http:/iwww.w3.org/ns/wsdl-rdf#address

’/u sid:inb.bsc.es#wsdl.binding(getEntryFromPDBBindingﬁ:)

- . — ! -

& :jl:t-tp:f/inb.bsc‘es!cgi—bin/mobyServicesfdispatchersRetrieval/Dispatcher.c;éi:jiz

Figure 9. RDF graph example

The part of WSDL 2.0/RDF ontology that describes getEntryFromPDB BioMoby
Web service.

Because RDF/XML' is the prevalent W3C standard syntax for RDF (Turtle has
been recently standardized"®), RDF/XML documents are usually referred as RDF
ones.

2 http://www.w3.0rg/TR/rdf-syntax-grammar/
B http://www.w3.org/TR/turtle/

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/turtle/

14 ontologies and semantics

Besides the already mentioned text-based formats, there is a great interest in
providing more compact Binary RDF Representation'. Header—Dictionary—
Triples (HDT) format (Fernandez, Martinez-Prieto, Gutiérrez, Polleres, & Arias,
2013) is a binary format that is more compact than other existing RDF
serialization formats. HDT separates dictionary from triples and doesn’t require
parsing the entire RDF document to access parts of the RDF graph. HDT
demonstrates a high level of compressibility and scalability for very large
datasets.

RDF defines three predefined build-in types to describe groups of things:

o rdf:Bag - A Bag represents a group of resources or literals, possibly
including duplicate members, where there is no significance in the
order of the members.

o rdf:Seq - A Sequence represents a group of resources or literals,
possibly including duplicate members, where the order of the
members is significant.

o rdf:Alt - An Alternative represents a group of resources or literals that
are alternatives (typically for a single value of a property).

RDF vocabulary listed in section 5.1 of the specification defines all URI
references which are given specific meaning by RDF. These references have
defined by the RDF specifications leading substring:

~ http://www.w3.0rg/1999/02/22-rdf-syntax-ns#

The URI corresponds to XML namespace in RDF/XML serialization and
conventionally associated with rdf: prefix.

A possibility to represent public bioinformatics databases in RDF format has
been successfully explored by the Bio2RDF project (Belleau, Nolin, Tourigny,
Rigault, & Morissette, 2008). While Bio2RDF warehouse approach clearly
demonstrates benefits of semantic web data integration, the full power of
Semantic Web may be achieved by uncovering its distributed nature as more
biological databases are exposed in RDF format (Redaschi & Consortium, 2009)
(Jupp, et al., 2014).

" http://www.w3.org/Submission/HDT/

http://www.w3.org/Submission/HDT/

15 introduction

1.4.2. RDF in Attributes (RDFa)

The Web is built around HTML which is designed for information
visualization. While HTML pages can contain an enormous amount of
information, their automatic processing by software agents is quite complicated.
RDFa provides a collection of attributes to express RDF in markup languages
such as HTML or XHTML. Embedding RDF-based metadata into (X)HTML
pages, improves automatic processing without affecting their visualization.

Oriented to Web authors, RDFa provides simplified RDFa Lite version which
consists only of five simple attributes and covers most of the developers’ needs.

property description
@prefix used to assign a short-hand prefix for some vocabulary
@vocab specifies default vocabulary to be used
@typeof specifies a type of the subject (processed element)
@property provides the property (or predicate) for the subject
@resource Specifies subject’s identifier (instance id)

Table 6. RDFa Lite properties

1.4.3. RDF Schema (RDFS)

RDF language provides a minimum syntax to define RDF graph data model.
The meaning of the model is left undefined unless additional semantics is
provided. RDF Schema, abbreviated as RDFS, is a semantic extension of RDF
that provides mechanisms for describing groups of related resources and the
relationships between these resources. RDFS vocabulary allows to describe
simple ontologies via classes and properties.

RDFS Vocabulary

RDFS Classes rdfsEResou_rce, rdfs:Class, rdfs:Literal, rdfs:Datatype,
rdfs:Container

rdfs:domain, rdfs:range, rdfs:member, rdfs:subClassOf,
RDFS Properties rdfs:subPropertyOf, rdfs:ContainerMembershipProperty,
rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy

Table 7. RDFS vocabulary

16 ontologies and semantics

1.4.4. SPARQL 1.1

SPARQL 1.1 is a set of specifications that facilitate RDF graph content
querying and manipulation. SPARQL 1.1 significantly extended the original
SPARQL Protocol and RDF Query Language (SPARQL) introducing new
features such as Update language, Federated Query, Graph Store HTTP Protocol,
etc.

While SPARQL Query Language® allows RDF data retrieval, SPARQL 1.1
Update® defines a standard way to update RDF data providing similar to
Structured Query Language (SQL) capabilities.

PREFIX rdf; <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX sawsdl: <http://www.w3.org/ns/sawsdl#>
INSERT DATA {
<urn:lsid:inb.bsc.es#wsdl.interface(describePDB)> sawsdl:modelReference 'http://example.com’
}

Table 8 SPARQL insert query example

SPARQL 1.1 Federated Query'’ is a SPARQL 1.1 Query Language extension
for query execution over explicitly defined SPARQL endpoints.
Alternatively to SPARQL 1.1 Update, SPARQL 1.1 introduces the REST-like
Graph Store HTTP Protocol®®, The protocol uses traditional GET, PUT, POST,
and DELETE HTTP terms to manage RDF graphs (Figure 10).

RDF payload (POST) URI € Reservable Identifier
PUT, DELETE, POST

F— K

o« RDF Grapth

RDF payload

RDF graph content

Figure 10. SPARQL Update via HTTP protocol

 http://www.w3.org/TR/rdf-spargl-query/
'® http://www.w3.org/TR/spargl11-update/
Y http://www.w3.org/TR/sparql1l-federated-query/
'8 http://www.w3.org/TR/sparqgl11-http-rdf-update/

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-http-rdf-update/

17 introduction

1.4.5. OWL 2 Web Ontology Language

The OWL 2 ontology language is a set of specification documents describing
its conceptual structure, RDF/XML exchange syntax, semantics and
conformance requirements (Figure 11).

semantics syntax
[Manchester :

PSS Syntax
/ OWL 2 Ontolo :
Direct Semantics _ 793(OWL/XML
"~ meaning | [Structural ‘\| | serialization

- . Specification ROFIXML.
[\ | 'Mapping | L
| RDF-Based | Turtie
_ Semantics) RDF ' Functional
e Graph

; Syntax |

Figure 11. The structure of OWL 2

OWL 2 language is defined in is defined in the OWL 2 Structural
Specification document'®. Any OWL 2 ontology can be represented as an RDF
graph®®. While OWL 2 Structural Specification defines OWL 2 language
constructs, the Direct Semantics* specification defines the meaning in terms of
Description Logic (DL) concepts. Ontologies interpreted using the Direct
Semantics specification are informally called “OWL 2 DL”. Another
interpretation is based on RDF-Based Semantics® where meaning is directly
assigned to RDF graphs. RDF graphs considered as OWL 2 ontologies are
informally called “OWL 2 Full”.

The primary exchange syntax for OWL 2 is RDF/XML, but other concrete
syntaxes may also be used (Figure 12).

¥ http://www.w3.org/TR/owl2-syntax/

20 http://www.w3.org/TR/owl2-mapping-to-rdf/

?! http://www.w3.org/TR/owl2-direct-semantics/

2 http://www.w3.org/TR/owl2-rdf-based-semantics/

http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-mapping-to-rdf/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/

18 ontologies and semantics

<owl:NamedIndividual rdf-about="wsdl interface(pdbchainfeatures)"> RDF/XML
<rdftype rdf:resource="8&wsdl-rdf Interface"/>
<rdfs:label rdf:datatype="8xsd:string">pdbchainfeatures</rdfs:label>
<wsdl-rdf:interfaceOperation rdf-resource="wsdl.interfaceOperation(pdbchainfeatures/features)®/>
<wsdl-rdf:interfaceOperation rdf-resource="wsdl.interfaceOperation(pdbchainfeatures/sequence)"/>

OWL/XML <fowl:NamedIndividual>
<ClassAssertion>
<Class abbreviatedIRI="wsdl-rdf:Interface"/> n p i
Individual: <wsdl.interface(pdbchainfeatures)> Manchester syntax
<NamedIndividual IRI="wsdl.interface(pdbchainfeatures)"/> nT;;L;a LA G M) 4
</ClassAssertion> waddfintartace
<ObjectPropertyAssertion> Facts

<ObjectProperty abbreviated|IRI="wsdl-rdf.inlerfaceOperation®/>
<Namedindividual IRI="wsdL.interface(pdbchainfeatures)"/>
<Namedindividual IRI="wsdl.interfaceOperation(pdbchainfeatures/features)"/>
</ObjectPropertyAssertion>

wsdl-rdfinterfaceOperation <wsdlinterfaceOperation(pdbchainfeaturesffeatures)>,
wsdl-rdfinterfaceOperation <wsdl.interfaceOperation(pdbchainfeatures/sequence)>
Annotations:

rdfs:label "pdbchainfeatures™*xsd:string

<ObjectPropertyAssertion>

<ObjectProperty abbreviatedIRI="wsdl-rdf-interfaceOperation®/>

<NamedIndividual IRI="wsdl.interface(pdbchainfeatures)"/> Tu rﬂe)

<NamedIndividual IRI="wsdl.interfaceOperation(pdbchainfeatures/sequence)"/> <wsdI,|ntarlaoefpdbchamfeaturesj? rdf:type owl:Namedindividual, wsdl-rdfInterface;
</ObjectPropertyAssertion> wsdl-rdf interfaceOperation <wsdl.interfaceOperation(pdbchainfeaturesfieatures)>,
<AnnotationAssertion> <wsdl.interfaceOperation(pdbchainfeatures/sequence)>;

<AnnotationProperty abbreviated|RI="rdfs:|abel"/> rdfsJabel "pdbchainfeatures"**xsd:string.

<IRI>wsdl.interface(pdbchainfeatures)</IRI>
<Literal datatypelR|="8xsd:string">pdbchainfeatures</Litera> Functional style syntax

</AnnotationAssertion> ClassAssertion(wsdl-rdf:Interface <wsdl.interface(pdbchainfeatures)>)
AnnotationAssertion(rdfs:label <wsdl.interface(pdbchainfeatures)> "pdbchainfeatures™*xsd:string)
ObjectPropertyAssertion(wsdl-rdf.interfaceOperation <wsdl.interface(pdbchainfeatures)>
<wsdl.interfaceOperation(pdbchainfeatures/features)>)
ObjectPropertyAssertion(wsdl-rdf:interfaceOperation <wsdl.interface(pdbchainfeatures)>
<wsdl.interface Operation(pdbchainfeatures/sequence)>)

Figure 12. Example of different OWL 2 syntaxes

One of the important characteristics of DL languages is the possibility of
implicitly represent knowledge inference via DL reasoners. OWL 2 comes with
several profiles that further restrict OWL 2 DL, thus limiting its expressive
power for the efficiency of reasoning:

e OWL 2 EL profile provides polynomial time reasoning with respect to
the size of the ontology and is suitable for very large ontologies. The
profile is based on &£ family of description logics that provide only
existential quantifications.

e OWL 2 QL profile provides similar to conventional relational database
systems querying in polynomial time. The profile is aimed at
applications that use very large volumes of instance data. Query
answering in this profile can be implemented by rewriting queries into a
standard relational Query Language (QL).

e OWL 2 RL profile provides polynomial time reasoning with respect to
the size of the ontology without sacrificing too much expressive power.
Reasoning in this profile can be implemented using a standard Rule
Language (RL).

Despite several years on from the OWL 2 recommendation, most of the
ontologies still use only a fraction of its power (Glimm, Hogan, Krotzsch, &
Polleres, 2012). Often ontologies are simply used as a means to provide semantic
descriptions that can be used to annotate other resources such as Web services,
databases, applications, etc. (Ison, et al., 2013).

19 introduction

The possibility to use DL reasoners stirs interest in OWL language (Jupp,
Stevens, & Hoehndorf, 2012), and bio-ontologies are slowly moving towards it
(Hastings, et al., 2012).

<owl:Class rdf:about="http://edamontology.org/data_0871">

<rdfs:label>Phylogenetic character data</rdfs:label>

<rdfs:subClassOf rdf:resource="http://edamontology.org/data_2523"/>

<oboOther:namespace>data</oboOther:namespace>

<created_in>beta12orEarlier</created_in>

<obolnOwl:inSubset>edam</obolnOwl:inSubset>

<obolnOwl:inSubset>biocinformatics</obolnOwl:inSubset>

<obolnOwl:inSubset>data</obolnOwl:inSubset>

<obolnOwl:hasDefinition>Basic character data from which a phylogenetic tree may be
generated.</obolnOwl:hasDefinition>

<rdfs:comment>As defined, this concept would also include molecular sequences,
microsatellites, polymorphisms (RAPDs, RFLPs, or AFLPs), restriction sites and
fragments</rdfs:comment>

<obolnOwl:hasRelatedSynonym
rdf:resource="http://www.evolutionaryontology.org/cdao.owl#Character"/>
</owl:Class>

Table 9. Phylogenetic character data definition example from EDAM ontology (OWL 2)

20 ontologies and semantics

1.4.6. The Semantic Web Rule Language (SWRL)

Description Logic (DL) languages such as OWL are limited to a formal
representation of knowledge and have limited expressiveness that may be
extended with rules. SWRL is an expressive OWL-based language that includes
a high-level abstract syntax for Horn-like rules. SWRL is based on a
combination of the OWL DL dialect of the OWL language with a Rule Markup
Language (RuleML) and may be expressed either in OWL XML Presentation
Syntax (XML Concrete Syntax) or in OWL RDF/XML exchange syntax (RDF
concrete syntax). RDF concrete syntax may be accomplished by applying an
XSLT transformation to the OWL XML Presentation syntax. SWRL rule axiom
consists of an antecedent (body) and a consequent (head) parts (IF-THEN
construct).

With the advent of OWL 2 many SWRL rules may be efficiently expressed as
DL axioms (for instance restrictions on datatype properties).

1.4.7. Rule Interchange Format (RIF)

While SWRL was designed as an extension to OWL, there are many other rule
languages like N3-Logic (Berners-Lee, Connolly, Kagal, Scharf, & Hendler,
2008), SILK (Grosof, 2009), OntoBrocker (Decker, Erdmann, Fensel, & Studer,
1999), etc. The variability of rule languages creates interoperability and
integration difficulties. RIF is a W3C standard for exchanging rules among rule
systems and engines. RIF specification describes three dialects that are focused
on logic-based and productlon rule Ianguages

RIF BLD RIF PRD
(busmess logic dilect) < RIF-Cor“-‘) (production rule dlalect))

Figure 13. RIF dialects.

e RIF-Core dialect corresponds to the language of definite Horn rules
without function symbols (often called 'Datalog’) with standard first-
order semantics.

o RIF-BLD dialect corresponds to the language of definite Horn rules
with equality and standard first-order semantics.

21 introduction

o RIF-PRD dialect captures the main aspects of various production rule
systems. RIF-PRD semantics is based on OMG Production Rule
Representation specification®.

Although RIF dialects were designed primarily for rules interchange, each
dialect constitutes a standard rule language and thus may be directly used.

Recognizing that RIF rules should be able to interface with RDF and OWL
ontologies, RIF RDF and OWL Compatibility specification is included into RIF
specifications set.

1.4.8. Linked Data

Linked Data (LD) is a part of W3C Semantic Web initiative that includes
many of described previously technologies and which basic idea is to bring
semantic data to the Web. The goal of LD is to consolidate huge amount of
semantic data available on the Web via the LD Platform® and other
complementary specifications.

The purpose of Linked Data Platform is to establish a set of rules for
accessing, updating, creating and deleting RDF resources via HTTP protocol.
Note that other specifications already have similar functionality (e.g. SPARQL
1.1 Graph Store HTTP Protocol®).

The interesting feature of LD Platform is a possibility to manage non-RDF
data. This feature makes LD Platform an interesting option for non-semantic
data integration. Many biological data formats (e.g. PDB, FASTA, PIR, etc.)
have no RDF representation, but may be easily referred via LD Platform.

Although LD Platform specification is quite recent, the interest in the platform
within Life Science community is very high (Goble, et al., 2013), (Thompson, et
al., 2014). The ELIXIR initiative has considered the Linked Data approach as the
principal data interoperability strategy in Europe, and real work is already on the
way via HORIZON 2020 ELIXIR-EXCELERATE project®.

% http://www.omg.org/spec/PRR/1.0/

* http://www.w3.org/TR/Idp/

% http://www.w3.org/TR/spargl11-http-rdf-update/

?® http://cordis.europa.eu/project/rcn/198519 en.html

http://www.omg.org/spec/PRR/1.0/
http://www.w3.org/TR/ldp/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://cordis.europa.eu/project/rcn/198519_en.html

22 web services

1.5. Web Services

Web Services is a predominant SOA architecture in the Web.

WSDL description

SOAP messaging

XML encoding
HTTP transport

Figure 14. Web Services stack

The platform independence made Web services a preferred choice for many
integration projects in bioinformatics.

While Web services are based on many technologies and consists of many
components, they usually associated with SOAP protocol (Figure 14). SOAP
protocol represents an essence of Web Services message oriented model. WSDL
document is used to describe Web services in XML grammar.

Another Web architecture which is gaining popularity in bioinformatics data
integration is REST. While REST is based on different conceptual principles
than Web services, Web APIs based on REST design often referred as RESTful
web services. Especial attention must be given to a difference between RESTful
Web APIs and an HTTP protocol REST is based on. Not all HTTP-based APIs
are RESTful. In fact, HTTP is also the primary protocol in use for SOAP
messages.

23 introduction

1.5.1. HTTP

The RFC-2616%" defines HTTP as an application-level protocol for distributed,
collaborative, hypermedia information systems. HTTP is designed as a stateless,
request-response protocol for client-server architecture and is a main protocol for
the World Wide Web.

request line
http headers
content
‘L
BROWSER HTTP Response | ERve
je—— : status line

http headers

content
Figure 15. HTTP Request/Response

The stateless nature of the protocol and available cache-control mechanisms
allow to significantly reduce the amount of web traffic and increase overall Web
throughput. HTTP defines a set of request methods (or verbs) that have
predetermined protocol semantics (Table 10).

HTTP Description
Method
GET Requests a representation of the specified resource.
HEAD Requests headers of the specified resource.
POST Requests the web server to accept the data for storage.
PUT Requests the web server to store the data.
DELETE Deletes the specified resource.
OPTIONS Returns HTTP methods supported for specified resource.
TRACE Loop-back the request message.
CONNECT Converts the request connection to a transparent TCP/IP tunnel.

Table 10. HTTP Methods

Other HTTP verbs may be further defined without breaking existing
infrastructure. For instance RFC-5789% specified the PATCH verb Web

%7 http://tools.ietf.org/rfc/rfc2616.txt
%8 http://tools.ietf.org/rfc/rfc5789.txt

http://tools.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/rfc/rfc5789.txt

24 web services

Distributed Authoring and Versioning (WebDAV)? that extends HTTP with
seven new verbs.

All HTTP Response messages include a status code which reports whether the
operation was successful or no. The first digit of the status code specifies one of
five classes of response:

o 1xx: Informational - Request received, continuing process.

e 2xX: Success - The action was successfully received, understood, and
accepted

e 3xx: Redirection - Further action must be taken in order to complete
the request

o 4xx: Client Error - The request contains bad syntax or cannot be
fulfilled

o 5xx: Server Error - The server failed to fulfill an apparently valid
request

The status code is usually followed by a reason phrase which is a textual
status code interpretation (for instance 404 - “Not Found”, 200 — “OK”, 418 -
“I'm a teapot”).

HTTP defines a set of standard headers that provide additional information

about the message content. Headers may indicate content media type and
encoding. They are also used for content negotiation, cache control or
authentication purpose.
The Internet Engineering Task Force (IETF) is recently approved the HTTP 2.0
version of the protocol®. HTTP 2.0 uses binary message framing and is not
compatible with previous versions. However, it keeps HTTP 1.1 semantics
unchanged that makes them identical from the application level perspective.

% http://tools.ietf.org/rfc/rfc4918.txt
%0 http://tools.ietf.org/rfc/rfc7540.txt

http://tools.ietf.org/rfc/rfc4918.txt
http://tools.ietf.org/rfc/rfc7540.txt

25 introduction

1.5.2. SOAP

SOAP is a lightweight XML-based protocol developed for Web services.
Designed to be neutral, SOAP doesn’t impose any particular transport protocol
usage and may be used over many protocols such as HTTP, SMTP, TCP, or
JMS. To achieve this independence SOAP message is divided into two parts
(Figure 16):

SOAP Envelope

SOAP Header

SOAP Body

Figure 16. SOAP Envelope

SOAP Header which contains a message specific part and SOAP Body which
contains an actual message payload. The protocol neutrality put an additional
complexity, thus gaining a criticism from a REST camp.

1.5.3. WSDL

WSDL 1.1 is an XML format for Web services definition was submitted to the
W3C consortium in 2001. Although it was never accepted as a standard it was
quickly accepted by industry and is still prevalent format for Web services
description. Recognizing its inaccuracy and incompleteness Web Services
Interoperability Organization (WS-1) was formed to improve the specification. In
parallel W3C consortium was working on a second version of WSDL which was
to resolve many issues found by WS-I. WSDL 2.0 brought a new component
model into a scene and greatly improved the extensibility and interoperability
(Figure 17).

26 web services

WSDL 1.1 WSDL 2.0
<definitions> <description>
<types> — » <types>
<messages>
— » <interface>
<portType>
<binding> — » <binding>
SOAP 1.1 SOAP
SOAP 1.2 HTTP
HTTP RPC
MIME
<service> - » <service>
<port> <endpoint>

Figure 17. WSDL 1.1 / 2.0 model

WSDL 2.0 deliberately separates the core language from predefined extensions
(RPC, SOAP and HTTP bindings). It also separates the component model from
the XML infoset which defines WSDL 2.0 syntax. The component model
imposes many semantic constraints that cannot be validated using the WSDL 2.0
schema. For instance WSDL 2.0 defines top elements ordering which is not
reflected in the WSDL 2.0 schema.

1.5.4. REST

REST is the architectural style developed by W3C Technical Architecture
Group (TAG) in parallel with HTTP/1.1 protocol. Being a design pattern, REST
principals may be implemented with any application level protocol which
provides sufficient means to follow REST principles. These principles are based
on a concept of resource which must be uniquely identified by a resource
identifier. One of the important constraints of the architecture is resource
statelessness. The resource identifier must contain all necessary for the resource
location. Identified resources characterize conceptual entities and may be
described via various representations. For instance the same image resource may
be represented in different image formats. This additional information or media
type forms part of representation metadata. Other information such as control
data may be also passed by underlying protocol.

Undeniably, HTTP protocol is a primary choice for the REST architecture
comprising all necessary elements.

27 introduction

REST HTTP
resource identifier URI, URL
representation Content (HTML, XML, PNG, etc.)
representation metadata Media Types
resource metadata Vary
control data HTTP Verbs

Table 11. REST data elements

Web interfaces that follow REST architecture style often referred as RESTful
web services. These services adopt HTTP verbs to provide resource management
and in many cases represent an elegant alternative to traditional SOAP-based
ones. While RESTful web services are not limited to standard HTTP methods
they usually adopted them for the purpose.

Resource
HTTP Verb i
Collection Item
GET Returns a list of items Return the item
PUT Replace entire collection | Create / Replace the item
POST Create a new item Not used
DELETE Remove entire collection Remove the item

Table 12. HTTP methods in RESTful API

Because of the simplicity, REST architecture is very popular for
bioinformatics Web services development (some examples are RCSB PDB
REST API*, KEGG REST-like API*2, ChREMBL Web Services®, UniProt*).
Along with SOAP services, RESTful Web services may be described via WSDL
2.0 (Guardia, Pires, Véncio, Malmegrim, & de Farias, 2015). Nowadays,
RESTful Web services development has become a routine task for
bioinformatics developers.

*! http://www.rcsb.org/pdb/software/rest.do

*2 http://www.kegg.ip/kegg/rest/keggapi.html

** https://www.ebi.ac.uk/chembl/ws

** http://www.uniprot.org/help/programmatic_access

http://www.rcsb.org/pdb/software/rest.do
http://www.kegg.jp/kegg/rest/keggapi.html
https://www.ebi.ac.uk/chembl/ws
http://www.uniprot.org/help/programmatic_access

28 web services

1.5.5. WADL

WADL is an XML-based language for HTTP-based applications description.
In many cases WADL overlaps with WSDL HTTP Binding in the provided
functionality, but being specially oriented to the description of RESTful web
services, and often considered as much simpler alternative. Like WSDL HTTP
Binding, WADL allows defining URI-based parameters, HTTP headers and may
include XML Schema definitions (Table 13). While WSDL operates with
interfaces and their operations, WADL operates with resources and methods
(Takase, Makino, Kawanaka, Uenol, Ferris, & Ryman, 2008).

<wadl:application xmIns:wadl="http://wadl.dev.java.net/2009/02"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">
<wadl:grammars>
<xs:schema xmins:tns="http://www.rcsb.org/pdb/rest/">
<xs:element name="current" type="current"/>
<xs:element name="PDB" type="PDB"/>
<xs:complexType name="current">
<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0" name="PDB" type="PDB"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="PDB">
<xs:attribute name="structureld" type="xs:string"/>
</xs:complexType>
</xs:schema>
</wadl:grammars>
<wadl:resources base="http://www.rcsb.org/pdb/rest/">
<wadl:resource path="getCurrent">
<wadl:method name="GET">
<wadl:request>
<wadl:param xmins=
</wadl:request>
<wadl:response>
<wadl:representation xmins="" element="current" mediaType="application/xml"/>
</wadl:response>
</wadl:method>
</wadl:resource>
</wadl:resources>
</wadl:application>

name="PDB" style="query" type="PDB"/>

Table 13. WADL description of RCSB getCurrent Web service.

29 introduction

1.6. Semantic Web Services

Semantic Web Services (SWS) initiative is an intention to introduce Semantic
Web technologies to the Web Services architecture. While Semantic Web is
generally referred as Web of Data, SWS constitutes Web of Applications. SWS
promise better interoperability by taking advantage of meaningful, context-based
analysis of services functionality.

1;

2 Semantic Web

g Web Services S

% XML, SOAP, WSDL... IRI, RDF, OWL, 272

2 WWwW Semantic Web

% URL, HTTP, HTML... IRI, RDF, OWL, RIF...
syntax semantics

Figure 18. Evolution towards SWS

Given the large number of service providers that offer their Web services to
the bioinformatics community, the need to support a certain level of
interoperability is an important challenge. This interoperability may be achieved
on the syntactic level through a common XML Schema based definitions for
biological entities (Kalas, et al., 2010), or providing an additional semantic level
that describes these services and may be used for service discovery and
matching.

Acknowledging limitations of traditional Web Services many projects provide
their own SWS frameworks: MOBY-S, Semantic Markup for Web Services
(OWL-S), Web Service Modeling Ontology (WSMO), Lightweight Semantic
Descriptions for Services on the Web (WSMO-Lite), or Semantic Automated
Discovery and Integration (SADI). The common feature of these projects is the
usage of an ontology for service descriptions. On the other hand W3C published
Web Services Description Language (WSDL) Version 2.0: RDF Mapping
specification providing a possibility to express Web services descriptions in
OWL Web Ontology Language (OWL). Unlike other Web Service Description
projects, WSDL 2.0 RDF Mapping provides an ontology that directly reflects
WSDL 2.0 descriptions, making possible a reverse conversion. WSDL 2.0 RDF
mapping is not a standalone specification and defines a limited set of constraints

30 semantic web services

the WSDL specification imposes providing a minimalistic ontology to describe
Web services. The latter means that validity of Web service description
represented in OWL vocabulary cannot be verified through an ontology
reasoner.

While mentioned frameworks provide a solid basement for describing relevant
aspects of Web services all of them have issues with XML-based type system
description. Conventional Web service definition specifies XML as the message
interchange format®, and although WSDL 2.0 specification anticipates other
type system usage®, XML Schema is the only type system that it defines.
Matching XML Schemas with OWL ontologies is a non-trivial task. The
Semantic Annotations for WSDL and XML Schema (SAWSDL) extension
defines Schema mapping attributes (liftingSchemaMapping,
loweringSchemaMapping), and while it does not prescribe any particular
mapping representation scheme, the Extensible Stylesheet Language
Transformations (XSLT) language is generally assumed. Some SWS
frameworks consider SAWSDL grounding (Martin, Paolucci, & Wagner, 2007),
which in many cases may be seen as an intricacy given that SAWSDL is about to
provide semantic annotations to various parts of a WSDL, and in a case of pure
semantic representation of WS such annotations may be added directly.

* Definition: A Web service is a software system identified by a URI [RFC 2396], whose
public interfaces and bindings are defined and described using XML. Its definition can
be discovered by other software systems. These systems may then interact with the
Web service in a manner prescribed by its definition, using XML based messages
conveyed by Internet protocols.

http://www.w3.0rg/TR/wsa-reqgs/

*® Discussion of Alternative Schema Languages and Type System Support in WSDL 2.0
http://www.w3.0rg/TR/wsdl20-altschemalangs/

http://www.w3.org/TR/wsa-reqs/
http://www.w3.org/TR/wsdl20-altschemalangs/

31

introduction

1.6.1. OWL-S

OWL-S is a W3C Submission of refined DARPA agent markup language for
services (DAML-S). In simple terms OWL-S is OWL ontology to describe
SWS. Structurally the ontology is separated in three essential branches of
descriptions:

Service Profile - provides general provisional information about the
service such as its name, description, or contact information, and may be
used to facilitate service discovery.

Service Model - provides detailed information of how to interact with a
service. This information is modeled in terms of processes and may
describe not only simple, or “atomic” services, but also complex or
“composite” ones. The composite services are in essence workflows
with a sophisticated control rules defined (Sequence, Split, Split + Join,
Choice, Any-Order, Condition, If-Then-Else, Iterate, Repeat-While, and
Repeat-Until). Input and output parameters are defined as subclasses of
Semantic Web Rule Language (SWRL) variables.

Service Grounding - specifies the details of how to access the service
and is consistent with WSDL's concept of binding. In this way Service
Model may be seen as an interface definition while Service Grounding
as a concrete protocol definition. OWL-S provides WSDL 1.1
grounding defining properties for the WSDL 1.1 elements. Because
OWL-S and WSDL use different type systems, to derive the message
part from the atomic process instance, an xsltTransformation property
may be used. The latter is similar to SAWSDL lowering schema
approach.

32 semantic web services

1.6.2. MOBY-S

BioMoby (The BioMoby Consortium, et al., 2008) project was indeed a
remarkable project in SWS frameworks oriented to bioinformatics. Semantic
MOBY (Lord, et al., 2004) project (also known as S-MOBY) made an attempt
to bring OWL-DL RDF descriptions for BioMoby web services and finally was
integrated as a MOBY-S branch of the BioMoby project. The change of the
name was due to the integration with another outstanding initiative — ™Grid
(Stevens, Robinson, & Goble, 2003). This way ™Grid embraced Semantic
MOBY and MOBY-S became an implementation of ™Grid BioMoby
definitions (Wilkinson, Gessler, Farmer, & Stein, 2003) (Wilkinson, Schoof,
Ernst, & Haase, 2005).

Creation of BioMoby ontology simplified BioMoby integration with other
™Grid projects like Taverna (Kawas, Senger, & Wilkinson, 2006) and extended
BioMoby visibility.

The BioMoby ontology consisted of four principal ontologies:

e Object Ontology provides structural and semantic descriptions
for common biological objects (e.g. “AminoacidSequence”,
“AntigenicAnnotation”, etc).

¢ Namespace Ontology defines an underlying source of objects,
usually a well-known resource (e.g. “UniProt”, “GO”, “PDB”, etc).

o Service Ontology provides exhaustive descriptions for BioMoby
Web services execution.

e Service Types Ontology provides a hierarchy of functions
performed by BioMoby services (“Alignment”, “Retrieval”, etc).

33 introduction

The ™Grid ontology already defined many terms that are present in BioMoby.
The MOBY-™Grid Service ontology extended the latter providing BioMoby
specific terms to effectively describe BioMoby services (Table 14).

<rdf:RDF xmins:a="http://www.mygrid.org.uk/mygrid-moby-service#"
xmins:b="http://protege.stanford.edu/plugins/owl/dc/protege-dc.owl#"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="http://www.inab.org/RESOURCES/MOBY-
S/Servicelnstances/inb.bsc.es,runTcoffeeEvaluateAlignments">
<rdf:type rdf:resource="http://www.mygrid.org.uk/mygrid-moby-service#serviceDescription"/>
<b:format>moby</b:format>
<b:identifier>urn:Isid:biomoby.org:serviceinstance:inb.bsc.es,runTcoffeeEvaluateAlignments:2007-11-
16T13-34-31Z</b:identifier>
<a:locationURI>http://inb.bsc.es/cgi-bin/mobyServices/dispatchers/asyncDispatcher.cgi</a:locationURI>
<a:hasServiceDescriptionText>Evaluation of an alignment using Tcoffee.</a:hasServiceDescriptionText>
<a:hasServiceNameText>runTcoffeeEvaluateAlignments</a:hasServiceNameText>
<a:providedBy>...</a:providedBy>
<a:hasOperation>
<rdf:Description rdf:about="http://www.inab.org/RESOURCES/MOBY-
S/Servicelnstances/75b852b15ad35cc89f2cd2b6b82b2cef">
<a:hasOperationNameText>runTcoffeeEvaluateAlignments</a:hasOperationName Text>
<rdf:type rdf:resource="http://www.mygrid.org.uk/mygrid-moby-service#operation"/>
<a:performsTask>...</a:performsTask>
<a:inputParameter>
<rdf:Description rdf:about="http://www.inab.org/RESOURCES/MOBY-
S/Servicelnstances/5871519782f3424481934981d2773e69">
<a:hasParameterNameText>alignment</a:hasParameterNameText>
<rdf:type rdf:resource="http://www.mygrid.org.uk/mygrid-moby-service#parameter"/>
<a:objectType>
<rdf:Description rdf:about="http://www.inab.org/RESOURCES/MOBY-
S/Servicelnstances/d16be0769a2ab60abb0a51c2b391fa1b">
<rdf:type rdf:resource="urn:lsid:biomoby.org:objectclass:Clustalw_Text:2001-09-21T16-00-
00Z"/>
</rdf:Description>
<[a:objectType>
<a:hasParameterType>
<rdf:Description rdf.about="http://www.inab.org/RESOURCES/MOBY-
S/Servicelnstances/e614a99ac0d5a7012db8d29067203fe4">
<rdf:type rdf:resource="http://www.mygrid.org.uk/mygrid-moby-service#simpleParameter"/>
</rdf:Description>
</a:hasParameterType>
</rdf:Description>
<[a:inputParameter>
<a.outputParameter>...</a:outputParameter>
</rdf:Description>
</a:hasOperation>
</rdf.Description>
</rdf.RDF>

Table 14. BioMoby services description.
Example: runTcoffeeEvaluate Alignments service

34 semantic web services

Unlike other ontologies aimed at Web Services description, BioMoby
ontology also contained structural information for biological objects
serialization.

BioMoby utilizes its own XML-based message format (Table 15) which is
loosely defined at the BioMoby documentation.

<MOBY xmins="http://www.biomoby.org/moby”>
<mobyContent moby:authority="inb.bsc.es">
<mobyData querylD="sip_1">
<Simple articleName="sequence”>
<AminoAcidSequence id="P00807" namespace="UniProt">
<String articleName="SequenceString">MKKLIFL...</String>
</AminoAcidSequence>
</Simple>
</mobyData>
</mobyContent>
</MOBY>

Table 15. BioMoby message example

35 introduction

1.6.3. WSMO

WSMO is another W3C submission that provides ontological specifications of
Semantic Web services. Unlike OWL-S WSMO uses its own ontology language
— Web Service Modeling Language (WSML). Given that WSML is specially
designed for SWS modeling the difference between them is rather conceptual.
WSMO relies on the same WSML components:

¢ Ontologies. Ontologies are domain specific ontologies that are in use by
other WSMO components. Any WSMO component may be extended by
non-functional properties based on Dublin Core Metadata Element Set.

o Goals. Goals describe desired functionality for the service. It is similar
to service interface but from the user perspective and does not specify
any preconditions (input).

o Web Services. Web Services describes the Web service functionality
(capability) and interactions (interfaces). Interfaces expose they internal
functionality in a form of either choreography or orchestration.
Choreography provides all necessary details for the client-service
interaction, similar to OWL-S AtomicProcess. Orchestration is the
pattern of interactions with other Web services in order to achieve the
goal and is similar to OWL-S CompositeProcess.

e Mediators. Mediators are the core concept to resolve incompatibilities
on the data, process and protocol level providing appropriate
conversions.

1.6.4. WSMO-L.ite

WSMO-Lite (Vitvar, Kopecky, Viskova, & Fensel, 2008) is yet another W3C
submission based on the Minimal Service Model (MSM) (Pedrinaci, Kopecky,
Maleshkova, Liu, Li, & Domingue, 2011). Unlike WSMO which is based on
WSML language, WSMO-L.ite is based on OWL. MSM already covers WSDL
1.1 essential descriptions and WSMO-Lite further extends the ontology with
some WSMO concepts such as conditions and effects (capabilities) and
SAWSDL properties. SAWSDL Schema mapping provides a link between
semantic type system and XML Schema model.

1.6.5. SADI

SADI (Wilkinson, Vandervalk, & McCarthy, 2011) is not positioned as a
standard and consists of a number of recommendations for semantic service
description. SADI does not define any service description ontology, but the
framework itself uses MOBY-myGrid one. It also does not define any type

36 semantic web services

system proposing direct RDF data usage for service input and output. This way
SADI services may be seen as RESTful Web services that use RDF as a
message interchange format. Unlike XML-based protocols, that usually require
strict syntax based on XML Schema, the validity of the SADI message may be
dynamically determined by the semantic reasoner.

1.6.6. WSDL 2.0 RDF Mapping

WSDL 2.0 RDF Mapping (Kopecky, 2006) is the only W3C
recommendation®’ to represent Web services as OWL ontology. The ontology
follows WSDL 2.0 component designator specification for IRI-references®.
WSDL 2.0 component local names are represented as a literal value of
rdfs:label property. The ontology does not strictly follow the WSDL 2.0
component model in places where OWL expressiveness is more appropriate. For
instance WSDL 2.0 extension mechanism is better represented through OWL
inheritance. WSDL 2.0 ontology provides mapping for predefined WSDL 2.0
extensions defined in WSDL 2.0 Adjuncts®.

The ontology does not enforce any structural or logical restrictions over
components, and may not be used for Web Services validation.

As other ontologies targeting SWS description, this ontology faces a problem
with XML Schema type system representation, providing only Qualified Names
of element declarations. It should be noted that neither OWL nor OWL 2
support xs:QName datatype and that WSDL 2.0 ontology uses its own
wsdl:QName class instead.

7 http://www.w3.org/TR/wsdI20-rdf/
38 http://www.w3.org/TR/wsd|20/#wsdl-iri-references
* http://www.w3.0org/TR/wsdI20-adjuncts/

http://www.w3.org/TR/wsdl20-rdf/
http://www.w3.org/TR/wsdl20/#wsdl-iri-references
http://www.w3.org/TR/wsdl20-adjuncts/

OBJECTIVES

“A problem well stated is a problem half solved.”

Charles Ketterin

The need in standard approaches for biological data integration is especially
important in a context of ever increasing number of biological databases
(Galperin & Fernandez-Suarez, 2011). Ontologies occupy a paramount position
in Life Sciences providing an ample coverage for many biological domains. On
the other hand a lot of biological data cannot be statically described and is a
result of some software function. As applied to Web Architecture such functions
are referred as Web services. Providing semantic descriptions for biological
methods appears to be as important as providing semantic descriptors for
biological data. While a lot of frameworks have been proposed as a solution,
none of them became a standard and taking into account the fast pace of the
Semantic Web standardization process, this area of research constitutes a broad
field of investigation. The main objective is to investigate emerging W3C
standards in Semantic Web and their applicability to data integration in
bioinformatics. Three goals addressed by the thesis are:

e Provide a clear path for bioinformatics services development based on
ontologically defined data.

e Provide a transition path of the already established BioMoby platform to
the W3C standard-based solutions.

e Provide a practical and standard-based solution for the description of
bioinformatics methods based on ontological languages.

In consistency with objectives thesis results are divided into several parts:

e OWL 2 to XML Schema conversion tool to facilitate
bioinformatics web services creation (with an example of a
creation of semantically annotated sequence alignment Web
service based on OWL 2 ontology)

e Two different approaches for BioMoby web services
integration: Automatic web services proxy generation based

on BioMoby ontology and BioMoby ontology integration into
WSDL 2.0 descriptors.

Semantic Web Services Registry based on OWL
representation of WSDL 2.0 descriptions.

The integration of the developed Registry with Taverna
Workflow management and enactment tool.

MATERIALS AND METHODS

“A cudgel is the intellectual property of barbarians”

Eugene Kascheev

41 Materials and Methods

Technological choices

Previously formulated goals require a thorough analysis of existent approaches
in semantic data integration in bioinformatics. The analysis includes an
examination of requirements for the bioinformatics interoperability with a
special accent on compatibility with existent technological solutions. The latter
is especially important in a light of practical usage of developed framework.
Creation of the semantic framework also requires an evaluation of available
libraries for the Semantic Web initiative and probably software development
where existent tools are absent or unsuitable.

Semantic Web Services ontology

From a variety of semantic Web service description languages W3C Web
Services Description Language (WSDL) Version 2.0: RDF Mapping
specification has been chosen as a basement for the project. The choice is
explained by its direct WSDL coupling where both representations can be used
interchangeably. The latter is especially important given that many of
bioinformatics Web services already have their WSDL definition.

WSDL 2.0 component model is used as a core for the Semantic Web Registry.
Although WSDL 2.0 component model is quite different from the WSDL 1.1
one, the conversion is still possible and was already anticipated by the W3C™.
WSDL 2.0 also provides better than WSDL 1.1 HTTP-based Web services
applications description, what facilitates RESTful Web services description.

BioMoby integration libraries

Although Java BioMoby API (jMoby) provides all the functionality to search
and execute BioMoby Web services, it doesn’t provide a consistent model to
describe them. Every BioMoby Registry Web service requires different
parameters for the execution. The MobyCore and MobyCentral libraries are
based on the same JAXB-based model that can be easily serialized to the XML
description file. JAXB API is also an integral part of the standard JAX-WS API
that allowed to tremendously reduce libraries size.

O http://www.w3.0rg/2006/02/WSDLConvert.html

http://www.w3.org/2006/02/WSDLConvert.html

Java Servers Standards Projects
jBoss AS 7.2.1 Java EE 7 Server BioSWR

Apache Tomcat 6 + Java Servlet Container +

GlassFish METRO + Java AP for XML-Based Web Services 2.0 + BioNemus

Jersey Java API for RESTful Services

Web Frameworks

RichFaces 45 JavaServer Faces 2.1 Ul component BioSWR

—_— framework

Database Servers

MySQL 5.1 Server SQL Database Server BioSWR

Semantic Libraries

The OWL API OWL 2 Web Ontology Language BioSWR, OWL2XS
HermiT OWL Reasoner BioSWR, OWL2XS
Sesame SPARQL 1.1 BioSWR

WSDL/XML Schema parsers

WSDL4j

WSDL Version 1.1

BioSWR, Galaxy Gears

Apache Woden WSDL Version 2.0 Galaxy Gears
Apache XmlSchema 2.1 XML Schema Language 1.1 BioSWR, ,BioNemus,

OWL2XS, Galaxy Gears

Table 16. Tools and libraries used in the projects

http://www.jboss.org/
https://www.jcp.org/en/jsr/detail?id=342
http://tomcat.apache.org/
https://metro.java.net/
https://jersey.java.net/
https://www.jcp.org/en/jsr/detail?id=154
https://jcp.org/en/jsr/detail?id=224
https://jcp.org/en/jsr/detail?id=311
http://richfaces.jboss.org/
https://www.jcp.org/en/jsr/detail?id=314
http://www.mysql.com/
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=53681
http://owlapi.sourceforge.net/
http://www.w3.org/TR/owl2-overview/
http://www.hermit-reasoner.com/
http://rdf4j.org/
http://www.w3.org/TR/sparql11-overview/
http://sourceforge.net/projects/wsdl4j/
http://www.w3.org/TR/wsdl
https://ws.apache.org/woden/
http://www.w3.org/TR/wsdl20/
https://ws.apache.org/xmlschema/
http://www.w3.org/XML/Schema

RESULTS

“Nothing happens until something moves.”

Albert Einstein

44 Part | — BioMoby ontology model integration

Part | — BioMoby ontology model integration

Emerged a decade ago, web services have been presented as the answer to
rationalize the landscape of modern bioinformatics. Web services could be found
through the use of generally available catalogues and the strict specification of
data formats makes possible to build workflows of compatible services and
perform complex bioinformatics analyses. This would draw a scenario where
non-experts could make use of bioinformatics as a routine tool without a deep
knowledge of the techniques involved. Besides, the programmatic nature of Web
services allows performing genome-wide analyses that are not feasible through
classical web applications. Despite of this ideal perspective, present Web
services lack the expected acceptance, no common specification adopted by
service providers and significant compatibility issues persist.

Initiated in 2001, and with the first stable version published in 2008, BioMoby
project was one of the earliest intentions to create a Web services platform for
bioinformatics. Indeed, it became a very popular open source framework with
thousands of services developed by many organizations. The distinct feature of
BioMoby was a semantic layer in the definition of data types that allows non-
experts to understand the biological contents of data objects.

The, at its time, revolutionary idea of providing a common ontology for
biological objects along with a central repository for web services descriptions
led to the creation of a consistent platform with a broad development support and

many tools being developed. Indeed, support of various development languages
(Java and Perl) and the availability of development tools provided a universal
acceptance by bioinformatics services developers. More than a thousand services
covering all sorts of bioinformatics applications can be found in BioMoby
Registry along to an extensive Object Ontology which describes hundreds
biological datatypes. Surprisingly enough, the availability of development tools
that made BioMoby so popular for developers, became a limitation in time of
new standards adoption. BioMoby implementation relied on an in-house XML
serialization that required a proprietary APl (e.g. jMoby). Web Services
Definitions (WSDLs) generated by the BioMoby API are not understood by
standard programmatic tools and lack the semantic contents that makes
BioMoby special. This has restricted the use of BioMoby web services to on-
purpose built clients (Gordon & Sensen, 2007) and required the development of
specific plug-ins for popular clients like Taverna (Kawas, Senger, & Wilkinson,
2006). The present work has tried to conciliate the BioMoby framework with
standard web services technologies, through the development of a new Java API,

45 Results

and providing a pipeline to adapt the execution of BioMoby services to standard
clients, and technologies.

46 Part | — BioMoby ontology model integration

4.1.1. New lightweight Java API for BioMoby Registry access
and Web Services execution.

The requirement

. Although BioMoby platform was initially based on Perl, Java quickly became
to a scene with a jMoby API. The API brought to Java developers an opportunity
to create and execute BioMoby web services and provided means to work with
BioMoby registry servers.

Even though jMoby API provided all necessary functionality for BioMoby
developers, it had its limitations arisen from a custom XML binding framework.
Java platform already has a standard XML binding architecture (JAXB) that is
tightly integrated with a way how Java-based web services are developed (JAX-
WS). Non-standard XML binding leads to incompatibility issues with latest Java
Application Servers. Many external dependencies also required non-trivial
solutions (Gordon & Sensen, 2007) for BioMoby client applications developers.

Some issues arises from the BioMoby Central SOAP API, which although
provides all the functionality to manage BioMoby Registry, does not represent a
consistent APl where common data structures may be reused by all SOAP
operations.

To overcome these restrictions a new lightweight BioMoby API has been
developed.

47 Results

Implementation

The implementation consists of several libraries. A core functionality that
includes a BioMoby message format parser and web-services execution part
enclosed in a MobyCore*' library. The part responsible for BioMoby Registry
server interactions encapsulated within a MobyCentral library. Both libraries are
based on Java API for XML-Based Web Services (JAX-WS) that is an integral
part of Java 6 platform. The MobyCore library is intended to work with pre-
generated objects that reflects BioMoby ontology, but also allows a manual
BioMoby message creation. In fact it is possible to mix both approaches within a
same message construction.

Registry Server| 5
F \ BioMoby Web Services 52
— =

— L R S

| |

MobyCentral MobyGenerator| Java ontology MobyCore
i i L classes LN
e Ser = _Zg -
5 inva

1 1

BioMoby Java Client

Figure 19. MobyLite Java API

The library implements a BioMoby Asynchronous Services specification
based on OASIS Web Services Resource Framework (WSRF). Generated by a
MobyGenerator utility, Java ontology classes are quite similar to those generated
by MoSeS* tool with a difference that all the XML serialization is done by Java
Architecture for XML Binding (JAXB) API.

Because there is no external library dependencies, libraries are very small and
provide a very light-weight solution for Java based Rich Applications
developments. While it is possible to use the MobyCore library for web services
development, a BioMoby encoding format (SOAP 1.1 Section 5) is considered
obsolete by Web Services Interoperability Organization (WS-1) and has poor
support in modern Java servers.

* http://sourceforge.net/projects/mobycore/
*2 http://search.cpan.org/dist/MOSES-MOBY/

http://sourceforge.net/projects/mobycore/
http://search.cpan.org/dist/MOSES-MOBY/

48 Part | — BioMoby ontology model integration

Features
MobyCore

e RPC-encoded” and “Document-literal” SOAP binding style support.

e Synchronous and asynchronous (through WSRF) BioMoby web services
execution.

¢ May work with or without XML mapped Java datatype classes.

MobyCentral
e Provides all the functionality to work with BioMoby Registry servers.
MobyGenerator

e Generates JAXB based Java annotated BioMoby datatypes classes for
usage with MobyCore library.

49 Results

4.1.2. BioNemus. Creating SAWSDL bioinformatics services
based on BioMoby ontology model

Introduction

The popularity of BioMoby platform left an immense heritage in a form of
available services. Rewriting these services for W3C Web Services standards
compliance would require exceptionable efforts from service providers.
BioNemus tool automatically generates WS-I compatible web services using an
information provided by BioMoby Registry. Generated web services act as a
proxy between clients and original BioMoby ones.

Implementation

BioNemus is implemented as Java 6 applet/application and is based on
previously described lightweight BioMoby API. The lightweight BioMoby API
uses an XML format for services description that allows java code generation
through an XSLT transformation. In fact, the code generation may be upgraded
without a need to rebuild the tool, just by a modification of correspondent XSL
templates. Generated code is compiled using Java Compiler APl (JSR-199)*
provided by OpenJDK project* what makes possible BioNemus applet usage
within web browsers.

Created by BioNemus Java web services application comply with Java API for
XML Web Services (JAX-WS) 2.1 specification®. Generated application is
packaged as a Java Web Application Archive (WAR) which structure is shown
on (Figure 20).

* http://jcp.org/en/jsr/detail?id=199
* http://openjdk.java.net/groups/compiler/
* http://jcp.org/en/isr/detail?id=224

http://jcp.org/en/jsr/detail?id=199
http://openjdk.java.net/groups/compiler/
http://jcp.org/en/jsr/detail?id=224

50

Part | — BioMoby ontology model integration

=) proxy . war
= 2 WEB-INF
ontology.owl
1= sun-jas xml

external ontology file
metro deployment descriptor

1= web,xml web application deployment descriptor
= |3) classes
=l I arg
= |5 bionernus
=1 D) proey
= 1) servlet
RUMNCEIBlastpServiet.class Generated Web Service endpoint
[Z] RunMCEIBlastpServiet java Web Service endpoint source code
= 3 b
|2 MokyCare jar BioMoby API
|2 NernusDatatypes jar BioclNemus Primitive Datatypes
MNemusOntologv Jar BiclMemus Ontology Classes
| &) MerusProwyUtilities. jar BiolMemus to BioMoby ontology conversion library
| &) oLz jar OWL 2 library
| &) 5awsDL jar SAWSDL JAXWS extension library

Mservices.jar

Generated WebService interfaces

Figure 20 Generated Web Application internals

BioMoby datatypes are implemented as Java Architecture for XML Binding
(JAXB) 2.1%® annotated Java beans. BioMoby object ontology defines a

limited set of basic obj
datatypes (Table 17).

ects that have their direct mapping into BioNemus

BioMoby object BioNemus type XML Schema type
Object NemusObject xs:complexType
String NemusString xs:string
Integer Nemusinteger xs:int
Float NemusFloat xs:float
Boolean NemusBoolean xs:boolean
DateTime NemusDateTime xs:dateTime

Table 17. Correspondence between basic BioMoby objects and BioNemus types

Some BioMoby elements are also directly translated in their BioNemus

counterparts (Table 18).

BioMoby BioNemus Description
. a biological entity identifier of any kind
id nemusld (ie "PDB_ID", "UNIPROT_ID" ...)
a concept of data origin, usually goes
namespace nemusNamespace | along with an identifier
([id="P00807", namespace="UniProt"],

* http://jcp.org/en/isr/detail2id=222

http://jcp.org/en/jsr/detail?id=222

51 Results

[id="1PIO", namespace="PDB"]...)

usually specifies additional parameters
for a service

(ie BLAST parameters in runNCBIBlastp
service)

SecondaryParameters | parameters

A cross reference is an optional

xrefs reference .
component of any object.

Table 18. Correspondence between BioMoby and BioNemus elements

SAWSDL library is implemented as an extension to the JAX-WS Reference
Implementation (RI)*'. OWL 2 serialization library is also based on JAXB 2.1
specification and provides OWL/XML serialization®.

BioNemus stores its ontology in a user home directory
($user_home$/.BioNemus2Cache/ontology.zip). The ontology.zip file contains a
set of XML Schemas with defined ontology datatypes. SAWSDL
modelReference attribute is used to unambiguously identify XML Schema
elements with their semantic counterparts.

<xs:element name="MD_Trajectory"
type="tns:MD_Trajectory"
sawsdl:modelReference="urn:lsid:biomoby.org:objectclass:MD_Trajectory™>
<xs:annotation>
<xs:appinfo xmlns:a="urn:Isid:bionemus.org:annotation">
<a:email>moby-services@mmb.pcb.ub.es</a:email>
<a:description>Molecular Dynamics Output Trajectory containing MD Topology, Coordinates
and Restart Files.</a:description>
</xs:appinfo>
</xs:annotation>
</xs:element>
<xs:complexType name="MD_Trajectory">
<xs:complexContent>
<xs:extension base="ns1:NemusObject">
<xs:sequence>
<xs:element name="coordinates" type="ns1:NemusString" minOccurs="0"></xs:element>
<xs:element name="restart" type="tns:MD_Restart" minOccurs="0"></xs:element>
<xs:element name="struct" type="tns:MD_Structure" minOccurs="0"></xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Table 19 XML Schema definition for the MD_Trajectory BioMoby object

* http://jax-ws.java.net/
*® http://www.w3.org/TR/owl2-xml-serialization/

http://jax-ws.java.net/
http://www.w3.org/TR/owl2-xml-serialization/

52 Part | — BioMoby ontology model integration

These schemas may be directly used to generate appropriate ontology classes
(for example XML Binding Compiler). They also may contain XML
annotations.

Functionality

The primary purpose of the application is a generation of web services from
BioMoby ontology.

BioMobyRegistry Java Application Server

Services = » »{ SAWSDL Web-services
BioNemus

SAWSDL ‘ OWL 2

Datatypes —— lib lib
yp: Java ibrary ibrary
ontology v
A classes SA-WSDL
XML XML OWL 2
Schema Schema Ontology

\J

Web-services client

Figure 21. BioNemus functional workflow

BioNemus is a quite sophisticated development tool which provides various
options for web services generation:

o Management of XML Schema based datatypes ontology.

e Import of BioMoby datatypes ontology directly from BioMoby
repository servers.

o Generation of JAXB based Java classes in accordance with
corresponding XML Schema.

o Generation of REST JAVA EE 6 web services based on existent
BioMoby web services.

o Generation of SAWSDL / OWL 2 Java EE 5 web services based
on existent BioMoby web services.

e Generation of SAWSDL / OWL 2 Java EE 5 web services
templates based on ontology XML Schema.

53 Results

e Support of asynchronous BioMoby Web Services through WS-
Addressing specification.

While the principal BioNemus feature is the generation of semantically
annotated document-literal web services based on BioMoby ontology, it can also
generate JAX-WS based web service template providing
de-novo web services development capability.

To generate a proxy application it is possible to use command line parameters
(Table 20). In this case generation is completely automatic.

parameter description
-url URL of the Registry. (if not specified, obtained by -registry namespace)
reqistr Registry namespace to connect to.
gistry (optional, default 'http://www.inab.org/MOBY/Central')
i . Authority to generate a proxy.
authority (if not specified, proxy generated for all services)
-mode Type of generated proxy. (METRO', 'SAWSDL', 'REST')
-fast Reuse cached datatype information.
-output Generated output proxy (*.war) file. (if not specified, $autority + '.war')
-help Help about parameters.

Table 20. BioNemus commandline parameters

For instance:

- >java -jar BioNemus2.jar -mode REST

Generates REST-based web services for all INB authorities.

- >java -jar BioNemusz2.jar -authority inb.bsc.es -mode SAWSDL

Generates SOAP-based semantically annotated web services for the 'inb.bsc.es'
authority.

Usage of the generated services

Automatically generated proxy application for BioMoby web services may be
deployed into any Java Enterprise Edition compatible Java Application Servers
such as JBoss, Glassfish, etc.

There are two different kinds of proxies that can be generated by BioNemus
tool:

e Document/Literal SOAP-based Web-services based on JAX-WS 2.1
specification (requires JEES compatible server).

54 Part | — BioMoby ontology model integration

o RESTful web services based on JAX-RS 1.0 specification, that demands
JEEG6 compatible server (i.e. JBoss 6)

For an execution of SAWSDL Document/Literal SOAP-based web services
any specification conformal tool may be used. For instance, it is possible to use
“wsimport” utility to generate all necessary artifacts:

~ >wsimport http://www.inab.org/dproxy/inb.bsc.es/runNCBIBlastp?wsdl

The example command generates a “runNCBIBlastp” web service client which
includes ontology classes, primitive datatypes and service related artifacts
(request, response, fault, etc.).

The generated web service may be executed using standard java
JAX-WS API:

NemusString str = new NemusString();
str.setValue("MKELNDLEKKYNAHIGVYALDTKSGKEVKFNSDK");
AminoAcidSequence sequence = new AminoAcidSequence();
sequence.setSequenceString(str);

RunNCBIBlastpRequest request = new RunNCBIBlastpRequest();
request.setSequence(sequence);

RunNCBIBlastp_Service service = new RunNCBIBlastp_Service();
RunNCBIBlastp port = service.getRunNCBIBlastpPort();
RunNCBIBlastpResponse response = port.runNCBIBlastp(request, 1, 180);
String blast = response.getBlastReport().getContent().getValue();
System.out.printin(blast);

Table 21. Java code example for BLAST web service execution

55 Results

While it is possible to create a client using only provided WSDL file,
generated proxy application already contains necessary artifact libraries:

o /lib/services.jar - web-services interfaces.
o /lib/NemusDatatypes.jar - primitive datatypes
o /lib/NemusOntology.jar - ontology classes

Using these three libraries, it is possible to create a client without the
need of “wsimport” utility.

@WebServiceClient(name = "runNCBIBlastp",
targetNamespace = "urn:lsid:proxy.bionemus.org:service",
wsdlLocation = "http://www.inab.org/dproxy/inb.bsc.es/runNCBIBlastp?wsd| ")
public class RunNCBIBlastp_Service extends Service {
public RunNCBIBlastp_Service(URL wsdl) {
super(wsdl, new QName("urn:Isid:proxy.bionemus.org:service", "runNCBIBlastp"));

@WebEndpoint(name = "runNCBIBlastpPort")
public RunNCBIBlastp getRunNCBIBlastpPort() {
return super.getPort(new QName("urn:Isid:proxy.bionemus.org:service", "runNCBIBlastpPort"),
RunNCBIBlastp.class);
}

public static void main(String[] args) {
URL wsdl = RunNCBIBlastp_Service.class.getResource(
"http://www.inab.org/dproxy/inb.bsc.es/runNCBIBlast?wsdl ");
RunNCBIBlastp_Service service = new RunNCBIBlastp_Service(wsdl);
RunNCBIBlastp port = service.getRunNCBIBlastpPort();

NemusString string = new NemusString("MKELNDLEKKYNAHIGVYALDTKSGKEVKFNSDK");
AminoAcidSequence sequence = new AminoAcidSequence();
sequence.setSequenceString(string);

try {
BLAST__Text blast_text = port.runNCBIBlastp(sequence, null, null, null);

System.out.printin(blast_text.getContent().getValue());
} catch(Exception ex) { ex.printStackTrace(); }

}

}

Table 22. BLAST web service client

RESTful web services can be also generated by the BioNemus. Based on JAX-
RS 1.0 specification they use the same pattern as SOAP ones and are very easy
to use. Generated services support both XML Schema and JSON based
encoding, thus could be used directly from Javascript. Note that to create an

56 Part | — BioMoby ontology model integration

XML message it is possible to use ontology based java classes along with a
JAXB API.

URL url = new URL("http://www.inab.org/dproxy-rest/inb.bsc.es/getEntryFromPDB");
HttpURLConnection conn = (HttpURLConnection)url.openConnection();
conn.setRequestMethod("POST");
conn.setRequestProperty("Content-Type", "application/xm|™);
conn.setRequestProperty("Accept”, "application/xml");
conn.setDoOutput(true);
NemusObject id = new NemusObject();
id.setNemusld("1pio");
id.setNemusNamespace(new QName(null, "PDB"));
JAXBContext ctx = JAXBContext.newInstance(NemusObject.class);
OutputStream out = conn.getOutputStream();
ctx.createMarshaller().marshal(id, out);
BufferedReader rd = new BufferedReader(new InputStreamReader(conn.getlinputStream()));
String line;
while ((line = rd.readLing()) != null) {
System.out.printin(line);

}
Table 23. Java getEntryFromPDB RESTful web service execution
<html>
<pody>
<script type="text/javascript">
var url = "http://www.inab.org/dproxy-rest/inb.bsc.es/getEntryFromPDB";
var http = new XMLHttpRequest();
http.open("POST", url, true);
http.setRequestHeader("Content-Type", "application/json");
http.setRequestHeader("Accept", "application/json");
http.onreadystatechange = function () {
if (http.readyState == 4 && http.status == 200) {
alert(http.responseText);
}
}
var req = {"nemusld" : "1pio", "nemusNamespace" : "PDB"};
http.send(req);
</script>
</body>
</html>

Table 24. JavaScript getEntryFromPDB RESTful web service execution

57 Results

Achievements

The main achievement of the project was its practical application for National
Institute of Bioinformatics (INB) BioMoby web services collection. Using the
BioNemus tool the complete offer of INB BioMoby web services were published
as Semantically Annotated Document/Literal ones. In addition RESTful access
is also provided with XML and JSON encoding support.

Authority Web Services
synchronous asynchronous total
www.cnb.csic.es 3 4 7
inb.bsc.es 110 54 164
mmb.pcb.ub.es 41 1 42
chio.es 6 10 16
genome.imim.es 21 0 21
bioinfo.cipf.es 9 0 9
pdg.cnb.uam.es 5 0 5
www.cnb.uam.es 1 2 3
cgl.imim.es 6 0 6
chrimoyo.ac.uma.es 3 0 3
www.bioinfo.uma.es 3 0 3
total 208 70 278

Table 25. web services by the authority

4.1.3. SAWSDL-based BioMoby ontology integration.

As said above, BioMoby project popularity was largely attributed to its
community-driven object ontology. The simplicity of the ontology which
provided a minimum of relationships such as inheritance (“is-a”) and
composition (“has-a” and “has”) contributed to its quick buildup with hundreds
of incorporated objects. Even BioMoby services were SOAP-based, BioMoby
didn’t embrace XML Schema as a datatype system, providing a custom message
serialization format encapsulated within a SOAP message. This peculiarity
required the usage of a special API to gather BioMoby services description.
These descriptions may be obtained through BioMoby Registry. Interestingly
enough, BioMoby Registry still provides WSDL 1.1 definitions, but since there
is no datatype information included, their utility is very limited.

In addition to SOAP-based API to access BioMoby Registry, BioMoby
platform provided RDF/OWL based web services descriptions based on ™Grid
ontology. While XML Schema is the only type system supported by WSDL

58 Part | — BioMoby ontology model integration

specification*’, semantic models may be embedded into WSDL descriptors as
suggested in SAWSDL recommendation®. To uncover this possibility the
tinyMOBY library has been developed providing an elegant way to mix
BioMoby WSDL descriptions with OWL/RDF based datatype definitions (Table
26).

* http://www.w3.org/TR/wsdI20-altschemalangs/
* http://www.w3.org/TR/sawsdl/#embedding

http://www.w3.org/TR/wsdl20-altschemalangs/
http://www.w3.org/TR/sawsdl/#embedding

59 Results

<?xml version="1.0" encoding="UTF-8"?>
<description targetNamespace="urn:Isid:inb.bsc.es">

<rdf:RDF xmins:mygrid-moby-service="http://www.mygrid.org.uk/mygrid-moby-service#">
<owl:NamedIndividual
rdf:about="urn:lsid:inb.bsc.es#xmins(ns1=wsdl.interfaceMessageReference(getAminoAcidSequence/getAmin
oAcidSequence/In))wsdl.typeDefinition(ns1:id,http://www.w3.org/TR/rdf-syntax-grammar)">
<rdf:type rdf:resource="http://www.mygrid.org.uk/mygrid-moby-service#parameter"/>
<fowl:NamedIndividual>
<owl:NamedIndividual
rdf:about="urn:lsid:inb.bsc.es#xmins(ns1=wsdl.interfaceMessageReference(getAminoAcidSequence/getAmin
oAcidSequence/Out))wsdl.typeDefinition(ns1:sequence, http://www.w3.org/TR/rdf- syntax-grammar)">
<rdf:type rdf:resource="http://www.mygrid.org.uk/mygrid-moby-service#parameter"/>
<fowl:NamedIndividual>
</rdf:RDF>

<types>
<xs:schema targetNamespace="urn:lsid:inb.bsc.es">
<xs:element name="getAminoAcidSequence" type="xs:string"
sawsdl:modelReference="urn:Isid:inb.bsc.es#xmins(ns1=wsdl.interffaceMessageReference(getAminoAcidS
equence/getAminoAcidSequence/In))wsdl.typeDefinition(ns1:id,http://www.w3.org/TR/rdf-syntax-grammar)"/>
xs:element name="getAminoAcidSequenceResponse" type="xs:string
sawsdl:modelReference="urn:lsid:inb.bsc.es#xmins(ns1=wsdl.interfaceMessageReference(getAminoAcidS
equence/getAminoAcidSequence/Out))wsdl.typeDefinition(ns1:sequence, http://www.w3.org/TR/rdf-syntax-
grammar)"/>
</xs:schema>
</types>

<interface name="getAminoAcidSequence">
<operation style="http://www.w3.org/ns/wsdl/style/rpc" name="getAminoAcidSequence"
pattern="http://www.w3.org/ns/wsdl/in-out">
<input element="tns:getAminoAcidSequence"/>
<output element="tns:getAminoAcidSequenceResponse"/>
</operation>
<[interface>
<binding name="getAminoAcidSequenceBinding"
interface="tns:getAminoAcidSequence"
type="http://www.w3.org/ns/wsdl/soap"
wsoap:protocol="http://www.w3.0rg/2006/01/soap11/bindings/HTTP/"
wsoap:version="1.1">
<operation ref="tns:getAminoAcidSequence">
<input/>
<output/>
</operation>
</binding>
<service name="getAminoAcidSequence" interface="tns:getAminoAcidSequence">
<endpoint name="getAminoAcidSequence"
binding="tns:getAminoAcidSequenceBinding"
address="http://inb.bsc.es/cgi-bin/mobyServices/dispatchersRetrieval/Dispatcher.cgi"/>
<[service>

</description>

Table 26. Embedding MOBY -S datatype definitions in WSDL 2.0 description

60 Part | - BioMoby ontology model integration

Functionality

The tinyMOBY library integrates MOBY-S object ontology into BioMoby
WSDL 2.0 descriptions using SAWSDL specification. The library is
implemented as an extension to tinyWSDL parser and is based on the new
lightweight BioMoby Java API. Using the BioMoby API, tinyWSDL may

directly connect to various BioMoby repositories for WSDL 2.0 descriptor
generation (Table 27).

MobyDescription mobyDescription =

MobyDescription.load("urn:Isid:biomoby.org:serviceinstance:inb.bsc.es,getEntryFromPDB:2008
| 08-05T15-30-11Z");
Description description = mobyDescription.getDescription();

Table 27. WSDL 2.0 description creation from BioMoby service identifier

Generated WSDL 2.0 descriptor contains the complete information about a
correspondent BioMoby service. The tinyMOBY library parses embedded

MOBY-S ontology to discover BioMoby service input/output parameters (Table
28).

SAWSDLInterfaceMessageReferenceExtensions ext1 =
(SAWSDLInterfaceMessageReferenceExtensions)
interfaceOperationinput.getComponentExtensions(WSDLPredefinedExtension.SAWSDL.URI);
SAWSDLElementDeclarationExtensions ext2 =
ext1.getSAWSDLElementDeclarationExtensions();

List<URI> modelReferences = ext2.getModelReferences();

MobyDescription mobyDescription = new MobyDescription(description);

for (URI modelReference : modelReferences) {
TypeDefinition type = mobyDescription.getTypeDefinition(modelReference);
Object param = type.getContent();

}

Table 28. Getting BioMoby service input parameters

61 Results

Achievements

The tinyWSDL library has been used in BioSWR project to integrate BioMoby
services with more than three hundred services registered. Generated by
tinyWSDL, WSDL 2.0 BioMoby service descriptions may be represented in
WSDL 2.0 RDF format, thus providing MOBY-S to WSDL 2.0 OWL ontology
conversion. The tight integration with the lightweight BioMoby Java API
simplifies BioMoby message creation and service execution.

62 Part Il - XML Schema generation from OWL 2 ontologies

Part 11 — XML Schema generation from OWL 2 ontologies.

The OWL 2 Web Ontology Language (OWL 2) is quickly gaining popularity
as a primary choice for biological ontologies development. Its expressiveness
and great tools support offers many advantages over traditionally used in
biomedical domain Open Biomedical Ontologies (OBO) format. Many OBO
ontologies are moving to OWL 2 providing both versions simultaneously.

Nowadays ontology usage is an ordinary method for biological datatypes
classification. Ontologies are extensively used to provide interoperability in
Semantic Web Services. Despite the immense interest in RDF/ XML format as a
type system for Semantic Web Services, XML Schema is the only standard
language to define the structure of web services messages. XML Schema
provides good data interoperability but suffers from the lack of semantics
support. Recognizing the value of semantics, W3C consortium published
SAWSDL specification which defines a mechanism for mapping between XML
Schema types and semantic data. Proposed for the mapping Extensible
Stylesheet Language Transformations (XSLT), present certain difficulties for
Schema lowering (semantic model transformation into an XML message)
providing that ontologies have very syntactically loose descriptions. The need to
maintain both structural and ontological descriptions of biological object
definitions requires considerable efforts from Semantic Web Services
developers. The OWL2XS tool mitigates this problem, providing an automatic
XML Schema generation from OWL 2 ontologies.

4.2.1. Implementation

The OWL2XS tool is implemented in Java language. OWL2XS uses HermiT
reasoner for ontology analysis and Apache XML Schema 2.0 library for XML
Schema serialization. The tool consists of a Java library>* and a simple graphical
application.

4.2.2. OWL 2 Model to XML Schema transformation

While there are many projects targeted XML Schema to OWL model
transformation (Bohring & Auer, 2005) (Tsinaraki & Christodoulakis, 2007),
mapping from OWL model to XML Schema is generally considered
inconceivable. This disbelief is grounded on inherent difference between two
models. The most important obstacle for OWL 2 to XML Schema models

L http://sourceforge.net/projects/owl2xs/

http://sourceforge.net/projects/owl2xs/

63 Results

transformation is in their structural differences. XML Schema is based on tree
model while OWL one is a graph based. Semantic Web languages such as OWL
are based on open world assumption, where anything that is not explicitly
negated is considered as possible. On the other hand XML Schema describes the
structure of an XML document and assumes a closed world domain. However,
notwithstanding the differences in the models, many similarities may be
identified and the transformation is still possible.

Many of OWL 2 entities have corresponding elements in XML Schema and
may be directly mapped to their XML Schema counterparts.

OWL 2 Classes

Classes are concepts of knowledge domain in which individuals are defined.
Classes define categories for instances and may be interpreted as object types. In
reference to XML Schema model, OWL classes may be translated into XML
Schema complex type elements.

OWL 2 XML Schema

Class data:Sequence <complexType
name="Sequence"
sawsdl:modelReference="http://inb.bsc.es/sobo/data#Sequence">

Table 29. OWL 2 Class representation in XML Schema

OWL 2 Properties

Properties are other important components of ontologies. OWL 2 has two
main categories of properties — object and data properties. Object properties
represent relationships between individuals while Datatype properties relate
individuals to data values. Properties are mapped to XML Schema elements.
In some cases Datatype properties may also be represented as XML Schema
attributes. Because XML Schema attributes may not be substituted, the
correspondent Datatype properties may not be a part of properties hierarchy
what put serious limitation for future ontology extension.

OWL 2

Class: data:CleavageSiteAnnotation
SubClassOf: data:ProteinAnnotation
and (property:score only xsd:nonNegativelnteger)
and (property:score max 1 rdfs:Literal)
and (property:mature_peptide only data;:AminoacidSequence)
and (property:mature_peptide some data:AminoacidSequence)
and (property:mature_peptide max 1 data:AminoacidSequence)

~ e~ o~ —~

XML Schema

64 Part Il - XML Schema generation from OWL 2 ontologies

<complexType name="CleavageSiteAnnotation" >
<complexContent>
<extension base="tns:ProteinAnnotation">
<sequence>
<element name="score" type="float"/>
<element name="mature_peptide" type="tns:AminoacidSequence"/>
</sequence>
</extension>
</complexContent>
</complexType>

Table 30. OWL 2 Properties representation in XML Schema

OWL 2 Datatypes

Datatypes are entities that refer to sets of data values. Most OWL 2
datatypes are taken from the set of XML Schema datatypes and thus may be
directly used. Custom datatypes are defined as a restriction of built-in ones
and may be mapped to XML Schema simpleType element.

OWL 2

Datatype format:ClustalW
EquivalentTo:
(format:MultipleAlignment and xsd:string[pattern "A(CLUSTAL W)[]?\x28([0-9]+\.[0
9{11\x29 (multiple sequence alignment)([\n\r].*)+"*xsd:string])

XML Schema

<simpleType name="ClustalW">
<restriction base="tns:MultipleAlignment">
<pattern value="*(CLUSTAL W)[]?\x28([0-9]+\.[0-9]){1}\x29 (multiple sequence
alignment)([\n\r].*)+"/>
<[restriction>
</simpleType>

Table 31. OWL 2 Datatype representation in XML Schema

65 Results

OWL 2 Class inheritance

Inheritance is an important type of class relationships. XML Schema
model is tree based and thus does not support multiple inheritance. One of
the peculiarities of XML Schema inheritance is presence of two types of
inheritance: extension and restriction. The derived type may either “extend”
another type (Table 32) by introducing new properties or “restrict” one
(Table 33) by putting property constraints. It is impossible to apply both
derivation methods simultaneously what may require a creation of an
intermediate abstract type (Table 34).

_\' data:Data ;\ data:Data
SubClassOf extension
_\l data:Sequence ;\ data:Sequence
() sequence : format:Sequence (1..1) <> sequence : format:Sequence (1..1)
OWL 2

Class: data:Sequence
SubClassOf: data:Data
and (property:length only xsd:nonNegativelnteger)
and (property:length max 1 rdfs:Literal)
and (property:sequence some format:Sequence)
and (property:sequence only format:Sequence)
and (property:sequence max 1 format:Sequence)

XML Schema

<complexType name="Sequence">
<complexContent>
<extension base="tns:Data">
<sequence>
<element minOccurs="0" name="length" type="nonNegativelnteger"/>
<element name="sequence" type="ns0:Sequence"/>
</sequence>
</extension>
</complexContent>
</complexType>

Table 32. XML Schema type extension example

66 Part Il - XML Schema generation from OWL 2 ontologies

_\ data:MultipleSequenceAlignment M\ data:MultipleSequenceAlignment
(} alignment : format:MultipleAlignment (0..) <> alignment : format:MultipleAlignment (0..)
SubClassOf restriction
1 data:ClustalW | data:ClustalW
= =
<> alignment : format:ClustalW (1..) <> alignment : format:ClustalW (1..)
OWL 2

Class: data:MultipleSequenceAlignment
SubClassOf: data:SequenceAlignment
and (property:alignment only format:MultipleAlignment)
Class: data:ClustalW
SubClassOf: data:MultipleSequenceAlignment
and (property:alignment only format:ClustalW)
and (property:alignment some format:ClustalW)

XML Schema

<complexType name="MultipleSequenceAlignment">
<complexContent>
<restriction base="tns:SequenceAlignment">
<sequence>
<element name="alignment" type="ns0:MultipleAlignment"/>
</sequence>
</restriction>
</complexContent>
</complexType>
<complexType name="ClustalW">
<complexContent>
<restriction base="tns:MultipleSequenceAlignment">
<sequence>
<element name="alignment" type="ns0:ClustalW"/>
</sequence>
<[restriction>
</complexContent>
</complexType>

Table 33. XML Schema type restriction example

An OWL 2 class with several parents leads to XML Schema complex type
with no parents at all (Table 35). All inherited properties are copied into resulted
type providing structural equivalence to original OWL 2 class. This approach
represents a usual practice in XML Schema development, although it may lead
to incorrect schema.

67 Results

¥\ data:MultipleSequenceAlignment

O alignment : format:MultipleAlignment (0..)
M\ data:MultipleSequenceAlignment

¢ alignment : format:MultipleAlignment (0..) restriction

SubClassOf .‘_\ data:OtherMSA _restriction

0 alignment : format:OtherMultipleAlignment (0..)
! data:OtherMSA

¢ alignment : format:OtherMultipleAlignment (0..) extension

O metadata : xs:string (0..)
) data:OtherMSA

(} metadata : xs:string (0..)

OWL 2

Class: data:MultipleSequenceAlignment
SubClassOf: data:SequenceAlignment
and (property:alignment only format:MultipleAlignment)
Class: data:OtherMSA
SubClassOf: data:MultipleSequenceAlignment
and (property:alignment only format: OtherMultipleAlignment)
and (property:metadata only xsd:string)

XML Schema

<complexType name="MultipleSequenceAlignment">
<complexContent>
<restriction base="tns:SequenceAlignment">
<sequence>
<element name="alignment" type="ns0:MultipleAlignment"/>
</sequence>
<[restriction>
</complexContent>
</complexType>
<complexType name="OtherMSA_restriction">
<complexContent>
<restriction base="tns:MultipleSequenceAlignment">
<sequence>
<element name="alignment" type="ns0:OtherMultipleAlignment"/>
</sequence>
</restriction>
</complexContent>
</complexType>
<complexType name="OtherMSA">
<complexContent>
<extension base="tns:OtherMSA_restriction">
<sequence>
<element name="metadata" type="string"/>
</sequence>
</extension>
</complexContent>
</complexType>

Table 34. XML Schema type inheritance split example

68 Part Il - XML Schema generation from OWL 2 ontologies

a B A B
<> sequence () annotation () sequence () annotation
SubClassOf SubClassOf ;5 §
< (o)
& sequence

¢ annotation

OWL 2

Class: A
SubClassOf: Thing
and (sequence only xsd:string)

Class: B
SubClassOf: Thing
and (annotation only xsd:string)

Class: C
SubClassOf: A, B

XML Schema

<complexType name="A">
<sequence>
<element name="sequence" type="string"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>
<complexType name="B">
<sequence>
<element name="annotation" type="string"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>
<complexType name="C">
<sequence>
<element name="sequence" type="string"
minOccurs="0" maxOccurs="unbounded" />
<element name="annotation" type="string"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>

Table 35. XML Schema type inheritance breakage example

69 Results

4.2.3. Practical applications for bioinformatics Semantic Web
Service development

The possibility to develop web services based on properly defined ontology
has a special interest from bioinformatics community. To provide bioinformatics
developers with a clear path for Semantic Web Services development, a Simple
Biological Objects Ontology (SOBO) has been developed.

The ontology follows EDAM architecture, implementing “data”, “format”

+
::-’ SequenceAI\gnment}—: - ’ MultipleSequenceAlignment
: +
y. Sequence = NucleotideSequence
4 T S AminoacidSequence [= CommentedAASequence
Data . =
N ProteinStructure N 5
4 - ’ DomainAnnotatedSequence
’ Residue N —
Y &
{ SeguenceMetadata AnnotatedAASequence |- AntigenicAnnotatedSequence

_ . =
SequenceAnnotation ’ CleavageSiteAnnotatedSequence

Figure 22. SOBO ontology in Protegé

and “parameter” concepts. It also includes datatype information for proper
XML Schema generation.

Generated by the OWL2XS tool XML Schemas reflect SOBO ontology
taxonomy and may be immediately used for SWS development. All generated
XML Schema types preserve their OWL 2 origins through
sawsdl:modelReference annotations.

Web services development requires strong programming skills and greatly
depends on chosen platform and languages. Java is indeed one of the most
popular platforms for web services development. To provide developers with
detailed development process example, NCBI blastp web service, based on Java
API for XML Web Services (JAX-WS) has been developed™.

JAX-WS web service development usually suggests two approaches,
conventionally denoted as “WSDL first” and “java first”. The “WDSL first”
approach implies a creation of WSDL service description which is used for

*2 http://inb.bsc.es/documents/owl2xs/examples.html

http://inb.bsc.es/documents/owl2xs/examples.html

70 Part Il - XML Schema generation from OWL 2 ontologies

automatic java code generation. The disadvantage of the method may be in
awkward java code generated for datatypes. JAX-WS delegates the mapping of
XML definitions to Java API for XML Bindings (JAXB), which is based on
simplified XML Schema model. The “java first” approach is usually used by
Java developers when the resulted XML Schema is not supposed to be read by
humans. WSDL and related XML Schemas are generated automatically at the
time of web service deployment. The disadvantage is that any additional
metadata which may be included into web service descriptor is lost.

The approach taken for the example BLAST web service development is
mixed. Java representation of XML Schema is generated automatically using
XML Java Compiler tool. Then, generated datatypes are used in web service
development (“java first”). Finally, the service is instructed to utilize a manually
crafted WSDL descriptor with original semantically annotated XML schemas.

Created using the SOBO ontology, BLAST service is a standard SOAP-
based document/literal web service, which may be used by any standard tool
such as Taverna Workbench or SoapUlI, and constitutes a guided example to the
creation of web services based on ontology definitions.

71 Part lll - Ontology-based Service Description for bicinformatics integration

Part 111 — Ontology-based Service Description for
bioinformatics integration

Developing ontological specifications for web services description is an
important step on the way to Semantic Web Services. The striking number of
proposed solutions that have been appeared in the last decade reflects the
importance of the subject. Many projects bravely submitted their proposals to
W3C where eternalize as submissions. Ontological representation of web
services description facilitates service discovery and matching through query
languages. On the other hand XML-based description formats are simpler to
parse by software agents. WSDL 1.1 is the de-facto standard for web services
descriptions and so description ontologies usually provide some degree of
affinity. The latter is highly anticipated by service developers since most of
development tools are based on it. Rising popularity of RESTful web services
puts additional requirements on the ontology to support them.

The diversity of proposed specifications for Semantic Web Services hinders
they adoption in Life Sciences, despite the enormous amount of research taking
place. Bioinformatics services cataloging and annotation are important
challenges already addressed in projects such as the EMBRACE web service
collection (Pettifer, et al., 2009) or Biocatalogue (Bhagat, et al., 2010). Providing
a standard semantic way to access to the registries may further improve their
usability (Garcia, Ruiz, & Cortés, 2012). The experience gained working with
several web services registries oriented to life science community allowed to
create a clear vision of community needs to be addressed by a modern Semantic
Web Registry.

72 Results

4.3.1. BioSWR: Semantic Web services Registry for

Bioinformatics.

BioSWR is a new generation web services catalogue based on latest W3C
standards. The peculiarity of BioSWR is in its twofold web services
representation, traditional WSDL-based and semantical one based on OWL
ontology. This distinctive feature reveals Semantic Web potential providing at
the same time compatibility with existent web services development tools.

Implementation

The Registry is implemented in Java Enterprise Edition 6 platform. JavaServer
Faces 2.0 with JBoss RichFaces 4.1 library is used for the Web interface. REST
APl is implemented using JAX-RS 1.1 specification. SPARQL protocol
implementation is based on openRDF Sesame framework (Broekstra, Kampman,
& van Harmelen, 2002).

WSDL 1.1 definitions are converted into WSDL 2.0 at the time of registration.
Nevertheless, it is still possible to obtain the original semantically enriched
WSDL 1.1 definitions via the Registry.

WSDL descriptors may include external WSDLs or XML schemas, which are
also stored in the Registry. It should be noted that stored descriptors and
schemas are modified to reflect the URLS assigned by the Registry.

73 Part lll - Ontology-based Service Description for bicinformatics integration

[#8i -

#BIOSWR authenticate S i
R T S - -/ inb-bsc user SHA256 inb@bsc.es

N m file

MysaL

—

i

ABA414DCEASSFA78458C0053E154DEC2
http://schemas.xmisoap.org/wsdl/
http://inb.bsc.es/service/NCBIBlastp?wsdl

4
wsdl2rdf
tinyWwsDL

WEB = tinyXMLSchema =
2 | BioSWR | tinymosY bioswr
REST, SPARQL MobyCore
WAR MobyCentral DB

<definitions name="NCBIBlastp".
873258150

inb-bsc

1

2015-09-0300:00:00 /

Figure 23. BioSWR general architecture

store / retrieve

BioSWR server is based on the 3-Tier architecture. The presentation
level is based on JSF and RichFaces. MySQL database is used as a
backend and contains only two tables: users’ credentials and service
definitions.

The support of RESTful web services is implemented through the WSDL
HTTP Binding extension. WADL descriptors are automatically generated for the
HTTP-based services.OWL/RDF service description library

While descriptions based on provided by the recommendation ontology may
be created by any OWL tool, a library that is specially oriented to WSDL to
RDF mapping has been created for the project. WSDL2RDF>® library hides
OWL/RDF complicity from developers providing an easy and straightforward
API for the ontology management. Another advantage of the API usage is in
providing a certain level of consistency where introduced elements are verified
to be appropriate before incorporation into the ontology. WSDL2RDF
library strictly follows the original ontology provided by WSDL 2.0 RDF
Mapping specification™,

WSDL 2.0 parsing library

WSDL 2.0, being the most recent W3C specification for web services
description has not gained wide acceptance probably because of the little support
by software tools. Apache Woden Milestone 9 (Kaputin & Hughes, 2006) and
easyWSDL 2.0 (Boissel-Dallier, Lorré, & Benaben, 2009) was investigated to fit
the project needs. Woden doesn’t provide an important requirement to
manipulate WSDL 2.0 model, while easyWSDL has serious problems with

*? http://sourceforge.net/projects/wsdl2rdf/
> http://www.w3.org/TR/wsdI20-rdf/

http://sourceforge.net/projects/wsdl2rdf/
http://www.w3.org/TR/wsdl20-rdf/

74 Results

extensions parsing. These limitations required a creation of completely new
WSDL 2.0 parser library — tinyWSDL™.

The library supports WSDL 2.0 Adjunct extensions (SOAP, HTTP and RPC)
and may be integrated with Apache XML Schema library through
tinyXMLSchema extension. Apart from the standard WSDL 2.0 extensions
tinyWSDL library supports SAWSDL extension. When tinyXMLSchema
extension is used it is also possible to provide semantic references for the
referenced XML Schema elements.

Semantic enrichment

BioSWR provides EDAM Ontology (Ison, et al., 2013) integration through
SAWSDL modelReference attributes. The choice of the appropriate annotation
subject is defined internally using logical axioms and realized through semantic
reasoning (Figure 24).

Apart from SAWSDL references, basic OWL 2 annotation properties such as
rdfs:comment, rdfs:seeAlso and rdfs:isDefinedBy are supported. BioSWR
keeps track of all annotations, annotating them with rdfs:isDefinedBy
(annotation of another annotation). The latter provides flexibility in annotation

Prefix: : <http:/fedamontology.arg/>
Ontology: <http:/ledamontology.org>

Prefix: wsdl: <http:/fwww.w3.org/ins/wsdl-rdfit>
Ontology: <http:/iwww.w3.org/ns/wsdl-rdf>

Class: wsdl:Interface Class: topic_0078 SubClassOf: topic_0003
A ? Class: topic_2225 SubClassOf: topic_0078

*

Prefix: : <http:/fedamontology.org/>
Prefix: wsdl: <http:fiwww.w3.org/nsiwsdl-rdff>
Prefix: sawsdl: <http://www.w3.org/ns/sawsdi#>

Class: wsdl:Interface SubClassOf: sawsdl#modelReference only topic 0003

Prefix: sawsdl: <http:/fwww.w3.org/ns/sawsdi#>
Prefix: wsdl-rdf: <http://www.w3.org/ns/wsdl-rdf#>
Ontology: <urn:lsid:inb.bsc.es>

Individual: <urn:lsid:inb.bsc.es#wsdl.interface(getEntryFromPDB)> Types: wsdl-rdf:Interface
sawsdl:modelReft "http:/led tology.crgltopic_2225"Mxsd:string

Figure 24. Example of Semantic Rules definitions

management, where only authorized authors may modify outdated annotations.
There is no programmatic way to manage semantic annotations, given that
standard SPARQL 1.1 Update operations are implemented.

Semantic data querying and update

> http://sourceforge.net/projects/tinywsdl/

75 Part lll - Ontology-based Service Description for bicinformatics integration

One of the advantages of providing an ontological representation of web
services is the possibility to implement service discovery using query languages.
BioSWR provides SPARQL 1.1 protocol implementation for service discovery
and annotation (Figure 25).

PREFIX rdf: <http:/fwww.w3.0rg/1999/02/22-rdf-syntax-ns#>
DESCRIBE ?s WHERE { ?s rdf:type <http:/mww.w3.org/nsiwsdl-rdfi#Service> . }

GET /sparql?query=PREFIX+rdf%3A+ %3Chiip%3A%2F %2 Fwww.w3.0rg%2F 1999%2F02%2F 22-rdf-syntax-ns
%23%3E+DESCRIBE +%3Fs+WHERE+%7B+%3Fs+rdf%3Atype+%3Chttp%3A%2F %2Fwww.w3.0rg%2Fns
Y%2Fwsdl-rdf%23Service %3E+ +% 7D+

HTTP/.1 200 OK
Content-Type: application/rdf+xml

<?xmil version="1.0" encoding="UTF-8"7>
<rdf.RDF xmins:rdf="http:/fwww.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdfs="http:/fwww.w3.0rg/2000/01/rdf-schema#"
xmins:owl="http://www.w3.0rg/2002/07owh#"
xmins:wsdli="http:/iwww.w3.org/nswsdl-instance#"
xmins="http:/fwww.w3.org/ns/wsdl-rdf#">
<rdf:Description rdf:about="um:lsid:inb.bsc.es#wsdl.service(runNCBIBlastp)">
<rdf:type rdf-resource="http:/lwww.w3.0rg/2002/07lowl#Namedindividual"/>
<rdf:type rdfresource="http://www.w3.orginsiwsdl-rdf#Service">
<rdfs:label rdf.datatype="http:/iwww.w3.0rg/2001/XMLSchema#string">runNCBIBlastp</rdfs:label>
<wsdli:wsdlLocation rdf.datatype="http:/Awww.w3.0rg/2001/XMLSchema#anyURI">
.../BioSWR/rest/service/162A77DF4D559C4ECCE26D350172CESS
<fwsdli:wsdlLocation>
<endpoint rdfresource="umn:lIsid:inb.bsc.es#wsdl.endpoint{runNCBIBlastp/runNCBIBlastp)"/>
<implements rdf:resource="urn:lsid:inb.bsc.es#wsdl.interface(runNCBIBlastp)"/>
</rdf:Description>

<IrdfRDF>
Figure 25. SPARQL query example

The query returns a list of all registered web services in RDF/XML format. All
results are supplemented with a wsdli:wsdlLocation property to locate the
original WSDL 2.0 document to localize them in the Registry.

SPARQL 1.1 UPDATE may be used to manage semantic annotations such as
rdfs:comment and sawsdl:modelReference (Figure 26). Note that updates are
subject to security restrictions. Only authorized users are allowed to update
service annotations. Unless the updated service is marked as “unlocked” only a
service owner is allowed to manage its annotations.

76

Results

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX sawsdl: <http://www.w3.org/ns/sawsdl#>

INSERT DATA { <urn:lsid:inb.bsc.es#wsdl.interface(getEntryFromPDB)>
sawsdl:modelReference

'http://example.com' }

POST /BioSWRI/rest/sparql/ HTTP/1.1
Host: inb.bsc.es
Content-Type: application/sparql-update; charset=UTF-8

PREFIX rdf: <http:/iwww.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX sawsdl: <http://www.w3.org/ns/sawsdi#>

INSERT DATA { <urn:Isid:inb.bsc.es#wsdl.interface(getEntryFromPDB)>
sawsdl:modelReference 'hiip:/example.com' }

HTTP/1.1 200 OK
Content-Length: 0

Figure 26. Insert SAWSDL reference via SPARQL UPDATE query

Semantic annotations may be removed using a similar procedure (Table 36).

PREFIX rdf; <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
| PREFIX sawsdl: <http://www.w3.org/ns/sawsdl#>
DELETE DATA { <urn:lsid:inb.bsc.es#wsdl.interface(getEntryFromPDB)>

- sawsdl:modelReference 'http://example.com*<http://www.w3.0rg/2001/XMLSchematstring> }

Table 36. Delete annotation SPARQL query

Security credentials may be provided with HTTP request (Table 37).

String update = "PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> " +
“PREFIX sawsdl: <http://www.w3.org/ns/sawsdl#> "
“INSERT DATA " +
“{<urn:lsid:inb.bsc.es#wsdl.interface(getEntryFromPDB)> * +
“sawsdl:modelReference 'http://fexample.com' };

URI uri = URl.create("http://inb.bsc.es/BioSWR/rest/sparq|/");
HttpURLConnection connection = (HttpURLConnection) uri.toURL().openConnection();

String credentials = “name:password";
connection.setRequestProperty("Authorization",

"Basic " + DatatypeConverter.printBase64Binary(credentials.getBytes()));
connection.setRequestMethod("POST");
connection.addRequestProperty("Content-Type", "application/spargl-update");
connection.setDoOutput(true);
connection.getOutputStream().write(update.getBytes());

Table 37. Java example for SPARQL UPDATE query execution

BioSWR REST API

While SPARQL is used to manage semantic annotations, web services storage

is managed by REST-based API (Table 38).

77 Part lll - Ontology-based Service Description for bicinformatics integration

HTTP

LI Method:

REST method description:

/service/register?url={url}

GET

/service/register/?Isid={Isid}

Registers the WSDL description (either 1.1 or
2.0). WSDL 1.1 definitions are converted into
WSDL 2.0 descriptors. Note that while such
conversion is not always possible, it should
work for most services (SOAP and REST).

Registers BioMoby services by providing its
Life Science Identifier. Several BioMoby
Registries are consulted to find a service
definition.

/service GET

Gets a complete OWL/RDF
containing all registered services.

ontology

/service/{id}

GET

Get a web service description by its ID.
ID of the registered service is a HEX encoded
MD5 hash from the URL/LSID used for the
service registration. Note that for BioMoby
services, method returns a WSDL as returned
from BioMoby Registry. It is possible to
retrieve WSDL 2.0, OWL/RDF or WADL
description providing HTTP "Accept" header
with appropriate MIME type
("application/wsdl+xml", "application/rdf+xml"
or "application/vnd.sun.wadl+xml").

/service/{id} DELETE

Deregister the service by its ID.

/service/deregister/{id} GET

Deregister the service by its ID.

Table 38. BioSWR REST API

WADL support

BioSWR supports WSDL HTTP Bindings for RESTful web services
descriptions. Given that WSDL HTTP Binding support in web services
development tools is close to void, BioSWR provides automatic WADL
generation for the services. For simple RESTful web services that can be
accessed via internet browser (via HTTP GET request), BioSWR provides a
simple URL template that can be easily understood by users. The format of the
generated URL is supported by tools like Taverna.

<wadl:request>
WADL
</wadl:request>
<wadl:response>
<wadl:representation

<wadl:resources base="http://www.rcsb.org/pdb/rest/">
<wadl:resource path="describePDB">
<wadl:method name="GET">

<wadl:param name="structureld" style="query" type="xs:string"/>

xmins="" element="PDBdescription" mediaType="application/xml"/>

78

Results

</wadl:response>
</wadl:method>
</wadl:resource>
</wadl:resources>

WSDL 2.0

<wsdl:interface name="describePDB">
<wsdl:operation name="describePDB">

<wsdl:input xmlns="http://www.rcsb.org/pdb/rest/" element="request"/>

<wsdl:output element="PDBdescription"/>
</wsdl:operation>
</wsdl:interface>
<wsdl:binding xmins:tns="http://www.rcsb.org/pdb/rest/"
xmins:whttp="http://www.w3.org/ns/wsdl/http"
interface="tns:describePDB"
name="describePDBBinding"
type="http://www.w3.org/ns/wsdl/http"
whttp:methodDefault="GET">
<wsdl:operation ref="tns:describePDB"
whttp:location="describePDB"

whttp:outputSerialization="application/xml">

<wsdl:input/>
<wsdl:output/>
</wsdl:operation>
</wsdl:binding>
<wsdl:service xmins:tns="http://www.rcsb.org/pdb/rest/"
name="describePDBService"
interface="tns:describePDB">
<wsdl:endpoint name="describePDBPort"
address="http://www.rcsb.org/pdb/rest/"
binding="tns:describePDBBinding"/>
</wsdl:service>

Table 39. WSDL 2.0 and WADL descriptions of the PDBdescription RESTful service

79 Part IV — Web Services integration into workflows execution tools

Part 1V — Web Services integration into workflows
execution tools.

Despite the intrinsic power of web services technology is its integration as
external modules in more complex applications, the current bioinformatics use
has led less experienced or occasional users to prefer general purpose web
service clients. This allows to get almost the same functionality although at the
expense of a more manual and less flexible approach. To this end Taverna
(Hull, et al.,, 2006), became the standard for bioinformatics workflow
management, either through its interactive interface, or using Taverna Server
(Wolstencroft, et al., 2013). More recently, and especially with the dramatic
increase of the mount of biological data to be processed, tools based on a
personal workbench with data is kept in a single place. Galaxy (Goecks,
Nekrutenko, Taylor, & Galaxy, 2010) has become in the last years the election
platform for such usage. This section shows the work done in the integration of
some of the above technologies in these two platforms.

4.4.1. BioSWR Registry integration into the Taverna
Workbench.

Taverna Workbench is a popular open source tool for designing and executing
workflows. The simplicity of the workflow design and support of SOAP and
RESTful web services made it very popular in the bioinformatics community.
Given the immense number of available bioinformatics web services, the
determination of suitable service may represent a problem for the workflow
developer. To improve developers’ productivity Taverna includes the plugin that
allows workflow developers to browse services in the BioCatalogue life sciences
web services registry from the Workbench and add them to workflows®.
BioSWR Registry plugin®’ (Figure 27) implements the similar functionality
providing in addition the support for the RESTful services and the possibility to
annotate them immediately from the Taverna’s Workbench.

*® http://www.taverna.org.uk/documentation/taverna-2-x/taverna-2-x-
plugins/#biocatalogue plugin
7 https://github.com/taverna/taverna-bioswr-perspective

http://www.taverna.org.uk/documentation/taverna-2-x/taverna-2-x-plugins/#biocatalogue_plugin
http://www.taverna.org.uk/documentation/taverna-2-x/taverna-2-x-plugins/#biocatalogue_plugin
https://github.com/taverna/taverna-bioswr-perspective

80 Results

) Taverna Workbench SR
File Edit Insert View Workflows Advanced Help
CedxHiriavi ¢v+hE T
¥ Desion [Readts
users [drmitry passwords 3
— - % describerDE
= £-43) deserberDs
ePDBSer t csb.org/peb A =
| & |7 pdbchainfeoturesservice tps/ . rcsb = L e .
| & |2 letPDBIdSFromProteinD i/l vices/gePDBIdsFromProteiiD
| & |51 [fromNDBTextToPDBText . tcher.cgi
| & 51 [fommmCifroPDBText . tcher.cgi =
| & |5t [g=tCATHHierar chyCodesFromPDBID . tcher.cgi
4 3; getentryFromPos 3. tcher cgi
| & |74 l=tEntryFromSCOPWIhPDEID . tcher.cai
4 |7} gethrositeAnnStructureFromDEID i3 b tcher.cgi —
| & |72 lg=tmmCifFieFromPDEID . tcher.cgi T =2 = =
& |72 parserDBIntoChans ttp: b b teher .cqi H £-© Amino acid idraer
| & 7} persePDBIntosecs : teher <ol H £ © Anino acid name e
| & |5 [parseSwissIntoPDBids bin/mobyServices)/disp: teher .cgi H =@ Amino acd name (three letter) H
| & 2F fromNDETextToPDEText : BTextTaPDEText [© POB residue name 3
| & |7F [romPDETextToNDEText : ETextToNDBText H & © Moleaule accession
| & 2% [FrommmGCifToPDBText : G ToPDBText i @ Proten accession
| & 5% [oetCATHDomainsFromPDBID : ACATHDomainsF romPDBID : 1@ ProteinID (TopDE)
| & 7% [oetCATHierar chyCodesFromPDBID : DED i 20 AbmID
| & |5t [getEntryFromPDB ttps/finb.bs FromPDB : 5@ Atomname
| & |2 getEnt/FromSCOPWIFPBEID i3 b -l © PDB atom name ‘I -
S o https o ! erfecel 4 =PDEf You can use drag and drop to annotate
oy /2000/01rdf. "PDB id' definedBy dmitry o PO .
< hi " _1127' definedBy dmitry wsdlinter describePDB/describePDB/In) component.
a http: inb.bsc.es BioSWRrest/service/E3A 15F 7F9F 5 IDCSSF 14E5E37EB840CED|
<wsdl:cperation name ="describePDE"> B
’ ="htip:/frww.rcsb. Ttp: oo " element="equest" — data_1127">
v imins:tns="http: ffwww.rcsb tip: . *>PDB id i
<fwsdiznput>
<wsdloutput element="PDBdescription”/>
<fwsdkcperation >
<usdlinterface>
xmins:tns="hittp: fwww rcsb. Tt farow. interface ="ts:describePDB” name="describePDBBinding” type ="tip: frmww.w " foult="GET">
“tns:descrbePDE” W ="GescrbePDB" “application/xmi*>
<wsdlinput/> K
<wsd:output/> |z
<fwsdkcperation > L4
<usdhbinding>
<wsdl:service xrins:tns="http: fwww rcsb. interface="tns: describePDB” name="describePDBService™> mmDescription

Figure 27. Taverna 3.0 BioSWR OSGI plug-in

Implementation

BioSWR Registry plugin is implemented as the Taverna 3.0 OSGi (Open
Services Gateway initiative) plug-in and takes advantage of semantic nature of
the BioSWR Registry. The Web services list is retrieved as an ontology while
annotations are performed via SPARQL update query. The ontology is parsed
via the OWL API library. BioSWR plugin uses the tinyWSDL library that has
been repackaged as an OSGi component®.

*% http://moby-dev.inab.org/m2/org/inb/bsc/tiny-wsdl/

http://moby-dev.inab.org/m2/org/inb/bsc/tiny-wsdl/

81 Part IV — Web Services integration into workflows execution tools

4.4.2. Galaxy Gears. Web Services integration into Galaxy

workbench.

Modern computational biology analyses are usually comprised of different
tasks, and involve many software tools. For more than a decade, Web Services
Architecture has been extensively used in Life Sciences as an integration
platform to create complex workflows. Many collections, or registries, of
bioinformatics Web services have been created to help workflow developers
with thousands of available services. The utility of Web services registries
cannot be underestimated as they provide the unique point to localize vast
amount of computational resources. On the other hand, the popularity of task-
based bioinformatics platforms such as Galaxy (Goecks, Nekrutenko, Taylor, &
Galaxy, 2010) led to the need of integration of the already available Web
services into correspondent workbench environments. The logical step is to use
service description information available in existed registries to automate the
integration process (Ménager, Kalas, Rapacki, & Ison, 2015).

With regard to Web services, WSDL descriptors contain complete information
for Web services execution, thus making automatic integration very plausible
challenge. Galaxy Gears (Figure 28) is a simple graphical application that using
provided in WSDL description information automatically generates Galaxy tool
definition file.

|£] Galaxy Gears = | B S
hitp:/inb.bsc.es/senvice/NCBIBlastp?wsdl || get
% {http:/finb bsc.esiNCBIBIg| name type default
¢ ¢l NCBIBlastpSenvicePo plength nonNegativelnteger -
b runNCBIBlastp Imtsequence equence (string) use file
' database latabase (string) uniprot =
Xpat matrix ubstitutionMatrix (string BLOSUMG2Z
mﬂﬁ\ler equenceFilter (string) false 1
Xtfthreshold ExpectedThreshold (string 10.0
[xpaj alignment: AlignmentsNumber (siring 15 =
name ‘ type | default
mrblast_text |BLAST Text (normalizedString) |] use file
4« i [1»
| generate
=7xml version="1.0" 7= [=] =]
<tool id="runNCBIBlastp" name="runNCBIBlastp™>
<command>java -cp "${GALAXY_DATA_INDEX_DIR}isharedfjarsiwsdl-generici** org.apache.taverna.wsdlinvoker.CommandLinelnvoker -ws _
=icommand> I
<inputs=
=param name="alignments8251a1bc” label="alignments" optional="true" type="text" value="15"/> I
=param name="databaseb3515b47" |abel="database" optional="true" type="select™>
<option value="swissprot=swissprot
<foption=
<option value="trembl"=trembl
<foption=
=option value="uniprot™=uniprot
=ioption= z
4] 1] | [»]

Figure 28. Galaxy Gears Java graphical tool

82 Results

The graphical tool analyzes provided WSDL descriptor and displays a simple,
flat view of the Web operation parameters. Users are given a possibility to select
which parameters must be considered as a workflow data and which should be
provided via the interface.

Implementation

Galaxy tool is a Java graphical application implemented in Java and based on a
custom Apache Taverna wsdl-generic library. The library is based on
WSDL4%*, Apache Woden® and Apache XML Schema 2.0%* libraries.

Methods

Web services execution usually requires the development of a client program
for each particular service, what does not suit well for dynamic environments
like workflow execution systems. Dynamic Web service execution requires run-
time message analysis and construction. The execution engine must thoroughly
analyze both, the Web service description, and messages format. To construct
Web service message content, all XML elements must be localized. For this
purpose XPath references may be used. XPath references allow flat, tabular
service parameters representation that fits well for a command line Web service
execution utility.

The developed wsdl-generic library is a generic library to analyze and
execute Web services based on WSDL description file (Figure 29). The library
was developed as a part the Apache Taverna project, and distributed under the

wsdl-generic experimental [Web Service

WSDL 1.1/ 2.0 parser «————— WSDL
1

XML Schema

XML Schema parser =
)

XML Tree model
data XML Schema
xpath model

[XML message

call L] SOAP
.:—_’I WS Invoker ——

Figure 29. wsd1-generic library architecture

*® http://wsdl4j.sourceforge.net/
% http://ws.apache.org/woden
1 http://ws.apache.org/commons/xmlschema20/

http://wsdl4j.sourceforge.net/
http://ws.apache.org/woden
http://ws.apache.org/commons/xmlschema20/

83 Part IV — Web Services integration into workflows execution tools

Apache License 2.0%.

Results

As a proof of concept, Basic Local Alignment Search Web service (based on
the NCBI BLAST+ tool) was integrated into the INB-BSC Galaxy server.
Although Galaxy already has NCBI BLAST+ support (Cock, Chilton, Griining,
Johnson, & Soranzo, 2015), selected Web service has quite sophisticated input
parameters structure which makes it a good example for Galaxy Gears. Galaxy
Gears advises which properties may be treated as Galaxy data parameters. The
automatically generated Web service Galaxy tool (Figure 30) may be
incorporated to complex computational pipelines. Galaxy Gears tool is a simple
and straightforward way to integrate Web services into Galaxy.

runNCBIBlastp (version 1.0.0)

alignments:
15

database:
swissprot v

sequence:
86: Step b: Select desired Web Service Tools / Operations on data 85 v

threshold:
10.0

Figure 30. Generated Galaxy tool interface

82 http://www.apache.org/licenses/LICENSE-2.0

http://www.apache.org/licenses/LICENSE-2.0

DISCUSSION

“n. A method of confirming others in their errors.”

Ambrose Bierce

87 Discussion

Ontology-based data integration is quickly becoming a mainstream
approach for biological information sharing and analysis. Ontology
languages have become popular for the definition of biological objects, and
formal ontologies are nowadays commonly found completing most data
management projects in bioinformatics. However, ontology languages were
not designed to specify data representation formats. XML Schema is still the
only standard to describe Web services messages structure. The need to
provide XML messages format along their semantical meaning requires
maintaining both structural and ontological definitions for Web services
datatypes. This work represents an effort to consolidate the two worlds.

BioMoby ontology has been one of the biggest and most curated
bioinformatics ontologies. Along operational descriptions, BioMoby
ontology contained a precise data representation syntax, thus providing all
necessary information for BioMoby services execution. This has been a
unique case were semantic information and data type representation have
been combined in a single framework. Other ontology usages largely neglect
the strict definition of data types that is required to drive web services
usage. Unfortunately, BioMoby did not adopt XML Schema language for its
message format description and required special libraries to support the
extraction of input data from BioMoby messages, and to construct
appropriate messages. This peculiarity impeded standard development tools
usage and required additional efforts to learn BioMoby message format.
Nevertheless, as said, BioMoby datatype ontology contained all structural
information required by XML Schema to formally define biological
datatypes in XML format. For this reason, the first, required, step was to
develop a new Java library for BioMoby. Developed MobyCore and
MobyCentral libraries use JAXB binding framework for the internal
representation of BioMoby message and service descriptions and greatly
facilitate the development of bioinformatics tools that require BioMoby
integration. The libraries have been the basis of further work within the
framework made during this thesis. It should be noted that the use of existing
standards and libraries, have significantly reduced their footprint (around 200 kb
total size). The low footprint and the simplicity of use make them an ideal choice
for Rich Internet Applications (RIA) Java development. Following this
development, the BioNemus tool overcame BioMoby standards
incompatibility problem. Owing to detailed services descriptions provided
by BioMoby ontology, it has been possible to generate Web services that
fully comply with Web Services Interoperability (WS-1) specification.

BioNemus, developed in a close collaboration with BioMoby development
itself, has been designed to serve as a fully automatic interface to BioMoby Web
services, making them usable from standard technologies. Additionally,
BioNemus includes semantic contents through the use of the SAWSDL
technology. Recognizing the popularity of Representational State Transfer
(REST) paradigm it also provides a generation of RESTful Web services as an
alternative. BioNemus does not have limitations of the original BioMoby
platform as most of the internal machinery has been redesigned to be complaint
with modern Java standards. This makes BioNemus different from other tools
that provide BioMoby integration, and opens the large BioMoby web service
existing collection to general bioinformatics developers.

While BioMoby ontology allows naturally for biological datatypes
structural definitions, the OWL 2 ontology language itself has enough
expressiveness to determine structural information and may be used as a
primary language for biological datatypes definition. Moreover, OWL 2 is
becoming the preferred format for the definition of new ontologies in
bioinformatics. The ability of the OWL 2 to describe datatypes does not
eliminate the need in XML Schema. The “ontology first” approach requires
a clear understanding of the ontology goal (object datatypes definition) and
restrictions this goal may impose. Despite its limitations this method looks
very appealing providing that rigorously developed and consistent ontology
is a valuable piece of work per se. It should be noted that a lot of previous
work has been done in mapping XML Schema to OWL ontology (Anicic,
Ivezic, & Marjanovic, 2007). The “schema first” approach certainly has a
strong point of being natural for Web Services development, but still
requires semantic enrichment of the generated ontologies.

The OWL2XS tool allows an automatic XML Schema generation from
properly developed OWL 2 ontologies what greatly speed-up Semantic Web
Services development. Some basic rules of the construction of ontologies
that targets the XML Schema should be considered. Since the purpose of the
ontology is to provide the structural information for the XML document, the
multiple inheritance must be strictly avoided. As an illustration of the
approach, a simple ontology that defines a set of biological datatypes has
been created for the method validation. Using such ontology as a starting
point, Web services can be created following a straightforward procedure
(see the created example BLAST Web service, section 4.2.3). The project
vividly demonstrates an applicability of biological data ontologies for
Semantic Web Service development.

89 Discussion

While biological objects may be easily described in ontology languages,
biological methods or tools usually miss these descriptions. The lack of
embedded semantic descriptions makes difficult the building of registries
that can be used without human intervention.

Many biological databases lack the ontological representation but provide
an access in a form of Web services (Kawashima, Katayama, Sato, &
Kanehisa, 2003) (Rose, et al., 2011). In spite of more than a decade of active
research, there is still no consensus on standards for Semantic Web Services
description. The initiatives come from life science community (BioMoby,
™GRID, SADI), industry (OWL-S, WSMO) and W3C Web Services
working group (SAWSDL, WSDL 2.0 RDF mapping) and usually do not
provide the interoperability. Another serious obstacle has been the lack of
quality tools for SWS support. Development of SWS frameworks require
many years of software development and testing, so the thorough analysis of
available standards and the implementation choices is very important.

Ontology-based Web Services descriptions may provide various benefits
over XML-based WSDL language. While WSDL provides details about the
format and structure of service messages it lacks semantic information to
describe their meaning. Ontology usage may improve Web services
discovery and matching by querying over semantic concepts instead of
performing a structural service analysis.

On the other hand, WSDL provides precise information about described
services and their messages structure. The clear benefit of WSDL 2.0: RDF
ontology usage is a possibility to represent Web services in both WSDL 2.0
and OWL/RDF formats.

BioSWR Registry explores this potential providing the ability to work
with service descriptors via SPARQL protocol. Unlike iServe (Pedrinaci,
Liu, Maleshkova, Lambert, Kopecky, & Domingue, 2010) platform,
BioSWR also provides standard WSDL 1.1 / 2.0 descriptors which may be
used by common Web services development tools.

The intrinsic consistency between WSDL descriptors and the OWL 2
service ontology is extended with the support of Semantic Annotations for
WSDL and XML Schema (SAWSDL) specification. The ability to manage
semantic annotations through the SAWSDL specification distinguishes
BioSWR from BioCatalogue registry (Bhagat, et al., 2010) which uses
keyword tagging. Additionally, to fully complete the adaptation of the
BioMoby framework, BioSWR has been provided with a specific BioMoby
support. The tinyMOBY library resolves it embedding required datatype
information, as obtained from the original BioMoby Registry, into WSDL

descriptions in a form of MOBY-S ontology. Note that embedding semantic
models into WSDL was proposed by the SAWSDL specification as a valid
extension mechanism. Thus, tinyMOBY library provides an alternative standard
way for BioMoby services description.

The final objectives of this work were to provide tools that are available not
only for developers, but also for end users. Two main popular platforms have
been chosen, Taverna, and Galaxy. Technologies used in the previous
developments make Web services, including those generated within the
BioMoby standard, usable in any standard Web services client, like Taverna.
One of the strong points of Taverna for end users is its ability to interrogate
directly web service registries, and therefore, freeing the users of the
responsibility of choosing web service providers, and leaving them with the only
requirement of building the required workflow. Therefore, the seamless
interaction of Taverna with registries is a key feature. BioSWR development has
been complemented with a specific OSGI-based plug-in to integrate it into the
Taverna workbench. BioSWR WSDL parsing code was incorporated into
Taverna’s codebase for the better interoperability. The code was also used in the
BioCatalogue project.

The Semantic Web Services Discovery and Provenance approach is not new
(Lord, et al., 2004) and was thoroughly researched for more than a decade. The
efficiency of the provenance is greatly dependent on the selected semantic
model. Although there are several provenance models available such as Open
Provenance Model (Moreau, et al., 2011) or the PROV Ontology® developed by
W3C, Taverna BioSWR plug-in uses the EDAM ontology which is specially
targets Life Sciences domain. Nevertheless, BioSWR Registry is based on
WSDL 2.0 RDF Mapping ontology with SAWSDL extensions that opens a
possibility to use any ontology as a source of semantic descriptions, and hence
facilitate web services discovery. The usage of PROV-O ontology may be
further considered once the codebase of Apache Taverna 3.0 is stabilized.

Although Galaxy has become a de-facto standard platform in Bioinformatics,
it was not designed to cover the use of web services. In fact, Galaxy was mainly
designed to deal with large amounts of data, and normally installed as a front-
end interface for large data providers. Indeed, the use of distributed web services
is largely incompatible with present genomics data, due to data transmission
issues. However, publicly available web services offer covers most of the

® http://www.w3.org/TR/prov-o/
8 http://incubator.apache.org/projects/taverna.html

http://www.w3.org/TR/prov-o/
http://incubator.apache.org/projects/taverna.html

91 Discussion

required functionality. GalaxyGears allows a seamless integration of existing
SOAP-based web services into Galaxy workflows. Generated by Galaxy Gears
configuration allows to make use of data already contained in the workbench, so
web services can be fully combined with traditional Galaxy tools. The expected
use of this tool would be the integration of web services, traditionally available
at the same data provider’s site that also holds a Galaxy interface.

This doctoral thesis introduces a comprehensive solution for Semantic
Web Services development, publishing, annotation and discovery based on
the latest W3C standards. The work is a result of long-continued
collaboration with many notable SWS projects such as BioMoby, Taverna
and the EMBRACE web service collection. Given the amount of
technologies integrated, the project also required a cooperation with other
projects such as Apache XML Schema, The OWL API, and HermiT
reasoner.

The result of the thesis is a creation of Semantic Web Services framework
(Figure 31) which involves many developed software libraries, tools and
applications that are summarized in the table (Table 40).

m ':-"—V‘JL
by create create ngwi
M- byC:re serviee Service

owlL2

BioNemus Service Provider
J register

| | services
&#BioSWR
tinyWSDL
tinyMOBY

tinyXMLSchema
wsd2rdf

WEB 2 | REST [sParaL
\ -_Galaxy
BioSWR plug-in (Galaxy Gears \w

sServices

Client

Figure 31. Developed frameworks and libraries

Library

Description

MobyCore & MobyCentral

The lightweight java libraries to execute
BioMoby services and to work with
BioMoby registries.

tinyWSDL & tinyXMLSchema

WSDL 2.0 java parser and XML Schema
parsing plug-in.

BioMoby WSDL 2.0 integration plug-in

tinyMOBY for the tinyWSDL parser.
wsdl2rdf WSDL 2.0: RDF Mapping java library.
OWL2XS OWL _ont_ology to XML Schema
- generation java library.
BioSWR S(_err_lantlc Web Services Registry for
- Bioinformatics.

. Web Services generation tool based on
BioNemus

BioMoby services' descriptions.

wsdl-generic (experimental)

Experimental version of WSDL 1.1/2.0
Taverna’s library based on XML
Schema.

Taverna BioSWR perspective

The integration of BioSWR into Taverna
3.0 workbench.

Galaxy Gears

Web Services integration tool for the
Galaxy.

Table 40. The complete list of the developed tools

Developed solutions may further improve a quality of web services
offered by bioinformatics community.

http://sourceforge.net/projects/mobycore/
https://sourceforge.net/projects/tinywsdl/
https://sourceforge.net/projects/tinymoby/
https://sourceforge.net/projects/wsdl2rdf/
https://sourceforge.net/projects/owl2xs/
https://sourceforge.net/projects/bioswr/
http://inb.bsc.es/documents/bionemus2/
https://github.com/apache/incubator-taverna-common-activities/tree/wsdl-xsd-experimental/taverna-wsdl-generic
https://github.com/taverna/taverna-bioswr-perspective
http://inb.bsc.es/documents/galaxygears/

CONCLUSION

“A conclusion is the place you get to when you’re tired of thinking.”

Jill Shalvis

95

Conclusion

. BioNemus project has demonstrated that BioMoby

ontology is sufficiently comprehensive to be used as a
service descriptions source for automatic WS-I
compliant Semantic Web Services generation.

. OWL2XS project conclusion is that OWL 2 Web

Ontology Language provides enough expressibility to
thoroughly describe biological objects and can be used
as a model for XML Schema definitions.

BioSWR project confirmed that Web Services
Description Language (WSDL) Version 2.0: RDF
Mapping specification is a safe choice for
bioinformatics Semantic Web Services Description.

. tinyMOBY WSDL 2.0 plug-in has shown the benefits of

embedding MOBY-S ontology directly into WSDL 2.0
service descriptors, providing indispensable information
about the BioMoby message structure, which can’t be
described using an XML Schema.

BIBLIOGRAPHY

“l quote others only in order the better to express myself.”

Michel de Montaigne

References

Achard, F., & Barillot, E. (1997). Ubiquitous distributed objects with CORBA. Pac
Symp Biocomput, 39-50.

Anicic, N., lvezic, N., & Marjanovic, Z. (2007). Mapping XML Schema to OWL.
Springer-Verlag.

Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., & Morissette, J. (2008, Oct).
Bio2RDF: Towards a mashup to build bioinformatics knowledge
systems. Journal of Biomedical Informatics, 41(5), 706-716.

Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., & Hendler, J. (2008). N3Logic:
A logical framework for the World Wide Web. TPLP, 8(3), 249-269.

Bhagat, J., Tanoh, F., Nzuobontane, E., Laurent, T., Orlowski, J., Roos, M., et al.
(2010, Jun). BioCatalogue: a universal catalogue of web services for the
life sciences. Nucleic Acids Research, 38(Web Server), W689-W694.

Bohring, H., & Auer, S. (2005). Mapping XML to OWL Ontologies. Leipziger
Informatik-Tage, volume 72 of LNI (pp. 147-156). Gl.

Boissel-Dallier, N., Lorré, J.-P., & Benaben, F. (2009). Management Tool for
Semantic Annotations in WSDL. On the Move to Meaningful Internet
Systems: OTM 2009 Workshops (pp. 898-906). Springer-Verlag.

Broekstra, J., Kampman, A., & van Harmelen, F. (2002, jun). Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema.
International Semantic Web Conference. 2342, pp. 54-68. Springer
Berlin Heidelberg.

Call for data analysis papers. (2014, Feb). Nature Genetics, 46(3), 213,213.

Cock, P. J., Chilton, J. M., Griining, B., Johnson, J. E., & Soranzo, N. (2015, Aug).
NCBI BLAST+ integrated into Galaxy. GigaSci, 4(1).

Crosswell, L. C., & Thornton, J. M. (2012, May). ELIXIR: a distributed
infrastructure for European biological data. Trends in Biotechnology,
30(5), 241 - 242.

Day-Richter, J., Harris, M. A., Haendel, M., & Lewis, S. (2007, Aug). OBO-Edit an
ontology editor for biologists. Bioinformatics, 23(16), 2198-2200.

Decker, S., Erdmann, M., Fensel, D., & Studer, R. (1999). Ontobroker: Ontology
Based Access to Distributed and Semi-Structured Information. Springer-
Verlag.

Dubuisson, O. (2000). ASN.1 Communication Between Heterogeneous Systems.
Morgan Kaufmann.

Ferndndez, J. D., Martinez-Prieto, M. A., Gutiérrez, C., Polleres, A., & Arias, M.
(2013, Mar). Binary RDF representation for publication and exchange
(HDT). Web Semantics: Science, Services and Agents on the World Wide
Web, 19, 22-41.

Galperin, M. Y., & Fernandez-Suarez, X. M. (2011, Dec). The 2012 Nucleic Acids
Research Database Issue and the online Molecular Biology Database
Collection. Nucleic Acids Research, 40(D1), D1-D8.

Garcia Godoy, M. J., Lopez-Camacho, E., Navas-Delgado, I., & Aldana-Montes, J.
F. (2013, Jul). Sharing and executing linked data queries in a
collaborative environment. Bioinformatics, 29(13), 1663-1670.

Garcia, J. M., Ruiz, D., & Cortés, A. R. (2012). Improving semantic web services
discovery using SPARQL-based repository filtering. J. Web Sem., 17, 12-
24.

Glimm, B., Hogan, A., Krotzsch, M., & Polleres, A. (2012, Apr). OWL: Yet to
arrive on the Web of Data? Linked Data on the Web Workshop
(LDOW2012). Lyon.

Glimm, B., Horrocks, I., Motik, B., Stoilos, G., & Wang, Z. (2014). HermiT: An
OWL 2 Reasoner. Journal of Automated Reasoning, 53(3), 245-269.

Goble, C., Gray, A. J., Harland, L., Karapetyan, K., Loizou, A., Mikhailov, 1., et al.
(2013). Incorporating Commercial and Private Data into an Open Linked
Data Platform for Drug Discovery. The Semantic Web - ISWC 2013, 65 -
80.

Goecks, J., Nekrutenko, A., Taylor, J., & G. T. (2010). Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol, 11(8), R86.

References

Gokhale, A., Kumar, B., & Sahuguet, A. (2002). Reinventing the wheel? CORBA
vs. Web services. WWW2002, The Eleventh International World Wide
Web Conference, Honolulu, Hawaii, USA, 7-11.

Golbreich, C., Horridge, M., Horrocks, 1., Motik, B., & Shearer, R. (2007). OBO
and OWL: Leveraging Semantic Web Technologies for the Life Sciences.
In The sixth International Semantic Web Conference (ISWC 2007) (pp.
169-182).

Gordon, P. M., & Sensen, C. W. (2007). Seahawk: moving beyond HTML in Web-
based bioinformatics analysis. BMC Bioinformatics, 8, 208.

Grosof, B. N. (2009). SILK: Higher Level Rules with Defaults and Semantic
Scalability. In A. Polleres, & T. Swift (Ed.), RR. 5837, pp. 24-25. Springer.

Guardia, G. D., Pires, L. F., Véncio, R. Z., Malmegrim, K. C., & de Farias, C. R.
(2015, Jul). A Methodology for the Development of RESTful Semantic
Web Services for Gene Expression Analysis. (A. Ma—%ayan, Ed.) PLoS
ONE, 10(7), e0134011.

Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., et al. (2012,
Dec). The ChEBI reference database and ontology for biologically
relevant chemistry: enhancements for 2013. Nucleic Acids Research,
41(D1), D456-D463.

Hoehndorf, R., Oellrich, A., Dumontier, M., Kelso, J., Rebholz-Schuhmann, D., &
Herre, H. (2010). Relations as patterns: bridging the gap between OBO
and OWL. BMC Bioinformatics, 11, 441.

Horridge, M., & Bechhofer, S. (2011, jan). The OWL API: A Java API for OWL
ontologies. Semant. web, 2(1), 11-21.

Horrocks, 1. (2007). OBO Flat File Format Syntax and Semantics and Mapping to
OWL Web Ontology Language. Tech. rep., University of Manchester.

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M. R., Li, P., et al.
(20086, Jul). Taverna: a tool for building and running workflows of
services. Nucleic Acids Res, 34(Web Server issue), W729--W732.

Ison, J., Kalas, M., Jonassen, |., Bolser, D., Uludag, M., McWilliam, H., et al.
(2013, May). EDAM: an ontology of bioinformatics operations, types of
data and identifiers, topics and formats. Bioinformatics, 29(10), 1325-
1332.

Jupp, S., Malone, J., Bolleman, J., Brandizi, M., Davies, M., Garcia, L., et al.
(2014, Jan). The EBI RDF platform: linked open data for the life sciences.
Bioinformatics.

Jupp, S., Stevens, R., & Hoehndorf, R. (2012). Logical Gene Ontology
Annotations (GOAL): exploring gene ontology annotations with OWL. J
Biomed Semantics, 3 Suppl 1, S3.

Kalas, M., Puntervoll, P., Joseph, A., Bartaseviciute, E., Topfer, A.,
Venkataraman, P., et al. (2010, Sep). BioXSD: the common data-
exchange format for everyday bioinformatics web services.
Bioinformatics, 26(18), i540-i546.

Kaputin, J., & Hughes, J. (2006, jun 28). Woden WSDL 2.0 Processor. ApacheCon
Europe 2006. Dublin, Ireland.

Katayama, T., Wilkinson, M. D., Micklem, G., Kawashima, S., Yamaguchi, A.,
Nakao, M., et al. (2013). The 3rd DBCLS BioHackathon: improving life
science data integration with Semantic Web technologies. Journal of
Biomedical Semantics, 4(1), 6.

Kawas, E., Senger, M., & Wilkinson, M. D. (2006). BioMoby extensions to the
Taverna workflow management and enactment software. BMC
Bioinformatics, 7(1), 523.

Kawashima, S., Katayama, T., Sato, Y., & Kanehisa, M. (2003, Dec). KEGG API: A
web service using SOAP/WSDL to access the KEGG system. International
Conference on Genome Informatics, (pp. 673-674).

Klein, M., Fensel, D., van Harmelen, F., & Horrocks, I. (2001). The relation
between ontologies and XML schemas. LINKOPING ELECTRONIC
ARTICLES IN COMPUTER AND INFORMATION SCIENCE, 6.

Kopecky, J. (2006). WSDL RDF Mapping: Developing Ontologies from
Standardized XML Languages. Springer-Verlag.

References

Kopecky, J., Vitvar, T., Bournez, C., & Farrell, J. (2007, Nov). SAWSDL: Semantic
Annotations for WSDL and XML Schema. IEEE Internet Computing,
11(6), 60-67.

Lord, P. W., Bechhofer, S., Wilkinson, M. D., Schiltz, G. S., Gessler, D., Hull, D., et
al. (2004). Applying Semantic Web Services to Bioinformatics:
Experiences Gained, Lessons Learnt. In S. A. Mcllraith, D. Plexousakis, &
F. van Harmelen (Ed.), International Semantic Web Conference. 3298,
pp. 350-364. Springer.

Lord, P., Alper, P., Wroe, C., Stevens, R., Goble, C., Zhao, J., et al. (2004). The
Semantic Web: Service discovery and provenance in my-Grid. W3C
Workshop on Semantic Web for Life Sciences.

Martin, D., Burstein, M., McDermott, D., Mcllraith, S., Paolucci, M., Sycara, K.,
et al. (2007, Aug). Bringing Semantics to Web Services with OWL-S.
World Wide Web, 10(3), 243-277.

Martin, D., Paolucci, M., & Wagner, M. (2007). Bringing semantic annotations to
web services: OWL-S from the SAWSDL perspective. Proceedings of the
6th international The semantic web and 2nd Asian conference on Asian
semantic web conference (pp. 340-352). Berlin, Heidelberg: Springer-
Verlag.

Ménager, H., Kalas, M., Rapacki, K., & Ison, J. (2015). Using registries to
integrate bioinformatics tools and services into workbench
environments. International Journal on Software Tools for Technology
Transfer, 1-6.

Moller, S., Leser, U., Fleischmann, W., & Apweiler, R. (1999, Mar).
EDITtoTrEMBL: a distributed approach to high-quality automated
protein sequence annotation. Bioinformatics, 15(3), 219-227.

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., et al. (2011). The
open provenance model core specification (v1. 1). Future Generation
Computer Systems, 27(6), 743-756.

Neerincx, P. B., & Leunissen, J. A. (2005, Jun). Evolution of web services in
bioinformatics. Brief Bioinform, 6(2), 178-188.

Neumann, E. K., Miller, E., & Wilbanks, J. (2004, Nov). What the semantic web
could do for the life sciences. Drug Discovery Today: BIOSILICO, 2(6),
228-236.

Noy, N. F., Shah, N. H., Whetzel, P. L., Dai, B., Dorf, M., Griffith, N., et al. (2009,
Jul). BioPortal: ontologies and integrated data resources at the click of a
mouse. Nucleic Acids Res, 37(Web Server issue), W170--W173.

Oinn, T., Greenwood, M., Addis, M., Alpdemir, M. N., Ferris, J., Glover, K., et al.
(2006, Aug). Taverna: lessons in creating a workflow environment for
the life sciences: Research Articles. Concurr. Comput. : Pract. Exper.,
18(10), 1067-1100.

Ostell, J. M., Wheelan, S. J., & Kans, J. A. (2001). The NCBI data model. Methods
Biochem Anal, 43, 19-43.

Pedrinaci, C., Kopecky, J., Maleshkova, M., Liu, D., Li, N., & Domingue, J. (2011).
Unified Lightweight Semantic Descriptions of Web APls and Web
Service.

Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., & Domingue, J.
(2010, May). iServe: a Linked Services Publishing Platform. Ontology
Repositories and Editors for the Semantic Web (ORES2010).

Pettifer, S., Ison, J., Kalas, M., Thorne, D., McDermott, P., Jonassen, I., et al.
(2010, Jun). The EMBRACE web service collection. Nucleic Acids
Research, 38(Web Server), W683-W688.

Pettifer, S., Thorne, D., McDermott, P., Attwood, T., Baran, J., Bryne, J. C., et al.
(2009, Aug). An active registry for bioinformatics web services.
Bioinformatics, 25(16), 2090-2091.

Ramirez, S., Mufioz-Mérida, A., Karlsson, J., Garcia, M., Pérez-Pulido, A. J.,
Claros, M. G., et al. (2010, Jul). MOWServ: a web client for integration
of bioinformatic resources. Nucleic Acids Res, 38(Web Server issue),
W671--W676.

Rector, A. L., Rogers, J. E., Zanstra, P. E., Van Der Haring, E., & O. A. (2003).
OpenGALEN: open source medical terminology and tools. AMIA Annu
Symp Proc, 982.

References

Redaschi, N., & Consortium, U. (2009, Apr). UniProt in RDF: Tackling Data
Integration and Distributed Annotation with the Semantic Web. Nature
Precedings.

Rose, P. W., Beran, B., Bi, C., Bluhm, W. F., Dimitropoulos, D., Goodsell, D. S., et
al. (2011, Jan). The RCSB Protein Data Bank: redesigned web site and
web services. Nucleic Acids Res, 39(Database issue), D392--D401.

Sbodio, M. L., Martin, D., & Moulin, C. (2010, Nov). Discovering Semantic Web
services using SPARQL and intelligent agents. Web Semantics: Science,
Services and Agents on the World Wide Web, 8(4), 310-328.

Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., et al. (2007,
Nov). The OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration. Nature Biotechnology, 25(11), 1251-1255.

Stearns, M. Q., Price, C., Spackman, K. A., & Wang, A. Y. (2001). SNOMED clinical
terms: overview of the development process and project status. AMIA
Symposium, (pp. 662-666).

Stevens, R. D., Robinson, A. J., & Goble, C. A. (2003, Jul). myGrid: personalised
bioinformatics on the information grid. Bioinformatics, 19(Suppl 1),
i302-i304.

Takase, T., Makino, S., Kawanaka, S., Uenol, K., Ferris, C., & Ryman, A. (2008,
Apr). Definition Languages for RESTful Web Services:WADL vs. WSDL
2.0. Tokyo Research Library. IBM Research.

The BioMoby Consortium, Wilkinson, M. D., Senger, M., Kawas, E., Bruskiewich,
R., Gouzy, J., et al. (2008, May). Interoperability with Moby 1.0--it's
better than sharing your toothbrush! Brief Bioinform, 9(3), 220-231.

Thompson, R., Johnston, L., Taruscio, D., Monaco, L., Béroud, C., Gut, I. G., et al.
(2014, Jul). RD-Connect: An Integrated Platform Connecting Databases,
Registries, Biobanks and Clinical Bioinformatics for Rare Disease
Research. Journal of General Internal Medicine, 29(S3), 780 - 787.

Tsinaraki, C., & Christodoulakis, S. (2007). XS20WL: A Formal Model and a
System for Enabling XML Schema Applications to Interoperate with
OWL-DL Domain Knowledge and Semantic Web Tools. Springer-Verlag.

Vitvar, T., Kopecky, J., Viskova, J., & Fensel, D. (2008). WSMO-Lite Annotations
for Web Services. Springer-Verlag.

Wilkinson, M. D., Gessler, D., Farmer, A., & Stein, L. (2003). The BioMOBY
Project Explores Open-Source, Simple, Extensible Protocols for Enabling
Biological Database Interoperability. Proceedings of the Virtual
Conference on Genomics and Bioinformatics.

Wilkinson, M. D., Vandervalk, B., & McCarthy, L. (2011). The Semantic
Automated Discovery and Integration (SADI) Web service Design-
Pattern, APl and Reference Implementation. J Biomed Semantics, 2(1),
8.

Wilkinson, M., Schoof, H., Ernst, R., & Haase, D. (2005, May). BioMOBY
successfully integrates distributed heterogeneous bioinformatics Web
Services. The PlaNet exemplar case. Plant Physiol, 138(1), 5-17.

ANNEX

“Nothing can be loved or hated unless it is first understood.”
Leonardo da Vinci

109

OPEN 8 ACCESS Freely available online

BioSWR

BioSWR - Semantic Web Services Registry for
Bioinformatics

1,2
j12%

Dmitry Repchevsky', Josep LI. Gelp|

1 Barcelona Supercomputing Center, Life-Sciences Department, National Institute of Bioinformatics, Computational Bicinformatics Node, Barcelona, Spain, 2 Department

of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain

Abstract

Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to
a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-
purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL
is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to
describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based
on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description
Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-
based interface for Web services registration, querying and annotation, and is also accessible programmatically via
Representational State Transfer (REST) APl or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at
><http://inb.bsc.es/BioSWR/and its code is available at ><https://sourceforge.net/projects/bioswr/under the LGPL license.

Citation: Repchevsky D, Gelpi JL (2014) BioSWR - Semantic Web Services Registry for Bioinformatics. PLoS ONE 9(9): 107889. doi:10.1371/journal.pone.0107889

Editor: Yu Xue, Huazhong University of Science and Technology, China

Data Availabil

mobycore/

to publish, or preparation of the manuscript.

* Email: gelpi@ub.edu

Received May 6, 2014; Accepted August 21, 2014; Published September 18, 2014

Copyright: © 2014 Repchevsky, Gelpi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

y: The authors confirm that all data underlying the findings are fully available without restriction. BioSWR Registry is an open source software
that is available on SourceForae Renository: http://sourceforge.net/projects/bioswr/. Other software libraries that are used in the project are also available: http://
sourceforge.net/projects/wsdi2rdf/, http://sourceforge.net/projects/tinywsdl/, http://sourceforge.net/projects/tinymoby/, http://sourceforge.net/projects/

Funding: GN6-BSC. National Institute of Bioinformatics. Instituto de Salud Carlos Ill. The funders had no role in study design, data collection and analysis, decision

Competing Interests: The authars have declared that no competing interests exist.

Introduction

To the extent that the number of Web services available to the
Life Science community is continuously growing, there is a need to
provide better ways for their description, categorization and
discovery. Existing Web services catalogues like EMBRACE [1] or
BioCatalogue [2] are usually bound to Web Service Definition
Language (WSDL) and limit themselves to annotation of service
The need to provide a richer way to describe Web services
raised an interest for ontology-based models for Web services

entit

description. A large variety of Web services types and protocols

either limits the scope of such ontologies to concrete type of

services or makes them so abstract that stll requires WSDL usage.
In the latter case, a link between WSDL components and their

semantic “riptions is usually done via Semantic Annotations for
WSDL and XML Schema (SAWSDL) annotations [3].

WSDL 2.0 brought a new conceptual model with considerable
improvements in Representational State Transfer (REST) Web
description. A possibility to describe RESTful Web
services along with Simple Object Access Protocol (SOAP) based

service

ones is a clear step forward especially in life science domain where
bath approaches are intensively used. Another remarkable
improvement of WSDL 2.0 was the introduction of Internation-
alized Resource Identifiers (IRIs) for its described components.
The ability to unambiguously identify every WSDL 2.0 entity as a
resource allows using these identifiers within ontologies. WSDL
2.0: RDI" Mapping specification provides such ontology to express

PLOS ONE | www.plosone.org

WSDL 2.0 in Web Ontology Language (OWL). The possibility to
describe Web services using standard semantic vocabularies, does
not replace the need of ontologies for the life science domain, but
rather provides a better integration where Web services may be

represented in pure semantic way.

BioSWR registry is a response to the need to introduce a
standard semantic view into Web services in addition to the
traditional ' WSDL-based one. OWL/RDF representation of
service definitions allows using SPARQL Protocol and RDF
Query Language (SPARQL) for Web services discovery and
annotation, while WSDIL-based representation provides a com-
patibility with existing Web services development tools.

The choice of WSDL 2.0 as a basement for Web services
descriptions was dictated by the need to support a broader range
of Web services. The required easy bidirectional transformation
between representational models puts further limitations to the
choice of the Web services description ontology. Wit
frameworks and specifications aimed at semantic Web services
iption Language (WSDL)
Version 2.0: RDF Mapping specification has been chose a
standard basement for a modern Semantic Web Registry
implementation.

hin several

description, W3C Web Services De

Functionality

BioSWR is designed to support WSDL 1.1/2.0 Web services,
providing a local storage for the registered services and dependent

September 2014 | Volume 9 | Issue 9 | e107889

110

Manuscript

XML Schema files (Figure 1). While WSDL is generally used to
deseribe SOAP and sometimes REST{ul Web services, WSDL 2.0
component model is protocol agnostic and may be adapted to
virtually any type of services. To extend a number of supported
Web services, BioSWR provides also support for BioMoby [4]
services, In the latter case the support is implemented via
SAWSDL exiension, embedding " Grid BioMoby semantic model
[53] into WSDL 2.0 descriptor. BioSWR also relies on SAWSDL
for general services annotation, using EMBRACE Data and
Methods (EDAM) [6] ontology as the primary source of semantic
annotations.

RESTtul services are becoming very popular due to their
simplicity of use. For this same reason, unlike SOAP-based web-
services, they usually lack formal description and are difficult to
integrate into workflows. To help developers in the description,
and registration of their RESTful web-services, BioSWR. docu-
mentation provides a simple WSDL 1.1 template. For those
RESTful weh-services that may be ac
BioSWR also provides a sample URL-based template. Finally, for
clients requiring more formal descriptions, a WADL description is

provided along with the stored WSDL.

sed via web browser,

BioSWR REST API

BioSWR provides a REST-based API to manage Web services
storage (Table 1). The APIL offers HI'TP access to stored Web
services definitions that can be directly imported into tools like
Taverna [7]. While new Web service registration may be
performed by any authenticated user, service removal may be
accomplished only by a service owner — the user who originally
registered the service. Web service owner may also allow other
users to annotate the service, keeping the rights to remove
inappropriate annotations. Credentials should be provided via
standard basic HTTP Authentication [8].

Semantic data querying
Instead of providing a custom API for Web services search,
BioSWR provides SPARQL querying over stored Web services

BioSWR Registry

descriptions. BioSWR supports SPARQL 1.1 Protocol query
variations via HI'I'P GET or HI'I'P POST bindings (Figure 2).

To facilitate SPARQL-based repository discovery, all results are
provided with a wsdli:wsdlLocation property to locate the
original description document as it was found in the registry.
SPARQL query may also be used to filter Web services in the Web
interface, however to provide a friendly interface for non-expert
users, simple text-based search is available.

SPARQL UPDATE support provides a simple programmatic
way 10 manage semantic annotations such as rdfs:comment and
SAWSDL references (Figure 3).

Semantic enrichment

In accordance with SAWSDL specification, semantic enrich-
ment is attained via sawsdl:modelReference attributes, The
choice of an appropriate annotation subject is defined internally as
logical axioms and realized through semantic reasoning (Figure 4).
This approach provides flexibility when choosing external
annotation sources. BioSWR provides EDAM ontology integra-
tion. EDAM was specially designed for bioinformatics/computa-
tional biology domain and provides a wide coverage of common
bioinformatics objects and methods.

Apart from SAWSDL references, basic OWL 2 annotation
propertics such as rdfs:seeAlso and
rdfs:isDefinedBy are supported. BioSWR keeps track of all
annotations, annotating them with rdfs:isDefinedBy (annota-
don of another annotation). The later provides flexibility in
annotation management, where only authorized authors may
modify outdated annotations.

rdfs:comment,

BioMoby integration

BioMoby has been a widely used framework to deploy general
and specialized bioinformatics WS. Although BioMaby usage has
declined over the last years, a large number of services still exist.
BioSWR' provides BioMoby integration through semantically
enriched WSDL 2.0 descriptions. While BioMoby services are
SOAP-based they use a special BioMoby message format which
cannot be expressed in XML Schema. From SOAP point of view

BioSWR
WEB services
annotation .
1l WEB interface
Manage Store ROF

Semantic Annotations

- SPARQL wsdi2rdf

Retrieve WSDL 2.0 / RDF / WADL
service definitions

REST
API

Register WSDL 11/20
descriptor

Register BioMOBY service

service definitions

Store WSDL 2.0 and DB
tll'l)'WSDL XML Schemas
Retrieve BioMOBY
descriptors. e
tiyMOBY BioMaby
Registry

_ Get external XML Schemas

Figure 1. BioSWR general architecture.
doi:10.1371/journal.pone.0107889.g001

PLOS ONE | www.plosone.org

tinyXmiSchema

September 2014 | Volume 9 | Issue 9 | e107889

111

BioSWR

Table 1. BioSWR REST Web services API.

BioSWR Registry

HTTP location HTTP method Description

/semvice/register?url GET Registers the service providing its WSDL file URL or a BioMoby LSID
= {urli&dsid = {Isid} identifier. Returns a WSDL service description.

/service GET Get an OWL/RDF ontology with all registered services.

fservice/fid} GET Get a Web service description by its identifier,

Jservice/{id} DELETE Removes a Web service with given identifier.

doi:10.1371/journal.pone.0107889.t001

its content constitutes an encoded string. Fortunately, BioMoby
already provides its own service’s descriptions through BioMoby
"™Grid ontology. These definitions are integrated into generated
BioMoby WSDL 2.0 descriptors and linked with input/output
elements via SAWSDL annotations. The tinyMOBY [9] extension
of tinyWSDL [10] parser provides "*Grid semantic annotations
management within WSDL 2.0 descriptions. tinyMOBY allows to
extract BioMoby data-type definitions from the embedded "™ Grid
ontology providing a direct integration with BioMoby Java API
[11]. The latter eliminates the need of using BioMoby Regi:
mostly inactive nowadays, since tinyMOBY datatype definitions
includes all required information for BioMoby message prepara-
tion and further Web service execution.

ries,

WADL support

For WSDL 2.0 services that are described through HTTP
Binding Extension, Web Application Description Language
(WADL; descriptors may be also obtained via the BioSWR REST
API providing an HTTP “Accept: application/vnd.sun.wadl+

xml” header. The WADL descriptor may be also found in the
service description panel of the Web interface.

Web services monitoring

One of the most challenging issues in providing any kind of tool
registry in Bioinformatics is to keep track of their availability.
There are several levels of Web services monitoring that are
usually performed to verify Web services operability. BioSWR
implements an availability check inspecting the original Web
service description that has been used for the registration. The
check is performed periodically or upon user request. ‘The absence
of Web service deseription is interpreted as service withdrawal.
Maodifications of the original Web service descriptions are detected
using cyclic redundancy check (CRC) algorithm [12]. An
indication of the status of the service (active, modified, or
unavailable) is included in the web interface, and services list
can be filtered by such parameter.

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#=>
DESCRIBE ?s WHERE { ?s rdfitype <http:/fwww.w3.org/ns/wsdl-rdf#Service> . }

GET fsparq|?query=PREFIX+rdf%3A+%3Chttp%3A%z2F %2Fwww.w3.0rg%2F 1399%2F02%2F 22-rdf-syntax-ns
%23%3E+DESCRIBE+%3Fs+WHERE+%7B+%3Fs+rdf%3Atype+%3Chttp%3A%2F %2Fwww.w3.0rg%2Fns

Yo2Fwsdl-rdf%23Service %3E+ +%7D+

HTTP/1.1 200 OK
Content-Type: application/rdf+xml

<?xmi version="1,0" encoding="UTF-8"?>

<rdf:RDF xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmins:ow!="http://www.w3.0rg/2002/07/owhk#"
xmins:wsdli="http:/iwww.w3.org/ns/wsdl-instance#"

xmins="http://www.w3.org/ns/wsdl-rdfé#">

<rdf:Description rdf:about="urn:Isid:inb.bsc.es#wsdl.service(runNCBIBlastp)">
<rdf:type rdf:resource="http://www.w3.0rg/2002/07fowl#NamedIindividual'f>
<rdf:type rdf:resource="http://www.w3.org/nswsdl-rdféService"/>
<rdfs:label rdf:datatype="http:/iwww.w3.0rg/2001/XMLSchemat#string">runNCBIBlastp</rdfs:labe|>
<wsdli:wsdlLocation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
...[BioSWR/rest/service/162A77DF4D559C4ECC626D350172CE85

<hwsdli:wsdlLocation>

<endpaint rdf:resource="urn:lsid:inb.bsc.es#wsdl.endpoint(runNCBIBlastp/runNCBIBlastp)"/>
<implements rdf:resource="um:lsid:inb.bsc.es#wsdl.interface(runNCBIBlastp)"/>

</rdf:Description>

</rdf.RDF>

Figure 2. Find all registered Web services via SPARQL DESCRIBE query.

doi:10.1371/journal.pene.0107889.9g002

PLOS ONE | www.plosone.org

September 2014 | Volume 9 | Issue 9 | e107889

112

Manuscript

BioSWR Registry

PREFIX rdf: <hitp:/fwww.w3.org/1998/02/22-rdf-syntax-ns#>
PREFIX sawsdl: <http://www,w3,0rg/ns/sawsdis>

PREFIX rdf: <hitp:/fwww:w3.0rg/1998/02/22-df-syniax-ns#>
PREFIX sawsdl: <http:/www.w3. orginsfsawwlin

INSERT DATA { <urnlsid:inb. bsc es#wsdl DB)> | | DELETE DATA{ <urn.lsid:inb.b:
sawsdtmodelReference sawsdl:mede|Referenca
com'} hitp.//wwwws. }
POST kU uerper TP POST BRI s TP
st int s ot no
Coment-Type: awue‘ewm\ update; charset=UTF-§ Cantent: Twe B.«D“!M"‘!Dm‘\lmlt charset=UTF-§
PREFIX rdf: <http: Syrtax-nsa PREFIX rdf: bty
FREFIX sawsdl. < PREFIX sawsd

INSERT DATA{ <umiist nb.bse e

fra
ol interfaca(gelEnryFromPDE}>
sawsdl modelRefarance g jaxanpi.conT)

HITPI.1 200 0K
ContentLengh 0

DELETE BATA { < o nlmmrfamwgu[m,l’wv'!mu

xample com y/2001/XMLSChemasstrings |

HTTPA1 200 0K

Figure 3. Add/Remove SAWSDL reference via SPARQL UPDATE query.

doi:10.1371/journal.pone.0107889.g003

Implementation

BioSWR is implemented using Java EE 6 Platform. Web
interface is based on Java Server Faces 2.0 and RichFaces
component framework. BioSWR REST APl is implemented using
Java API for RESTful Web Services. SPARQL protocol
implementation is based on openRDF Sesame framework [13].
Registered services are stored in a MySQL database.

Technologies chosen as a ground for the registry became a
challenging task of implementation of the latest standards in
Semantic Web services. To achieve BioSWR goals several brand-
new Java libraries have been developed and contributed to the
community:

wsdl2rdf service description library
Semantic representation of Web ser requires a solid tool to
provide a mapping between WSDL 2.0 and OWL meodel

repr esentation.

The wsdl2rdf library provides an easy and
straightforward API for WSDL 2.0 ontology management, hiding
OWL complexity from developers. As WSDL 2.0 ontology does
most of the restricions defined in WSDL 2.0
specification, the advantage of the APl usage over a straight
ontology manipulation is to provide ontology consistency valida-
tion.

not impose

The wsdl2rdf hbrary strictly follows the original ontology

Prefix: wsdl: <http://www.w3.org/ns/wsdl-rdfé>
Ontology: <http:/iwww.w3.org/ins/wsdl-rdf>

Class: wsdl:Interface

A

provided by the WSDL 2.0 RDF Mapping specification [14] and
is based on The OWL API [15].

WSDL 2.0 parsing library

To parse and manipulate WSDL 2.0 descriptions, a brand new
WSDL 2.0 library has been developed. The library is based on
WSDL 2.0 Part 1: Core Language [16] and WSDL 2.0 Part 2:
Adjuncts specifications [17], and supports both SOAP and HTTP
binding extensions. A complementary tinyXmlSchema exten-
sion library has been developed to provide an easy manipulation of
referenced XML Schema elements. The tinyXmlSchema library is
based on Apache XML Schema 2.0 library [18]. In addition to
standard WSDL 2.0 extensions, tinyWSDL supports SAWSDL
annotations.

WSDL 2.0 BioMoby extension library

In order to provide better integration with BioMoby services,
tinyMOBY cxtension library has been developed. The library
allows representing BioMoby services through semantically
enriched WSDL 2.0 descriptors. Generated descriptors embed
" Grid BioMoby RDF definitions that can be used to reconstruct
BioMoby message format. As well as the owl2rdl library,
tinyMOBY is based on The OWL APL The integration with
BioMoby is implemented via lightweight BioMoby Java APL

Prefix: : <http://ledamontology.org/>
Ontology: <http:/ledamontology.org>

Class: topic_0078 SubClassOf: topic_0003
Class: topic_2225 SubClassOf: topic_0078

+

Prefix: sawsdl: <http://www.w3.org/ns/sawsdi#>

Prefix: : <htip://edamontology.org/>
Prefix: wsdl: <http://www.w3.org/ns/wsdl-rdf#>
Prefix: sawsdl: <http://www.w3.org/ns/sawsdit#>

Class: wsdl:Interface SubClassOf: sawsdl#modelReference cnly topic_0003

Prefix: wsdl-rdf: <http://www.w3.orginsiwsdl-rdf#>

Ontology: <urn:lsid:inb.bsc.es>

Individual: <urn:lsid:inb.bsc.es#wsdl.interface(getEntryFromPDB)> Types: wsdl-rdf: Interface
sawsdl:modelReference "http://edamontology.orgitopic_2225""xsd:string

PR

Figure 4. Example of Rules d
Because topic 2225 (Protein databases) is @ subclass of topic

Here wsdl: Interface sawsdl#modelReference property is restricted to topic 0003 (Topic).
0003, urn:lsid:inb.bsc.es#wsdl.interface(getEntryfromPDB) interface (which is an

individual of wsdl: Interface) may be annotated with it without making the ontology inconsistent.

doi:10.1371/journal.pone.0107889.9004

PLOS ONE | www.plosone.org

September 2014 | Volume 9 | Issue 9 | e107889

113

BioSWR

Discussion

Extending the EMBRACE and BioCatalogue registries philos-
ophies, BioSWR offers many unique features for Semantic Web
Services providers and consumers. The most significant advance-
ment of BioSWR is the adoption of WSDL 2.0 and its standard
OWL-based representation. Semantic representation of Web
allows using SPARQL query language for Web servi
discovery and annotations and greatly simplifies BioSWR REST
API eliminating a need in respective methods.

BioMoby was a fairly extended protocol for SOAP-based web
services, and a significant number of vces are still available.
BioSWR offers semantically enriched WSDL 2.0 descriptors for
BioMoby services, freeing BioMoby clients from the need to
interact with a BioMoby Central, and simplifying BioMoby
services execution.

BioSWR WSDL 2.0 support also contributes to bringing
RESTful Web services back to the standards. Being very popular
to access data from repositories due to its simplicity of use,
RESTful Web services are often developed outside of the
established standards. This precludes those services from being
integrated in bioinformatics, and even makes difficult its usage
with current clients without a manual adaptation. BioSWR has
been developed with a special interest in such integration. For
RESTful Web services BioSWR provides both WSDL and WADL
deseriptions, which can be used by appropriate clients. BioSWR
also facilitates URL-based templates for RESTful retrieve

servic

References

Pertifer S, Tson J, Kalas M, Thome D, McDermort P, et al. (2010) The
EMBRACE web service collection. Nucleic Acids Res, 58 (Web Server issue)
WE83-WE8S. doi:10.1093/nar/ gkq297

2, Bhagat J, Tanoh F, Nzucbontane E, Laurent T
BioCatalogue

. Orlowski J, et al. (2010}
0 a universal catalogue of web services for the life seiences. Nucleic

Acids Res, 38(Wo erver], WHB9-WEI4. doi:10.1093/nar/ gkq394

3. Kopeeky J. Bournez C, Farrell] (2007) SAWSDL: Semantic

Annotations for WSDL and XML Schema. IEEE Internet Comput, 11{6), 60

67, doi: 10,1109/ NMIC. 2007154

BioMoby Team, Wilkinson MD, Senger M, Kawas E, Bruskiewich R, ct al.

(2008) Interoperability with Maby 1.0-it’s better than sharing your toothbrush!

Bricf Bioinform, 9(3), 220-231. doi: 10,1093 /bib/bbn003

5. Wilkinson M, Schoof H, Emnst R, Haase D (2005) BioMOBY successfully
integrates dis The PlaNet
exemplar case. Plant Physiol, 138(1), 5-17. doi:10.1104/pp.104 170

6. lson], Kalas M, Jonassen I, Bolser D, Uludag M, et al. (2013) EDAM: an
ontology of bioinformatics aperations, types of data and identifiers, topics and
formats. Bioinformatics, 29(10), 1325 1332, doi: 10, 1093/ bioinformatics/biel 13

7. Hull D, Wolstencrofi K, Stevens R, Goble C, Pocock MR, et al. (2006) Taverna:

a tool for building and running workflows of services, Nucleic Acids Res, 34

(Web Server issuc), 729-732. doi: 10,1093/ nar/ gkl 320

Franks J, Hallam-Baker P, Hostetler], Lawrence S, Leach P, et al. {1

Authentication: Basic and Digest Access Authentication. (2617),

Retrieved from hep://www.ietf.org/rfe/rfe2617 ixt

-

ated heterogencous bioinformatics Web Service

®

9 HTTP
IETF

PLOS ONE | www.plosone.org

BioSWR Registry

operations (HTTP GET verb). As a proof of concept the complete
set of RESTFul services generated from RCSB have been
registered in BioSWR, and an example tutorial using this kind
of services in combination with classical SOAP-based is provided.
BioSWR pushes bioinformatics Web Services Registries to a
new level of semantic support providing Semantic Web Services
descriptions based on their standard OWL/RDF representation.
In anticipation of greater SWS adoption by life science commu-
nity, BioSWR facilitates a smooth transition from conventional
WSDL L1 service definitions to OWL-based WSDL ontology.
The use of SAWSDL for semantic annotations provides interop-
erability with tools that rely on standard WSDL definitions. The
support of SPARQL query language for service discovery, a Web
2,0 single page design, along with a traditional REST-based
interface, to register, filter and annotate Web services, makes
BioSWR a powerful registry for bioinformatics Web services.

Acknowledgments

The authors would like o thank Jos¢ Maria Fernandez Gonzalez for his
invaluable help with determination of project requirements and function-
ality.

Author Contributions
Conceived and designed the experimentss DR JG. Performed the

experiments: DR, Analyzed the data: DR. Contributed to the writing of
the manuscript: DR JG

9, tinyMoby. Available: hup://sourcef
2014 July 25th.

10. tinyWSDL. Available: http://sourceforge net/projects/tinywsdl/. Accessed
2014 July 25th

11, MobyCe Available: hup://sourcelorge.net/ projects/mobycore/. Accessed

genet/projects /tinymoby/. Accessed

.

12 on W, Brown D (1961) Cyclic Codes for Error Dy

e of Elecirical & Electronies Engineers (I

doi: 10, 1109/JRPROC.1961.267814

J. Kampman A, van Harmelen F (2002 Sesame: A Generic

for Storing and Querying RDF and RDF Schema. International
Semantic Web Confe c. 2342, 54-68. Springer Berlin Heidelberg,

14. Kopecky] (2006) WSDL RDF Mapping: Developing Ontologics from
Standardized XML Languages. In: Advances in Conceptual Modeling - Theory
and Practice, Springer Berlin Heidelberg, 2006, 4231, 312-322. doi:10.1007/

11908883 _37

tion Proc. IRE.
49, 228-235.

or §

15, Horridge M, Bechholer S (2011) The OWL APL: A Java APL for OWL
ontologics. Semant Web, 201, 1121
16. Web Services Description Language (WSDL) Version 2.0 Part 1: Core

Language. Avai
25th.

17. Web Services Deseription Language (WSDL) Version 2.0 Part 2: /
Available: hup:/ Awww.w3.org/ TR Awsdl20-adjuncts/. Accessed 2014 Ju .

18. Apache XmiSchema, Available: hitp://ws.apache org/xmbschema/. Accessed
2014 July 25th.

able: hitp://www.w3.org/ TR /wsd20/. Accessed 2014 July

September 2014 | Volume 9 | Issue 9 | e107889

114

Manuscript

Published online 12 May 2010

Nucleic Acids Research, 2010, Vol. 38, Web Server issue

W683-W688
doi:10.1093 |nar|gkq297

The EMBRACE web service collection

Steve Pettifer'*, Jon Ison®, Matis Kalas®>*, Dave Thorne®, Philip McDermott'-®,

Inge Jonassen®*, Ali Liaquat®, José M. Fernandez®’, Jose M. Rodriguez®’,
INB-Partners’, David G. Pisano®’, Christophe Blanchet®, Mahmut Uludag?, Peter Rice?,
Edita Bartaseviciute®, Kristoffer Rapacki®, Maarten Hekkelman'®, Olivier Sand'’,

Heinz Stockinger'?, Andrew B. Clegg'®, Erik Bongcam-Rudloff'4, Jean Salzemann'®,
Vincent Breton'®, Teresa K. Attwood'®, Graham Cameron? and Gert Vriend'®

'School of Computer Science, The University of Manchester, Manchester, M13 9PL, 2EMBL European
Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK, 3Computational Biology Unit, Bergen Center for
Computational Science, 5008 Bergen, Norway, “Department of Informatics, University of Bergen, 5008 Bergen,
Norway, “Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, UK, ®Spanish National
Cancer Research Centre (CNIO), Structural Biology and Biocomputing Programme, 28029 Madrid, Spain, “Spanish
National Biocinformatics Institute (INB), INB Central Node, 28029 Madrid, Spain, ®Université Lyon 1; CNRS, UMR
5086; IBCP, Institut de Biologie et Chimie des Protéines, Lyon, France, 9Center for Biological Sequence Analysis,
Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark, '°CMBI, Radboud
University Medical Centre, 26-28 6525 GA, Nijmegen, The Netherlands, ''Service de Bioinformatique des
Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles, B-1050, Belgium, '?Swiss Institute of
Bioinformatics, Vital-IT group, CH-1015 Lausanne, Switzerland, ®Research Department of Structural and
Molecular Biology, University College London, London WC1E 8BT, UK, 'The Linnaeus Centre for Bioinformatics
Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden and "*Clermont Université, Université
Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP10448, F-63000 Clermont-Ferrand, France

Received February 2, 2010; Revised March 29, 2010; Accepted April 7, 2010

ABSTRACT

The EMBRACE (European Model for Bioinformatics
Research and Community Education) web service
collection is the culmination of a 5-year project
that set out to investigate issues involved in de-
veloping and deploying web services for use in the
life sciences. The project concluded that in order for
web services to achieve widespread adoption,
standards must be defined for the choice of web
service technology, for semantically annotating
both service function and the data exchanged, and
a mechanism for discovering services must be
provided. Building on this, the project developed:
EDAM, an ontology for describing life science web
services; BioXSD, a schema for exchanging data
between services; and a centralized registry
(http://www.embraceregistry.net) that collects
together around 1000 services developed by the
consortium partners. This article presents the
current status of the collection and its associated
recommendations and standards definitions.

INTRODUCTION

Since the early days of the web, the life science community
has embraced its use as a mechanism for sharing data,
software and knowledge. The enthusiasm and willingness
to exchange both research results and the tools necessary
to access, visualize and analyse those data is evident
through the ever-growing number of resources reported
in the annual web server (1) and database editions (2) of
Nucleic Acids Research (NAR). More recently, the need
has been recognised to provide not only human-accessible
web pages but also programmatic access to the same re-
sources via so-called “Web services’ (3-6). In terms of ex-
perimental scalability and reproducibility, there are
obvious advantages to being able to automate access to
these remote resources through the use of programming
languages or workflow systems, such as Taverna (7) and
Kepler (8). However, the use of web services is not without
its problems. Summarizing Hull e al. (7), these have his-
torically included: (i) reliance on complex and evolving
underlying technologies prone to generating cryptic error
messages, (i) limited documentation and metadata
describing services; (iii) incompatible and inconsistent
inputs and outputs between services; and (iv) unpredictable

*To whom correspondence should be addressed. Tel: +44 161 275 6259; Fax: +44 161 275 6204; Email: steve.pettifer(@manchester.ac.uk

© The Author(s) 2010. Published by Oxford University Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses,
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

115

EMBRACE

w684

Nucleic Acids Research, 2010, Vol. 38, Web Server issue

Table 1. The problems identified in Hull er al. (7) and their corresponding solutions, as developed by the EMBRACE consortium

Problem EMBRACE solution

Inconsistent use of technology

EMBRACE Technology Recommendation Documents. Provide guidance for producers and con-

sumers on selecting appropriate technologies and standards for developing life science web services.

Limited service metadata

EDAM Ontology. A vocabulary of terms and relations suitable for annotating the behaviour, inputs

and outputs of life science services, and for associating meaning with data exchanged between

services.

Incompatible interfaces
bioinformatics services.

Unreliable services
performance.

BioXSD data interchange format definition. A mechanism for unifying the exchange of data between

EMBRACE Active Registry. A mechanism for finding services and for monitoring their

performance/reliability. In an effort to address these
problems and to provide the life science community with
a collection of coherent and robust bioinformatics web
services, in 2005, the European Commission provided
funds to establish the EMBRACE (European Model for
Bioinformatics Research and Community Education)
Network of Excellence. The consortium, consisting of 18
institutions, brought together providers of major tools and
databases with experts from the informatics domain. To
date, the project has produced almost 1000 services,
covering a wide functional spectrum, from traditional
programs, such as BLAST (9) and ClustalW (10),
through to more domain-specific tools and resources,
such as metabolite substructure prediction from GC-MS
profiles (11) or the prediction of protein stabilization by
introducing prolines into the structure (12).

EMBRACE has developed technologies and recom-
mendations to improve the use and uptake of web
services within the life science domain; the relationship
of these solutions to the issues identified by Hull er al.
(7) are outlined in Table 1.

SELECTING A SUITABLE WEB SERVICE
TECHNOLOGY

Establishing a basic form of technological standardization
required the consortium to first agree on a consistent def-
inition of *Web service’. The original term was defined by
the World Wide Web Consortium (W3C; http://www.w3
.org) to describe a specific set of technologies, including:
the Extensible Markup Language (XML) to package and
serialize data; SOAP (originally an acronym for ‘Simple
Object Access Protocol’, but since version 1.2, just a
capitalized name) and the HyperText Transfer Protocol
(HTTP) to orchestrate communication between client
and server; and the Web Service Description Language
(WSDL) to describe the programmatic interface of the
web service itself (http://www.w3.org/TR/wsdl). Today,
the term web service has moved into common usage and
its meaning has broadened considerably to encompass
numerous other web-based mechanisms and approaches
for providing remote programmatic service access. For
providers and consumers alike, selecting an appropriate
web service technology is a daunting task, requiring an
in-depth understanding of numerous complex techno-
logical issues and implications. Although, on first inspec-
tion, some approaches to web service development appear

to provide a relatively straightforward route via which
providers may deploy their resources [e.g. REST (13)
and traditional XML Remote Procedure Calls
(XML-RPC: http://www.xmlrpc.com)]. the consortium
concluded that, on balance, and in the context of the life
sciences, the strict guidelines, industry-supported valid-
ation tools, fault-tolerance and explicit description
language associated with the original W3C definition
provided benefits to the consumer that outweighed any
short-term inconvenience to the Web service provider.
Furthermore, it was considered that even the variety of
options and configurations afforded by the W3C defin-
ition was too liberal to be practical; the decision was there-
fore made to adopt the more tightly specified subset of the
W3C specification based on the profile defined by the Web
Service Interoperability Organization (WS-I, a standards-
defining consortium consisting of many of the major
players in the IT industry including IBM, Microsoft,
Oracle and Intel; http://www.ws-i.org). In addition,
EMBRACE recommended the use of the emerging
Semantic Annotations for WSDL (SAWSDL) (14) as a
means of more richly describing the behaviour of
services. More detailed reasoning behind these decisions
is reported by Stockinger er al. (15) and ‘life-science
friendly’ advice to the producers and consumers of web
services is available in the project’s Technology
Recommendation documents, available online at the
EMBRACE portal (http://www.embraceregistry
net/standards).

ENABLING SEMANTIC DESCRIPTION OF
BIOINFORMATICS SERVICES

EMBRACE Data and Methods (EDAM) is an ontol-
ogy for bioinformatics tools and data, consisting of a set
of defined terms, relationships between these terms, and
rules that govern the usage of the terms and their relation-
ships. Terms for the initial version of the ontology were
collected from analysis of the following tools and
resources:

e the EMBRACE web services;

e SOAP-based services provided by the
Bioinformatics Institute (16);

the myGrid ontology (17); and

the NAR database and web server categorizations (2).

European

LN

116

Manuscript

Table 2. Examples of terms and their categories from the EDAM
ontology

Category Example terms

Field Sequence analysis; Alignment; Sequencing;
Microarrays

Entity Gene; Amino acid: Residue cluster; Active site;

Atom-atom-interaction

Sequence alignment; Pairwise sequence alignment,
Sequence database search

PDB database (19); GO ontology (20)

Tool function

Data resource

Data type Sequence alignment: Sequence record;
Comparison matrix; Phylogenetic tree
Identifier PDB code: UniProtKB (21) accession number

An initial version of the ontology is available in Open
Biomedical Ontologies (OBO: http://www.obofoundry
.org) format and uses the terms, relations and rules
defined by the OBO Foundry (18). In its current form,
EDAM consists of around 1750 terms, with associated
definitions and 14 types of relations. The ontology and
associated documentation is available at http://
edamontology.sourceforge.net.

Terms in EDAM fall into the top-level categories shown
in Table 2.

In the context of web services, EDAM plays two im-
portant roles. First, as a source of terms that can be added
to WSDL files using the SAWSDL extension attributes, it
enables the functions, inputs and outputs of a service to be
semantically annotated, leading to improved searching
from within repositories and better integration with
workflow systems. Second, it enables the detailed data
types exchanged by services to be more richly expressed,
the benefits of which are described in the following
section.

IMPROVING DATA EXCHANGE BETWEEN
SERVICES

Although human-readable domain-specific text file
formats have served a valuable purpose in bioinformatics
for many years, the growing interest in interoperable web
services has required more ‘computer friendly’ approaches
to be developed. XML, which defines a format in which
data of arbitrary complexity can be encoded, has become
the de facro vehicle for inter-system communication (and
indeed, forms the basis for the SOAP, WSDL and
SAWSDL protocols mentioned previously). Although
data records expressed in XML are typically more
verbose and difficult for humans to read than their “flat
file” counterparts, numerous significant advantages accrue
from its use. Of particular relevance here is the ability to
use an XML Schema Document (XSD; http://www.w3
.org/XML/Schema) to define the ‘grammar’ required
during a particular exchange of data. The adherence of
services to this grammar can automatically be validated
by well proven industry standard software libraries,
allowing tools to detect garbled or malformed inputs

Nucleic Acids Research, 2010, Vol. 38, Web Server issue

w685

and outputs and preventing errors from propagating
through to later stages in a service pipeline.

Detailed, fine-grained description of the exchange
format by a dedicated XSD has multiple advantages
both for the providers of web services and for their
users. Data can be automatically validated without the
need for bespoke software, increasing the security and
making the service implementation less demanding.
Conversion between different formats can be achieved
reliably via the Extensible Stylesheet Language
Transformation (XSLT; http://www.w3.org/TR/xslt)
mechanism. Finally, the fine-grained components of the
data types can be semantically annotated by terms from
a controlled vocabulary such as EDAM.

Maximum interoperability among the diverse bioinfor-
matics web services located around the world can be
achieved by using a common, canonical XML Schema.
Defining the standard formats of the main data types,
the canonical data model allows users to mix-and-match
diverse services freely and without the need to write
bespoke programs [sometimes referred to as ‘shims’ (22)]
to transform to or from the myriad of legacy data formats.
This makes the design of analytical workflows, scripts
or programs much simpler, faster and cheaper, reducing
the need for specialized personnel with advanced
programming skills (Figure 1). On the side of the service
providers, the common data model brings ready-made and
semantically annotated data types that the developers of
new services can, in many cases, use directly.

In a similar vein to EDAM, BioXSD has been de-
veloped by analysing the existing web services, tools and
various existing data formats, and by consulting the bio-
informatics community. Initiated by the EMBRACE
partners, BioXSD attempts to serve as the common data
model for the most widely used, basic biological data
exchanged with web services. The current version covers
biological sequences, alignments and sequence annota-
tions with both positional and non-positional features,
and in addition, defines formats for references to data-
bases or controlled vocabularies/ontologies, literature cit-
ations, bioinformatics accession numbers and identifiers.
The core type definitions are accompanied by a number
of generic helper types and recommended names for
entities that are yet to be assigned ontological definitions.
These everyday bioinformatics data types did not previ-
ously have any standard XML representations, despite
representing both inputs and outputs of more than
two-thirds of the web services developed by the project.

Transformers between the BioXSD and the main
community textual or tabular formats are included in
the BioXSD development, as well as the compatibility
with the OpenBio libraries, such as BioPython and
BioPerl.

The rules suggested in BioXSD align with a series of
well-known resources, such as the Sequence Ontology,
Gene Ontology or the BioSapiens Protein Feature
Ontology. Examples of its use to describe GFF3
(http://www.sequenceontology.org/gff3.shtml) and
UniProt Knowledgebase features is available at
http://www.embraceregistry.net/BioXSD/.

117

EMBRACE

W686 Nucleic Acids Research, 2010, Vol. 38, Web Server issue

Figure 1. An example of bioinformatics workflow, illustrating the flow of data (red ovals) through various services (blue rectangles). Without a
common exchange format such as BioXSD, each edge in this graph would also require additional ‘converter’ (or “shim’) processes to transform the
data into the input formats required by the main services. This would more than double the technical complexity of the workflow for no additional

scientific advantage.

SERVICE MONITORING

In order to give users an indication of service reliability,
the project developed an ‘active registry’ capable of moni-
toring the behaviour of its web service collection, and of
notifying consumers and service providers of any
problems encountered (23). Providing basic classification
and searching mechanisms, the registry has been available
since October 2008, and has accumulated around 800

WSDL end point descriptions, representing considerably
more than a 1000 bioinformatics ‘services’. As the
EMBRACE project draws to a close, the data and func-
tionality of the project’s registry are being transferred to
the BioCatalogue system (24) that provides more
sophisticated curation, tagging, browsing and searching
facilities and offers a sustainable long-term repository
for the project’s results.

118

Manuscript

1%

(O RNA @ Protein sequence
@ DNA @ Molecular structure

Figure 2. A pie chart showing the percentage of web services reported
by the EMBRACE registry as belonging to various high-level
categories.

@ Textmining

CONCLUSION

EMBRACE has set the stage for bioinformatics web
services. It did so by not only recommending standards
and schemas for life science web services, but also by de-
livering in the region of a 1000 web services that are
largely interoperable. Figure 2 shows the relative propor-
tions of web service coverage, broken down into various
high-level categories. This substantial collection will
provide an incentive for future service providers to
adopt the EMBRACE web service recommendations,
because doing so makes their services interoperable with
a rapidly increasing number of other services. We hope
that this step forward in web service technology will
allow bioinformaticians all over the world to keep up
with the exponentially growing data volumes that the
‘omics revolution’ is producing; and we look forward to
future NAR special volumes that hopefully will list many
new databases, servers, services and facilities to facilitate
research in the life sciences by making use of the web
services found in the EMBRACE and BioCatalogue
registries.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the contributions of
Fred Marcus, Stephan Hohman, Rita Casadio, Matthew
Woodwark, Jacques van Helden and Kay Hofmann for
providing constant encouragement and stimulating discus-
sions. European Commission within its FP6 Programme,
under the thematic area ‘life sciences, genomics and bio-
technology for health® (contract number LHSG-CT-
2004-512092 to EMBRACE project).

FUNDING

This project reached a successful conclusion in no small
part thanks to the persistent and patient input from its
Project Manager, Kerstin Nyberg. Many scientists

Nucleic Acids Research, 2010, Vol. 38, Web Server issue

wos7

contributed by registering web services—their details are
available via the project’s registry; we especially acknow-
ledge the input from the EU projects ENFIN and
BioSapiens, and the numerous INB partners (http://
www.inab.org) for registering very many services.
Funding for open access charge: the publication charges
will be paid from the EMBRACE budget via an account
held at the EBIL

Conflict of interest statement. None declared.

REFERENCES

1. Benson,G. (2009) Nucleic Acids Research annual Web Server
Issue in 2009. Nucleic Acids Res., 37, W1-W2.

. Cochrane.G.R. and Galperin,M.Y. (2010) The 2010 Nucleic Acids
Research Database Issue and online Database Collection: a
community of data resources. Nucleic Acids Res., 38, D1-D4.

- Curcin, V., Ghanem,M. and Guo.Y. (2005) Web services in the
life sciences. Drug Discov, Today, 10, 865-871.

. Alonso.G.. Casati.F., Kuno.H. and Machiraju.V. (2004) Web
services: concepts, architectures and applications. Data-Centric
Systems and Applications. Springer-Verlag. Berlin/Heidelberg
GmBH.

. Wilkinson,M.D, and Links,M. (2002) BioMOBY: an open source
biological web services proposal. Brief. Bionform.. 3. 331-341.

. Djamal,B., Dustar,S. and Seth.A. (2008) Service Mashups: The
new generation of web applications. JEEE Interner Comput., 12,
13-15.

. Hull,D., Wolstencroft,K., Sievens,R., Goble,C., Pocock,M.R.,
Li,P. and Oinn,T. (2006) Taverna: a tool for building and
running workflows of services. Nucfeic Acids Res., 34,
W729-W732.

. Altintas,I., Berkley,C., Jaeger.E., Jones.M., Ludascher,B. and
Mock.S. (2004) Kepler: an extensible system for design and
execution of scientific workflows. Proceedings of 16th International
Conference on Scientific and Statistical Database Management.
pp. 423-424.

. Altschul S F., Gish W., Miller W_, Myers, EW. and Lipman,D.J.
(1990) Basic local alignment search tool. J. Mol. Biol., 215,
403-410.

10. Thompson,J.D.. Higgins.D.G. and Gibson,T.J. (1994) CLUSTAL
W: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting. position-specific gap
penalties and weight matrix choice. Nucleic Acids Res., 22,
4673-4680.

11. Kopka.J., Schauer N., Krueger.S.. Birkemeyer,C., Usadel.B.,
Bergmiiller,E., Dormann,P., Weckwerth,W., Gibon,Y ., Stitt,M.
et al. (2005) GMD@CSB.DB: the Golm Metabolome Database.
Bioinformatics, 21, 1635-1638.

12. Vriend,G. (1990) WHAT IF: a molecular modeling and drug
design program. J. Mol. Graph., 8, 52-56.

13. Richardson.L. and Ruby,S. (2007) RESTful Web Services - Web
services for the Real World. O'Reilly Media.

14. Kopecky,J., Vitvar,T., Bournez,C. and FarrellJ. (2007) SAWSDL:
Semantic Annotations for WSDL and XML Schema. [EEE
Internet Comput., 11, 60-67.

15. Stockinger.H., Attwood.T., Chohan S.N., Cété.R., Cudré-
Mauroux,P., Falquet,L., Fernandes.P., Finn,R.D., Hupponen,T.,
Korpelaien E. et al. (2008) Experience using Web services for
biological sequence analysis. Brief. Bioinform., 9, 493-505.

16. Pillai.S., Silventoinen.V., Kallio.K., Senger,M., Sobhany.S.,
Tate.J., Velankar,S.. Golovin,A., Henrick.K., Rice,P. et al. (2005)
SOAP-based services provided by the European Bioinformatics
Institute. Nucleic Acids Res.. 33, W25-W28§.

17. Wolstencroft.K., Alper,P., Hull.D., Wroe,C.., Lord.P.W.,
Stevens,R.D. and Goble,C.A. (2007) The myGrid ontology:
bioinformatics service discovery. Int. J. Bioinform. Res. Appl.. 3,
303-325.

18. Smith,B., Ashburner.M., Rosse,C., Bard.J., Bug.W., Ceusters,W.,
Goldberg,L.J., Eilbeck,K., Ireland,A. and Mungall,C.J. (2007)

=

w

.

o

o

-

oo

o

119

EMBRACE

w688

2

S

2

The OBO Foundry: coordinated evolution of ontologies to
support biomedical data integration. Nat. Biotechnol., 25,
1251-1255.

. Kouranov,A.. Xie.L., de la CruzJ.. Chen,L.. WestBrook.J..

Bourne,P.E. and Berman,H.M. (2006) The RCSB PDB

information portal for structural genomics. Nucleic Acids Res., 34,

D302-D305.

. Ashburner M., Ball.C.. Blake A., Botstein,J.A., Butler,D.,
Cherry,H.. Davis,J.M., Dolinski,A.P., Dwight,K., Eppig,S.S. er al.

(2000) Gene Ontology: tool for the unification of biology.
Nai. Genetics, 25, 25-29.

. Uniprot Consortium. (2010) The Universal Protein Resource

(UniProt) in 2010. Nucleic Acids Res., 38, D142-D148.

Nucleic Acids Research, 2010, Vol. 38, Web Server issue

2
1

. Hull,D., Stevens,R., Lord.P., Wroe,C. and Goble,C. (2004)

Treating shimantic web syndrome with ontologies. Proceedings of
First Advanced Knowledge Technologies Workshop on Semantic
Web Services (AKT-SWS04) KMi. The Open University, Milton
Keynes, UK.

. Pettifer,S., Thorne.D., McDermott,P., Attwood,T., Baran,J.,

Bryne J.C., Hupponen,T.. Mowbray.D. and Vriend.G. (2009) An
active registry for bioinformatics web services. Bioinformatics, 25,
2090-2091.

. Bhagat.J.. Tanoh,F., Nzuobontane,E., Laurent,T., OrlowskiJ.,

Roos, M., Wolstencroft.K., Stevens,R., Pettifer.S., Lopez.R. et al.
(2010) BioCatalogue : A universal catalogue of Web Services for
the life sciences. Nucleic Acids Res.

120

Manuscript

Structure

MoDEL (Molecular Dynamics Extended Library):
A Database of Atomistic Molecular Dynamics

Trajectories

Tim Meyer,'25 Marco D'Abramo,’® Adam Hospital,"** Manuel Rueda," Carles Ferrer-Costa,! Alberto Pérez,"-?
Oliver Carrillo," Jordi Camps,'22 Carles Fenollosa,'-* Dmitry Repchevsky,!2% Josep Lluis Gelpi,’-254

and Modesto Orozco'234*

1Joint IRB-BSC Computational Biology Programme, Institute of Research in Biomedicine, Pare Gientific de Barcelona,

Baldiri Reixac 10, Barcelona 08028, Spain

“Barcelona Supercomputing Center, Jordi Girona 31, Edifici Torre Girona. Barcelona 08034, Spain
SNational Institute of Bioinformatics, Parc Cientific de Barcelona, Baldiri Reixac 10, Barcelona 08028, Spain
“Departament de Bioguimica i Biologia Molecular, Facultat de Biologia, Avgda Diagonal 645, Barcelona 08028, Spain

S5These authors contributed equally to this work
*Correspondence: modesto@mmb.pcb.ub.es
DOI 10.10186/j.5tr.2010.07.013

SUMMARY

More than 1700 trajectories of proteins representa-
tive of monomeric soluble structures in the protein
data bank (PDB) have been obtained by means
of state-of-the-art atomistic molecular dynamics
simulations in near-physiological conditions. The
trajectories and analyses are stored in a large data
warehouse, which can be queried for dynamic infor-
mation on proteins, including interactions. Here, we
describe the project and the structure and contents
of our database, and provide examples of how it
can be used to describe the global flexibility proper-
ties of proteins. Basic analyses and trajectories strip-
ped of solvent molecules at a reduced resolution
level are available from our web server.

INTRODUCTION

Proteins are large and flexible molecules. Under physioclogical
conditions, they adopt an ensemble of conformations. Flexibility
patterns of proteins have been carefully refined by evolution to
optimize functionality (Ma and Karplus, 19988; Kuhiman and
Baker, 2000; Daniel et al., 2003; Qian et al,, 2004; Leo-Macias
et al, 2005; Karplus and Kuriyan, 2005; Henzler-Wildman
et al., 2007; Goldstein, 2008; Yang et al., 2009). The similarity
of the structural variation found in protein families with that
spontaneously sampled during molecular dynamics simulations
strongly suggests that protein evolution has used the intrinsic
pattern of physical flexibility of proteins when designing new
proteins (Leo-Macias et al., 2005; Velazquez-Muriel et al.,
2009). In summary, protein evolution and function is difficult to
understand if flexibility is ignored. This explains the intense
efforts currently being made to obtain experimental descriptions
of protein flexibility. However, despite encouraging advances
(Lindorff-Larsen et al., 2005), we are far from achieving a full
experimental analysis of proteome flexibility, and therefore

theoretical approaches are necessary. In this respect, coarse-
grained (CG) models coupled to ultrasimplified (pseudo)
harmonic potentials have been widely used to obtain rough
descriptions of the deformability of proteins (Tirion, 1996;
Tozzini, 2005; Bahar and Rader, 2005; Yang et al., 2009; Rueda
et al., 2007a; Emperador et al., 2008a); however, in general, the
information derived is of low resolution and tends to overesti-
mate the harmonic nature of equilibrium fluctuations. In principle,
more accurate descriptions can be obtained from the use of
atomistic molecular dynamics (MD), where atomic-resolution
trajectories of proteins are derived from the application of
Newton’s equations of motion and physical potential energy
functions (McCammon et al., 1977; Brooks et al., 1987). Unfortu-
nately, the practical use of MD has been severely limited by its
computational cost and by the problems encountered in the
automatic setup of simulations. These limitations would explain
why MD is traditionally used to study individual proteins.

During the last half of this decade, The development of new
and more efficient simulation engines and the availability of
state-of-the-art supercomputer (or GRID) platforms has led
several laboratories to add a fourth dimension (time) to structural
databases by running atomistic MD simulations on the depos-
ited proteins (or at least in a selected set of highly representative
structures). Of the many initiatives started, two have crystallized
in extended databases: one in the US: Dynameomics (Beck
et al., 2008; Simms et al., 2008; Kehl et al., 2008; Day et al.,
2003) developed by Daggett's group, and another in Europe:
MoDEL (Molecular Dynamics Extended Library), which we
present here. These large platforms now offer structural biolo-
gists a unique tool to analyze the dynamics of proteins.

OVERVIEW OF THE MODEL PROJECT

The main objective of MoDEL is to provide information on the
multinanosecond scale dynamics of proteins in near-physiolog-
ical conditions. This information can then be used for many
purposes, ranging from evolutionary studies to biophysical
analysis and drug-design processes. In addition, MoDEL is an
excellent reference set for calibration, refinement, and validation

Structure 18, 1399-1409, November 10, 2010 ©@2010 Elsevier Ltd All rights reserved 1399

121

MoDEL

Protein PDB
|
Automatic set-up nm
I

Validation

Basic analysis
Specialized
Analysis

Fle

Serv

MODEL Web

MeOEL

External DDBB

Figure 1. General Flowchart of the MoDEL Platform

The automatic setup tools prepare and run a trajectory from the structure in
PDB format. Before storing the resuits, the trajectory is validated and later
analyzed with our analysis tools. MODEL data are available through our public
MODEL web server at http://mmb.pcb.ub.es/MoDEL.

of coarse-grained methods of flexibility (Rueda et al., 2007a;
Emperador et al., 2008a) and for the benchmarking of force
fields, computer programs, and simulation procedures (Rueda
et al., 2007a). MoDEL is an ongoing project whose maintenance
and extension is one of the main commitments of our group.
MoDEL (Molecular Dynamics Extended Library) is an acronym
that defines a complex infrastructure of software and databases
that we have developed over several years (Figure 1). It is divided
into the following five main blocks: (1) tools for the automatic
setup of MD simulations; (2) tools for validation of trajectories

Structure
MoDEL: Molecular Dynamics Extended Library

force field; and (4) solvent environment. Only cytoplasmatic
monomeric proteins selected by diversity criteria (see below)
are currently available in the database, but extensions of the
database to membrane proteins and specific protein families
are now under way. At the time of writing this report, the MoDEL
data warehouse contained more than 1700 protein trajectories,
ranging from 10 ns (the shortest) to 1 ps (the longest). The raw
trajectories collected represent nearly 18 Tb of data correspond-
ing to around 250,000 residues, 4.5 million protein atoms, and
around 19 million water molecules. The computational effort
required for the derivation of MoDEL required massive use of
the A p at the Super-
computing Center (www.bsc.es) and local platforms in our
group, and took more than 4 years to reach its current comple-
tion state.

TARGET SELECTION

A number of reasonable protocols for the selection of target
proteins have been proposed (Day et al., 2003, Ng et al.,
2008). Here, we adopted a very simple diversity approach in-
tended to select nonhomologous proteins covering the largest
possible portion of the PDB. The starting point was the release
of the PDB in October 2005 (Berman et al., 2000), from which
we selected Cluster-90 proteins (i.e., we considered in the
following only those proteins with less than 90% sequence
identity with other proteins selected for simulation). From this
reduced list we then removed the following: (1) all membrane
proteins; (2) proteins with gaps in the structure; (3) nonmono-
meric proteins (on the basis of biological assembly definitions
found in PDB, Krissinel and Henrick, 2007); (4) proteins with
nonstandard residues (except Se-Met); and (5) proteins contain-

and error detection; (3) data warehouse, comprising a r
database and the underlying trajectories database; (4) tools for
basic and advanced analysis; and (5) web server and related
web applications. All tools have been built using in-house soft-
ware combined with external software modules (see Table S1
online) and ir through a
p System prep i 1, and analysis modules
are also available as web services following the framework of the
Spanish National Institute of Bioinformatics (Biomoby, BioMoby
Consortium, 2008 [www.inab.org]). The modular nature of the
software allows combining all operations in fully automated
and highly configurable workflows, thereby minimizing human
intervention and facilitating maintenance and update. Also, the
web services platform allows the integration with the wide offer
of bioinformatics services in the community. Raw data are
maintained in their original format in order to maximize compat-
ibility with the software designed by third parties. The MoDEL
platform is linked directly to a battery of tools for “in-depth” anal-
ysis of trajectories and to our FlexServ platform, (http://mmb.
pcb.ub.es/FlexServ) (Camps et al., 2009), which includes
a variety of flexibility analyses from MD ensembles as well as
from a variety of CG representations using either normal modes,
Brownian Go-like dynamics or Discrete Molecular Dynamics
(dMD) (Rueda et al., 2007a; Emperador et al., 2008a).
Simulations in MoDEL are labeled internally following four
criteria: (1) simulated structure; (2) length of the trajectory; (3)

ing polymeric or noncor ligands difficult to parameterize
by automatic procedures (see below). This screening produced
a final list of 1595 proteins, which then entered the simulation
workflow (see Figure 1). Trajectories that failed standard quality
checks (see below) were manually analyzed for potential errors in
setup and then either repeated or, if no technical errors were
found, labeled as potentially artifactual, on the basis of either
local or global criteria. A number of replicates for several proteins
(typically corresponding to different simulation times or force
fields; see below) were obtained, thus yielding a total of 1875
trajectories, which were then submitted to the analysis work-
flows and stored in the MoDEL data warehouse. The proteins
selected contained from one to four domains and ranged in
size from 19 to 994 residues (a distribution plot of protein sizes
is shown as Figure S1). A small subset of MoDEL with 30
representative proteins (Day et al., 2003) was created for bench-
marking and exploratory studies (this subset is referred to as
HMoDEL in the rest of the paper). Additional benchmark and
validation was done considering five selected proteins: 1cqy,
1kte, and 1opc as representatives of the three CATH major
classes, and two proteins for which very large amount of exper-
imental information on flexibility is available: 1ubq and 2gb1; this
ultrasmall set is named nMoDEL in the rest of the paper and was
again used for validation purposes. A complete list of proteins
(and PDB codes) in the tMODEL and nMODEL sets is shown
in Table S2.

1400 Structure 718, 1399-1409, November 10, 2010 ©2010 Elsevier Ltd All rights reserved

122

Manuscript

Structure
MoDEL: Molecular Dynamics Extended Library

FORCE-FIELD SELECTION

The selection of the force field is a crucial issue in any MD project
and there is no clear indication as to which of the many available
force fields is the best for protein analysis. Polarizable force
fields are promising tools for a careful description of interactions
in the future, but they have not been extensively tested to date
and they slow down simulations quite significantly. Thus,
researchers use standard nonpolarizable force fields. Force
fields are in continuous evolution; however, at the time the
project was started the following four force fields were the
most popular: OPLS-AA (Jorgensen et al., 1996), GROMOS-96
(Hermans et al., 1984; Ott and Meyer, 1996) CHARMM-38
(MacKerell et al., 1995, 1998) and AMBER parm99 (Cornell
et al., 1995). Before launching all MoDEL simulations, we evalu-
ated the performance of these four force fields in the yMODEL
subset (Rueda et al., 2007b). The data collected demonstrate
that these force fields yield similar trajectories, which provide
a good reproduction of the structural and dynamical data exper-
imentally available at that time, including residual dipolar
coupling (RDC) and order parameter 132) measures for selected
proteins (Rueda et al., 2007b). Additional calculations on
the pnMODEL set performed with more recent force fields
(parm2003 and parm33sb) confirmed that there is a reasonable
consensus between force fields for trajectories started from
native structures. This observation suggests that for the time
length considered in our project, the considered force fields
should provide similar results. Calculations on the entire MoDEL
set were then performed using the complementary AMBER
parm99 and GAFF force fields, for ease of ligand parameteriza-
tion. For coherence with parm39 the popular TIP3P model
(Jorgensen et al., 1983) was used to represent water molecules.
Future revisions of MoDEL will incorporate results obtained with
newly developed force fields and local refinements of existing
ones. The reader is referred to Rueda et al. (2007b) for detailed
discussion on the performance of MD simulations with different
force fields.

SIMULATION SETUP AND TRAJECTORY PRODUCTION

One of the biggest challenges in the project was to define robust,
flexible, and automatic procedures for the high-throughput setup
of MD simulations. The process should be fast and flexible,
mimicking the human-based process of preparing and launching
asimulation. The refined setup process is detailed in the Supple-
mental Experimental Procedures section. It was based on
a modular and highly flexible workflow structure that could be
easily adapted to user requirements. The pipeline allows the
user to launch the simulation at the end of the process, by
distinct MD codes (at present time: AMBER [Case et al., 2004],
NAMD [Phillips et al., 2005], and GROMACS [Hess et al.,
2008]). In addition, an independent web application (MDWeb;
AH., M.O,, J.L.G., unpublished data) that includes all functional-
ities has been developed as a side product of the MoDEL project
to help in the automatic {(but flexible) setup of MD simulations for
nonexpert users.

MD simulations were produced in the isothermal-isobaric
ensemble (T = 300K, p =1 atm). Trajectories for the entire MoDEL
solution data set were extended for 10 ns (after equilibration).

The 30 protein pMoDEL data set was extended to 0.1 ps and
up to 1 ps for the nMoDEL subset. These long simulations
were used for benchmarking purposes and to check the validity
of the 10 ns trajectories to represent the local dynamics of
proteins around native structures (see below). Additionally, gas
phase simulations in the isothermal ensemble (T = 300 K) were
performed (0.1 us long for the uMoDEL subset; and 1 ps long
for the nMoDEL subset). Detailed simulation settings are
included in the Supplemental Experimental Procedures section.

TRAJECTORY CONTROL

MD simulations are numerical simulations based on a large
series of simplifications that can generate nonnegligible uncer-
tainties in the results. Errors are expected to increase as a result
of the automatic setup procedure required in high-throughput
(HT) production, which implies that careful and critical checking
of trajectories is needed. In our experience, the main sources of
errors in simulations are related to the following: (1) incorrect
decisions during the setup, particularly wrong ionic states,
poorly placed solvent, or wrong description of the ligand; (2)
errors in the equilibration and heating procedure; (3) technical
problems along equilibrated trajectory (problems with SHAKE,
extreme velocities, thermal coupling, etc.); and (4) force-field
problems. Deviations of trajectories from experimental models
might also arise for other reasons, such as local uncertainties
in the experimental models, and varying environmental
conditions in the simulation and in the experiment (for example:
different pH, different ionic strength or protein concentration).
Inspection of trajectories allows us to recognize errors derived
from technical factors (setup/equilibration/heating/integration/
coupling). However, it is not so easy to determine between
deviation caused by force-field problems and that caused by
other factors (experimental uncertainties, discrepancies
between simulated and experimental conditions, etc.). Thus,
our strategy was to scan trajectories for anomalous behavior
using simple metrics (see Table S3). This was achieved by
inspection of trajectories to identify anomalies caused by tech-
nical issues (that can typically be corrected) and those that
may arise because of nontechnical reasons. In the first case
(35 trajectories in total), simulations were repeated and when
the anomalous behavior persisted they were removed from the
database, while in the second approach, simulations were
labeled as “anomalous” but were maintained in the database
since these trajectories can be of interest to some users, and
are relevant, for example, in force-field validation and in the
discussion of potential local uncertainties in experimental struc-
tural models.

Thus, all trajectories were analyzed for global descriptors
(see Supplemental Experimental Procedures and Table S3),
such as the absolute and relative rmsd, the TM-score,msq (Zhang
and Skolnick, 2004) the radii of gyration and solvent accessible
surface (SAS). They were also analyzed for local descriptors,
the number of native contacts, and the secondary structure
(see Table 83). Trajectories were analyzed after the first nano-
second to check for technical problems in the setup (these
usually lead to anomalous diffusion or velocities in protein,
ligand, or solvent), which were rare and were easy to correct in
most cases. At the end of the simulation, quality analysis was

Structure 18, 1399-1409, November 10, 2010 ©2010 Elsevier Ltd Al rights reserved 1401

123

MoDEL

repeated and a trajectory was labeled “suspicious” in one of
three categories on the basis of the checklist and thresholds
shown in Table S3: (1) potential errors in local structure; (2)
potential errors in global structure; and (3) potential errors in
both local and global structure. Less than 3% of trajectories in
MoDEL display one or several warnings, which the user should
not ignore.

ANALYSIS WORKFLOW

The mining of 18 Tb of raw data s and requires aut

Structure
MoDEL: Molecular Dynamics Extended Library

tion of analytical tools and further incorporation of results in
a relational database (see below). Two types of calculations
can be done on raw trajectories: (1) general/basic analysis,
which can be performed without previous knowledge of user
requirements; and (2) specialized analysis, which requires user

specifications and often the development of specific
The modular nature of the analysis workflow allows the integra-
tion of any kind of analysis (for an explanation of commonly used
descriptors, see Supplemental Experimental Procedures). Basic
analysis includes information on global and local structure, such
as rmsd, TM-scoreqmsq (Zhang and Skolnick, 2004), radius of
gyration, total and partial SASAs, collision cross sections, native
contacts, secondary structure, and hydrogen-bond pattern.
Dynamic descriptors determined by default include fluctuations
in all structural values, B factors, Lindemann’s indexes (Zhou
et al., 1999), frequencies (derived from diagonalization of the
mass-weighted covariance matrix), entropies (Schlitter, 1993;
Andricioaei and Karplus, 2001; Harris et al., 2001) and all the
information derived from principal component analysis (PCA)
as described in essential dynamics framework (ED; Amadei
et al., 1993; Orozco et al., 2003, Noy et al., 2006) (for detailed
information, see Supplemental Experimental Procedures). All
analyses were done with a battery of in-house codes and
external analytical tools (see Table S1), which were organized
in modular workflows, thereby allowing the incorporation of
additional analytical tools to the pipeline.

Specialized modules for the data mining of trajectories are in
constant evolution in the group and currently include routines
for the analysis of the following: sclvent environment (structure
and dynamics of water shells); fitting of MD simulations to meso-
scopic models of motion, determining hinge points and corre-
lated motions (Camps et al., 2009); finding cavities and escape
channels in protein ensembles based on ensemble Brownian
dynamics (Carrillo and Orozco, 2008); ensemble docking tools
(Gelpi et al., 2001); methods for the prediction of potential
protein-protein interaction sites (Fernandez-Recio et al., 2005);
and many others.

STRUCTURE OF THE MODEL DATA WAREHOUSE
AND MANAGEMENT SOFTWARE

The data management of MoDEL involves the handling of a large
number of structures, linkage to publicly available databases,
accessing a wide repertoire of analyses for each simulation,
and storage of the trajectories in a way that facilitates efficient
analysis. Although valid attempts to fully integrate this complex
set of data have been reported (Berrar et al., 2005; Simms
et al., 2008), the MoDEL data warehouse (see Figure 2A) has

A Relational DB Ext. DBs
Structure Selection | ppg
AT
PFAM
()
Fragment definitions
Simulation
I
| Il
| Trajectories }7 | Bulk Analysis Data |
Raw-Data repositary
B > w2 [
——— Data links
—— Decision links

Structure
queue

MysQL
DB

Figure 2. General Structure of the MoDEL Data Warehouse and
Management Software

(A) General scheme of MoDEL data warehouse.

(B) Diagram of MoDEL management software.

See also Figures S2-54, and Table S1.

been designed using a conservative approach in order to be fully
compatible with available software. MoDEL combines the
following two approaches: (1) a central relational database and
(2) a disk-based raw data repository. The former stores
structures, simulation details, analytical results, and references
to bicinformatics databases, while the latter stores the trajecto-
ries in both AMBER (native trajectory formats for other programs
are also supported) and compressed PCZ formats, as well as
advanced analytical data. The relational database is designed
not only to show the data available but to query for additional
analysis or simulations. The relational database powers the
MoDEL web server, which acts as an interface for access to
the analyses. The file system layout of the repository is designed
to maximize the efficiency of data retrieval, exploiting hardware
parallelism on access to data when possible.

The relational database comprises four main sections
(Figure 2A): structure selection, simulation, fragment selection,
and analysis. Structure selection includes data for the simulated
systems linked to the necessary sections of the PDB (Berman

1402 Structure 78, 1398-1409, November 10, 2010 ©2010 Elsevier Ltd All rights reserved

124

Manuscript

Structure
MoDEL: Molecular Dynamics Extended Library

et al., 2000), CATH (Pearl et al., 2005), UniProtkb (The UniProt
Consortium, 2010), and through the latter to other available
databases (Table 51). Simulation details are stored in the Simu-
lation section, which includes references to the software used,
force fields and solvent, trajectory parameters, and quality-
control data.

Trajectory analyses can be performed with a wide set of
criteria, not necessarily known at the time of the design of the
database, and storing them efficiently is not trivial. Analysis
data are centered in the two last sections: fragment selection
and analysis block. The central object for analysis storage
(analysisSet) (see Figure S2) is the combination of simulation,
the structure fragment analyzed, and the portion of the trajectory
to be analyzed. This scheme allows us to store a wide variety of
results from a simple collection of trajectory snapshots to
a specific combination of analyses done over several parts of
the trajectory or restricted to a specific domain. Again, structure
fragments can be defined using a series of database data, like
our in-house active sites database (A.H., M.O., J.L.G., unpub-
lished data), domain (PFAM; Finn et al., 2008) or fold (CATH)
(Pearl et al., 2005) (SCOP) (Murzin et al., 1995) databases, and
also functional (Gene Ontology) (The Gene Ontology Consor-
tium, 2000) data (Table S1). Setup and analysis software is adap-
ted to extract that information from the database and perform
new simulations and analyses on the basis of the desired criteria
(see below). The MoDEL relational database is powered by
MySQL 5.1 database manager. A complete Entity relationship
schema of the database can be found in Figure S2.

The management software is a fully integrated platform
(Figure 2B) with a highly modular core mostly written in PERL,
combined with preexisting and third-party software (Table S1).
To preserve compatibility with third-party software and eventu-
ally to allow the inclusion of new software packages, data are
handled in well-known MD formats (amber native, and NetCDF,
http://www.unidata.ucar.edu/software/netcdf/). Modules from
the platform have been also wrapped to conform to the BioMoby
web services framework (MDMoby, A H., M.O., J.L.G., unpub-
lished data). The central component of the MoDEL management
software is the scheduler (Figure 2B). The scheduler module is
fed by a queue of structures selected on the basis of a variety
of criteria. It selects the operation to be performed, calling, in
turn, structure setup, simulation, quality control, and analysis
modules. The scheduler also takes care of checking the data
warehouse to detect unfinished or faulty simulations or analyses
and resuming the appropriate operations accordingly. Data from
the different modules are handled by a common data manager
moadule. The software platform is medular and multiarchitectural
to take advantage of the computational infrastructure available
(see Figure S3 for a description of the flow of data and the
computer architectures involved). Data among the different
hardware platforms are synchronized at the storage level and
system calls are done through standard RPC technologies.

WEB-SERVER STRUCTURE

The MoDEL web server (http://mmb.pcb.ub.es/MoDEL) (see
also Figure S4 for screenshots) is designed to allow access to
the MoDEL project from several levels: to raw trajectory data
for further in-house analysis, to simulation details, and to previ-

ously performed analyses. The server is organized into three
sections. The first acts as an entry level and is intended for struc-
ture selection. The user can either browse the entire set or search
for a specific structure. In addition, the database can be browsed
following the CATH fold classification. The search criteria imple-
mented include PDB and UniProt Ids, and keyword searches.
Itis also possible to search from nonstructural descriptors using
asequence comparison module, based on standard BLAST (Alt-
schul et al., 1990) with settings selected to assure that only highly
homologous structures are obtained. Using Blast-based
sequence comparison with a limit E-value of 102, our website
currently provides access to simulations covering around 40%
of PDB structures, 8% of UniProtKB sequences, 29% of Human
UniProtKB sequences and 33% of DrugBank (Wishart et al.,
2006) targets.

Once a structure is selected, the system offers a list of avail-
able simulations. Simulations can be downloaded, sent to
additional tools either open like FlexServ (Camps et al., 2009),
or restricted like MDWeb (Hospital et al., to be published),
MDGRID (Carrillo and Orozco, 2008), CMIP (Gelpi et al., 2001),
to other programs for further analysis, or instead, data previously
analyzed can be retrieved. The web also provides videos and 3D
animations of the trajectories for visual analysis and projections
on the first five principal components to check the nature of the
major deformation movements. All the analysis data (see above)
are presented as table values, 1D and 2D plots and 3D data using
a Jmol applet (http://www.jmol.org). The MoDEL web server is
powered by a Jboss application server and is linked to an appro-
priate database manager and software (see above).

COMPRESSION AND TRANSFER OF DATA

The management and transfer of data included in the relational
database do not need specific software infrastructure, while
the access, storage, management and transfer of raw trajecto-
ries are (due the amount of the data) complex problems.
The original trajectories with all solvent molecules and atomistic
details require storage, but most analyses are done by taking
intermediate files created by remaving solvent molecules. Dry
trajectories are compressed to obtain smaller files that can be
transferred with high efficiency through the internet. The
compression is done using our PCAzip technology (Meyer
et al., 2008), which is based on three main steps: (1) principal
component analysis of the original trajectory; (2) determination
of the reduced set of eigenvectors explaining a given variance
threshold (90% by default in MoDEL); and (3) projection of the
original Cartesian coordinates into the essential eigenvector
space. PCAZip splits the original trajectory into two compo-
nents: the essential eigenvectors and their projections onto the
trajectory. This results in a 5- to 10-fold compression of the
Cartesian data since a reduced number of eigenvectors is
enough to represent a large percentage of variance (Meyer
et al., 2006). Note that the compression procedure does not
require the assumption of harmonicity in the trajectory and that
the original data can be recovered (with the desired accuracy)
by simple back-projection to the Cartesian space (Meyer et al.,
2006). MoDEL offers (through its webpage, see above) the possi-
bility to download compressed files (90% variance accuracy for
heavy atoms). As described elsewhere (Meyer et al., 2006),

Structure 18, 1399-1409, November 10, 2010 @2010 Elsevier Ltd All rights reserved 1403

125

MoDEL

compressed files at 90% accuracy provide results that are, for
many purposes, indistinguishable from original trajectories
(few tenths of Ain most cases from real structures). The largest
deviations appear for proteins displaying conformational
changes along the trajectory, where a large percentage of vari-
ance is then explained by a single mode. The PCAZip program
required for compression/decompression can be downloaded
from our website http://mmb.pcb.ub.es/software/pcasuite,
both as source code or precompiled executables.

RELIABILITY OF MD SIMULATIONS

A first point of concern in our project was the validation of the MD
trajectories deposited in our database. This was done in three
stages: (1) convergence in force fields; (2) convergence in simu-
lation time; and (3) similarity between MD results and those
derived from the experimental structural model. The first point
has been checked in a previous paper (Rueda et al., 2007b),
which found that the AMBER-parm99 force field appears to
show sufficient reliability for the time window considered in
MoDEL (see discussion above). Concerns on the time conver-
gence of trajectories were addressed by comparing simulations
on 10, 100, and 500 ns trajectories for a reduced number of
highly representative proteins (see above). The results summa-
rized in Figure 3A demonstrate the good agreement between
the structures sampled during 10 and 100 ns trajectories for
the nMoDEL subset both in local and global terms (the same is
found for 500 ns trajectories in nMoDEL). Interestingly, not only
structural descriptors but also parameters informative on protein
flexibility (such as intramolecular entropy) are very similar in short
and long trajectories (Figure 3A). This observation confirms that
although 10 ns is too short for full protein relaxation, it is long
enough to obtain a reasonable representation of the dynamics
of proteins around their equilibrium conformation, even in cases
of relatively large proteins (see data for GTPase activation
protein [1gnd; a protein with 447 residues], in Figure S5 and
also in Figure 3A). Finally, given that the typical relaxation times
of waters are in the picosecond range (the slowest interchanging
waters found have residence times <5 ns), MoDEL simulations
should provide a complete sampling of the equilibrium solvent
atmosphere around proteins.

Qur final concern before accepting the utility of MD simula-
tions was the capacity of trajectories in MoDEL to reproduce
the known experimental behavior of proteins. Analysis on
a reduced set of proteins (Rueda et al., 2007b) suggested that
parm99 simulations provide reasonable approaches to struc-
tural models derived from NMR and X-ray data, to B factor
profiles, and, when available, to direct NMR dynamic data (see
above). The results in Figure 3B, obtained from a large set of
proteins, confirm our previous claims and demonstrate that
MD simulations accurately reproduce global structural descrip-
tors of proteins, such as the solvent accessible surface area or
the radii of gyration. Rmsd between simulated and experimental
models are in 80% of cases below <3 ii, which is not far from the
range of uncertainty expected from the normal structural varia-
tion found for proteins in water at room temperature. Further-
more, most deviations between MD ensembles and data
obtained from experimental models are located in loops (where
greater flexibility and larger uncertainties caused by lattice

Structure
MoDEL: Molecular Dynamics Extended Library

effects are expected in the experimental models), as noted in
the low values of TM scores (100% simulations show TM scores.
<3 A;see Figure 3B). Very encouraging, not only is global struc-
ture well preserved but local geometry is also maintained, as
noted for example in conservation above 90% in the native
contacts for around three-quarters of the database and the small
losses of secondary structure (for additional discussion on the
quality of MD simulations, see Rueda et al., 2007b).

In summary, although caution is always necessary when
analyzing MD results, we are quite confident that the MD trajec-
tories stored in the MoDEL database provide a reasonable
approximation of the equilibrium conformational ensemble of
proteins.

EXAMPLES OF MODEL DATA MINING FACILITIES

The MoDEL database allows a powerful analysis of average and
time-dependent (in the multinanosecond scale) properties of
proteins and their solvent environment at various levels of
resolution (trace, backbone, heavy atoms, and all atoms) and
considering the entire system or parts of it. All the analyses
can be crossed with internal data in MoDEL or information in
other databases that are linked to it. These features thus allow
us, for example, to perform a given analysis restricted to a family
in CATH or SCOP, to a given domain in PFAM, to structures with
some functional annotation in Swissprot or TEEMBL (http://www.
uniprot.org), or to protein families with a specific annotation or
specific characteristics in the PDB. As noted above, the MoDEL
web server gives access to some general analyses, but the
MoDEL data warehouse is accessible for many additional
ones, which might require specific input from the user. It is not
our purpose here to describe the full proteome dynamics;
however, below we give a few examples to illustrate the type
of information that can be retrieved from our database.
A detailed analysis of dynamic information on proteins that can
be extracted from MoDEL will be described elsewhere.

Family ific Analysis of Protein D

The MoDEL relational database allows us to analyze family-
dependent structural and flexibility properties, using a wide
and flexible definition of the concept “family.” This is efficiently
done by querying the database against an internal or external
descriptor. For example, the data in Figure 4A show how MoDEL
provides information on the relative flexibility (as measured by
Lindemann's index) of equivalent thermophylic and mesophylic
proteins. Global analysis reveals that thermophylic proteins
display 90% of the global flexibility of mesophylic protein but
that this global change in flexibility is not equally distributed
throughout all the regions of the protein. Thus, the largest rigid
ification in thermophylic compared with mesophylic proteins is
located in the backbone (especially in § sheets), while the flexi-
bility of side chains (especially in « helices) is not reduced in
the former compared with the latter. Another example of MoDEL
data mining is shown in Figure S6, which demonstrate that (1)
40%-90% of the variance in this particular set of proteins can
be explained by only five essential deformation movements; (2)
no major differences are found in the complexity of the flexibility
space when considering distinct CATH families; and (3) large
proteins do not necessarily have a more complex flexibility

1404 Structure 78, 1399-1409, November 10, 2010 ©@2010 Elsevier Ltd All rights reserved

126 Manuscript

Structure
MoDEL: Molecular Dynamics Extended Library

A - Fraction of Native Hydrogen bonds oo Fraction of Native Contacts.
o as:
=l ||I|I| II||||I||||||||| ||I||||||II I ||||||||I|
oes oes
-1l I E il i
HER EHEEREEE R HEE L HEEEFEEH] He
oo Relative a-helix content s Relative B-sheet content

Ldth Jitatnd LI bl

o
L,.!-‘i?! SRR EEE TP T

0

e
o —

Y. RMSd to Experiment (A) Radius of gyration (A)
at

,ih||.Iil.llllmulilhll . Illgﬂnglllllllllllllll |n

HERFEL AR H T EE §5§§§§§§§§5§ R R HER I
. Solvent accessible surface area (nm?)

lll.lll :IIIIII"IIII"IIIIIIII“ll I

BEEENT ERaDERUIEEROIREIGIEGRBEREIEING

B b 30000

s % 200

e z

g 8 20000

2w 2 w0

E.s &

4 10000 .
o 5
s 5000
o
e 5w oW W B W W W o 5000 10000 15000 20000 25000 30000
Rayr (exp) (A} SASA (exp) (A7)
" 25
P -
20

F 2

s €

3 6 3 10

g 4 &

T linl T 1
o i ol -1 n_
B T 040608 1 12141618 2 22242628 3 32
“ RMSd (axp) (A} Tm-score (A)

=% —_—

£ £ .
= .

n

i" i .
0 ©

2 II £ I
o -———=.a Inma. —

o S
w0 45 S0 S 60 B T TS B BS W % 08 1¢ 2432 4 48 38 84 77 5 B8 48 WANZ W@
% native contacts Change in Secondary Structurs (%)

Figure 3. Quality of Simulations in MoDEL

(A) Different average descriptors for MD simulations in the nMoDEL subset. Blue: 10 ns trajectories, red: 100 ns trajectories, green: experimental data. Content in
secondary structure is referred to unity.

(B) Comparison of structural parameters obtained from MD simulations and from experimental models (see text for details). We consider no change in the
secondary structure when the secondary structure element of the starting structure is still very represented (at least for 0.8 ns) in the last nanosacond of
simulation. The Rgyr(exp) and SAS(exp) are using the i as found in the PDB.

See also Figure S5, and Table 54

space that small ones, thereby indicating that variance in large Analysis of the Essential Deformability of Proteins

proteins is often organized around a limited number of well- The MoDEL database has precomputed the essential dynamics
defined massive deformations (for example, large loop oscilla- (ED) of proteins, which facilitates the study of protein flexibility by
tions or rotations around hinge points). reducing the complexity of the deformability space (Amadei

Structure 18, 1399-1409, November 10, 2010 ©2010 Elsevier Ltd Al rights reserved 1405

127

MoDEL

Structure
MoDEL: Molecular Dynamics Extended Library
A
1 ‘ | 1AQT
P :,«*’ ::' .: J‘“éff;,&" 1A2N
c

1MRJ

2DRI

4THI

Stiffness Constant (Kcal.mol'.A")

Sequence Distance

Figure 4. Examples of Data Mining in MoDEL

(A) Relative Lindemann’s indexes between protein heavy atoms in ic and lic proteins (see

extra i ion, the index i for different groups of atoms. The nomenclature XYZ in x axis refers to X: sidt i Y: expx
all and Z: « helix/p sheet/coil/all. The number of thermophylic proteins is 30; the remaining proteins present in MoDEL are mesophylic.

(B) Examples of dynamics domain definition and hinge-point location, using Lavery's dynamic method, see http://mmb.pcb.ub.es/FlexServ, for four proteins
(each dynamic domain is colored differently). Central plot coresponds to the pathway of in a protein at one random residue
(color code ranges from greenr = 1 tored r = 0.5; blue means no correlation). The search for correlated motions was done with a width of three residues and
a depth of four iterations (see and the FlexServ help (http://mmb.pcb.ub.es/FlexServ) for additional details).

(C) Apparent C,-C, stiffness constants for four proteins with increasing percentage of [3 sheet (from left-top to right-bottom). The significant decay of stifiness
constants with increased sequence distance is clear, indicating the local (in sequence) nature of interresidue contacts. Howaver the presence of long-range
effects that lead to important contacts between distant (in sequence) residues is clear, The or remote i tacts become especially clear
in s sheet proteins, where the secondary structure forces H-bond-mediated contacts between distant residues. Some of these remote contacts are marked with
arrows in the figure.

(D) Results of using MDGrid and CMIP docking on MoDEL ensembiles for three randomly selected diverse proteins: (1MRJ) Ribosome-inactivating protein in
complex with Adenosine (ADN); (2DRI) Sugar transport protein in complex with Ribose (RIB), and (4THI) Transferase, Thiaminase | in complex with
2,5-dimethyl-pyrimidin-4-ylamine (PYD). Plots in the first column show channel as red tubes, with the corresponding cavity in orange (only 1 of every 10 routes
computed are displayed for clarity). Second column shows ility measures idering true ligands as probes, “drug cavities” are shown in
yellow and “hot spots” (regions accumulating 0% of the population of the drug center of mass) are shown in red. The third column shows CMIP best-scored
docking poses (green ligands) with a reference to the known crystal structure (orange ligand), where relevant residues at the binding site are displayed with CPK
representation.

See also Figures S6 and S7 and Table S5 for additional examples.

To gain

et al., 1993; Orozco et al., 2003, Meyer et al., 2006; Noy et al.,
2008). Following the ED formalism, after diagonalization of the
MD covariance matrix, a set of eigenvectors and another of
eigenvalues are obtained, the first gives information on the
nature of essential deformation movements, while the second

many ways, from simple visualization to complex comparison
metrics. Access to external analysis tools, such as PCAzip
(http://s pcb.ub. iite) or FlexServ (http://
mmb.pcb.ub.es/FlexServ) (Camps et al., 2009), allows inter-
esting additional analysis, such as the determination of the

informs on the variance associated with each of these move-
ments. The eigenvectors/eigenvalues can be manipulated in

degree of anharmonicity in the MD simulation, (determined by
comparison of ED eigenvectors and those derived from

1406 Structure 18, 1399-1409, November 10, 2010 ©2010 Elsevier Ltd All rights reserved

128

Manuscript

Structure
MoDEL: Molecular Dynamics Extended Library

diagonalization of a Hessian matrix defined by a simple residue-
residue harmonic potential (elastic network model description}).
It is also possible, for example, to compare the similarity
between the deformability pattern of a set of related proteins,
or to analyze the similarity between physical deformability (as
defined by the MD-derived and the ionary
deformability derived from the analysis of the structural changes
in protein families (see Velazquez-Muriel et al., 2009 for discus-
sion). An example of the type of information derived from mining
MoDEL with these tools is displayed in Table S5.

Advanced Analysis of Protein FI

The MoDEL database is linked with advanced analysis tools im-
plemented in FlexServ (http://mmb.pcb.ub.es/FlexServ) which
allows a complete analysis of protein flexibility. Graphical exam-
ples in Figure 4B illustrate how trajectories in MoDEL allow the
determination of hinge points, dynamics partition of domains
and pathways of concerted motions (see Camps et al., 2009
for details). Several mesoscopic descriptars of protein deform-
ability can be derived from these analyses, such as the apparent
harmonic force-constants acting on the C, of proteins with
different relative content of « helix and f§ sheet (see Figure 4C).
This type of information can be efficiently used to derive more
realistic CG models of protein flexibility, of general or family-
specific use (Emperador et al., 2008a; Rueda et al., 2007a;
Camps et al., 2009; Emperador et al., 2008b). Many more anal-
yses, like those described here, are possible through an intuitive
interface, which provides the user with an accurate definition of
the desired type of query or analysis.

Solvent Analysis

The MoDEL data warehouse contains structural and dynamic
information on the solvent atmosphere around protein, which
can also be subject to advanced analysis. For example, we
can query our database to determine the number of water
molecules in close contact with protein residues, to determine
water residence times, diffusion properties, preferred solvation
sites, and much more information that can also be determined
for any given protein family or group of residues. As an example,
Figure S7 summarizes some results obtained from the analysis
of the first solvation shell around (sixty) representative proteins
of CATH families 1 (z-) and 2 (B-). It was found that all the proteins
considered here were well solvated with a typical water density
around 0.07 to 0.08 waters/A? (in SASA), which compares with
a maximum theoretical density (around 0.1 water/A for ideally
packed waters). Interestingly, our data show that B-proteins
have more water molecules in their vicinity than «-proteins,
even when the water population is corrected by the solvent
accessible surface of the proteins (see Figure S7). This observa-
tion demonstrates that there is a quite sizeable amount of water
around secondary P sheets, even they are traditionally consid-
ered hydrophaobic structures. Note that analysis similar to that
outlined here can be done considering not the entire bulk of
solvent but only distinguished water molecules, for example,
those placed in crystal positions or cavities, or those with very
slow or fast interchange between first and second solvation
shells. In other words, MoDEL allows a complete characteriza-
tion of the solvent atmosphere around proteins.

Cl and Cavity
Advanced analysis tools coupled to MoDEL allow the determina-
tion of channels and cavities taking the dynamics of the protein
into account. It is therefore possible to detect channels or
transient cavities, which are present only on small fractions of
the trajectory and, accordingly, might not be detectable in the
X-ray structure. The procedure is based on our MDGRID algo-
rithm (Carrillo and Orozco, 2008}, combined with the use of clas-
sical probe particles, which can be as generic as a “soft sphere”
or as specific as a full drug. As explained in detail elsewhere
(Carrillo and Orozco, 2008), MDGRID takes the snapshots
collected along the trajectory, projects them in a common
rectangular grid and precomputes the forces that the protein
atoms will exert on basic particles (positive charge, negative
charge, different van der Waals atoms, etc.) placed at the grid
points. These forces are then Boltzmann-averaged and used to
determine precomputed accelerations within a Brownian
dynamics algorithm. Graphical examples of the type of informa-
tion derived for a few proteins are provided in Figure 4D (first
column). These examples clearly illustrate the power of the
technique to trace not only the boundaries of the binding site
but also the pathways for interchange of ligand with the environ-
ment. Note that since forces are precomputed MDGRID calcula-
tions are extremely fast (multimicrosecond long exploration of
channels and cavities in a few minutes in a small desktop
persanal computer).

Drugability and Ligand Docking

The MDGRID protocol outlined above can be used with small
changes to determine the “drugability” of a protein (i.e., the
capacity of a protein to bind small molecules with drug-like
properties). This type of calculation can be done by taking small
drug-like molecules from our local molecular database, or alter-
natively by using known drugs for the targeted proteins. In the
first case, the study provides a direct measure of protein drug-
ability, while in the second case information is obtained on the
ability of a protein to interact with a family of drug-like com-
pounds. In both cases a secondary product is the definition of
major binding sites in target proteins. Information is retrieved
considering not static pictures of proteins but dynamic ensem-
bles, which might make accessible cavities which are not visible
in a single X-ray structure. Figure 4D (second column) contains
a few examples of drugability plots for three randomly selected
proteins known to bind small drug-like ligands, and illustrates
how the method detects that both will bind ligands and locate
the primary binding cavity.

For binding sites of known pharmacelogical targets the use of
docking programs such as CMIP (Gelpi et al., 2001), can yield
potential structures of drug-protein complexes (see some exam-
ples in Figure 4D, last column). These are obtained explicitly
using the flexibility information on the protein contained in the
original MD simulation.

FINAL REMARKS

Initiatives such as Dynameomics and MoDEL provide access to
molecular dynamics data at the proteome level. Expert and
nonexpert users can access trajectories and a variety of anal-
yses that may be difficult to reach by other means, thus saving

Structure 18, 1399-1409, November 10, 2010 ©@2010 Elsevier Ltd All rights reserved 1407

129

MoDEL

them months of work and computer time. Large MD databases
provide a proteome-level view to the molecular physics of
proteins, something that is impossible to achieve by other
means. Furthermore, the databases and integrated analysis
tools can be useful for both the benchmarking of force fields
and the development of new CG methods. Last, but not least,
the research effort devoted to performing and analyzing MD
trajectories in the high-throughput regimen has generated an
extended software platform that allows straightforward, auto-
matic, and robust access to the technique, and to a variety of
analysis tools. Initiatives like that presented here are a step
forward in the popularization and rationalization of MD simula-
tions, bringing the technigue closer to meeting the new needs
of the postgenomic era.

SUPPLEMENTAL INFORMATION

includes Exper P . eight figures,
and four tables and can be found online at 10.1016/].5tr.2010.07.013.

ACKNOWLEDGMENTS

MoDEL is a massive effort involving, directly or indirectly, a large part of the
Molecular Medeling and Bi group at IRB and the

Structure
MoDEL: Molecular Dynamics Extended Library

GCamps, J., Carrille, O., Emperador, A., Orellana, L., Hospital, A., Rueda, M.,
Cicin-8ain, D., D'Abramo, M., Gelpi, J.L., and Orozco, M. (2008). FlexServ:
an integrated tool for the analysis of protein flexibility. Bioinformatics 25,
1709-1710.

Carrillo, O., and Orozea, M. (2008). GRID-MD —a tool for massive simulation of
protein channels. Proteins 70, 892-899.

Case, D.A, Peariman, D.A., Caldwell, J.W., Cheatham, T.E., lll, Ross, W.S.,
Simmerling, C.L., Darden, T.L., Marz, K.M., Stanton, R.V., Cheng, A.L., et al.
(2004). AMBER 8 Computer Program (San Francisce: University of California).
Comell, W.D., Cieplak, P., Bayly, C.I., Gould, |.R., Merz, K.M., Ferguson, D.M.,
Spy r, D.C., Fox, T., Caldwell, J.W., and Kallman, P.A. (1985). A second
generation force field for the simulation of proteins, nucleic acids, and organic
molecules. J. Am. Chem. Soc. 117, 5179-5197.

Daniel, R.M., Dumm, R.V., Finney, J.L., and Smith, J.C. (2003). The role of
dynamics in enzyme activity. Annu. Rev. Biophys. Biomol. Struct. 32, 63-92.
Day, R., Beck, D.AC., Armen, R.S., and Dagget, V. (2003). A consensus view
of fold space: Combining SCOP, CATH and the Dali Domain Dictionary.
Protein Sci. 12, 2150-2160.

Emperador, A., Carrillo, O., Rueda, M., and Orozco, M. (2008a). Exploring the
suitability of coarse-grained techniques for the representation of protein
dynamics. Biophys. .J. 95, 2127-2138,

Emperador, A., Meyer, T., and Orozco, M. (2008b). United-atom discrete
molecular dynamics of proteins using physics-based potentials. J. Chem.
Theory Comput. 4, 2001-2010.

BSC. We are also indebted to Dr. Sergi Girona and the MareNostrum support
team for making this project possible. Helpful comments from Prof. F. J. Luque
and many colleagues at IRB Barcelona and the BSC are gratefully acknowl-
edged. This work was supported by the Spanish Ministry of Science
(CTQ2005-08365-C02-02, BIO2009-10964), INB-Genoma Espaiia, the Con-
solider E-science project, EU-Scalalife project), the COMBIOMED RETICS
project and the Fundacion Marcelino Botin.

Received: January 23, 2010
Revised: July 19, 2010
Accepted: July 27, 2010
Published: November 9, 2010

REFERENCES

Altschul, § F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic
local alignment search tool. J. Mol. Biel. 215, 403-410.

Amadei, A., Linssen, A.B., and Berendsen, H.J. (1993). Essential dynamics of
proteins. Protains 17, 412-425.

Andricioaei, |., and Karplus, M. (2001). On the calculation of entropy from
covariance matrices of the atomic fluctuations. J. Chem. Phys. 115, 6289-
6292.

Bahar, |., and Rader, A.J. (2005). Coarse-grained normal mode analysis in
structural biclogy. Curr. Opin. Struct. Biol. 15, 586-592.

Beck, D.A., Jonsson, A.L., Schaefer, R.D., Scott, K.A., Day, R., Toofanny, R.D.,
Alenso, D.O.V., and Daggett, V. (2008). Dynameomics: mass annotation of
protein dynamics and unfolding in water by high-throughput atomistic molec-
ular dynamics simulations. Protein Eng. Des. Sel. 21, 2038-2050.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, |.N., and Bourne, P.E. (2000). The Protein Data Bank. Nucleic
Acids Res. 28, 235-242.

Berrar, D., Stahl, F., Silva, C., Rodrigues, J.R., Brito, R.M., and Dubitzky, W.
(2005). Towards data warehousing and mining of pretein unfolding simulation
data. J. Clin. Monit. Comput. 19, 307-317.

BioMoby Consortium. (2008). Interoperability with Moby 1.0—it's better than
sharing your toothbrush! Brief. Bioinform. 9, 220-231.

Brooks, C.L., Ill, Karplus, M., and Pettitt, B.M. (1987). Proteins: A Theoretical
Perspective of Dynamics, Structure and Thermodynamics (Cambridge: Cam-
bridge University Press).

Recio, J., Totrov, M., Skaradumov, C., and Abagyan, R. (2005)
Optimal Docking Area: a new method for predicting protein-protein interaction
sites. Proteins 58, 134-143.
Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, ..5., Hotz, . Ceric,
G., Forslund, K., Eddy, S.R., Sonnhammer, E.L., and Bateman, A. {2008).
The PFAM protein families databases. Nucleic Acids Research 36, D281-
D288.
Gelpi, J.L., Kalko, S.G., Barril, X., Cirera, J., de La Cruz, X., Luque, F.J., and
Orozco, M. (2001). Classical molecular interaction potentials: improved setup
procedure molecular dynamics simulations of proteins. Proteins 45, 428-437.
Goldstein, R.A. (2008). The structure of protein evolution and the evolution of
protein structure, Curr. Opin, Struct, Biol. 18, 170-177,
Harris, S.A., Gavathiotis, E., Searle, M.S., Orozco, M., and Laughton, C.A
{2001). Cooperativity in drug-DNA recognition: a molecular dynamics study.
J. Am. Chem. Soc. 123, 12658-12663.
Henzler-Wildman, K.A., Lei, M., Thai, V., Kems, S.J., Karplus, M., and Kern, D.
(2007). A hierarchy of i i islinked t
ysis. Nature 450, 913-916.
Hermans, J., Berendsen, H.J.C., Van Gunsteren, W.F., and Postma, J.P.M.
(1984). A consistent empirical potential for water-protein interactions. Biopoly-
mers 23, 1513-1518.
Hess, B., van der Spoel, D., and Lindahl, E. (2008). GROMACS 4: Algorithms.
for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J. Chem. Theory Comput, 4, 435-447,
Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W.. and Klein,
M.L. (1983). Comparison of simple potential functions for simulating liquid
water. J. Chem. Phys. 79, 926-935.
Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J. (1896). Develapment and
testing of the OPLS all-atom force field on conformational energetics and
properties of organic liquids. J. Am. Chem. Soc. 118, 11225-11236.
Karplus, M., and Kuriyan, J. (2005). Molecular dynamics and protein function.
Proc. Natl. Acad. Sci. USA 102, 6679-6685.
Kehl, C., Simms, AM.. Toofanny, R.D., and Daggett, V. (2008). Dynameomics:
a multi-dimensional analysis-optimized database for dynamic protein data.
Protein Eng. Des. Sel. 21, 379-386.
Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies
from crystalline state. J. Mol. Biol. 372, 774-797.

Kuhiman, B., and Baker, D. (2000). Native protein sequences are close to
optimal for their structures. Proc. Natl. Acad. Sci. USA 97, 10383-10388.

1408 Structure 18, 1399-1409, November 10, 2010 ©@2010 Elsevier Ltd All rights reserved

Manuscript

Structure
MoDEL: Molecular Dynamics Extended Library

Leo-Macias, A., Lopez-Romero, P., Lupyan, D., Zerbino, D., and Ortiz, A.R
(2005). An analysis of core deformations in protein superfamilies. Biophys. J.
88, 1291-1298.

Lindorff-Larsen, K., Best, R.B., Depristo, M.A., Dobson, C.M., and Vendrus-
cole, M. (2005). Simultaneous determination of protein structure and
dynamics. Nature 433, 128-132.

Ma, J., and Karplus, M. (1998). The allosteric mechanism of the chaperonin
GroEL: a dynamic analysis. Proc. Natl. Acad. Sci. USA 95, 8502-8507.
McCamman, J.A., Gelin, B.R., and Karplus, M. (1977). Dynamics of folded
proteins. Nature 267, 585-590.

MacKerell, A, Jr., Wiorkiewicz-Kuezera, J., and Karplus, M. (1995). An all-
atom empirical energy function for the simulation of nucleic acids. J. Am.
Chem. Soc. 117, 11946-11975.

MacKerell, AD., Jr., Bashford, D., Bellott, M., Dunbrack, R.L., Jr., Evanseck,
J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, 5., et al. (1998). All-atom
empirical potential for molecular modeling and dynamics studies of proteins.
J. Phys. Chem. B 102, 3586-3616.

Meyer, T., Ferrer-Costa, C., Pérez, A., Rueda, A., Bidon-Chanal, A., Luque,
F.J., Laughton, C.A,, and Orozco, M. (2008). Essential dynamics: a tool for effi-
cient trajectory compression and management. J. Chem. Theary Comput. 2,
251-258.

Murzin, A.G., Brenner, S.E., Hubbard, T., and Chothia, C. (1985). SCOP:
a structural classification of proteins database for the investigation of
sequences and structures. J. Mol. Biol. 247, 536-540.

Ng, M.H., Johnston, S., Wu, B., Murdack, S.E., Tai, K.H., Fangohr, H., Cox,
S.J., Essex, JW., Sansom, M.S.P., and Jeffreys, P. (2006). BioSimGrid:
Grid-enabled biomolecular simulation data storage and analysis. Future
Gener. Comput. Syst. 22, B57-664.

Noy, A., Meyer, T., Rueda, M., Ferrer, C., Valencia, A., Perez, A., de la Cruz. X.,
Lopez-Bes, J.M., Pouplana, R., Fernandez-Recio, J., et al. (2006). Data mining
of molecular dynamics trajectories of nucleic acids. J. Biomol. Struct. Dyn. 23,
447-456.

Orozeo, M., Pérez, A., Noy, A., and Lugue, F.J. (2003). Theoretical methods for
the simulation of nucleic acids. Chem. Soe. Rev. 32, 350-364.

Ott, K.H,, and Meyer, B. (1996). Parametrization of GROMOS force field for
oligosaccharides and assessment of efficiency of melecular dynamics simula-
tions. J. Comput. Chem. 77, 1068-1084.

Pearl, F., Todd, A., Slllitoe, |, Dibley, M., Redfern, O., Lewis, T., Bennett, C.,
Marsden, R., Grant, A., et al. (2005). The CATH Domain Structure Database
and related resources Gene3D and DHS provide comprehensive domain
family information for genome analysis. Nucleic Acids Res. 33, D247-D251.

Phillips, J.C., Braun, R.. Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chi-
pot, C., Skeel, R.D., Kale, L., and Schulten, K. (2005). Scalable molecular
dynamics with NAMD. J. Comput. Chem. 26, 1781-1802.

Qian, B., Ortiz, A.R., and Baker, D. (2004). Impravement of comparative model
accuracy by free-energy optimization along principal components of natural
structural variation. Proc. Natl. Acad. Sci. USA 707, 15346-15351.

Rueda, M., Chacén, P., and Orozco, M. (2007a). Tharough validation of protein
normal mode analysis: a study with tial o Structure
15, 565-575.

Rueda, M., Ferrer-Costa, C., Meyer, T., Pérez, A, Camps, J., Hospital, A.,
Gelpi, J.L., and Orozco, M. (2007b). A consensus view of protein dynamics.
Proc. Natl. Acad. Sci. USA 104, 796-801.

Schlitter, J. (1993). Estimation of absolute and relative entropies of macromol-
ecules using the covariance matrix. Chem. Phys. Lett. 215, 617-621.
Simms, AM., Toofanny, R.D,, Kehl, C., Benson, N.C., and Daggett, V. (2008).
Dyr ics: design of a lab workflow and scientific data
repository for protein simulations. Protein Eng. Des. Sel. 27, 369-377.

The Gene Ontology Consortium. (2000). Gene ontology: toal for the unification
of bialogy. Nat. Genet. 25, 25-29,

The UniProt Censortium. (2010). The Universal Protein Resource (UniProt) in
2010. Nucleic Acids Res. 40, D142-D148.

Tirion, M.M. (1996). Large amplitude elastic motions in proteins from a single-
paramater, atomic analysis. Phys. Rev. Lett. 77, 1905-1908.

Tozzini, V. (2005). Coarse-grained models for proteins. Curr. Opin. Struct. Biol.
15, 144-150.

Velazquez-Muriel, J.A., Rueda, M., Cuesta, |, Pascual-Montano, A., Orozco,
M., and Carazo, J.M. {2009). Comparison of molecular dynamics and super-
family spaces of protein domain deformation. BMC Struct, Biol. 17, 6.
Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P.,
Chang, Z., and Waolsey, J. (2006), DrugBank: a comprehensive resource for
in silico drug discovery and exploration. Nucleic Acids Res. 34, DB68-D6T72
Yang, L., Song, G., and Jernigan, R.L. (2009). Protein elastic network models
and the ranges of cooperativity. Proc. Natl. Acad. Sci. USA 106, 12347-12352.
Zhang, Y., and Skolnick, J. (2004). Scoring function for automated assessment
of protein structure template quality. Prateins 57, 702-710.

Znou, Y., Vitkup, D., and Karplus, M. (1999). Native proteins are surface-
molten solids: application of the lindemann eriterion for the salid versus liquid
state. J. Mol. Biol. 285, 1371-1375.

Structure 18, 1399-1409, November 10, 2010 ©2010 Elsevier Ltd All rights reserved 1409

131

BioNemus

BioNemus: Creating SAWSDL bioinformatics services
based on BioMoby ontology model

Dmitry Repchevsky', Josep LL Gelpi "*%

'Barcelona Supercomputing Center, Life-Sciences Department, National Institute of
Bioinformatics, Computational Bioinformatics Node, Nexus II Jordi Girona 29, 08034
Barcelona, Spain.

2Dept. Biochemistry and Molecular Biology. University of Barcelona. Av. Diagonal
645, Barcelona 08028, Spain.

§CDrTesponding author

E-mail addresses:

DR: dmitry.repchevski@bsc.es
JL: gelpi@bsc.es

Abstract

Background: Web services have been generally accepted for programmatic access to
bioinformatics tools and data repositories, especially when large amounts of data
should be handled. From the available web services protocols, the increasingly
popular RESTful web services may pose a big challenge to those service providers
that made significant mvestments in web services platforms in the early stages of web
services development. The present work provides a transition path from one of legacy
platforms, BioMoby, towards modern standard web services technologies. One of the
most relevant characteristics of BioMoby, its rich semantic foundations, is captured
here through the use of the SAWDSL protocol.

Results: The BioNemus tool performs an automatic web services creation wrapping
already existent BioMoby services. It has been successfully used for the translation of
INB’s BioMoby services collection. The ability to create traditional SOAP-based web
services along with RESTful ones provides an additional value for clients.

Conclusion: The tool provides an easy way to create modern bioinformatics web
services. It is especially useful for those web services providers that have done a
significant investment in BioMoby services. It may be alo useful for de novo
RESTful and SOAP-based web services development based on existent BioMoby
datatype system.

Keywords
BioMOBY, Web Services, REST, SOAP, SAWSDL, OWL, Semantics.

132

Manuscript

Background

BioMoby [1] platform was indeed one of the most remarkable projects in
bioinformatics web services development. Availability of good tools, support of such
popular languages as Java and Perl and an easy development process made BioMoby
the chosen platform for many bioinformatics institutions. For instance, “BioMoby” is
still one of the most abundant tags m the BioCatalogue web services collection [2].

BioMoby offered an open, ontology-based approach for web services development,
where bioinformatics community participated in the ontology evolution via
integration of new biological datatypes. To manage the ontology, BioMoby service
providers could use a graphical ‘BioMoby Dashboard’ application [3]. BioMoby
Central registry also provided a simple SOAP-based API which implemented an
essential functionality for the ontology management, annotation and querying.

Although BioMoby web services relied on Simple Object Access Protocol (SOAP,
[4]) protocol, they did not employ a XML Schema [5]). Instead, it used a proprietary
XML-based serialization format. The custom serialization required a BioMoby API
and restricted BioMoby web services usage to on-purpose built clients like Seahawk
[6], MOWServ [7], jORCA [8], although more general tools like Taverna
incorporated the appropriate plug-ins [9]. The simplicity of BioMoby web services
development made it a basement of many bioinformatics platforms [10, 11, 12].

Web services standardization process driven by Web Services Interoperability
Organization (WS-1, [13]) and increasing popularity of RESTful approach have risen
concerns about interoperability of BioMoby web services [14], and contributed to the
progressive decay of BioMoby usage. Rewriting BioMoby web services for WS-I
compliance would require exceptionable efforts from service providers and could be
impractical without a proper software support. The Spanish National Bioinformatics
Institute contributed with over 250 services to the platform and it is still maintaining
the central BioMoby catalogue [15]. Migration of BioMoby web services towards
WSDL-based ones requires the adoption of a standard XML Schema to hold
BioMoby datatype definitions. Conveniently, XML Schema has all the finctionality
required to describe BioMoby object ontology. BioMoby object ontology defined
only a limited set of relationships (“IS_A", “HAS-A” and “HAS™) and its primitive
types are already restricted to those defined in XML Schema (Error! Reference
source not found.) that makes the conversion straightforward.

Table 1 Correspondence between BioMoby and BioNemus primitive types

BioMoby BioNemus XML Schema
datatypes simple types base types
String NemusString Xs:string
Integer NemusInteger — xsut
Float NemusFloat xs:float
Boolean NemusBoolean xsboolean
Datatime NemusDateTine xs:dataTime

BioNemus tool automates web services generation process using BioMoby
Registries as a source of services descriptions. Generated web services work as a

133 BioNemus

proxy to original BioMoby services and may be directly consumed by tools lke
Taverna [16] with no need of a special plug-in usage. Additionally, BioNemus
provides a web-services generation framework that can be used to create new WS
from scratch, or from the BioMoby data-types ontology.

Implementation
BioNemus is implemented as Java applet/application (figure 1). The interaction with
BioMoby registries is implemented via the MobyCore library [17].

© CommentadAiSequence & Boboby | Botems
= AnnctatedaASequence etp: fvwen. b orglg-inf1AOBY-Central ol vl

MdtPar ameter BIE 2l P 2!
BlocksAnnotatedARSequence e & v crb.csic.es =%
3 fomb.peb.ubes

fromGenericSequenceToFasta
fromGenericToAminoAckiSequer
fromGeneric ToNucleotideSequer

frommmCIToNDBText
frommmCifToPOBText

panes
QetCATHHerarchyCodesFromPl
getCDSSequence

oeC

Qe
P

v

Figure 1. Screenshot of BioNemus GUI

The right part of the GUI is responsible for BioMoby ontology processing (web
services/datatypes generation). The left one is the BioNemus XML Schema based
datatype editor, which is used for de-novo web services generation.

Web services Generated by BioNemus target Java Platform, Enterprise Edition 5
(figure 2) and should work on any compatible application server.

miby BioNemus <A EE S

m% import % XML generate g o;;’:;\(a
o ==
m% :n% Schema mm’ % clas;)egsy
datatypes
analyze generate

2 : 2 a ‘; 2 JAX-WS execute

g 2 execute 4 7 JAX-RS
services

Client

Figure 2. Scheme of BioNemus functional blocks.

To automatically generate Web services, BioNemus analyses the corresponding
BioMoby descriptions, obtained from the BioMoby Registry and generates XML
Schema based datatypes. Based on these datatypes, it generates either RESTFul or
SOAP based Web services that are deployed to the Java Application Server.

134

Manuscript

Code generation

All code generation is performed via XSL Transformation [18] templates (figure 3).

BioMoby AmmoAcidSequence datatype XML definition

<object_type name="AminoAcid Sequence" authority_uri="www.illuminae.com"
contact_email="markw@illuminae.com" description="Lightweight representation an amino acid sequence"
Isid="urn:lsid:biomoby..crg:objectclass: AminoAcidSequence:2001-09-21T16-00-002">
<relationship>
<object fype ariicle_name="" name="GenericSequence"
Isid="urn:Isid:biomoby.org:objectclass: GenericSe quence:2001-09-21T16-00-002"/>
<Isid>urn:lsid:biomoby .org:objectrelation:isa</Isid>
<relafonship_type>ISA</relatonship_type>
<frelatonship>
<labject type>

Applied XSL transformation

<xsl:slylesheet version="1.0" xmins:xsl="hifp://www.w3.0rg/1999/XSL/Transfor m">

<xsltermplate name="atributes">
<xslif test"relaionship_type/@id ='HAS™>
<xsl:choose>
<xslwhen fest="cardinality/@max = 1">
privale <xslvalue-of select" feniiy/@clazz'/>
<xskiext> <ixsliext
<xslvalue-of selecE"@atribute"f>;
<fxsl:when>
<xsloherwise>
privae Listé#x3c;<xslvalue-of select' /enfity/@clazz'/>8#x3e;<xslfext> </xsllext>
<xslvalue-of selecE"@atribute"/>;
</xsl.otherwise>
<fxsl:choose>
<fxslit>
<Ixsliemplate>

<Ixsl:slylesheet

Generated AminoAcidSequence Java class

package org.biomoby .objeciclass;

@XmiRootElemen{name="AminoAcidSequence", namespace="urn:lsid:biomoby.org:objectclass")
@XmiType(name="AminoAcidSequence”, namespace="urn:Isid:biomoby.org:objeciclass")
public class AminoAcidSequence extends GenericSequence implements Serializable {

Figure 3. Java code generation example.
An example of java class generation via XSL transformation of the BioMoby
“AminoAcidSequence” XML datatype definition.
Instead of javac compiler, BioNenus uses Java™ Compiler API (JSR-199)
provided by the OpenJDK project. This approach allows deploying BioNemus tool as
a java applet.

WS-l compliant SOAP-based Web Services

BioNemus produces JAX-WS 2.1 [19] SOAP-based web services that can be
deployed on any Java EE 5 compliant Application Server.

BioMoby web services may support asynchronous execution through the Web
Services Resource Framework (WSRF) specification. BioNenws generated SOAP
services may also support the asynchrony via Web Services Addressing (WS-
Addressing) specification.

135

BioNemus

When generated for JAX-WS Reference Implementation (METRO), web services
may preserve BioMoby annotations using Semantic Annotations for WSDL
(SAWSDL) specification [20]. SAWSDL implementation is developed as a JAX-WS
RI extension package and provides semantic descriptions for WSDL 1.1 clements.
The library automatically generates OWL 2 annotations embedding them into the
generated WSDL [21] file.

OWL2 XML Serialization [22] is provided through a JAXB [23] based Java library.

RESTful Web Services

BioNemus generates JAX-RS 1.0 [24] based RESTful web services that can be
deployed on any Java EE 6 compliant Application Server. Despite the differences
between JAX-WS and JAX-RS programming models, BioNemus seeks to keep
similar interfaces for both SOAP and RESTHl web services. Although both types of
services use the same XML datatypes, RESTful web services may consume and
produce JavaScript Object Notation (JSON) objects. Natively understood by
JavaScript, JSON is nowadays widely used in Asynchronous JavaScript requests
(AJAX) and provides a convenient way to consume RESTful web services directly
from HTML browsers (see figure 4 for an example call to a RESTful WS using the

Ajax request).

wepE vy

Figure 4. getEntryFromPDB RESTful Web service execution.

This is a short example which executes an automatically generated
getEntryfromPDB RESTFul Web service via an AJAX JavaScript request.
The script just shows “1P10™ PDB into the popup message.

XML Schema generation and management

BioNemus creates a set of JAXB annotated Java bean classes that reflect BioMoby
object ontology. SOAP and RESTful web services rely on JAXB for the data binding
and mappings between Java objects and XML documents. In a similar way,
BioNemus uses JAXB to create an XML Schema that represents BioMoby datatype
ontology. This XML schema may be modified for the purpose of manual web service
creation.

BioNemus stores its XML schemas locally in the user’s home directory
(Suser_home3/ BioNemus2Cache/ontology.zip). The ontology.zip file contains a set
of XML schemas with defined ontology datatypes (see figure 5 for an example of

136

Manuscript

XML schema that corresponds to the AminoAcidSequence BioMoby data type

object).

smlns ttns="

amlnsinsl="u

xmlns:nsg="urn:

acid

Figure 5. AminoAcidSequence XML Schema element

An example of automatically generated AminoAcidSequence XML Schema
element, based on the information extracted from BioMoby datatypes
ontology. Semantical annotations are preserved as XML Schema ones.

Functionality

The principal goal of the BioNemus tool is to provide an easy way for web services
transition from the BioMoby platform towards W3C standard-based web services
solutions. The application delivers an extensive set of functionality for web services
generation:

Management of XML Schema based datatypes ontology.

Import of BioMoby datatypes ontology directly from BioMoby repository
servers.

Generation of JAXB based Java classes in accordance with corresponding XML
Schema.

Generation of RESTful JAVA EE 6 web services (automatic for existing
BioMoby web services).

Generation of SAWSDL / OWL 2 Java EE 5 web services (automatic for
existing BioMoby web services.

Generation of SAWSDL / OWL 2 Java EE 5 web services templates based on
the generated ontology XML Schema.

Support of asynchronous BioMoby web services through WS-Addressing
specification.

In addition to the graphical nterfice BioNemus provides alo a command line one
[25].

137

BioNemus

Results

Extending a life-cycle of the mature BioMoby platform via providing nmultiple
interfaces for already existent services is an inexpensive way to fulfill interoperability
requirements as well as to satisfy a growing interest in RESTful web services.

Practical application

BioNemus has been successfully wused by Spanish National Institute of
Bioinformatics (INB), providing RESTful and SOAP document/literal interfaces to its
large BioMoby web service collection (Error! Reference source not found.). Web
services automatically generated by BioNemus also include a description page with
brief services descriptions [26].

Table 2 The number of Web Services by their authority

‘Web Services
Authority

synchronous asynchronous total

www.cnb.csic.es 3 4 7
inb.bsc.es 110 54 164
mmb.pcb.ub.es 41 | 42
cnio.es 6 10 16
genome. imim. es 21 0 21

biomfo.cipf.es 9 0 9

pdg.cnb.uam.es 5 0 5

www.cnb.uam.es 1 2 3

cglimim.es 6 0 6

chrimoyo.ac.uma.es 3 0 3

www.bioinfo.uma.es 3 0 3
total 208 70 278

Web services provided by the “inb.bsc.es” authority have been registered in public
web services catalogue for the life sciences [2, 27] extending services dissemination
and visibility.

Workflows participation

One of the most valuable aspects of BioMoby was the ontology of biological objects
that provided common datatypes for BioMoby services. Shared datatypes allows
designing complex web services interactions i popular tools like Taverna
workbench. SOAP-based web services, as generated by BioNemus, are WS-I
compliant and may be included in Taverna workflows directly (figure 6), thus making
the original (and now outdated) BioMoby plugin nonessential.

138

Manuscript

Figure 6. Integration of BioNemus generated WS into Taverna workflows.

The example shows the Taverna workflow designed GUI with a workflow
integrated by two generated Web services (green). The parameters of the
services (magenta) are chained so the output of getAminoAcidSequence service
becomes the input of rinNCBIBlastp. Gray boxes represent user provided
parameters, such as a sequence accession number or database to search.

Discussion

BioMoby platform was one of the most ambitious projects that provided an open
framework for bioinformatics web services development, publishing, discovery and
itegration. The platform benefited from a wide acceptance and had plenty of services
developed by commmunity members. Despite the wide support in the past, the
particularity of the platform required a significant effort to maintain. Although an
official Biomoby repository is still available [15], its usage i in a clear decay, in
favor of more usable RESTful services. This requires however to recode most of the
applications to adopt the new interface. The proposed solution is a simple and
straightforward way to reutiize the enormous amount of work invested in BioMoby
web services development.

Although web services generation tools for life sciences are not new and has been
used by bioinformatics service providers, BioNemus is a unique tool that takes an
advantage of BioMoby ontology for automatic web services generation.

139

BioNemus

Conclusions

One of the strongest points and the major achievement of the project is a seamless
integration with BioMoby platform and a possibility to reuse its ontology and already
existent services. BioNemus provides a solid platform for bioinformatics web service
developers bringing a development to a new level of interoperability. The adoption of
BioNemus at the Spanish National Institute of Bioinformatics has greatly simplified
the web services access and significantly enhanced web services visibility.

Availability and requirements

Project name: BioNemus

Project home page: httpv/inb.bsc.es/documents/bionemus2/

Operating system(s): Platform independent
Programming language: Java

Other requirements: Java 6.04+ or higher
License: LGPL

Any restrictions to use by non-academics: None

List of abbreviations

AJAX: Asynchronous JavaScript and XML; JSON: JavaScript Object Notation;
XML: Extensible Markup Language; WS-I: Web Services Interoperability
Organization; WSDL: Web Services Description Language; OBO: Open Biomedical
Ontologies; OWL: W3C Web Ontology Language; RDF: Resource Definition
Framework; JAXB: Java Architecture for XML Binding; JAX-RS: Java API for
RESTful Web Services; JAX-WS: Java API for XML Web Services; REST:
Representational state transfer; SAWSDL: Semantic Annotations for WSDL and
XML Schema; SOAP: Simple Object Access Protocol; W3C: World Wide Web
Consortium; XSLT: XSL Transformations;

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

DR developed BioNemus and wrote an initial drafi of manuscript. JL provided
project supervision, architecture decisions and revised the manuscript. All authors
read and approved the final manuscript.

Acknowledgements

The authors would like to thank Romina Royo for rigorous user feedback and
testing as well as Jos¢ Maria Fernandez for INB services deployment and
administration.

140

Manuscript

References

“w o

. MobyCore library.

BioMoby Consortum, Wilkinson MD, Senger M, Kawas E, Bruskiewich R,
Gouzy I, et al Interoperability with Moby 1.0 - It's better than sharing your
toothbrush! Brief. Bioinform. 9(3):220-231 (2008) doi:10.1093/bib/bbn003
Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M, et al
BioCatalogue: A universal catalogue of web services for the life sciences.
Nucleic Acids Res 2010, 38(Web Server):W689-W694.

BioMoby Dashboard http//biomoby.open-bio.org/CVS CONTENT/moby-
live/Java/docs/Dashboard.html. Accessed 3 Aug 2015

SOAP httpr/www.w3.org/TR/soap/ Accessed 3 Aug 2015

XML Schema http//www.w3.org/XML/Schema.html. Accessed 3 Aug 2015
Gordon PMK, Sensen CW. Seahawk: moving beyond HTML in Web-based
bioinformatics analysis. BMC Bioinformatics 2007, 8:2208

Ramirez S, Munoz-Mérida A, Karlsson J, Garcia M, Pérez-Pulido AlJ, Claros
MG, et al MOWServ: a web client for itegration of bioinformatic resources.
Nucleic Acids Res. 2010 July 1; 38(Web Server issue): W671-W676. doi
10.1093/nar/gkq497

Martin-Requena V, Rios J, Garcia M, Ramirez S, Trelles O. jORCA: easily
integrating bioinformatics Web Services. Bioinformatics 2010;26:553-559.
Kawas E, Senger M, Wikinson MD. BioMoby extensions to the Taverna
workflow management and enactment software. BMC Bioinformatics 2006,
7:523.

. Fernandez JM, Hoffimann R, Valencia A. iHOP web services. Nucleic Acids

Res. 2007. pp. W21-W26.

. Wang C, Gordon P, Turinsky A, Burgess J, Dalton T, Dubitzky SC. Combining

a High-Throughput Bioinformatics Grid and Bioinformatics Web Services
Distributed, High-Performance and Grid Computing in Computational Biology,
Springer Berlin Heidelberg, 2007, 4360, 1-10

. Andrio P, Fenollosa C, Cicin-Sain D, Orozco M, Gelpi JL. MDWeb and

MDMoby: an integrated web-based platform for molecular dynamics
simulations. Bioinformatics 2012, 28:1278-1279.

. Web Services Interoperabilty — Organization WS-I http//www.ws-i.org/

Accessed 3" Aug 2015

. Pettifer S, Ison J, Kalas M, Thorne D, McDermott P, Jonassen I, et alThe

EMBRACE web service collection. Nucleic Acids Res 2010, 38 (Suppl
2):W683-Wo8S.

. BioMoby web services catalogue. https/biomoby.bsc.es/RESOURCES/MOBY-

S/FULL. Accessed 3" Aug 2015

. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock M, Li P, Oinn T: Taverna:

a tool for building and running workflows of services. Nucleic Acids Res 2006,
34:729-732.
se.net/projects/mobycore/. Accessed 3™ Aug

http/sourcefor;

2015

. XSL Transtormations (XSLT) Version 1.0 http//www.w3.org/TR/xslt.

Accessed 3rd Aug 2015

141

BioNemus

20.

21.

22,

23,

24.

25.

26.

27.

CJSR 224: Java™ APl for XML-Based Web Services (JAX-WS) 2.0

hitps/jep.org/en/jsridetail?id=224. Accessed 3™ Aug 2015

Semantic Annotations for WSDL and XML Schema
https/www.w3.oreg/TR/sawsdl. Accessed 3™ Aug 2015

Web Services Description Language (WSDL) 1.1 httpv/www.w3.org/TR/wsdl.
Accessed 3" Aug 2015

OWL 2 Web Ontology Language XML Serialzation (Second Edition)
http/www.w3.org/ TR/owl2- xmkserialization/. Accessed 3™ Aug 2015

JSR 222: JavaTM Architectre for XML Binding (JAXB) 2.0
https/jep.org/en/jsr/detail?id=222. Accessed 3rd Aug 2015

JSR 311: JAX-RS: The JavaTM APl for RESTful Web Services
http://jep.org/en/jsr/detail?id=311. Accessed 3™ Aug 2015

BioNemus manual. http://inb.bsc.es/documents/bionemus2/manual.html
Accessed 3" Aug 2015

INB-BSC Web Services http//www.inab.org/dproxy/inb.bsc.es/. Accessed 3
Aug 2015

Repchevsky D, Gelpi JL. BioSWR — Semantic Web services Registry for
Bioinformatics PLoS ONE 2014, 9(9): e107889. doi:
10.1371/journal.pone.0107889

142

OWL2XS

OWL2XS: Generation of XML Schema from OWL 2 Web Ontology

Language.
D.Repchevsky', Jon Ison?, JL Gelpi*'?

'Barcelona Supercomputing Center, Life-Sciences Department, National Institute of Bioinformatics,
Computational Bioinformatics Node, Barcelona, Spain, 2EMBL European Bioinformatics Institute, Hinxton, CB10
18D, UK, sDept. Biochemistry and Molecular Biology. University of Barcelona.

Summary: Web services are a popular architecture for
bi software devel it. Ontologies, d using
a description language such as Open Biomedical Ontologies (OBO)
or Web Ontology Language (OWL), may be used as a source of
annotations for web services through the Semantic Annctations for
WSDL (SAWSDL) mechanism, while XML Schema is still used for

which purpose is to define a structure of a document, ontologies
arc used to define knowledge domains via logical axioms. The
syntactic representation of information in ontology is very vague
and may differ not only in serialization format, but also in the way
it is defined by the ontology developer. This indeterminacy of
syntax impedes OWL 2 direct usage as a WSDL type system and

defining the message structure. The OWL2XS tool all
generates a semantically annotated XML Schema from an OWL 2
ontology, greatly facilitating semantic web service development
where an ontology but no formal XML schema is available.

Availability and Impl i OWL2XS consists of a Java
library and a graphical interface implemented as a Java
Applet/Application. The tool is freely available at:
http://inb.bsc.es/documer 2xs/index.him|

*to whom correspandence should be addressed

INTRODUCTION

Despite of the increasing interest in emerging data formats like
JSON and YAML, XML is still the most used format for data
exchange. A big part of this popularity may be attributed to XML
Schema language, which is used to deseribe a structure of an XML
document. The ability of XML Schema to formally deseribe XML
documents made XML a core stone of many World Wide Web
Consortium (W3C) standards and an essential part of Web
interoperability.

The interoperability between different software applications on
the Web greatly benefits from Web Services Deseription Language
(WSDL) which provides a formal description of service operations
and data formats for defining the message structure. Although
WSDL does not impose XML Schema as the only supported type
system, usage of other serialization formats is out of scope of the
standard, which made XML Schema the most prevalent format for
Web services data type definition [1].

An XML Schema defines an XML document structure providing
a set of constraints on its parts and provides a high level of
syntactic interoperability. Being a good means for defining data
structure, XML Schema lacks semantic expressiveness. To assign
semantic meaning to XML Schema elements, Semantic
Annotations for WSDL and XML Schema (SAWSDL) is usually
used. SAWSDL doesn’t impose any semantic language providing a
way to link described elements with their external semantic
descriptions. Semantic annotations usually refer to a domain
knowledge ontology defined in some ontology language

OWL 2 Web Ontology Language (OWL 2) is the latest ontology
language standard from W3C and one of the most popular
ontology languages in biomedicine [2]. Unlike XML Schema,

logy world largely separated from the generation of
bioinformatics tools. However, a thoughtful analysis of domain
data is, indeed, a requirement to create an appropriate XML
Schema. When a domain knowledge is already described in an
ontology, this information might greatly facilitate XML Schema
development. OWL 2 is designed to use XML Schema datatypes
and many of its concepts may be directly translated into XML
Schema constructs. Although XML Schema and OWL 2 are very
different in their purpose, automatic XML Schema generation
based on an OWL 2 ontology definition is feasible.

Ontology based semantic web services
development

Conventional Web services provide a high level of syntactic
interoperability, but usually are very poor in providing semantic
meaning. The idea to describe Web services via ontology
languages led to various initiatives [3] consolidated under the term
Semantic Web Services

Notwithstanding all these pure semantic initiatives, W3C
adopted more conservative approach based on extending WSDL
descriptions with semantic annotations and providing RDF
mapping of WSDL descriptions [4]. However, because Web
Services datatypes are still bound to the ¢ syntax provided by
XML language they cannot be expressed in the WSDL 2.0 OWL

ontology.
The requirement of syntactic interoperability doesn’t eli
the possibility to specify datatypes via ontology | OWL2

provides enough expressiveness to describe data structures, even
though most biological ontologies are limited to describe
taxonomies and do not contain datatype properties [5]. Properly
designed OWL 2 ontology may be transformed into appropriate
XML Schema datatype definitions, thus providing the missing
piece in Semantic Web Services development,

Usual Semantic Web Services development process consists of
various steps such as datatypes schema design, formal Web service
description and annotation, etc. The proposed Web Services
development workflow (Figure 1) was intended to simplify the
development process reducing the need of manual XML Schema
design.

D. Repchevsky, Jon Ison, Gelpi. JL

OWL 2 ontology

Figure 1 Semantic Web Service development

Several conditions should however be met for this workflow be
possible. In the first place, some rules in the building of the
ontology itself should be followed, and secondly a procedure to
extract a correct and usable XML schema from ontology
definitions must be outlined. In this paper, we will discuss
recommendations in the building of bioinformatics ontologies to
make them usable to derive an ontology-coherent XML Schema
for web services, and present the OWL2XS tool to perform an
automatic generation of such XML schema. As an illustrative
example, a simple ontology for bioinformatics operations is
presented and a complete process of creation of semantically
annotated Basic Local Alignment Search Web service (based on
the NCBI Blastp tool) is provided (Supplementary Tutorial).

METHODOLOGY

Simple Ontology for Biological Objects
Although OWL2XS tool can be applied to any OWL 2 ontology,

Figure 2 Replace inheritance with composition

Figure 3 shows a “Protein seguence record” class in
EDAM ontology where multiple inheritance is being used. Here
“Protein sequence record” is at the same time a “Protein

sequence” and a “Sequence record”. An alternative
finiti iding multiple inh would draw a “Prctein
sequence record” as a “Protein sequence with
property data” of type “Seq
@ rowin l’o Sequence l IZQ Projein]
sequence’ record” soquence’
% &
o y “o
| recad’ record’

Figure 3 “Protein sequence record” class in EMBRACE
Data and Methods Ontology (EDAM).

Although choosing the most adequate layout may not be trivial
in some cases, most of the popular data types used in
bioinformatics could be defined avoiding multiple inheritance. An
example of such style can be found in the BioMoby ontology
(Figure 4), that was in fact constructed in the opposite direction,
starting from the data types.

) i

the most prospective results may be obtained from the 1
that incorporate datatype properties. No matter how thoroughly the
ontology is thought-out, Web services require scalar data to be
passed as parameters |n a form of XML document. Because XML
is i , a tree the main rule that a

bioi i logy should met to be usable to
derive actual ch services is to avoid multiple inheritance.
Multiple inheritance is an overused solution to complex data
relationships, and relies in the fact that most ontologies are meant
to be understood by humans, who may extract the correct meaning
even when it is ambiguously expressed. This is not the case when
automatic parsing of the ontology is necessary. A straightforward
solution for multiple inheritance is composition. One of the parents
should be chosen for the main inheritance, while others are added
as addil 1 or ictions (Figure 2).

The contents can be still easily interpreted, but also can translate
into properly defined data types. This rule must be applied for both
classes and properties hierarchies.

Figure 4 BioMoby “AminoacidSequence” class with “Anno-
tations” property.

To illustrate this further we have prepared an example Simple
Ontology for Biological Objects (SOBO) (Figure 5). SOBO is
greatly influenced by the BioMoby datatypes ontology and follows
EMBRACE Data and Methods Ontology (EDAM) [6] architecture,
implementing “data”, “format” and “parameter™ concepts
and provides enough data properties for the appropriate XML
Schema generation.

SOBO consists of 30 biological classes, 13 properties and 23
datatypes and may cover most basic bioinformatics operations like
and comparison, SOBO
cxampk. onlology can be casily extended with other biological
objects definitions and formats using usual tools like the Protégé
OWL ontology editor.

144

OWL2XS

OWL2XS: Generation of XML Schema from OWL 2 Web Ontology Language

“o smssesaresn © smanimee
== ety

m— R

Figure 5 SOBO datatypes graph

XML Schema generation

In contrast to ontology languages that describe domain
knowledge in a form of logical statements, XML Schemas describe
the structure of XML documents that form XML messages
conveyed by Internet protocols in Web services. While an XML
Schema may be extended, it is generally assumed to be a closed
world where something that is not defined should not appear in the
XML document. On the other hand, ontology languages are based
on an open world assumption where everything that is not
implicitly negated is considered possible. Thus, to successfully
generate an XML Schema, an ontology must be treated as closed
one, assuming that it represents the complete knowledge available.

Considering the nature of ontologies to grow and extend the
knowledge, to provide Web services interface stability, it would be
reasonable to maintain a well-defined core, which provides
datatype descriptions usable for Web services generation.

Although, many OWL 2 entities such as classes, datatypes,
properties, and individuals, may be directly translated into XML
Schema constructs (Table 1), the translation is nevertheless non-
trivial. OWL2XS does the best efforts to produce a coherent XML
Schema, notifying about possible translation problems.

Table 1 Overview of the OWL2XS Transformation Model.

<resriction base="tns:MultipleSequenceAlignment">
<sequence>
<glement name="alignmen!" type="ns0:ClustalW"/>
<lsequence>
<jrestriction>
<fcomplexContent>
</complexType>

http://inb.bsc.es/sobo/data#ClastalW class translated into
[http:/finb.bsc.es/sobo/data#} ClastalW XML Schema complex type.

Automatically generated XML Schemas may be used for
Semantic Web Services development using any convenient toolkit.
For the example NCBI Blastp Web service, Java APl for XML
Web Services (JAX-WS) tool has been used.

OWL2XS performs an ontology analysis via ontology reasoner
and uses extensive DL (Description Logic) querying in order to
determine effective owners and possible ranges of analyzed
properties (Table 3). The approach consists in the usage of
negation queries to restrict both domains and ranges of the
analyzed properties.

Table 3 Example of performed DL queries.

Description Logic queries
CleavageSiteAnnotation and mature_peptide only (no’
CleavageSiteAnnatation 21d mature_peptide some
CleavageSiteAnnotation and score only (not float)

Cl iteAnnotation and score some (not fioat)

minoacidSequence)
AminoacidSequence)

OWL2XS log

2:54:12 PM generating schema for
http:dfinb.bsc.

is a (ProteinAnnotation)

only mature_peplide AminoacidSequence (object)
some mature_peptide AminoacidSequence (object)
only score float (data)

some score floal (data)

Some queries performed by OWL2XS tool in order to determine properties
that belong to CleavageSiteAnnotation class. Queries are presented in
Syntax which is supported by Protégé ontology editor.

OWL 2 Entities XML Schema Construct
owl:Class. xs:complexType
owl:Datatype xssimpleType
owl:ObjectProperty xs:element

owl:DataProperty xs:attribute, xs:element

Basic modeling clement transformation table.

OWL 2 ontology may comprise of a set of entities that belong to
different domains. These entities are usually declared in different
namespaces, thus translated into different XML Schemas (Table
2). For instance, SOBO ontology models three different concepts
and results in three XML Schema documents.

Table 2 OWL 2 to XML Schema translation example.

In order to minimize computational cost, class and datatype
taxonomies are taken into account. Analysis is performed from the
top entity (owl:Thing or rdfs:Literal) down to the last
entity that satisfies the property restrictions. This way the method
excludes unnecessary queries (e.g. if some property cannot have a
value of xs:decimal type there is no sense to check whether it
has xs: integer or any other of its subtypes).

Although comparing ontologies with XML Schemas is quite
risky because of their different nature and purposes, many of OWL
2 entities have similar concepts in XML Schema and may be
clearly identified. The OWL Class that is a set of individuals may
be identified with an XML Schema complex type (Table 4)

OWL 2 classes Table 4 OWL 2 Class representation in XML Schema example.
Class: dala ClustalW
SubClassOf: data:MultipleSequenceAlignment OWL2 XML Schema
property:alignment on'y format:ClustalW) < loxT
property:alignment some format:ClustalVy] mmE‘S’t V;Z .
Class: data:Struclure name=rsStcire L
XML Schema (data.xsd) sasd:mode Reltence=ipfnbbse
ucture’

<complexType name="ClustalW">

<complexContent>

Modeling OWL 2 Class entity as an XML Schema complex type.

D. Repchevsky, Jon Ison, Gelpi. JL

OWL 2 Datatypes translation

OWL 2 Datatypes properties associate an individual with some
data value. The type of those values is defined as OWL Datatype.
In most cases the corresponding XML Schema type may be
directly used. Custom OWL datatypes may be represented as XML
Schema simple type (Table 5). Note that while two equally defined
XML Schema simple types are different, this is not the case for the
ontology where they are treated as a same datatype.

Table 5 OWL 2 Datatype representation in XML Schema

OWL 2

Datatype: formatMSF EquivalentTo:
{format: MultipleAlignment a1 xsd:siring[patiem

"MIN.AJ{1)A_MULTIPLE ALIGNMENT 1.0{[\nr].*}+"**xsd:string]
XML Schema

<simpleType name="MSF">
<resiriction base="tns:MultipleAlignment’/>
<lsimpleType>

To get around of this limitation, OWL2XS introduces an
intermediate type which aggregates the restrictions.
OWL2XS employs four different patterns to translate OWL Class
inheritance into XML Schema type derivation (Figure 6).

In a simple case, when a new property is introduced into the
subtype, OWL 2 Class inheritance translates into XML Schema
type extension (Table 6).

Table 6 OWL 2 inheritance via XML Schema type extension

OWL2

Class: data:AntigenicAnnotatedSequence
SubClassOf: data:AnnotatedAASequence
and (property:antigenic_annotation sorme data:AntigenicAnnatation)
nd (property:antigenic_annotation only data:AntigenicAnnotation]

XML Schema

<complexType name="AnnotatedAASequence™>
<complexContent>

Modeling OWL 2 Datatype as an XML Schema simple type.

OWL 2 Class inheritance translation

As seen before inheritance is a very powerful modeling concept,
and is a key concept both in ontologies and data-type definitions.
Although both OWL 2 and XML Schema support inheritance, the
latter has some limitations. In OWL 2 language all derivations are
performed via restrictions. This follows from the open world
assumption, where a class may contain any property unless it is
restricted (i.e. owl:Thing). On the other hand XML Schema
constraints XML document with a closed word ion. In

base="mns: i ">
< ontent>
<lcomplexType>

<complexType name="AntigenicAnnotatedSequence">
<complexContent>
tension base="ins: ASeq! i
<sequence>
<glement name="antigenic_annotation" type="tns: AntigenicAnnotation
maxOceurs="unbounded"/>

XML Schema derivations are performed via either an extension or
a restriction. Because XML Schema has no multiple inheritance,
there is no way to use extensions and restrictions at the same time.

A. Inheritance via extension

& AnnotatedAASequence O AnnotatedAnSequence

SubClassOf extension

n

>

<isequence>

<lextension>

</complexContent>

</complex Type>

The “AntigenicAnnotatedSequence” class is defined as a subclass of
“AnnotatedAASequence” class that has a mandatory
“antigenic_ " property. In XML Schema terms
“Anti " extends "

with a new element (see Figure 6 A).

When the property is restricted, inheritance is translated into
XML Schema type restriction (Table 7).

Table 7 OWL 2 inheritance via XML Schema type restriction

OWL2

o e
@ anfigenic_arotason : AntigericAnnataion (1. @ artigenic_annatation : AntigenicAnnotaticn (1_)

B. Inheritance via restriction

&' SequenceAlignment) SequenceAlignment

@ alignment : Aignment (1.1) @ aignment : Aigrement (1.1)
SubClassOf restrichon
&' MultipleSequenceAlignment) MultipleSequenceAlignment

@ alignment : MultipleAignment (1..1) @ aignment - MulipiaAignment (11}

C. Complex inheritance
O SequenceAlignment

@ aignment: Alignment (1.1

' Sequencemlignment g igament 1.1)

@ alignment : Alignment (1..1)

SubClassOf

restriction

' SequenceAlignment_restriction

¢
' SomeOtherAlignment alignment : OtherAlignment (1.1}

@ alignment : OtherASignment (1.1)
@ metadata : xs:strng (1..1)

extension
' SomeOtherAlignment

@ metadata : xs:sting (1..1)
D. Inheritance breakage

Class: data:SequenceAlignment
SubClassOf: data:Alignment
and (property:alignment some format:Alignment)
and (property.alignment only format:Alignment)
and (property:alignment max 1 format:Alignment)
Class: data:Multiple SequenceAlignment
SubClassOf: data:SequenceAlignment

@& @
@ names !Iowm @ namss e'o colors:
SubClassOf ‘SubClassOf f §
-l e
@ names
@ colors

Figure 6 Modeling OWL 2 inheritance in XML Schema.

146

OWL2XS

OWL2XS: Generation of XML Schema from OWL 2 Web Ontology Language

<complexType name="SequenceAlignment"> base="ins:Some0! t restriction”>
<complexContent> <sequence>
<exdension base="nsAlignment"> <element name="metadata" type="string"/>
<sequence> </sequence>
<element name="alignment" type="ns0:Alignment'/> <lextension>
<fsequence> <icomplexContent>
Shedension Along with introducing . new “metadata” property,
<icomplexContent> “SomeOtherAlignment” restricts the “alignment™ property found in o

<lcomplexType>
<complexType name="MultipleSequenceAlignment">
<complexContent>
restriction base="tns:! ig t'>
<sequence>
<glement name="alignment" type="ns0:MultipleAlignment"/>
<fsequence>
<Mrestriction>
<jcomplexContent>
<jcomplexType>

The “MultipleSequenceAlignment” class is defined as a subclass of
“ 1 " class which “ali t” property ramge is
restricted to “MultipleAlignment” datatype. In XML Schema this
restriction is considered as a type restriction and is explicitly specified as a
derivation method (see Figure 6 B).

In OWL 2 subclasses may introduce new properties while
restricting other. In XML Schema there is a clean separation
between an extension and a restriction of a type. Extensions are
used to introduce new properties while restrictions to restrict them.
In such case a new, abstract, intermediate XML Schema type is
generated to restrict a property (Table 8).

Table 8 OWL 2 inheritance via XML Schema type restriction

OWL2

Class: data:SequenceAlignment
SubClassOf: data:Alignment
and (property:alignment sorme format:Alignment)
and (property:alignment only format:Alignment)
and (property:alignment max 1 format:Alignment)
Class: data:SomeOtherAlignment
SubClassOf: data:SequenceAlignment
and -ali only format:Ott g,

anc (proj metadata max 1 xsd:strin;

XML Schema

<complexType name="SequenceAlignment'>
<complexContent>
<gxtension base="tns:Alignment">
<sequence>
<glement name="alignment" type="ns0:Alignment">
<fsequence>
<lextension>
<icomplexContent>
<lcomplexType>
<complexType name="SomeQtherAlignment_restriction">
<complexContent>
<resfriction base="tns:SequenceAlignment">
<sequence>
<element name="alignment" type="ns0:MultipleAlignment"/>
<fsequence>
<frestriction>
<icomplexContent>
<lcomplexType>
<complexType name="SomeOtherAlignment'>

<complexConlent>

parent class “SequenceAlignment”. Because XML Schema cannot madel

this, additional class “SomeOtherAlignment_restriction” is required

(see Figure 6 C).

XML Schema supports only single inheritance. An OWL 2 Class
that has several parents is mapped into correspondent XML
Schema complex type with no parents (Table 9). All the properties
from the OWL 2 Class and its antecedents are copied into the XML
Schema complex type. This is a standard pattern in XML Schema
development, even though it may lead to an inconsistent XML
Schema when the gencrated complex type participates in type
substitution.

Table $ OWL 2 multiple inheritance in XML Schema

OWL2

Class: A
SubClassOf; Thing
and (names orly xsd:string)
Class: B
SubClassOf: Thing
and (colors only xsd:string)
Class: C
SubClassOf: A, B

XML Schema

<complexType nam
<sequence>
<element name="names" type="string"
minOceurs="0" maxOccurs="unbounded" />
<lsequence>
<ftomplexType>
<complexType name="B">
<sequence>
<alement name="colors" type="string"
minOccurs="0" maxOccurs="unbounded" />
<jsequence>
<jcomplexType>
<complexType nam
<sequence>
<element name="names" type="striing"
minOccurs="0" maxOccurs="unbounded" />
<element name="colors" type="string"
minOccurs="0" maxOccurs="unbounded" />
<fsequence>
<lcomplexType>
Unlike the OWL 2 language, XML Schema has no multiple inheritance
support. Multiple inheritance may be simulated via collecting all properties
from superclasses (“A™ y “B”) into the child class “C"” (see Figure 6 C).

OWL 2 Properties translation

Properties in OWL 2 represent either relationships between two
individuals (Object Properties) or between an individual and some
data values (Datatype Properties). In this way properties are
aligned into XML Schema eclements (Table 10). Cardinality
constraints of properties are translated into XML Schema element
minOccurs / maxOccurs attributes. In order to minimize

D. Repchevsky, Jon Ison, Gelpi. JL

computational complexity cardinality constraints are limited to the
OWL-Lite ones (0", “17, “unbounded”)

Table 10 OWL 2 Properties representation in XML Schema

OWL2

Class: data:Sequence
SubClassOf: data:Data
and (propety-length only xsd:nenNegativelnteger)
el (property-length max 1 rdfs Literal)
(property:sequence only format:Sequence)
(property:sequence soine xsd:string)
x 1 rdfs:Literal

o) uence

XML Schema

<complexType name="Sequence™
<complexContent>
<exiension base="ns:Data™>
<sequence>
<glement name="length” type="nonNegativelnteger” minOccurs="0"/>
<glement name="sequence” type="ns0:Sequence"/>
<fsequence>
<lextension>
<jcomplexContent>
<leomplexType>

The “Sequence” type is defined as an extension of the “Data” introducing
two local elements (“sequence” and “length”),

OWL 2 propertics may form hierarchies. Properties that
participate in a property hierarchy are modeled as global elements
with the corresponding substitution groups (Table 77). Although
multiple type substitutions are not supported by XML Schema,
multiple property inheritance is hardly used in real world
ontologies.

Table 11 OWL 2 Properties inheritance as XML Schema element
substitutions

OWL2

Datatype: format:Alignment
EquivalentTo:
(xsd:string and not ((format:Microarray or format:Sequence or
parameter:Parameter)))
Datatype: formatMultipleAlignment
EquivalentTo:
(format:Alignment and not farmat: Pairwise Alignment)
Datatype: formatMSF
EquivalentTo

(format. ‘v nd xsd. [n
NN A 1}A_MULTIPLE_ALIGNMENT 1.0([inllr].*)+"*xsd string])
Class: data:MultipleSequenceAlignment
SubClassOf:
data:SequenceAlignment
and (propey:alignment only format MultipleAlignment

XML Schema

<element name:

<element names ¥ iy
substitutionGroup g _Alig —

<element name="alignment_MSF" type="ns0):MSF"
substitutionGroup="tns:alignment_MultipleAlignment">
<complexType name="MultipleSequenceAlignment">
<complexContent>
<restiction base="tns:SequenceAlignment'>
<sequence>
<element ref="tns:alignment_MultipieAlignment’/>
<fsequence>
<lrestriction>
<fcomplexContent>
<lcomplexType>

The clement “alignment MultipleAlignment” of the
“Mul 1 £ type may be by the element
“alignment MSF".

To represent OWL 2 Datatype Properties, XML Schema
attributes may also be used

Table 12 OWL 2 Datatype Properties as type attributes

OWL2

Class: data:Sequence
SubClassOf:
data:Data
and (property:sequence some xsd:string)
ly xsd:nenNegativelnteger)
v format:Sequence)
rdfs:Literal)
1 1 rdfs:Literal

XML Schema

<complexType name="Sequence">
<annotation>
<complexContent>
<extension base="Ins:Data">
<attribute name="length" type="nonNegativelnteger/>
<affribute name="sequence" type="ns0:Sequence" use="required”’>
<lextension>
<icomplexContent>
<lcomplexType>
The “Sequence” type extends the “Data” type with “sequence” and
“length™ (see also Table 10).

Usage of local ¢lements and attributes may put restrictions on
future ontology extensions. The latter may happen when in a new
ontology revision the property becomes a part of property
hierarchy which require global element usage

il renders i ible XML Schema r

and as a

IMPLEMENTATION

The tool is implemented in Java language as Java applet (Figure 7)
and uses Apache XML Schema 2.0
(http://ws.apache.org/commons/xmlschema20/) and OWL API [7]
along with HermiT 1.3.8 reasoner [8] libraries.

148

OWL2XS

OWL2XS: Generation of XML Schema from OWL 2 Web Ontology Language

A similar functionality may be achieved using SAWSDL
Schema Mapping and was mentioned in OWL-S [12]. However,
the Extensible Stylesheet Language Transformations (XSLT)
proposed for Schema mapping does not suit well for ontological
models that can vary in serialization formats. A lack of Web
service frameworks support for run-time Schema mapping is also a
limitation for this method.

Another h taken in ic A d Discovery and
i k - SADI [13] consists in a direct ontology

) XML Schem Generator L=
Lookin: ||, antalogy v #iem@-
%] use atirbutes where possble
b B
] st local elements where
@ possibie
Data propartios may be roprasanted 2.
= attribotes when ceardnality i (0, 1) In many
1s0 cbject propertes may be represented 1
it local alemacts. Note that
it s mot powdbia to generate an appropmate
{- XML Schema, please pay an attention to 2 log
"0 b foc warmiags
* Flename: ontology.on
Computer Flesoftye: | aaies =

Figure 7OWL2XS XML Schema generator applet.

RESULTS

Automatic XML Schema generation from OWL2 provides web
service developers with a power tool for Semantic Web services
development. Thc Ilbmry itself can be integrated into any java
project. A l ion tool that XML Schema
froma qclcclcd ontology file is also provided. OWL 2 EMBRACE
Data and Methods Ontology (EDAM) definitions were used as a
basement for the example biological ontology provided. This
ontology follows EDAM’s architecture, implementing “data”™,
“format™ and “parameter” concepts and provides enough data
properties for the appropriate XML Schema generation. Finally, as
a usage tutorial, a semantically annotated Basic Local Alignment
Search web service (based on the NCBI Blastp tool) is provided
(Supplementary Tutorial).

RELATED WORK

The interest in OWL and XML Schema interoperability is not new
and a lot of work has been done in representation of XML Schema
in OWL-DL [9]. The possibility to transform OWL ontology into
XML Schema was proposed [10] as an alternative to XSL
Transformations for Semantic Markup for Web Services. A big
work to define XML Schema syntax for biological data has been
done by BioXSD developers [11], who manually crafted an XML
Schema with consequent semantic annotation. A manual XML
Schema creation targeting an ontology is a major work that, even
in the absence of datatype information in the ontology, may be
greatly facilitated by the OWL2XS tool.

DISCUSSION

The ic XML Schema ion described here provides a
consistent and cfficient route to a schema, where an ontology that
includes datatype information exists. For ontologies that lack
datatype information and do not define data models, OWL2XS tool
may be used for quick XML Schema prototyping with further
manual schema enhancement. Given that biological ontologies
continuously incorporate new objects, this approach helps to
maintain a i between an logy and the cor

XML Schema.

objects (individuals) scrwcu interchange where a service acts as a
ic object d In contrast to OWL-S, SADI
does not make any mtennon to provide WSDL mapping, which
restricts its usage by those potential clients who are adherent to
conventional Web services architecture.
Unlike other approaches, OWL2XS provides a simple and
practical solution for Semantic Web Services development based
on ontological datatypes models.

FUTURE DEVELOPMENTS

Future improvements lie in extending OWL 2 support (i.c. OWL-
DL cardinality) and better XML Schema support (i.e. XML
Schema 1.1 substitutions groups). These improvements may
greatly facilitate future Web service development when combined
with XML Java Compiler (XJC) extensions to provide a better
Java beans generation for generated schema.

FUNDING

This work was supported by the Spanish National Institute of
Bioinformatics, Pl de R iomolecul y
Bioinformaticos (PRB2) Instituto de Salud Carlos 1l -
(www.inab.org)

REFERENCES

[1] Peutifer.S. et al. (2010) The EMBRACE web service collection. Nucleic Acids
Res., 38, W683-W6SS.

[2] Salvadores, M. et al. (2013) BioPortal as a Dataset of Linked Biomedical
Ontologies and Terminologies in RDF. Semant Web, Stanford Center for
Biomedical Informatics Research Stanford University, US., 2013, 4, 277-284

[3] Martin, D.. Burstein, M., McDermott, D.. Mellraith, S., Paolueci, M., Sycara, K.,
etal. (2007, Aug). Bringing Semantics to Web Services with OWL-S. World Wide
Web, 10(3), 243-277.

[4] Kopecky J (2006) WSDL RDF Mapping: Developing Ontologies from
Standardized XML Languages. In: Advances in Conceptual Modeling — Theory
and Practice, Springer Berlin Heidelberg, 2006, 4231, 312-322.
d0i:10.1007/11908883_37

[S) B. Glimm, A. Hogan, M. Krétzsch, and A. Polleres. OWL: Yet to arrive on the
Web of Data? In LDOW. CEUR-WS.org (Vol. 937), 2012

(6] Ison.J. et al. (2013) EDAM: An ontology of bioinformatics operations, types of
data and identifiers, topics, and formats. Bioinformatics 29(10),1325-1332

[7] Horridge,M, Bechhofer S. (2011) The OWL API: A Java AP for OWL Ontologies
Semantic Web Journal 2(1), Special Issuc on Semantic Web Tools and Systems,
1n-21

(8] Glimm, B. et al. HermiT: An OWL 2 Reasoner Journal of Automated Reasoning,
Springer Netherlands, 2014, 53, 245-269

[9] Retsina,C. and Christodoulakis,S. (2007) "XS20WL: A Formal Model and a
System for Enabling XML Schema Applications to Interoperate with OWL-DL
Domain Knowledge and Semantic Web Tools", Lecture Notes in Computer
Science, 2007, Volume 4877/2007, 124-136, DOI: 10.1007/978-3-540-77088-
6_12

[10] Balzer.S. and Liebig.T. (2004) Bridging the Gap between Abstract and Concrete
Services - A Semantic Approach for Grounding OWL-S. In Proceedings of the
workshop on Semantic Web Services at ISWC 2004, November 8, Hiroshima,
Japan

D. Repchevsky, Jon Ison, Gelpi. JL

et al. (2010 BioXSD: the common data-exchange format for everyday
web services. . 26, 1540-i546

] MartinD. et al. (2004) OWL-S: Semantic Markup for Web Services, W3¢

Member Submission 22 November 2004, httpr/wwiw3.org/Submission/OWL-S,

[13] Wilkinson M.D. et al. {2011} “The Semantic Automated Discovery and

(SADI) Web service Design-Patern, APT and Reference

2:8 doi:10.11862041-

[11] Kalas.)

Tntegration
Implementation” Journal of Biomedical Semantics 201

1480-2-8

