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Abstract

 

This

 

study

 

presents

 

an

 

extension

 

of

 

the

 

Gaussian

 

process

 

regression

 

model

 

for

 multiple-input

 

multiple-output

 

forecasting.

 

This

 

approach

 

allows

 

modelling

 

the

 

cross-

dependencies

 

between

 

a

 

given

 

set

 

of

 

input

 

variables

 

and

 

generating

 

a

 

vectorial

 

prediction.

 Making

 

use

 

of

 

the

 

existing

 

correlations

 

in

 

international

 

tourism

 

demand

 

to

 

all

 

seventeen

 regions

 

of

 

Spain,

 

the

 

performance

 

of

 

the

 

proposed

 

model

 

is

 

assessed

 

in

 

a

 

multiple-step-

ahead

 

forecasting

 

comparison.

 

The

 

results

 

of

 

the

 

experiment

 

in

 

a

 

multivariate

 

setting

 

show

 that

 

the

 

Gaussian

 

process

 

regression

 

model

 

significantly

 

improves

 

the

 

forecasting

 

accuracy

 of

 

a

 

multi-layer

 

perceptron

 

neural

 

network

 

used

 

as

 

a

 

benchmark.

 

The

 

results

 

reveal

 

that

 incorporating

 

the

 

connections

 

between

 

different

 

markets

 

in

 

the

 

modelling

 

process

 

may

 prove

 

very

 

useful

 

to

 

refine

 

predictions

 

at

 

a

 

regional

 

level.
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1 Introduction 

In recent years there has been a growing interest in machine learning (ML) techniques 

for economic forecasting (Weron, 2014; Gharleghi et al., 2014; Kock and Teräsvirta, 

2014; Ben Taieb et al., 2012; Crone et al., 2011; Andrawis et al., 2011; Carbonneau et 

al., 2008). ML is based on the construction of algorithms that learn through experience. 

The main ML forecasting methods are support vector regression (SVR) and artificial 

neural network (ANN) models. Plakandaras et al. (2015) propose a hybrid forecasting 

methodology that combines an ensemble empirical mode decomposition algorithm with 

a SVR model to forecast the U.S. real house price index. Lin et al. (2012) also combine 

an algorithm for time series decomposition with a SVR model for foreign exchange rate 

forecasting. Kao et al. (2013) and Kim (2003) use different SVR models for stock index 

forecasting. Tay and Cao (2001, 2002) apply support vector machines in financial time 

series forecasting. 

Stasinakis et al. (2015) use a radial basis function ANN to forecast U.S. 

unemployment. Feng and Zhang (2014) and Aminian et al. (2006) use ANN models in 

forecasting of economic growth. Sermpinis et al. (2012) and Lisi and Schiavo (1999) 

make exchange rates predictions by means of several ANNs. Sarlin and Marghescu 

(2011) generate visual predictions of currency crisis by means of a self-organizing map 

ANN model. Adya and Collopy (1998) evaluate the effectiveness of ANN models at 

forecasting and prediction. A complete summary on the use of ANNs with forecasting 

purposes can be found in Zhang et al. (1998). 

Whilst SVR and ANN models have been widely used in economic modelling and 

forecasting, other ML techniques such as Gaussian process regression (GPR) have been 

barely applied for forecasting purposes (Andrawis et al., 2011; Ahmed et al., 2010; 

Banerjee et al., 2008; Chapados and Bengio, 2007; Brahim-Belhouari and Bermak, 

2004; Girard et al. 2003). GPR was originally devised for interpolation. The works of 

Smola and Barlett (2001), MacKay (2003), and Williams and Rasmussen (2006) have 

been key in the development of GPR models. By expressing the model in a Bayesian 

framework, the authors extend GPR applications beyond spatial interpolation to 

regression problems. GPR models are supervised learning methods based on a 

generalized linear regression that locally estimates forecasts by the combination of 

values in a kernel (Rasmussen, 1996). Thus, GPR models can be regarded as a non-

parametric tool for regression in high dimensional spaces. One of the limitations of the 
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current methods for GPR is that the framework is inherently one dimensional, i.e. the 

framework is designed for multiple inputs and a single output. GPR models present one 

fundamental advantage over other ML techniques: they provide full probabilistic 

predictive distributions, including estimations of the uncertainty of the predictions. 

These features make GPR an ideal tool for forecasting purposes. 

This paper presents an extension of the GPR model for MIMO forecasting. This 

approach allows to preserve the stochastic properties of the training series in multiple-

step ahead prediction (Ben Taieb et al., 2010). By extending conventional local 

modelling approaches we are able to model the cross-dependencies between a given set 

of time series, returning a vectorial forecast. The structure of the proposed model, 

consists of a batch of univariate forecasting modules based on Gaussian regression, 

followed by a linear regression that takes into account the cross-influences between the 

different forecast. 

ML methods are particularly suitable to model phenomena that presents nonlinear 

interactions between the input and the output. The complex nature behind the data 

generating process of economic variables such as tourism demand, explains the 

increasing use of of ML methods in this area. There is wide evidence in favour of ML 

methods when compared to time series models for tourism demand forecasting (Akin, 

2015; Claveria and Torra, 2014; Wu et al., 2012, Hong et al., 2011; Chen and Wang, 

2007; Giordano et al., 2007; Cho, 2003; Law, 2000 and Law and Au, 1999). Tsaur and 

Kuo (2011) and Yu and Schwartz (2006) use fuzzy time series models to predict 

tourism demand. Celotto et al. (2012) and Goh et al. (2008) apply rough sets algorithms. 

Other authors combine different ML techniques in order to refine forecasts of tourism 

demand (Cang 2014; Cang and Yu 2014; Pai et al. 2014; Shahrabi et al. 2013). Peng et 

al. (2014) use a meta-analysis to examine the relationships between the accuracy of 

different forecasting models and the data characteristics in tourism forecasting studies. 

Athanasopoulos et al. (2011) carry a thorough evaluation of various methods for 

forecasting tourism data. 

In spite of the desirable properties of GPR models, there is only one previous study 

that uses GPR for tourism demand forecasting (Wu et al., 2012). The authors use a 

sparse GPR model to predict tourism demand to Hong Kong and find that its forecasting 

capability outperforms those of the autoregressive moving average (ARMA) and SVR 

models. We attempt to cover this deficit, and to break new ground by proposing an 

extension of the GPR model for MIMO modelling, and assessing its forecasting 
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performance. We make use of international tourist arrivals to all seventeen regions of 

Spain. By incorporating the connections in tourism demand to all regions, we generate 

forecasts to all markets simultaneously. We finally compare the forecasting 

performance of the GPR model to that of a multi-layer perceptron (MLP) ANN in a 

MIMO setting. This strategy is cost-effective in computational terms, and seems 

particularly indicated for regional forecasting. 

Several regional studies have been published in recent years (Lehmann and 

Wohlrabe, 2013), but only a few regarding tourism demand forecasting. Gil-Alana et al. 

(2008) use different time-series models to models international monthly arrivals in the 

Canary Islands. Bermúdez et al. (2009) generate prediction intervals for hotel 

occupancy in three provinces of Spain by means of a multivariate exponential 

smoothing model. The first attempt to use ML methods for tourism demand forecasting 

in Spain is that of Palmer et al. (2006), who design a MLP ANN to forecast tourism 

expenditure in the Balearic Islands. Medeiros et al. (2008) develop an ANN-GARCH 

model to estimate demand for international tourism also in the Balearic Islands. 

Claveria et al. (2015) compare the forecasting performance of three ANN architectures 

to forecast tourist arrivals to Catalonia. 

The main aim of this study is to provide researchers with a novel approach for 

MIMO forecasting, and a method for modelling cross-dependencies. The proposed 

extension of the GPR model to the MIMO framework allows incorporating the 

relationships between the different response variables in order to generate a a vector of 

predictions. 

The study is organized as follows. The next section presents the proposed extension 

of the GPR model to the MIMO case. In section 3 we briefly describe the data. Section 

4 reports the results of the multiple-step ahead forecasting comparison carried out to test 

the effectiveness of the model. The last section provides a summary of the theoretical 

and practical implications, and potential lines for future research. 

 

2 Methodology – Forecasting models 

 

2.1 Gaussian Process Regression (GPR) 

 

GPR was conceived as a method for multivalued interpolation, and was first 

developed by Matheron (1973) based on the geostatistic works of Krige (1951). The 



 5 

works of MacKay (2003), Williams and Rasmussen (2006) and Smola and Barlett 

(2001) have been crucial in the development of GPR. By expressing the model in a 

Bayesian framework, different statistical methods can be implemented in GPR models. 

Therefore GPR applications can be extended beyond spatial interpolation to regression 

problems, estimating the weights of observed values form temporal lags and spatial 

points using the known covariance structures. Detailed information about GPR can be 

found in Williams and Rasmussen (2006). 

The GPR model assumes that the inputs ix  have a joint multivariate Gaussian 

distribution characterized by an analytical model of the structure of the covariance 

matrix (Rasmussen, 1996). The key point of the GPR is the possibility of specifying the 

functional form of the covariance functions, which allows to introduce prior knowledge 

about the problem into the model. Note that the functional dependency between 

variables in the covariance function does not need to be a cross product, but can be any 

function that takes into account the similarity between the input data points and also 

complies with the properties of a covariance. 

An important point in which GPR differs from linear regression, is that the method 

assumes a probability distribution over the set of functions to be estimated, which 

allows for determining families of regression functions with specific functional forms. 

Formally, the training set ( ) ( ) ( ){ }nn yxyxyxD ,,,,,, 2211 K=  consists of a set of tuples, and 

it is assumed to be drawn from the following process: 

( ) εxfy ii += , with ( )2,0~ σNε , (1) 

being ix  an input vector in an Euclidean space of dimension d , i.e. d
R ; and iy  the 

target, which is a scalar output in 1
R . This framework allows to estimate a function 

from 1RRd ® . For notational convenience, we aggregate the inputs and the outputs 

into matrix [ ]nxxxX ,,, 21 K=  and vector [ ]nyyyy ,,, 21 K=  respectively. 

The joint distribution of the variables is the conditional Gaussian distribution 

( )Xyp , which has the following form: 

( ) ( )( )IσXXKNXyp 2,,0 += ,  (2) 

where I  is the identity matrix, and ( )XXK ,  the covariance matrix, also referred to as 

the kernel matrix, with elements ( )jiij xxK , . The kernel function ( )xxk ¢,  is a measure of 

the distance between input vectors. The kernel function should reflect the a priori 

knowledge about the problem at hand. 
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The kernel does not need to be strictly a matrix of cross-products between the input 

vectors. Kernels may incorporate a distance, or an exponential of a distance. In this 

study we make use of a radial basis kernel with a linear trend, which assumes a local 

continuity of the response variable: 

( ) ( ) ( )
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where 2υ  controls the prior variance, and λ  is a parameter that controls the rate of 

decay of the covariance by determining how far away ix  must be from jx  for if  to be 

unrelated to jf . Note that the underlying operation is framed in the field of 

interpolation. For other examples of kernels see MacKay (2003) and Williams and 

Rasmussen (2006). The hyperparameters { }κγλυ ,,,  are estimated by maximum 

likelihood in: 

( )( ) ( )[ ] ( ) π
n

IσXXKyIσXXKyxyp T 2log
2

,log
2

1
,

2

1
log 212 -+-+-=

-
. (4) 

Given the subscripts of the variables that determine the covariance matrix, f  and the 

predictive outputs *f , by making use of the Bayesian inference, the joint posterior 

distribution is: 
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( ) ( )IfNfyp 2,~ s ,  (7) 

where ffK ,  is the covariance matrix of the training data, ffK *,  a matrix that gives the 

the mapping of the kernel on the combinations of test and train inputs, and **, ffK  the 

kernel matrix of the test inputs. 

The output given by the the GPR consists of a Gaussian predictive distribution 

( )yfp *  that is characterized by mean μ  and variance S . Therefore, the GPR model 

specification is given by equations: 

( ) ( )[ ] yIσXXKXXKμ
12,*,
-

+= ,  (8) 

( ) ( ) ( )[ ] ( )*,,*,**,
12 XXKIσXXKXXKXXK
-

+-=S . (9) 
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In this research, we use the mean value of the distribution as the predicted value of 

the GPR. For a given set of inputs [ ]**
2

*
1 ,,,* nxxxX K= , which optionally could consist of 

a single observation, we compute the output *f  as μ . 

In this study we propose an extension of the GRP model for MIMO modelling, 

basing this extension on an analogy to radial basis functions. In this analogy, each single 

GPR gives a prediction of the value of each individual predictor, and a multivariate 

linear regression combines these outputs into a new output vector. That is, we use a set 

of univariate predictors followed by a matrix product that takes into account the cross-

dependencies of the outputs in order to improve the performance of each single GPR. In 

this case we have a Md RR ®  mapping, where M  is the dimension of the output. This 

extension is applied by following a two-step training: 

(i) First, we train and generate supervised forecasts for each time series. That is for 

each multivariate input, we compute a vector of outputs *f  of the trained GPR. 

(ii) In the second step, we estimate a regularized linear regression (Haykin, 2008) 

from a training set that consists of tuples, ( ) ( ) ( ){ }nn
f yfyfyfD ,,,,,, 2211 K= . The 

coefficients of the matrix corresponding to this regularized linear regression will be 

denote as regW . Therefore, the predictions, which we denote as *y , are generated by 

means of the following expression: 

** fWy reg= .  (10) 

This procedure will be referred to as MIMO GPR. 

 

2.2 Multi-layer Perceptron (MLP) Artificial Neural Network (ANN) 

 

Many different NN models have been developed since the 1980s. The most widely used 

feed-forward topology in tourism demand forecasting is the MLP network (Liang, 2014; 

Teixeira and Fernandes, 2012; Lin et al., 2011; Zhang and Qi, 2005). In feed-forward 

networks the information runs only in one direction. MLP networks are supervised 

neural networks that use a simple perceptron model as a building block. The topology is 

based on layers of parallel perceptrons, with a nonlinear function at each perceptron. 

The specification of a MLP network with an input layer, a hidden layer, and an output 

layer is defined by: 
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where ty  is the output vector of the network at time t ; itx -  is the input value at time 

it - , where i  stands for the number of lags that are used to introduce the context of the 

actual observation; jβ  are the weights connecting the output of the neuron j  at the 

hidden layer with the output neuron; ijw  stand for the weights of neuron j  connecting 

the input with the hidden layer, and g  is the nonlinear function of the neurons in the 

hidden layer. We denote q  as the number of neurons in the hidden layer, which 

determines the MLP network’s capacity to approximate a given function. We use values 

from 5 to 30 with an increase proportional to the length of the forecasting horizon. 

As with the GPR model, we also apply a MIMO approach by estimating a regularized 

linear regression (Haykin, 2008), and generate the vectorial forecasts using the set of 

regularized coefficients. 

The estimation of the parameters is done by cross-validation (Bishop, 2006). We 

divide the database into three sets: training, validation and test. The validation set is 

used to determine the stopping time for the training and the number of neurons in the 

hidden layer. The test set is used to estimate the generalization performance of the 

network, that is the performance on unseen data (Bishop, 1995; Ripley, 1996). 

Once the topology of the model is specified, the estimation of the weights of the 

networks can be done by means of different algorithms. In this study we use the 

Levenberg-Marquardt (LM) algorithm. To avoid the possibility that the search for the 

optimum value of the parameters finishes in a local minimum, we use a multi-starting 

technique that initializes the NN several times for different initial random values, trains 

the network and chooses the one with the best result on the validation set. 

Based on these considerations, the first ninety-six monthly observations (from 

January 1999 to December 2006) are selected as the initial training set, the next sixty 

(from January 2007 to December 2011) as the validation set, and the last 15% as the test 

set. For an iterated multi-step-ahead forecasting comparison the partition between train 

and test sets is done sequentially: as the prediction advances, past forecasts are 

successively incorporated to the training database in a recursive way. 
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3 Dataset 

 

Tang and Abosedra (2015), Pérez-Rodríguez et al. (2015) and Chou (2013) have shown 

the important role of tourism in economic growth. In this study we use data on 

international tourism demand to all regions of Spain provided by the Spanish Statistical 

Office (National Statistics Institute – INE – www.ine.es). Data include the monthly 

number of tourist arrivals at a regional level over the time period 1999:01 to 2014:03. A 

MIMO approach to regional economic modelling is particularly appropriate when the 

desired outputs are connected (Claveria et al., 2015). In Fig. 1 we present the frequency 

distribution of tourist arrivals by region during the sample period. We can see that most 

tourist arrivals are concentrated in the Mediterranean coast and the islands, being 

Catalonia, the Balearic Islands and Andalusia the regions that received the higher 

number of tourist arrivals, which almost amounted to 60% of total tourist demand. 

 

 

Fig. 1 Frequency distribution of tourist arrivals to Spain by region (mean from 1999:01 to 2014:03) 

 

Table 1 shows a descriptive analysis of the data for the out-of-sample period 

(2012:01 to 2014:03). The mean of tourist arrivals shows that the main destinations are 

Catalonia, the Balearic Islands and Andalusia. The Balearic Islands and Catalonia 
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present the highest peaks in demand. Arrivals to the Balearic Islands show the highest 

dispersion. 

Table 1. Descriptive analysis of foreign tourist arrivals (2012:01-2014:03) 

Region Minimum Maximum Mean 
Standard 

deviation 
Skewness Kurtosis 

Andalusia 237,744 770,987 496,549.3 192,639.5 -0.13 -1.70 

Aragon 14,792 59,194 31,359.3 12,915.7 0.46 -0.97 

Asturias 3,347 33,714 14,092.4 9,597.3 0.56 -1.11 

Balearic Islands 23,446 1,387,491 551,636.0 545,838.5 0.44 -1.63 

Canary Islands 385,225 619,311 499,375.4 56,536.1 0.07 -0.35 

Cantabria 3,577 32,070 14,870.8 10,503.4 0.42 -1.49 

Castilla-Leon 23,317 134,683 67,108.0 36,092.0 0.25 -1.51 

Castilla-La Mancha 13,209 36,444 24,822.6 8,266.0 -0.16 -1.65 

Catalonia 336,275 1,442,017 801,443.7 369,301.5 0.28 -1.42 

Valencia 103,522 322,857 207,634.5 67,098.1 -0.10 -1.40 

Extremadura 6,797 24,817 14,115.8 5,045.3 0.15 -1.00 

Galicia 15,890 126,066 60,342.3 40,727.1 0.30 -1.63 

Madrid  240,349 432,430 342,618.9 62,420.2 -0.17 -1.47 

Murcia 8,607 22,480 15,126.3 3,763.6 0.11 -0.90 

Navarra 4,416 35,152 16,346.1 10,355.8 0.49 -1.27 

Basque Country 31,597 142,644 70,214.0 34,130.0 0.59 -0.83 

La Rioja 2,157 15,404 6,824.1 4,190.2 0.58 -0.78 

Total 1,583,237 5,283,691 3,234,479 1,337,386 0.17 -1.69 

 

4 Results of the experiment 

 

In a recent and comprehensive comparison on the M3 dataset for the major ML models 

for time series forecasting, Ahmed et al. (2010) find that MLP ANN and GPR models 

present the best results. Therefore, to assess the forecasting performance of the proposed 

extension of the GPR model, we compare it to that of a MLP ANN in a MIMO setting. 

First, we estimate the models and generate forecasts for different forecast horizons 

(h=1, 2, 3 and 6 months). Then, by means of several forecast accuracy measures, we 

summarize the results for the out-of-sample period. First, we compute the relative mean 

absolute percentage error (rMAPE) statistic (Table 2), that ponders the MAPE of the 

model under evaluation against the MAPE of the benchmark model. Next, we run the 

Diebold-Mariano (DM) test (Diebold and Mariano, 1995) using a Newey-West type 

estimator, and a modified DM (M-DM) test (Harvey et al., 1997) to analyse whether the 

reductions in MAPE are statistically significant (Table 2). The null hypothesis of the 

test is that the difference between the two competing series is non-significant. A 

negative sign of the statistic implies that the MLP ANN model has bigger forecasting 

errors.  
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Table 2 
Forecast accuracy – MIMO GPR vs. MIMO ANN model - rMAE and DM test (2013:01-2014:01) 

Region Statistic 
Forecast horizon   

h=1 h=2 h=3 h=6 

Andalusia rMAE 0.803 0.724 0.821 0.977 

 DM -3.828 -5.386 -4.619 -2.113 

 M-DM -15.312 -22.948 -20.894 -11.242 

Aragon rMAE 0.805 0.781 0.825 1.219 

 DM -0.376 -2.204 -2.294 2.192 

 M-DM -1.504 -9.391 -10.377 11.663 

Asturias rMAE 0.683 0.742 0.889 0.845 

 DM -1.301 -2.823 -2.517 0.660 

 M-DM -5.204 -12.028 -11.386 3.512 

Balearic 

Islands 

rMAE 1.074 0.54 0.562 1.586 

DM -1.102 -3.404 -3.553 -0.239 

M-DM -4.408 -14.504 -16.072 -1.272 

Canary 

Islands 

rMAE 1.132 1.073 1.01 0.967 

DM 2.768 0.891 0.256 -0.898 

M-DM 11.072 3.796 1.158 -4.778 

Cantabria rMAE 0.785 0.852 0.689 0.769 

 DM -2.499 -3.326 -3.798 0.058 

 M-DM -9.996 -14.171 -17.180 0.309 

Castilla-Leon rMAE 0.751 0.632 0.601 0.934 

 DM -1.948 -4.885 -3.15 1.040 

 M-DM -7.792 -20.814 -14.249 5.533 

Castilla-La 

Mancha 

rMAE 0.623 0.432 0.47 0.669 

DM -2.987 -4.548 -3.781 -2.239 

M-DM -11.948 -19.378 -17.103 -11.913 

Catalonia rMAE 0.756 0.71 0.857 1.145 

 DM -1.635 -2.107 -1.683 2.405 

 M-DM -6.540 -8.977 -7.613 12.796 

Valencia rMAE 0.902 0.942 0.835 0.981 

 DM -1.341 -2.429 -3.153 -2.744 

 M-DM -5.364 -10.349 -14.262 -14.599 

Extremadura rMAE 0.915 0.919 0.954 0.861 

 DM -0.685 -1.863 -2.259 -1.933 

 M-DM -2.740 -7.938 -10.218 -10.285 

Galicia rMAE 0.812 0.761 0.862 0.775 

 DM -1.536 -3.409 -2.314 -0.4 

 M-DM -6.144 -14.525 -10.467 -2.128 

Madrid  rMAE 1.182 0.986 1.078 1.014 

 DM 0.361 0.325 0.950 0.962 

 M-DM 1.444 1.385 4.297 5.118 

Murcia rMAE 1.019 0.845 0.959 0.967 

 DM -0.007 -3.069 -4.365 -3.397 

 M-DM -0.028 -13.076 -19.745 -18.074 

Navarra rMAE 0.735 0.643 0.925 1.205 

 DM -1.395 -3.052 -2.534 2.11 

 M-DM -5.580 -13.004 -11.462 11.226 

Basque 

Country 

rMAE 0.838 0.801 0.808 1.074 

DM -2.142 -1.76 -1.416 1.008 

M-DM -8.568 -7.499 -6.405 5.363 

La Rioja rMAE 0.951 0.653 0.6 0.908 

 DM -0.533 -3.585 -3.221 -0.046 

 M-DM -2.132 -15.275 -14.570 -0.245 

Note: The rMAPE ponders the MAPE of the model under evaluation against the MAPE of the 

benchmark model. We use a MIMO MLP ANN model as a benchmark. The 5% level critical value 

for the Diebold-Mariano (DM) loss-differential test statistic for predictive accuracy is 2.028. 
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Table 2 shows the overall performance of the compared forecasting models on all 

regions. The best forecasting performance is obtained with the MIMO GPR model. 

Nevertheless, in Catalonia, Extremadura and the Basque Country, the improvement of 

the GPR model is not statistically significant. There are only two regions in which the 

ANN model presents lower MAPE values: the Canary Islands and Madrid, but the 

differences between both methods are not significant in three out of the four forecasting 

horizons. In spite of the fact that we obtain the most accurate predictions for longer 

forecasting horizons (h=6), we find that the improvement of the MIMO GPR model 

with respect to the MIMO ANN becomes more prominent for intermediate forecasting 

horizons (2 and 3 months). 

In Fig. 2 we compare the rMAPE results for one- and three-month ahead forecasts 

(h=1 and h=3). The graph indicates that there are only four regions in which the rMAPE 

is higher than one for h=1, that is the ANN outperforms the GPR model for one-month 

ahead forecasts: the Balearic and the Canary Islands, Madrid and Murcia. Of these four 

regions, just two (the Canary Islands and Madrid) still obtain a rMAPE higher than one 

for h=3. The fact that these two regions do not present seasonal patterns, suggests that 

GPR are more suitable for seasonal forecasting than ANN models. 

 

 

Fig. 2 Dispersion graph between rMAPFE for h=1 and h=3 

 

Finally, in Table 3 we present the results of the percentage of periods with lower 

absolute error (PLAE) statistic proposed by Claveria et al. (2015). The PLAE can be 

regarded as a variation of the ‘percent better’ measure used to compare the forecast 
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accuracy of the models to a random walk (Makridakis and Hibon, 2000). See 

Makridakis et al. (1998) and Witt and Witt (1992) for an appraisal of different 

forecasting accuracy measures. The PLAE is a dimensionless measure based on the CJ 

statistic for testing market efficiency (Cowles and Jones, 1937). In this study we use the 

naïve model as a benchmark. 

 

Table 3 
Forecast accuracy - PLAE - GPR with respect to MLP ANN model (2013:01-2014:01) 

Region 
Forecast horizon   

h=1 h=2 h=3 h=6 

Andalusia 69.2 53.8 61.5 61.5 

Aragon 38.5 53.8 69.2 15.4 

Asturias 61.5 76.9 53.8 23.1 

Balearic Islands 76.9 69.2 76.9 61.5 

Canary Islands 30.8 23.1 46.2 53.8 

Cantabria 76.9 69.2 76.9 46.2 

Castilla-Leon 69.2 69.2 76.9 46.2 

Castilla-La Mancha 76.9 61.5 76.9 69.2 

Catalonia 38.5 69.2 53.8 7.7 

Valencia 38.5 46.2 53.8 53.8 

Extremadura 53.8 53.8 61.5 69.2 

Galicia 69.2 76.9 53.8 53.8 

Madrid  23.1 38.5 30.8 23.1 

Murcia 30.8 61.5 53.8 61.5 

Navarra 76.9 76.9 69.2 15.4 

Basque Country 53.8 61.5 53.8 30.8 

La Rioja 69.2 76.9 61.5 38.5 

Note: Percentage of PLAE values. The PLAE ratio measures the number of out-of-sample periods with 

lower absolute errors than the benchmark model (MLP ANN) 

 

The PLAE allows us to compare the forecasting performance between two competing 

models. This accuracy measure consists of a ratio that gives the proportion of periods in 

which the model under evaluation obtains a lower absolute forecasting error than the 

benchmark model. Let us denote ty  as actual value and tŷ  as forecast at period 

nt ,,1K= . Forecast errors can then be defined as ttt yye ˆ-= . Given two competing 

models A  and B , where A  refers to the forecasting model under evaluation and B  

stands for benchmark model, we can then obtain the proposed statistic as follows: 

,1

n
PLAE

n
t tå ==
l

 where 
ïî

ï
í
ì <

=
otherwise.   

 if   

0

,1 ,, BtAt

t

ee
l   (12) 

Table 3 shows that the MIMO GPR is the model that outperforms the naïve model in 

more cases. Special mention should be made of the Canary Islands and the Community 
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of Madrid, where neither model outperforms the naïve model regardless of the forecast 

horizon. This result can be explained by the fact that they are the only regions that do 

not show seasonal patterns. For short term forecasts, the naïve method is hard to beat. 

There is ample evidence in the literature that the no-change model generates more 

accurate one-period-ahead predictions than other more sophisticated models (Witt et al., 

1994). 

To summarize, we find that the overall forecasting performance improves for longer 

forecast horizons. This evidence confirms previous research by Teräsvirta et al. (2005), 

who obtain more accurate forecasts with ANN models at long forecast horizons. This 

result is indicative that ML techniques are particularly suitable for medium and long 

term forecasting. 

Regarding the different methods, we obtain better predictions with the GPR model 

than with the ANN. This improvement is more generalized for intermediate forecast 

horizons. Despite being the first study to apply a MIMO approach for GPR forecasting, 

our results are in line with those obtained by Wu et al. (2012), who find evidence that a 

sparse GPR model yields better forecasting results than ARMA and SVR models. 

 

5 Concluding remarks and future work 

 

As more accurate predictions become crucial for effective management and policy 

planning, new forecasting methods provide room for improvement. Machine learning 

techniques are playing a pivotal role in the refinement of economic predictions. With 

this objective, we propose an extension of the Gaussian process regression model for 

multiple-input multiple-output forecasting. This approach allows modelling the cross-

dependencies between a given set of input variables and generating a vector prediction. 

The main theoretical contribution of this study to the economic literature is the 

development of a new approach to improve the forecasting accuracy of computational 

intelligence techniques based on machine learning. The increasing economic importance 

of the tourism industry worldwide has led to a growing interest in new approaches to 

tourism modelling and forecasting. Making use of the interdependencies in international 

tourism demand to all seventeen regions of Spain, we design a multiple-input multiple-

output framework that incorporates the existing cross-correlations in tourist arrivals to 

all markets, and allows to estimate tourism demand to all destinations simultaneously. 

We evaluate the performance of the new method by comparing it to a standard neural 

network in a multiple-step-ahead forecasting comparison. We find that the proposed 
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extension of the Gaussian process regression outperforms the benchmark model. We 

obtain the best forecasting results for the longest forecast horizons, suggesting the 

suitability of machine learning techniques for mid and long term forecasting. As a 

result, our research reveals the suitability of a multiple-output Gaussian process 

regression model for regional economic forecasting, and highlights the importance of 

taking into account the connections between different markets when modelling regional 

variables with machine learning techniques. The assessment of alternative kernel 

functions on the forecasting accuracy is a question to be addressed in further research. 
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