

Ontology based data integration in Life Sciences

Dmitry Repchevskiy

Aquesta tesi doctoral està subjecta a la llicència Reconeixement 3.0. Espanya de Creative
Commons.

Esta tesis doctoral está sujeta a la licencia Reconocimiento 3.0. España de Creative
Commons.

This doctoral thesis is licensed under the Creative Commons Attribution 3.0. Spain License.

UNIVERSITY OF BARCELONA

FACULTY OF BIOLOGY

Doctorate Program: Biomedicine

Research Line: Bioinformatics

2010-2015

Ontology based data integration in life sciences

Submitted by Dmitry Repchevskiy in fulfillment of the requirements for

the doctoral degree by the University of Barcelona

Supervisor:

Dr. Josep Lluís Gelpí Buchaca

Department of Biochemistry and Molecular Biology

University of Barcelona

Dmitry Repchevskiy

Barcelona Supercomputing Center

National Institute of Bioinformatics

ACKNOWLEDGEMENTS

“It is not the consciousness of men that determines their being, but, on the

contrary, their social being that determines their consciousness.”

Karl Marx

Without any doubts this thesis wouldn’t be possible without many

people that I had a pleasure to work with. If only I tried to enumerate all

their invaluable help, all the chats and communications we had, this thesis

would require a second volume. First and foremost, I would like to thank

my supervisor Josep Lluís Gelpí, who gave me a lot of freedom in

defining projects I worked on. Not all of them have been included into

this thesis and some of them never reached the end, but the real

experience gathered in these years allowed me to go get into this final

point. I would also like to thank my colleague José María Fernández from

Spanish National Cancer Research Centre (CNIO), who always found a

time to discuss technological aspects of my projects and to our entire

group just to be with me all these long years. Finally, the greatest thank to

my colleagues Romina and Laia whose invaluable support has been so

important for me over these years.

SUMMARY

As many other science disciplines, Life Sciences operate with an enormous

amount of information. The genomic revolution was a big bang in biological and

especially genetic data creation. Exponentially growing data had thrown up a

bunch of problems with its storage, processing and interoperability. None of

these problems could be resolved without a substantial progress in computer

technology. On the merge of biology and information technology, a new field,

coined as bioinformatics, had arisen. Many heterogeneous data sources

continuously generate a huge amount of different types of data. This data comes

from clinical studies, micro-array experiments, DNA sequencing, or publications

(data mining). In most of the cases, this information has little value without

further processing and analysis, including normalization and filtering. To handle

this data deluge, many institutions spend a considerable amount of resources to

maintain core databases (UniProt, Protein Data Bank, Ensembl, etc.), and are in

a continuous search for new approaches in data storage, annotation, and

integration. Independently on the origin, biological data requires a structure, the

definition of an appropriate storage format, and metadata provision. Sometimes

metadata is included into the format, but very often is provided externally in

form of annotations. In many cases such annotations, describing a specific

knowledge domain, are organized to form an ontology (for instance the Gene

Ontology Database) and may be a valuable source of information. Although

ontologies are often used to annotate biological data, modern ontology languages

provide enough expressibility to structurally describe biological objects that

makes them a great choice for biological data interoperability. Another use of

ontologies for interoperability purpose is the semantic description of biological

services. The power of semantic integration in Life Sciences brought a lot of

interest from major bioinformatics institutions that embrace ontologies and more

generally all Linked Data technologies as a common platform for biological data

integration.

TABLE OF CONTENTS

 INTRODUCTION ... 1

1.1. HETEROGENEOUS DATA INTEGRATION .. 1

Data formats .. 4

1.2. XML TECHNOLOGY ... 8

1.3. ONTOLOGIES IN LIFE SCIENCES ... 10

OBO format .. 11

1.4. SEMANTIC WEB .. 12

1.4.1. Resource Description Framework (RDF) .. 13

1.4.2. RDF in Attributes (RDFa) ... 15

1.4.3. RDF Schema (RDFS) ... 15

1.4.4. SPARQL 1.1 .. 16

1.4.5. OWL 2 Web Ontology Language ... 17

1.4.6. The Semantic Web Rule Language (SWRL) ... 20

1.4.7. Rule Interchange Format (RIF) .. 20

1.4.8. Linked Data ... 21

1.5. WEB SERVICES .. 22

1.5.1. HTTP .. 23

1.5.2. SOAP .. 25

1.5.3. WSDL ... 25

1.5.4. REST... 26

1.5.5. WADL .. 28

1.6. SEMANTIC WEB SERVICES ... 29

1.6.1. OWL-S.. 31

1.6.2. MOBY-S ... 32

1.6.3. WSMO ... 35

1.6.4. WSMO-Lite .. 35

1.6.5. SADI ... 35

1.6.6. WSDL 2.0 RDF Mapping .. 36

 OBJECTIVES ... 37

 MATERIALS AND METHODS ... 39

 TECHNOLOGICAL CHOICES .. 41

Semantic Web Services ontology ... 41

BioMoby integration libraries .. 41

 RESULTS .. 43

 PART I – BIOMOBY ONTOLOGY MODEL INTEGRATION ... 44

4.1.1. New lightweight Java API for BioMoby Registry access and Web Services

execution. 46

4.1.2. BioNemus. Creating SAWSDL bioinformatics services based on BioMoby

ontology model ... 49

4.1.3. SAWSDL-based BioMoby ontology integration. 57

 PART II – XML SCHEMA GENERATION FROM OWL 2 ONTOLOGIES. .. 62

4.2.1. Implementation ... 62

4.2.2. OWL 2 Model to XML Schema transformation 62

4.2.3. Practical applications for bioinformatics Semantic Web Service

development ... 69

 PART III – ONTOLOGY-BASED SERVICE DESCRIPTION FOR BIOINFORMATICS INTEGRATION 71

4.3.1. BioSWR: Semantic Web services Registry for Bioinformatics................ 72

 PART IV – WEB SERVICES INTEGRATION INTO WORKFLOWS EXECUTION TOOLS. 79

4.4.1. BioSWR Registry integration into the Taverna Workbench. 79

4.4.2. Galaxy Gears. Web Services integration into Galaxy workbench.......... 81

DISCUSSION ... 85

CONCLUSION .. 93

BIBLIOGRAPHY ... 97

ANNEX .. 107

LIST OF FIGURES AND TABLES

“Use a picture. It's worth a thousand words.”

 Arthur Brisbane

 Figures

Figure 1. NCBI databases search .. 1

Figure 2. CORBA architecture .. 2

Figure 3. Web Services Architecture .. 3

Figure 4. PDB file format example .. 4

Figure 5. ASN.1 and XML interoperability .. 6

Figure 6. XML standards timeline ... 8

Figure 7. Semantic Web Stack ... 12

Figure 8 RDF triple ... 13

Figure 9. RDF graph example .. 13

Figure 10. SPARQL Update via HTTP protocol ... 16

Figure 11. The structure of OWL 2 ... 17

Figure 12. Example of different OWL 2 syntaxes ... 18

Figure 13. RIF dialects. .. 20

Figure 14. Web Services stack ... 22

Figure 15. HTTP Request/Response ... 23

Figure 16. SOAP Envelope .. 25

Figure 17. WSDL 1.1 / 2.0 model ... 26

Figure 18. Evolution towards SWS ... 29

Figure 19. MobyLite Java API .. 47

Figure 20 Generated Web Application internals ... 50

Figure 21. BioNemus functional workflow .. 52

Figure 22. SOBO ontology in Protegé .. 69

Figure 23. BioSWR general architecture .. 73

Figure 24. Example of Semantic Rules definitions ... 74

Figure 25. SPARQL query example ... 75

Figure 26. Insert SAWSDL reference via SPARQL UPDATE query .. 76

Figure 27. Taverna 3.0 BioSWR OSGI plug-in ... 80

Figure 28. Galaxy Gears Java graphical tool ... 81

Figure 29. wsdl-generic library architecture .. 82

Figure 30. Generated Galaxy tool interface .. 83

Figure 31. Developed frameworks and libraries ... 91

file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043799
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043800
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043801
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043804
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043805
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043806
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043807
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043808
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043809
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043810
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043811
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043812
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043813
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043814
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043815
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043816
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043817
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043818
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043819
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043820
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043821
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043822
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043823
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043824
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043825
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043826
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043827
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043828
file:///D:/HUGE/MINE/PHD/tesis/thesis-23-11-2015.docx%23_Toc436043829

 Tables

Table 1. XML EXI Encoding example ... 5

Table 2. ASN.1 BER Encoding example .. 6

Table 3. BSON Serialization example .. 7

Table 4. OBO Stanzas .. 11

Table 5. Phylogenetic character data definition example from EDAM ontology (OBO format) 11

Table 6. RDFa Lite properties .. 15

Table 7. RDFS vocabulary ... 15

Table 8 SPARQL insert query example .. 16

Table 9. Phylogenetic character data definition example from EDAM ontology (OWL 2) 19

Table 10. HTTP Methods ... 23

Table 11. REST data elements .. 27

Table 12. HTTP methods in RESTful API .. 27

Table 13. WADL description of RCSB getCurrent Web service. .. 28

Table 14. BioMoby services description. Example: runTcoffeeEvaluateAlignments service 33

Table 15. BioMoby message example ... 34

Table 16. Tools and libraries used in the projects .. 42

Table 17. Correspondence between basic BioMoby objects and BioNemus types 50

Table 18. Correspondence between BioMoby and BioNemus elements 51

Table 19 XML Schema definition for the MD_Trajectory BioMoby object 51

Table 20. BioNemus commandline parameters ... 53

Table 21. Java code example for BLAST web service execution ... 54

Table 22. BLAST web service client ... 55

Table 23. Java getEntryFromPDB RESTful web service execution ... 56

Table 24. JavaScript getEntryFromPDB RESTful web service execution 56

Table 25. web services by the authority ... 57

Table 26. Embedding MOBY-S datatype definitions in WSDL 2.0 description 59

Table 27. WSDL 2.0 description creation from BioMoby service identifier 60

Table 28. Getting BioMoby service input parameters ... 60

Table 29. OWL 2 Class representation in XML Schema .. 63

Table 30. OWL 2 Properties representation in XML Schema ... 64

Table 31. OWL 2 Datatype representation in XML Schema ... 64

Table 32. XML Schema type extension example ... 65

Table 33. XML Schema type restriction example ... 66

Table 34. XML Schema type inheritance split example .. 67

Table 35. XML Schema type inheritance breakage example ... 68

Table 36. Delete annotation SPARQL query .. 76

Table 37. Java example for SPARQL UPDATE query execution ... 76

Table 38. BioSWR REST API ... 77

Table 39. WSDL 2.0 and WADL descriptions of the PDBdescription RESTful service 78

Table 40. The complete list of the developed tools .. 92

ACRONYMS AND ABBREVIATIONS

“ ”

 Claude Elwood Shannon

 Acronyms and Abbreviations

AJAX Asynchronous JavaScript and XML

ASCII American Standard Code for Information Interchange

ASN.1 Abstract Syntax Notation One

BPEL Business Process Execution Language

CDR Common Data Representation

CORBA Common Object Request Broker Architecture

DL Description Logic

DTD Document Type Definition

ECN Encoding Control Notation

EXI Efficient XML Interchange

FI Fast Infoset

GIOP General Inter-ORB Protocol

HDT Header Dictionary Triples

HTML Hypertext Markup Language

ISO International Organization for Standardization

ITU International Telecommunication Union

ITU-T ITU Telecommunication Standardization Sector

JAXB Java Architecture for XML Binding

JAX-WS Java API for XML-Based Web Services

JSON JavaScript Object Notation

JMS Java Message Service

LD Linked Data

MSM Minimal Service Model

OBO Open Biomedical Ontologies

OSGi Open Services Gateway initiative

OWL Web Ontology Language

OWL-S Semantic Markup for Web Services

PCX Personal Computer Exchange

QL Query Language

RDF Resource Description Framework

RDFa RDF in Attributes

RDFS RDF Schema

REST Representational State Transfer

RIA Rich Internet Applications

RIF Rule Interchange Format

RL Rule Language

RPC Remote Procedure Call

 Acronyms and Abbreviations

SADI Semantic Automated Discovery and Integration

SAWSDL Semantic Annotations for WSDL and XML Schema

SCUFL Simple Conceptual Unified Flow Language

SGML Standard Generalized Markup Language

SMTP Simple Mail Transfer Protocol

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SWRL Semantic Web Rule Language

SWS Semantic Web Services

TCP Transmission Control Protocol

XML Extensible Markup Language

XPath XML Path Language

XQuery XML Query

XSLT Extensible Stylesheet Language Transformations

UDDI Universal Description Discovery and Integration

WAR Web Application Archive

WebDAV Web Distributed Authoring and Versioning

WSDL Web Services Description Language

WS-I Web Services Interoperability Organization

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

WSMO-Lite Lightweight Semantic Descriptions for Services on the Web

WSRF Web Services Resource Framework

WWW World Wide Web

W3C World Wide Web Consortium

INTRODUCTION

“When partners can’t agree

 Their dealings come to naught

 And trouble is their labor’s only fruit”

Ivan Krylov

1 introduction

1.1. Heterogeneous data integration

The exponentially increasing amount of biological data and its heterogeneity

require the usage of an appropriate architecture for management, integration, and

interoperability.

Probably the most widespread example of distributed system widely used in

biological and medical research is the World Wide Web. Using a system of

interlinked hypertext documents, researchers can instantly access many of

publicly available databanks and, what is more important, explore biological

entities interconnections via hyperlinks. Many organizations developed very

powerful Web portals providing an easy access to their biological databases

(Figure 1).

However, the human-oriented nature of Web poses a serious limitation for

computer data processing and integration. HTML-based Web interfaces are

designed for data presentation rather than storage, and its automatic extraction

proved cumbersome and error-prone (Neerincx & Leunissen, 2005). An

automated access to bioinformatics data and tools is especially important for

complex, multi-step analysis that can involve many heterogeneous sources.

Direct machine-to-machine interaction requires an architecture that provides

functionalities such as transmission protocol, identifiers location, interface

description, naming resolution, etc.

Figure 1. NCBI databases search

2 heterogeneous data integration

One of such architectures was the Common Object Request Broker

Architecture (CORBA) (Figure 2), which due to its platform independence

represented a clear step forward toward a Service Oriented Architecture (SOA)

in bioinformatics (Achard & Barillot, 1997).

The extensive list of supported languages, including C++ and Java, made this

architecture quite popular in distributed software development. Although Java

platform has its own mechanism for development of distributed systems –

Remote Method Invocation (RMI), Java 1.2 included a complete CORBA 2.0

ORB implementation, while RMI was modified to operate over Internet Inter-

Orb Protocol (IIOP). Since Java is platform independent, RMI was another

technology of choice for distributed development in bioinformatics (Möller,

Leser, Fleischmann, & Apweiler, 1999).

Although in the late nineties, CORBA reined biological data integration

projects, Web service technologies quickly surpassed it in popularity. This

popularity was generally attributed to the simplicity and provoked a lot of

criticism (Gokhale, Kumar, & Sahuguet, 2002) from CORBA advocates. Instead

of using a binary protocol, Web services are based on Simple Object Access

Protocol (SOAP) protocol. SOAP relies on XML and XML Schema, which are

more expressive than Internet Definition Language (IDL) used by CORBA, but

less effective in data transmission.

Howbeit, Web services today is a widespread and very complex technology

with close to hundred specifications.

Figure 2. CORBA architecture

3 introduction

Web services can be completely described using Web Services Description

Language (WSDL). Although Universal Description Discovery and Integration

(UDDI) registry is already the standard way for Web services discovering

(Figure 3), many bioinformatics projects were specially oriented to provide an

architecture for discovery and distribution of biological data through web

services (Bhagat, et al., 2010). Even, in many cases, bioinformatics service

providers just publish the WSDL file somewhere on their web site.

As more bioinformatics databases and tools are available in a form of Web

services, more complex interactions or workflows are possible. The latter

requires another level of abstraction to define Web services cooperation. The de-

facto standard for modeling executable workflows - Business Process Execution

Language (BPEL) did not become very popular in Life Sciences because of the

high degree of bioinformatics services being already in use. Although a lot of

work has been done to provide recommendations for bioinformatics Web

services development (Pettifer, et al., 2010), the growing popularity of RESTful

services led to the situation where many Web services lack WSDL description

and, as a consequence, cannot participate in BPEL defined interactions. It should

be noted that many of the RESTful Web services could be described via WSDL

HTTP Binding, but since most of the Web services tools are oriented to SOAP

protocol, this possibility is rarely used. To address these issues, a specially

oriented to bioinformatics Web services tool - Taverna (Hull, et al., 2006) was

developed at the University of Manchester. Taverna uses its own dataflow-

centric workflow language – Simple Conceptual Unified Flow Language

(SCUFL) (Oinn, et al., 2006) that allows different types of services to be used

within the same workflow.

Figure 3. Web Services Architecture

4 data formats

Data formats

One of the challenges in heterogeneous data integration is the selection of an

appropriate message serialization format. Usually the format is strictly defined

by the selected architecture (e.g. CORBA uses General Inter-ORB Protocol

(GIOP) protocol, which defines a Common Data Representation (CDR) format

for data serialization), while sometimes the choice of the format is more liberal.

Serialization formats may be arbitrarily divided into binary based and text based

ones.

Historically the choice of the appropriate format was based on the encoded

data itself, images were encoded in binary formats like Personal Computer

Exchange (PCX), text files using American Standard Code for Information

Interchange (ASCII) encoding.

All data formats, including text-based ones, abide some structural rules. Even a

simple text file follows natural language grammar. For instance, ASCII-based

PDB
1
 file format defines its own structural rules (Figure 4).

Figure 4. PDB file format example

Formats developed to encompass different types of data (text, numerical data,

dates, etc.) usually define the supported type system as part of the format

specification. Some encoding formats provide a clean separation between

structural description and serialization.

Despite the overwhelming number of protocols in use, the number of

commonly adopted data formats is quite small. Rapid information growth

presents new challenges to provide more efficient encodings for existent formats

(Binary JSON, Efficient XML Interchange, etc.).

1
 http://www.wwpdb.org/docs.html

http://www.wwpdb.org/docs.html

5 introduction

Extensible Markup Language (XML)

XML was introduced in 1998 as a simple human-readable format oriented to

the internet interoperability. Being a profile of SGML, XML puts little

restrictions on document structure. In 2001 XML Schema 1.0 recommendation

was published. The same year, XML Information Set recommendation was

published putting a borderline between XML document structure and its

serialization format.

Binary XML serialization formats have been proposed by different

standardization bodies: Fast Infoset
2
 by ITU-T and Efficient XML Interchange

3

(EXI) by W3C (Table 1). Although EXI provides better than ASN.1 BER (see

below) encoding compression, latter is more suitable for parsing large

documents, providing a node length so parser could skip large chunks of the

document.

Nowadays, XML is a backbone technology for the most parts of Web

standards.

XML Schema XML Document

<xs:element name="Person">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name"
 type="xs:string"/>
 <xs:element name="birth"
 type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<Person>
 <name>Socrates</name>
 <birth>-470</birth>
</Person>

EXI encoding

80 [10 0 0000 X] EXI Header

00 SE (<Person>)

00 SE (<name>)

 ‘S’ ‘o’ ‘c’ ‘r’ ‘a’ ‘t’ ‘e’ ‘s’

00 SE (<birth>)

 01 D5 03

Table 1. XML EXI Encoding example

2
 http://www.itu.int/rec/T-REC-X.891-200505-I/en

3
 http://www.w3.org/TR/exi/

http://www.itu.int/rec/T-REC-X.891-200505-I/en
http://www.w3.org/TR/exi/

6 data formats

Abstract Syntax Notation One (ASN.1)

ASN.1 was one of the earliest notations to define a variety data types that has

been widely adopted especially by telecommunication industry. Its abstract

nature does not impose the way how information is encoded, and there are many

defined encoding rules (BER, DER, PER, XER, etc.) (Dubuisson, 2000).

ASN.1 provides a high degree of interoperability with XML (Figure 5).

Figure 5. ASN.1 and XML interoperability

XML Schema may be mapped into ASN.1 notation. Defined in Table 2

“Person” value being encoded via XML Encoding Rules results the same XML

document as in Table 1.

ASN.1 is defined by International Telecommunication Union (ITU) and

commonly used to describe messages in communication protocols.

ASN.1 Notation BER Encoding

Schema

Person ::= SEQUENCE {
 name UTF8String,
 birth Integer
}

16 [UNIVERSAL 16] constructed;

14 length = 14

 00 name UTF8String: tag = [0] primitive;

 08 length = 8

Value

person Person ::= {
 name "Socrates",
 birth -470
}

 ‘S’ ‘o’ ‘c’ ‘r’ ‘a’ ‘t’ ‘e’ ‘s’

 01 birth INTEGER: tag = [1] primitive;

 02 length = 2

 FE 2A (-470)

Table 2. ASN.1 BER Encoding example

ASN.1 robustness and effectiveness didn't pass unnoticed by the biomedical

community (Ostell, Wheelan, & Kans, 2001) and the format is still in use along

other emerged formats.

7 introduction

JavaScript Object Notation (JSON)

JSON is a format that became very popular on the WEB 2.0 wave. Natively

understood by JavaScript, along with the XML it is widely used in

Asynchronous JavaScript requests (AJAX). The simplicity of the format makes

this format a popular choice where XML may look ponderous, for instance in

Representational State Transfer (REST) Web services oriented to dynamic web

applications.

Like early XML specifications, JSON promotes a minimalistic text-based

approach for data structure description. In its development JSON runs into the

same issues W3C consortium came across a decade ago. The simplicity of JSON

left apart such moments as name resolution, document schema, extensive and

rich type system, etc. Many of these issues are intended to be solved by different

enthusiasts, for instance Binary JSON (BSON)
4
 format (Table 3).

JSON BSON

{
 “Person” : {
 “name” : “Socrates”,
 “birth” : -470 }
}

37 Length=37

0x03 Embedded document

 ‘P’ ‘e’ ‘r’ ‘s’ ‘o’ ‘n’ 0x00

 28 Length=28

 0x02 UTF-8 String
 ‘n’ ‘a’ ‘m’ ‘e’ 0x00

 09 value length=9

 ‘S’ ‘o’ ‘c’ ‘r’ ‘a’ ‘t’ ‘e’ ‘s’ 0x00

 0x10 32-bit Integer

 ‘b’ ‘i’ ‘r’ ‘t’ ‘h’ 0x00

 FF FF FE 2A

0x00 Document End

Table 3. BSON Serialization example

Probably the most illustrious example of BSON usage is the open source

document database MongoDB
5
.

4
 http://bsonspec.org/

5
 https://www.mongodb.org/

http://bsonspec.org/
https://www.mongodb.org/

8 XML Technology

1.2. XML Technology

Among many data formats XML is indeed the most common one. XML is a

subset of Standard Generalized Markup Language (SGML) that was developed

as a lightweight alternative for use on the World Wide Web. Unlike Hypertext

Markup Language (HTML) which is designed for content visualization, XML is

designed to describe data. XML is well suited for automatic processing and is

widely used as a data interchange format.

Since its introduction in 1998, XML became a power technology comprised of

many specifications.

The term “XML” is usually used to refer to essential set of standards related to

XML:

 Extensible Markup Language (XML) describes a class of data

objects called XML documents.

 XML Information Set (XML Infoset) describes an abstract data

model of an XML document in terms of a set of information items.

 Namespaces in XML 1.0 provide a simple method for qualifying

element and attribute names used in XML documents by associating

them with namespaces identified by URI references.

Other related standards that are important parts of the XML ecosystem:

 XML Schema describes XML documents defining constraints on

their data model. Unlike Document Type Definitions (DTDs), XML

Schema is itself represented in an XML vocabulary.

 XML Path Language (XPath) is a language for addressing specific

parts of an XML document.

Figure 6. XML standards timeline

9 introduction

 Extensible Stylesheet Language Transformations (XSLT) is a

declarative language for transforming XML documents. XSLT

language uses XPath for XML nodes matching.

 XML Query (XQuery) is a functional query language for data stored

in XML form. XQuery extends XPath language with so-called

“FLWOR” expressions providing similar to SQL functionality for

querying XML documents.

XML is generally known as a bandwidth inefficient, human readable, text

based format. Fast Infoset (FI) binary encoding format has been defined by the

ITU Telecommunication Standardization Sector (ITU-T) and the International

Organization for Standardization (ISO) standards bodies as an efficient

alternative to the XML document format. Recognizing the need for a compact

XML representation, W3C has been developed the Efficient XML Interchange

(EXI, Table 2) format which significantly reduces XML document size. Unlike

FI, which is based on ASN.1 Encoding Control Notation (ECN), EXI uses built-

in datatype representations and employs quite sophisticated technics like channel

multiplexing and compression. As a result EXI provides better compression,

providing support for many APIs like DOM
6
, SAX

7
 or StAX

8
.

6
 http://www.w3.org/DOM/

7
 http://www.saxproject.org/

8
 https://jcp.org/en/jsr/detail?id=173

http://www.w3.org/DOM/
http://www.saxproject.org/
https://jcp.org/en/jsr/detail?id=173

10 ontologies and semantics

1.3. Ontologies in Life Sciences

The need to establish a common vocabulary for biological data made

ontologies an essential part of Life Sciences. Ontologies are intensively used in

medical and health care domains (Stearns, Price, Spackman, & Wang, 2001)

(Rector, Rogers, Zanstra, Van Der Haring, & OpenG., 2003). Probably the most

well-known example of ontology-based integration initiative in bioinformatics is

the Gene Ontology project. Its highly adopted Open Biomedical Ontologies

(OBO) file format became very popular in Life Sciences community with many

ontologies being developed for a wide range of domains. This popularity led to

creation of the OBO Foundry (Smith, et al., 2007) initiative. OBO Foundry

ontologies are usually designated as bio-ontologies.

The OBO language is situated somewhere apart from a World Wide Web

Consortium (W3C) initiative that promotes a Web Ontology Language (OWL)

as a complete set of specifications for authoring ontologies. The domination of

OBO language in biological domain quickly disappears, as the community is

developing more OWL based ontologies. This trend may be observed at

BioPortal (Noy, et al., 2009) open repository of biomedical ontologies
9
. A lot of

efforts are also invested into transition of OBO ontologies to the OWL language

(Hoehndorf, Oellrich, Dumontier, Kelso, Rebholz-Schuhmann, & Herre, 2010)

(Golbreich, Horridge, Horrocks, Motik, & Shearer, 2007) (Horrocks, 2007).

Ontologies are considered a crucial part of the Semantic Web. Providing

access to biological databases via Linked Data endpoints significantly increases

the capacity of automatic agents to answer complex biological questions. Data

mining tools may perform complex distributed queries involving many

heterogeneous biological sources. Semantic Web has received a very positive

response from the Life Sciences community, which readily embraces new ways

to access data and actively share this knowledge (Garcia Godoy, Lopez-

Camacho, Navas-Delgado, & Aldana-Montes, 2013). The integration of

heterogeneous biological data via Linked Data technologies (where ontologies

play a crucial part), is a major strategy for the European Life Science

Infrastructure for Biological Information (ELIXIR) initiative (Crosswell &

Thornton, 2012).

9
 http://www.bioontology.org/BioPortal

http://www.bioontology.org/BioPortal

11 introduction

OBO format

The OBO ontology language is a description logic language based on a simple

flat file format. Structurally OBO document consists of a header and a list of

stanzas. Stanzas describe Description Logic (DL) entities such as concept, role

and individual (Table 4). Each stanza contains a list of statements in a form of

tag-value pairs. Built-in OBO semantics contains an extensive set of tags to

describe the entities. It also provides a limited set of XML Schema built-in

datatypes.

Stanza OWL 2 analog Description

[Term] Class Terms model real word concepts.

[Typedef] ObjectProperty
Typedefs define relations (aka roles,

properties, predicates).

[Instance] Individual
Instances represent concrete objects that

belong to some class.

Table 4. OBO Stanzas

OBO language represents a subset of the OWL concepts sharing many

similarities with it. The simplicity of the format made it very popular for

ontology development.

While OBO format is quite simple and can be easily edited in any text editor

(Table 5), GO Consortium provides biologists with OBO-Edit ontology editing

tool (Day-Richter, Harris, Haendel, & Lewis, 2007).

[Term]
id: EDAM_data:0871
name: Phylogenetic character data
comment: As defined, this concept would also include molecular sequences, microsatellites,
polymorphisms (RAPDs, RFLPs, or AFLPs), restriction sites and fragments
subset: bioinformatics
subset: data
subset: edam
synonym: "Character" RELATED []
created_in: "beta12orEarlier"
def: "Basic character data from which a phylogenetic tree may be generated."
[http://edamontology.org]
namespace: data
is_a: EDAM_data:2523 ! Phylogenetic raw data

Table 5. Phylogenetic character data definition example from EDAM ontology

(OBO format)

12 ontologies and semantics

1.4. Semantic Web

Semantic Web
10

 is W3C initiative to bring heterogeneous data to the Web.

Under the Semantic Web umbrella, W3C promotes a large collection of

Semantic Web technologies (Figure 7).

In contrast to traditional Web which is based mainly on HTML documents,

Semantic Web (sometimes referred as Web 3.0) is based on linked data in a

format that can be easily processed by software agents.

The special interest in Semantic Web from Life Sciences community is

illustrated by the activity in Semantic Web Health Care and Life Sciences

(HCLS) Interest Group
11

. Semantic Web opens exciting possibilities for

biological data integration and interoperability (Neumann, Miller, & Wilbanks,

2004). Improving life science data integration with Semantic Web technologies

(Katayama, et al., 2013) is a challenging task in bioinformatics.

10

 http://www.w3.org/standards/semanticweb/
11

 http://www.w3.org/blog/hcls/

Figure 7. Semantic Web Stack

http://www.w3.org/standards/semanticweb/
http://www.w3.org/blog/hcls/

13 introduction

1.4.1. Resource Description Framework (RDF)

RDF is a framework for representing information in the World Wide Web. The

information is represented as a collection of triples consisting of a subject, a

predicate and an object (Figure 8).

Predicates denote relationships between nodes (subjects and objects) and are

identified by URI references. Nodes may be also represented by the so-

called blank node, which lacks any intrinsic name but still has a local identifier.

Objects may also be literals (or constant values).

The collection of triplets forms an RDF graph (Figure 9) which may be

serialized in different formats (i.e. Turtle, N3, Manchester, JSON-LD).

RDF/XML syntax defines the way to serialize RDF graphs in XML format.

Because RDF/XML
12

 is the prevalent W3C standard syntax for RDF (Turtle has

been recently standardized
13

), RDF/XML documents are usually referred as RDF

ones.

12

 http://www.w3.org/TR/rdf-syntax-grammar/
13

 http://www.w3.org/TR/turtle/

Figure 8 RDF triple

Figure 9. RDF graph example

The part of WSDL 2.0/RDF ontology that describes getEntryFromPDB BioMoby

Web service.

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/turtle/

14 ontologies and semantics

Besides the already mentioned text-based formats, there is a great interest in

providing more compact Binary RDF Representation
14

. Header–Dictionary–

Triples (HDT) format (Fernández, Martínez-Prieto, Gutiérrez, Polleres, & Arias,

2013) is a binary format that is more compact than other existing RDF

serialization formats. HDT separates dictionary from triples and doesn’t require

parsing the entire RDF document to access parts of the RDF graph. HDT

demonstrates a high level of compressibility and scalability for very large

datasets.

RDF defines three predefined build-in types to describe groups of things:

 rdf:Bag - A Bag represents a group of resources or literals, possibly

including duplicate members, where there is no significance in the

order of the members.

 rdf:Seq - A Sequence represents a group of resources or literals,

possibly including duplicate members, where the order of the

members is significant.

 rdf:Alt - An Alternative represents a group of resources or literals that

are alternatives (typically for a single value of a property).

RDF vocabulary listed in section 5.1 of the specification defines all URI

references which are given specific meaning by RDF. These references have

defined by the RDF specifications leading substring:

http://www.w3.org/1999/02/22-rdf-syntax-ns#

The URI corresponds to XML namespace in RDF/XML serialization and

conventionally associated with rdf: prefix.

A possibility to represent public bioinformatics databases in RDF format has

been successfully explored by the Bio2RDF project (Belleau, Nolin, Tourigny,

Rigault, & Morissette, 2008). While Bio2RDF warehouse approach clearly

demonstrates benefits of semantic web data integration, the full power of

Semantic Web may be achieved by uncovering its distributed nature as more

biological databases are exposed in RDF format (Redaschi & Consortium, 2009)

(Jupp, et al., 2014).

14

 http://www.w3.org/Submission/HDT/

http://www.w3.org/Submission/HDT/

15 introduction

1.4.2. RDF in Attributes (RDFa)

The Web is built around HTML which is designed for information

visualization. While HTML pages can contain an enormous amount of

information, their automatic processing by software agents is quite complicated.

RDFa provides a collection of attributes to express RDF in markup languages

such as HTML or XHTML. Embedding RDF-based metadata into (X)HTML

pages, improves automatic processing without affecting their visualization.

Oriented to Web authors, RDFa provides simplified RDFa Lite version which

consists only of five simple attributes and covers most of the developers’ needs.

property description
@prefix used to assign a short-hand prefix for some vocabulary

@vocab specifies default vocabulary to be used

@typeof specifies a type of the subject (processed element)

@property provides the property (or predicate) for the subject

@resource Specifies subject’s identifier (instance id)

Table 6. RDFa Lite properties

1.4.3. RDF Schema (RDFS)

RDF language provides a minimum syntax to define RDF graph data model.

The meaning of the model is left undefined unless additional semantics is

provided. RDF Schema, abbreviated as RDFS, is a semantic extension of RDF

that provides mechanisms for describing groups of related resources and the

relationships between these resources. RDFS vocabulary allows to describe

simple ontologies via classes and properties.

RDFS Vocabulary

RDFS Classes
rdfs:Resource, rdfs:Class, rdfs:Literal, rdfs:Datatype,

rdfs:Container

RDFS Properties

rdfs:domain, rdfs:range, rdfs:member, rdfs:subClassOf,

rdfs:subPropertyOf, rdfs:ContainerMembershipProperty,

rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy

Table 7. RDFS vocabulary

16 ontologies and semantics

1.4.4. SPARQL 1.1

SPARQL 1.1 is a set of specifications that facilitate RDF graph content

querying and manipulation. SPARQL 1.1 significantly extended the original

SPARQL Protocol and RDF Query Language (SPARQL) introducing new

features such as Update language, Federated Query, Graph Store HTTP Protocol,

etc.

While SPARQL Query Language
15

 allows RDF data retrieval, SPARQL 1.1

Update
16

 defines a standard way to update RDF data providing similar to

Structured Query Language (SQL) capabilities.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX sawsdl: <http://www.w3.org/ns/sawsdl#>
INSERT DATA {
 <urn:lsid:inb.bsc.es#wsdl.interface(describePDB)> sawsdl:modelReference 'http://example.com'
}

Table 8 SPARQL insert query example

SPARQL 1.1 Federated Query
17

 is a SPARQL 1.1 Query Language extension

for query execution over explicitly defined SPARQL endpoints.

Alternatively to SPARQL 1.1 Update, SPARQL 1.1 introduces the REST-like

Graph Store HTTP Protocol
18

. The protocol uses traditional GET, PUT, POST,

and DELETE HTTP terms to manage RDF graphs (Figure 10).

15

 http://www.w3.org/TR/rdf-sparql-query/
16

 http://www.w3.org/TR/sparql11-update/
17

 http://www.w3.org/TR/sparql11-federated-query/
18

 http://www.w3.org/TR/sparql11-http-rdf-update/

Figure 10. SPARQL Update via HTTP protocol

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-http-rdf-update/

17 introduction

1.4.5. OWL 2 Web Ontology Language

The OWL 2 ontology language is a set of specification documents describing

its conceptual structure, RDF/XML exchange syntax, semantics and

conformance requirements (Figure 11).

OWL 2 language is defined in is defined in the OWL 2 Structural

Specification document
19

. Any OWL 2 ontology can be represented as an RDF

graph
20

. While OWL 2 Structural Specification defines OWL 2 language

constructs, the Direct Semantics
21

 specification defines the meaning in terms of

Description Logic (DL) concepts. Ontologies interpreted using the Direct

Semantics specification are informally called “OWL 2 DL”. Another

interpretation is based on RDF-Based Semantics
22

 where meaning is directly

assigned to RDF graphs. RDF graphs considered as OWL 2 ontologies are

informally called “OWL 2 Full”.

The primary exchange syntax for OWL 2 is RDF/XML, but other concrete

syntaxes may also be used (Figure 12).

19

 http://www.w3.org/TR/owl2-syntax/
20

 http://www.w3.org/TR/owl2-mapping-to-rdf/
21

 http://www.w3.org/TR/owl2-direct-semantics/
22

 http://www.w3.org/TR/owl2-rdf-based-semantics/

Figure 11. The structure of OWL 2

http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-mapping-to-rdf/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/

18 ontologies and semantics

One of the important characteristics of DL languages is the possibility of

implicitly represent knowledge inference via DL reasoners. OWL 2 comes with

several profiles that further restrict OWL 2 DL, thus limiting its expressive

power for the efficiency of reasoning:

 OWL 2 EL profile provides polynomial time reasoning with respect to

the size of the ontology and is suitable for very large ontologies. The

profile is based on EL family of description logics that provide only

existential quantifications.

 OWL 2 QL profile provides similar to conventional relational database

systems querying in polynomial time. The profile is aimed at

applications that use very large volumes of instance data. Query

answering in this profile can be implemented by rewriting queries into a

standard relational Query Language (QL).

 OWL 2 RL profile provides polynomial time reasoning with respect to

the size of the ontology without sacrificing too much expressive power.

Reasoning in this profile can be implemented using a standard Rule

Language (RL).

Despite several years on from the OWL 2 recommendation, most of the

ontologies still use only a fraction of its power (Glimm, Hogan, Krötzsch, &

Polleres, 2012). Often ontologies are simply used as a means to provide semantic

descriptions that can be used to annotate other resources such as Web services,

databases, applications, etc. (Ison, et al., 2013).

Figure 12. Example of different OWL 2 syntaxes

19 introduction

The possibility to use DL reasoners stirs interest in OWL language (Jupp,

Stevens, & Hoehndorf, 2012), and bio-ontologies are slowly moving towards it

(Hastings, et al., 2012).

<owl:Class rdf:about="http://edamontology.org/data_0871">
 <rdfs:label>Phylogenetic character data</rdfs:label>
 <rdfs:subClassOf rdf:resource="http://edamontology.org/data_2523"/>
 <oboOther:namespace>data</oboOther:namespace>
 <created_in>beta12orEarlier</created_in>
 <oboInOwl:inSubset>edam</oboInOwl:inSubset>
 <oboInOwl:inSubset>bioinformatics</oboInOwl:inSubset>
 <oboInOwl:inSubset>data</oboInOwl:inSubset>
 <oboInOwl:hasDefinition>Basic character data from which a phylogenetic tree may be
generated.</oboInOwl:hasDefinition>
 <rdfs:comment>As defined, this concept would also include molecular sequences,
microsatellites, polymorphisms (RAPDs, RFLPs, or AFLPs), restriction sites and
fragments</rdfs:comment>
 <oboInOwl:hasRelatedSynonym
rdf:resource="http://www.evolutionaryontology.org/cdao.owl#Character"/><!--Character-->
</owl:Class>

Table 9. Phylogenetic character data definition example from EDAM ontology (OWL 2)

20 ontologies and semantics

1.4.6. The Semantic Web Rule Language (SWRL)

Description Logic (DL) languages such as OWL are limited to a formal

representation of knowledge and have limited expressiveness that may be

extended with rules. SWRL is an expressive OWL-based language that includes

a high-level abstract syntax for Horn-like rules. SWRL is based on a

combination of the OWL DL dialect of the OWL language with a Rule Markup

Language (RuleML) and may be expressed either in OWL XML Presentation

Syntax (XML Concrete Syntax) or in OWL RDF/XML exchange syntax (RDF

concrete syntax). RDF concrete syntax may be accomplished by applying an

XSLT transformation to the OWL XML Presentation syntax. SWRL rule axiom

consists of an antecedent (body) and a consequent (head) parts (IF-THEN

construct).

With the advent of OWL 2 many SWRL rules may be efficiently expressed as

DL axioms (for instance restrictions on datatype properties).

1.4.7. Rule Interchange Format (RIF)

While SWRL was designed as an extension to OWL, there are many other rule

languages like N3-Logic (Berners-Lee, Connolly, Kagal, Scharf, & Hendler,

2008), SILK (Grosof, 2009), OntoBrocker (Decker, Erdmann, Fensel, & Studer,

1999), etc. The variability of rule languages creates interoperability and

integration difficulties. RIF is a W3C standard for exchanging rules among rule

systems and engines. RIF specification describes three dialects that are focused

on logic-based and production rule languages.

 RIF-Core dialect corresponds to the language of definite Horn rules

without function symbols (often called 'Datalog') with standard first-

order semantics.

 RIF-BLD dialect corresponds to the language of definite Horn rules

with equality and standard first-order semantics.

Figure 13. RIF dialects.

21 introduction

 RIF-PRD dialect captures the main aspects of various production rule

systems. RIF-PRD semantics is based on OMG Production Rule

Representation specification
23

.

Although RIF dialects were designed primarily for rules interchange, each

dialect constitutes a standard rule language and thus may be directly used.

Recognizing that RIF rules should be able to interface with RDF and OWL

ontologies, RIF RDF and OWL Compatibility specification is included into RIF

specifications set.

1.4.8. Linked Data

Linked Data (LD) is a part of W3C Semantic Web initiative that includes

many of described previously technologies and which basic idea is to bring

semantic data to the Web. The goal of LD is to consolidate huge amount of

semantic data available on the Web via the LD Platform
24

 and other

complementary specifications.

The purpose of Linked Data Platform is to establish a set of rules for

accessing, updating, creating and deleting RDF resources via HTTP protocol.

Note that other specifications already have similar functionality (e.g. SPARQL

1.1 Graph Store HTTP Protocol
25

).

The interesting feature of LD Platform is a possibility to manage non-RDF

data. This feature makes LD Platform an interesting option for non-semantic

data integration. Many biological data formats (e.g. PDB, FASTA, PIR, etc.)

have no RDF representation, but may be easily referred via LD Platform.

Although LD Platform specification is quite recent, the interest in the platform

within Life Science community is very high (Goble, et al., 2013), (Thompson, et

al., 2014). The ELIXIR initiative has considered the Linked Data approach as the

principal data interoperability strategy in Europe, and real work is already on the

way via HORIZON 2020 ELIXIR-EXCELERATE project
26

.

23

 http://www.omg.org/spec/PRR/1.0/
24

 http://www.w3.org/TR/ldp/
25

 http://www.w3.org/TR/sparql11-http-rdf-update/
26

 http://cordis.europa.eu/project/rcn/198519_en.html

http://www.omg.org/spec/PRR/1.0/
http://www.w3.org/TR/ldp/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://cordis.europa.eu/project/rcn/198519_en.html

22 web services

1.5. Web Services

Web Services is a predominant SOA architecture in the Web.

The platform independence made Web services a preferred choice for many

integration projects in bioinformatics.

While Web services are based on many technologies and consists of many

components, they usually associated with SOAP protocol (Figure 14). SOAP

protocol represents an essence of Web Services message oriented model. WSDL

document is used to describe Web services in XML grammar.

Another Web architecture which is gaining popularity in bioinformatics data

integration is REST. While REST is based on different conceptual principles

than Web services, Web APIs based on REST design often referred as RESTful

web services. Especial attention must be given to a difference between RESTful

Web APIs and an HTTP protocol REST is based on. Not all HTTP-based APIs

are RESTful. In fact, HTTP is also the primary protocol in use for SOAP

messages.

Figure 14. Web Services stack

23 introduction

1.5.1. HTTP

The RFC-2616
27

 defines HTTP as an application-level protocol for distributed,

collaborative, hypermedia information systems. HTTP is designed as a stateless,

request-response protocol for client-server architecture and is a main protocol for

the World Wide Web.

The stateless nature of the protocol and available cache-control mechanisms

allow to significantly reduce the amount of web traffic and increase overall Web

throughput. HTTP defines a set of request methods (or verbs) that have

predetermined protocol semantics (Table 10).

HTTP

Method
Description

GET Requests a representation of the specified resource.

HEAD Requests headers of the specified resource.

POST Requests the web server to accept the data for storage.

PUT Requests the web server to store the data.

DELETE Deletes the specified resource.

OPTIONS Returns HTTP methods supported for specified resource.

TRACE Loop-back the request message.

CONNECT Converts the request connection to a transparent TCP/IP tunnel.

Table 10. HTTP Methods

Other HTTP verbs may be further defined without breaking existing

infrastructure. For instance RFC-5789
28

 specified the PATCH verb Web

27

 http://tools.ietf.org/rfc/rfc2616.txt
28

 http://tools.ietf.org/rfc/rfc5789.txt

Figure 15. HTTP Request/Response

http://tools.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/rfc/rfc5789.txt

24 web services

Distributed Authoring and Versioning (WebDAV)
29

 that extends HTTP with

seven new verbs.

All HTTP Response messages include a status code which reports whether the

operation was successful or no. The first digit of the status code specifies one of

five classes of response:

 1xx: Informational - Request received, continuing process.

 2xx: Success - The action was successfully received, understood, and

accepted

 3xx: Redirection - Further action must be taken in order to complete

the request

 4xx: Client Error - The request contains bad syntax or cannot be

fulfilled

 5xx: Server Error - The server failed to fulfill an apparently valid

request

The status code is usually followed by a reason phrase which is a textual

status code interpretation (for instance 404 - “Not Found”, 200 – “OK”, 418 -

“I'm a teapot”).

HTTP defines a set of standard headers that provide additional information

about the message content. Headers may indicate content media type and

encoding. They are also used for content negotiation, cache control or

authentication purpose.

The Internet Engineering Task Force (IETF) is recently approved the HTTP 2.0

version of the protocol
30

. HTTP 2.0 uses binary message framing and is not

compatible with previous versions. However, it keeps HTTP 1.1 semantics

unchanged that makes them identical from the application level perspective.

29

 http://tools.ietf.org/rfc/rfc4918.txt
30

 http://tools.ietf.org/rfc/rfc7540.txt

http://tools.ietf.org/rfc/rfc4918.txt
http://tools.ietf.org/rfc/rfc7540.txt

25 introduction

1.5.2. SOAP

SOAP is a lightweight XML-based protocol developed for Web services.

Designed to be neutral, SOAP doesn’t impose any particular transport protocol

usage and may be used over many protocols such as HTTP, SMTP, TCP, or

JMS. To achieve this independence SOAP message is divided into two parts

(Figure 16):

SOAP Header which contains a message specific part and SOAP Body which

contains an actual message payload. The protocol neutrality put an additional

complexity, thus gaining a criticism from a REST camp.

1.5.3. WSDL

WSDL 1.1 is an XML format for Web services definition was submitted to the

W3C consortium in 2001. Although it was never accepted as a standard it was

quickly accepted by industry and is still prevalent format for Web services

description. Recognizing its inaccuracy and incompleteness Web Services

Interoperability Organization (WS-I) was formed to improve the specification. In

parallel W3C consortium was working on a second version of WSDL which was

to resolve many issues found by WS-I. WSDL 2.0 brought a new component

model into a scene and greatly improved the extensibility and interoperability

(Figure 17).

Figure 16. SOAP Envelope

26 web services

WSDL 2.0 deliberately separates the core language from predefined extensions

(RPC, SOAP and HTTP bindings). It also separates the component model from

the XML infoset which defines WSDL 2.0 syntax. The component model

imposes many semantic constraints that cannot be validated using the WSDL 2.0

schema. For instance WSDL 2.0 defines top elements ordering which is not

reflected in the WSDL 2.0 schema.

1.5.4. REST

REST is the architectural style developed by W3C Technical Architecture

Group (TAG) in parallel with HTTP/1.1 protocol. Being a design pattern, REST

principals may be implemented with any application level protocol which

provides sufficient means to follow REST principles. These principles are based

on a concept of resource which must be uniquely identified by a resource

identifier. One of the important constraints of the architecture is resource

statelessness. The resource identifier must contain all necessary for the resource

location. Identified resources characterize conceptual entities and may be

described via various representations. For instance the same image resource may

be represented in different image formats. This additional information or media

type forms part of representation metadata. Other information such as control

data may be also passed by underlying protocol.

Undeniably, HTTP protocol is a primary choice for the REST architecture

comprising all necessary elements.

Figure 17. WSDL 1.1 / 2.0 model

27 introduction

REST HTTP

resource identifier URI, URL

representation Content (HTML, XML, PNG, etc.)

representation metadata Media Types

resource metadata Vary

control data HTTP Verbs

Table 11. REST data elements

Web interfaces that follow REST architecture style often referred as RESTful

web services. These services adopt HTTP verbs to provide resource management

and in many cases represent an elegant alternative to traditional SOAP-based

ones. While RESTful web services are not limited to standard HTTP methods

they usually adopted them for the purpose.

HTTP Verb
Resource

Collection Item

GET Returns a list of items Return the item

PUT Replace entire collection Create / Replace the item

POST Create a new item Not used

DELETE Remove entire collection Remove the item

Table 12. HTTP methods in RESTful API

Because of the simplicity, REST architecture is very popular for

bioinformatics Web services development (some examples are RCSB PDB

REST API
31

, KEGG REST-like API
32

, ChEMBL Web Services
33

, UniProt
34

).

Along with SOAP services, RESTful Web services may be described via WSDL

2.0 (Guardia, Pires, Véncio, Malmegrim, & de Farias, 2015). Nowadays,

RESTful Web services development has become a routine task for

bioinformatics developers.

31

 http://www.rcsb.org/pdb/software/rest.do
32

 http://www.kegg.jp/kegg/rest/keggapi.html
33

 https://www.ebi.ac.uk/chembl/ws
34

 http://www.uniprot.org/help/programmatic_access

http://www.rcsb.org/pdb/software/rest.do
http://www.kegg.jp/kegg/rest/keggapi.html
https://www.ebi.ac.uk/chembl/ws
http://www.uniprot.org/help/programmatic_access

28 web services

1.5.5. WADL

WADL is an XML-based language for HTTP-based applications description.

In many cases WADL overlaps with WSDL HTTP Binding in the provided

functionality, but being specially oriented to the description of RESTful web

services, and often considered as much simpler alternative. Like WSDL HTTP

Binding, WADL allows defining URI-based parameters, HTTP headers and may

include XML Schema definitions (Table 13). While WSDL operates with

interfaces and their operations, WADL operates with resources and methods

(Takase, Makino, Kawanaka, Ueno1, Ferris, & Ryman, 2008).

<wadl:application xmlns:wadl="http://wadl.dev.java.net/2009/02"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <wadl:grammars>
 <xs:schema xmlns:tns="http://www.rcsb.org/pdb/rest/">
 <xs:element name="current" type="current"/>
 <xs:element name="PDB" type="PDB"/>
 <xs:complexType name="current">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="PDB" type="PDB"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="PDB">
 <xs:attribute name="structureId" type="xs:string"/>
 </xs:complexType>
 </xs:schema>
 </wadl:grammars>
 <wadl:resources base="http://www.rcsb.org/pdb/rest/">
 <wadl:resource path="getCurrent">
 <wadl:method name="GET">
 <wadl:request>
 <wadl:param xmlns="" name="PDB" style="query" type="PDB"/>
 </wadl:request>
 <wadl:response>
 <wadl:representation xmlns="" element="current" mediaType="application/xml"/>
 </wadl:response>
 </wadl:method>
 </wadl:resource>
 </wadl:resources>
</wadl:application>

Table 13. WADL description of RCSB getCurrent Web service.

29 introduction

1.6. Semantic Web Services

Semantic Web Services (SWS) initiative is an intention to introduce Semantic

Web technologies to the Web Services architecture. While Semantic Web is

generally referred as Web of Data, SWS constitutes Web of Applications. SWS

promise better interoperability by taking advantage of meaningful, context-based

analysis of services functionality.

Given the large number of service providers that offer their Web services to

the bioinformatics community, the need to support a certain level of

interoperability is an important challenge. This interoperability may be achieved

on the syntactic level through a common XML Schema based definitions for

biological entities (Kalas, et al., 2010), or providing an additional semantic level

that describes these services and may be used for service discovery and

matching.

Acknowledging limitations of traditional Web Services many projects provide

their own SWS frameworks: MOBY-S, Semantic Markup for Web Services

(OWL-S), Web Service Modeling Ontology (WSMO), Lightweight Semantic

Descriptions for Services on the Web (WSMO-Lite), or Semantic Automated

Discovery and Integration (SADI). The common feature of these projects is the

usage of an ontology for service descriptions. On the other hand W3C published

Web Services Description Language (WSDL) Version 2.0: RDF Mapping

specification providing a possibility to express Web services descriptions in

OWL Web Ontology Language (OWL). Unlike other Web Service Description

projects, WSDL 2.0 RDF Mapping provides an ontology that directly reflects

WSDL 2.0 descriptions, making possible a reverse conversion. WSDL 2.0 RDF

mapping is not a standalone specification and defines a limited set of constraints

Figure 18. Evolution towards SWS

30 semantic web services

the WSDL specification imposes providing a minimalistic ontology to describe

Web services. The latter means that validity of Web service description

represented in OWL vocabulary cannot be verified through an ontology

reasoner.

While mentioned frameworks provide a solid basement for describing relevant

aspects of Web services all of them have issues with XML-based type system

description. Conventional Web service definition specifies XML as the message

interchange format
35

, and although WSDL 2.0 specification anticipates other

type system usage
36

, XML Schema is the only type system that it defines.

Matching XML Schemas with OWL ontologies is a non-trivial task. The

Semantic Annotations for WSDL and XML Schema (SAWSDL) extension

defines Schema mapping attributes (liftingSchemaMapping,

loweringSchemaMapping), and while it does not prescribe any particular

mapping representation scheme, the Extensible Stylesheet Language

Transformations (XSLT) language is generally assumed. Some SWS

frameworks consider SAWSDL grounding (Martin, Paolucci, & Wagner, 2007),

which in many cases may be seen as an intricacy given that SAWSDL is about to

provide semantic annotations to various parts of a WSDL, and in a case of pure

semantic representation of WS such annotations may be added directly.

35

 Definition: A Web service is a software system identified by a URI [RFC 2396], whose
public interfaces and bindings are defined and described using XML. Its definition can
be discovered by other software systems. These systems may then interact with the
Web service in a manner prescribed by its definition, using XML based messages
conveyed by Internet protocols.
http://www.w3.org/TR/wsa-reqs/
36

 Discussion of Alternative Schema Languages and Type System Support in WSDL 2.0
http://www.w3.org/TR/wsdl20-altschemalangs/

http://www.w3.org/TR/wsa-reqs/
http://www.w3.org/TR/wsdl20-altschemalangs/

31 introduction

1.6.1. OWL-S

OWL-S is a W3C Submission of refined DARPA agent markup language for

services (DAML-S). In simple terms OWL-S is OWL ontology to describe

SWS. Structurally the ontology is separated in three essential branches of

descriptions:

 Service Profile - provides general provisional information about the

service such as its name, description, or contact information, and may be

used to facilitate service discovery.

 Service Model - provides detailed information of how to interact with a

service. This information is modeled in terms of processes and may

describe not only simple, or “atomic” services, but also complex or

“composite” ones. The composite services are in essence workflows

with a sophisticated control rules defined (Sequence, Split, Split + Join,

Choice, Any-Order, Condition, If-Then-Else, Iterate, Repeat-While, and

Repeat-Until). Input and output parameters are defined as subclasses of

Semantic Web Rule Language (SWRL) variables.

 Service Grounding - specifies the details of how to access the service

and is consistent with WSDL's concept of binding. In this way Service

Model may be seen as an interface definition while Service Grounding

as a concrete protocol definition. OWL-S provides WSDL 1.1

grounding defining properties for the WSDL 1.1 elements. Because

OWL-S and WSDL use different type systems, to derive the message

part from the atomic process instance, an xsltTransformation property

may be used. The latter is similar to SAWSDL lowering schema

approach.

32 semantic web services

1.6.2. MOBY-S

BioMoby (The BioMoby Consortium, et al., 2008) project was indeed a

remarkable project in SWS frameworks oriented to bioinformatics. Semantic

MOBY (Lord, et al., 2004) project (also known as S-MOBY) made an attempt

to bring OWL-DL RDF descriptions for BioMoby web services and finally was

integrated as a MOBY-S branch of the BioMoby project. The change of the

name was due to the integration with another outstanding initiative –
my

Grid

(Stevens, Robinson, & Goble, 2003). This way
my

Grid embraced Semantic

MOBY and MOBY-S became an implementation of
my

Grid BioMoby

definitions (Wilkinson, Gessler, Farmer, & Stein, 2003) (Wilkinson, Schoof,

Ernst, & Haase, 2005).

Creation of BioMoby ontology simplified BioMoby integration with other
my

Grid projects like Taverna (Kawas, Senger, & Wilkinson, 2006) and extended

BioMoby visibility.

The BioMoby ontology consisted of four principal ontologies:

 Object Ontology provides structural and semantic descriptions

for common biological objects (e.g. “AminoacidSequence”,

“AntigenicAnnotation”, etc).

 Namespace Ontology defines an underlying source of objects,

usually a well-known resource (e.g. “UniProt”, “GO”, “PDB”, etc).

 Service Ontology provides exhaustive descriptions for BioMoby

Web services execution.

 Service Types Ontology provides a hierarchy of functions

performed by BioMoby services (“Alignment”, “Retrieval”, etc).

33 introduction

The
my

Grid ontology already defined many terms that are present in BioMoby.

The MOBY-
my

Grid Service ontology extended the latter providing BioMoby

specific terms to effectively describe BioMoby services (Table 14).

<rdf:RDF xmlns:a="http://www.mygrid.org.uk/mygrid-moby-service#"
 xmlns:b="http://protege.stanford.edu/plugins/owl/dc/protege-dc.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description rdf:about="http://www.inab.org/RESOURCES/MOBY-
S/ServiceInstances/inb.bsc.es,runTcoffeeEvaluateAlignments">
 <rdf:type rdf:resource="http://www.mygrid.org.uk/mygrid-moby-service#serviceDescription"/>
 <b:format>moby</b:format>
 <b:identifier>urn:lsid:biomoby.org:serviceinstance:inb.bsc.es,runTcoffeeEvaluateAlignments:2007-11-
16T13-34-31Z</b:identifier>
 <a:locationURI>http://inb.bsc.es/cgi-bin/mobyServices/dispatchers/asyncDispatcher.cgi</a:locationURI>
 <a:hasServiceDescriptionText>Evaluation of an alignment using Tcoffee.</a:hasServiceDescriptionText>
 <a:hasServiceNameText>runTcoffeeEvaluateAlignments</a:hasServiceNameText>
 <a:providedBy>...</a:providedBy>
 <a:hasOperation>
 <rdf:Description rdf:about="http://www.inab.org/RESOURCES/MOBY-
S/ServiceInstances/75b852b15ad35cc89f2cd2b6b82b2cef">
 <a:hasOperationNameText>runTcoffeeEvaluateAlignments</a:hasOperationNameText>
 <rdf:type rdf:resource="http://www.mygrid.org.uk/mygrid-moby-service#operation"/>
 <a:performsTask>...</a:performsTask>
 <a:inputParameter>
 <rdf:Description rdf:about="http://www.inab.org/RESOURCES/MOBY-
S/ServiceInstances/5871519782f3424481934981d2773e69">
 <a:hasParameterNameText>alignment</a:hasParameterNameText>
 <rdf:type rdf:resource="http://www.mygrid.org.uk/mygrid-moby-service#parameter"/>
 <a:objectType>
 <rdf:Description rdf:about="http://www.inab.org/RESOURCES/MOBY-
S/ServiceInstances/d16be0769a2ab60a6b0a51c2b391fa1b">
 <rdf:type rdf:resource="urn:lsid:biomoby.org:objectclass:Clustalw_Text:2001-09-21T16-00-
00Z"/>
 </rdf:Description>
 </a:objectType>
 <a:hasParameterType>
 <rdf:Description rdf:about="http://www.inab.org/RESOURCES/MOBY-
S/ServiceInstances/e614a99ac0d5a7012db8d29067203fe4">
 <rdf:type rdf:resource="http://www.mygrid.org.uk/mygrid-moby-service#simpleParameter"/>
 </rdf:Description>
 </a:hasParameterType>
 </rdf:Description>
 </a:inputParameter>
 <a:outputParameter>...</a:outputParameter>
 </rdf:Description>
 </a:hasOperation>
 </rdf:Description>
</rdf:RDF>

Table 14. BioMoby services description.

Example: runTcoffeeEvaluateAlignments service

34 semantic web services

Unlike other ontologies aimed at Web Services description, BioMoby

ontology also contained structural information for biological objects

serialization.

BioMoby utilizes its own XML-based message format (Table 15) which is

loosely defined at the BioMoby documentation.

<MOBY xmlns=”http://www.biomoby.org/moby”>
 <mobyContent moby:authority=”inb.bsc.es”>
 <mobyData queryID=”sip_1”>
 <Simple articleName=”sequence”>
 <AminoAcidSequence id="P00807" namespace="UniProt">
 <String articleName="SequenceString">MKKLIFL...</String>
 </AminoAcidSequence>

 </Simple>
 </mobyData>
 </mobyContent>
</MOBY>

Table 15. BioMoby message example

35 introduction

1.6.3. WSMO

WSMO is another W3C submission that provides ontological specifications of

Semantic Web services. Unlike OWL-S WSMO uses its own ontology language

– Web Service Modeling Language (WSML). Given that WSML is specially

designed for SWS modeling the difference between them is rather conceptual.

WSMO relies on the same WSML components:

 Ontologies. Ontologies are domain specific ontologies that are in use by

other WSMO components. Any WSMO component may be extended by

non-functional properties based on Dublin Core Metadata Element Set.

 Goals. Goals describe desired functionality for the service. It is similar

to service interface but from the user perspective and does not specify

any preconditions (input).

 Web Services. Web Services describes the Web service functionality

(capability) and interactions (interfaces). Interfaces expose they internal

functionality in a form of either choreography or orchestration.

Choreography provides all necessary details for the client-service

interaction, similar to OWL-S AtomicProcess. Orchestration is the

pattern of interactions with other Web services in order to achieve the

goal and is similar to OWL-S CompositeProcess.

 Mediators. Mediators are the core concept to resolve incompatibilities

on the data, process and protocol level providing appropriate

conversions.

1.6.4. WSMO-Lite

WSMO-Lite (Vitvar, Kopecký, Viskova, & Fensel, 2008) is yet another W3C

submission based on the Minimal Service Model (MSM) (Pedrinaci, Kopecký,

Maleshkova, Liu, Li, & Domingue, 2011). Unlike WSMO which is based on

WSML language, WSMO-Lite is based on OWL. MSM already covers WSDL

1.1 essential descriptions and WSMO-Lite further extends the ontology with

some WSMO concepts such as conditions and effects (capabilities) and

SAWSDL properties. SAWSDL Schema mapping provides a link between

semantic type system and XML Schema model.

1.6.5. SADI

SADI (Wilkinson, Vandervalk, & McCarthy, 2011) is not positioned as a

standard and consists of a number of recommendations for semantic service

description. SADI does not define any service description ontology, but the

framework itself uses MOBY-myGrid one. It also does not define any type

36 semantic web services

system proposing direct RDF data usage for service input and output. This way

SADI services may be seen as RESTful Web services that use RDF as a

message interchange format. Unlike XML-based protocols, that usually require

strict syntax based on XML Schema, the validity of the SADI message may be

dynamically determined by the semantic reasoner.

1.6.6. WSDL 2.0 RDF Mapping

WSDL 2.0 RDF Mapping (Kopecký, 2006) is the only W3C

recommendation
37

 to represent Web services as OWL ontology. The ontology

follows WSDL 2.0 component designator specification for IRI-references
38

.

WSDL 2.0 component local names are represented as a literal value of

rdfs:label property. The ontology does not strictly follow the WSDL 2.0

component model in places where OWL expressiveness is more appropriate. For

instance WSDL 2.0 extension mechanism is better represented through OWL

inheritance. WSDL 2.0 ontology provides mapping for predefined WSDL 2.0

extensions defined in WSDL 2.0 Adjuncts
39

.

The ontology does not enforce any structural or logical restrictions over

components, and may not be used for Web Services validation.

As other ontologies targeting SWS description, this ontology faces a problem

with XML Schema type system representation, providing only Qualified Names

of element declarations. It should be noted that neither OWL nor OWL 2

support xs:QName datatype and that WSDL 2.0 ontology uses its own

wsdl:QName class instead.

37

 http://www.w3.org/TR/wsdl20-rdf/
38

 http://www.w3.org/TR/wsdl20/#wsdl-iri-references
39

 http://www.w3.org/TR/wsdl20-adjuncts/

http://www.w3.org/TR/wsdl20-rdf/
http://www.w3.org/TR/wsdl20/#wsdl-iri-references
http://www.w3.org/TR/wsdl20-adjuncts/

OBJECTIVES

“A problem well stated is a problem half solved.”

Charles Ketterin

The need in standard approaches for biological data integration is especially

important in a context of ever increasing number of biological databases

(Galperin & Fernandez-Suarez, 2011). Ontologies occupy a paramount position

in Life Sciences providing an ample coverage for many biological domains. On

the other hand a lot of biological data cannot be statically described and is a

result of some software function. As applied to Web Architecture such functions

are referred as Web services. Providing semantic descriptions for biological

methods appears to be as important as providing semantic descriptors for

biological data. While a lot of frameworks have been proposed as a solution,

none of them became a standard and taking into account the fast pace of the

Semantic Web standardization process, this area of research constitutes a broad

field of investigation. The main objective is to investigate emerging W3C

standards in Semantic Web and their applicability to data integration in

bioinformatics. Three goals addressed by the thesis are:

 Provide a clear path for bioinformatics services development based on

ontologically defined data.

 Provide a transition path of the already established BioMoby platform to

the W3C standard-based solutions.

 Provide a practical and standard-based solution for the description of

bioinformatics methods based on ontological languages.

In consistency with objectives thesis results are divided into several parts:

 OWL 2 to XML Schema conversion tool to facilitate

bioinformatics web services creation (with an example of a

creation of semantically annotated sequence alignment Web

service based on OWL 2 ontology)

 Two different approaches for BioMoby web services

integration: Automatic web services proxy generation based

on BioMoby ontology and BioMoby ontology integration into

WSDL 2.0 descriptors.

 Semantic Web Services Registry based on OWL

representation of WSDL 2.0 descriptions.

 The integration of the developed Registry with Taverna

Workflow management and enactment tool.

MATERIALS AND METHODS

“A cudgel is the intellectual property of barbarians”

Eugene Kascheev

41 Materials and Methods

Technological choices

Previously formulated goals require a thorough analysis of existent approaches

in semantic data integration in bioinformatics. The analysis includes an

examination of requirements for the bioinformatics interoperability with a

special accent on compatibility with existent technological solutions. The latter

is especially important in a light of practical usage of developed framework.

Creation of the semantic framework also requires an evaluation of available

libraries for the Semantic Web initiative and probably software development

where existent tools are absent or unsuitable.

Semantic Web Services ontology

From a variety of semantic Web service description languages W3C Web

Services Description Language (WSDL) Version 2.0: RDF Mapping

specification has been chosen as a basement for the project. The choice is

explained by its direct WSDL coupling where both representations can be used

interchangeably. The latter is especially important given that many of

bioinformatics Web services already have their WSDL definition.

WSDL 2.0 component model is used as a core for the Semantic Web Registry.

Although WSDL 2.0 component model is quite different from the WSDL 1.1

one, the conversion is still possible and was already anticipated by the W3C
40

.

WSDL 2.0 also provides better than WSDL 1.1 HTTP-based Web services

applications description, what facilitates RESTful Web services description.

BioMoby integration libraries

Although Java BioMoby API (jMoby) provides all the functionality to search

and execute BioMoby Web services, it doesn’t provide a consistent model to

describe them. Every BioMoby Registry Web service requires different

parameters for the execution. The MobyCore and MobyCentral libraries are

based on the same JAXB-based model that can be easily serialized to the XML

description file. JAXB API is also an integral part of the standard JAX-WS API

that allowed to tremendously reduce libraries size.

40

 http://www.w3.org/2006/02/WSDLConvert.html

http://www.w3.org/2006/02/WSDLConvert.html

Java Servers Standards Projects
jBoss AS 7.2.1 Java EE 7 Server BioSWR

Apache Tomcat 6 +
GlassFish METRO +
Jersey

Java Servlet Container +
Java API for XML-Based Web Services 2.0 +
Java API for RESTful Services

BioNemus

Web Frameworks

RichFaces 4.5
JavaServer Faces 2.1 UI component
framework

BioSWR

Database Servers

MySQL 5.1 Server SQL Database Server BioSWR

Semantic Libraries

The OWL API OWL 2 Web Ontology Language BioSWR, OWL2XS

HermiT OWL Reasoner BioSWR, OWL2XS

Sesame SPARQL 1.1 BioSWR

WSDL/XML Schema parsers

WSDL4j WSDL Version 1.1 BioSWR, Galaxy Gears

Apache Woden WSDL Version 2.0 Galaxy Gears

Apache XmlSchema 2.1 XML Schema Language 1.1
BioSWR, ,BioNemus,
OWL2XS, Galaxy Gears

Table 16. Tools and libraries used in the projects

http://www.jboss.org/
https://www.jcp.org/en/jsr/detail?id=342
http://tomcat.apache.org/
https://metro.java.net/
https://jersey.java.net/
https://www.jcp.org/en/jsr/detail?id=154
https://jcp.org/en/jsr/detail?id=224
https://jcp.org/en/jsr/detail?id=311
http://richfaces.jboss.org/
https://www.jcp.org/en/jsr/detail?id=314
http://www.mysql.com/
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=53681
http://owlapi.sourceforge.net/
http://www.w3.org/TR/owl2-overview/
http://www.hermit-reasoner.com/
http://rdf4j.org/
http://www.w3.org/TR/sparql11-overview/
http://sourceforge.net/projects/wsdl4j/
http://www.w3.org/TR/wsdl
https://ws.apache.org/woden/
http://www.w3.org/TR/wsdl20/
https://ws.apache.org/xmlschema/
http://www.w3.org/XML/Schema

RESULTS

“Nothing happens until something moves.”

Albert Einstein

44 Part I – BioMoby ontology model integration

Part I – BioMoby ontology model integration

Emerged a decade ago, web services have been presented as the answer to

rationalize the landscape of modern bioinformatics. Web services could be found

through the use of generally available catalogues and the strict specification of

data formats makes possible to build workflows of compatible services and

perform complex bioinformatics analyses. This would draw a scenario where

non-experts could make use of bioinformatics as a routine tool without a deep

knowledge of the techniques involved. Besides, the programmatic nature of Web

services allows performing genome-wide analyses that are not feasible through

classical web applications. Despite of this ideal perspective, present Web

services lack the expected acceptance, no common specification adopted by

service providers and significant compatibility issues persist.

Initiated in 2001, and with the first stable version published in 2008, BioMoby

project was one of the earliest intentions to create a Web services platform for

bioinformatics. Indeed, it became a very popular open source framework with

thousands of services developed by many organizations. The distinct feature of

BioMoby was a semantic layer in the definition of data types that allows non-

experts to understand the biological contents of data objects.

The, at its time, revolutionary idea of providing a common ontology for

biological objects along with a central repository for web services descriptions

led to the creation of a consistent platform with a broad development support and

many tools being developed. Indeed, support of various development languages

(Java and Perl) and the availability of development tools provided a universal

acceptance by bioinformatics services developers. More than a thousand services

covering all sorts of bioinformatics applications can be found in BioMoby

Registry along to an extensive Object Ontology which describes hundreds

biological datatypes. Surprisingly enough, the availability of development tools

that made BioMoby so popular for developers, became a limitation in time of

new standards adoption. BioMoby implementation relied on an in-house XML

serialization that required a proprietary API (e.g. jMoby). Web Services

Definitions (WSDLs) generated by the BioMoby API are not understood by

standard programmatic tools and lack the semantic contents that makes

BioMoby special. This has restricted the use of BioMoby web services to on-

purpose built clients (Gordon & Sensen, 2007) and required the development of

specific plug-ins for popular clients like Taverna (Kawas, Senger, & Wilkinson,

2006). The present work has tried to conciliate the BioMoby framework with

standard web services technologies, through the development of a new Java API,

45 Results

and providing a pipeline to adapt the execution of BioMoby services to standard

clients, and technologies.

46 Part I – BioMoby ontology model integration

4.1.1. New lightweight Java API for BioMoby Registry access

and Web Services execution.

The requirement

. Although BioMoby platform was initially based on Perl, Java quickly became

to a scene with a jMoby API. The API brought to Java developers an opportunity

to create and execute BioMoby web services and provided means to work with

BioMoby registry servers.

Even though jMoby API provided all necessary functionality for BioMoby

developers, it had its limitations arisen from a custom XML binding framework.

Java platform already has a standard XML binding architecture (JAXB) that is

tightly integrated with a way how Java-based web services are developed (JAX-

WS). Non-standard XML binding leads to incompatibility issues with latest Java

Application Servers. Many external dependencies also required non-trivial

solutions (Gordon & Sensen, 2007) for BioMoby client applications developers.

Some issues arises from the BioMoby Central SOAP API, which although

provides all the functionality to manage BioMoby Registry, does not represent a

consistent API where common data structures may be reused by all SOAP

operations.

To overcome these restrictions a new lightweight BioMoby API has been

developed.

47 Results

Implementation

The implementation consists of several libraries. A core functionality that

includes a BioMoby message format parser and web-services execution part

enclosed in a MobyCore
41

 library. The part responsible for BioMoby Registry

server interactions encapsulated within a MobyCentral library. Both libraries are

based on Java API for XML-Based Web Services (JAX-WS) that is an integral

part of Java 6 platform. The MobyCore library is intended to work with pre-

generated objects that reflects BioMoby ontology, but also allows a manual

BioMoby message creation. In fact it is possible to mix both approaches within a

same message construction.

The library implements a BioMoby Asynchronous Services specification

based on OASIS Web Services Resource Framework (WSRF). Generated by a

MobyGenerator utility, Java ontology classes are quite similar to those generated

by MoSeS
42

 tool with a difference that all the XML serialization is done by Java

Architecture for XML Binding (JAXB) API.

Because there is no external library dependencies, libraries are very small and

provide a very light-weight solution for Java based Rich Applications

developments. While it is possible to use the MobyCore library for web services

development, a BioMoby encoding format (SOAP 1.1 Section 5) is considered

obsolete by Web Services Interoperability Organization (WS-I) and has poor

support in modern Java servers.

41

 http://sourceforge.net/projects/mobycore/
42

 http://search.cpan.org/dist/MOSES-MOBY/

Figure 19. MobyLite Java API

http://sourceforge.net/projects/mobycore/
http://search.cpan.org/dist/MOSES-MOBY/

48 Part I – BioMoby ontology model integration

Features

MobyCore

 RPC-encoded” and “Document-literal” SOAP binding style support.

 Synchronous and asynchronous (through WSRF) BioMoby web services

execution.

 May work with or without XML mapped Java datatype classes.

MobyCentral

 Provides all the functionality to work with BioMoby Registry servers.

MobyGenerator

 Generates JAXB based Java annotated BioMoby datatypes classes for

usage with MobyCore library.

49 Results

4.1.2. BioNemus. Creating SAWSDL bioinformatics services

based on BioMoby ontology model

Introduction

The popularity of BioMoby platform left an immense heritage in a form of

available services. Rewriting these services for W3C Web Services standards

compliance would require exceptionable efforts from service providers.

BioNemus tool automatically generates WS-I compatible web services using an

information provided by BioMoby Registry. Generated web services act as a

proxy between clients and original BioMoby ones.

Implementation

BioNemus is implemented as Java 6 applet/application and is based on

previously described lightweight BioMoby API. The lightweight BioMoby API

uses an XML format for services description that allows java code generation

through an XSLT transformation. In fact, the code generation may be upgraded

without a need to rebuild the tool, just by a modification of correspondent XSL

templates. Generated code is compiled using Java Compiler API (JSR-199)
43

provided by OpenJDK project
44

 what makes possible BioNemus applet usage

within web browsers.

Created by BioNemus Java web services application comply with Java API for

XML Web Services (JAX-WS) 2.1 specification
45

. Generated application is

packaged as a Java Web Application Archive (WAR) which structure is shown

on (Figure 20).

43

 http://jcp.org/en/jsr/detail?id=199
44

 http://openjdk.java.net/groups/compiler/
45

 http://jcp.org/en/jsr/detail?id=224

http://jcp.org/en/jsr/detail?id=199
http://openjdk.java.net/groups/compiler/
http://jcp.org/en/jsr/detail?id=224

50 Part I – BioMoby ontology model integration

 BioMoby datatypes are implemented as Java Architecture for XML Binding

(JAXB) 2.1
46

 annotated Java beans. BioMoby object ontology defines a

limited set of basic objects that have their direct mapping into BioNemus

datatypes (Table 17).

BioMoby object BioNemus type XML Schema type

Object NemusObject xs:complexType

String NemusString xs:string

Integer NemusInteger xs:int

Float NemusFloat xs:float

Boolean NemusBoolean xs:boolean

DateTime NemusDateTime xs:dateTime

Table 17. Correspondence between basic BioMoby objects and BioNemus types

Some BioMoby elements are also directly translated in their BioNemus

counterparts (Table 18).

BioMoby BioNemus Description

id nemusId
a biological entity identifier of any kind

(ie "PDB_ID", "UNIPROT_ID" ...)

namespace nemusNamespace

a concept of data origin, usually goes

along with an identifier

([id="P00807", namespace="UniProt"],

46

 http://jcp.org/en/jsr/detail?id=222

Figure 20 Generated Web Application internals

http://jcp.org/en/jsr/detail?id=222

51 Results

 [id="1PIO", namespace="PDB"]...)

SecondaryParameters parameters

usually specifies additional parameters

for a service

(ie BLAST parameters in runNCBIBlastp

service)

xrefs reference
A cross reference is an optional

component of any object.

Table 18. Correspondence between BioMoby and BioNemus elements

SAWSDL library is implemented as an extension to the JAX-WS Reference

Implementation (RI)
47

. OWL 2 serialization library is also based on JAXB 2.1

specification and provides OWL/XML serialization
48

.

BioNemus stores its ontology in a user home directory

($user_home$/.BioNemus2Cache/ontology.zip). The ontology.zip file contains a

set of XML Schemas with defined ontology datatypes. SAWSDL

modelReference attribute is used to unambiguously identify XML Schema

elements with their semantic counterparts.

<xs:element name="MD_Trajectory"
 type="tns:MD_Trajectory"
 sawsdl:modelReference="urn:lsid:biomoby.org:objectclass:MD_Trajectory">
 <xs:annotation>
 <xs:appinfo xmlns:a="urn:lsid:bionemus.org:annotation">
 <a:email>moby-services@mmb.pcb.ub.es</a:email>
 <a:description>Molecular Dynamics Output Trajectory containing MD Topology, Coordinates
and Restart Files.</a:description>
 </xs:appinfo>
 </xs:annotation>
</xs:element>
<xs:complexType name="MD_Trajectory">
 <xs:complexContent>
 <xs:extension base="ns1:NemusObject">
 <xs:sequence>
 <xs:element name="coordinates" type="ns1:NemusString" minOccurs="0"></xs:element>
 <xs:element name="restart" type="tns:MD_Restart" minOccurs="0"></xs:element>
 <xs:element name="struct" type="tns:MD_Structure" minOccurs="0"></xs:element>
 </xs:sequence>
 </xs:extension>
</xs:complexContent>
</xs:complexType>

Table 19 XML Schema definition for the MD_Trajectory BioMoby object

47

 http://jax-ws.java.net/
48

 http://www.w3.org/TR/owl2-xml-serialization/

http://jax-ws.java.net/
http://www.w3.org/TR/owl2-xml-serialization/

52 Part I – BioMoby ontology model integration

These schemas may be directly used to generate appropriate ontology classes

(for example XML Binding Compiler). They also may contain XML

annotations.

Functionality

The primary purpose of the application is a generation of web services from

BioMoby ontology.

BioNemus is a quite sophisticated development tool which provides various

options for web services generation:

 Management of XML Schema based datatypes ontology.

 Import of BioMoby datatypes ontology directly from BioMoby

repository servers.

 Generation of JAXB based Java classes in accordance with

corresponding XML Schema.

 Generation of REST JAVA EE 6 web services based on existent

BioMoby web services.

 Generation of SAWSDL / OWL 2 Java EE 5 web services based

on existent BioMoby web services.

 Generation of SAWSDL / OWL 2 Java EE 5 web services

templates based on ontology XML Schema.

Figure 21. BioNemus functional workflow

53 Results

 Support of asynchronous BioMoby Web Services through WS-

Addressing specification.

While the principal BioNemus feature is the generation of semantically

annotated document-literal web services based on BioMoby ontology, it can also

generate JAX-WS based web service template providing

de-novo web services development capability.

To generate a proxy application it is possible to use command line parameters

(Table 20). In this case generation is completely automatic.

parameter description

-url URL of the Registry. (if not specified, obtained by -registry namespace)

-registry
Registry namespace to connect to.
(optional, default 'http://www.inab.org/MOBY/Central')

-authority
Authority to generate a proxy.
(if not specified, proxy generated for all services)

-mode Type of generated proxy. ('METRO', 'SAWSDL', 'REST')

-fast Reuse cached datatype information.
-output Generated output proxy (*.war) file. (if not specified, $autority + '.war')

-help Help about parameters.

Table 20. BioNemus commandline parameters

For instance:

>java -jar BioNemus2.jar -mode REST

Generates REST-based web services for all INB authorities.

>java -jar BioNemus2.jar -authority inb.bsc.es -mode SAWSDL

Generates SOAP-based semantically annotated web services for the 'inb.bsc.es'

authority.

Usage of the generated services

Automatically generated proxy application for BioMoby web services may be

deployed into any Java Enterprise Edition compatible Java Application Servers

such as JBoss, Glassfish, etc.

There are two different kinds of proxies that can be generated by BioNemus

tool:

 Document/Literal SOAP-based Web-services based on JAX-WS 2.1

specification (requires JEE5 compatible server).

54 Part I – BioMoby ontology model integration

 RESTful web services based on JAX-RS 1.0 specification, that demands

JEE6 compatible server (i.e. JBoss 6)

For an execution of SAWSDL Document/Literal SOAP-based web services

any specification conformal tool may be used. For instance, it is possible to use

“wsimport” utility to generate all necessary artifacts:

>wsimport http://www.inab.org/dproxy/inb.bsc.es/runNCBIBlastp?wsdl

The example command generates a “runNCBIBlastp” web service client which

includes ontology classes, primitive datatypes and service related artifacts

(request, response, fault, etc.).

The generated web service may be executed using standard java

JAX-WS API:

NemusString str = new NemusString();

str.setValue("MKELNDLEKKYNAHIGVYALDTKSGKEVKFNSDK");

AminoAcidSequence sequence = new AminoAcidSequence();

sequence.setSequenceString(str);

RunNCBIBlastpRequest request = new RunNCBIBlastpRequest();

request.setSequence(sequence);

RunNCBIBlastp_Service service = new RunNCBIBlastp_Service();

RunNCBIBlastp port = service.getRunNCBIBlastpPort();

RunNCBIBlastpResponse response = port.runNCBIBlastp(request, 1, 180);

String blast = response.getBlastReport().getContent().getValue();

System.out.println(blast);

Table 21. Java code example for BLAST web service execution

55 Results

While it is possible to create a client using only provided WSDL file,

generated proxy application already contains necessary artifact libraries:

 /lib/services.jar - web-services interfaces.

 /lib/NemusDatatypes.jar - primitive datatypes

 /lib/NemusOntology.jar - ontology classes

Using these three libraries, it is possible to create a client without the

need of “wsimport” utility.

@WebServiceClient(name = "runNCBIBlastp",
 targetNamespace = "urn:lsid:proxy.bionemus.org:service",
 wsdlLocation = "http://www.inab.org/dproxy/inb.bsc.es/runNCBIBlastp?wsdl ")
public class RunNCBIBlastp_Service extends Service {
 public RunNCBIBlastp_Service(URL wsdl) {
 super(wsdl, new QName("urn:lsid:proxy.bionemus.org:service", "runNCBIBlastp"));
 }

 @WebEndpoint(name = "runNCBIBlastpPort")
 public RunNCBIBlastp getRunNCBIBlastpPort() {
 return super.getPort(new QName("urn:lsid:proxy.bionemus.org:service", "runNCBIBlastpPort"),
 RunNCBIBlastp.class);
 }

 public static void main(String[] args) {
 URL wsdl = RunNCBIBlastp_Service.class.getResource(
 "http://www.inab.org/dproxy/inb.bsc.es/runNCBIBlast?wsdl ");
 RunNCBIBlastp_Service service = new RunNCBIBlastp_Service(wsdl);
 RunNCBIBlastp port = service.getRunNCBIBlastpPort();

 NemusString string = new NemusString("MKELNDLEKKYNAHIGVYALDTKSGKEVKFNSDK");
 AminoAcidSequence sequence = new AminoAcidSequence();
 sequence.setSequenceString(string);

 try {
 BLAST__Text blast_text = port.runNCBIBlastp(sequence, null, null, null);
 System.out.println(blast_text.getContent().getValue());
 } catch(Exception ex) { ex.printStackTrace(); }
 }
}

Table 22. BLAST web service client

RESTful web services can be also generated by the BioNemus. Based on JAX-

RS 1.0 specification they use the same pattern as SOAP ones and are very easy

to use. Generated services support both XML Schema and JSON based

encoding, thus could be used directly from Javascript. Note that to create an

56 Part I – BioMoby ontology model integration

XML message it is possible to use ontology based java classes along with a

JAXB API.

URL url = new URL("http://www.inab.org/dproxy-rest/inb.bsc.es/getEntryFromPDB");
HttpURLConnection conn = (HttpURLConnection)url.openConnection();
conn.setRequestMethod("POST");
conn.setRequestProperty("Content-Type", "application/xml");
conn.setRequestProperty("Accept", "application/xml");
conn.setDoOutput(true);
NemusObject id = new NemusObject();
id.setNemusId("1pio");
id.setNemusNamespace(new QName(null, "PDB"));
JAXBContext ctx = JAXBContext.newInstance(NemusObject.class);
OutputStream out = conn.getOutputStream();
ctx.createMarshaller().marshal(id, out);
BufferedReader rd = new BufferedReader(new InputStreamReader(conn.getInputStream()));
String line;
while ((line = rd.readLine()) != null) {
 System.out.println(line);
}

Table 23. Java getEntryFromPDB RESTful web service execution

<html>
 <body>
 <script type="text/javascript">
 var url = "http://www.inab.org/dproxy-rest/inb.bsc.es/getEntryFromPDB";
 var http = new XMLHttpRequest();
 http.open("POST", url, true);
 http.setRequestHeader("Content-Type", "application/json");
 http.setRequestHeader("Accept", "application/json");
 http.onreadystatechange = function () {
 if (http.readyState == 4 && http.status == 200) {
 alert(http.responseText);
 }
 }
 var req = '{"nemusId" : "1pio", "nemusNamespace" : "PDB"}';
 http.send(req);
 </script>
 </body>
</html>

Table 24. JavaScript getEntryFromPDB RESTful web service execution

57 Results

Achievements

The main achievement of the project was its practical application for National

Institute of Bioinformatics (INB) BioMoby web services collection. Using the

BioNemus tool the complete offer of INB BioMoby web services were published

as Semantically Annotated Document/Literal ones. In addition RESTful access

is also provided with XML and JSON encoding support.

Authority
Web Services

synchronous asynchronous total

www.cnb.csic.es 3 4 7

inb.bsc.es 110 54 164

mmb.pcb.ub.es 41 1 42

cnio.es 6 10 16

genome.imim.es 21 0 21

bioinfo.cipf.es 9 0 9

pdg.cnb.uam.es 5 0 5

www.cnb.uam.es 1 2 3

cgl.imim.es 6 0 6

chrimoyo.ac.uma.es 3 0 3

www.bioinfo.uma.es 3 0 3

total 208 70 278

Table 25. web services by the authority

4.1.3. SAWSDL-based BioMoby ontology integration.

As said above, BioMoby project popularity was largely attributed to its

community-driven object ontology. The simplicity of the ontology which

provided a minimum of relationships such as inheritance (“is-a”) and

composition (“has-a” and “has”) contributed to its quick buildup with hundreds

of incorporated objects. Even BioMoby services were SOAP-based, BioMoby

didn’t embrace XML Schema as a datatype system, providing a custom message

serialization format encapsulated within a SOAP message. This peculiarity

required the usage of a special API to gather BioMoby services description.

These descriptions may be obtained through BioMoby Registry. Interestingly

enough, BioMoby Registry still provides WSDL 1.1 definitions, but since there

is no datatype information included, their utility is very limited.

In addition to SOAP-based API to access BioMoby Registry, BioMoby

platform provided RDF/OWL based web services descriptions based on
my

Grid

ontology. While XML Schema is the only type system supported by WSDL

58 Part I – BioMoby ontology model integration

specification
49

, semantic models may be embedded into WSDL descriptors as

suggested in SAWSDL recommendation
50

. To uncover this possibility the

tinyMOBY library has been developed providing an elegant way to mix

BioMoby WSDL descriptions with OWL/RDF based datatype definitions (Table

26).

49

 http://www.w3.org/TR/wsdl20-altschemalangs/
50

 http://www.w3.org/TR/sawsdl/#embedding

http://www.w3.org/TR/wsdl20-altschemalangs/
http://www.w3.org/TR/sawsdl/#embedding

59 Results

<?xml version="1.0" encoding="UTF-8"?>
<description targetNamespace="urn:lsid:inb.bsc.es">

 <rdf:RDF xmlns:mygrid-moby-service="http://www.mygrid.org.uk/mygrid-moby-service#">
 <owl:NamedIndividual

rdf:about="urn:lsid:inb.bsc.es#xmlns(ns1=wsdl.interfaceMessageReference(getAminoAcidSequence/getAmin

oAcidSequence/In))wsdl.typeDefinition(ns1:id,http://www.w3.org/TR/rdf-syntax-grammar)">
 <rdf:type rdf:resource="http://www.mygrid.org.uk/mygrid-moby-service#parameter"/>
 </owl:NamedIndividual>
 <owl:NamedIndividual

rdf:about="urn:lsid:inb.bsc.es#xmlns(ns1=wsdl.interfaceMessageReference(getAminoAcidSequence/getAmin

oAcidSequence/Out))wsdl.typeDefinition(ns1:sequence,http://www.w3.org/TR/rdf- syntax-grammar)">
 <rdf:type rdf:resource="http://www.mygrid.org.uk/mygrid-moby-service#parameter"/>
 </owl:NamedIndividual>
 </rdf:RDF>

 <types>
 <xs:schema targetNamespace="urn:lsid:inb.bsc.es">
 <xs:element name="getAminoAcidSequence" type="xs:string"

sawsdl:modelReference="urn:lsid:inb.bsc.es#xmlns(ns1=wsdl.interfaceMessageReference(getAminoAcidS

equence/getAminoAcidSequence/In))wsdl.typeDefinition(ns1:id,http://www.w3.org/TR/rdf-syntax-grammar)"/>
 <xs:element name="getAminoAcidSequenceResponse" type="xs:string"

sawsdl:modelReference="urn:lsid:inb.bsc.es#xmlns(ns1=wsdl.interfaceMessageReference(getAminoAcidS

equence/getAminoAcidSequence/Out))wsdl.typeDefinition(ns1:sequence,http://www.w3.org/TR/rdf-syntax-

grammar)"/>
 </xs:schema>
 </types>

 <interface name="getAminoAcidSequence">
 <operation style="http://www.w3.org/ns/wsdl/style/rpc" name="getAminoAcidSequence"

pattern="http://www.w3.org/ns/wsdl/in-out">
 <input element="tns:getAminoAcidSequence"/>
 <output element="tns:getAminoAcidSequenceResponse"/>
 </operation>
 </interface>
 <binding name="getAminoAcidSequenceBinding"
 interface="tns:getAminoAcidSequence"
 type="http://www.w3.org/ns/wsdl/soap"
 wsoap:protocol="http://www.w3.org/2006/01/soap11/bindings/HTTP/"
 wsoap:version="1.1">
 <operation ref="tns:getAminoAcidSequence">
 <input/>
 <output/>
 </operation>
 </binding>
 <service name="getAminoAcidSequence" interface="tns:getAminoAcidSequence">
 <endpoint name="getAminoAcidSequence"
 binding="tns:getAminoAcidSequenceBinding"
 address="http://inb.bsc.es/cgi-bin/mobyServices/dispatchersRetrieval/Dispatcher.cgi"/>
 </service>

</description>
Table 26. Embedding MOBY-S datatype definitions in WSDL 2.0 description

60 Part I – BioMoby ontology model integration

Functionality

The tinyMOBY library integrates MOBY-S object ontology into BioMoby

WSDL 2.0 descriptions using SAWSDL specification. The library is

implemented as an extension to tinyWSDL parser and is based on the new

lightweight BioMoby Java API. Using the BioMoby API, tinyWSDL may

directly connect to various BioMoby repositories for WSDL 2.0 descriptor

generation (Table 27).

MobyDescription mobyDescription =
MobyDescription.load("urn:lsid:biomoby.org:serviceinstance:inb.bsc.es,getEntryFromPDB:2008
08-05T15-30-11Z");
Description description = mobyDescription.getDescription();

Table 27. WSDL 2.0 description creation from BioMoby service identifier

Generated WSDL 2.0 descriptor contains the complete information about a

correspondent BioMoby service. The tinyMOBY library parses embedded

MOBY-S ontology to discover BioMoby service input/output parameters (Table

28).

SAWSDLInterfaceMessageReferenceExtensions ext1 =
(SAWSDLInterfaceMessageReferenceExtensions)
interfaceOperationInput.getComponentExtensions(WSDLPredefinedExtension.SAWSDL.URI);
SAWSDLElementDeclarationExtensions ext2 =
ext1.getSAWSDLElementDeclarationExtensions();
List<URI> modelReferences = ext2.getModelReferences();

MobyDescription mobyDescription = new MobyDescription(description);
for (URI modelReference : modelReferences) {
 TypeDefinition type = mobyDescription.getTypeDefinition(modelReference);
 Object param = type.getContent();
}

Table 28. Getting BioMoby service input parameters

61 Results

Achievements

The tinyWSDL library has been used in BioSWR project to integrate BioMoby

services with more than three hundred services registered. Generated by

tinyWSDL, WSDL 2.0 BioMoby service descriptions may be represented in

WSDL 2.0 RDF format, thus providing MOBY-S to WSDL 2.0 OWL ontology

conversion. The tight integration with the lightweight BioMoby Java API

simplifies BioMoby message creation and service execution.

62 Part II – XML Schema generation from OWL 2 ontologies

Part II – XML Schema generation from OWL 2 ontologies.

The OWL 2 Web Ontology Language (OWL 2) is quickly gaining popularity

as a primary choice for biological ontologies development. Its expressiveness

and great tools support offers many advantages over traditionally used in

biomedical domain Open Biomedical Ontologies (OBO) format. Many OBO

ontologies are moving to OWL 2 providing both versions simultaneously.

Nowadays ontology usage is an ordinary method for biological datatypes

classification. Ontologies are extensively used to provide interoperability in

Semantic Web Services. Despite the immense interest in RDF/XML format as a

type system for Semantic Web Services, XML Schema is the only standard

language to define the structure of web services messages. XML Schema

provides good data interoperability but suffers from the lack of semantics

support. Recognizing the value of semantics, W3C consortium published

SAWSDL specification which defines a mechanism for mapping between XML

Schema types and semantic data. Proposed for the mapping Extensible

Stylesheet Language Transformations (XSLT), present certain difficulties for

Schema lowering (semantic model transformation into an XML message)

providing that ontologies have very syntactically loose descriptions. The need to

maintain both structural and ontological descriptions of biological object

definitions requires considerable efforts from Semantic Web Services

developers. The OWL2XS tool mitigates this problem, providing an automatic

XML Schema generation from OWL 2 ontologies.

4.2.1. Implementation

The OWL2XS tool is implemented in Java language. OWL2XS uses HermiT

reasoner for ontology analysis and Apache XML Schema 2.0 library for XML

Schema serialization. The tool consists of a Java library
51

 and a simple graphical

application.

4.2.2. OWL 2 Model to XML Schema transformation

While there are many projects targeted XML Schema to OWL model

transformation (Bohring & Auer, 2005) (Tsinaraki & Christodoulakis, 2007),

mapping from OWL model to XML Schema is generally considered

inconceivable. This disbelief is grounded on inherent difference between two

models. The most important obstacle for OWL 2 to XML Schema models

51

 http://sourceforge.net/projects/owl2xs/

http://sourceforge.net/projects/owl2xs/

63 Results

transformation is in their structural differences. XML Schema is based on tree

model while OWL one is a graph based. Semantic Web languages such as OWL

are based on open world assumption, where anything that is not explicitly

negated is considered as possible. On the other hand XML Schema describes the

structure of an XML document and assumes a closed world domain. However,

notwithstanding the differences in the models, many similarities may be

identified and the transformation is still possible.

Many of OWL 2 entities have corresponding elements in XML Schema and

may be directly mapped to their XML Schema counterparts.

OWL 2 Classes

Classes are concepts of knowledge domain in which individuals are defined.

Classes define categories for instances and may be interpreted as object types. In

reference to XML Schema model, OWL classes may be translated into XML

Schema complex type elements.

OWL 2 XML Schema
Class data:Sequence <complexType

name="Sequence"
sawsdl:modelReference="http://inb.bsc.es/sobo/data#Sequence">

Table 29. OWL 2 Class representation in XML Schema

OWL 2 Properties

Properties are other important components of ontologies. OWL 2 has two

main categories of properties – object and data properties. Object properties

represent relationships between individuals while Datatype properties relate

individuals to data values. Properties are mapped to XML Schema elements.

In some cases Datatype properties may also be represented as XML Schema

attributes. Because XML Schema attributes may not be substituted, the

correspondent Datatype properties may not be a part of properties hierarchy

what put serious limitation for future ontology extension.

OWL 2
Class: data:CleavageSiteAnnotation

 SubClassOf: data:ProteinAnnotation

 and (property:score only xsd:nonNegativeInteger)

 and (property:score max 1 rdfs:Literal)

 and (property:mature_peptide only data:AminoacidSequence)

 and (property:mature_peptide some data:AminoacidSequence)
 and (property:mature_peptide max 1 data:AminoacidSequence)

XML Schema

64 Part II – XML Schema generation from OWL 2 ontologies

<complexType name="CleavageSiteAnnotation" >
 <complexContent>
 <extension base="tns:ProteinAnnotation">
 <sequence>
 <element name="score" type="float"/>
 <element name="mature_peptide" type="tns:AminoacidSequence"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Table 30. OWL 2 Properties representation in XML Schema

OWL 2 Datatypes

Datatypes are entities that refer to sets of data values. Most OWL 2

datatypes are taken from the set of XML Schema datatypes and thus may be

directly used. Custom datatypes are defined as a restriction of built-in ones

and may be mapped to XML Schema simpleType element.

OWL 2

Datatype format:ClustalW
 EquivalentTo:
 (format:MultipleAlignment and xsd:string[pattern "^(CLUSTAL W)[]?\x28([0-9]+\.[0
9]){1}\x29 (multiple sequence alignment)([\n\r].*)+"^^xsd:string])

XML Schema

<simpleType name="ClustalW">
 <restriction base="tns:MultipleAlignment">
 <pattern value="^(CLUSTAL W)[]?\x28([0-9]+\.[0-9]){1}\x29 (multiple sequence
alignment)([\n\r].*)+"/>
 </restriction>
</simpleType>

Table 31. OWL 2 Datatype representation in XML Schema

65 Results

OWL 2 Class inheritance

Inheritance is an important type of class relationships. XML Schema

model is tree based and thus does not support multiple inheritance. One of

the peculiarities of XML Schema inheritance is presence of two types of

inheritance: extension and restriction. The derived type may either “extend”

another type (Table 32) by introducing new properties or “restrict” one

(Table 33) by putting property constraints. It is impossible to apply both

derivation methods simultaneously what may require a creation of an

intermediate abstract type (Table 34).

OWL 2

Class: data:Sequence
 SubClassOf: data:Data
 and (property:length only xsd:nonNegativeInteger)
 and (property:length max 1 rdfs:Literal)
 and (property:sequence some format:Sequence)
 and (property:sequence only format:Sequence)
 and (property:sequence max 1 format:Sequence)

XML Schema

<complexType name="Sequence">
 <complexContent>
 <extension base="tns:Data">
 <sequence>
 <element minOccurs="0" name="length" type="nonNegativeInteger"/>
 <element name="sequence" type="ns0:Sequence"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Table 32. XML Schema type extension example

66 Part II – XML Schema generation from OWL 2 ontologies

OWL 2

Class: data:MultipleSequenceAlignment

 SubClassOf: data:SequenceAlignment

 and (property:alignment only format:MultipleAlignment)

Class: data:ClustalW

 SubClassOf: data:MultipleSequenceAlignment

 and (property:alignment only format:ClustalW)

 and (property:alignment some format:ClustalW)

XML Schema
<complexType name="MultipleSequenceAlignment">
 <complexContent>
 <restriction base="tns:SequenceAlignment">
 <sequence>
 <element name="alignment" type="ns0:MultipleAlignment"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>
<complexType name="ClustalW">
 <complexContent>
 <restriction base="tns:MultipleSequenceAlignment">
 <sequence>
 <element name="alignment" type="ns0:ClustalW"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>

Table 33. XML Schema type restriction example

An OWL 2 class with several parents leads to XML Schema complex type

with no parents at all (Table 35). All inherited properties are copied into resulted

type providing structural equivalence to original OWL 2 class. This approach

represents a usual practice in XML Schema development, although it may lead

to incorrect schema.

67 Results

OWL 2

Class: data:MultipleSequenceAlignment
 SubClassOf: data:SequenceAlignment
 and (property:alignment only format:MultipleAlignment)
Class: data:OtherMSA
 SubClassOf: data:MultipleSequenceAlignment
 and (property:alignment only format:OtherMultipleAlignment)
 and (property:metadata only xsd:string)

XML Schema
<complexType name="MultipleSequenceAlignment">
 <complexContent>
 <restriction base="tns:SequenceAlignment">
 <sequence>
 <element name="alignment" type="ns0:MultipleAlignment"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>
<complexType name="OtherMSA_restriction">
 <complexContent>
 <restriction base="tns:MultipleSequenceAlignment">
 <sequence>
 <element name="alignment" type="ns0:OtherMultipleAlignment"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>
<complexType name="OtherMSA">
 <complexContent>
 <extension base="tns:OtherMSA_restriction">
 <sequence>
 <element name="metadata" type="string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Table 34. XML Schema type inheritance split example

68 Part II – XML Schema generation from OWL 2 ontologies

OWL 2
Class: A
SubClassOf: Thing
and (sequence only xsd:string)

Class: B
SubClassOf: Thing
and (annotation only xsd:string)

Class: C
SubClassOf: A, B

XML Schema
<complexType name="A">
 <sequence>
 <element name="sequence" type="string"

 minOccurs="0" maxOccurs="unbounded" />
 </sequence>
</complexType>
<complexType name="B">
 <sequence>
 <element name="annotation" type="string"

 minOccurs="0" maxOccurs="unbounded" />
 </sequence>
</complexType>
<complexType name="C">
 <sequence>
 <element name="sequence" type="string"

 minOccurs="0" maxOccurs="unbounded" />
 <element name="annotation" type="string"

 minOccurs="0" maxOccurs="unbounded" />
 </sequence>
</complexType>

Table 35. XML Schema type inheritance breakage example

69 Results

4.2.3. Practical applications for bioinformatics Semantic Web

Service development

The possibility to develop web services based on properly defined ontology

has a special interest from bioinformatics community. To provide bioinformatics

developers with a clear path for Semantic Web Services development, a Simple

Biological Objects Ontology (SOBO) has been developed.

The ontology follows EDAM architecture, implementing “data”, “format”

and “parameter” concepts. It also includes datatype information for proper

XML Schema generation.

Generated by the OWL2XS tool XML Schemas reflect SOBO ontology

taxonomy and may be immediately used for SWS development. All generated

XML Schema types preserve their OWL 2 origins through

sawsdl:modelReference annotations.

Web services development requires strong programming skills and greatly

depends on chosen platform and languages. Java is indeed one of the most

popular platforms for web services development. To provide developers with

detailed development process example, NCBI blastp web service, based on Java

API for XML Web Services (JAX-WS) has been developed
52

.

JAX-WS web service development usually suggests two approaches,

conventionally denoted as “WSDL first” and “java first”. The “WDSL first”

approach implies a creation of WSDL service description which is used for

52

 http://inb.bsc.es/documents/owl2xs/examples.html

Figure 22. SOBO ontology in Protegé

http://inb.bsc.es/documents/owl2xs/examples.html

70 Part II – XML Schema generation from OWL 2 ontologies

automatic java code generation. The disadvantage of the method may be in

awkward java code generated for datatypes. JAX-WS delegates the mapping of

XML definitions to Java API for XML Bindings (JAXB), which is based on

simplified XML Schema model. The “java first” approach is usually used by

Java developers when the resulted XML Schema is not supposed to be read by

humans. WSDL and related XML Schemas are generated automatically at the

time of web service deployment. The disadvantage is that any additional

metadata which may be included into web service descriptor is lost.

The approach taken for the example BLAST web service development is

mixed. Java representation of XML Schema is generated automatically using

XML Java Compiler tool. Then, generated datatypes are used in web service

development (“java first”). Finally, the service is instructed to utilize a manually

crafted WSDL descriptor with original semantically annotated XML schemas.

Created using the SOBO ontology, BLAST service is a standard SOAP-

based document/literal web service, which may be used by any standard tool

such as Taverna Workbench or SoapUI, and constitutes a guided example to the

creation of web services based on ontology definitions.

71 Part III – Ontology-based Service Description for bioinformatics integration

Part III – Ontology-based Service Description for

bioinformatics integration

Developing ontological specifications for web services description is an

important step on the way to Semantic Web Services. The striking number of

proposed solutions that have been appeared in the last decade reflects the

importance of the subject. Many projects bravely submitted their proposals to

W3C where eternalize as submissions. Ontological representation of web

services description facilitates service discovery and matching through query

languages. On the other hand XML-based description formats are simpler to

parse by software agents. WSDL 1.1 is the de-facto standard for web services

descriptions and so description ontologies usually provide some degree of

affinity. The latter is highly anticipated by service developers since most of

development tools are based on it. Rising popularity of RESTful web services

puts additional requirements on the ontology to support them.

The diversity of proposed specifications for Semantic Web Services hinders

they adoption in Life Sciences, despite the enormous amount of research taking

place. Bioinformatics services cataloging and annotation are important

challenges already addressed in projects such as the EMBRACE web service

collection (Pettifer, et al., 2009) or Biocatalogue (Bhagat, et al., 2010). Providing

a standard semantic way to access to the registries may further improve their

usability (García, Ruiz, & Cortés, 2012). The experience gained working with

several web services registries oriented to life science community allowed to

create a clear vision of community needs to be addressed by a modern Semantic

Web Registry.

72 Results

4.3.1. BioSWR: Semantic Web services Registry for

Bioinformatics.

BioSWR is a new generation web services catalogue based on latest W3C

standards. The peculiarity of BioSWR is in its twofold web services

representation, traditional WSDL-based and semantical one based on OWL

ontology. This distinctive feature reveals Semantic Web potential providing at

the same time compatibility with existent web services development tools.

Implementation

The Registry is implemented in Java Enterprise Edition 6 platform. JavaServer

Faces 2.0 with JBoss RichFaces 4.1 library is used for the Web interface. REST

API is implemented using JAX-RS 1.1 specification. SPARQL protocol

implementation is based on openRDF Sesame framework (Broekstra, Kampman,

& van Harmelen, 2002).

WSDL 1.1 definitions are converted into WSDL 2.0 at the time of registration.

Nevertheless, it is still possible to obtain the original semantically enriched

WSDL 1.1 definitions via the Registry.

WSDL descriptors may include external WSDLs or XML schemas, which are

also stored in the Registry. It should be noted that stored descriptors and

schemas are modified to reflect the URLs assigned by the Registry.

73 Part III – Ontology-based Service Description for bioinformatics integration

The support of RESTful web services is implemented through the WSDL

HTTP Binding extension. WADL descriptors are automatically generated for the

HTTP-based services.OWL/RDF service description library

While descriptions based on provided by the recommendation ontology may

be created by any OWL tool, a library that is specially oriented to WSDL to

RDF mapping has been created for the project. WSDL2RDF
53

 library hides

OWL/RDF complicity from developers providing an easy and straightforward

API for the ontology management. Another advantage of the API usage is in

providing a certain level of consistency where introduced elements are verified

to be appropriate before incorporation into the ontology. WSDL2RDF

library strictly follows the original ontology provided by WSDL 2.0 RDF

Mapping specification
54

.

WSDL 2.0 parsing library

WSDL 2.0, being the most recent W3C specification for web services

description has not gained wide acceptance probably because of the little support

by software tools. Apache Woden Milestone 9 (Kaputin & Hughes, 2006) and

easyWSDL 2.0 (Boissel-Dallier, Lorré, & Benaben, 2009) was investigated to fit

the project needs. Woden doesn’t provide an important requirement to

manipulate WSDL 2.0 model, while easyWSDL has serious problems with

53

 http://sourceforge.net/projects/wsdl2rdf/
54

 http://www.w3.org/TR/wsdl20-rdf/

Figure 23. BioSWR general architecture

BioSWR server is based on the 3-Tier architecture. The presentation

level is based on JSF and RichFaces. MySQL database is used as a

backend and contains only two tables: users’ credentials and service

definitions.

http://sourceforge.net/projects/wsdl2rdf/
http://www.w3.org/TR/wsdl20-rdf/

74 Results

extensions parsing. These limitations required a creation of completely new

WSDL 2.0 parser library – tinyWSDL
55

.

The library supports WSDL 2.0 Adjunct extensions (SOAP, HTTP and RPC)

and may be integrated with Apache XML Schema library through

tinyXMLSchema extension. Apart from the standard WSDL 2.0 extensions

tinyWSDL library supports SAWSDL extension. When tinyXMLSchema

extension is used it is also possible to provide semantic references for the

referenced XML Schema elements.

Semantic enrichment

BioSWR provides EDAM Ontology (Ison, et al., 2013) integration through

SAWSDL modelReference attributes. The choice of the appropriate annotation

subject is defined internally using logical axioms and realized through semantic

reasoning (Figure 24).

Apart from SAWSDL references, basic OWL 2 annotation properties such as

rdfs:comment, rdfs:seeAlso and rdfs:isDefinedBy are supported. BioSWR

keeps track of all annotations, annotating them with rdfs:isDefinedBy

(annotation of another annotation). The latter provides flexibility in annotation

management, where only authorized authors may modify outdated annotations.

There is no programmatic way to manage semantic annotations, given that

standard SPARQL 1.1 Update operations are implemented.

Semantic data querying and update

55

 http://sourceforge.net/projects/tinywsdl/

Figure 24. Example of Semantic Rules definitions

75 Part III – Ontology-based Service Description for bioinformatics integration

One of the advantages of providing an ontological representation of web

services is the possibility to implement service discovery using query languages.

BioSWR provides SPARQL 1.1 protocol implementation for service discovery

and annotation (Figure 25).

The query returns a list of all registered web services in RDF/XML format. All

results are supplemented with a wsdli:wsdlLocation property to locate the

original WSDL 2.0 document to localize them in the Registry.

SPARQL 1.1 UPDATE may be used to manage semantic annotations such as

rdfs:comment and sawsdl:modelReference (Figure 26). Note that updates are

subject to security restrictions. Only authorized users are allowed to update

service annotations. Unless the updated service is marked as “unlocked” only a

service owner is allowed to manage its annotations.

Figure 25. SPARQL query example

76 Results

Semantic annotations may be removed using a similar procedure (Table 36).

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX sawsdl: <http://www.w3.org/ns/sawsdl#>

DELETE DATA { <urn:lsid:inb.bsc.es#wsdl.interface(getEntryFromPDB)>

sawsdl:modelReference 'http://example.com'^^<http://www.w3.org/2001/XMLSchema#string> }

Table 36. Delete annotation SPARQL query

Security credentials may be provided with HTTP request (Table 37).

String update = ”PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
 “PREFIX sawsdl: <http://www.w3.org/ns/sawsdl#> "
 “INSERT DATA ” +
 “{<urn:lsid:inb.bsc.es#wsdl.interface(getEntryFromPDB)> “ +
 “sawsdl:modelReference 'http://example.com' }”;

URI uri = URI.create("http://inb.bsc.es/BioSWR/rest/sparql/");
HttpURLConnection connection = (HttpURLConnection) uri.toURL().openConnection();

String credentials = “name:password";
connection.setRequestProperty("Authorization",
"Basic " + DatatypeConverter.printBase64Binary(credentials.getBytes()));
connection.setRequestMethod("POST");
connection.addRequestProperty("Content-Type", "application/sparql-update");
connection.setDoOutput(true);
connection.getOutputStream().write(update.getBytes());

Table 37. Java example for SPARQL UPDATE query execution

BioSWR REST API

While SPARQL is used to manage semantic annotations, web services storage

is managed by REST-based API (Table 38).

Figure 26. Insert SAWSDL reference via SPARQL UPDATE query

77 Part III – Ontology-based Service Description for bioinformatics integration

URL
HTTP

Method:
REST method description:

/service/register?url={url}

GET

Registers the WSDL description (either 1.1 or
2.0). WSDL 1.1 definitions are converted into
WSDL 2.0 descriptors. Note that while such
conversion is not always possible, it should
work for most services (SOAP and REST).

/service/register/?lsid={lsid} Registers BioMoby services by providing its
Life Science Identifier. Several BioMoby
Registries are consulted to find a service
definition.

/service
GET

Gets a complete OWL/RDF ontology
containing all registered services.

/service/{id}

GET

Get a web service description by its ID.
ID of the registered service is a HEX encoded
MD5 hash from the URL/LSID used for the
service registration. Note that for BioMoby
services, method returns a WSDL as returned
from BioMoby Registry. It is possible to
retrieve WSDL 2.0, OWL/RDF or WADL
description providing HTTP "Accept" header
with appropriate MIME type
("application/wsdl+xml", "application/rdf+xml"
or "application/vnd.sun.wadl+xml").

/service/{id} DELETE Deregister the service by its ID.

/service/deregister/{id} GET Deregister the service by its ID.
Table 38. BioSWR REST API

WADL support

BioSWR supports WSDL HTTP Bindings for RESTful web services

descriptions. Given that WSDL HTTP Binding support in web services

development tools is close to void, BioSWR provides automatic WADL

generation for the services. For simple RESTful web services that can be

accessed via internet browser (via HTTP GET request), BioSWR provides a

simple URL template that can be easily understood by users. The format of the

generated URL is supported by tools like Taverna.

WADL

<wadl:resources base="http://www.rcsb.org/pdb/rest/">
 <wadl:resource path="describePDB">
 <wadl:method name="GET">
 <wadl:request>
 <wadl:param name="structureId" style="query" type="xs:string"/>
 </wadl:request>
 <wadl:response>
 <wadl:representation
 xmlns="" element="PDBdescription" mediaType="application/xml"/>

78 Results

 </wadl:response>
 </wadl:method>
 </wadl:resource>
</wadl:resources>

WSDL 2.0

<wsdl:interface name="describePDB">
 <wsdl:operation name="describePDB">
 <wsdl:input xmlns="http://www.rcsb.org/pdb/rest/" element="request"/>
 <wsdl:output element="PDBdescription"/>
 </wsdl:operation>
</wsdl:interface>
<wsdl:binding xmlns:tns="http://www.rcsb.org/pdb/rest/"
 xmlns:whttp="http://www.w3.org/ns/wsdl/http"
 interface="tns:describePDB"
 name="describePDBBinding"
 type="http://www.w3.org/ns/wsdl/http"
 whttp:methodDefault="GET">
 <wsdl:operation ref="tns:describePDB"
 whttp:location="describePDB"
 whttp:outputSerialization="application/xml">
 <wsdl:input/>
 <wsdl:output/>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service xmlns:tns="http://www.rcsb.org/pdb/rest/"
 name="describePDBService"
 interface="tns:describePDB">
 <wsdl:endpoint name="describePDBPort"
 address="http://www.rcsb.org/pdb/rest/"
 binding="tns:describePDBBinding"/>
 </wsdl:service>

Table 39. WSDL 2.0 and WADL descriptions of the PDBdescription RESTful service

79 Part IV – Web Services integration into workflows execution tools

Part IV – Web Services integration into workflows

execution tools.

Despite the intrinsic power of web services technology is its integration as

external modules in more complex applications, the current bioinformatics use

has led less experienced or occasional users to prefer general purpose web

service clients. This allows to get almost the same functionality although at the

expense of a more manual and less flexible approach. To this end Taverna

(Hull, et al., 2006), became the standard for bioinformatics workflow

management, either through its interactive interface, or using Taverna Server

(Wolstencroft, et al., 2013). More recently, and especially with the dramatic

increase of the mount of biological data to be processed, tools based on a

personal workbench with data is kept in a single place. Galaxy (Goecks,

Nekrutenko, Taylor, & Galaxy, 2010) has become in the last years the election

platform for such usage. This section shows the work done in the integration of

some of the above technologies in these two platforms.

4.4.1. BioSWR Registry integration into the Taverna

Workbench.

Taverna Workbench is a popular open source tool for designing and executing

workflows. The simplicity of the workflow design and support of SOAP and

RESTful web services made it very popular in the bioinformatics community.

Given the immense number of available bioinformatics web services, the

determination of suitable service may represent a problem for the workflow

developer. To improve developers’ productivity Taverna includes the plugin that

allows workflow developers to browse services in the BioCatalogue life sciences

web services registry from the Workbench and add them to workflows
56

.

BioSWR Registry plugin
57

 (Figure 27) implements the similar functionality

providing in addition the support for the RESTful services and the possibility to

annotate them immediately from the Taverna’s Workbench.

56

 http://www.taverna.org.uk/documentation/taverna-2-x/taverna-2-x-
plugins/#biocatalogue_plugin

57
 https://github.com/taverna/taverna-bioswr-perspective

http://www.taverna.org.uk/documentation/taverna-2-x/taverna-2-x-plugins/#biocatalogue_plugin
http://www.taverna.org.uk/documentation/taverna-2-x/taverna-2-x-plugins/#biocatalogue_plugin
https://github.com/taverna/taverna-bioswr-perspective

80 Results

Implementation

BioSWR Registry plugin is implemented as the Taverna 3.0 OSGi (Open

Services Gateway initiative) plug-in and takes advantage of semantic nature of

the BioSWR Registry. The Web services list is retrieved as an ontology while

annotations are performed via SPARQL update query. The ontology is parsed

via the OWL API library. BioSWR plugin uses the tinyWSDL library that has

been repackaged as an OSGi component
58

.

58

 http://moby-dev.inab.org/m2/org/inb/bsc/tiny-wsdl/

Figure 27. Taverna 3.0 BioSWR OSGI plug-in

http://moby-dev.inab.org/m2/org/inb/bsc/tiny-wsdl/

81 Part IV – Web Services integration into workflows execution tools

4.4.2. Galaxy Gears. Web Services integration into Galaxy

workbench.

Modern computational biology analyses are usually comprised of different

tasks, and involve many software tools. For more than a decade, Web Services

Architecture has been extensively used in Life Sciences as an integration

platform to create complex workflows. Many collections, or registries, of

bioinformatics Web services have been created to help workflow developers

with thousands of available services. The utility of Web services registries

cannot be underestimated as they provide the unique point to localize vast

amount of computational resources. On the other hand, the popularity of task-

based bioinformatics platforms such as Galaxy (Goecks, Nekrutenko, Taylor, &

Galaxy, 2010) led to the need of integration of the already available Web

services into correspondent workbench environments. The logical step is to use

service description information available in existed registries to automate the

integration process (Ménager, Kalaš, Rapacki, & Ison, 2015).

With regard to Web services, WSDL descriptors contain complete information

for Web services execution, thus making automatic integration very plausible

challenge. Galaxy Gears (Figure 28) is a simple graphical application that using

provided in WSDL description information automatically generates Galaxy tool

definition file.

Figure 28. Galaxy Gears Java graphical tool

82 Results

The graphical tool analyzes provided WSDL descriptor and displays a simple,

flat view of the Web operation parameters. Users are given a possibility to select

which parameters must be considered as a workflow data and which should be

provided via the interface.

Implementation

Galaxy tool is a Java graphical application implemented in Java and based on a

custom Apache Taverna wsdl-generic library. The library is based on

WSDL4
59

, Apache Woden
60

 and Apache XML Schema 2.0
61

 libraries.

Methods

Web services execution usually requires the development of a client program

for each particular service, what does not suit well for dynamic environments

like workflow execution systems. Dynamic Web service execution requires run-

time message analysis and construction. The execution engine must thoroughly

analyze both, the Web service description, and messages format. To construct

Web service message content, all XML elements must be localized. For this

purpose XPath references may be used. XPath references allow flat, tabular

service parameters representation that fits well for a command line Web service

execution utility.

The developed wsdl-generic library is a generic library to analyze and

execute Web services based on WSDL description file (Figure 29). The library

was developed as a part the Apache Taverna project, and distributed under the

59

 http://wsdl4j.sourceforge.net/
60

 http://ws.apache.org/woden
61

 http://ws.apache.org/commons/xmlschema20/

Figure 29. wsdl-generic library architecture

http://wsdl4j.sourceforge.net/
http://ws.apache.org/woden
http://ws.apache.org/commons/xmlschema20/

83 Part IV – Web Services integration into workflows execution tools

Apache License 2.0
62

.

Results

As a proof of concept, Basic Local Alignment Search Web service (based on

the NCBI BLAST+ tool) was integrated into the INB-BSC Galaxy server.

Although Galaxy already has NCBI BLAST+ support (Cock, Chilton, Grüning,

Johnson, & Soranzo, 2015), selected Web service has quite sophisticated input

parameters structure which makes it a good example for Galaxy Gears. Galaxy

Gears advises which properties may be treated as Galaxy data parameters. The

automatically generated Web service Galaxy tool (Figure 30) may be

incorporated to complex computational pipelines. Galaxy Gears tool is a simple

and straightforward way to integrate Web services into Galaxy.

62

 http://www.apache.org/licenses/LICENSE-2.0

Figure 30. Generated Galaxy tool interface

http://www.apache.org/licenses/LICENSE-2.0

DISCUSSION

“n. A method of confirming others in their errors.”

Ambrose Bierce

87 Discussion

Ontology-based data integration is quickly becoming a mainstream

approach for biological information sharing and analysis. Ontology

languages have become popular for the definition of biological objects, and

formal ontologies are nowadays commonly found completing most data

management projects in bioinformatics. However, ontology languages were

not designed to specify data representation formats. XML Schema is still the

only standard to describe Web services messages structure. The need to

provide XML messages format along their semantical meaning requires

maintaining both structural and ontological definitions for Web services

datatypes. This work represents an effort to consolidate the two worlds.

BioMoby ontology has been one of the biggest and most curated

bioinformatics ontologies. Along operational descriptions, BioMoby

ontology contained a precise data representation syntax, thus providing all

necessary information for BioMoby services execution. This has been a

unique case were semantic information and data type representation have

been combined in a single framework. Other ontology usages largely neglect

the strict definition of data types that is required to drive web services

usage. Unfortunately, BioMoby did not adopt XML Schema language for its

message format description and required special libraries to support the

extraction of input data from BioMoby messages, and to construct

appropriate messages. This peculiarity impeded standard development tools

usage and required additional efforts to learn BioMoby message format.

Nevertheless, as said, BioMoby datatype ontology contained all structural

information required by XML Schema to formally define biological

datatypes in XML format. For this reason, the first, required, step was to

develop a new Java library for BioMoby. Developed MobyCore and

MobyCentral libraries use JAXB binding framework for the internal

representation of BioMoby message and service descriptions and greatly

facilitate the development of bioinformatics tools that require BioMoby

integration. The libraries have been the basis of further work within the

framework made during this thesis. It should be noted that the use of existing

standards and libraries, have significantly reduced their footprint (around 200 kb

total size). The low footprint and the simplicity of use make them an ideal choice

for Rich Internet Applications (RIA) Java development. Following this

development, the BioNemus tool overcame BioMoby standards

incompatibility problem. Owing to detailed services descriptions provided

by BioMoby ontology, it has been possible to generate Web services that

fully comply with Web Services Interoperability (WS-I) specification.

BioNemus, developed in a close collaboration with BioMoby development

itself, has been designed to serve as a fully automatic interface to BioMoby Web

services, making them usable from standard technologies. Additionally,

BioNemus includes semantic contents through the use of the SAWSDL

technology. Recognizing the popularity of Representational State Transfer

(REST) paradigm it also provides a generation of RESTful Web services as an

alternative. BioNemus does not have limitations of the original BioMoby

platform as most of the internal machinery has been redesigned to be complaint

with modern Java standards. This makes BioNemus different from other tools

that provide BioMoby integration, and opens the large BioMoby web service

existing collection to general bioinformatics developers.

While BioMoby ontology allows naturally for biological datatypes

structural definitions, the OWL 2 ontology language itself has enough

expressiveness to determine structural information and may be used as a

primary language for biological datatypes definition. Moreover, OWL 2 is

becoming the preferred format for the definition of new ontologies in

bioinformatics. The ability of the OWL 2 to describe datatypes does not

eliminate the need in XML Schema. The “ontology first” approach requires

a clear understanding of the ontology goal (object datatypes definition) and

restrictions this goal may impose. Despite its limitations this method looks

very appealing providing that rigorously developed and consistent ontology

is a valuable piece of work per se. It should be noted that a lot of previous

work has been done in mapping XML Schema to OWL ontology (Anicic,

Ivezic, & Marjanovic, 2007). The “schema first” approach certainly has a

strong point of being natural for Web Services development, but still

requires semantic enrichment of the generated ontologies.

The OWL2XS tool allows an automatic XML Schema generation from

properly developed OWL 2 ontologies what greatly speed-up Semantic Web

Services development. Some basic rules of the construction of ontologies

that targets the XML Schema should be considered. Since the purpose of the

ontology is to provide the structural information for the XML document, the

multiple inheritance must be strictly avoided. As an illustration of the

approach, a simple ontology that defines a set of biological datatypes has

been created for the method validation. Using such ontology as a starting

point, Web services can be created following a straightforward procedure

(see the created example BLAST Web service, section 4.2.3). The project

vividly demonstrates an applicability of biological data ontologies for

Semantic Web Service development.

89 Discussion

While biological objects may be easily described in ontology languages,

biological methods or tools usually miss these descriptions. The lack of

embedded semantic descriptions makes difficult the building of registries

that can be used without human intervention.

Many biological databases lack the ontological representation but provide

an access in a form of Web services (Kawashima, Katayama, Sato, &

Kanehisa, 2003) (Rose, et al., 2011). In spite of more than a decade of active

research, there is still no consensus on standards for Semantic Web Services

description. The initiatives come from life science community (BioMoby,
my

GRID, SADI), industry (OWL-S, WSMO) and W3C Web Services

working group (SAWSDL, WSDL 2.0 RDF mapping) and usually do not

provide the interoperability. Another serious obstacle has been the lack of

quality tools for SWS support. Development of SWS frameworks require

many years of software development and testing, so the thorough analysis of

available standards and the implementation choices is very important.

Ontology-based Web Services descriptions may provide various benefits

over XML-based WSDL language. While WSDL provides details about the

format and structure of service messages it lacks semantic information to

describe their meaning. Ontology usage may improve Web services

discovery and matching by querying over semantic concepts instead of

performing a structural service analysis.

On the other hand, WSDL provides precise information about described

services and their messages structure. The clear benefit of WSDL 2.0: RDF

ontology usage is a possibility to represent Web services in both WSDL 2.0

and OWL/RDF formats.

BioSWR Registry explores this potential providing the ability to work

with service descriptors via SPARQL protocol. Unlike iServe (Pedrinaci,

Liu, Maleshkova, Lambert, Kopecký, & Domingue, 2010) platform,

BioSWR also provides standard WSDL 1.1 / 2.0 descriptors which may be

used by common Web services development tools.

The intrinsic consistency between WSDL descriptors and the OWL 2

service ontology is extended with the support of Semantic Annotations for

WSDL and XML Schema (SAWSDL) specification. The ability to manage

semantic annotations through the SAWSDL specification distinguishes

BioSWR from BioCatalogue registry (Bhagat, et al., 2010) which uses

keyword tagging. Additionally, to fully complete the adaptation of the

BioMoby framework, BioSWR has been provided with a specific BioMoby

support. The tinyMOBY library resolves it embedding required datatype

information, as obtained from the original BioMoby Registry, into WSDL

descriptions in a form of MOBY-S ontology. Note that embedding semantic

models into WSDL was proposed by the SAWSDL specification as a valid

extension mechanism. Thus, tinyMOBY library provides an alternative standard

way for BioMoby services description.

The final objectives of this work were to provide tools that are available not

only for developers, but also for end users. Two main popular platforms have

been chosen, Taverna, and Galaxy. Technologies used in the previous

developments make Web services, including those generated within the

BioMoby standard, usable in any standard Web services client, like Taverna.

One of the strong points of Taverna for end users is its ability to interrogate

directly web service registries, and therefore, freeing the users of the

responsibility of choosing web service providers, and leaving them with the only

requirement of building the required workflow. Therefore, the seamless

interaction of Taverna with registries is a key feature. BioSWR development has

been complemented with a specific OSGI-based plug-in to integrate it into the

Taverna workbench. BioSWR WSDL parsing code was incorporated into

Taverna’s codebase for the better interoperability. The code was also used in the

BioCatalogue project.

The Semantic Web Services Discovery and Provenance approach is not new

(Lord, et al., 2004) and was thoroughly researched for more than a decade. The

efficiency of the provenance is greatly dependent on the selected semantic

model. Although there are several provenance models available such as Open

Provenance Model (Moreau, et al., 2011) or the PROV Ontology
63

 developed by

W3C, Taverna BioSWR plug-in uses the EDAM ontology which is specially

targets Life Sciences domain. Nevertheless, BioSWR Registry is based on

WSDL 2.0 RDF Mapping ontology with SAWSDL extensions that opens a

possibility to use any ontology as a source of semantic descriptions, and hence

facilitate web services discovery. The usage of PROV-O ontology may be

further considered once the codebase of Apache Taverna 3.0
64

 is stabilized.

Although Galaxy has become a de-facto standard platform in Bioinformatics,

it was not designed to cover the use of web services. In fact, Galaxy was mainly

designed to deal with large amounts of data, and normally installed as a front-

end interface for large data providers. Indeed, the use of distributed web services

is largely incompatible with present genomics data, due to data transmission

issues. However, publicly available web services offer covers most of the

63

 http://www.w3.org/TR/prov-o/
64

 http://incubator.apache.org/projects/taverna.html

http://www.w3.org/TR/prov-o/
http://incubator.apache.org/projects/taverna.html

91 Discussion

required functionality. GalaxyGears allows a seamless integration of existing

SOAP-based web services into Galaxy workflows. Generated by Galaxy Gears

configuration allows to make use of data already contained in the workbench, so

web services can be fully combined with traditional Galaxy tools. The expected

use of this tool would be the integration of web services, traditionally available

at the same data provider’s site that also holds a Galaxy interface.

This doctoral thesis introduces a comprehensive solution for Semantic

Web Services development, publishing, annotation and discovery based on

the latest W3C standards. The work is a result of long-continued

collaboration with many notable SWS projects such as BioMoby, Taverna

and the EMBRACE web service collection. Given the amount of

technologies integrated, the project also required a cooperation with other

projects such as Apache XML Schema, The OWL API, and HermiT

reasoner.

The result of the thesis is a creation of Semantic Web Services framework

(Figure 31) which involves many developed software libraries, tools and

applications that are summarized in the table (Table 40).

Figure 31. Developed frameworks and libraries

Library Description

MobyCore & MobyCentral

The lightweight java libraries to execute

BioMoby services and to work with

BioMoby registries.

tinyWSDL & tinyXMLSchema
WSDL 2.0 java parser and XML Schema

parsing plug-in.

tinyMOBY
BioMoby WSDL 2.0 integration plug-in

for the tinyWSDL parser.

wsdl2rdf WSDL 2.0: RDF Mapping java library.

OWL2XS
OWL ontology to XML Schema

generation java library.

BioSWR
Semantic Web Services Registry for

Bioinformatics.

BioNemus
Web Services generation tool based on

BioMoby services' descriptions.

wsdl-generic (experimental)

Experimental version of WSDL 1.1/2.0

Taverna’s library based on XML

Schema.

Taverna BioSWR perspective
The integration of BioSWR into Taverna

3.0 workbench.

Galaxy Gears
Web Services integration tool for the

Galaxy.

Table 40. The complete list of the developed tools

Developed solutions may further improve a quality of web services

offered by bioinformatics community.

http://sourceforge.net/projects/mobycore/
https://sourceforge.net/projects/tinywsdl/
https://sourceforge.net/projects/tinymoby/
https://sourceforge.net/projects/wsdl2rdf/
https://sourceforge.net/projects/owl2xs/
https://sourceforge.net/projects/bioswr/
http://inb.bsc.es/documents/bionemus2/
https://github.com/apache/incubator-taverna-common-activities/tree/wsdl-xsd-experimental/taverna-wsdl-generic
https://github.com/taverna/taverna-bioswr-perspective
http://inb.bsc.es/documents/galaxygears/

CONCLUSION

“A conclusion is the place you get to when you’re tired of thinking.”

Jill Shalvis

95 Conclusion

1. BioNemus project has demonstrated that BioMoby

ontology is sufficiently comprehensive to be used as a

service descriptions source for automatic WS-I

compliant Semantic Web Services generation.

2. OWL2XS project conclusion is that OWL 2 Web

Ontology Language provides enough expressibility to

thoroughly describe biological objects and can be used

as a model for XML Schema definitions.

3. BioSWR project confirmed that Web Services

Description Language (WSDL) Version 2.0: RDF

Mapping specification is a safe choice for

bioinformatics Semantic Web Services Description.

4. tinyMOBY WSDL 2.0 plug-in has shown the benefits of

embedding MOBY-S ontology directly into WSDL 2.0

service descriptors, providing indispensable information

about the BioMoby message structure, which can’t be

described using an XML Schema.

BIBLIOGRAPHY

“I quote others only in order the better to express myself.”

 Michel de Montaigne

 References

Achard, F., & Barillot, E. (1997). Ubiquitous distributed objects with CORBA. Pac

Symp Biocomput, 39-50.

Anicic, N., Ivezic, N., & Marjanovic, Z. (2007). Mapping XML Schema to OWL.

Springer-Verlag.

Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., & Morissette, J. (2008, Oct).

Bio2RDF: Towards a mashup to build bioinformatics knowledge

systems. Journal of Biomedical Informatics, 41(5), 706-716.

Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., & Hendler, J. (2008). N3Logic:

A logical framework for the World Wide Web. TPLP, 8(3), 249-269.

Bhagat, J., Tanoh, F., Nzuobontane, E., Laurent, T., Orlowski, J., Roos, M., et al.

(2010, Jun). BioCatalogue: a universal catalogue of web services for the

life sciences. Nucleic Acids Research, 38(Web Server), W689-W694.

Bohring, H., & Auer, S. (2005). Mapping XML to OWL Ontologies. Leipziger

Informatik-Tage, volume 72 of LNI (pp. 147-156). GI.

Boissel-Dallier, N., Lorré, J.-P., & Benaben, F. (2009). Management Tool for

Semantic Annotations in WSDL. On the Move to Meaningful Internet

Systems: OTM 2009 Workshops (pp. 898-906). Springer-Verlag.

Broekstra, J., Kampman, A., & van Harmelen, F. (2002, jun). Sesame: A Generic

Architecture for Storing and Querying RDF and RDF Schema.

International Semantic Web Conference. 2342, pp. 54-68. Springer

Berlin Heidelberg.

Call for data analysis papers. (2014, Feb). Nature Genetics, 46(3), 213,213.

Cock, P. J., Chilton, J. M., Grüning, B., Johnson, J. E., & Soranzo, N. (2015, Aug).

NCBI BLAST+ integrated into Galaxy. GigaSci, 4(1).

Crosswell, L. C., & Thornton, J. M. (2012, May). ELIXIR: a distributed

infrastructure for European biological data. Trends in Biotechnology,

30(5), 241 - 242.

Day-Richter, J., Harris, M. A., Haendel, M., & Lewis, S. (2007, Aug). OBO-Edit an

ontology editor for biologists. Bioinformatics, 23(16), 2198-2200.

Decker, S., Erdmann, M., Fensel, D., & Studer, R. (1999). Ontobroker: Ontology

Based Access to Distributed and Semi-Structured Information. Springer-

Verlag.

Dubuisson, O. (2000). ASN.1 Communication Between Heterogeneous Systems.

Morgan Kaufmann.

Fernández, J. D., Martínez-Prieto, M. A., Gutiérrez, C., Polleres, A., & Arias, M.

(2013, Mar). Binary RDF representation for publication and exchange

(HDT). Web Semantics: Science, Services and Agents on the World Wide

Web, 19, 22-41.

Galperin, M. Y., & Fernandez-Suarez, X. M. (2011, Dec). The 2012 Nucleic Acids

Research Database Issue and the online Molecular Biology Database

Collection. Nucleic Acids Research, 40(D1), D1-D8.

Garcia Godoy, M. J., Lopez-Camacho, E., Navas-Delgado, I., & Aldana-Montes, J.

F. (2013, Jul). Sharing and executing linked data queries in a

collaborative environment. Bioinformatics, 29(13), 1663-1670.

García, J. M., Ruiz, D., & Cortés, A. R. (2012). Improving semantic web services

discovery using SPARQL-based repository filtering. J. Web Sem., 17, 12-

24.

Glimm, B., Hogan, A., Krötzsch, M., & Polleres, A. (2012, Apr). OWL: Yet to

arrive on the Web of Data? Linked Data on the Web Workshop

(LDOW2012). Lyon.

Glimm, B., Horrocks, I., Motik, B., Stoilos, G., & Wang, Z. (2014). HermiT: An

OWL 2 Reasoner. Journal of Automated Reasoning, 53(3), 245-269.

Goble, C., Gray, A. J., Harland, L., Karapetyan, K., Loizou, A., Mikhailov, I., et al.

(2013). Incorporating Commercial and Private Data into an Open Linked

Data Platform for Drug Discovery. The Semantic Web - ISWC 2013, 65 -

80.

Goecks, J., Nekrutenko, A., Taylor, J., & G. T. (2010). Galaxy: a comprehensive

approach for supporting accessible, reproducible, and transparent

computational research in the life sciences. Genome Biol, 11(8), R86.

 References

Gokhale, A., Kumar, B., & Sahuguet, A. (2002). Reinventing the wheel? CORBA

vs. Web services. WWW2002, The Eleventh International World Wide

Web Conference, Honolulu, Hawaii, USA, 7-11.

Golbreich, C., Horridge, M., Horrocks, I., Motik, B., & Shearer, R. (2007). OBO

and OWL: Leveraging Semantic Web Technologies for the Life Sciences.

In The sixth International Semantic Web Conference (ISWC 2007) (pp.

169-182).

Gordon, P. M., & Sensen, C. W. (2007). Seahawk: moving beyond HTML in Web-

based bioinformatics analysis. BMC Bioinformatics, 8, 208.

Grosof, B. N. (2009). SILK: Higher Level Rules with Defaults and Semantic

Scalability. In A. Polleres, & T. Swift (Ed.), RR. 5837, pp. 24-25. Springer.

Guardia, G. D., Pires, L. F., Véncio, R. Z., Malmegrim, K. C., & de Farias, C. R.

(2015, Jul). A Methodology for the Development of RESTful Semantic

Web Services for Gene Expression Analysis. (A. Ma￢ﾀﾙayan, Ed.) PLoS

ONE, 10(7), e0134011.

Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., et al. (2012,

Dec). The ChEBI reference database and ontology for biologically

relevant chemistry: enhancements for 2013. Nucleic Acids Research,

41(D1), D456-D463.

Hoehndorf, R., Oellrich, A., Dumontier, M., Kelso, J., Rebholz-Schuhmann, D., &

Herre, H. (2010). Relations as patterns: bridging the gap between OBO

and OWL. BMC Bioinformatics, 11, 441.

Horridge, M., & Bechhofer, S. (2011, jan). The OWL API: A Java API for OWL

ontologies. Semant. web, 2(1), 11-21.

Horrocks, I. (2007). OBO Flat File Format Syntax and Semantics and Mapping to

OWL Web Ontology Language. Tech. rep., University of Manchester.

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M. R., Li, P., et al.

(2006, Jul). Taverna: a tool for building and running workflows of

services. Nucleic Acids Res, 34(Web Server issue), W729--W732.

Ison, J., Kalas, M., Jonassen, I., Bolser, D., Uludag, M., McWilliam, H., et al.

(2013, May). EDAM: an ontology of bioinformatics operations, types of

data and identifiers, topics and formats. Bioinformatics, 29(10), 1325-

1332.

Jupp, S., Malone, J., Bolleman, J., Brandizi, M., Davies, M., Garcia, L., et al.

(2014, Jan). The EBI RDF platform: linked open data for the life sciences.

Bioinformatics.

Jupp, S., Stevens, R., & Hoehndorf, R. (2012). Logical Gene Ontology

Annotations (GOAL): exploring gene ontology annotations with OWL. J

Biomed Semantics, 3 Suppl 1, S3.

Kalas, M., Puntervoll, P., Joseph, A., Bartaseviciute, E., Topfer, A.,

Venkataraman, P., et al. (2010, Sep). BioXSD: the common data-

exchange format for everyday bioinformatics web services.

Bioinformatics, 26(18), i540-i546.

Kaputin, J., & Hughes, J. (2006, jun 28). Woden WSDL 2.0 Processor. ApacheCon

Europe 2006. Dublin, Ireland.

Katayama, T., Wilkinson, M. D., Micklem, G., Kawashima, S., Yamaguchi, A.,

Nakao, M., et al. (2013). The 3rd DBCLS BioHackathon: improving life

science data integration with Semantic Web technologies. Journal of

Biomedical Semantics, 4(1), 6.

Kawas, E., Senger, M., & Wilkinson, M. D. (2006). BioMoby extensions to the

Taverna workflow management and enactment software. BMC

Bioinformatics, 7(1), 523.

Kawashima, S., Katayama, T., Sato, Y., & Kanehisa, M. (2003, Dec). KEGG API: A

web service using SOAP/WSDL to access the KEGG system. International

Conference on Genome Informatics, (pp. 673–674).

Klein, M., Fensel, D., van Harmelen, F., & Horrocks, I. (2001). The relation

between ontologies and XML schemas. LINKÖPING ELECTRONIC

ARTICLES IN COMPUTER AND INFORMATION SCIENCE, 6.

Kopecký, J. (2006). WSDL RDF Mapping: Developing Ontologies from

Standardized XML Languages. Springer-Verlag.

 References

Kopecký, J., Vitvar, T., Bournez, C., & Farrell, J. (2007, Nov). SAWSDL: Semantic

Annotations for WSDL and XML Schema. IEEE Internet Computing,

11(6), 60-67.

Lord, P. W., Bechhofer, S., Wilkinson, M. D., Schiltz, G. S., Gessler, D., Hull, D., et

al. (2004). Applying Semantic Web Services to Bioinformatics:

Experiences Gained, Lessons Learnt. In S. A. McIlraith, D. Plexousakis, &

F. van Harmelen (Ed.), International Semantic Web Conference. 3298,

pp. 350-364. Springer.

Lord, P., Alper, P., Wroe, C., Stevens, R., Goble, C., Zhao, J., et al. (2004). The

Semantic Web: Service discovery and provenance in my-Grid. W3C

Workshop on Semantic Web for Life Sciences.

Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K.,

et al. (2007, Aug). Bringing Semantics to Web Services with OWL-S.

World Wide Web, 10(3), 243-277.

Martin, D., Paolucci, M., & Wagner, M. (2007). Bringing semantic annotations to

web services: OWL-S from the SAWSDL perspective. Proceedings of the

6th international The semantic web and 2nd Asian conference on Asian

semantic web conference (pp. 340-352). Berlin, Heidelberg: Springer-

Verlag.

Ménager, H., Kalaš, M., Rapacki, K., & Ison, J. (2015). Using registries to

integrate bioinformatics tools and services into workbench

environments. International Journal on Software Tools for Technology

Transfer, 1-6.

Möller, S., Leser, U., Fleischmann, W., & Apweiler, R. (1999, Mar).

EDITtoTrEMBL: a distributed approach to high-quality automated

protein sequence annotation. Bioinformatics, 15(3), 219-227.

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., et al. (2011). The

open provenance model core specification (v1. 1). Future Generation

Computer Systems, 27(6), 743-756.

Neerincx, P. B., & Leunissen, J. A. (2005, Jun). Evolution of web services in

bioinformatics. Brief Bioinform, 6(2), 178-188.

Neumann, E. K., Miller, E., & Wilbanks, J. (2004, Nov). What the semantic web

could do for the life sciences. Drug Discovery Today: BIOSILICO, 2(6),

228-236.

Noy, N. F., Shah, N. H., Whetzel, P. L., Dai, B., Dorf, M., Griffith, N., et al. (2009,

Jul). BioPortal: ontologies and integrated data resources at the click of a

mouse. Nucleic Acids Res, 37(Web Server issue), W170--W173.

Oinn, T., Greenwood, M., Addis, M., Alpdemir, M. N., Ferris, J., Glover, K., et al.

(2006, Aug). Taverna: lessons in creating a workflow environment for

the life sciences: Research Articles. Concurr. Comput. : Pract. Exper.,

18(10), 1067-1100.

Ostell, J. M., Wheelan, S. J., & Kans, J. A. (2001). The NCBI data model. Methods

Biochem Anal, 43, 19-43.

Pedrinaci, C., Kopecký, J., Maleshkova, M., Liu, D., Li, N., & Domingue, J. (2011).

Unified Lightweight Semantic Descriptions of Web APIs and Web

Service.

Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecký, J., & Domingue, J.

(2010, May). iServe: a Linked Services Publishing Platform. Ontology

Repositories and Editors for the Semantic Web (ORES2010).

Pettifer, S., Ison, J., Kalas, M., Thorne, D., McDermott, P., Jonassen, I., et al.

(2010, Jun). The EMBRACE web service collection. Nucleic Acids

Research, 38(Web Server), W683-W688.

Pettifer, S., Thorne, D., McDermott, P., Attwood, T., Baran, J., Bryne, J. C., et al.

(2009, Aug). An active registry for bioinformatics web services.

Bioinformatics, 25(16), 2090-2091.

Ramírez, S., Muñoz-Mérida, A., Karlsson, J., García, M., Pérez-Pulido, A. J.,

Claros, M. G., et al. (2010, Jul). MOWServ: a web client for integration

of bioinformatic resources. Nucleic Acids Res, 38(Web Server issue),

W671--W676.

Rector, A. L., Rogers, J. E., Zanstra, P. E., Van Der Haring, E., & O. A. (2003).

OpenGALEN: open source medical terminology and tools. AMIA Annu

Symp Proc, 982.

 References

Redaschi, N., & Consortium, U. (2009, Apr). UniProt in RDF: Tackling Data

Integration and Distributed Annotation with the Semantic Web. Nature

Precedings.

Rose, P. W., Beran, B., Bi, C., Bluhm, W. F., Dimitropoulos, D., Goodsell, D. S., et

al. (2011, Jan). The RCSB Protein Data Bank: redesigned web site and

web services. Nucleic Acids Res, 39(Database issue), D392--D401.

Sbodio, M. L., Martin, D., & Moulin, C. (2010, Nov). Discovering Semantic Web

services using SPARQL and intelligent agents. Web Semantics: Science,

Services and Agents on the World Wide Web, 8(4), 310-328.

Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., et al. (2007,

Nov). The OBO Foundry: coordinated evolution of ontologies to support

biomedical data integration. Nature Biotechnology, 25(11), 1251-1255.

Stearns, M. Q., Price, C., Spackman, K. A., & Wang, A. Y. (2001). SNOMED clinical

terms: overview of the development process and project status. AMIA

Symposium, (pp. 662-666).

Stevens, R. D., Robinson, A. J., & Goble, C. A. (2003, Jul). myGrid: personalised

bioinformatics on the information grid. Bioinformatics, 19(Suppl 1),

i302-i304.

Takase, T., Makino, S., Kawanaka, S., Ueno1, K., Ferris, C., & Ryman, A. (2008,

Apr). Definition Languages for RESTful Web Services:WADL vs. WSDL

2.0. Tokyo Research Library. IBM Research.

The BioMoby Consortium, Wilkinson, M. D., Senger, M., Kawas, E., Bruskiewich,

R., Gouzy, J., et al. (2008, May). Interoperability with Moby 1.0--it's

better than sharing your toothbrush! Brief Bioinform, 9(3), 220-231.

Thompson, R., Johnston, L., Taruscio, D., Monaco, L., Béroud, C., Gut, I. G., et al.

(2014, Jul). RD-Connect: An Integrated Platform Connecting Databases,

Registries, Biobanks and Clinical Bioinformatics for Rare Disease

Research. Journal of General Internal Medicine, 29(S3), 780 - 787.

Tsinaraki, C., & Christodoulakis, S. (2007). XS2OWL: A Formal Model and a

System for Enabling XML Schema Applications to Interoperate with

OWL-DL Domain Knowledge and Semantic Web Tools. Springer-Verlag.

Vitvar, T., Kopecký, J., Viskova, J., & Fensel, D. (2008). WSMO-Lite Annotations

for Web Services. Springer-Verlag.

Wilkinson, M. D., Gessler, D., Farmer, A., & Stein, L. (2003). The BioMOBY

Project Explores Open-Source, Simple, Extensible Protocols for Enabling

Biological Database Interoperability. Proceedings of the Virtual

Conference on Genomics and Bioinformatics.

Wilkinson, M. D., Vandervalk, B., & McCarthy, L. (2011). The Semantic

Automated Discovery and Integration (SADI) Web service Design-

Pattern, API and Reference Implementation. J Biomed Semantics, 2(1),

8.

Wilkinson, M., Schoof, H., Ernst, R., & Haase, D. (2005, May). BioMOBY

successfully integrates distributed heterogeneous bioinformatics Web

Services. The PlaNet exemplar case. Plant Physiol, 138(1), 5-17.

ANNEX

“Nothing can be loved or hated unless it is first understood.”

Leonardo da Vinci

109 BioSWR

110 Manuscript

111 BioSWR

112 Manuscript

113 BioSWR

114 Manuscript

115 EMBRACE

116 Manuscript

117 EMBRACE

118 Manuscript

119 EMBRACE

120 Manuscript

121 MoDEL

122 Manuscript

123 MoDEL

124 Manuscript

125 MoDEL

126 Manuscript

127 MoDEL

128 Manuscript

129 MoDEL

130 Manuscript

131 BioNemus

132 Manuscript

133 BioNemus

134 Manuscript

135 BioNemus

136 Manuscript

137 BioNemus

138 Manuscript

139 BioNemus

140 Manuscript

141 BioNemus

142 OWL2XS

144 OWL2XS

146 OWL2XS

148 OWL2XS

