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Effect of elastic colored noise in the hopping dynamics of single molecules in stretching experiments
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The influence of colored noise induced by elastic fluctuations in single-molecule stretching experiments
is theoretically and numerically studied. Unlike in the thermal white noise case currently considered in the
literature, elastically induced hopping dynamics between folded and unfolded states is manifested through
critical oscillations showing smaller end-to-end distance fluctuations (δx ∼ 1.25 nm) within the free energy
wells corresponding to both states. Our results are derived by analyzing the elastic coupling between the Handle-
Molecule-Handle system and the laser optical tweezers (LOT) array. It is shown that an Ornstein-Uhlenbeck
process related to this elastic coupling may trigger the hopping transitions via a colored noise with an intensity
proportional to the elastic constant of the LOT array. Evolution equations of the variables of the system were
derived by using the irreversible thermodynamics of small systems recently proposed. Theoretical expressions
for the corresponding stationary probability densities are provided and the viability of inferring the shape of the
free energy from direct measurements is discussed.
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I. INTRODUCTION

The study of individual macromolecules like DNA or
RNA is determinant in the development of biotechnology as
well as in the understanding of the biological functioning of
living beings. In particular, RNA’s folding dynamics presents
valuable information about the gene expression mechanism in
these macromolecules. That is why a suitable model of RNA’s
folding dynamics emerges as an aid to a better understanding
of this particular biological mechanism [1].

Commonly, experiments using laser optical tweezers (LOT)
are implemented in order to produce an external force, which
induces conformational changes on the structure of RNA or
DNA molecules [2–7]. The system considered in these works
is made up by a RNA hairpin joined at its ends through two
appropriate polymeric arms to two polystyrene beads. These
polymers, which act as handles, are characterized by their con-
tour and persistence lengths L and lp, respectively. The system
is immersed in a thermal bath with constant temperature T ,
which may be able to produce fluctuations of the position of the
bead trapped by the LOT and the Handle-RNA-Handle system.
The main reason for introducing this particular array is to
facilitate the manipulation of the tiny RNA hairpin with LOT.
The system discussed here is called “Handle-RNA-Handle.”
Roughly, the LOT manipulation of the system is performed
by fixing one end of the Handle-RNA-Handle to a substrate.
The other end is attached to a bead that may be manipulated
with the LOT by applying a constant tension or by regulating
the length of the system. In this way, when the force versus
extension curve of the system is near the unstable region, the
hairpin shows episodes of hopping between the folded and
unfolded states, spontaneously. Many details related to the
LOT system and the experimental protocols are well described
in Refs. [8,9].

In this scenario, it has been considered that bead fluctuations
are negligible and therefore that the two main variables
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describing the dynamic of the system are the extension x of the
RNA hairpin serving as a reaction coordinate, and the tension
τ implemented by the LOT [10]. In addition, it is assumed that
the fluctuations of the RNA extension or end-to-end distance
are due to thermal noise, which is considered as a white
noise. As a consequence, the corresponding evolution equation
describing the dynamics of this system is directly assimilable
to a Langevin equation in the overdamped regime [10,11].

However, in this article we study the effect of thermal
fluctuations on the polystyrene beads on the dynamics of the
Handle-RNA-Handle system and how, due to the coupling
with the hairpin via the handles, these fluctuations affect the
hopping dynamics of the macromolecule. Colored noise in
the fluctuations of an extended DNA molecule were reported
by optical trapping in Ref. [2]. It was recently shown that,
for several proteins, the dependence of folding and unfolding
rates on solvent viscosity does not obey Kramers’ theory and
thus, indicating the necessity to use colored noise descrip-
tions [3]. These descriptions may be implemented through
non-Markovian Langevin equations. This approach is very
rich and was recently used to explain important issues of the
transport of cargoes by protein motors in living cells [12,13].
Other examples of studies showing the importance of non-
Markovian Langevin equations in the realm of biophysics
were devoted to analyze the mean square displacement of
chromosomal segments in cell nucleus [14–16] and of the
relative position between donor and acceptor in proteins [17].
The results obtained allowed one to better quantify important
aspects of the biological and physicochemical function of these
entities.

These considerations suggest that the fluctuations of the
position of the polystyrene beads may perturb the tension
exerted by LOT over the system and, in this way, influence
its dynamics in a different way as it has been considered in
the literature (see Fig. 1). The analysis we present in this work
shows that it is indeed a colored noise the agent giving rise to
extension fluctuations. Our approach to the problem comprises
the derivation of the fundamental stochastic kinetic equation of
a Langevin type of the Handle-RNA-Handle by means of the

1539-3755/2015/92(6)/062708(10) 062708-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.062708


M. HIDALGO-SORIA et al. PHYSICAL REVIEW E 92, 062708 (2015)

FIG. 1. (Color online) Configuration of the system Handle-
RNA-Handle. Each handle is attached to a bead. Maintaining one
bead fixed to a substrate while the other bead is manipulated by LOT,
creating fluctuations of this bead within a harmonic potential.

Onsager’s irreversible thermodynamics [11]. This derivation
together with the results obtained show the generality and util-
ity of our approach, in particular when considering important
effects as intrinsic handle and polystyrene bead fluctuations.
These kinds of fluctuations cannot be obtained by following
the traditional approach based on master equations [18–20].

The article is organized as follows. First we discuss a
situation in which the source of noise is attributable to the
dynamic of the bead, resulting in a model described by a
Langevin equation with additive colored noise. After this, we
introduce changes in the dynamics of the bead, having as a
consequence, that the model which represents the dynamics
of the system Handle-RNA-Handle plus polystyrene beads is
now a Langevin equation with multiplicative colored noise.
In both cases we present simulations of their respective
Langevin equation’s solution. We also calculate the corre-
sponding entropies produced during the process and their
stationary probability density functions. Finally we present
our conclusions.

II. SINGLE MOLECULE IRREVERSIBLE
THERMODYNAMICS

As a starting point, we will consider that the system is
the single RNA molecule of average length 〈x〉 subject to
a stretching force τ which can be controlled as an external
parameter. The system is in contact with a heat bath at
temperature T , pressure P , and volume V and hence, we
may consider the Gibbs free energy G as the adequate
thermodynamic potential to describe the system. The definition
of the Gibbs free energy is G = U + PV − T S with U the
internal energy and S the entropy. The differential change of
the Gibbs free energy G is

dG = dU + PdV + V dP − SdT − T dS. (1)

The first law of thermodynamics is

dU = dQ − PdV + τd〈x〉, (2)

where we have taken into account the work done by the stretch-
ing force dWstretching = τd〈x〉. We may write the reversible
exchange of heat between the system and the heat bath in terms
of the reversible exchange of entropy in the form dQ = T deS.
Furthermore, in the general case we have to consider that the
total entropy change of the system is given by

dS = deS + diS, (3)

where diS is the entropy produced during the transformation
due to the existence of irreversibilities that may be internal to
the molecule and/or due to its interaction with the heat bath
(friction). Substitution of Eq. (2) in the first term and of Eq. (3)
in the last term at the right-hand side of (1), yields the final
result,

dG = τd〈x〉 + V dP − SdT − T diS. (4)

For process at constant pressure, temperature, and extension,
this equation and the second law of thermodynamics imply
that the Gibbs free energy must satisfy the relation dG =
−T diS � 0. For processes in which the extension is not
conserved, the second law of thermodynamics imposes the
condition,

T diS = τd〈x〉 − dG � 0. (5)

Here, it is convenient to recall that for equilibrated transforma-
tions (diS = 0) the internal and external tensional forces are
equal in magnitude, τint = τ , and therefore the internal work
done by the molecule, dG = dWrev, is equal to the external
work thus satisfying the relation: dG = dWrev = τd〈x〉. For
nonequilibrated transformations, internal and external forces
are not equal (τint �= τ ) and therefore we have dG = dWirr �=
τd〈x〉. From this discussion it follows that the general
definition of the internal tension is

τint ≡ ∂G

∂〈x〉 . (6)

For irreversible processes, the entropy production per unit
time can be computed by taking the variation in time of Eq. (5)
from which it follows,

T
diS

dt
=

[
− ∂G

∂〈x〉 + τ

]
d〈x〉
dt

. (7)

Since the second law imposes that the entropy production must
be non-negative, diS/dt > 0, we may assume, without loss of
generality, the linear relationship,

d〈x〉
dt

= 1

γ

[
− ∂G

∂〈x〉 + τ

]
, (8)

which is the overdamped dynamic equation for the average ex-
tension of the molecule. Here, γ > 0 is an Onsager coefficient
which plays the role of an effective friction coefficient whose
dimensions must be force over velocity. This coefficient may
be in general a function of the state variables, T , P , τ , and 〈x〉.
The dependence on temperature and pressure is not important
for the purposes of this work. However, the dependence on τ

and 〈x〉 can be of importance. A general criterion to determine
this dependence is by imposing mathematical conditions that
make the equation physically consistent. In the present case,
due to the fact that the free energy profiles are obtained from
simulations [10], one may assume, in first approximation
a linear response regime in which the Onsager coefficient
is considered constant. It is convenient to mention that the
coefficient γ is associated with the extension of the H-RNA-H
system and, hence, it should be taken as an effective friction
coefficient for longitudinal motions along the system’s axis and
not like the friction coefficient associated with translational
motions of the whole molecule. This point will be further
discussed in Sec. III A.
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Equation (8) is the starting point in the calculation of the
evolution of the single molecule when the external tension
takes a value in the unstable region of the force-extension
curve. However, since in such a region the system is strongly
sensitive to noise because it is intrinsically unstable, then the
evolution Eq. (8) should be replaced by its corresponding
stochastic counterpart. This way to proceed is very general and
allows one to consider the effect of white or colored noises.

The simplest stochastic model that can be formulated
using Eq. (8) as a starting point is based on Onsager’s
approach to nonequilibrium fluctuations and their relation
with irreversible thermodynamics. Given the regression law
Eq. (8), the corresponding stochastic formulation can be
established by simply adding the random force ξ (t) as an
additive contribution, that is,

dx

dt
= 1

γ

[
−∂G

∂x
+ τ

]
+ ξ (t), (9)

where the brackets were removed since now the dynamics is
stochastic and ξ (t) is a white noise which satisfies the following
statistical properties in the overdamped case,

〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = 2kBT

γ
δ(t − t ′). (10)

Here kB is the Boltzmann constant and the second relation
in Eq. (10) is the fluctuation dissipation theorem [21,22].
Notice that we have considered the noise correlation coming
from the complete nonoverdamped Langevin equation. The
results obtained for individual realizations of the dynamics
of the Handle-RNA-Handle system in the unstable region of
the force-extension curve were in agreement with previous
computer simulations [10] and discussed in Ref. [11].

III. INFLUENCE OF POLYSTYRENE BEAD
FLUCTUATIONS ON SYSTEM’S DYNAMICS

In this work we analyze the critical oscillations of the
Handle-RNA-Handle system by assuming that the fluctuations
in the position of the polystyrene beads induce in turn
fluctuations of the tension exerted on the Handle-RNA-Handle.
For this situation, it can be said that the coupling with the bead
dynamics introduces a fluctuating force that is correlated for
different times of evolution, that is, the fluctuating force can
be treated as a colored noise source. Therefore, the evolution
equation of the system should satisfy the equation,

dx

dt
= 1

γ

[
−∂G

∂x
+ τ

]
+ ξc(t), (11)

where ξc(t) is a random force with finite correlations (colored
noise) which satisfies the following statistical properties:

〈ξc(t)〉 = 0 and 〈ξc(t)ξc(t ′)〉 = �(t − t ′). (12)

Here, the fluctuation dissipation theorem obeyed by the
random force ξc(t) has a finite time correlation function
�(t − t ′). In the next we will analyze two possible physical
origins of this term and give an explicit expression for
�(t − t ′). A particular important case is, however, when the
noise source ξc(t) is a Ornstein-Uhlenbeck process for which

the fluctuation-dissipation relation can be written in the form,

〈ξc(t)ξc(t ′)〉 = D

tc
e−|t−t ′ |/tc , (13)

where tc and D are the characteristic correlation time and the
diffusion coefficient of the process, respectively.

A. Additive colored noise

In Fig. 1 we present a diagram in which we show the features
of the configuration of the Handle-RNA-Handle system. Each
handle is attached to a polystyrene bead; one bead is fixed
to a substrate and the other one is free to be manipulated
by LOT. It is clear that the position of this second bead is
influenced by the LOT, the thermal noise originated in the
heat bath, and the reaction force of the Handle-RNA-Handle
system. The second factor induces fluctuations of the position
of the bead whereas the forces due to LOT and the Handle-
RNA-Handle system restrict the motion of the bead. In first
approximation, this restriction can be modeled by means of
an effective harmonic potential with effective elastic constant
κb = klot + km, where klot and km are the elastic constants
of LOT and the Handle-RNA-Handle system, respectively
(see Ref. [10]). Reference values for both elastic constants
are reported in Ref. [10] and are klot = 0.1 pNnm−1 and
km = 0.01 pNnm−1. Other possible values of these constants
are considered in Refs. [8,9]. Considering the force that the
Handle-RNA-Handle system exerts on the bead as an effective
linear force is an approximation having analytical advantages,
in the sense that Fokker-Planck equations for the distribution
function of the system’s extension can be explicitly deduced
in both the additive and multiplicative cases.

Thus, if we denote the position of the bead by zb(t), in the
overdamped approximation its dynamics can be modeled by
the Ornstein-Uhlenbeck process [10],

dzb

dt
= −κb

γ̃
zb + ξ̃ (t), (14)

where γ̃ = 6πηa is the Stokes frictional coefficient of the
polystyrene bead with η the dynamic viscosity of the medium
and a the radius of the bead. In addition ξ̃ (t) is a white
noise with zero average and obeying the fluctuation-dissipation
theorem,

〈ξ̃ (t)ξ̃ (t ′)〉 = 2kBT

γ̃
δ(t − t ′). (15)

Therefore, the time correlation of zb(t) obeys the formula,

〈zb(t)zb(t ′)〉 = kBT

κb

e
− κb

γ̃
|t−t ′|

. (16)

Hence, assuming that the fluctuations in the position of the
bead induce additive fluctuations in the force applied on the
Handle-RNA-Handle system, we may write

τ = τlot + δτ, (17)

where τlot is the constant external tension exerted by LOT
on the Handle-RNA-Handle system and δτ = κbzb(t) is the
fluctuating tension term arising from the fluctuations in the
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FIG. 2. (Color online) Simulation outputs for the elastically induced transitions in the additive case for the systems. (a) Rigid, lp/L = 7;
(b) semiflexible, lp/L = 2.8; (c) flexible, lp/L = 0.12. In all cases the effective spring constant was taken as kb = klot + km = 0.11 pN/nm
and γ̃ /γ = 0.55. Also shown is the fit (solid line) of the free energy (symbols) reported from simulations in Ref. [10] (left), the staircase shape
of the entropy produced by the system when performing the elastically induced transitions between folded and unfolded states (middle), and
the comparison between the theoretical prediction (21) for the probability density (black line) and its empirical (red crosses) counterpart (right).
The comparison is much better for higher values of kb than for small values due to the form of Eq. (21); see the discussion in the text.

position of the bead. Substitution of Eq. (17) into (8) yields

dx

dt
= 1

γ
[τlot − τint] + κb

γ
zb(t). (18)

Here, τint(x) = ∂G/∂x, takes into account the internal tension
of the system Handle-RNA-Handle.

It is interesting to stress here that, within the range of the
unstable region of the free energy (corresponding to the energy
barrier in Fig. 2, for instance), the order of magnitude of the
terms at the right-hand side of Eq. (18) are �τ = τlot − τint ∼
1 − 5 pN for the deterministic term whereas for the noise
we have κbzb ∼ 0.7 pN, meaning that the effect of bead
fluctuations cannot be neglected. In addition, the left-hand
side dictates that fluctuations have a characteristic time of the
order of microseconds. These rough estimates indicate that the
transition time between folded and unfolded states should be
about two orders of magnitude larger, that is, milliseconds.
These expectations are confirmed by the simulations shown in
Figs. 2 and 3.

Hence, by comparing Eq. (18) with (11) we can identify
ξc(t) = κb

γ
zb(t) and, therefore, from Eqs. (13) and (16) we can

infer the characteristic time tc and the diffusion coefficient D

of the process:

tc = γ̃ /κb and D = kBT

γ

γ̃

γ
. (19)

Given that γ̃ = 6π10−6 pN/nm and κb = 0.11 pN/nm we
estimate tc = 1.7 × 10−4s. This value is two orders of mag-
nitude smaller than the average residence time tr � 10 ms
inferred from our simulations (see Figs. 2 and 3). Hence, our
analysis agrees with previous theoretical analysis reported in
Refs. [23,24].

Using these results it is possible to deduce an approximate
expression for the Fokker-Planck equation for the probability
density p(x,t) corresponding to the process determined by
Eq. (18). Following Ref. [21], a decoupling approximation
scheme can be applied in the Stratonovich interpretation in

order to obtain

∂p

∂t
= ∂

∂x

{
−�τ

γ
p + kBT

γ

γ̃

γ

∂

∂x

[(
1 + γ̃

γ

d

dx

�τ

κb

)
p

]}
.

(20)

In writing this equation we assumed a constant κb and used
the definition �τ = τlot − τint. The equilibrium stationary
solution of Eq. (20) is given by the approximate expression,

pst (x) �
[

1 − 1

κb

(
γ̃

γ

d�τ

dx
+ (�τ )2

2kBT

)]
e
− G̃

kB T

γ

γ̃

Z
, (21)

where Z is the partition function and we have introduced the
effective Gibbs free energy G̃,

G̃ ≡ G − τlotx. (22)

It is convenient to point out that another approximation for
calculating the stationary probability solution of the system’s
extension is by deriving the Fokker-Planck equation for the
two-dimensional stochastic process defined by the vector
(x(t),zb(t)) and distributed by a bivariate probability density
f (x,zb,t). The resulting stationary distribution pst (x) leads to
quantitative results that do not differ appreciably from those
obtained by Eq. (21); see Ref. [21].

In Eq. (21), the thermal energy felt by the system RNA is
scaled with the factor γ̃ /γ that compares the characteristic
dissipation coefficients of the bead (γ̃ ) and of the Handle-
RNA-Handle system (γ ) when subject to extensional defor-
mations. The value of the effective friction coefficient γ can
be estimated by following the approximation of Refs. [25,26],
which is based on the Rousse model for polymers [27].
The basic physical idea is to consider the polymer as a
sequence of monomers having spherical shape. Locally, each
monomer vibrates and moves surrounded by the solvent. All
the dissipation comes from this interaction since binding inter-
actions are due to conservative (elastic) forces. The interaction
between the monomer and the solvent is thus dissipative and
proportional to the friction of each monomer with the fluid.
Hence, the total friction coefficient of the polymer can be
approximated in terms of the total number of monomers.
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FIG. 3. (Color online) Simulation results for the extension x of the flexible system with lp/L = 0.12 in tilted free energy profiles. The
original profile corresponds to the same as Fig. 2(c). In (a) and (b) we present the results of the multiplicative noise case for which c = 1.27
and c = −1.27, respectively. In (c) and (d) the same tilts were considered in the case of additive noise. For reference, simulation results without
tilting are those of Fig. 2(c). Noticeable is the fact that the average residence time in each state is reduced in the case of multiplicative noise
and the fact that the tilt of the potential does not change considerably the hopping dynamics for the same initial condition. On the contrary, the
hopping dynamics in the additive case varies considerably even for the same initial condition by increasing considerably the average residence
times. Agreement between the theoretical and empirical distributions is very good in the additive case. The multiplicative case shows that the
approximate Fokker-Planck approach fails to reproduce the corresponding distribution due to the fact that the parameter c is too large.

This approximation models well the friction of the polymer
under quasilongitudinal deformations and predicts that the
friction coefficient associated with deformations of an RNA
molecule of about 3000–7000 base pairs is approximately of
the order γ ∼ 6 − 14 × 10−9 Kg s−1 or larger [25,26]. For
friction coefficients of the bead about γ̃ ∼ 2 × 10−9 Kg s−1,
one may expect the ratio γ̃ /γ ∼ 0.33 − 0.14. These values
are indicative that, in general, γ̃ /γ < 1. Hence, energy
transduction by elastic fluctuations of the system suggests
that the effect of the effective friction coefficient γ of the
RNA molecule (or the Handle-RNA-Handle system) should
be to reduce the actual value of the thermal energy along the
molecule. This result is interesting because it may imply that,
if the elastic colored noise controls the hopping dynamics
between the folded and unfolded states, then the intrinsic
elastic noise dominates because of the presence of finite time
correlations along the Handle-RNA-Handle system. We will
show and discuss in the next section that this may be the
case since simulations with a color noise source lead to a
behavior of the system extension x(t) that better resembles the
experimental observations, essentially characterized by low
fluctuations of x(t) in the unfolded and folded states. On
the contrary, the high thermal energy associated with direct

thermal fluctuations make much more noisy the behavior of
x(t), as it will be shown in agreement with previous results in
the literature [10].

The theoretical probability density (21) can be compared
with the normalized histogram arising from simulations.
Comparisons are shown in Fig. 2, showing in general a good
agreement. We have to recall here that, for not too large
time intervals, the time averaged histogram (the empirical
probability distribution function) cannot be identical to the
ensemble average given by the stationary solution of the
Fokker-Planck equation.

B. Linear multiplicative colored noise

A more general approach to the coupling between the bead
and Handle-RNA-Handle system dynamics should consider
the feedback effect of the Handle-RNA-Handle system on the
corresponding bead energy potential. This feedback effect can
be modeled in first approximation in terms of multiplicative
noise effects on the Handle-RNA-Handle system, for which
the tilting and the shape of the corresponding free-energy
profile will fluctuate. In this case, the force applied to the
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Handle-RNA-Handle system can be expressed in the form,

τ = τlot + (1 − c x)κbzb, (23)

where c is the constant coupling the colored noise term with
the linear term of the internal tension, corresponding to the
feedback effect. The second term at the right-hand side of
Eq. (23) is the already analyzed additive term, inducing a
fluctuating tilting of the free energy. The third term in Eq. (23)
is associated with shape deformations of the free energy
landscape.

Introducing Eq. (23) in Eq. (18) we obtain the following
stochastic equation:

γ
dx

dt
= �τ + g(x)κbzb(t), (24)

where we have introduced g(x) = (1 − cx). Using one more
time the decoupling approximation in the Stratonovich inter-
pretation, we obtain the following approximate Fokker-Planck
equation [21]:

∂p

∂t
= − ∂

∂x

(
�τ

γ
p

)

+ kBT

γ

γ̃

γ

∂

∂x

{
g

∂

∂x

[
g

(
1 + γ̃

γ

b

κb

)
p

]}
, (25)

where b(x) = g d
dx

(�τ/g) was defined for notation conve-
nience. For weak feedbacks, cx 	 1 and if �τ ′/κb < 1, then
the stationary solution of Eq. (25) can be written in a similar
form as Eq. (21):

pst (x) � 1

Z

1

g
(
1 + γ̃

γ
b
κb

) exp

[
− G̃

kBT

γ

γ̃

]
, (26)

where Z is the corresponding partition function. Comparison
of the theoretical result with the empirical probability distri-
bution is similar to that of the additive colored noise case,
although it is more sensitive to κb.

The solutions (21) and (26) have a form similar to the
stationary solution of the system when it is perturbed by
additive noise. That is, the solution can be expressed in terms of
an exponential of the reduced effective free energy multiplied
by a correction term associated with the nonlinear elastic
term. However, it is remarkable that in both the additive and
multiplicative colored noise cases, the thermal energy is scaled
by a factor proportional to the ratio: γ̃ /γ . Thus, beside the fact
that bistable distributions can be expected for this two-state
model system, our results indicate that the inference of the
free energy landscapes and the associated thermodynamic
properties that can be obtained from them may strongly depend
on the peculiarities of the experimental array.

IV. RESULTS FROM SIMULATIONS

We are considering the folding-unfolding dynamics of the
system that arises when the Handle-RNA-Handle system is
in the unstable region of the force-extension curve. In this
region, the free energy has to be a bistable function of the
extension whose two equilibrium configurations correspond to
the folded and unfolded states. Hence, in first approximation
the effective free energy can be modeled in the form of a

fourth-order polynomial,

G̃ = a4x
4 − a3x

3 + a2x
2 + (τint − τlot )x + a0, (27)

where the coefficients ai , i = 1, . . . ,3 and �τ = τlot − τint can
be determined by fitting experimental data of the free energy
profile for a given external tension τlot applied on the system.
This polynomial approximation does not reproduce certain
characteristics of the barrier of the free energy. However, it is
a good first approximation for the purposes of this work.

Assuming a fourth-order polynomial for the free energy
profile implies that the internal tension τint in our evolution
Eq. (18) is a third-order polynomial. Taking this last into
account, the evolution Eq. (18) takes the final form,

γ
dx

dt
= −b3x

3 + b2x
2 − b1x + (τint − τlot ) + κbzb(t), (28)

where now the coefficients bi whose coefficients are related to
those of the free energy ai by the relation bi = (i + 1)ai+1 for
i = 0,1,2,3.

Equations (14) and (28) were solved numerically by using
simultaneously the Euler-Maruyama approximation [28]. In
order to illustrate the results from simulations, we have
taken three representative cases reported in Ref. [10] for
the conformation of the Handle-RNA-Handle system. These
correspond to rigid, semiflexible, and flexible handles.

The criterion for determining the rigidity of the system
comes from the effective elastic constant km in Eq. (14).
Large values of the elastic constant (km/k0 
 1) imply a
rigid system, whereas small values (km/k0 	 1) imply a
flexible polymer. Values around the unity (km/k0 � 1) imply a
semiflexible system where k0 is a characteristic elastic constant
of the system.

This criterion can be expressed by means of the aspect ratio
lp/L, between the persistence length lp and the total length
L of the polymer by the fact that both the elastic constant
and the persistent length are proportional to the Young’s
modulus E: km = E/L and lp = εb/kBT , where εb = E I

is the bending energy of the polymer and I is the moment
of inertia. Thus, in first approximation we have km = k0lp/L,
where the characteristic constant is given by k0 = kBT /I . In
view of the previous discussion, in the next we will consider
the flexible system having lp = 0.6 nm and L = 5 nm with
lp/L = 0.12; the near semiflexible system having lp = 70 nm
and L = 25 nm with lp/L = 2.8; and the rigid system having
lp = 70 nm and L = 10 nm with lp/L = 7.

In addition, we have to mention that the previous criterion
may also be applied by considering that the first-order term
in Eq. (28) represents the intrinsic elastic response of the
Handle-RNA-Handle system, and thus that b1 plays the role
of an intrinsic elastic coefficient. For the cases shown in
Fig. 2 (from rigid to flexible) b1 = 4.58 pNnm−1 for Fig. 2(a);
b1 = 3.72 pNnm−1 for Fig. 2(b); and b1 = 2.64 pNnm−1

for Fig. 2(c). The decreasing value from rigid to flexible
is consistent with the criterion explained in the previous
paragraphs.

A. Simulation with additive colored noise

Three realizations of the elastically induced hopping pro-
cess for Handle-RNA-Handle systems having three different
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rigidities are shown in Fig. 2. Each subfigure also shows the
fit of the free energy profile from simulations of Ref. [10], the
cumulative entropy produced as a function of time,

�iS(t) =
∫

diS

dt
dt, (29)

obtained from Eq. (7), and the comparison between the
empirical probability density pemp(x) (red crosses), and the
corresponding theoretical prediction by Eq. (21) (black lines).

Our aim was to reproduce sequences of hopping events
similar to those observed within intervals about 250 ms. An
interesting feature emerges from the hopping dynamics shown
in Fig. 2. For the case when the effective elastic constant is
κb = 0.11, the dependence of the extension on time shows
very clear transitions during the 250 ms, and internal basin
fluctuations of the extension of about δx ∼ ±1.25 nm. The
magnitude of the internal basin fluctuations are considerably
smaller than the ones corresponding to thermal white noise for
the same number of transitions in the simulated time interval.

In addition, we observed the expected behavior when the
intermediate free energy barrier between both configurations
is large enough, that is, the same white noise amplitude
acting on the bead leads to a much slower hopping dynamics
between folded and unfolded states or even to a suppression
of the hopping events. In this second case, the intensity of
the white noise acting on the bead should be increased in
order to reproduce transitions within the same time range. The
consequence of this is that the fluctuations of the extension
within each free energy well are increased. Similar effects
arise when increasing or decreasing the value of the effective
elastic constant kb by increasing or decreasing the elastic
constant klot of LOT. The stochastic hopping behavior is also
shown in the inset representing the entropy produced as a
function of time. When the energy barrier is larger than the
thermal energy, then the entropy produced has an irregular
staircase shape; see Fig. 2(a). For more noisy behaviors of
the simulation output this staircase behavior is loosed; see
Figs. 2(b) and 2(c). In all cases, however, the entropy produced
per unit time was positive, reflecting the irreversible character
of the folding-unfolding process [11]. Finally, we also stress
that, in general, the comparison between the theoretical density
and the empirical probabilities for each realization is better for
the case of flexible and rigid systems than for semiflexible ones
suggesting that the use of these configurations could be better
for determining the thermodynamic parameters of the system.

B. Simulation with multiplicative colored noise

Simulations with multiplicative elastic noise lead to similar
qualitative results as those already discussed for the additive
elastic noise case. However, transitions are more frequent and
intrabasin fluctuations are larger and more irregular. Hence,
here we show results focused on the effect of the control
parameter c appearing in Eq. (23). This parameter may be
changed to regulate the tilt of the potential as it is shown in
Fig. 3. Figures 3(a) and 3(b) correspond to the multiplicative
noise case whereas Figs. 3(c) and 3(d) correspond to the
additive case. The results shown in Fig. 3 should be compared
with those of Fig. 2(c) where there is no appreciable tilting of
the free energy.

The general expected result is that, depending on tilt-
ing of the free energy landscape, the folding dynamics
has a preference for a particular configuration state, and
the transitions between folded and unfolded states decease
significantly in the same time interval. The corresponding
probability densities should present a peak preferentially about
the position of the global minimum of the free energy. From
simulations we observe that this behavior is better reproduced
in the additive noise case than in the multiplicative case. In
the case of multiplicative noise the simulations are much
more sensitive to the tilting of the free energy since the
multiplicative character of the noise depends on the parameter
c. This makes correlations stronger and therefore induces a
drastic reduction of the residence time in the global minimum
of the free energy. For such large tilts as used in Fig. 3,
the comparison between the empirical probability and the
theoretical prediction fails completely. This is in agreement
with the hypothesis behind the derivation of the corresponding
Fokker-Planck equation, requiring that the residence time
should be much larger than the correlation time. These results
strongly suggest that multiplicative nonlinear noise is not
playing an important role in determining the folding-unfolding
transitions reported in experiments.

In simulations with the multiplicative model we considered
the case of the flexible system having lp/L = 0.12 as in
Fig. 2(c), with a tilting constant c = 1.27 pN/nm2 in Fig. 3(a)
and c = −1.27 pN/nm2 in Fig. 3(b). The features of the single
realizations are well reproduced in the additive case by the
theoretical prediction for the stationary probability density
approximation.

C. Free energy landscape and probability histograms

In view of the results of previous subsections, we will
concentrate our discussion in the case of additive noise.
A comparison between simulations (blue circles) and the
corresponding approximate stationary theoretical distributions
obtained from the ensemble description given by the Fokker-
Planck equation (20) (lines) is shown in Fig. 4 for the
Handle-RNA-Handle systems considered in Fig. 2; see the
caption for details.

The first point to emphasize is shown in Fig. 4(a). One can
observe a large difference between the distribution function
associated with the pure white noise case (magenta dotted line)
and the elastic noise (orange dash-dotted and red solid lines).
The white noise case needs larger intensities to reproduce
the hopping events between folded and unfolded states and
therefore produces wider probability distributions than those
associated with the elastic case. As a consequence of this fact,
the maxima of the probability distributions are, in general,
significantly smaller than those of the colored case. In addition,
the distance between maxima of the distribution is smaller than
in the elastic colored noise case. These differences are more
pronounced for rigid and semiflexible Handle-RNA-Handle
systems. The quantitative comparison between simulation
histograms and theoretical distributions of the elastically
induced transitions is good in all cases with the first-order
approximated solution represented by the red solid line.

The results above discussed imply that the free energy
profile of the Handle-RNA-Handle system is proportional to
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FIG. 4. (Color online) Comparison of the theoretical prediction of the stationary distribution function (lines) with the empirical single
realization histogram (blue circles). (a)–(c) Correspond to a rigid Handle-RNA-Handle system with κb = 0.11 pNnm−2, lp = 70 nm, L = 10 nm,
lp/L = 7, and γ̃ /γ = 0.6,0.5, and 0.6, respectively. (d)–(f) Correspond to a semiflexible system with κb = 0.11 pNnm−2, lp = 70 nm,
L = 25 nm, lp/L = 2.8, and γ̃ /γ = 0.8,1.0, and 1.0, respectively. We increased the spring constant to κb = 0.18 pNnm−2 in the case of (e)
and (f). (g)–(i) Correspond to a flexible system with κb = 0.11 pNnm−2, lp = 0.6 nm, L = 5 nm, lp/L = 0.12, and γ̃ /γ = 0.7,0.4, and 0.6,
respectively. We increased the spring constant to κb = 0.18 pNnm−2 in case (i). The magenta dotted line shown only in case (a) represents the
theoretical distribution associated with the pure white noise case. The orange dot-dashed line is the zero order solution from Eq. (21), that is,
the exponential term only and preserves the position of the maxima of the white noise case. However, the scaling of the free energy makes the
maxima of the function more marked. The red solid line is the absolute value of the first-order solution containing the correction proportional
to the derivative of the tension.

the logarithm of the empirical histogram only in the case
when additive white noise drives directly the folding-unfolding
process [11].

However, what follows from Eqs. (21) and (26) is that if
the dynamics of the system is driven by elastic colored noise,
additive or multiplicative, then the previous inference is incor-
rect, because the logarithm of the empirical histogram yields
a nonlinear and nonhomogeneous second-order differential
equation for the effective Gibbs free energy G̃, that is,

−kBT ln[pemp(x)] � G̃(x)
γ

γ̃
− ln

∣∣∣∣1 − γ̃

γ

d

dx

�τ

κb

∣∣∣∣, (30)

for Eq. (21) (we neglected the second-order contribution) and

−kBT ln[pemp(x)] � G̃(x)
γ

γ̃
+ ln

∣∣∣∣g
(

1 + γ̃

γ

b

κb

)∣∣∣∣, (31)

for Eq. (26). In these expressions one has to recall that �τ (x) =
∂G̃/∂x and �τ ′ = �τ/dx; see Eq. (22). These expressions
show that the effect of additive and multiplicative noises, or
their combination, may predict considerably different values
of the free energy barriers and profiles �G associated with
the folding-unfolding process, just as we have remarked in the
previous section.

The other comparisons between the empirical, single-
realization histogram and the theoretical prediction (ensemble)
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of Eq. (21) shown in Figs. 4(b)–4(i) were done to study
the effect of increasing the value of the spring constant of
LOT and the value of the ratio (γ̃ /γ ) between the friction
constants of Eqs. (18) and (24), γ , with respect to that in
Eq. (14), γ̃ , for which the correlations between histograms and
theoretical predictions are good. In three cases (see caption
of Fig. 3 for details) we analyzed the effect of changing
the value of the spring constant by increasing it moderately
to κ = 0.18 pNnm−2. In all cases, we have monitored the
behavior of the bead position zb(t), predicted by Eq. (14) in
such a way that it has to be consistent with the fluctuation
dissipation theorem Eq. (15).

D. Interplay between colored and white additive noises

Finally, we have also performed simulations in which the
evolution equation for the extension of the macromolecule is
perturbed by both elastic and thermal fluctuations,

γ
dx

dt
= −b3x

3 + b2x
2 − b1x + (τin − τlot ) + κbzb + ξ.

(32)

Figure 5 shows the effect of adding direct thermal fluctuations
on the hopping dynamics of the extension x(t) of a semiflexible
system. It is observed that Gaussian white noise should be very
large (unphysical) in order to modify the number of transitions
between folded and unfolded states. For acceptable values of
the thermal white noise intensity the intrawell fluctuations
become much more noisy. In practical terms, this effect may
not be evident from experimental measurements, since the
characteristic acquisition time should be much larger than the
characteristic time of thermal fluctuations. This is why the top
panel of Fig. 5 seems to better reproduce the shape of x(t).
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FIG. 5. (Color online) Numerical analysis of the effect of addi-
tive white noise on the elastically activated hopping dynamics of the
Handle-RNA-Handle system. Hopping events between folded and
unfolded states are dominated by the colored noise contribution. The
Gaussian white noise contribution makes the output dynamics more
noisy but the distribution of hopping events is not affected by this
fact. The intensity of the white noise is indicated in each inset by the
notation W. N. Int of 0.1, 0.3, and 0.5.

V. SUMMARY AND CONCLUSIONS

In this work, we have performed a detailed theoretical and
numerical analysis of the possible influence of colored noise
fluctuations of elastic origin on single-molecule stretching ex-
periments. The stochastic hopping dynamics of the extension
of the Handle-RNA-Handle system considered, coupled to
the fluctuating dynamics of the dielectric bead of the LOT
array was studied by using the irreversible thermodynamics
of small systems. General nonlinear evolution equations for
the variables of the system, RNA extension x(t) and bead
position zb(t) were deduced after calculating the entropy
production associated with this hopping dynamics and using
linear relationships between thermodynamic forces and fluxes.

The coupling between the bead and the Handle-RNA-
Handle system implies that an elastic contribution to the
fluctuating force entering into the evolution equation for the
molecule extension is present. This contribution has intensities
about 10% of the forces involved in the dynamics and modifies
substantially the fluctuating dynamics of the extension in
both the folded and unfolded configurations, when compared
with the white noise case. The main feature is that critical
oscillations between the folded and unfolded states are better
defined because the magnitude of the extension fluctuations
in each well is about δx ∼ 1.2 nm. The intensity of the
elastic fluctuations are proportional to the elastic constant of
the LOT array and therefore follow an Ornstein-Uhlenbeck
process. The colored nature of the resulting noise in both the
additive and multiplicative cases studied here allowed us to
find theoretical expressions for the corresponding stationary
probability densities. The differences with respect to the white
noise case were discussed in terms of the variances of the
corresponding distributions.

The differences between the colored and white noises
we have obtained suggest that the direct inference of the
free energy landscape from the logarithm of the empirical
probability density is valid only in the case of additive white
noise. Clearly, this is the case because Gaussian white noise
is an alternative way to represent equilibrium fluctuations.
However, our theoretical and simulation results indicate
that the critical oscillations observed in experiments do not
necessarily correspond to an equilibrium fluctuation process.
In fact, the two-peaked nature of the probability density
function, much more marked for the elastic noise case, suggest
the opposite.

In the colored noise case, the width of the folded and
unfolded basins are narrower than that corresponding to the
case of white noise, indicating that the experimental and
simulation results may be extremely sensitive to entropic
forces associated with chain conformations. On the other
hand, the values of the maxima of the bimodal probability
of the folded and unfolded states in the colored noise case
differ considerably from those of the white noise case, thus
suggesting that the energetic contribution to the dynamics is
responsible for larger binding energies than those predicted
by the white noise model (even differences about 40% for
the maximum corresponding to the unfolded state in the left
panel). The good agreement of the theoretical prediction and
the empirical histogram, and their quantitative differences with
respect to the thermal case suggest in its turn that the inference
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of the free energy profile should be further analyzed under
the scope of the present results, in particular in terms of the
nonlinear differential Eqs. (30) and (31).

Finally, we have to stress that our simulations considering
the influence of both elastic and thermal noises indicate that
although the direct influence of thermal noise on the state
of the molecules does not affect considerably the transition
times of the hopping dynamics, it controls the width of the
resulting empirical probability distribution via the internal
basin fluctuations. A more accurate description of single
molecule stretching experiments should be given in terms
of the interplay of these two forces. Therefore, the results
obtained in this work encourage theoretical work in order

to find the corresponding Fokker-Planck equation and its
stationary solution for the case of a system simultaneously
perturbed by elastic and thermal noises.
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