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ABSTRACT
We explore the cosmological implications of the angle-averaged correlation function, ξ (s), and
the clustering wedges, ξ⊥(s) and ξ ‖(s), of the LOWZ and CMASS galaxy samples from Data
Releases 10 and 11 of the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillation Spec-
troscopic Survey. Our results show no significant evidence for a deviation from the standard
� cold dark matter model. The combination of the information from our clustering measure-
ments with recent data from the cosmic microwave background is sufficient to constrain the
curvature of the Universe to �k = 0.0010 ± 0.0029, the total neutrino mass to

∑
mν < 0.23 eV

(95 per cent confidence level), the effective number of relativistic species to Neff = 3.31 ± 0.27
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and the dark energy equation of state to wDE = −1.051 ± 0.076. These limits are further
improved by adding information from Type Ia supernovae and baryon acoustic oscillations
from other samples. In particular, this data set combination is completely consistent with a
time-independent dark energy equation of state, in which case we find wDE = −1.024 ± 0.052.
We explore the constraints on the growth rate of cosmic structures assuming f(z) = �m(z)γ

and obtain γ = 0.69 ± 0.15, consistent with the predictions of general relativity of γ = 0.55.

Key words: cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

The large-scale distribution of galaxies contains the signature of
acoustic waves that propagated through the Universe prior to the
epoch of recombination. This signal, referred to as baryon acoustic
oscillations (BAO), appears as a modulation in the amplitude of
the galaxy power spectrum, P(k), and a broad peak in the large-
scale two-point correlation function, ξ (s) (Eisenstein & Hu 1998;
Meiksin, White & Peacock 1999; Matsubara 2004). The wavelength
of the oscillations in P(k) and the location of the peak in ξ (s) can
be associated with the maximum distance that these acoustic waves
can travel before the decoupling of matter and radiation, that is,
the sound horizon at the drag redshift, rd. As this scale can be
constrained with high accuracy from observations of the cosmic
microwave background (CMB), the acoustic scale inferred from the
clustering of galaxy samples at different redshifts can be used as a
standard ruler to measure the distance–redshift relation, providing a
powerful and robust probe of the expansion history of the Universe
(Blake & Glazebrook 2003; Linder 2003; Seo & Eisenstein 2003).

The BAO signal was first detected in the clustering of the Two-
degree Field Galaxy Redshift survey (Colless et al. 2001, 2003) by
Cole et al. (2005) and the luminous red galaxy (LRG; Eisenstein
et al. 2001) sample of the Sloan Digital Sky Survey (SDSS; York
et al. 2000) by Eisenstein et al. (2005). Since then, subsequent anal-
yses on various galaxy samples have provided BAO measurements
with increasing precision (Padmanabhan et al. 2007; Beutler et al.
2011; Blake et al. 2011; Anderson et al. 2012, 2014; Seo et al.
2012; Xu et al. 2012). Using these results it is now possible to
construct a Hubble diagram based entirely on BAO distance mea-
surements. It has become standard practice to use this information,
in combination with additional data sets, when deriving constraints
on cosmological parameters.

Separate measurements of the acoustic scale in the directions
parallel and perpendicular to the line of sight can be used to obtain
constraints on the Hubble parameter, H(z), and the angular diame-
ter distance, DA(z), through the Alcock–Paczynski test (Alcock &
Paczynski 1979; Hu & Haiman 2003). However, the BAO signal
on angle-averaged clustering measurements such as P(k) or ξ (s)
provides estimates of the average distance DV(z) ∝ DA(z)2/H(z).
Although most analyses have focused on angle-averaged quantities,
the large volumes probed by present-day galaxy samples make it
possible to extend these analyses to anisotropic clustering measure-
ments (Cabré & Gaztañaga 2009; Blake et al. 2012; Xu et al. 2012;
Anderson et al. 2014; Kazin et al. 2013) using the full power of the
BAO test.

The clustering of galaxies encodes additional information be-
yond that contained in the BAO signal that can significantly im-
prove the cosmological constraints derived from large-scale struc-
ture (LSS) data sets. This extra information is particularly important
for anisotropic clustering measurements, where the signature of the
so-called redshift-space distortions (RSD) can be used to constrain

the growth rate of cosmic structures (Guzzo et al. 2008). In this way,
anisotropic clustering measurements can provide information of the
expansion history of the Universe and the growth of density fluctua-
tions, which can be used to distinguish between the dark energy and
modified gravity scenarios for the origin of cosmic acceleration.

The most accurate BAO measurements to date have been obtained
from the Baryon Oscillation Spectroscopic Survey (BOSS; Dawson
et al. 2013), which is one of the four component surveys of SDSS-
III (Eisenstein et al. 2011). After applying a modified version of
the reconstruction technique of Eisenstein et al. (2007), the BAO
signal in the galaxy clustering of BOSS SDSS Data Release 9 (DR9;
Ahn et al. 2012) provided a 1.7 per cent accuracy measurement of
the average distance DV(z) at z = 0.57 (Anderson et al. 2012), as
well as separate constraints on DA(z) and H(z) at the same redshift
with 3 and 8 per cent accuracy, respectively (Anderson et al. 2014).
These measurements have been complemented by analyses of the
full shape of isotropic and anisotropic clustering measurements
(Reid et al. 2012; Sánchez et al. 2012, 2013; Chuang et al. 2013a;
Samushia et al. 2013a). Besides galaxy clustering analyses, a sample
of high-redshift quasars from BOSS has been used to detect for the
first time the signature of the BAO in the fluctuations of the Lyman
α forest at z � 2.4 (Busca et al. 2013; Slosar et al. 2013).

In this paper, we use information from the full shape of the two-
point correlation function and the clustering wedges statistic (Kazin,
Sánchez & Blanton 2012) measured from BOSS data to derive
constraints on cosmological parameters. We extend the analyses of
Sánchez et al. (2012, 2013) based on a high-redshift galaxy sample
from BOSS DR9 to the data corresponding to DR10 (Ahn et al.
2013) and DR11 (internal data release), including results from the
low-redshift BOSS galaxy sample.

As the statistical uncertainties characterizing different cosmolog-
ical observations become smaller, it is important to explore poten-
tial systematics that can be introduced by the analysis techniques
and models applied to the data. The comparison of the results ob-
tained by applying multiple methods to the same data can be used
to identify the presence of systematic errors. Our analysis is part
of a series of papers examining the clustering properties of the
BOSS DR10 and DR11 galaxy samples with different methodolo-
gies. Tojeiro et al. (2014) and Anderson et al. (2013) analyse the
isotropic and anisotropic BAO signal in these samples and explore
their cosmological implications. Ross et al. (2014) study the sensi-
tivity of these BAO measurements to the properties of the galaxy
population being analysed. Vargas-Magaña et al. (2013) investigate
the potential systematic errors affecting anisotropic BAO measure-
ments. Percival et al. (2014) perform a detailed analysis of the
effect of the uncertainties in the covariance matrices determined
from mock catalogues on the obtained constraints. These analyses
are complemented by those of Chuang et al. (2013b), Samushia
et al. (2014) and Beutler et al. (2013), who analyse the full shape of
the monopole–quadrupole pair in configuration and Fourier space.
These studies attempt to condense the information of the clustering
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measurements into a few numbers reflecting the geometric con-
straints and the measurements of the growth of structures, which
are then compared with the predictions from different cosmological
models. We follow an alternative approach in which we perform
the comparison with cosmological models at the level of the galaxy
clustering measurements themselves. The consistency of the results
presented here and those of our companion papers is a reassuring
indication of the robustness of our results.

The outline of this paper is as follows. In Section 2, we describe
our galaxy sample, the procedure followed to obtain our clustering
measurements and their respective covariance matrices, as well as
the additional data sets included in our analysis. In Section 3, we
review our model of the full shape of the correlation function and
the clustering wedges and our methodology to obtain cosmological
constraints. In Section 4, we present the constraints on cosmological
parameters obtained from different combinations of data sets and
parameter spaces. Finally, Section 5 contains our main conclusions.

Throughout the paper, we assume a flat � cold dark mat-
ter (�CDM) fiducial cosmological model with matter density, in
units of the critical density, of �m = 0.274, a Hubble parameter
h = 0.7 (expressed in units of 100 km s−1 Mpc−1), a baryon den-
sity of �bh2 = 0.0224, a scalar spectral index of ns = 0.95 and a
linear-theory rms mass fluctuation in spheres of radius 8 h−1 Mpc
of σ 8 = 0.8. This choice matches the fiducial cosmology assumed
by Anderson et al. (2013).

2 TH E DATA

2.1 The Baryon Oscillation Spectroscopic Survey

2.1.1 Galaxy clustering measurements from BOSS

We use the LOWZ and CMASS samples of BOSS corresponding
to SDSS DR10 (Ahn et al. 2013) and DR11, which will become
publicly available with the final data release of the survey. These
galaxy samples were selected on the basis of the SDSS multicolour
photometric observations (Gunn et al. 1998, 2006) to cover the
redshift range 0.15 < z < 0.7 with a roughly uniform comoving
number density n � 3 × 10−4 h3 Mpc−3 (Eisenstein et al. 2011;
Dawson et al. 2013; Padmanabhan et al., in preparation). Up to
∼30 and 2 per cent of LOWZ and CMASS targets, respectively,
were observed during the SDSS I/II surveys (York et al. 2000)
and thus already have a redshift. The remaining redshifts were
measured from the spectra obtained with the double-armed BOSS
spectrographs (Smee et al. 2013) by applying the minimum-χ2

template-fitting procedure described in Aihara et al. (2011) and
Bolton et al. (2012).

The LOWZ sample consists primarily of red galaxies that lie in
massive haloes, with a satellite fraction of 12 per cent (Parejko et al.
2013). The CMASS sample is approximately complete down to a
limiting stellar mass of M � 1011.3 M� (Maraston et al. 2013), and
has an ∼10 per cent satellite fraction (White et al. 2011; Nuza et al.
2013). Although this sample is dominated by early-type galaxies,
it contains a significant fraction of massive spirals (∼26 per cent;
Masters et al. 2011), with measurable star formation activity from
their emission line spectra (Thomas et al. 2013). Anderson et al.
(2013) describe the construction of catalogues for LSS analyses
based on these samples. We use these samples separately, restricting
our analysis to the redshift ranges 0.15 < z < 0.43 for the LOWZ
sample and 0.43 < z < 0.7 for the CMASS galaxies. This results
in 218 905 and 501 844 galaxies for the DR10 LOWZ and CMASS

galaxy samples, respectively, and 313 780 and 690 826 galaxies for
the corresponding DR11 data sets.

We study the clustering properties of these galaxy samples by
means of the angle-averaged correlation function, ξ (s), and the
clustering wedges statistic (Kazin et al. 2012), ξ�μ(s). The latter
corresponds to the average of the full two-dimensional correlation
function ξ (μ, s), where μ is the cosine of the angle between the
separation vector s and the line-of-sight direction, over the interval
�μ = μmax − μmin, that is

ξ�μ(s) ≡ 1

�μ

∫ μmax

μmin

ξ (μ, s) dμ. (1)

We use two wide clustering wedges, ξ⊥(s) and ξ ‖(s), defined for
the intervals 0 ≤ μ ≤ 0.5 and 0.5 ≤ μ ≤ 1, respectively. The
basic procedure implemented to obtain these measurements from
the LOWZ and CMASS samples is analogous to that of Anderson
et al. (2013) and Sánchez et al. (2013). Here we summarize the
most important points and refer the reader to these studies for more
details.

We assume our fiducial cosmology to convert the observed red-
shifts into distances. We use the estimator of Landy & Szalay (1993)
to compute the full correlation function ξ (μ, s) of the LOWZ and
CMASS samples, with random samples following the same selec-
tion function as the original catalogues but containing 50 times
more objects. The value of μ of a given pair is defined as the cosine
of the angle between the separation vector, s, and the line-of-sight
direction at the mid-point of s. We infer the correlation function ξ (s)
and the clustering wedges ξ⊥(s) and ξ ‖(s) by averaging the full ξ (μ,
s) over the corresponding μ intervals. As discussed in Kazin et al.
(2012), this procedure correctly accounts for the μ dependence of
the random–random counts, which is ignored when the estimator of
Landy & Szalay (1993) is applied to the averaged counts directly,
leading to a bias in the recovered clustering measurements.

When computing the pair counts, we assign a series of weights
to each object in our catalogue. First, we apply a radial weight
designed to minimize the variance of our measurements (Feldman,
Kaiser & Peacock 1994) given by

wr = 1

1 + Pwn̄(z)
, (2)

where n̄(z) is the expected number density of the catalogue at the
given redshift and Pw is a scale-independent parameter, which we
set to Pw = 2 × 104 h−3 Mpc3. We also include angular weights to
account for redshift failures and fibre collisions. For the CMASS
sample, we apply additional weights to correct for the systematic
effect introduced by the local stellar density and the seeing of the
observations, as described in detail in Anderson et al. (2013).

Figs 1 and 2 show clustering measurements from, respectively,
DR10 and DR11. In each case, the left-hand panels show the angle-
averaged ξ (s), and the right-hand panels the clustering wedges.
Upper panels show results from the LOWZ sample and the lower
panels show CMASS measurements. The anisotropic clustering pat-
tern generated by RSD leads to significant differences in the am-
plitude and shape of the two clustering wedges, with ξ ‖(s) showing
a lower amplitude and a stronger damping of the BAO peak than
ξ⊥(s). The dashed lines in both figures correspond to the best-fitting
�CDM model obtained from the combination of the LOWZ and
CMASS DR11 clustering wedges with CMB observations from
the Planck satellite (Planck Collaboration I 2013) and the CMB
polarization measurements from Wilkinson Microwave Anisotropy
Probe (WMAP; Bennett et al. 2013) as described in Section 4.1,
which provide an excellent description of all our measurements.
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Figure 1. Angle-averaged correlation functions ξ (s) (left-hand panels) and clustering wedges ξ⊥(s) and ξ‖(s) (right-hand panels) of the LOWZ and CMASS
DR10 galaxy samples. The error bars were derived from the diagonal entries of the full covariance matrices obtained as described in Section 2.1.2. The dashed
lines correspond to the best-fitting �CDM model obtained from the combination of information from the full shape of the LOWZ and CMASS DR11 clustering
wedges with the CMB temperature fluctuation measurements from Planck and the 9 yr polarization measurements from WMAP (see Section 4.1).

2.1.2 Covariance matrix estimation

When comparing our BOSS clustering measurements with theo-
retical predictions, we assume a Gaussian likelihood function of
the form L ∝ exp(−χ2/2). The calculation of the χ2 value of a
given model requires the knowledge of the inverse covariance ma-
trix of our measurements, which we estimate using mock cata-
logues matching the selection functions of the LOWZ and CMASS
samples. These mocks were constructed from two sets of PTHA-
LOS realizations (Scoccimarro & Sheth 2002), corresponding to our
fiducial cosmology, as described in Manera et al. (2013, 2014).1

Our CMASS mocks are based on 600 independent simulations with
a box size of Lbox = 2.4 h−1 Gpc, while those of the LOWZ sample
were constructed from a separate set of 500 boxes with the same
volume. In the construction of these mocks, the Northern Galac-
tic Cap (NGC) and Southern Galactic Cap (SGC) components of
the survey were considered as being independent, and sampled

1 http://www.marcmanera.net/mocks/

separately from the same PTHALOS realizations. The volume of the
LOWZ sample allowed us to obtain two separate NGC and SGC
mocks per PTHALOS realization, leading to 1000 independent com-
bined NGC+SGC LOWZ mock catalogues. The larger volume of
the CMASS sample makes it more difficult to construct mocks of
the NGC and SGC components from the boxes without overlap.
This means that the NGC and SGC CMASS mocks drawn from
the same box are not independent. For DR10, the overlap between
the NGC and SGC mocks is approximately 75 per cent of the area
covered by the SGC, while for DR11 the whole of the Southern
component is also covered by the NGC. To account for this over-
lap in our covariance matrix estimations, we construct two sets of
300 independent NGC+SGC CMASS mocks, drawing the matched
components from different boxes.

We measured the angle-averaged correlation function and the
clustering wedges of each LOWZ and CMASS mock catalogue us-
ing the same binning and weighting schemes as for the real data.
These measurements were used to obtain an estimate of the full co-
variance matrix C of our clustering measurements. For the CMASS
sample, we define our covariance matrix as the average of the results
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Figure 2. The same as Fig. 1, but for the LOWZ and CMASS DR11 galaxy samples.

obtained in the two sets of independent mocks. The error bars
in Figs 1 and 2 correspond to the square root of the diagonal entries
in C.

Our estimations of C are affected by noise, as they are inferred
from a finite number of mock catalogues. This uncertainty has
important implications on the derived constraints. The distribution
of covariance matrices recovered from multiple, independent sets of
simulations follows a Wishart distribution, and its inverse, C−1, an
inverse Wishart distribution (Wishart 1928). As the inverse Wishart
distribution is asymmetric, C−1 provides a biased estimate of the
true inverse covariance matrix (see e.g. Hartlap, Simon & Schneider
2007; Percival et al. 2014; Taylor, Joachimi & Kitching 2013). This
bias can be corrected for by rescaling the inverse covariance matrix
as

Ĉ
−1 = (1 − D) C−1, (3)

with

D = Nbins + 1

Nmocks − 1
, (4)

where Nmocks is to the total number of mocks used to estimate C and
Nbins corresponds to the total number of bins in our measurements.
We restrict our analysis to 40 < s < 160 h−1 Mpc with a bin width

of ds = 5 h−1 Mpc, leading to Nbins = 30 for the angle-averaged
correlation function and Nbins = 60 for the clustering wedges.

Equation (4) shows that an accurate estimate of the inverse co-
variance matrix requires a large number of independent realizations.
While for the LOWZ sample our covariance matrix estimates are
based on Nmocks = 1000, for the CMASS sample we use two sets
of 300 independent mocks. As these two sets are correlated, their
combination does not lead to the same noise that would correspond
to using 600 independent estimates. To account for this fact, we
follow Percival et al. (2014) and compute the correction term D
in equation (4) using Nmocks = 300, and multiply the result by
(1 + r2)/2, where r corresponds to the correlation coefficient be-
tween the mock clustering measurements. The volume overlap be-
tween our mock catalogues implies r = 0.33 for DR10 and r = 0.49
for DR11 (for more details, see Percival et al. 2014). The result-
ing correction factors for the clustering measurements used in our
analysis are listed in Table 1.

Although the correction factor of equation (4) leads to an unbiased
estimation of the inverse covariance matrix, it does not correct
for the effect of the uncertainties in this estimate, which should
be propagated into the obtained cosmological constraints. Percival
et al. (2014) present a detailed description of the effect of the noise in
the covariance matrix estimated from a set of mock realizations and
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Table 1. Correction factors of equation (4)
to account for the bias in the estimation of
the inverse covariance matrix.

Measurement (1 − D)

DR10 and DR11 LOWZ ξ (s) 0.978
DR10 and DR11 LOWZ ξ�μ(s) 0.953
DR10 CMASS ξ (s) 0.955
DR10 CMASS ξ�μ(s) 0.913
DR11 CMASS ξ (s) 0.950
DR11 CMASS ξ�μ(s) 0.902

derive formulae for their impact on the errors of the cosmological
constraints measured by integrating over the likelihood function.
They demonstrated that, to account for this extra uncertainty, the
recovered parameter constraints must be rescaled by a factor that
depends on Nbins, Nmocks and the number of parameters included in
the analysis, Npar (see equation 18 in Percival et al. 2014). Depending
on the parameter space, our choice of range of scales and binning
leads to a modest correction factor of at most 2.4 per cent for the
results inferred from the clustering wedges, which we include in our
constraints, and a negligible correction (less than 0.3 per cent) for
the results obtained from the angle-averaged correlation function.

2.2 Additional data sets

We combine the information encoded in the full shape of our clus-
tering measurements with additional observations in order to im-
prove the obtained cosmological constraints. Here we give a brief
description of each additional data set.

We use the low-� and high-� CMB temperature power spectrum
from the 1 yr data release of the Planck satellite (Planck Collab-
oration I 2013) with the low-� polarization measurements from
the 9 yr of observations of the WMAP satellite (Bennett et al. 2013;
Hinshaw et al. 2013). This data set corresponds to the ‘Planck+WP’
case considered in Planck Collaboration XVI (2013). For simplic-
ity, we refer to this combination simply as ‘Planck’. We extend this
data set using the high-� CMB measurements from the Atacama
Cosmology Telescope (ACT; Das et al. 2013) and the South Pole
Telescope (SPT; Keisler et al. 2011; Reichardt et al. 2012; Story
et al. 2013). We refer to this combination as ‘ePlanck’. We also
explore the constraints obtained by replacing the Planck CMB data
by the final 9 yr results from the WMAP satellite (Bennett et al.
2013; Hinshaw et al. 2013) to test the consistency between these
data sets. We refer to these measurements as ‘WMAP9’.

We also include information from distance measurements in-
ferred from the angle-averaged BAO signal from independent sam-
ples. We use the results of Beutler et al. (2011) from the large-scale
correlation function of the 6dF Galaxy Survey (Jones et al. 2009)
corresponding to z = 0.106, and the distance measurements inferred
from the Lyman α forest in BOSS (Busca et al. 2013; Kirkby et al.
2013; Slosar et al. 2013), corresponding to z = 2.4. These data sets
constrain the parameter combination DV(z)/rd, where

DV(z) =
(

(1 + z)2DA(z)2 cz

H (z)

)1/3

. (5)

We do not include the results of Xu et al. (2012) based on the final
SDSS-II LRG sample as this catalogue is partially contained in the
LOWZ sample used here or the results from Blake et al. (2011) from
the final WiggleZ Dark Energy Survey (Drinkwater et al. 2010) at
z = 0.44, 0.6 and 0.73 due to the overlap of these data with the
CMASS sample.

Finally, we also use the information from the Union2.1 Type Ia
supernova (SN) compilation (Suzuki et al. 2012). This sample com-
bines 833 SN drawn from 19 different data sets using the scheme
of the original Union sample of Kowalski et al. (2008). For com-
parison, in some cases we also present results obtained using the
SN compilation of Conley et al. (2011), which includes the high-
redshift SN from the first three years of the Supernova Legacy Sur-
vey (SNLS). When using these data, we follow the recipe of Conley
et al. (2011) to take into account systematic errors in our cosmolog-
ical constraints, which requires the introduction of two additional
nuisance parameters, α and β, related to the stretch–luminosity and
colour–luminosity relationships. When quoting cosmological con-
straints based on this sample, the values of these parameters are
marginalized over.

With the exception of Section 3.3, we use our BOSS clustering
measurements in combination with CMB data. Unless stated oth-
erwise, we use the information from our clustering measurements
in the LOWZ and CMASS samples in combination, and refer to
them as ‘BOSS ξ (s)’ for the angle-averaged correlation functions
and ‘BOSS ξ�μ(s)’ for the clustering wedges. Although the bulk of
our analysis is based on our DR11 BOSS clustering measurements
as they possess smaller statistical uncertainties, we test the consis-
tency of these results with the constraints inferred using their DR10
counterparts. Our tightest constraints are obtained when the addi-
tional BAO and Union2.1 SN data are also included in our analysis.
We refer to this case as our ‘Full’ combination.

3 M E T H O D O L O G Y

3.1 Modelling of our clustering measurements

We follow the recipe of Sánchez et al. (2013) to model the full
shape of the angle-averaged correlation function and the clustering
wedges. This description takes into account the effects of non-linear
evolution, RSD and bias which, if unaccounted for, could introduce
systematic errors in the derived cosmological constraints (Angulo
et al. 2008; Crocce & Scoccimarro 2008; Sánchez, Baugh & Angulo
2008; Smith, Scoccimarro & Sheth 2008). Here we summarize the
main details of our modelling and refer the reader to section 3 of
Sánchez et al. (2013) for more details.

Both the angle-averaged correlation function and the clustering
wedges can be obtained by integrating ξ (μ, s) over different μ

intervals. This means that a theoretical description of these mea-
surements requires a model of the anisotropic correlation function.
To obtain this model, it is convenient to decompose ξ (μ, s) in terms
of Legendre polynomials, L�(μ), as

ξ (μ, s) =
∑

even �

L�(μ)ξ�(s), (6)

where the multipoles ξ�(s) are given by

ξ�(s) ≡ 2� + 1

2

∫ 1

−1
L�(μ)ξ (μ, s) dμ. (7)

These multipoles are related to those of the two-dimensional power
spectrum, P(μ, k), by

ξ�(s) ≡ i�

2π2

∫ ∞

0
P�(k)j�(ks) k2dk, (8)

where j�(x) is the spherical Bessel function of order � (Hamilton
1997). We describe P(μ, k) with a simple parametrization as

P (μ, k) =
(

1

1 + (kf σvμ)2

)2

(1 + βμ2)2PNL(k), (9)

MNRAS 440, 2692–2713 (2014)



2698 A. G. Sánchez et al.

where f ≡ d ln D
d ln a

is the logarithmic structure growth-rate parameter,
β = f/b, and PNL(k) represents the non-linear real-space power
spectrum, given by

PNL(k) = b2
[
PL(k) e−(kσv)2 + AMC PMC(k)

]
(10)

with b, σ v and AMC treated as free parameters. Here PMC(k) is given
by

PMC(k) = 1

4π3

∫
d3q |F2(k − q, q)|2P (|k − q|)P (q), (11)

where F2(k, q) is the standard second-order kernel of perturbation
theory. The parametrization of equation (10) is motivated by renor-
malized perturbation theory (RPT; Crocce & Scoccimarro 2006)
and is the basis of the parametrization of the non-linear correlation
function proposed by Crocce & Scoccimarro (2008). This simple
recipe provides an accurate description of the power spectra and cor-
relation functions measured from N-body simulations (e.g. Sánchez
et al. 2008; Montesano, Sánchez & Phleps 2010) and has been ap-
plied to the analysis of numerous galaxy samples (Sánchez et al.
2009, 2012, 2013; Beutler et al. 2011; Blake et al. 2011; Montesano,
Sánchez & Phleps 2012). The Lorentzian pre-factor in equation (9)
accounts for the Finger-of-God effect (Jackson 1972) under the as-
sumption of an exponential galaxy velocity distribution function
(Park et al. 1994; Cole, Fisher & Weinberg 1995).

Only a small number of multipoles of ξ (μ, s) have non-negligible
values on large scales. We base our description of the full ξ (μ, s) on
the multipoles ξ�(s) with � = 0, 2 of the parametrization of equa-
tion (9). Sánchez et al. (2013) showed that discarding contributions
from multipoles with � ≥ 4, this simple recipe provides an accurate
description of the full shape of the angle-averaged correlation func-
tion and the clustering wedges ξ⊥(s) and ξ ‖(s), leading to unbiased
cosmological constraints.

One additional ingredient must be added to our model before it
can be compared with real clustering measurements. As described
in Section 2.1.1, these measurements require the assumption of
a fiducial cosmology to convert the observed redshifts into dis-
tances. This choice must be taken into account in our models.
The relation between the true values of s and μ characterizing a
given galaxy pair and those measured assuming a different fidu-
cial cosmology can be written as (Ballinger, Peacock & Heavens
1996)

s = s ′
√

α2
‖(μ′)2 + α2

⊥(1 − (μ′)2), (12)

μ = α‖μ′√
α2

‖(μ′)2 + α2
⊥(1 − (μ′)2)

, (13)

where the primes denote the quantities in the fiducial cosmology
and the scaling factors are given by

α⊥ = DA(zm)

D′
A(zm)

, (14)

α‖ = H ′(zm)

H (zm)
, (15)

that is, the ratios of the angular diameter distance and the Hub-
ble parameter evaluated at the mean redshift of the sample being
considered, zm. These relations encode the effect of the fiducial
cosmology on our clustering measurements, as they can be used to
transform the integral in equation (1) from the fiducial cosmology

space to the true cosmology as

ξ ′
�μ(s ′) ≡ 1

�μ′

∫ μ′
max

μ′
min

ξ (μ(μ′, s ′), s(μ′, s ′)) dμ′. (16)

We use this relation to transform our theoretical predictions of
ξ (s) and ξ�μ(s) to the fiducial cosmology assumed in our BOSS
clustering measurements.

3.2 Cosmological parameter spaces

We assume that primordial fluctuations are adiabatic, Gaussian and
have a power-law spectrum of Fourier amplitudes, with a negligible
tensor component. Table 2 lists the parameters that specify a given
cosmological model under these assumptions. We use the data sets
described in Section 2 to obtain constraints on these parameters.
We start our analysis with the basic �CDM parameter space, which
corresponds to a flat universe where the energy budget contains
contributions from baryons, CDM and dark energy, described by
an equation of state wDE = pDE/ρDE = −1. We follow Planck Col-
laboration XVI (2013) and assume a non-zero fraction of massive
neutrinos with a fixed total mass

∑
mν = 0.06 eV. The free parame-

ters required to characterize this model are listed in the upper part of
Table 2. Although it is considered in our analysis, the optical depth to
reionization, τ , is constrained by the CMB data alone and including
additional data sets leaves the results unchanged. As Hinshaw et al.
(2013) and Planck Collaboration XVI (2013) present constraints

Table 2. Cosmological parameters considered in our analy-
sis. The upper part lists the parameters of the standard �CDM
model while the middle section lists a number of possible ex-
tensions of this parameter space. The lower part lists a number
of important quantities whose values can be derived from the
first two sets.

Parameter Description

Basic �CDM parameters

θMC Approximate angular size of the sound
horizon at recombinationa

ωb Physical baryon density
ωc Physical CDM density
τ Optical depth to reionization
ns Scalar spectral indexb

As Amplitude of the scalar perturbationsb

Additional parameters

�k Curvature contribution to energy density
w0 Present-day dark energy equation of state, wDE

wa Time dependence of wDE (assuming
wDE(a) = w0 + wa(1 − a))∑

mν Total sum of the neutrino masses
Neff Effective number of relativistic species
γ Power-law index of the structure growth-rate

parameter, assuming f (z) = �
γ
m

Derived parameters

�m Total matter density
�DE Dark energy density
h Dimensionless Hubble parameter
t0/Gyr Age of the Universe
σ 8 Linear-theory rms mass fluctuations in spheres

of radius 8 h−1 Mpc
fν Dark matter fraction in massive neutrinos
f(zm) Structure growth-rate parameter, f (z) = d ln D

d ln a

aDefined as in the June 2013 version of COSMOMC.
bQuoted at the pivot wavenumber of k0 = 0.05 Mpc−1.
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on this parameter based on the same CMB measurements used in
our analysis, we do not report them here.

We also explore a number of possible extensions of the �CDM
parameter space by allowing for variations on the additional param-
eters presented in the middle section of Table 2. These extensions
include more general dark energy models, non-flat universes, dif-
ferent contributions from massive neutrinos, additional relativistic
species and possible deviations from the predictions of general
relativity (GR). The final part of Table 2 lists a number of impor-
tant quantities whose values can be derived from the remaining
parameters.

When studying the properties of the dark energy component, we
explore the cases of a time-independent dark energy equation of
state wDE and when this parameter is allowed to vary with time, in
which case we assume the standard parametrization of Chevallier
& Polarski (2001) and Linder (2003) given by

wDE(a) = w0 + wa(1 − a). (17)

When exploring the constraints on other potential extensions of
the �CDM model, we investigate the impact of allowing also for
variations on wDE.

We explore these parameter spaces by means of the Markov
chain Monte Carlo (MCMC) technique. We use the June 2013
version of COSMOMC (Lewis & Bridle 2002), modified to include
our BOSS clustering measurements as additional data sets. This
code uses CAMB to compute power spectra for the CMB and matter
fluctuations (Lewis, Challinor & Lasenby 2000), which implements
the parametrized post-Friedman framework (Hu & Sawicki 2007)
to account for models with wDE < −1 and dynamical dark energy
models, as described in Fang, Hu & Lewis (2008). Besides the
cosmological parameters described here, the analysis of the CMB
data requires the inclusion of a number of nuisance parameters that
are included in our MCMC and marginalized over, as described
in Planck Collaboration XVI (2013). When including clustering
measurements from BOSS in our analysis, the parameters b, σ v and
AMC for each data set are included as additional free parameters in
our MCMC and marginalized over.

3.3 The cosmological information in the correlation function
and the clustering wedges

In this section, we analyse the information on geometrical quantities
encoded in our measurements of ξ (s) and the clustering wedges
ξ⊥(s) and ξ ‖(s). As discussed in detail by Kazin et al. (2012), while
angle-averaged measurements such as ξ (s) provide constraints on
the ratio DV(zm)/rd, anisotropic clustering measurements such as
the clustering wedges constrain the combinations DA(zm)/rd and
H(zm)rd. In this way, the BAO signal in the clustering wedges can
be used to break the degeneracy between DA(zm) and H(zm) obtained
from ξ (s). When the full shape of these measurements is taken into
account, the extra information on f(zm) provided by the amplitude
difference between ξ⊥(s) and ξ ‖(s) improves the constraints from
those recovered when only the BAO signal is considered (Sánchez
et al. 2013).

We now investigate the constraints on these quantities that can be
derived from our clustering measurements. To do this, we explore
our most general parameter space treating these quantities as derived
parameters, with their values computed in the context of the cos-
mological model being tested. This approach differs from the one
applied in our companion papers (Beutler et al. 2013; Chuang et al.
2013b; Samushia et al. 2014; Anderson et al. 2013; Tojeiro et al.
2014) where the values of DA(z) and H(z) are treated as independent

Table 3. Marginalized 68 per cent geometrical constraints derived
from the full shape of our clustering measurements alone, under
the assumption that f(zm) follows the predictions of GR. We have
rescaled our results by the sound horizon at the drag redshift for our
fiducial cosmology, rfid

d = 149.28 Mpc, to express them in units of
Mpc and km s−1 Mpc−1.

Data set DV(z)

(
rfid
d
rd

)
DA(z)

(
rfid
d
rd

)
H (z)

(
rd
rfid
d

)

CMASS (zm = 0.57)

DR11 ξ (s) 2054 ± 25 – –
DR11 ξ�μ(s) 2048 ± 25 1387 ± 22 94.3 ± 2.4
DR10 ξ (s) 2046 ± 34 – –
DR10 ξ�μ(s) 2034 ± 31 1385 ± 28 96.0 ± 3.4

LOWZ (zm = 0.32)

DR11 ξ (s) 1254 ± 56 – –
DR11 ξ�μ(s) 1237 ± 42 965 ± 37 82.5 ± 3.5
DR10 ξ (s) 1266 ± 48 – –
DR10 ξ�μ(s) 1237 ± 42 960 ± 34 81.6 ± 3.9

parameters (i.e. without adopting a specific relation between their
values). While the approach followed in these analyses will lead to
more general constraints on these parameters than the ones derived
here, our results can be used as an indication of the information con-
tent in our clustering measurements and a consistency test with the
results of these analyses. For this exercise, we apply flat priors on
the parameters � = (ωb, ωc, ns), which determine the shape of the
linear-theory matter power spectrum, centred on the values corre-
sponding to the best-fitting �CDM model to the Planck CMB data,
with a width equivalent to six times their 68 per cent confidence
levels (CL).

Table 3 lists the geometrical constraints obtained from the full
shape of our clustering measurements alone, assuming that f(zm)
follows the predictions of GR. Here we have rescaled our results
by the sound horizon at the drag redshift for our fiducial cosmol-
ogy computed using CAMB, rfid

d = 149.28 Mpc, to express them in
units of Mpc and km s−1 Mpc−1. In all cases, the results recovered
from the DR10 and DR11 samples are in good agreement. For the
CMASS sample, the extra volume of DR11 leads to a reduction of
approximately 20 per cent in the allowed regions. For the DR11
LOWZ sample, although the limits on H(zm) and DA(zm) inferred
from the clustering wedges exhibit an improvement of about 10 per
cent with respect to the corresponding DR10 results, the constraints
on DV(zm) obtained from ξ (s) show the opposite behaviour. This
is consistent with the results of the BAO-only analysis of Tojeiro
et al. (2014) and might be related to the higher amplitude of the
acoustic peak in the DR10 LOWZ ξ (s), which leads to a more accu-
rate determination of its centroid. Fig. 3 shows the two-dimensional
marginalized constraints on DA(zm)(rfid

d /rd) and H (zm)(rd/r
fid
d ) at

zm = 0.32 (left-hand panel) and zm = 0.57 (right-hand panel),
derived from the DR11 LOWZ and CMASS samples, respectively.
The long-dashed lines correspond to the constraints derived from the
angle-averaged correlation function, which correspond to a degen-
eracy of constant DV(zm)/rd. For each sample, the extra information
contained in the clustering wedges breaks this degeneracy, leading
to separate constraints on DA and H shown by the solid lines.

We also test the effect of relaxing the assumption of GR to com-
pute f(zm) by treating its value as a free parameter. Table 4 summa-
rizes the results obtained from the clustering wedges of our galaxy
samples, which are in good agreement with the ones obtained from
the BAO-only analysis of the same galaxy samples in Anderson
et al. (2013) and Tojeiro et al. (2014). Exploring this parameter
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Figure 3. Two-dimensional marginalized constraints in the DA(zm)(rfid
d /rd)−H (zm)(rd/r

fid
d ) plane at zm = 0.32 (left-hand panel) and zm = 0.57 (right-hand

panel) derived from the LOWZ and CMASS DR11 samples, respectively. The grey long-dashed contours show the results obtained using information from
the angle-averaged correlation function while the red solid lines correspond to those inferred from the clustering wedges ξ⊥(s) and ξ‖(s) assuming that f(z)
follows the predictions of GR. The short-dashed contours correspond to the prediction for these parameters derived from the ePlanck data set (see Section 2.2)
under the assumption of a �CDM model.

Table 4. Marginalized 68 per cent constraints on geometrical
quantities and the growth of structure derived from the full shape
of our clustering wedges, when the assumption that f(zm) follows
the predictions of GR is relaxed. We have rescaled our results
by the sound horizon at the drag redshift for our fiducial cos-
mology, rfid

d = 149.28 Mpc, to express them in units of Mpc and
km s−1 Mpc−1.

Data set DA(z)

(
rfid
d
rd

)
H (z)

(
rd
rfid
d

)
f(z)σ 8(z)

CMASS (zm = 0.57)

DR11 ξ�μ(s) 1382 ± 26 93.5 ± 3.0 0.417 ± 0.045
DR10 ξ�μ(s) 1381 ± 31 95.5+3.7

−3.2 0.469 ± 0.060

LOWZ (zm = 0.32)

DR11 ξ�μ(s) 965 ± 42 81.7+4.0
−4.4 0.48 ± 0.10

DR10 ξ�μ(s) 951 ± 39 80.4 ± 3.2 0.43 ± 0.10

space we can constrain the combination fσ 8(z), for which we obtain
fσ 8(0.32) = 0.48 ± 0.10 and fσ 8(0.57) = 0.417 ± 0.045 using the
information of the DR11 LOWZ and CMASS galaxy samples, re-
spectively. The constraint derived from the DR11 CMASS sample
is in excellent agreement with the results of Beutler et al. (2013)
and Samushia et al. (2014), who found fσ 8(0.57) = 0.419 ± 0.042
and fσ 8(0.57) = 0.441 ± 0.044, respectively. Chuang et al. (2013b)
use the information from the multipoles of the LOWZ and CMASS
correlation functions for scales 56 ≤ s/(h−1 Mpc) ≤ 200 and find
fσ 8(0.32) = 0.384 ± 0.095 and fσ 8(0.57) = 0.354 ± 0.059. Al-
though these values are lower than the ones reported here, Chuang
et al. (2013b) apply a significantly wider prior on the parameters
� and find evidence for an increase in the recovered value for this
quantity when smaller scales are included in the analysis.

The dashed lines in Fig. 3 correspond to the constraints ob-
tained from the ePlanck CMB measurements under the assump-
tion of a �CDM model. The results obtained from the clustering
wedges are in good agreement with the predictions of the �CDM

model that best describes these CMB data, indicating the consis-
tency between these data sets and their agreement with the �CDM
model. For more general parameter spaces, the region in the
DA(zm)(rfid

d /rd) − H (zm)(rd/r
fid
d ) plane allowed by the CMB data

increases substantially. In these cases, the combination of the CMB
data with the information provided by our clustering measurements
improves the constraints over those recovered from the CMB infor-
mation alone. In Section 4, we explore the cosmological implica-
tions of the information contained in our clustering measurements.

4 C O S M O L O G I C A L C O N S T R A I N T S

Here we describe the cosmological implications of our BOSS clus-
tering measurements. Section 4.1 presents the constraints on the
parameters of the standard �CDM model, while Sections 4.2–4.5
explore the results obtained in more general parameter spaces. We
pay particular attention to the constraints on the properties of the
dark energy component and study how the limits in other parameters
are changed when more general dark energy models are considered.
Appendix A gives a complete list of the cosmological constraints
derived from different data set combinations, while Table 5 summa-
rizes the results on the most important parameters for the various
cases we consider.

4.1 The �CDM parameter space

The simple �CDM model is able to describe an ever increasing
amount of precise cosmological observations, with the CMB mea-
surements from the Planck satellite being perhaps the most striking
example (Planck Collaboration XVI 2013). However, as the sta-
tistical uncertainties of these measurements improve, the careful
analysis of the consistency of the results derived from different data
sets becomes crucial as it can be used to detect the presence of
systematic errors. Here we review the constraints on the parameters
of the �CDM model obtained by combining our BOSS clustering
measurements with different data sets.
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Table 5. Marginalized 68 per cent constraints on the most relevant cosmological pa-
rameters of the parameter spaces analysed in Sections 4.1–4.5, obtained using different
combinations of the data sets described in Section 2.

ePlanck+BOSS ξ (s) ePlanck+BOSS ξ�μ(s) ePlanck + BOSS ξ�μ(s)
+BAO+SN

The �CDM model

h 0.6824+0.0072
−0.0072 0.6863 ± 0.0075 0.6876 ± 0.0072

100�m 30.22+0.94
−0.96 29.71+0.97

−0.96 29.53 ± 0.91

Constant dark energy equation of state

wDE −1.31+0.21
−0.16 −1.051 ± 0.076 −1.024 ± 0.052

100�m 24.9+3.4
−2.6 28.8 ± 1.6 29.3 ± 1.1

Time-dependent dark energy equation of state

w0 −1.29+0.48
−0.46 −0.83+0.38

−0.34 −0.95 ± 0.14

wa −0.0+1.0
−1.1 −0.61+0.89

−0.96 −0.29 ± 0.47

100�m 25.2+5.7
−6.6 30.9+4.1

−3.6 29.5 ± 1.3

Non-flat models

100�k 0.07 ± 0.31 0.10 ± 0.29 0.15 ± 0.29
100�m 30.18 ± 0.96 29.60+0.99

−0.97 29.11 ± 0.91

Curvature and dark energy

wDE −1.53+0.24
−0.28 −1.05 ± 0.11 −1.009+0.062

−0.060

100�k −0.38+0.24
−0.28 0.02 ± 0.43 −0.14 ± 0.33

100�m 22.0+3.2
−4.9 28.9 ± 2.0 29.4 ± 1.2

Massive neutrinos∑
mν <0.23 eV (95% CL) <0.24 eV (95% CL) <0.23 eV (95% CL)

fν <0.017 (95% CL) <0.019 (95% CL) <0.017 (95% CL)

Massive neutrinos and dark energy∑
mν <0.49 eV (95% CL) <0.47 eV (95% CL) <0.33 eV (95% CL)

wDE −1.49+0.24
−0.30 −1.13 ± 0.12 −1.046 ± 0.063

Additional relativistic degrees of freedom

Neff 3.35 ± 0.27 3.31 ± 0.27 3.30 ± 0.27
100�m 29.7 ± 1.0 29.2 ± 1.1 29.1 ± 1.0

Deviations from GR

γ – 0.69 ± 0.15 0.69 ± 0.15
100�m – 29.76+0.93

−0.90 29.62 ± 0.89

Dark energy and modified gravity

γ – 0.88 ± 0.22 0.75 ± 0.17
wDE – −1.15 ± 0.11 −1.055 ± 0.057

The blue dashed lines in Fig. 4 correspond to the constraints in
the �m−h plane derived from the Planck (upper panel) and WMAP9
(lower panel) CMB measurements. Both sets of constraints are elon-
gated along the same degeneracy, which approximately corresponds
to a constant value of �mh3 (Percival et al. 2002; Planck Collabora-
tion XVI 2013), indicated by the dotted lines. Along this degeneracy,
the constraints from WMAP9 extend towards lower values of �m

and higher values of h than those derived from the Planck data. This
behaviour leads to different, but consistent, marginalized constraints
on these parameters. As shown by the red solid lines in Fig. 4, when
these CMB measurements are combined with the information from
the LOWZ and CMASS DR11 clustering wedges, the obtained con-
straints are significantly improved, leading to �m = 0.283 ± 0.010
and h = 0.6947 ± 0.0097 for the WMAP9+BOSS ξ�μ(s) combina-
tion and �m = 0.2974 ± 0.0098 and h = 0.6859 ± 0.0076 for the
Planck+BOSS ξ�μ(s) data set. Although the differences in the con-

straints from Planck and WMAP9 are propagated to these results,
our BOSS DR11 clustering measurements select the lowest values
of �m allowed by Planck, leading to final constraints which are con-
sistent within 1σ with those derived using WMAP9. As shown in
Table 5, using the angle-averaged correlation function of the LOWZ
and CMASS DR11 samples leads to similar constraints.

The dashed lines in Figs 1 and 2 correspond to the best-fitting
�CDM model to the Planck+BOSS ξ�μ(s) combination. This
model provides an excellent description of the broad-band shape
and the location of the BAO peak in these measurements, with χ2

values of 49.7 and 48.3 over 52 degrees of freedom for the DR11
LOWZ and CMASS clustering wedges, respectively. Despite the
fact that this model was obtained by fitting the clustering wedges of
the DR11 galaxy samples, it also provides an excellent description
of all our clustering measurements, including our DR10 results. This
illustrates the consistency between these data sets, which can also be

MNRAS 440, 2692–2713 (2014)



2702 A. G. Sánchez et al.

Figure 4. Two-dimensional marginalized constraints in the �m−h plane.
The blue dashed lines correspond to the constraints from the Planck (upper
panel) and WMAP9 (lower panel) CMB measurements, which follow a
degeneracy of constant �mh3 = 0.0959, as indicated by the dotted lines.
The red solid lines show the results obtained when these measurements
are combined with the information from the LOWZ and CMASS DR11
clustering wedges.

seen in the cosmological constraints obtained when the Planck CMB
data are combined with the DR10 LOWZ and CMASS clustering
wedges, in which case we find �m = 0.294 ± 0.010 and
h = 0.6882 ± 0.0079, in good agreement with the results obtained
using DR11 information.

Our tightest constraints on the parameters of the �CDM model
are obtained by combining the ePlanck CMB data set with the
information from our DR11 BOSS ξ�μ(s), SN and BAO data sets,
leading to �m = 0.2924 ± 0.0086 and h = 0.6899 ± 0.0070.

4.2 The dark energy equation of state

In the standard �CDM model, the current phase of accelerated cos-
mic expansion is due to a dark energy component characterized by
a constant equation of state wDE = −1. As this hypothesis is con-
sistent with all current cosmological observations, it has become
the standard model for dark energy. However, a variety of alterna-
tive models have been proposed (for a review, see e.g. Peebles &
Ratra 2003; Frieman, Turner & Huterer 2008). Here we explore the
constraints on more general dark energy models by allowing for
variations in wDE and its possible evolution with time.

We start our analysis by extending the �CDM parameter space
including wDE, assumed to be constant in time, as a free parame-
ter. The blue long-dashed contours in Fig. 5 correspond to the 68
and 95 per cent CL in the �m−wDE plane obtained in this case
from the WMAP9 (right-hand panel) and Planck (left-hand panel)
CMB data. The constraints derived from both of these data sets ex-
hibit a degeneracy between these parameters. However, the strong
degeneracy seen in the WMAP9 constraints is somewhat reduced
in the results derived from Planck, as the information from the
higher acoustic peaks restricts the region of the parameter space
with wDE > −1. When these CMB data sets are combined with the
information from the DR11 LOWZ and CMASS angle-averaged
correlation functions, the allowed region for these parameters is
reduced to a narrow degeneracy that is mostly driven by the DV/rd

constraint provided by the CMASS sample (grey long-dashed lines
in Fig. 5). In these cases, the dark energy equation of state is only
weakly constrained, with wDE = −1.05+0.29

−0.13 and wDE = −1.28+0.24
−0.16

for the WMAP9+BOSS ξ (s) and Planck+BOSS ξ (s) combinations,
respectively.

The red solid lines in Fig. 5 show the constraints obtained when
the WMAP9 and Planck CMB data sets are combined with the in-
formation from the full shape of the DR11 LOWZ and CMASS
clustering wedges. The additional information provided by ξ⊥(s)
and ξ ‖(s) can break the degeneracy present in the CMB results
much more efficiently than the angle-averaged correlation function,
leading to broadly similar results for both CMB data sets. In particu-
lar, the marginalized constraints on the matter density parameter are
almost identical, with �m = 0.288 ± 0.015 for the WMAP9+BOSS
ξ�μ(s) case and �m = 0.289 ± 0.016 for the Planck+BOSS
ξ�μ(s) combination. However, the differences in the CMB
data sets lead to slightly different constraints on the dark energy
equation of state of wDE = −0.964 ± 0.077 (WMAP9+BOSS
ξ�μ(s)) and wDE = −1.049 ± 0.078 (Planck+BOSS ξ�μ(s)). These
results show that the combination of current CMB and LSS data sets
can constrain the dark energy equation of state with an accuracy of
8 per cent, leading to results in good agreement with a cosmologi-
cal constant, indicated by the dotted line in Fig. 5. Our results are
consistent with those reported in our companion papers (Chuang
et al. 2013b; Samushia et al. 2013a; Anderson et al. 2013), who find
similar constraints on wDE from the combination of CMB data with
various types of anisotropic clustering information from the DR11
CMASS and LOWZ samples. This agreement illustrates the robust-
ness of these limits with respect to the methodology implemented
to obtain them.

Although the constraints obtained using the WMAP9 and Planck
data sets are consistent at the 1σ level, the difference between these
results highlights the importance of understanding the origin of the
discrepancies between these data sets. The same behaviour is seen
in other parameter spaces; once combined with our measurements
of the LOWZ and CMASS clustering wedges, the WMAP9 and
Planck CMB data sets give similar results, although the mean values
are shifted by up to 1σ . In the following sections, we focus on
the Planck CMB measurements and derive constraints using the
ePlanck combination, but we compare the results with those derived
using WMAP9 in some particular cases.

Combining the Planck CMB data with our DR10 clustering mea-
surements leads to consistent results. The combination of Planck
and the DR10 LOWZ and CMASS ξ�μ(s) provides the constraints
�m = 0.279 ± 0.019 and wDE = −1.092+0.092

−0.088. The smaller statis-
tical uncertainties associated with the DR11 LOWZ and CMASS
clustering measurements lead to a reduction of ∼15 per cent in
the constraints on the dark energy equation of state. As the same
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Figure 5. Left-hand panel: marginalized 68 and 95 per cent CL in the �m−wDE plane for the �CDM parameter set extended by including the redshift-
independent value of wDE as an additional parameter. The contours correspond to the results obtained using the WMAP9-only (blue long-dashed lines), the
WMAP9+BOSS ξ (s) combination (grey short-dashed lines) and the WMAP9+BOSS ξ�μ(s) case (red solid lines). The right-hand panel shows the results
obtained when the WMAP9 measurements are replaced by the Planck CMB data set. The dotted line in both panels corresponds to the �CDM model value of
wDE = −1.

agreement is seen in all cosmological parameter spaces, from now
on we focus on the results obtained using the DR11 galaxy samples.

Including the information from the high-� CMB experiments im-
proves the constraints only marginally. Using the ePlanck + BOSS
ξ�μ(s) combination, we find wDE = −1.051 ± 0.076. Our final
constraints are obtained when the information from the additional
BAO and Union2.1 SN measurements is added to this data combi-
nation, leading to wDE = −1.024 ± 0.052, in good agreement with
the �CDM model value of wDE = −1 and �m = 0.293 ± 0.011.
Replacing the information from the Union2.1 SN sample by the
SNLS data leads to a change in the recovered values of about 1σ ,
with wDE = −1.071 ± 0.055 and �m = 0.283 ± 0.011, showing
a preference for values of wDE < −1. As pointed out by Planck
Collaboration XVI (2013), the difference between the results ob-
tained using these samples might indicate that the treatment of the
systematic errors affecting these SN data sets is incomplete.

Although exploring the constraints on a constant wDE could indi-
cate a deviation from the standard �CDM paradigm, more general
dark energy models, such as those based on a scalar field, will be
characterized by a time-dependent equation of state (e.g. Wetterich
1988). We explore the constraints on the time dependence of wDE,
parametrized as in equation (17). The blue dashed lines in Fig. 6
correspond to the two-dimensional marginalized constraints in the
w0−wa plane obtained from the ePlanck CMB, covering a large
region of the parameter space. The red solid lines in Fig. 6 cor-
respond to the results obtained by combining the ePlanck CMB
measurements with our BOSS ξ�μ(s) data set, showing a signifi-
cant reduction of the allowed region for these parameters. In this
case, we find w0 = −0.83+0.38

−0.34 and wa = −0.61+0.89
−0.96. As shown by

the green dot–dashed lines in the same figure, the information from
our Full data set combination tightens the constraints, leading to
w0 = −0.95 ± 0.14 and wa = −0.29 ± 0.47, in agreement with the
standard �CDM model values indicated by the dotted lines.

4.3 Non-flat universes

The standard �CDM model assumes a flat universe. Here we test
this assumption by adding �k to the list of free parameters of our

Figure 6. Marginalized 68 and 95 per cent CL in the w0−wa plane when
we explore the redshift dependence of the dark energy equation of state,
parametrized as in equation (17). The contours show the results obtained
using the ePlanck CMB data alone (blue dashed lines), the ePlanck+BOSS
ξ�μ(s) combination (red solid lines), and when this information is combined
with our BAO and SN data sets (green dot–dashed lines). The dotted lines
correspond to the fiducial values of these parameters in the �CDM model,
w0 = −1 and wa = 0.

base model. The blue dashed contours in Fig. 7 show the 68 and
95 per cent marginalized constraints in the �m− �k plane derived by
means of the ePlanck CMB data combination, which exhibit the so-
called geometrical degeneracy (Efstathiou & Bond 1999) relating
models with the same angular scale of the acoustic peaks in the
CMB. This degeneracy extends over a wide range of values of �k,
leading to weak constraints on this parameter. In this case, we find
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Figure 7. Marginalized constraints in the �m−�k plane when the �CDM
model is extended to allow for non-flat models. The contours show the
68 and 95 per cent CL obtained using the ePlanck CMB data alone (blue
dashed lines) and the ePlanck+BOSS ξ�μ(s) combination (red solid lines).
The dotted line corresponds to flat universes, with �k = 0.

100�k = −4.2+2.7
−1.7. As shown by Planck Collaboration XVI (2013),

including information from the lensing signal inferred from the
CMB partially reduces this degeneracy, but to obtain significantly
tighter constraints it is necessary to combine these measurements
with additional data sets.

When the ePlanck CMB data are combined with the monopole
correlation functions of the DR11 LOWZ and CMASS samples,
the constraints on DV/rd provided by these measurements are suffi-
cient to break the geometrical degeneracy, leading to a constraint of
100�k = 0.07 ± 0.31, in excellent agreement with a flat Universe.
The red solid lines in Fig. 7 show the constraints obtained when
the ePlanck data are combined with the clustering wedges of these
galaxy samples, leading to a similar result of 100�k = 0.10 ± 0.29.
Including our SN and BAO data sets leads only to a small shift in the
recovered mean value for this parameter, with 100�k = 0.15 ± 0.29,
showing no evidence for a deviation from the flat Universe hypoth-
esis, indicated by a dotted line in Fig. 7.

Both �k and wDE are involved in the geometrical degeneracy, as
they change the distance to the last scattering surface. This means
that when both of these parameters are varied simultaneously, the
geometric degeneracy gains an extra degree of freedom, leading to
a significant degradation of the obtained constraints. This effect is
shown by the blue short-dashed contours in Fig. 8, which corre-
spond to the constraints in the wDE – �k plane obtained from the
ePlanck CMB data. In this case, the information from the LOWZ
and CMASS angle-averaged correlation functions is not enough
to break the geometric degeneracy completely (as shown by the
grey long-dashed lines in Fig. 8). Although this information can
constrain the curvature of the Universe to 100�k = −0.38+0.24

−0.28, it
leaves a wide range of allowed values for the dark energy equation
of state in the region where wDE < −1.

The red solid contours in Fig. 8 correspond to constraints ob-
tained after combining the ePlanck CMB data with the full shape
of the clustering wedges of the DR11 LOWZ and CMASS sam-

Figure 8. Marginalized constraints in the wDE−�k plane for the �CDM
parameter set extended by allowing for simultaneous variations on both of
these parameters. The contours correspond to the 68 and 95 per cent CL
derived from the combination of ePlanck data alone (blue dashed lines),
ePlanck plus the clustering wedges of the LOWZ and CMASS DR11 sam-
ples (red solid lines), and when the BAO and SN data sets are added to the
latter combination (green dot–dashed lines). The dotted lines correspond to
the values of these parameters in the �CDM model.

ples. The additional information in the clustering wedges reduces
the allowed region of this parameter space significantly, leading to
the constraints 100�k = 0.02 ± 0.43 and wDE = −1.05 ± 0.11.
As shown by the green dot–dashed lines in Fig. 8, including the in-
formation from the SN and additional BAO measurements can im-
prove the constraints even further, leading to 100�k = −0.14 ± 0.33
and wDE = −1.009+0.062

−0.060, in excellent agreement with the �CDM
model. In particular, the constraints on the dark energy equation of
state obtained in this case have a similar accuracy as those presented
in Section 4.2 under the assumption of a flat universe.

4.4 Massive neutrinos and relativistic species

In recent years, neutrino oscillation experiments have measured
non-zero mass-squared differences between neutrino flavours, im-
plying that they are massive and contribute to the total energy budget
of the Universe. However, absolute neutrino mass measurements are
more difficult to perform in the laboratory (Lobashev 2003; Eitel
2005; Otten & Weinheimer 2008) and current constraints are weaker
than those imposed by cosmological observations such as CMB and
LSS measurements (Lesgourgues & Pastor 2012).

Following the analysis of Planck Collaboration XVI (2013), our
base �CDM model includes a non-zero contribution from massive
neutrinos with

∑
mν = 0.06 eV to the total energy budget of the

Universe. In this section, we allow this parameter to vary freely
assuming three neutrino species of equal mass and explore the
constraints that can be imposed on this quantity by means of our
DR11 clustering measurements.

The CMB power spectrum is sensitive to neutrino masses through
two main effects, the change in the signal of the integrated Sachs–
Wolfe effect at low multipoles and the lensing contribution at high �
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Figure 9. Marginalized constraints in the �m−�mν plane obtained when
the �CDM parameter set is extended by treating the neutrino mass as a free
parameter. The short- and long-dashed lines correspond to the 68 and 95 per
cent CL derived by the Planck and ePlanck CMB data, respectively. The
solid lines show the results obtained from the combination of the ePlanck
CMB measurements with the full shape of the LOWZ and CMASS clustering
wedges (red solid lines).

(for a detailed description of these effects, see e.g. Lesgourgues &
Pastor 2012; Lesgourgues et al. 2013; Hou et al. 2014). The grey
short-dashed lines in Fig. 9 correspond to the 68 and 95 per cent
CL in the �m−∑

mν plane derived from the Planck CMB data.
These constraints are elongated along a line that corresponds to
models with a constant redshift of matter-radiation equality, zeq,
which is accurately measured from CMB observations (Komatsu
et al. 2009). As indicated by the blue long-dashed lines in the same
figure, extending these data with the high-� CMB measurements
from ACT and SPT improves the results significantly, but leaves
a residual degeneracy that limits the constraints on

∑
mν . This is

shown by the blue short-dashed line in Fig. 10, which corresponds
to the one-dimensional marginalized constraints on

∑
mν obtained

from the ePlanck CMB data, corresponding to
∑

mν < 0.66 eV
(95 per cent CL).

The constraints on the total neutrino mass can be improved by
combining the CMB information with our isotropic and anisotropic
galaxy clustering measurements. As this information improves the
constraints on �m, it can break the degeneracy present in the CMB-
only constraints. This effect is illustrated by the red solid lines in
Fig. 9, which correspond to the results derived from our ePlanck +
BOSS ξ�μ(s) combination. The effect of the extra information from
BOSS on the constraints on the neutrino mass is shown by the red
solid line in Fig. 10. In this case, we obtain the limit

∑
mν < 0.24 eV

(95 per cent CL). As shown in Table 5, combining the CMB infor-
mation with the LOWZ and CMASS angle-averaged correlation
functions leads to a similar constraint. This limit is not improved by
including the additional BAO and Union2.1 SN information in the
analysis, in which case we obtain

∑
mν < 0.23 eV (95 per cent CL).

When the SNLS SN compilation is used instead of the Union2.1
sample, we find a slightly tighter constraint, with

∑
mν < 0.21 eV

(95 per cent CL).

Figure 10. One-dimensional marginalized constraints on
∑

mν obtained by
means of the ePlanck CMB measurements (blue short-dashed line) and the
combination of these data with the BOSS ξ�μ(s) (red solid line). The grey
long-dashed and green dot–dashed lines correspond to the results obtained
when the ePlanck CMB measurements are replaced by WMAP9.

The grey long-dashed lines in Fig. 10 correspond to the marginal-
ized constraints on �mν obtained using WMAP9 data alone, which
extend over a wide range of allowed values. The green dot–dashed
line shows the result obtained when the WMAP9 data are combined
with the LOWZ and CMASS DR11 clustering wedges. Interest-
ingly, in this case the constraints show a preference for a non-zero
value of �mν � 0.2 eV. This is due to a slight difference in the
values of zeq preferred by the Planck and WMAP9 data. When using
WMAP9 data, the degeneracy seen in Fig. 9 is shifted towards lower
values of �m. Adding the information from the clustering wedges
measured from BOSS helps to tighten the constraints on the matter
density, breaking the degeneracy obtained from the CMB at a region
that shows a slight preference for non-zero values of �mν .

The constraints on the total neutrino mass derived from cosmo-
logical observations are model dependent, as they vary depending
on the parameter space being studied (Zhao et al. 2013). For ex-
ample, if the dark energy equation of state is allowed to vary, the
degeneracy in the CMB constraints gains an extra degree of free-
dom. This behaviour can be seen in the blue dashed contours of
Fig. 11, which correspond to the two-dimensional marginalized
constraints in the wDE−∑

mν plane derived from the ePlanck data
set. As shown by the grey long-dashed lines, in this parameter space
the information provided by our BOSS ξ (s) measurements cannot
break the CMB degeneracy efficiently, leading to poor marginal-
ized constraints. The additional information in the full shape of the
clustering wedges reduces the allowed region for these parameters
significantly, leading to the limit

∑
mν < 0.47 eV (95 per cent CL)

and wDE = −1.13 ± 0.12. After also including the BAO and SN
information, the constraints on the neutrino mass are improved to∑

mν < 0.33 eV (95 per cent CL). This demonstrates that, when
the uncertainties in the exact value of wDE are taken into account,
the upper bound on

∑
mν is increased by 50 per cent with respect

to the one obtained under the assumption of a �CDM model.
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Figure 11. Marginalized constraints in the wDE−�mν plane obtained when
the �CDM parameter set is extended by treating these quantities as free
parameters. The contours correspond to the 68 and 95 per cent CL de-
rived by the ePlanck CMB data alone (blue short-dashed lines) and the
ePlanck+BOSS ξ (s) (grey long-dashed lines), ePlanck+BOSS ξ�μ(s) (red
solid lines) and Full data combinations (green dot–dashed lines).

It is also interesting to explore for potential deviations on the
effective number of relativistic species from its standard value
Neff = 3.046. For this analysis, we extend the �CDM param-
eter space including Neff as a free parameter, while assuming
that the additional relativistic species are massless. As discussed
in Planck Collaboration XVI (2013), the ePlanck CMB combi-
nation can place tight constraints on this parameter. These con-
straints are shown by the blue dashed lines in Fig. 12 which corre-
spond to our ePlanck constraints in the �m−Neff plane, leading to
Neff = 3.35 ± 0.33. Adding the information from the LOWZ and
CMASS angle-averaged correlation functions leads to an improve-
ment of this limit, with Neff = 3.31 ± 0.27. Using the information
from our BOSS ξ�μ(s) or adding the information from the BAO
and SN data leaves this result essentially unchanged.

4.5 Constraining deviations from GR

In Sections 4.1–4.4, we computed the logarithmic growth f(z) re-
quired for our model of the full shape of the clustering wedges in the
context of GR. Here we relax this assumption and parametrize its
redshift evolution as f(z) = �m(z)γ , with the exponent γ treated as a
free parameter. As described in Linder & Cahn (2007), GR predicts
a value of γ � 0.55, with small corrections depending on the value
of wDE. Then, the constraints on this parameter from the full shape
of the LOWZ and CMASS clustering wedges can be used to set lim-
its on potential deviations from the predictions of GR (Guzzo et al.
2008). This analysis is only possible using anisotropic clustering
measurements such as the clustering wedges, as the effect of f(z)
and the bias parameter is degenerate in angle-averaged quantities.

The blue short-dashed line in Fig. 13 corresponds to the one-
dimensional marginalized constraints on γ obtained from the com-
bination of the Planck CMB measurements with the DR11 CMASS
ξ�(s). In this case, we obtain γ = 0.77 ± 0.20. Although a wide

Figure 12. Marginalized constraints in the �m−Neff plane obtained when
the �CDM parameter set is extended by treating the effective number of
relativistic species as a free parameter. The dashed and solid lines correspond
to the 68 and 95 per cent CL derived by the ePlanck CMB data and its
combination with the full shape of the DR11 LOWZ and CMASS clustering
wedges. The dotted line indicates the standard value of Neff = 3.046.

Figure 13. One-dimensional marginalized constraints on the power-law
index of the structure growth-rate parameter, assuming f (z) = �

γ
m. The blue

dashed lines correspond to the results obtained by combining the ePlanck
CMB data with the DR11 CMASS clustering wedges. The red solid line
shows the improvement obtained by including the information of the clus-
tering wedges of the LOWZ sample in the analysis. Replacing the ePlanck
CMB measurements by the WMAP9 data leads to similar constraints (grey
dashed lines).
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range of values of this parameter are allowed by the data, these
results are consistent within 1σ with the predictions from GR, in-
dicated by the dotted line. As shown by the red solid line, adding
the information from the clustering wedges of the LOWZ sample
improves the constraints to γ = 0.69 ± 0.15, which illustrates the
importance of including the low-redshift measurements. As shown
in Table 5, these constraints are not modified when the Planck data
are extended with the high-� CMB measurements, or when the BAO
and SN data sets are included in the analysis. The grey long-dashed
line in Fig. 13 shows the constraints obtained by means of the
WMAP9+BOSS ξ�(s) combination, which leads to a constraint of
γ = 0.64 ± 0.15, in good agreement with the result obtained using
the data from the Planck satellite.

Our constraints are in good agreement with those inferred in our
companion papers. Samushia et al. (2014) use the full shape of
the CMASS monopole–quadrupole pair in combination with recent
CMB measurements to find γ = 0.69 ± 0.11, while Beutler et al.
(2013) derive a constraint of γ = 0.772+0.124

−0.097 from the combination
of Planck data with the multipoles of the CMASS power spectrum.

We also tested the effect of allowing for simultaneous variations
of wDE (assumed to be time independent) and γ . Fig. 14 presents
the two-dimensional marginalized constraints in the wDE−γ plane
obtained in this case by means of the ePlanck + BOSS ξ�μ(s) com-
bination (solid lines), and when these data are combined with the
BAO and SN data sets (dot–dashed lines). Including γ as a free
parameter leads to a degeneracy between this quantity and the dark
energy equation of state, degrading the constraints on these parame-
ters. In this case, we find wDE = −1.15 ± 0.11 and γ = 0.88 ± 0.22.
As discussed in Sánchez et al. (2013), assuming that f(zm) follows
the predictions of GR implies that the relative amplitude of ξ⊥(s)
and ξ ‖(s) provides information on �m that improves the obtained
constraints. However, when this assumption is relaxed including γ

as a free parameter, this extra constraining power is lost, leading to

Figure 14. Marginalized constraints in the wDE−γ plane obtained when
the �CDM parameter set is extended by treating these quantities as free
parameters. The red solid lines correspond to the 68 and 95 per cent CL
obtained by combining the ePlanck CMB data with the DR11 LOWZ and
CMASS clustering wedges. The green dot–dashed lines show the result of
including the additional BAO and SN data sets in the analysis.

weaker limits. Including the SN and additional BAO measurements
reduces the degeneracy present in the CMB + BOSS ξ�μ(s) con-
straints, leading to wDE = −1.055 ± 0.057 and γ = 0.75 ± 0.17,
in agreement with the results obtained when these parameters are
varied separately.

5 C O N C L U S I O N S

We have analysed the cosmological implications of the angle-
averaged correlation functions, ξ (s), and the clustering wedges,
ξ⊥(s) and ξ ‖(s), of the LOWZ and CMASS samples corresponding
to SDSS-DR10 and DR11. We use a simple parametrization, based
on RPT, as a tool to extract cosmological information from the full
shape of these measurements for s � 40 h−1 Mpc. We combine this
information with CMB, SN and additional BAO measurements to
derive constraints on the parameters of the standard �CDM model
and a number of potential extensions, including curvature, alterna-
tive dark energy models, massive neutrinos, additional relativistic
species and deviations from the predictions of GR. As shown by
Sánchez et al. (2013), we find that the extra information provided by
the clustering wedges is most useful when the dark energy equation
of state is treated as a free parameter.

The constraints on H(z) and DA(z) from the clustering wedges are
consistent with the predictions of the best-fitting �CDM model to
the Planck CMB measurements. Assuming that the growth of struc-
tures follows the predictions of GR, the full shape of the LOWZ
clustering wedges implies DA(zm) = (965 ± 37)(rd/r

fid
d ) Mpc and

H (zm) = (82.5 ± 3.5)(rfid
d /rd) km s−1 Mpc−1 at the mean redshift

zm = 0.32, while the CMASS results give DA(zm) = (1387 ±
22)(rd/r

fid
d ) Mpc and H (zm) = (94.3 ± 2.4)(rfid

d /rd) km s−1 Mpc−1

at zm = 0.57. Relaxing the assumption of GR, we find the
marginalized constraints of fσ 8(z = 0.32) = 0.48 ± 0.10 and
fσ 8(z = 0.57) = 0.417 ± 0.045. These values are in good agreement
with those reported in our companion papers (Beutler et al. 2013;
Chuang et al. 2013b; Samushia et al. 2014; Anderson et al. 2013),
indicating the robustness of our results with respect to details in the
methodology implemented in the analysis.

As can be seen in Table 5, our results show no significant ev-
idence for a deviation from the standard �CDM model, which
provides a good description of the full shape of all our clustering
measurements. In particular, the ePlanck+BOSS ξ�μ(s) combina-
tion alone is sufficient to constrain the curvature of the Universe to
�k = 0.0010 ± 0.0029, the total neutrino mass to

∑
mν < 0.24 eV

(95 per cent CL), the effective number of relativistic species to
Neff = 3.31 ± 0.27 and the dark energy equation of state to
wDE = −1.051 ± 0.076. Adding the information from our BAO
and SN data sets further improves these constraints.

The assumption that the dark energy component can be charac-
terized by a constant equation of state specified by wDE(z) = −1 has
strong implications on the constraints obtained in several parameter
spaces. Allowing this parameter to vary weakens the constraints ob-
tained from the combination of CMB information with our BOSS
ξ (s) measurements. These cases illustrate the extra constraining
power of the clustering wedges, which lead in general to similar
constraints to the ones derived under the assumption that dark en-
ergy behaves as a cosmological constant.

The information from the full shape of the clustering wedges can
be used to constrain potential deviations from the predictions of
GR. Assuming that f(z) = �m(z)γ , the combination of the ePlanck
CMB measurements with the DR11 LOWZ and CMASS cluster-
ing wedges gives a constraint of γ = 0.69 ± 0.15, consistent with
no deviation from the GR prediction of γ = 0.55 within 1σ . The
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assumption that f(z) follows the predictions of GR implies that
the relative amplitude of the clustering wedges contains informa-
tion on �m. When this assumption is relaxed, this additional con-
straining power is lost, affecting the constraints on other param-
eters. For example, if γ and wDE are varied simultaneously, the
ePlanck+BOSS ξ�μ(s) combination implies that γ = 0.88 ± 0.22
and wDE = −1.15 ± 0.11. When the additional BAO and
Union2.1 SN measurements are included in the analysis, we find
wDE = −1.055 ± 0.057 and γ = 0.75 ± 0.17, in agreement with
the results obtained when these parameters are varied separately.

Combining our clustering measurements with the WMAP9 or
Planck CMB measurements leads to results that, although consis-
tent, differ at the 1σ level. This highlights the importance of a
detailed analysis of the origin of the differences between WMAP9
and Planck as these could indicate the presence of systematic errors.
Similar differences are observed when the Union2.1 SN compila-
tion is replaced by the SNLS sample, which leads to changes in the
obtained constraints of the same order or larger than the associated
statistical errors. This situation might change in the near future,
as results based on new calibrations of these SN samples (Betoule
et al. 2013) become available.

As SDSS-III approaches the end of observations in 2014 June, the
galaxy and quasar samples from BOSS are close to being completed.
Besides the improvement in the statistical power of the final data
sets, these samples will allow us to perform an improved analysis of
the potential systematic errors affecting our measurements. The final
galaxy samples from BOSS will deliver the most accurate views
of the LSS of the Universe at z < 0.7, thus providing invaluable
cosmological information.
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A P P E N D I X A : SU M M A RY O F T H E O B TA I N E D
C O N S T R A I N T S

In this appendix, we summarize the constraints on cosmological
parameters obtained using different combinations of the data sets
described in Section 2. Tables A1–A9 list the 68 per cent confidence
limits obtained in the parameter spaces analysed in Sections 4.1–4.5.
The upper section of these tables lists the constraints on the main
parameters included in the fits, while the lower section contains the
results on the parameters derived from the first set.

Table A1. Marginalized 68 per cent constraints on the cosmological parameters of the
standard �CDM model, obtained using different combinations of the data sets described
in Section 2.

ePlanck+BOSS ξ (s) ePlanck+BOSS ξ�μ(s) ePlanck + BOSS ξ�μ(s)
+BAO+SN

Main parameters

100 ωb 2.2202 ± 0.024 2.226 ± 0.025 2.227 ± 0.024
100 ωc 11.78 ± 0.16 11.69 ± 0.17 11.66 ± 0.16
104 × θMC 104.159 ± 0.056 104.169 ± 0.058 104.172 ± 0.056
ns 0.9628 ± 0.0052 0.9650 ± 0.0055 0.9651 ± 0.0052
ln (1010As) 3.089 ± 0.025 3.086 ± 0.027 3.087 ± 0.025

Derived parameters

100�DE 69.78+0.96
−0.94 70.288 ± 0.99 70.47 ± 0.91

100�m 30.22+0.94
−0.96 29.712 ± 0.99 29.53 ± 0.91

σ 8 0.822 ± 0.011 0.818 ± 0.012 0.817 ± 0.011
h 0.6823+0.0073

−0.0071 0.6862 ± 0.0077 0.6876 ± 0.0072
t0/Gyr 13.784 ± 0.036 13.771 ± 0.037 13.768 ± 0.036

MNRAS 440, 2692–2713 (2014)

http://arxiv.org/abs/1312.4841
http://arxiv.org/abs/1303.5062
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1312.4899
http://arxiv.org/abs/1401.1768
http://arxiv.org/abs/1312.4996


2710 A. G. Sánchez et al.

Table A2. Marginalized 68 per cent constraints on the cosmological parameters of the
�CDM model extended by including wDE (assumed constant) as a free parameter, obtained
using different combinations of the data sets described in Section 2.

ePlanck+BOSS ξ (s) ePlanck+BOSS ξ�μ(s) ePlanck + BOSS ξ�μ(s)
+BAO+SN

Main parameters

wDE −1.31+0.21
−0.16 −1.051 ± 0.077 − 1.024 ± 0.053

100 ωb 2.205 ± 0.025 2.2217 ± 0.025 2.224 ± 0.025
100 ωc 12.06 ± 0.23 11.76 ± 0.21 11.72 ± 0.20
104 × θMC 104.121 ± 0.059 104.159 ± 0.060 104.166 ± 0.058
ns 0.9563 ± 0.0063 0.9630 ± 0.0062 0.9639 ± 0.0059
ln (1010As) 3.088 ± 0.024 3.085 ± 0.025 3.085 ± 0.024

Derived parameters

100�DE 75.1+2.6
−3.4 71.2 ± 1.6 70.7 ± 1.2

100�m 24.9+3.4
−2.6 28.8 ± 1.6 29.2 ± 1.2

σ 8 0.915+0.052
−0.061 0.834 ± 0.027 0.825 ± 0.021

h 0.763+0.041
−0.056 0.699+0.020

−0.021 0.692 ± 0.014

t0/Gyr 13.678+0.068
−0.063 13.753 ± 0.049 13.762 ± 0.040

Table A3. The marginalized 68 per cent constraints on the cosmological parameters of the
�CDM model extended by allowing for variations on wDE(a) (parametrized according to
equation 17), obtained using different combinations of the data sets described in Section 2.

ePlanck+BOSS ξ (s) ePlanck+BOSS ξ�μ(s) ePlanck + BOSS ξ�μ(s)
+BAO+SN

Main parameters

w0 −1.29+0.50
−0.46 −0.83+0.39

−0.34 −0.95 ± 0.14

wa −0.2+1.0
−1.1 −0.61+0.90

−0.98 −0.29+0.48
−0.49

100 ωb 2.206 ± 0.025 2.219 ± 0.025 2.221 ± 0.025
100 ωc 12.04 ± 0.23 11.80 ± 0.20 11.76 ± 0.20
104 × θMC 104.122+0.059

−0.057 104.151 ± 0.060 104.158 ± 0.060

ns 0.9565+0.0063
−0.0064 0.9618 ± 0.0062 0.9628 ± 0.0062

ln (1010As) 3.087 ± 0.024 3.084 ± 0.025 3.083 ± 0.025

Derived parameters

100�DE 74.8+4.9
−5.3 69.1+3.6

−4.1 70.5 ± 1.3

100�m 25.2+5.3
−4.9 30.9+4.1

−3.6 29.5 ± 1.3

σ 8 0.912+0.068
−0.071 0.821+0.38

−0.39 0.827 ± 0.022

h 0.763 ± 0.079 0.679+0.039
−0.045 0.690 ± 0.014

t0/Gyr 13.683+0.069
−0.070 13.753 ± 0.054 13.748 ± 0.049
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Table A4. Marginalized 68 per cent constraints on the cosmological parameters of the
�CDM model extended by including non-flat models, obtained using different combina-
tions of the data sets described in Section 2.

ePlanck+BOSS ξ (s) ePlanck+BOSS ξ�μ(s) ePlanck + BOSS ξ�μ(s)
+BAO+SN

Main parameters

100 �k 0.07 ± 0.31 0.10 ± 0.29 0.15 ± 0.29
100 ωb 2.218 ± 0.027 2.223 ± 0.027 2.222 ± 0.028
100 ωc 11.83 ± 0.26 11.75 ± 0.25 11.77 ± 0.24
104 × θMC 104.150 ± 0.060 104.160 ± 0.063 104.158 ± 0.063
ns 0.9618 ± 0.0070 0.9632 ± 0.0069 0.9630 ± 0.0068
ln (1010As) 3.089 ± 0.024 3.085 ± 0.025 3.086 ± 0.025

Derived parameters

100�DE 69.75 ± 0.97 70.3+0.9
−1.0 70.38+0.92

−0.93

100�m 30.18 ± 0.96 29.6 ± 1.0 29.47+0.94
−0.91

σ 8 0.824 ± 0.013 0.820 ± 0.013 0.821 ± 0.013
h 0.6839+0.0096

−0.0094 0.6890 ± 0.010 0.6908 ± 0.0096
t0/Gyr 13.75 ± 0.12 13.73 ± 0.12 13.71 ± 0.12

Table A5. The marginalized 68 per cent constraints on the cosmological parameters of the
�CDM model extended by allowing for simultaneous variations on wDE and �k, obtained
using different combinations of the data sets described in Section 2.

ePlanck+BOSS ξ (s) ePlanck+BOSS ξ�μ(s) ePlanck + BOSS ξ�μ(s)
+BAO+SN

Main parameters

100�k −0.38+0.22
−0.24 0.02 ± 0.43 0.14 ± 0.34

wDE −1.53+0.24
−0.28 −1.05 ± 0.11 − 1.009 ± 0.063

100 ωb 2.222 ± 0.028 2.223 ± 0.028 2.221 ± 0.028
100 ωc 11.84 ± 0.25 11.76 ± 0.26 11.77 ± 0.25
104 × θMC 104.153 ± 0.062 104.159 ± 0.063 104.156 ± 0.063
ns 0.9610+0.0068

−0.0067 0.9631+0.0070
−0.0069 0.9629 ± 0.0070

ln (1010As) 3.085 ± 0.024 3.084 ± 0.025 3.085 ± 0.024

Derived parameters

100�DE 78.4+3.9
−3.4 71.1 ± 2.3 70.5 ± 1.3

100�m 21.9+3.3
−3.9 28.9 ± 2.0 29.4 ± 1.2

σ 8 0.961+0.073
−0.064 0.833 ± 0.033 0.823 ± 0.022

h 0.810+0.075
−0.062 0.699 ± 0.023 0.692 ± 0.013

t0/Gyr 13.84 ± 0.13 13.76 ± 0.15 13.71 ± 0.13
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Table A6. Marginalized 68 per cent constraints on the�CDM model extended by treating∑
mν as a free parameter, obtained using different combinations of the data sets described in

Section 2.

ePlanck+BOSS ξ (s) ePlanck+BOSS ξ�μ(s) ePlanck + BOSS ξ�μ(s)
+BAO+SN

Main parameters∑
mν <0.23 eV (95% CL) <0.24 eV (95% CL) <0.23 eV (95% CL)

100 ωb 2.221 ± 0.023 2.226 ± 0.024 2.228 ± 0.024
100 ωb 2.221 ± 0.023 2.226 ± 0.024 2.228 ± 0.024
100 ωc 11.76 ± 0.17 11.67 ± 0.18 11.64 ± 0.17
104 × θMC 104.158 ± 0.056 104.170 ± 057 104.175 ± 0.056
ns 0.9631 ± 0.0054 0.9651 ± 0.0056 0.9656 ± 0.0054
ln (1010As) 3.089 ± 0.025 3.087 ± 0.026 3.088 ± 0.026

Derived parameters

fν <0.017 (95% CL) <0.019 (95% CL) <0.017 (95% CL)
100�DE 69.6 ± 1.0 70.0 ± 1.0 70.3 ± 1.0
100�m 30.4 ± 1.0 30.0 ± 1.0 29.7 ± 1.0
σ 8 0.816 ± 0.020 0.809 ± 0.021 0.811 ± 0.020
h 0.6808 ± 0.0082 0.6840+0.0089

−0.0091 0.6860+0.0085
−0.0086

t0/Gyr 13.795 ± 0.046 13.79 ± 0.050 13.78+0.0048
−0.0047

Table A7. The marginalized 68 per cent constraints on the cosmological parameters of the
�CDM model extended by allowing for simultaneous variations on

∑
mν and wDE, obtained

using different combinations of the data sets described in Section 2.

ePlanck+BOSS ξ (s) ePlanck+BOSS ξ�μ(s) ePlanck + BOSS ξ�μ(s)
+BAO+SN

Main parameters∑
mν <0.49 eV (95% CL) <0.47 eV (95% CL) <0.33 eV (95% CL)

wDE −1.49+0.24
−0.30 −1.13 ± 0.12 −1.046 ± 0.064

100 ωb 2.203 ± 0.024 2.219 ± 0.025 2.223 ± 0.025
100 ωc 12.03 ± 0.21 11.75 ± 0.20 11.70 ± 0.20
104 × θMC 104.118 ± 0.058 104.150 ± 0.060 104.163 ± 0.059
ns 0.9565 ± 0.0060 0.9627 ± 0.0062 0.9642 ± 0.0059
ln (1010As) 3.090 ± 0.025 3.087 ± 0.026 3.087 ± 0.025

Derived parameters

fν <0.036 (95% CL) <0.035 (95% CL) <0.025 (95% CL)
100�DE 76.8+4.0

−3.1 71.6 ± 1.8 70.7 ± 1.2

100�m 23.2+3.1
−4.0 28.4 ± 1.8 29.3 ± 1.2

σ 8 0.910 ± 0.058 0.821 ± 0.031 0.815 ± 0.026
h 0.796+0.076

−0.058 0.707 ± 0.025 0.693 ± 0.014

t0/Gyr 13.71+0.70
−0.69 13.79 ± 0.064 13.78 ± 0.054
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Table A8. Marginalized 68 per cent constraints on the cosmological parameters of the
�CDM model extended by including Neff as a free parameter, obtained using different
combinations of the data sets described in Section 2.

ePlanck+BOSS ξ (s) ePlanck+BOSS ξ�μ(s) ePlanck + BOSS ξ�μ(s)
+BAO+SN

Main parameters

Neff 3.35 ± 0.27 3.31 ± 0.27 3.30 ± 0.27
100 ωb 2.239 ± 0.030 2.243 ± 0.031 2.243 ± 0.029
100 ωc 12.25 ± 0.47 12.10 ± 0.46 12.07 ± 0.45
104 × θMC 104.111 ± 0.072 104.126 ± 0.072 104.130 ± 0.072
ns 0.972 ± 0.010 0.973 ± 0.011 0.973 ± 0.010
ln (1010As) 3.108 ± 0.030 3.100 ± 0.029 3.101 ± 0.029

Derived parameters

100�DE 70.3 ± 1.0 70.8 ± 1.1 70.9 ± 1.0
100�m 29.7 ± 1.0 29.2 ± 1.1 29.1 ± 1.0
σ 8 0.839 ± 0.019 0.831 ± 0.018 0.831 ± 0.018
h 0.701 ± 0.018 0.703 ± 0.019 0.703 ± 0.018
t0/Gyr 13.50 ± 0.26 13.52 ± 0.26 13.53 ± 0.26

Table A9. The marginalized 68 per cent constraints on the parameters of the �CDM model extended by assuming
f(zm) = �m(z)γ and treating γ as a free parameter, and when γ and wDE are varied simultaneously.

ePlanck+BOSS ξ�μ(s) ePlanck + BOSS ξ�μ(s) ePlanck+BOSS ξ�μ(s) ePlanck + BOSS ξ�μ(s)
+BAO+SN +BAO+SN

Main parameters

wDE – – − 1.16 ± 0.11 −1.055 ± 0.058
γ 0.69 ± 0.15 0.69 ± 0.15 0.89 ± 0.22 0.76 ± 0.17
100 ωb 2.225 ± 0.024 2.226 ± 0.024 2.213 ± 0.025 2.220 ± 0.025
100 ωc 11.70 ± 0.16 11.68 ± 0.016 11.91 ± 0.21 11.79 ± 0.20
104 × θMC 104.169 ± 0.055 104.172 ± 0.055 104.141 ± 0.061 104.156 ± 0.057
ns 0.9644 ± 0.0055 0.9648 ± 0.0053 0.9594 ± 0.0062 0.9622 ± 0.0058
ln (1010As) 3.090 ± 0.025 3.091 ± 0.025 3.088 ± 0.025 3.088 ± 0.025

Derived parameters

100�DE 0.7024+0.0092
−0.0095 0.7038 ± 0.0090 0.728 ± 0.021 0.711 ± 0.012

100�m 0.2976+0.0095
−0.0092 0.2962 ± 0.0090 0.272 ± 0.021 0.289 ± 0.012

σ 8 0.820 ± 0.011 0.820 ± 0.011 0.870 ± 0.037 0.838 ± 0.023
h 0.6859+0.0073

−0.0074 0.6869 ± 0.0071 0.724 ± 0.030 0.699 ± 0.014
t0/Gyr 13.772 ± 0.036 13.77 ± 0.036 13.718 ± 0.052 13.753 ± 0.040
f(z = 0.32) 0.6777+0.0087

−0.0084 0.6764+0.0083
−0.0082 0.6800 ± 0.0090 0.6789+0.0088

−0.0087

f(z = 0.57) 0.7699+0.0073
−0.0071 0.7688+0.0070

−0.0069 0.784 ± 0.012 0.7754+0.0099
−0.0098
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