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Abstract

An extension of the standard rationing model is introduced. Agents are not only identified

by their respective claims to some amount of a scarce resource, but also by some exoge-

nous ex-ante conditions (initial stock of resource or net worth of agents, for instance),

other than claims. Within this framework, we define a generalization of the constrained

equal awards rule and provide two different characterizations of this generalized rule.

Finally, we use the corresponding dual properties to characterize a generalization of the

constrained equal losses rule.
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1. Introduction

A standard rationing problem is an allocation problem in which each individual in

a group of agents has a claim to a quantity of some (perfectly divisible) resource (e.g.,

money) and the available amount of this resource is insufficient to satisfy all claims. As-

signment of taxes, bankruptcy situations and the distribution of emergency supplies are

examples of such rationing problems, which have been widely studied in the literature.1

Since ancient times, several solutions to this simple problem have been proposed (see, for

instance, Aumann and Maschler, 1985; O’Neill, 1982), based mainly on equalizing gains

or losses from claims, or by using a proportional yardstick.

Standard rationing analysis considers claims to be the only relevant information af-

fecting the final distribution. Recently, several authors have studied complex rationing

situations in which not only claims, but also individual rights or other entitlements, affect
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1These problems are also known in the literature as problems of adjudicating conflicting claims (see,

for instance, the surveys undertaken by Thomson, 2003, 2015).
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the final distribution. Hougaard et al. (2012, 2013a,b) and Pulido et al. (2002, 2008)

introduce baselines based on past experience or on exogenous entitlements in order to

refine the claims of agents. Indeed, Hougaard et al. (2013a) consider baselines as consol-

idated rights represented by positive numbers. The authors propose that agents be first

assigned their baselines truncated by their claims before allocating the resulting deficit,

or surplus, using a standard rationing rule in which the claims are the truncated base-

lines (in the case of a deficit) or the gap between each claim and its respective truncated

baseline (in the case of a surplus).

In the above models, the baselines can be interpreted as objective evaluations of the

agents’ real needs that usually differ from their claims. They can also be understood

as a tentative allocation, which become upper or lower bounds for the final distribu-

tion depending on whether they are feasible or not. In the present chapter, we consider

exogenous information (namely ex-ante conditions) other than claims, but from a com-

pletely distinct point of view from that taken by the baseline interpretation. The ex-ante

condition of an agent reflects his initial stock or endowment2 of the corresponding re-

source. Hence, in contrast to baselines, ex-ante conditions are not tentative allocations,

but rather they aim to reveal inequalities between agents that might suggest payoff com-

pensations in favour of some agents and to the detriment of some others. The following

examples seek to clarify this point.

Imagine there are n agents and each agent i has an initial stock of resource; let us

denote this by δi ≥ 0. Furthermore, let us suppose that there is scarcity and that the

available amount r > 0 of resource to be currently distributed does not cover the agents’

claims. In this chapter, we propose giving priority to an agent with a small stock with

respect to that of another agent by compensating as much as possible the gap between

their initial stocks. Consider, for instance, the distribution of irrigation water among a

group of farmers during a drought. Imagine that each farmer has a reservoir in which

to collect rainwater, but the current levels (stock of water) of their reservoirs are not all

equal. Even in the case that the area under crop of each farmer is equal, the distribution

of water should be affected by inequalities between the farmers’ water reserves.

Another situation in which ex-ante conditions between agents arise is in the distribu-

tion of grants or subsidies by a public institution. Often the distribution process takes

into account the net worth of agents in order to make a fairer allocation. Notice that this

net worth might be positive or negative (if debts are larger than assets). A real example

of an allocation problem that considers ex-ante conditions is the distribution of schol-

arships, where allocation criteria are often related to family income. In this situation,

it seems unfair to treat agents with different family income equally, even in the case in

which their claims be equal.

2This endowment can be positive (in most situations) but it might be negative (if, for example, we

are distributing money and the net worth of an agent is negative).
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In this chapter, we propose a generalization of two well-known rules defined for stan-

dard rationing problems: the constrained equal awards (CEA) and the constrained equal

losses (CEL) rules. We name these generalized rules as the generalized equal awards

(GEA) and the generalized equal losses (GEL) rules, respectively. The two rules are

the dual of each other in a proper sense. Obviously, the generalizations are consistent

with the CEA and the CEL rules respectively, when ex-ante conditions are equal for all

agents. Having defined the rules, two characterizations of the GEA rule are provided.

The first adapts and extends to the new framework the characterization of the CEA

rule given by Herrero and Villar (2001). The second is based on new and specific axioms

for the ex-ante conditions model. Based on the corresponding dual properties, we also

obtain two characterizations of the GEL rule.

The remainder of this chapter is organized as follows. In Section 2, we introduce the

main notations, we describe a rationing problem with ex-ante conditions and we define

the GEA and the GEL rules. In Section 3, we carry out the axiomatic analysis of the

GEA rule and in Section 4 we use the duality relations between rules and properties to

characterize the GEL rule. In Section 5, we conclude.

2. Rationing problems with ex-ante conditions and rules

We first introduce some notations and recall the definition of a standard rationing

problem. Let us denote by N the set of natural numbers that we identify with the universe

of potential agents, and by N the family of all finite subsets of N. Let S ∈ N , we denote

by s the cardinality of S. Given a finite subset of agents N = {1, 2, . . . , n} ∈ N , a

standard rationing problem for N is to distribute r ≥ 0 among these n agents with claims

c = (c1, c2, . . . , cn) ∈ RN+ . It is assumed that r ≤
∑
i∈N ci since otherwise no rationing

problem exists. We denote a standard rationing problem by the pair (r, c) ∈ R+ × RN+ .

A feasible allocation for (r, c) is represented by a vector x = (x1, x2, . . . , xn) ∈ RN

such that 0 ≤ xi ≤ ci and
∑
i∈N xi = r, where xi represents the payoff to agent i ∈ N .

A rationing rule associates a unique allocation to each standard rationing problem. As

previously mentioned in the Introduction, two well-known rules are the constrained equal

awards (CEA) and the constrained equal losses (CEL). The CEA rule aims to equalize

gains and the CEL rule aims to equalize losses from claims.

Definition 1. (CEA). For any standard rationing problem (r, c) ∈ R+ × RN+ the CEA

rule is defined as

CEAi(r, c) = min{ci, λ}, for all i ∈ N,

where λ ∈ R+ satisfies
∑
i∈N min{ci, λ} = r.

Definition 2. (CEL). For any standard rationing problem (r, c) ∈ R+ × RN+ the CEL

rule is defined as

CELi(r, c) = max{0, ci − λ}, for all i ∈ N,
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where λ ∈ R+ satisfies
∑
i∈N max{0, ci − λ} = r.

The aim of a rationing problem with ex-ante conditions is to distribute an amount of

a scarce resource fairly taking into account the inequalities in the ex-ante conditions.

Definition 3. Let N ∈ N be a finite subset of agents. A rationing problem with ex-ante

conditions for N is a triple (r, c, δ), where r ∈ R+ is the amount of resource, c ∈ RN+
is the vector of claims, such that r ≤

∑
i∈N ci, and δ ∈ RN is the vector of ex-ante

conditions.

We denote by RCN the set of all rationing problems with ex-ante conditions and

agent set N , and by RC = ∪N∈NRCN the family of all rationing problems with ex-ante

conditions.

The definition of an allocation rule for these problems does not differ essentially from

the standard definition.

Definition 4. A generalized rationing rule is a function F that associates to each ra-

tioning problem with ex-ante conditions (r, c, δ) ∈ RCN , where N ∈ N , a unique alloca-

tion x = F (r, c, δ) = (F1(r, c, δ), F2(r, c, δ), . . . , Fn(r, c, δ)) ∈ RN+ such that

•
∑
i∈N xi = r (efficiency) and

• 0 ≤ xi ≤ ci, for all i ∈ N (claims boundedness).

Next, we extend the CEA rule to this new framework.

Definition 5. (Generalized equal awards rule, GEA). For any (r, c, δ) ∈ RCN , where

N ∈ N , the GEA rule is defined as3

GEAi(r, c, δ) := min {ci, (λ− δi)+} , for all i ∈ N,

where λ ∈ R satisfies
∑
i∈N GEAi(r, c, δ) = r.

Notice that the GEA rule is well defined. Indeed, by applying Bolzano’s Theorem to

the continuous function ϕ(λ) =
∑
i∈N ϕi(λ) =

∑
i∈N min {ci, (λ− δi)+}, the existence

of a value λ, such that ϕ(λ) = r, is guaranteed since

ϕ
(

min
i∈N
{δi}

)
= 0 ≤ r ≤ ϕ

(
max
i∈N
{ci + δi}

)
=
∑
i∈N

ci.

Moreover, let us suppose that there exist λ, λ′ ∈ R, with λ < λ′, such that ϕ(λ) = ϕ(λ′) =

r. As the reader may verify, ϕk(λ) is a non-decreasing function for all k ∈ N . Hence,

we have that ϕk(λ) ≤ ϕk(λ′) for all k ∈ N . Therefore, we obtain r =
∑
k∈N ϕk(λ) ≤∑

k∈N ϕk(λ′) = r and thus ϕk(λ) = ϕk(λ′) for all k ∈ N . We conclude that the solution

is unique and so it is well defined for all problems. Let us illustrate the application of

the rule with an example.

3Henceforth, we use the following notation: for all a ∈ R, (a)+ = max{0, a}.
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Example 1. Consider the three-person rationing problem with ex-ante conditions

(r, (c1, c2, c3), (δ1, δ2, δ3)) = (3, (2.5, 3, 2.5), (0, 1.5, 4.5)).

The allocation assigned by the GEA rule is GEA(r, c, δ) = (2.25, 0.75, 0) where λ takes the

value 2.25 in the formula, as the reader may verify. Inspired by the hydraulic representa-

tion of rationing rules given by Kaminski (2000) (see Figure 1), a dynamic interpretation

of how this rule assigns gains is as follows.

Figure 1: Equalizing awards with ex-ante conditions.

Agent 1, the one with the lowest ex-ante condition, is the first agent to be assigned

gains. Thus, agent 1 receives δ2 − δ1 = 1.5 units of resource in order to offset the

inequality in the ex-ante conditions with respect to the agent with the second lowest ex-

ante condition. At this point, there are still 1.5 units left to be allocated. Agents 1 and

2 share this amount equally (0.75 units each) and agent 3 receives nothing. This holds

since neither agent 1 nor agent 2 has been fully compensated with respect to agent 3. We

finally obtain the distribution (2.25, 0.75, 0).

Let us remark that the values of the ex-ante conditions are not allocated. Indeed, what

is relevant is not the numerical value of an agent’s ex-ante condition, but the difference

between its value and the respective values of the ex-ante condition of the other agents.

Specifically, as the above example shows, bilateral compensations are induced by the

inequalities in the ex-ante conditions between any pair of agents. With these allocations,

notice that agents 1 and 3, with the same claim, do not receive equal amounts. Moreover,

agent 1, in spite of having a smaller claim than that of agent 2, receives a larger payoff and,

thus, the rule does not satisfy the classical property of order preservation in awards (see
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Thomson, 2015). However, the GEA rule satisfies an adaptation of this property that we

call order preservation in awards with ex-ante conditions. A rule F satisfies this property

if, for any pair of agents i, j ∈ N , if ci ≤ cj and δi ≥ δj , then Fi(r, c, δ) ≤ Fj(r, c, δ).

That is, if the agent (in the pair) with the largest stock also has the smallest claim, then

this agent should receive the smallest award.

Obviously, the GEA rule generalizes the CEA rule. In other words, the allocation

assigned by the GEA rule when applied to a problem without inequalities in ex-ante

conditions coincides with the allocation of the CEA rule applied to the corresponding

standard rationing problem (without ex-ante conditions), that is, if δ = (α, α, . . . , α) ∈
RN , then GEA(r, c, δ) = CEA(r, c).

In standard rationing problems, the CEA rule seeks to minimize the differences be-

tween the payoffs awarded to agents. Therefore, if there is a difference between the payoffs

of two agents i, j ∈ N with i 6= j it is because the agent with the smallest payoff has

received all his claim: that is, if CEAi(r, c) < CEAj(r, c), then CEAi(r, c) = ci. This

principle can be extended to rationing problems with ex-ante conditions by minimizing

the differences between the payoffs plus the corresponding ex-ante condition of agents as

shown by Proposition 1. This feature of the GEA rule is crucial to prove Theorems 1

and 2. The proof of the next proposition can be found in the Appendix.

Proposition 1. Let (r, c, δ) ∈ RCN , N ∈ N , and let x∗ ∈ RN+ be such that x∗i ≤ ci, for

all i ∈ N , and
∑
i∈N x

∗
i = r. The following statements are equivalent:

1. x∗ = GEA(r, c, δ).

2. For all i, j ∈ N with i 6= j, if x∗i + δi < x∗j + δj , then either x∗j = 0, or x∗i = ci.

Now, we extend the idea of equalizing losses to rationing problems with ex-ante

conditions. An agent’s loss is the difference between his claim and his assigned payoff.

If an agent has a better ex-ante condition than another, then he may suffer a higher loss

than that suffered by this other agent. We define the generalized equal losses rule as

follows:

Definition 6. (Generalized equal losses rule, GEL). For any (r, c, δ) ∈ RCN , where

N ∈ N , the GEL rule is defined as

GELi(r, c, δ) := max {0, ci − (λ+ δi)+} , for all i ∈ N,

where λ ∈ R satisfies
∑
i∈N GELi(r, c, δ) = r.

The GEL rule assigns losses in an egalitarian way, but taking into account that no

agent can receive a negative payoff and that the differences between ex-ante conditions

might induce bilateral compensations of losses between agents. The reader may verify
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that the GEL rule is well defined by using similar arguments to those for the case of the

GEA rule.

Analogous to the case of equalizing awards, the GEL rule generalizes the CEL rule;

that is, if δ = (α, α, . . . , α) ∈ RN , then GEL(r, c, δ) = CEL(r, c). Let us illustrate the

application of the GEL rule with an example.

Example 2. Consider the rationing problem with ex-ante conditions given in Example

1, (r, c, δ) = (3, (2.5, 3, 2.5), (0, 1.5, 4.5)). The allocation assigned by the GEL rule is

GEL(r, c, δ) = (2, 1, 0), where λ = 0.5. A dynamic interpretation of how this rule assigns

losses is as follows. Notice that the total loss is c1 + c2 + c3 − r = 5. Agent 3 is the

first agent to be assigned losses since he has the largest ex-ante condition. In the first

step, this agent suffers the maximum loss, i.e. all his claim, since the amount that he

claims is not enough to compensate the difference between his own ex-ante condition

and the second highest ex-ante condition, i.e. c3 = 2.5 < δ3 − δ2 = 3. At this point

there are still 2.5 units of losses left to be allocated. In the next step, 1.5 units of losses

are assigned to agent 2 in order to compensate (fully) the difference between ex-ante

conditions, i.e. δ2 − δ1 = 1.5. Finally, the remaining unit of loss is equally divided

between both agents. Therefore, the losses allocation is (0.5, 2, 2.5) and so the assigned

payoff vector is (c1 − 0.5, c2 − 2, c3 − 2.5) = (2, 1, 0).

Observe that, agent 3, in spite of having a smaller claim than that of agent 2, is

assigned with a larger loss and thus, the rule does not satisfy the classical property of

order preservation in losses (see Thomson, 2015). However, the GEL rule satisfies an

adapted property to this framework that we call order preservation in losses with ex-ante

conditions. A rule F satisfies this property if, for any pair of agents i, j ∈ N , if ci ≤ cj

and δi ≤ δj , then ci −Fi(r, c, δ) ≤ cj −Fj(r, c, δ). That is, if the agent (in the pair) with

the smallest stock also has the smallest claim, then this agent should be assigned with

the smallest loss.4

3. Axiomatic characterizations of the GEA rule

In this section we provide two characterizations of the GEA rule: the first extends

a well-known characterization of the CEA rule; the second is new and proposes specific

properties for this model.

The CEA and the CEL rules (for standard rationing problems) have been charac-

terized in several studies (see the surveys undertaken by Thomson, 2003, 2015). Herrero

and Villar (2001) characterize the CEA rule by means of three axioms: consistency,

4The GEA and the GEL rules satisfy the adapted properties of order preservation in awards and

losses with ex-ante conditions, as the reader may check.

7



path-independence and exemption. In this section, we characterize the GEA rule by

drawing on these axioms. Specifically, we adapt the properties of consistency and path-

independence, and we introduce a new property, ex-ante exemption.

Path-independence states that if we apply a rule to a problem but resource availability

diminishes suddenly, the new allocation obtained by applying the same rule again (to

the new amount and with the original claims) is equal to that obtained when using

the previous allocation as claims. This property was first suggested by Plott (1973) for

choice functions and by Kalai (1977) in the theory of axiomatic bargaining. Moreover,

the property was originally introduced in the context of standard rationing problems by

Moulin (1987).

Definition 7. A generalized rationing rule F satisfies path-independence if for all N ∈
N and all (r, c, δ) ∈ RCN with

∑
i∈N ci ≥ r′ ≥ r it holds

F (r, c, δ) = F (r, F (r′, c, δ), δ).

Because of claim boundedness (see Definition 4), if a rule satisfies path-independence,

then it is monotonic with respect to r. That is, for all N ∈ N , all c ∈ RN+ and all r, r′ :

{r ≤ r′ ≤
∑
i∈N

ci} ⇒ {F (r, c, δ) ≤ F (r′, c, δ)}. (1)

This property is known as resource monotonicity.

Consistency is a property that requires that when we re-evaluate the resource allo-

cation within a subgroup of agents using the same rule, the allocation does not change.

This property was first introduced in the standard rationing context by Aumann and

Maschler (1985). In order to gain more insights of the consistency principle see also

Thomson (2012). To define this property, we use the following notation. Given a vector

x ∈ RN and a subset S ⊆ N , we denote by x|S ∈ RS the vector x restricted to the

members of S.

Definition 8. A generalized rationing rule F is consistent if for all N ∈ N , all (r, c, δ) ∈
RCN and all T ⊆ N , T 6= ∅, it holds

F (r, c, δ)|T = F
(
r −

∑
i∈N\T

Fi(r, c, δ), c|T , δ|T

)
.

Before defining ex-ante exemption, let us remark that in the standard rationing frame-

work, exemption is a property that ensures that an agent with a small enough claim will

not suffer from rationing. Specifically, for the two-person case N = {i, j}, a solution

(xi, xj) = F (r, (ci, cj)) satisfies exemption if xk = ck whenever ck ≤ r
2 for some k ∈ N .

The application of exemption to our framework needs to take into account ex-ante

conditions, and only applies to two-person problems. Ex-ante exemption states that an

agent with a small enough maximum final stock (initial stock plus the claim truncated

by the amount of the resource) must not be rationed.
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Definition 9. A generalized rationing rule F satisfies ex-ante exemption if for any two-

person rationing problem with ex-ante conditions (r, c, δ) ∈ RCN , with N = {i, j}, it

holds that

if min{r, ci}+ δi ≤
r + δi + δj

2
then Fi(r, c, δ) = min{r, ci}.

Notice that if there are no ex-ante inequalities between agents (δi = δj), then this

property is equivalent to the classical exemption property for the two-person case.

The next proposition states that the GEA rule satisfies all these properties. The

rather technical proof is provided in the Appendix.

Proposition 2. The GEA rule satisfies path-independence, consistency and ex-ante

exemption.

The next theorem says that the only rule satisfying all these properties is the GEA

rule. The proof can be found in the Appendix.

Theorem 1. A rule F on RC satisfies path-independence, ex-ante exemption and con-

sistency if and only if F is the GEA rule.

The properties in Theorem 1 are logically independent, as the reader may check in

Examples 3, 4 and 5 provided in the Appendix.

Now, we undertake another characterization for this rule, based on specific properties

for the ex-ante condition framework, namely ex-ante fairness and transfer composition.

Let us define these properties.

Ex-ante fairness is applied to any pair of agents that exhibits differences in ex-ante

conditions. It states that if the available amount of resource is not large enough to

compensate the poorest agent in the pair (either with his full claim or at least with

the difference between their respective ex-ante conditions), then the richest agent must

receive nothing. This property guarantees that social inequalities will not increase.

Definition 10. A generalized rationing rule F satisfies ex-ante fairness if for all N ∈ N ,

all (r, c, δ) ∈ RCN and all i, j ∈ N , i 6= j, it holds that

if r ≤ min{δj − δi, ci} then Fj(r, c, δ) = 0.

Transfer composition states that the result of directly allocating the available amount

of resource is the same as that achieved when first distributing a smaller amount and,

after that, distributing the remaining quantity in a new problem in which the claim

of each agent is diminished by the amount initially received and the ex-ante condition

is augmented by the same amount. Part of the claim is received as payoff in the first

allocation and transferred as stock in the second problem.
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Definition 11. A generalized rationing rule F satisfies transfer composition if for all

N ∈ N , all (r, c, δ) ∈ RCN and all r1, r2 ∈ R+ such that r1 + r2 = r, it holds

F (r, c, δ) = F (r1, c, δ) + F (r2, c− F (r1, c, δ), δ + F (r1, c, δ)).

The GEA rule satisfies both ex-ante fairness and transfer composition. The proof of

this result can be found in the Appendix.

Proposition 3. The GEA rule satisfies transfer composition and ex-ante fairness.

In fact, these two properties characterize the GEA rule.

Theorem 2. A rule F on RC satisfies ex-ante fairness and transfer composition if and

only if F is the GEA rule.

Proof. By Proposition 3, we know that the GEA rule satisfies ex-ante fairness and trans-

fer composition. Next, we concentrate on proving the uniqueness of the rule. Let F

be a rule satisfying these properties, but suppose on the contrary that F 6= GEA.

Hence, there exists a rationing problem with ex-ante conditions (r, c, δ) ∈ RCN such

that x = F (r, c, δ) 6= GEA(r, c, δ). Then, by Proposition 1, there exist i, j ∈ N such that

xi + δi < xj + δj with xi < ci and xj > 0.

Let us remark that transfer composition implies resource monotonicity (see (1)). As

a consequence, it follows that F is a continuous and increasing function in r. Thus, for

all r′ ∈ [0, r], we have that x ≥ F (r′, c, δ). Take α∗ ∈ (0, r] such that Fj(α
∗, c, δ) = xj

and Fj(α, c, δ) < xj for all α ∈ [0, α∗). Moreover, let α̂ ∈ (0, α∗) such that

0 < α∗ − α̂ ≤ min

{
xj + δj − (xi + δi)

2
, ci − xi

}
. (2)

Notice that α∗ − α̂ < r. Let us denote z∗ = F (α∗, c, δ) and ẑ = F (α̂, c, δ). By transfer

composition, we have that

z∗ = ẑ + F (α∗ − α̂, c− ẑ, δ + ẑ). (3)

Let us denote z′ = F (α∗ − α̂, c − ẑ, δ + ẑ). Taking into account the definition of α∗,

expression (3) and since α̂ < α∗, we obtain

x ≥ z∗ ≥ ẑ and, in particular, xj = z∗j > ẑj . (4)

Making use of (2) and (4), we have that

2 · (α∗ − α̂) ≤ xj + δj − (xi + δi) ≤ z∗j + δj − (z∗i + δi)

= ẑj + δj − (ẑi + δi) + (z∗j − ẑj)− (z∗i − ẑi)

≤ ẑj + δj − (ẑi + δi) +
∑
k∈N (z∗k − ẑk)

= ẑj + δj − (ẑi + δi) + α∗ − α̂,
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which implies α∗ − α̂ ≤ (ẑj + δj) − (ẑi + δi). Moreover, by (2) and (4), we have that

α∗− α̂ ≤ ci−xi ≤ ci−z∗i ≤ ci− ẑi. Therefore, α∗− α̂ ≤ min{(ẑj +δj)− (ẑi+δi), ci− ẑi}.
Then, by ex-ante fairness, it holds that z′j = 0. However, by (3) and (4), we reach a

contradiction since xj = z∗j = ẑj + z′j = ẑj < xj .

Therefore, we conclude that F = GEA and thus the GEA is the unique rule that

satisfies ex-ante fairness and transfer composition.

The properties in Theorem 2 are logically independent. The rule F 1 defined as

F 1(r, c, δ) := CEA(r, c) satisfies transfer-composition but not ex-ante fairness. The

priority rule with respect to ex-ante conditions F 2 satisfies ex-ante fairness but not

transfer composition. This rule is defined as follows. Let {N1, N2, . . . , Nm} be a partition

of the set N such that: (i) for all p ∈ {1, . . . ,m} and all i, j ∈ Np, δi = δj ; (ii) for all

p ∈ {1, . . . ,m − 1}, all i ∈ Np and all j ∈ Np+1, δi < δj . That is, we divide N in m

groups by the increasing value of ex-ante conditions. Then, if k ∈ {1, . . . ,m} is such that∑k−1
p=1

∑
j∈Np

cj < r ≤
∑k
p=1

∑
j∈Np

cj then

F 2
i (r, c, δ) :=


ci if i ∈

⋃k−1
p=1 Np,

GEAi

(
r −

k−1∑
p=1

∑
j∈Np

cj , c|Nk
, δ|Nk

)
if i ∈ Nk,

0 else.

It is interesting to point out that the GEA rule combines the principle of equality,

represented by F 1 and the idea of giving priority to agents with worse ex-ante conditions,

represented by F 2.

Remark 1. Since the GEA rule satisfies consistency, it follows that ex-ante fairness

and transfer composition imply consistency.

4. Dual results: characterizations of the GEL rule

In this section, we characterize the GEL rule by using the duality approach (in-

troduced by Aumann and Maschler, 1985) and the duality relations between rules and

properties (developed by Herrero and Villar, 2001). These relations can also be extended

to our model.

In the standard framework, two rules are the dual of each other if one rule distributes

the total gain r, in the same way as the other rule distributes the total loss ` =
∑
i∈N ci−

r. The idea of duality can be adapted to our approach but taking into account that

the vector δ becomes −δ when passing from the primal problem (r, c, δ) to the dual

problem (`, c,−δ): formally, for all (r, c, δ) ∈ RCN , F ∗ and F are dual if F ∗(r, c, δ) =

c− F (`, c,−δ). In this way, it can be verified that the GEA rule and the GEL rule are

the dual of each other (for a detailed proof see Proposition 4 in the Appendix).
11



On the other hand, two properties are dual if whenever a rule satisfies one of them,

its dual satisfies the other. The dual of ex-ante exemption is ex-ante exclusion: for

any two-person problem (r, c, δ) with N = {i, j}, if min{`, ci} − δi ≤ `−δi−δj
2 , then

Fi(r, c, δ) = (r − cj)+. Parallel to standard rationing problems, the dual of path-

independence is composition: for all r1, r2 ∈ R+ such that r1 + r2 = r, F (r, c, δ) =

F (r1, c, δ) +F (r2, c−F (r1, c, δ), δ). The dual of ex-ante fairness is ex-ante fairness*: for

any pair of agents i, j ∈ N that exhibits differences in their initial stock, i.e. δj ≥ δi,

if ` ≤ min{δj − δi, cj}, then Fi(r, c, δ) = ci. The dual of transfer composition is trans-

fer path-independence: for any r, r′ ∈ R+ such that
∑
i∈N ci ≥ r′ ≥ r, F (r, c, δ) =

F
(
r, F (r′, c, δ), δ −

(
c− F (r′, c, δ)

))
. Finally, the dual of consistency is itself. The

proofs of these duality relations between the aforementioned properties are provided in

Propositions 5, 6, 7 and 8, respectively, in the Appendix.

Taking these relations into account, the dual of Theorem 1 says that the GEL rule is

the only rule satisfying composition, ex-ante exclusion and consistency. Finally, the dual

of Theorem 2 says that the GEL rule is the only rule satisfying ex-ante fairness* and

transfer path-independence.

5. Conclusions

We have presented an extension of the standard rationing model. The aim of this

extension is to take into account ex-ante inequalities between agents involved in the

rationing process and try to compensate them for these inequalities. Two of the principal

rationing rules (equal gains and equal losses) have been generalized and characterized

within this new framework.

As previously mentioned in the Introduction, Hougaard et al. (2013a) propose an

extension of the standard rationing model but from a different point of view. They

consider a vector of baselines b = (bi)i=1,...,n, where bi is interpreted as a tentative

allocation for agent i. These authors use the CEA rule in the baseline model as follows:

C̃EA(r, c, b) =

 t(c, b) + CEA
(
r −

∑
i∈N ti(c, b), c− t(c, b)

)
if
∑
i∈N ti(c, b) ≤ r

t(c, b)− CEA
(∑

i∈N ti(c, b)− r, t(c, b)
)

if
∑
i∈N ti(c, b) > r

,

where t(c, b) = (ti(c, b))i∈N = (min{ci, bi})i∈N denotes the truncated baseline vector.

That is, the allocation is made in a two-step process: first, truncated baselines are

assigned and, after that, the surplus or the deficit with respect to the available amount

of resource is shared equally.

We would like to point out that baselines and ex-ante conditions are of a completely

different nature and cannot be directly identified with each other. In contrast to the

baselines that are preassigned, the stocks of resource or ex-ante conditions are not redis-

tributed in any case. Thus, the final stock of any agent (initial stock plus the amount
12



received) cannot be smaller than his initial stock (ex-ante condition). In Hougaard et

al.,’s model, an agent’s baseline is just an objective evaluation of his actual needs. In-

deed, the agent may be awarded an allocation above or below his baseline (baselines act

as bounds). However, when using the extension of the CEA rule, there is a link that

allows a problem with baselines to be reinterpreted as a problem with ex-ante conditions.

If we take δ∗ = −t(c, b), then C̃EA(r, c, b) = GEA(r, c, δ∗). Notice that the truncated

baselines are embedded in our model as debts to agents and, thus, they are represented

by a negative value. The other way around, that is, defining a problem with baselines

based upon a problem with ex-ante conditions such that the allocations in both models

coincide, is not possible in a non-trivial way.5

Our model can also be viewed as a situation in which a certain priority is given to

some agents and where asymmetric allocations arise. Indeed, the model we introduce

allows us to combine full and partial priority between agents.6 Asymmetric allocations

have previously been analysed in Moulin (2000) and in Hokari and Thomson (2003).

Moulin assigns weights to agents and distributes awards or losses (up to the value of

the claims) proportionally with respect to the weights. He also combines these weighted

solutions with full priority rules. In our approach, the asymmetries are induced by the

ex-ante conditions but not by the rules we apply which preserve the idea of equal (gains

or losses) distribution.

Future research might, first, usefully adapt some characterizations of the CEA and

the CEL rules provided in the literature (see Thomson, 2003, 2015) to our framework.

Second, we believe our model can be applied to allocate resources in other contexts,

for instance, those in which the same group of agents faces a sequence of rationing

problems at different periods of time. The distribution in the current period is in-

fluenced by the amount received in previous periods, which can be considered as an

ex-ante condition for the current rationing problem. Third, inequalities in the ex-ante

conditions might also be useful to analyse taxation problems when differences in the

net wealth of agents are relevant in the final allocation of taxes. Finally, two impor-

tant rationing rules have yet to be analysed under our new framework: the Talmud

5Notice that if we consider the three-person problem (r, c, δ) = (2.5, (2, 1, 1), (0, 2, 3)), then

GEA(r, c, δ) = (2, 0.5, 0). For this problem, the reader may verify that the only way to define

a problem with baselines (2.5, (2, 1, 1), b) such that C̃EA(2.5, (2, 1, 1), b) = (2, 0.5, 0) is by taking

t(c, b) = GEA(r, c, δ), which implies knowing beforehand the allocation proposed by the GEA. Even in

the variant of the model proposed by the same authors (Hougaard et al., 2013b), the only way to define

compatible baselines for this problem is also to take the trivial option b = (2, 0.5, 0) = GEA(r, c, δ).

Furthermore, the same example can be used to show that the GEL allocation cannot be reached by

the baseline extension of the CEL rule.
6Kaminski (2006) considers priority in case of bankruptcy, assigning to different categories of

claimants lexicographic full priorities. Furthermore, there is an extensive literature on bankruptcy laws

discussing the insertion of partial priority in bankruptcy codes (e.g., Bebchuk and Fried, 1996; Bergström

et al., 2004; Warren, 1997).
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rule and the proportional rule. Both solutions are self-dual rules. Self-duality estab-

lishes a symmetry principle in the behaviour of the rule when distributing awards and

losses. A natural proposal to generalize the Talmud rule is, for all (r, c, δ) ∈ RCN ,

GT (r, c, δ) = GEA
(

min
{
r,

∑
i∈N ci
2

}
, c2 , δ

)
+ GEL

(
max

{
0, r −

∑
i∈N ci
2

}
, c2 , δ

)
. This

is a self-dual7 rule and it obviously generalizes the Talmud rule.8 However, it is not so

clear that the extension of the proportional solution to the ex-ante condition framework

would likewise maintain the self-duality property.
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Appendix

Proof of Proposition 1 1⇒ 2) Let us suppose that x∗ = GEA(r, c, δ) and there exist

i, j ∈ N , such that x∗i + δi < x∗j + δj but x∗j > 0 and x∗i < ci. Hence, λ − δj > 0,

x∗i = (λ− δi)+, and so

x∗i + δi = (λ− δi)+ + δi ≥ λ ≥ min{cj + δj , λ}

= min{cj , λ− δj}+ δj = min{cj , (λ− δj)+}+ δj = x∗j + δj .

Hence, we reach a contradiction with the hypothesis x∗i + δi < x∗j + δj and we conclude

that either x∗i = ci, or x∗j = 0.

2 ⇒ 1) Let us suppose that for all i, j ∈ N with x∗i + δi < x∗j + δj , it holds that

either x∗j = 0, or x∗i = ci, but x∗ 6= GEA(r, c, δ). Then, by efficiency, there exist i, j ∈ N
such that

0 ≤ x∗i < GEAi(r, c, δ) ≤ ci and cj ≥ x∗j > GEAj(r, c, δ) ≥ 0. (5)

This means that x∗i < ci, λ− δi > 0 and (λ− δj)+ < cj . However,

x∗j + δj > GEAj(r, c, δ) + δj = (λ− δj)+ + δj ≥ λ ≥ min{ci + δi, λ}

= min{ci, λ− δi}+ δi = GEAi(r, c, δ) + δi > x∗i + δi.

7The proof can be found in Proposition 9 in the Appendix.
8The allocation assigned by the GT rule when applied to a problem without inequalities in the ex-

ante conditions coincides with the allocation of the Talmud rule applied to the corresponding standard

rationing problem (without ex-ante conditions).
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By assumption, it should hold that either x∗j = 0, or x∗i = ci, but this contradicts (5).

Hence we conclude that x∗ = GEA(r, c, δ).

�

Proof of Proposition 2 First, we prove path-independence. If r = r′, the result is

straightforward. If r < r′, we claim that

GEA(r, c, δ) = GEA(r,GEA(r′, c, δ), δ).

By definition, and for all i ∈ N , we have

GEAi(r, c, δ) = min{ci, (λ− δi)+} with
∑
k∈N GEAk(r, c, δ) = r,

GEAi(r
′, c, δ) = min{ci, (λ′ − δi)+} with

∑
k∈N GEAk(r′, c, δ) = r′ and

GEAi(r,GEA(r′, c, δ), δ) = min{min{ci, (λ′ − δi)+}, (λ′′ − δi)+}

with
∑
k∈N GEAk(r,GEA(r′, c, δ), δ) = r.

First, we show

λ < λ′. (6)

Suppose on the contrary, that λ ≥ λ′. Then, for all i ∈ N ,

GEAi(r, c, δ) = min{ci, (λ− δi)+} ≥ min{ci, (λ′ − δi)+} = GEAi(r
′, c, δ).

Summing up all the above inequalities, we obtain

r =
∑
i∈N

GEAi(r, c, δ) ≥
∑
i∈N

GEAi(r
′, c, δ) = r′,

which contradicts r < r′.

Let us suppose now that GEA(r, c, δ) 6= GEA(r,GEA(r′, c, δ), δ). Then, by efficiency

of the GEA rule, there exist i∗ ∈ N and j∗ ∈ N such that

GEAi∗(r, c, δ) < GEAi∗(r,GEA(r′, c, δ), δ) and

GEAj∗(r, c, δ) > GEAj∗(r,GEA(r′, c, δ), δ).
(7)

Then, we have

GEAi∗(r, c, δ) = min{ci∗ , (λ− δi∗)+}

< min{min{ci∗ , (λ′ − δi∗)+}, (λ′′ − δi∗)+}

= GEAi∗(r,GEA(r′, c, δ), δ) ≤ ci∗ ,

(8)

which leads to min{ci∗ , (λ − δi∗)+} = (λ − δi∗)+. Taking this into account, and substi-

tuting in (8), we have

(λ− δi∗)+ < min{min{ci∗ , (λ′ − δi∗)+}, (λ′′ − δi∗)+} ≤ (λ′′ − δi∗)+.
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Hence, λ− δi∗ ≤ (λ− δi∗)+ < (λ′′ − δi∗)+ = λ′′ − δi∗ which implies

λ < λ′′. (9)

Combining (6) and (9) we obtain, for all j ∈ N \ {i∗},

GEAj(r, c, δ) = min{cj , (λ− δj)+}

≤ min{cj ,min{(λ′ − δj)+, (λ′′ − δj)+}}

= min{min{cj , (λ′ − δj)+}, (λ′′ − δj)+}

= GEAj(r,GEA(r′, c, δ), δ).

However, this contradicts (7) and we obtain

GEA(r, c, δ) = GEA(r,GEA(r′, c, δ), δ),

which proves that the GEA rule satisfies path-independence.

Next, we prove consistency. Let (r, c, δ) ∈ RCN and T ( N , with T 6= ∅. Let us

denote x∗ = GEA(r, c, δ). By Proposition 1 it holds that, for all i, j ∈ T with i 6= j,

if x∗i + δi < x∗j + δj , then either x∗j = 0, or x∗i = ci. Since x∗|T is feasible in the

reduced problem (r−
∑
i∈N\T x

∗
i , c|T , δ|T ) and again by Proposition 1, we conclude that

x∗|T = GEA(r −
∑
i∈N\T x

∗
i , c|T , δ|T ) which proves consistency.

Finally, we prove ex-ante exemption. If r = 0, the result is straightforward. Let (r, c, δ) ∈
RC{i,j}, r > 0, be a two-person rationing problem with ex-ante conditions and let x∗ =

GEA(r, c, δ). Suppose on the contrary, that w.l.o.g., min{r, ci} ≤ r−(δi−δj)
2 but x∗i <

min{r, ci}. Hence, by efficiency, x∗j = r − x∗i > 0.

We consider two cases:

Case 1: r ≤ ci. In this case r ≤ r−(δi−δj)
2 , or, equivalently,

r + δi ≤ δj and thus δj ≥ δi. (10)

Moreover, since x∗ = GEA(r, c, δ) and x∗i < ci, we have x∗i = min{ci, (λ − δi)+} =

(λ − δi)+ = λ − δi, since, otherwise, from (10) 0 > λ − δi ≥ λ − δj , and then x∗j = 0,

which implies a contradiction.

On the other hand, since x∗ = GEA(r, c, δ) and x∗j > 0, we get

0 < x∗j = min{cj , (λ− δj)+} = min{cj , λ− δj} ≤ λ− δj .

However, if λ−δj > 0 we would have that, by (10), λ > δj ≥ r+δi and thus r < λ−δi = x∗i
which is a contradiction.

Case 2: r > ci. In this case, by hypothesis, we get

ci ≤
r − (δi − δj)

2
. (11)
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Since we are assuming that x∗i < ci < r, we have x∗i = min{ci, (λ− δi)+} = (λ− δi)+.

If λ− δi ≥ 0, then r = x∗i + x∗j = λ− δi + x∗j ≤ λ− δi + λ− δj , where the last inequality

follows from 0 < x∗j = min{cj , (λ−δj)+} = min{cj , λ−δj}. Using this inequality in (11),

we get ci ≤ λ− δi, which implies that x∗i = ci, in contradiction with our hypothesis. On

the other hand, if λ − δi < 0, then x∗i = 0 and r = x∗j ≤ λ − δj . Hence r + δj ≤ λ and

so, by substitution in (11), we get ci ≤ λ−δi
2 < 0, which is a contradiction.

We conclude that the GEA rule satisfies ex-ante exemption.

�

Proof of Theorem 1 By Proposition 2, we know that the GEA rule satisfies path-

independence, consistency and ex-ante exemption. We now concentrate on proving the

uniqueness of the rule. Let F be a rule satisfying these properties. If |N | = 1, it is

straightforward. Consider now the two-person case N = {1, 2} and (r, c, δ) ∈ RC{1,2}.
Let us suppose that, w.l.o.g., δ1 ≤ δ2 and denote x∗ = (x∗1, x

∗
2) = F (r, c, δ). We consider

three cases:

Case 1: r ≤ δ2 − δ1. Then,

min{r, c1} ≤ r =
r

2
+
r

2
≤ r − (δ1 − δ2)

2
.

Hence, min{r, c1} + δ1 ≤ r+δ1+δ2
2 , and thus, by ex-ante exemption, we have that x∗1 =

min{r, c1} and x∗2 = (r − c1)+, and the solution F is uniquely determined.

Case 2: r > δ2 − δ1 ≥ c1. Then,

min{r, c1} = c1 ≤ δ2 − δ1 =
δ2 − δ1

2
+
δ2 − δ1

2
<
r − (δ1 − δ2)

2
.

Hence, by ex-ante exemption, we have that x∗1 = min{r, c1} = c1 and x∗2 = r − c1, and

the solution F is also uniquely determined.

Case 3: r > δ2 − δ1 and c1 > δ2 − δ1. We consider two subcases.

Subcase 3a: c1 + δ1 = c2 + δ2. Since r > δ2− δ1, we claim that x∗1 + δ1 = x∗2 + δ2. First,

suppose on the contrary that

x∗1 + δ1 < x∗2 + δ2. (12)

From (12), it comes that x∗1 + δ1 <
x∗1+δ1+x

∗
2+δ2

2 = r+δ1+δ2
2 and thus

x∗1 = F1(r, c, δ) <
r + δ2 − δ1

2
. (13)

Now, let us prove that there exists r′ > r such that F1(r′, c, δ) = r+δ2−δ1
2 . Notice that

r+δ2−δ1
2 > 0 since x∗1 ≥ 0. Moreover, r+δ2−δ1

2 ≤ c1 since c1 + δ1 = c2 + δ2. Since F

satisfies path-independence it also satisfies resource monotonicity (see (1)). Hence, F is

a continuous and increasing function in r. Therefore, by continuity, since F1(0, c, δ) = 0,

F1(c1 + c2, c, δ) = c1 and F is an increasing function in r, there exists r′ ∈ [0, c1 + c2]
17



such that F1(r′, c, δ) = r+δ2−δ1
2 . Now, by (13), we have F1(r, c, δ) < F1(r′, c, δ). Hence,

by resource monotonicity, we conclude r′ > r.

Next, let us denote x′ = F (r′, c, δ). Notice that min{r, x′1} ≤ x′1 = r−(δ1−δ2)
2

which implies, by ex-ante exemption applied to the problem (r, x′, δ), that F1(r, x′, δ) =

min{r, x′1} = min{r, r+δ2−δ12 } = r+δ2−δ1
2 , where the last equality follows from r > δ2−δ1.

Finally, by path-independence, we obtain

x∗ = F (r, c, δ) = F (r, F (r′, c, δ), δ) = F (r, x′, δ) =

(
r + δ2 − δ1

2
,
r + δ1 − δ2

2

)
.

We conclude that x∗1 + δ1 = r+δ1+δ2
2 = x∗2 + δ2 reaching a contradiction with (12). In

case x∗1 + δ1 > x∗2 + δ2 the proof also follows the same argument to reach a contradiction.

Hence, the proof of the claim is done and, thus, x∗1 + δ1 = x∗2 + δ2. Finally, taking into

account that x∗1 + x∗2 = r, we conclude that the solution F is uniquely determined.

Subcase 3b: c1 + δ1 6= c2 + δ2. First, if min{r, c1} + δ1 ≤ r+δ1+δ2
2 , then by ex-ante

exemption x∗1 = min{r, c1} and x∗2 = (r−c1)+, and the solution F is uniquely determined.

Similarly, if min{r, c2} + δ2 ≤ r+δ2+δ1
2 , then by ex-ante exemption x∗2 = min{r, c2} and

x∗1 = (r − c2)+, and the solution F is uniquely determined. Otherwise,

min{r, ci}+ δi >
r + δ1 + δ2

2
, for all i ∈ {1, 2}. (14)

By the hypothesis of Subcase 3b

ci + δi < cj + δj , where i, j ∈ {1, 2} with i 6= j. (15)

Now we claim that for r′ = 2ci+ δi− δj , we have that x′ = F (r′, c, δ) is such that x′i = ci

and x′j = ci + δi − δj . To verify this, first notice that, by (15), r′ < ci + cj . Moreover,

we show that ci + δi − δj ≥ 0. Suppose on the contrary that ci < δj − δi. If i = 1 and

j = 2, we obtain a contradiction with the hypothesis of Case 3; if i = 2 and j = 1 then

c2 < δ1− δ2 ≤ 0, getting again a contradiction. Notice that the second inequality follows

from the assumption δ1 ≤ δ2. Now, since ci + δi − δj ≥ 0, we have

min{r′, ci}+ δi = min{2ci + δi − δj , ci}+ δi = ci + δi =
r′ + δi + δj

2
,

and so min{r′, ci} =
r′−(δi−δj)

2 = ci. Hence, by ex-ante exemption, we have that x′i = ci

and, by efficiency, x′j = r′ − x′i = ci + δi − δj , and the proof of the claim is done.

On the other hand, r′ = 2ci + δi − δj ≥ 2 min{r, ci} + δi − δj > r, where the last

inequality follows from (14). Therefore, by path-independence, we obtain

F (r, c, δ) = F (r, F (r′, c, δ), δ) = F (r, x′, δ).

Finally, since x′j + δj = ci + δi = x′i + δi and r > δ2 − δ1, where the inequality comes

from the hypothesis of Case 3, applying an analogous reasoning to that of Subcase 3a to
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the problem (r, x′, δ) we obtain

Fi(r, c, δ) + δi = Fi(r, x
′, δ) + δi = Fj(r, x

′, δ) + δj = Fj(r, c, δ) + δj ,

where the first and the last equalities come from path-independence. Hence, by effi-

ciency, the solution F is uniquely determined. Therefore, we conclude that, for the

two-person case, the GEA rule is the unique rule that satisfies path-independence and

ex-ante exemption.

Let |N | ≥ 3 and suppose that F and F ′ satisfy the three properties, but F 6= F ′.

Hence, there exists (r, c, δ) ∈ RCN such that x = F (r, c, δ) 6= F ′(r, c, δ) = x′. This means

that there exist i, j ∈ N such that xi > x′i, xj < x′j and, w.l.o.g., xi + xj ≤ x′i + x′j .

However, since F and F ′ are consistent,

(xi, xj) = F (r −
∑
k∈N\{i,j} xk, (ci, cj), (δi, δj)) and

(x′i, x
′
j) = F ′(r −

∑
k∈N\{i,j} x

′
k, (ci, cj), (δi, δj)).

Since F = F ′ for the two-person case and path-independence implies resource mono-

tonicity, we have that

(x′i, x
′
j) = F ′(x′i + x′j , (ci, cj)(δi, δj)) = F (x′i + x′j , (ci, cj)(δi, δj))

≥ F (xi + xj , (ci, cj)(δi, δj)) = (xi, xj),

in contradiction with xi > x′i. Hence, we conclude that F = F ′ = GEA.

�

Example 3. A rule F that satisfies consistency and path-independence but does not

satisfy ex-ante exemption. Let F be a generalized rationing rule defined as follows, for

all (r, c, δ) ∈ RCN , N ∈ N , we have

F (r, c, δ) = GEA (r, c,0) .

♦

Example 4. A rule F that satisfies consistency and ex-ante exemption but does not

satisfy path-independence. Let (r, c, δ) ∈ RCN , N ∈ N , and let us denote by ĉi =

min{r, ci} the truncated claim of agent i ∈ N . Up to reordering agents, there exist

natural numbers k1, k2, . . . , km such that k1 + k2 + . . .+ km = n and

ĉ1 + δ1 = ĉ2 + δ2 = . . . = ĉk1 + δk1

< ĉk1+1 + δk1+1 = ĉk1+2 + δk1+2 = . . . = ĉk1+k2 + δk1+k2

< ĉk1+k2+1 + δk1+k2+1 = . . . = ĉk1+k2+k3 + δk1+k2+k3
...

< ĉk1+...+km−1+1 + δk1+...+km−1+1 = . . . = ĉk1+...+km + δk1+...+km .
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Notice that we have divided agents in m groups according to the value ĉi + δi, where this

value is constant within groups and strictly increasing across groups. Let us denote each

group by N1 = {i ∈ N : 1 ≤ i ≤ k1} and Nt = {i ∈ N : k1 + . . . + kt−1 + 1 ≤ i ≤
k1 + . . .+ kt}, for all t ∈ {2, . . . ,m}. Then, we can define recursively an allocation rule

by assigning payoffs to the members of each group as follows.

Step 1
(
group N1

)
:

If
∑
i∈N1

ci ≥ r then xi = GEAi(r, c|N1
, δ|N1

), for all i ∈ N1, and xi = 0, otherwise.

Stop.

If not,
∑
i∈N1

ci < r, we assign xi = ci, for all i ∈ N1 and we proceed to the next

step.

Step t
(
2 ≤ t ≤ m, groups N2 to Nm

)
:

If
∑
i∈Nt

ci ≥ r −
∑
i∈Nj

j=1,...,t−1

ci then xi = GEAi

r − ∑
k∈Nj

j=1,...,t−1

ck, c|Nt
, δ|Nt

, for all

i ∈ Nt, and xi = 0, for all i ∈ Nk with k = t+ 1, t+ 2, . . . ,m. Stop.

If not,
∑
i∈Nt

ci < r −
∑
i∈Nj

j=1,...,t−1

ci, we assign xi = ci, for all i ∈ Nt and we proceed to

the next step.

♦

Example 5. A rule F that satisfies ex-ante exemption and path independence but it is

not consistent. Let N ∈ N with |N | ≥ 3. Define9 N1 = {i, j} ⊆ N such that i < k and

j < k for all k ∈ N \ {i, j} and N2 = N \ N1. Let CN1
= ci + cj, CN2

=
∑
k∈N2

ck,

∆N1
= δi + δj, and ∆N2

=
∑
k∈N2

δk. Next, let us denote by z = (z1, z2) the allocation

obtained by applying the GEA rule to the two-subgroup problem; that is

z := (z1, z2) = GEA (r, (CN1
, CN2

), (∆N1
,∆N2

)) .

Then, define F as follows: if |N | ≤ 2, F (r, c, δ) = GEA(r, c, δ); if |N | ≥ 3

Fk(r, c, δ) :=

 GEAk (z1, (ci, cj), (δi, δj)) if k ∈ N1,

GEAk (z2, (ck)k∈N2
, (δk)k∈N2

) if k ∈ N2.

♦

Proof of Proposition 3 First, we prove transfer composition. If r = r1, the result

is straightforward. If r1 < r and r1 + r2 = r, we claim that x = x′ + x′′, where

x = GEA(r, c, δ), x′ = GEA(r1, c, δ) and x′′ = GEA(r2, c−x′, δ+x′). By definition, and

9That is, N1 is formed by the two agents associated to the smallest natural numbers in N .
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for all i ∈ N , we have

xi = min{ci, (λ− δi)+} with
∑
k∈N xk = r,

x′i = min{ci, (λ′ − δi)+} with
∑
k∈N x

′
k = r1 and

x′′i = min
{
ci −min{ci, (λ′ − δi)+},

(
λ′′ − δi −min{ci, (λ′ − δi)+}

)
+

}
with

∑
k∈N x

′′
k = r2.

Moreover, notice that

x′i + x′′i = min
{
ci,max

{
λ′′ − δi,min{ci, (λ′ − δi)+}

}}
. (16)

Next, we show

λ > λ′. (17)

Suppose on the contrary that λ ≤ λ′. Then, for all i ∈ N ,

xi = min{ci, (λ− δi)+} ≤ min{ci, (λ′ − δi)+} = x′i.

Summing up all the above inequalities, we obtain

r =
∑
i∈N

xi ≤
∑
i∈N

x′i = r1,

which contradicts r1 < r.

Let us suppose on the contrary that the GEA rule does not satisfy transfer compo-

sition, that is, x 6= x′ + x′′. Then, by efficiency of the GEA rule, there exist i∗ ∈ N and

j∗ ∈ N such that

xi∗ < x′i∗ + x′′i∗ and xj∗ > x′j∗ + x′′j∗ . (18)

Then, by (16), we have

xi∗ = min{ci∗ , (λ− δi∗)+}

< min
{
ci∗ ,max

{
λ′′ − δi∗ ,min{ci∗ , (λ′ − δi∗)+}

}}
= x′i∗ + x′′i∗ ≤ ci∗ ,

(19)

which leads to xi∗ = min{ci∗ , (λ − δi∗)+} = (λ − δi∗)+. Taking this into account, and

substituting in (19), we have

xi∗ = (λ− δi∗)+ < min
{
ci∗ ,max

{
λ′′ − δi∗ ,min{ci∗ , (λ′ − δi∗)+}

}}
≤ max

{
λ′′ − δi∗ ,min{ci∗ , (λ′ − δi∗)+}

}
≤ max

{
λ′′ − δi∗ , (λ′ − δi∗)+

}
.

(20)

Next, we show that

λ′′ > λ. (21)
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Otherwise, λ′′ ≤ λ and thus, by (17), we have that

max
{
λ′′ − δi∗ , (λ′ − δi∗)+

}
≤ (λ− δi∗)+ = xi∗ ,

getting a contradiction with (20). Now, by (21) and (16), we obtain that, for all j ∈
N \ {i∗},

xj = min{cj , (λ− δj)+}

≤ min
{
cj ,max

{
λ′′ − δj ,min{cj , (λ′ − δj)+}

}}
= x′j + x′′j .

However, this contradicts (18) and we conclude x = x′ + x′′, which proves that the

GEA rule satisfies transfer composition.

Next, we prove ex-ante fairness. If r = 0, the result is straightforward. Let (r, c, δ) ∈
RCN , r > 0 and let x = GEA(r, c, δ). Suppose on the contrary that there exist i, j ∈ N
such that r ≤ min{δj − δi, ci} but xj > 0. Hence, by efficiency of the GEA rule, we

obtain that xi < ci, and thus, since xj > 0,

δj − δi ≥ min{δj − δi, ci} ≥ r =
∑
k∈N

xk ≥ xi + xj > xi − xj ,

we conclude xi + δi < xj + δj with xj > 0 and xi < ci getting a contradiction with

Proposition 1. Therefore, we conclude that the GEA rule satisfies ex-ante fairness.

�

Proposition 4. The GEA and the GEL are the dual rules of each other.

Proof. Let us first prove GEA(r, c, δ) = c−GEL(`, c,−δ). For all i ∈ N ,

GEAi(r, c, δ) = min{ci, (λ− δi)+} = ci −max{0, ci − (λ− δi)+}. (22)

By (22),
∑
i∈N GEAi(r, c, δ) =

∑
i∈N ci −

∑
i∈N max{0, ci − (λ − δi)+} and thus,∑

i∈N max{0, ci − (λ − δi)+} =
∑
i∈N ci − r = `. Hence, max{0, ci − (λ − δi)+} =

GELi(`, c,−δ). Next we prove GEL(r, c, δ) = c−GEA(`, c,−δ). For all i ∈ N ,

GELi(r, c, δ) = max{0, ci − (λ+ δi)+} = ci −min{ci, (λ+ δi)+}. (23)

By (23),
∑
i∈N GELi(r, c, δ) =

∑
i∈N ci −

∑
i∈N min{ci, (λ+ δi)+} and∑

i∈N min{ci, (λ+ δi)+} =
∑
i∈N ci−r = `. Hence, min{ci, (λ+ δi)+} = GEAi(`, c,−δ).

Proposition 5. Ex-ante exemption and ex-ante exclusion are dual properties.

Proof. Let (r, c, δ) ∈ RC{1,2} be a two-person rationing problem with ex-ante conditions

and let us suppose that F and F ∗ are dual rules, that is, F ∗(r, c, δ) = c − F (`, c,−δ).
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Hence, we claim that if F satisfies ex-ante exemption, then F ∗ satisfies ex-ante exclusion.

To verify this, suppose, w.l.o.g., that, for the problem (r, c, δ), we have

min{`, c1} − δ1 ≤
`− δ1 − δ2

2
. (24)

Notice that (24) is the same condition as that used in the definition of ex-ante exemption

when we apply rule F to the problem (`, c,−δ). Hence, since F satisfies ex-ante exemption

and by (24), we have

F ∗1 (r, c, δ) = c1 − F1(`, c,−δ) = c1 −min{c1, `} = max{0, c1 − `}

= max{0, c1 − (c1 + c2 − r)} = (r − c2)+,

which proves that F ∗ satisfies ex-ante exclusion.

Similarly, we claim that if F satisfies ex-ante exclusion, then F ∗ satisfies ex-ante

exemption. Let us suppose, w.l.o.g., that for the problem (r, c, δ), we have

min{r, c1}+ δ1 ≤
r + δ1 + δ2

2
. (25)

Notice that (25) is the same condition as that used in the definition of ex-ante exclusion

when we apply rule F to the problem (`, c,−δ). Hence, since F satisfies ex-ante exclusion,

we have that

F ∗1 (r, c, δ) = c1 − F1(`, c,−δ) = c1 − (`− c2)+

= c1 −max{0, `− c2} = min{c1, c1 + c2 − `} = min{c1, r},

which proves that F ∗ satisfies ex-ante exemption.

Proposition 6. Path-independence and composition are dual properties.

Proof. Let us suppose that F and F ∗are dual rules, that is, F ∗(r, c, δ) = c− F (`, c,−δ).
We claim that if F satisfies composition, then F ∗ satisfies path-independence. To verify

this, let r ≥ r1 ≥ 0 and define r2 = r − r1 and `1 =
∑
i∈N ci − r1. Hence,

` =
∑
i∈N

ci − r = `1 − r2, and so `1 ≥ `. (26)

On the one hand, we have

F ∗(r1, c, δ) = c− F (`1, c,−δ) = c− (F (`, c,−δ) + F (r2, c− F (`, c,−δ),−δ))

= F ∗(r, c, δ)− F (r2, c− F (`, c,−δ),−δ), (27)

where the first and the last equalities follow from the definition of dual rule, and the

remaining equality follows from the composition property of F and (26).
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By definition of dual rule, we have

F ∗(r1, F
∗(r, c, δ), δ) = F ∗(r, c, δ)− F (r − r1, F ∗(r, c, δ),−δ)

= F ∗(r, c, δ)− F (r2, c− F (`, c,−δ),−δ).
(28)

Thus, taken into account (27) and (28), we conclude that F ∗ satisfies path-independence.

Similarly, we claim that if F satisfies path-independence, then F ∗ satisfies composi-

tion. To verify this, let r1 + r2 = r, where r1, r2 ∈ R+ and `1 =
∑
i∈N ci − r1. Notice

that `1 ≥ `. By path-independence and by definition of dual rule, we have

F (`, c,−δ) = F (`, F (`1, c,−δ),−δ) = F (`1, c,−δ)− F ∗(r2, F (`1, c,−δ), δ). (29)

Then, by definition of dual rule and by (29), we have

F ∗(r, c, δ) = c− F (`, c,−δ) = c− (F (`1, c,−δ)− F ∗(r2, F (`1, c,−δ), δ))

= F ∗(r1, c, δ) + F ∗(r2, F (`1, c,−δ), δ)

= F ∗(r1, c, δ) + F ∗(r2, c− F ∗(r1, c, δ), δ).

(30)

Therefore, F ∗ satisfies composition.

Proposition 7. Ex-ante fairness and ex-ante fairness* are dual properties.

Proof. Let (r, c, δ) ∈ RCN and suppose that F and F ∗ are dual rules, that is, F ∗(r, c, δ) =

c − F (`, c,−δ). We claim that if F satisfies ex-ante fairness, then F ∗ satisfies ex-ante

fairness*. To verify this, suppose that, given (r, c, δ) there exist i, j ∈ N such that

` ≤ min{δj − δi, cj}. (31)

Notice that (31) is the same condition as the one used in the definition of ex-ante

fairness when we apply rule F to the problem (`, c,−δ). Hence, since F satisfies ex-ante

fairness and by (31), we have

F ∗i (r, c, δ) = ci − Fi(`, c,−δ) = ci − 0 = ci,

which proves that F ∗ satisfies ex-ante fairness*.

Similarly, we claim that if F satisfies ex-ante fairness*, then F ∗ satisfies ex-ante

fairness. Let us suppose that, given (r, c, δ) there exist i, j ∈ N such that

r ≤ min{δj − δi, ci}. (32)

Notice that (32) is the same condition as the one used in the definition of ex-ante

fairness* when we apply rule F to the problem (`, c,−δ). Hence, since F satisfies ex-ante

fairness* and by (32), we have

F ∗j (r, c, δ) = cj − Fj(`, c,−δ) = cj − cj = 0,

which proves that F ∗ satisfies ex-ante fairness.
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Proposition 8. Transfer composition and trasnfer path-independence are dual proper-

ties.

Proof. The proof follows the same guidelines of the proof of Proposition 6. Just replace

expression (30) by F ∗(r, c, δ) = F ∗(r1, c, δ) + F ∗(r2, c− F ∗(r1, c, δ), δ + F ∗(r1, c, δ)).

Proposition 9. The GT rule is self-dual.

Proof. First of all, let us recall that F and F ∗ are dual rules if, for all (r, c, δ) ∈ RCN ,

F (r, c, δ) = c − F ∗(`, c,−δ). A self-dual rule is one with F = F ∗. Next, we show that

the GT rule is self-dual, i.e. GT (r, c, δ) = c−GT (`, c,−δ). We consider two cases:

Case 1: r <
∑

i∈N ci
2 . Hence, for all i ∈ N ,

GTi(r, c, δ) = GEAi
(
r, c2 , δ

)
+GELi

(
0, c2 , δ

)
= GEAi

(
r, c2 , δ

)
= min{ ci2 , (λ− δi)+} = ci

2 + min{0, (λ− δi)+ − ci
2 }

= ci
2 −max{0, ci2 − (λ− δi)+}.

(33)

On the other hand, by Case 1, ` =
∑
i∈N ci − r >

∑
i∈N ci
2 . Hence, for all i ∈ N ,

ci −GTi(`, c,−δ) = ci −
(
GEAi

(
min{`,

∑
i∈N ci
2 }, c2 ,−δ

)
+GELi

(
max{0, `−

∑
i∈N ci
2 }, c2 ,−δ

))
= ci −GEAi

(∑
i∈N ci
2 , c2 ,−δ

)
−GELi

(
`−

∑
i∈N ci
2 , c2 ,−δ

)
= ci

2 −max{0, ci2 − (λ− δi)+}.

(34)

Therefore, by (33) and (34), GT (r, c, δ) = c−GT (`, c,−δ), and thus, Case 1 is done.

Case 2: r ≥
∑

i∈N ci
2 . Hence, for all i ∈ N ,

GTi(r, c, δ) = GEAi

(∑
i∈N ci
2 , c2 , δ

)
+GELi

(
r −

∑
i∈N ci
2 , c2 , δ

)
= ci

2 + max{0, ci2 − (λ+ δi)+} = ci + max{−ci2 ,−(λ+ δi)+}

= ci −min{ ci2 , (λ+ δi)+}.

(35)

On the other hand, by Case 2, ` =
∑
i∈N ci − r ≤

∑
i∈N ci
2 . Hence, for all i ∈ N ,

ci −GTi(`, c,−δ) = ci −
(
GEAi

(
min{`,

∑
i∈N ci
2 }, c2 ,−δ

)
+GELi

(
max{0, `−

∑
i∈N ci
2 }, c2 ,−δ

))
= ci −GEAi

(
`, c2 ,−δ

)
= ci −min{ ci2 , (λ+ δi)+}.

(36)

Therefore, by (35) and (36), GT (r, c, δ) = c − GT (`, c,−δ), and thus, Case 2 is done.

Then, we conclude that the GT rule is self-dual.
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