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Abstract 

 

The existence of palm-dominated forests covering the island since the last glaciation 

and the recent deforestation by humans are paradigmatic in Easter Island’s 

paleoecological reconstructions. The timing and mode of the deforestation are 

controversial, but there is general agreement that it actually occurred, and it is often 

given as an example of a human-induced environmental catastrophe with philosophical 

implications for the future of the whole planet. To evaluate whether this is the only 

well-supported hypothesis or if there might be other scenarios compatible with the 

paleoecological data, this paper reviews all the available evidence on past vegetation 

changes on Easter Island. The discussion is centered on three main points: 1) the alleged 

nature and extension of the former forests, 2) the taxonomic identity of the dominant 

palms, and 3) the nature of the recent ecological changes leading to a treeless island. 

The potential causes of the assumed deforestation are beyond the scope of this study. 

Concerning the first point, palynological and anthracological results obtained so far are 

not only compatible with a forested island, but also with other scenarios, for example a 

mosaic vegetation pattern with forests restricted to sites with a high freshwater table 

(gallery forests), which are mostly around the permanent lakes and along the coasts. 

With regard to palm identity, some extant species have been proposed as potential 

candidates, but the palms that dominated these forests seem to have become extinct and 

their identity remains unknown. The existence of a sedimentary hiatus around the dates 

of forest decline complicates the picture and reinforce the possibility of climatic 

changes. It is concluded that the hypothesis of a previously forested island has yet to be 

demonstrated. Therefore, the recent ecological disaster, human-induced or not, is still 

speculative. Several types of future studies are proposed for a better understanding of 

Easter Island’s ecological history, including: modern analog studies from similar 

situations, pollen dispersal modeling, high-resolution multi-proxy studies along the 

cores obtained so far, more coring campaigns in the search for older sediments, and 

DNA and isotopic analyses of plant remains for taxonomic identification purposes. 
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1. Introduction 

 

Easter Island (or Rapa Nui) has been the object of an intense debate about the causes of 

an assumed ecological catastrophe that occurred in historical times dealing to a cultural 

collapse, and which is often used as a model for the potential future consequences of the 

over-exploitation of natural resources (Rainbird, 2002; Flenley and Bahn, 2003; 

Diamond, 2005; Nagarajan, 2006). This case transcended the scientific community and 

reached the popular literature and mass media, becoming with time a more or less well 

established example of how humans can destroy their own habitat and lead themselves 

to a societal breakdown. 

 

The whole story began with an archaeological expedition to the island that reported the 

occurrence of an unknown, palm-like pollen in ancient sediments (Heyerdahl and 

Ferdom, 1961), a surprising fact considering that the island is today totally covered by 

grasslands and the only palms present are of recent introduction (Zizka, 1991). Further 

pollen analyses of lake sediment cores from three volcanic craters showed a clear 

replacement of palm-dominated assemblages by grass-dominated ones, which has been 

interpreted in terms of deforestation by indigenous people (Flenley and King, 1984; 

Flenley et al., 1991). This generated a series of ecological and anthropological 

inferences that led to a still standing controversy about the role of humans (either 

natives or Europeans), the climate and even rats in the island's deforestation (Hunter-

Anderson, 1998; Flenley and Bahn, 2007a, b; Hunt and Lipo, 2007; Flenley et al., 

2007). 

 

So far, the mainstream of the debate has been centered on the causes and consequences 

of the ecological disaster, as designated by Flenley (1993), whereas other important 

aspects of the problem have been taken for granted by most researchers with little or no 

discussion. These are: that the island was covered by forests prior to human arrival, and 

that the deforestation was likely caused by humans. These issues are at the core of the 

problem as they deal with the evidence itself and its interpretation, which is the starting 

point for any further discussion. The magnitude of ecological and cultural inferences 

about Easter Island’s history contrasts with the limited number of cores studied, their 

fragmentary nature and the low resolution of the analyses, the few proxies used (mostly 

pollen), and the existence of a sedimentary hiatus within which important information 
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about the environmental shift is still hidden (Mann et al., 2008). At present, studies 

about the paleoecology of the island seem to have spring up again and new cores have 

been obtained and are being analyzed (Gossen, 2007; Azizi and Flenley, 2008; Mann et 

al., 2008; Sáez et al., 2009). We consider it appropriate to accurately review the existing 

evidence at this point, to provide a neutral perspective on the proposals erected so far. 

 

This paper reviews the raw evidence available for past vegetation and vegetation change 

on Easter Island, with the aim of disentangling the well-supported hypotheses on 

island’s paleoecology from those that still need further work to be confirmed or 

rejected. It should be emphasized that the proposed cultural collapse itself and its 

possible causes will not be objects of our analysis; we only aim to evaluate the 

paleoecological evidence commonly associated with it. Hunt and Lipo (2007) and 

Flenley et al. (2007) discussed several controversial dating and archaeological aspects, 

and Hunter-Anderson (1998) did a general review of the problem from an 

anthropological perspective. Here, we concentrate on the evidence for vegetation 

change and its implications. The review begins with a classification and a brief 

explanation of the hypotheses proposed so far on the potential causes of the assumed 

deforestation (section 2). This section is necessary to understand further discussions 

about the evidences supporting the different views of Easter Island paleoecology. The 

second part (section 3) is an overview of the island today, including the locations of the 

sites mentioned in the text. The next part (section 4) examines the evidence for the 

existence and taxonomic composition of the forests predating human establishment, as 

well as their late Pleistocene and Holocene history. Then, the key vegetation change, 

i.e., the replacement of forests by grasslands, is analyzed in some detail (section 5). 

Finally, new studies oriented towards testing the still unsolved questions, as well as a 

new hypothesis, are proposed (section 6). This paper is also intended as a “hygienic” 

introduction to further paleoecological studies on new cores obtained from peat and lake 

sediments on Easter Island (Sáez et al., 2009). 

 

2. Background and current hypotheses 

 

The existing hypotheses regarding Easter Island’s prehistoric deforestation can be 

broadly classified into two categories, namely anthropic and climatic. Among the 

anthropic hypotheses, we can distinguish between those dealing with direct and indirect 
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consequences of human activities. Active forest clearing, either by natives or 

Europeans, are considered direct actions, and rat consumption falls within the indirect 

category. Proposals within this group are commonly based on paleoecological and/or 

archaeological evidence and will be discussed here. Climatic hypotheses, on the 

contrary, are still speculative, and there is no any evidence independent from the 

palynological records to either support them or not. These proposals are briefly outlined 

at following. 

 

According to the above-mentioned palynological studies, the island was forested before 

the arrival of humans, which possibly occurred around AD 800 (Vargas et al., 2006) or 

AD 1200 (Hunt and Lipo, 2006). It has been suggested that during the late Pleistocene 

and most of the Holocene, prior to human establishment, the forests were dominated by 

palms (Flenley and King, 1984; Flenley et al. 1991). Coupled stratigraphic variations in 

the pollen of these forest elements and of grasses allowed these authors to infer a cool 

and dry phase between 26 and 12 14C kyr BP, followed by an increase in precipitation 

and an expansion of forests that persisted throughout the Holocene until the recent 

deforestation. A recent, more detailed pollen analysis of sediments representing the Last 

Glacial Maximum (LGM) used the alternation of palm and grass pollen to infer a phase 

cooler and probably drier than the present (Azizi and Flenley, 2008). Minimum values 

of palm pollen coinciding with maximum grass values around 22 and 17 14C kyr BP 

were interpreted in terms of the coldest and driest phase of this interval. 

 

Depending on the authors, the deforestation took place either around AD 1000-1200 

(Flenley and Bahn, 2007b; Mann et al., 2008) or some 600 years later (Hunt, 2006; 

Hunt and Lipo, 2007). The more popular hypothesis is that indigenous Rapa Nui people 

were responsible for the forest demise, as they used the wood for a variety of purposes, 

including the transportation of their characteristic stone statues or moais (Gurley and 

Liller, 1997; Grau, 2001). Other authors claim an important role for rats -mainly the 

European introduced Rattus exulans- in the disappearance of the palms, by active fruit 

eating (Hunt, 2006). This proposal is based on the abundance of rat bones and skeletons 

in archaeological excavations and the discovery of many palm fruits with signs of 

gnawing and removal of the interior nuts (Hunt, 2007). An “ecocide” caused by 

Europeans after their arrival in the 18th century has also been suggested (Rainbird, 2002; 

Peiser, 2005), but no evidence has been provided. Another group of hypotheses center 
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around natural climatic changes as causal agents for both the vegetation and the cultural 

shift. This view was introduced by McCall (1993), who speculated about the possibility 

of a dramatic climate shift linked to the Little Ice Age (LIA). Further proposals in the 

same vein cite the potential influence of ENSO variability (Orliac and Orliac, 1998; 

Orliac, 2000; Nunn, 2000; Nunn and Britton, 2001) or deny this possibility (MacIntyre, 

2001; Genz and Hunt, 2003) based on reasonable speculations or climatic records of the 

last 50 years, respectively. Similarly, Hunter-Anderson (1998) proposed a geo-climatic 

model to explain the disappearance of the palms in which mid to late-Holocene climatic 

instability would have played a major role. According to this author, humans 

(Polynesians) arrived on the island during a “climatic optimum”, from a human point of 

view, occurring between about 1200 and 600 BP, at which time the island was already 

grass-covered with only a few trees and shrubs growing on protected sites. Recently, 

Mann et al. (2008) and Sáez et al. (2009), using pollen analysis and lake level 

reconstructions, respectively, proposed the existence of a mid-Holocene dry period 

characterized by a sedimentary hiatus. According to Mann et al. (2008), this period was 

followed by forest clearance by humans. A combination of climatic and anthropogenic 

causes for deforestation has been also proposed by Louwagie et al. (2006). 

 

3. Present-day overview and study sites 

 

3.1. Geography, hydrology and climate 

 

Easter Island is one of the most isolated places on Earth. It is located in the Pacific 

Ocean (27º 07’ S – 109º 22’ W) at about 3700 km of the Chilean coast and 2030 km 

from the nearest oceanic island (Pitcairn) (Fig. 1). The indigenous name for the island is 

Rapa Nui, and the inhabitants are commonly called Rapanuis (McLaughlin, 2007). The 

island originated with the fusion of three volcanic cones (Maunga Terevaka, Rano Kao 

and Poike), which formed a roughly triangular land mass of nearly 164 km2. In addition 

to these major volcanoes, the island is spiked by around 70 other minor satellite cones. 

The island has a triangular shape and is dominated by the summit of the Terevaka 

volcano (511 m asl), which has steep slopes at the north and more gentle slopes in the 

other directions, where most inhabited sites of the island are located (Fig. 1).  
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Hydrologically, the island is characterized by an absence of permanent surficial water 

currents due to the high permeability of volcanic rocks and the existence of abundant 

fractures and lava tubes (Herrera and Custodio, 2008).  Fresh water accumulates on top 

of a groundwater system in which salinity increases with depth due to the penetration of 

seawater from below (Fig. 2). The subsurficial freshwater lens is used for human 

consumption through the boring of wells (Herrera and Custodio, 2008). Another source 

of freshwater is the bog inside the Rano Aroi crater, which outflows through a small 

creek that infiltrates downstream for about 400 m. The chemical composition of the 

Aroi water is similar to that of the groundwater, suggesting that it may represent the 

discharge of a more or less stable groundwater body that is perched there, or that is the 

result of a highly saturated zone (if there is a volcanic core of low permeability 

volcanics there). Since it is near the top, it is easily subjected to seasonal variations and 

even desiccation (Herrera and Custodio, 2008). On the other hand, the Raraku and Kao 

craters hold permanent lakes that are fed solely by precipitation and which are closed 

basins hydrologically disconnected from the main groundwater system by impermeable 

lacustrine sediments.  

 

The climate of Easter Island is subtropical, with an average annual temperature of 21 ºC 

and a range of average monthly temperatures between 18 ºC in August and 24 º C in 

January (Mann et al., 2008). The total annual precipitation is highly variable, ranging 

between 500 and 1800 mm (average 1130 mm); the maximum rainfall occurs from 

April to June, and the driest moth is October with 70 mm (Azizi and Flenley, 2008). 

The influence of ENSO variability on the island’s climate is still unclear (MacIntyre, 

2001; Genz and Hunt, 2003; Muccianore and Dunbar, 2003). 

 

3.2. Flora and vegetation 

 

The island is covered by meadows (90%), forests (5%), shrublands (4%), and 

pioneer and urban vegetation (1%) (Etienne et al., 1982). The meadows are dominated 

by grasses, mainly Sporobolus indicus and Paspalum scrobiculatum, with Axonopus 

paschalis a local dominant in the highest sectors of the Maunga Terevaka. The more 

common forests are recent plantations of Eucalyptus spp. (Myrtaceae) and Dodonea 

viscosa (Sapindaceae), both introduced, and the native Thespesia populnea 

(Malvaceae). Shrublands are largely dominated by the invader Psidium guajava 
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(Myrtaceae), also introduced. Inside the major craters, the only places of the island with 

permanent fresh water, aquatic vegetation dominated by Scirpus californicus 

(Cyperaceae) and Polygonum acuminatum (Polygonaceae) exists. According to Zizka 

(1991), the angiosperm flora of the island is composed of 179 species, of which 30 

(16.8%) are autochthonous and 141 (78.8%) are introduced. The remaining 8 (0.4%) are 

of uncertain origin. Among the introduced species, 67 are considered to be well 

established (naturalized) and 74 have been observed only rarely (ephemerophytes). 

Globally, the families with more species are Asteraceae (19) and Fabaceae (18), but if 

we consider only the autochthonous flora, Poaceae (9) and Cyperaceae (5) are the most 

represented (Zizka, 1991). Species endemic to Easter Island are: Axonopus paschalis 

(Poaceae), Danthonia paschalis (Poaceae), Sophora toromiro (Fabaceae), and probably 

Paspalum fosterianum (Poaceae). Given the isolation of Easter Island, the ways in 

which the autochthonous species reached the island are of special significance. 

Interestingly, none of the autochthonous angiosperms has potential for wind dispersal, 

the main mechanisms being transport by birds (75%) and drift through seawater (25%) 

(Carlquist, 1967; 1974). From a conservation point of view, it is especially interesting 

that Sophora toromiro is now extinct in the wild and is currently maintained under 

cultivation in the island and in several botanical gardens elsewhere (Maunder et al., 

2000). The flora and vegetation of Easter Island are seriously threatened by human 

activities, livestock (notably horses), and the introduction of aggressive invader species. 

It has been proposed that the inner slopes of Rano Kao would be an excellent site for the 

conservation of the local flora (Zizka, 1993). 

 

3.3. Study sites and proxies 

 

The evidence for past vegetation change comes primarily from palynological and 

archaeological surveys. The locations discussed in this paper are depicted in Figure 1. 

Pollen analyses are mostly based on the sediments inside the three volcanic craters (Fig. 

3). Two of them -Rano Raraku (~400 m diameter, 2 m of maximum water depth and 75 

m elevation) and Rano Kao (~1000 m diameter, 8 m of maximum water depth and 110 

m elevation)- contain lakes, and the third -Rano Aroi (~150 m diameter and 430 m 

elevation)- contains a peat bog (Flenley and King, 1984; Flenley et al., 1991; Butler and 

Flenley, 2001; Peteet et al., 2003; Gossen, 2007; Azizi and Flenley, 2008; Mann et al, 

2008). Microscopic charcoal, a proxy for fire, was reported in Rano Aroi, Rano Raraku 
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and Rano Kao (Flenley et al., 1991; Mann et al., 2008). A paleolimnological study 

based on zooplankton remains and diatoms is also available for Rano Raraku (Dumont 

et al., 1998). The main archaeological evidence, in the context of the present review, 

consists of carbonized macroscopic wood fragments found in Hanga Hoonu, Orongo, 

Ahu Akahanga and Hanga te Pahu (Arnold et al., 1990; Orliac and Orliac,1998; Orliac, 

2000). More charcoal remains from wood associated with root casts were found south 

of the Poike Peninsula (Flenley, 1993; Mieth and Bork, 2003, 2010; Stevenson et al., 

2006). Sometimes, charcoal fragments are associated with phytoliths and pollen, as is 

the case in Te Niu, Ahu Hekii and the coasts of La Pérouse Bay (Cummings, 1998; 

Horrocks and Wozniak, 2008). The only physico-chemical proxies analyzed so far are 

major cations (Fe, Al, Na, K, Mn, Ca and Mg) in Rano Raraku, Rano Aroi and Rano 

Kao (Flenley et al., 1991) and magnetic susceptibility (only in Rano Kao) (Gossen, 

2007). 

 

4. The ancient forests 

 

4.1. The evidence and its current interpretation 

 

According to Butler and Flenley (2001), “the island was forested for many thousands of 

years before human impact.” The oldest pollen records interpreted in terms of a forested 

island extend back to ~35-37 14C kyr BP and were obtained in Rano Raraku and Rano 

Aroi. The pollen diagram of the first site is of millennial resolution (average between-

sample intervals of ~1100 years), whereas that of the second site is multicentennial (one 

sample each ~580 years in average). In Rano Raraku core RRA3, Palmae pollen 

dominates the whole diagram from ~35 14C kyr BP until the uppermost meter. Typical 

percentages are 40-70% of total pollen, with a minor decline to 20% around ~28 14C kyr 

BP. In the lowermost part of the diagram, between around 35 to 28 14C kyr BP, the three 

samples analyzed indicated total Palmae dominance with scattered occurrences of other 

elements. This was interpreted in terms of a forest dominated by palms with a shrubby 

understory of Sophora, Asteraceae (Tubuliflorae), Triumfetta, Urticaceae/Moraceae and 

Macaranga (Flenley et al., 1991). The same forest, but in a more open condition, was 

assumed to exist between ~28 and 12 14C kyr BP. Openness was suggested by a slight 

decline in palm pollen, and an increase in that of shrubs and Poaceae. Between 12 and 

1.2 14C kyr BP, palm forests like those of the first phase would have recovered, but this 
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time with a lower diversity, as reflected in the rarity or absence of some of the shrub 

elements. Grasses were also scarce. 

 

Additional data on the potential palm forests were provided by a further core obtained in 

Rano Raraku (RRA5) covering between 28 and 11 14C kyr BP (Azizi and Flenley, 

2008). In this case, the resolution was 680 years per sample interval. The pollen 

diagram of this section, which includes the LGM, is commonly dominated by Palmae 

(40-80%), with Poaceae, Asteraceae (Tubuliflorae), Sophora and Poaceae as 

subdominants. The interpretation, in terms of the dominant vegetation, is basically the 

same as in the former RRA3 core, but this time with emphasis on Sophora, Palmae and 

Triumfetta as the main tree elements (Azizi and Flenley, 2008). The Holocene 

vegetation is represented in another Rano Raraku core (#1) covering the last ~6 cal kyr 

BP with multidecadal resolution (~280 years per sample interval). In this case, prior to 

the “deforestation,” the pollen palm dominance approaches 100% in all samples, and 

apart from it, only Cyperaceae pollen is commonly present (Mann et al., 2008). An 

explicit reconstruction of the potential forest characteristics was not attempted by these 

authors, but they implicitly consider it a palm forest. Another core with pollen data 

taken in Ranu Raraku (SW) coincides in recording the dominance of palm pollen 

(Dumont et al., 1998). Unfortunately, the lack of reliable dating and the grouping of all 

pollen elements other than palms into one single category prevents any further 

interpretation. 

 

In Rano Kao, the first pollen results (core KAO1) were not conclusive due to dating 

problems (Butler et al., 2004), but a further core (KAO2) was successfully dated and 

analyzed for pollen. KAO2 covered practically the whole Holocene, from around 9 14C 

kyr BP onwards (Butler and Flenley, 2001). The situation before the “deforestation” is 

similar to that of Rano Raraku, with palm pollen commonly above 70%, and Sophora 

and Triumfetta as common, yet scarce, components of pollen assemblages. From this 

evidence, it was concluded that the island was forested during the Holocene (Butler and 

Flenley, 2001). A more recent study includes new dates, but the inferences concerning 

forest characteristics are essentially the same (Flenley et al., 2007). 

 

The situation is very different at Rano Aroi. The pollen diagram of core ARO1 is 

largely dominated by Poaceae (typically 40-80%), with Asteraceae (Tubuliflorae) and 
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ferns as subdominants and Coprosma commonly present. Scirpus was added as a 

dominant from about the half of the diagram onwards. The pollen of Palmae is usually 

below 10%, with a few isolated exceptions. This situation persisted during the last ~37 
14C kyr BP. The general interpretation was that the palm forests deduced from the Rano 

Raraku section grew on lowlands with their uppermost limit fluctuating around the 

Rano Aroi elevation (430 m) (Flenley and King, 1984; Flenley et al., 1991). This limit 

would have been characterized by shrub communities of one or several unknown 

Asteraceae (Tubuliflorae) and Coprosma (Azizi and Flenley, 2008). Locally, the Rano 

Aroi site supported intermittent herbaceous marshes and swamps dominated by 

Cyperaceae and grasses. A short core from Rano Aroi (Drive 3) was analyzed by Peteet 

et al. (2003). It was tentatively dated as representing the end of the Pleistocene (14 to 10 
14C kyr BP), and the pollen data are in agreement with the results previously obtained 

from core ARO1. The big picture for Easter Island’s forest evolution since the LGM has 

been represented by Flenley and Bahn (2003) in a graphical sketch (Fig. 4), where it can 

be seen that the proposed treeline only existed during the LGM and the late glacial 

period. After that, the whole island would have been covered by forests until the 

hypothetical human deforestation beginning around AD 1200 (Mann et al., 2008). 

 

Other pollen and macrofossil evidence is available from archaeological sites. The work 

of Orliac (2000) is frequently cited in support of the existence of ancient forests 

covering the island. After analysis of more than 30 000 carbonized woody remains from 

dwelling sites at La Pérouse Bay, Orongo and Ahu Aakhanga (Fig. 1), this author was 

able to identify more than 20 tree/shrub taxa with ages between 610 and 220 BP, half of 

which are currently absent and also undetected in Pleistocene and Holocene pollen 

analyses. Due to dating uncertainties, the age of these samples was rounded to represent 

the period between the beginning of the 14th and the middle of the 17th centuries AD, 

which, according to Orliac (2000) and Orliac and Orliac (1998), is before the final 

impoverishment of Easter Island’s flora. Some of the taxa identified still live in the 

island, mostly as relics in the inner Rano Kao crater. These are: Caesalpinia cf. major, 

Thespesia populnea, Broussonetia papyrifera, Sapindus saponaria and Triumphetta 

semitriloba. Three other taxa are known only from the above-mentioned pollen 

analyses: Sophora toromiro, Coprosma and an unknown palm represented by its pollen 

(a discussion on its identity is provided in the next section). Most of the remaining 

previously unknown taxa still grow on other Pacific islands (Orliac, 2000). 
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Additional archaeological evidence includes pollen, phytolith and starch analyses of 

samples from Te Niu, Ahu Hekii and la Pérouse, which are dated from around AD 1300 

to AD 1850 (Cummings, 1998; Horrocks and Wozniack, 2008). Some of these samples 

show large amounts of palm remains and have been interpreted as representative of the 

ancient forests. In the case of Te Niu, four of the five samples containing 40-60% palm 

pollen range from AD 1286-1399 (SS199a) to AD 1393-1459 (SS289), and have been 

interpreted as representative of the pre-deforestation period. The fifth sample (SS299) 

was dated to AD 1797-1955 (Horrocks and Wozniak, 2008). In these samples, the 

subdominant shrubs formerly reported in the lake cores are absent, and instead, fern 

spores are more diverse and abundant. This has been attributed to the particular 

taphonomic nature of archaeological samples. Phytoliths (mainly of palms) and starch 

grains from cultivated plants like Dioscorea alata (yam) and Ipomoea batatas (sweet 

potato) occurred in similar amounts in samples with either high or low palm pollen 

abundance (Horrocks and Wozniak, 2008). A similar situation was found by Cummings 

(1998) at the other archaeological sites, but the low number of isolated samples and the 

lack of dating details prevent a detailed reconstruction. 

 

Edaphic studies have also contributed to paleobotanical reconstruction by providing 

evidence likely corresponding to palm remains (Flenley, 1993). For example, in Ahu 

Tongariki, SW of the Poike Peninsula, 29 root casts and carbonized remains of palm 

trunks and grasses were documented in a 100 m transect and dated, giving ages between 

about AD 1300 and AD 1400 (Mieth and Brock, 2003). It was suggested that these 

features represent a semi-open palm forest, possibly with grasses and some bushes, 

which was being managed and burnt by humans. Another place with similar but poorer 

evidence (three root systems) is Maunga Orito, in the SW of the island (Stevenson et al., 

2006). Macroscopic fragments of charcoal recovered from colluvial deposits at different 

island sites (mostly in coastal areas around the major craters, but also a few fragments 

found more inland on the slopes of Terevaka) showed ages between AD 1220 and AD 

1950 (Mann et al., 2008). Some of these fragments were from wood while others have 

carbon isotopic signature typical of grasses. According to Bork and Mieth (2003) and 

Mieth and Bork (2010), all these findings taken together suggest that more than 70% of 

the island surface was covered by a dense, agriculturally-used palm forest. 
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4.2. Some uncertainties and more possibilities 

 

The idea of a forested island previous to the assumed human-induced catastrophe is 

based on the evidence presented above, and it is a widespread belief accepted even by 

those more skeptical of the potential anthropic disaster (e.g., Hunter-Anderson, 1998). 

To summarize the currently accepted scenario, the ancient forests were dominated by 

palms (probably one single species, see discussion below), Sophora toromiro and 

Truimfetta semitriloba as the main trees, and a shrubby understory. The altitudinal 

treeline fluctuated around 400 m in elevation and was characterized by a shrubby zone 

with several unknown Asteraceae (Tubuliflorae) and Coprosma (Azizi and Flenley, 

2008). Here, we discuss some uncertainties of this view and analyze alternative 

proposals, with the sole aim of eventually finding additional hypotheses consistent with 

the available evidence. 

 

The first weakness of the prevailing reconstruction is the lack of modern analogs for the 

assumed ancient forests. As is well known, one of the better approaches for 

paleoecological reconstruction based on pollen analysis is comparison with modern 

ecosystems and the pollen assemblages they release and deposit in appropriate 

sediments (Jackson and Williams, 2004). At present, the vegetation of the island is so 

disturbed that a study of this type is no longer feasible, but the possibility of modern 

analogs from elsewhere (other pacific islands? South America?) has not been seriously 

considered so far. It is also known that many past biotic communities were different 

from present ones in composition and have no present modern analogs, which 

complicates their ecological characterization (Jackson and Williams, 2004). This could 

be the case for Easter Island, but it cannot be confirmed without a careful analysis. The 

impression obtained from the literature survey carried out for this review is that this 

point has not been fully exploited and should be encouraged. An interesting point is that 

pollen assemblages recovered in the sediments of Easter Island lakes and bogs most 

likely originated from the island and are not derived from long-distance wind transport 

from other distant sites, like for example South America or other Pacific islands. This 

has been made apparent by analysis of modern pollen assemblages from the nearby 

small island of Salas y Gómez (situated 415 km ENE), where the only pollen found is 

from its four local vascular plant species (Flenley and Empson, 1996), thus showing that 

long-distance pollen transport does not occur. This makes Easter Island a good place to 
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use dispersal modeling to deduce the characteristics of past pollen sources (i.e., past 

local vegetation) and their evolution from the pollen content of ancient sediments 

(Sugita, 2007a, b). 

 

Another point that deserves attention is the occurrence of a potential treeline for the 

ancient forests. The existence of an upper forest limit around Rano Aroi was deduced 

from the low abundance of palm pollen throughout the whole diagram as compared to 

the dominance of this pollen type in lowland lakes (Rano Kao and Rano Raraku) during 

the late Pleistocene and most of the Holocene. This interpretation emphasizes the 

altitude as the differential factor between these situations, but there are other important 

environmental and paleoenvironmental differences. For example, according to the 

sedimentological interpretation, Rano Kao and Rano Raraku are lakes and have been so 

for most of the interval studied, while Rano Aroi has been a peat bog throughout this 

time (Sáez et al. 2009). Therefore, differences in basin size and morphology, as well as 

in local hydrological conditions (i.e., the existence or not of a permanent water body, 

the connection or not with the groundwater system, etc.) would have determined the 

particular microclimatic conditions and the establishment of different plant communities 

around each of these sites, such as for example a palm-dominated gallery forest around 

the lakes and a shrubby community around the bog. A gallery forest around a lake, 

favored by the occurrence of a local subsurficial water table, would be able to provide 

sufficient pollen to reach the values recorded in Rano Kao and Rano Raraku sediments, 

and it would obviate the need to postulate a forested island. Furthermore, palm gallery 

forests are common in tropical and neotropical areas around water bodies such as rivers 

and lakes (e.g., Henderson et al., 1995). Other sites with evidence for palm communities 

are on the coasts at Te Niu and Ahu Tongariki (Mieth and Brok, 2003; Horrocks and 

Wozniak, 2008). Therefore, a coastal palm fringe or a set of isolated palm stands along 

the coasts, also favored by the proximity of the water table (Fig. 2), are scenarios 

worthy of consideration. In the absence of modern analog studies of pollen deposition 

patterns, this hypothesis is as credible as that of a forested island. In support to this, 

studies on modern pollen sedimentation in crater lakes of similar size and characteristics 

than those of Easter Island have shown that pollen assemblages reflect local vegetation 

conditions rather than regional vegetation patterns, especially when lakes are 

surrounded by gallery forests (Walker, 2000). In addition, the existence of a forest belt 

around the lakes could have acted as a filter for pollen from other plant formations, thus 
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contributing to increase the relative abundance of local forest pollen. If this proposal is 

favored by further evidence, eventual climatically-driven oscillations in the water table 

position would determine changes in the position and extent of the assumed gallery and 

coastal forests. Therefore, changes in the hydrological balance 

(precipitation/evapotranspiration ratio) such as those suggested by Sáez et al. (2009) 

over the last 34 000 years, and not only human disturbance, would emerge as important 

forcing factors for vegetation change on Easter Island.  

 

On the other hand, it is known that treeline elevations are controlled by climate and 

have a clear latitudinal gradient (Körner, 1998). It is also known that treelines are in 

general lower on oceanic islands than in continental areas at the same latitude 

(Leuschner, 1996). Easter Island is at ~27º S, an intermediate latitude between Réunion 

(21º S) and Juan Fernández (34º S) islands, where the treelines are situated at 2200-

2400 and 700-750 m respectively (Leuschner, 1996). Therefore, the present 

corresponding treeline altitude for Easter Island would be around 1400-1600 m. A 

hypothetical treeline around 400 m, as proposed by Flenley et al. (1991) for the late 

Pleistocene (including the LGM), involves a 1000-1100 m difference, that using a 

commonly accepted lapse rate of -0.55 ºC/100 m altitude, implies a cooling of 5.5-6.0 

ºC with respect to the present. This is in disagreement with current LGM estimates for 

Easter Island and other Pacific areas, which are around 2 ºC below the present (Azizi 

and Flenley, 2008). Therefore, the initial hypothesis of a treeline around 400 m altitude 

during the last glaciation is unsupported. Furthermore, according to the reconstruction 

of Flenley and Bahn (2003), the treeline would have disappeared from Rano Aroi and 

been replaced by forests after the glaciation (Fig. 4). This is in contradiction with the 

Rano Aroi pollen diagram and its current interpretation, according to which palm forests 

never occupied the site (Flenley and King, 1984; Flenley et al., 1991). In summary, the 

hypothesis of a treeline around Rano Aroi leads to several fundamental contradictions, 

and a more parsimonious interpretation of the differences observed between the pollen 

diagrams of the peat sequence from Rano Aroi and the lacustrine sequences from Rano 

Kao and Rano Raraku would be in terms of local differences in basin size, substrate, 

climatic and/or hydrological conditions. 

 

The issue of the additional tree and shrub taxa identified in wood fragments from 

archaeological samples by Orliac (2000) also merits some consideration. The discovery 
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of so many potential forest taxa previously undetected in pollen diagrams at three 

different and widespread localities of the island seems surprising. Factors such as low 

pollen production and/or dispersion power of the taxa involved could be invoked as a 

partial explanation. However, the time frame and the context involved are critical 

factors. First, the evidence is restricted to a few centuries (14th to 17th) and is directly 

associated with quotidian human activities; hence, the identified remains cannot be 

taken as representative of assumed ancient forests, but rather represent species 

commonly used by humans at that time. Second, the pollen of these taxa is totally 

absent, not only in lake and bog sediments, but also in similar anthropological samples 

containing pollen, which show more or less the same assemblages recorded in 

sedimentary samples (Cummings, 1998; Horrocks and Wozniak, 2008). Therefore, 

former arguments related to pollen production or dispersal to explain their absence in 

pollen diagrams lose strength. It would be interesting to see the results of pollen 

analysis of Orliac’s (2000) samples, as well as of anthracological analyses of wood and 

charcoal fragments outside human settlements. Third, the time interval considered in the 

archaeological studies lies within the process of substitution of palm forests by 

grasslands, and cannot represent the original forests. In summary, the anthracological 

evidence available so far provides little support for the existence and composition of 

potential ancient forests. Human activities such as gardening, tree cropping or the use of 

wood transported from other islands (note the absence of pollen) are not incompatible 

with the evidence. 

 

It is important to realize that, except for the pollen records, all the other evidence on the 

composition and characteristics of Easter Island’s former forests comes from 

archaeological sites situated along the coasts, and corresponds to the period between 

about AD 1200 and AD 1700, when the original vegetation was under intense 

exploitation. Therefore, the paleobotanical evidence available so far for Easter Island 

between these dates cannot represent the composition and characteristics of the original 

forests, but rather represents the vegetation associated with human environments along 

the coasts. Therefore, palynological data are still the key evidence for the reconstruction 

of the vegetation prior to human arrival. Taken as a whole, the palynological evidence 

discussed for Easter Island during the late Pleistocene and most of the Holocene is not 

incompatible with mosaic vegetation, with palm-dominated gallery forests inside the 

crater lakes, palm stands on coastal areas intermingled with shrublands and (possibly) 
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more restricted herbaceous communities. The occurrence of gallery forests inside the 

craters would be favored by the existence of a humid microclimate created by the 

presence of the lakes, a condition that does not occur in any other place on the island, as 

for example in Rano Aroi, from which paleoecological record does not reflect the 

presence of palm forests (Flenley and King, 1984; Flenley et al., 1991). The island has 

the necessary environmental heterogeneity for such a scenario, with differences in 

(among other things) geology, altitude, topography, soil, exposure to sun and wind, and 

slope orientation. (McLaughlin, 2007). 

 

4.3. The identity of the palms 

 

Since the discovery of palm-like pollen in the Rano Raraku sediments by O. Selling 

(Heyerdahl and Ferdon, 1961), the identity of its parent plant has remained unknown. 

The first tentative identification by Selling was Pritchardia, which is a common palm in 

Pacific islands. Further morphological analyses, including SEM studies (Dransfield et 

al., 1984), showed more similarity with the pollen of the palm tribe Cocosoideae, which 

in the Pacific region is represented by the widespread Cocos nucifera (the coconut) and 

Jubaea chilensis (the wine palm), at present inhabiting the Chilean coasts. The first 

possibility was initially rejected because the coconut is a typical tropical palm and 

Easter Island is subtropical, and also because the initial attempts to introduce this palm 

to the island were unsuccessful (Flenley et al., 1991). The independent discovery of 

small palm nuts (notably smaller than coconuts) and trunk and root casts similar to 

those of Jubaea in lava caves and soils of the Poike Peninsula was used by some to 

defend the second option, and to speculate about the possibility of Jubaea seeds 

traveling from the Chilean coasts aided by the Humboldt and the Equatorial currents 

(Grau, 1998, 2001). However, the lack of material suitable for a reliable botanical 

identification (i.e. flowers or inflorescences), and the manifest environmental 

differences between Easter Island and the Chilean coasts, are serious constraints for this 

analogy (Dransfield et al., 1984; Hunter-Anderson, 1998). Based on the nut 

morphology, of which the empty endocarp was the only part available, the genus 

Paschalococos was defined, and the nuts were assigned to the new species P. disperta 

(Dransfield et al., 1984). This species has been included in the flora of Easter Island, 

with the subfossil endocarp as the holotype (Zizka, 1991). Another proposed analog for 

the Easter Island palms is Juania australis, a palm endemic to the Juan Fernández 
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Islands, which are situated about 600 km off the Chilean coast and have a flora very 

different from that of the mainland, likely due to their long isolation (Hunter-Anderson 

(1998). The basis for this analogy is again the endocarp morphological similarity. Most 

subfossil endocarps found so far show evident signs of rat gnawing and have been dated 

to between about 800 14C years BP to AD 1680 (Flenley, 1993). 

 

To summarize, the identity of the parent plants of the abundant palm pollen recorded at 

Rano Kao and Rano Raraku sediments still remains a mystery. The discussion has 

centered on the endocarps, which seems to be the more suitable material available for 

botanical identification. DNA analyses have not yet been attempted, because it has been 

assumed that neither the pollen grains nor the endocarp cells contain appropriate 

cytoplasmic material, and the problem is being approached by detailed anatomical 

comparisons with Jubaea and related palms (Dransfield, 2008). However, some 

techniques that have been proven to be useful for recovering and analyzing DNA from 

subfossil Holocene pollen grains (e.g., Suyama, 1996; Parducci et al., 2005) might be 

applicable. So far, all the inferences about the identity of the enigmatic Easter Island 

palm are based on the assumption that the pollen, endocarps, carbonized trunks and root 

casts belong to the same species, but a necessary link between them has not been 

properly established yet. The comparison of DNA from the problematic subfossil pollen 

with that of pollen from a set of selected palm species would be the best way of 

identifying the parent palm (if still living), or at least of establishing more probable 

phylogenetic relationships, if already extinct. The identification of the mysterious palm 

to some taxonomic extent would be very useful to know more on the eventual Easter 

Island past forests. In general, DNA studies can be of great help to paleoecology 

(Flenley, 2003). The first attempts at recovering DNA from lake sediments to aid past 

reconstructions have been very promising (Matisoo-Smith et al., 2008). Another 

technique that may help is the isotopic analysis of key elements such as carbon, which 

has demonstrated its utility for distinguishing among different taxa and vegetation types 

from soil samples, and which has thus helped elucidate historic ecological trends 

(Pessenda et al., 2001, 206).  
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5. The recent deforestation 

 

The paleobotanical evidence for the presumed ecological disaster on Easter Island is of 

two main types: 1) the replacement of palm-dominated by grass-dominated pollen 

assemblages in the sedimentary record of two lakes (Flenley and King, 1984; Flenley et 

al., 1991; Butler and Flenley, 2001; Flenley et al., 2007; Mann et al., 2008), and 2) the 

finding, in some soils and some former dwelling areas, of charcoal derived from several 

tree and shrub species (including palms) no longer present on the island, sometimes 

mixed with grass charcoal  (Arnold et al., 1998; Orliac and Orliac, 1998; Orliac, 2000; 

Mieth and Brock, 2003, 2005). According to the current interpretation, both indicate the 

presence of former forests and their subsequent replacement by the extensive grasslands 

that today dominate the landscape. Other types of non-botanical evidence for the 

proposed ecological and cultural collapse are beyond the scope of this paper and are 

summarized by Flenley et al. (2007). The idea of the collapse is generally accepted, but 

the main discrepancies regard causes and timing, which are not independent. The causes 

are still intensively debated (e.g., Hunt and Lipo, 2007; Flenley et al., 2007). 

 

Concerning timing, after many discussions, it is now believed that the deforestation was 

not sudden but time-transgressive (Cole and Flenley, 2007; Flenley et al., 2007), and 

dates vary depending on the site considered. According to Flenley et al. (2007), the first 

evidence for human disturbance of palm forests is a 1900 year-old layer from Rano Kao 

in which palm pollen suddenly declined and grasses increased, coinciding with a 

manifest charcoal augmentation suggestive of forest burning. But the decisive, 

irreversible replacement of palm forests by grasslands seems to have started around AD 

1200, as recorded in Rano Raraku through the same palynological signal (Mann et al., 

2008). The oldest date that records human disturbance is around the middle of the 17th 

century, and this is based on macroscopic charcoal fragments derived from the now 

absent trees and shrubs (Orliac, 2000). Other charcoal fragments and palm endocarps 

show intermediate ages (Flenley, 1993; Mieth and Bork, 2003; Hunt, 2007; Mann et al., 

2008). Therefore, there is a period of nearly 500 years, roughly between AD 1200 and 

AD 1700, of intense human use and disturbance of the original vegetation. 

 

Accepting the hypothesis of an island with 70% of its surface covered by forests, and 

using the spatial patterns of palm trees inferred from their root imprints, Bork and Mieth 
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(2003) and Mieth and Bork (2010) estimated that about 16 million of these trees were 

present on Easter Island prior to the recent deforestation. An intriguing question regards 

the fate this much carbon, considering the very small quantity of wood and charcoal 

remains found so far on the island (summary by Mieth and Bork, 2010).  

 

A recurrent difficulty for the study of the most recent history of Easter Island has been 

the more or less persistent absence of suitable sediments representing the last centuries 

and millennia. The first cores studied did not recover sediments younger than 2000 14C 

years BP at Rano Aroi, and they showed an interruption in the Rano Raraku 

sedimentary record around 7000 14C years BP and a hiatus between this date and ca. 

500 14C years BP (Flenley and King, 1984; Flenley et al., 1991). In Rano Kao (KAO2), 

the existence of dating inversions complicated the picture even more (Butler et al., 

2004). As a consequence, the precise date of the palm pollen decline, which occurred in 

the missing time interval, could not be determined. A more recent core from Rano 

Raraku improved the situation somewhat by reducing the gap to an interval between 

about 4000 14C years BP and 800 14C years BP (AD 1200-1300). The gap has been 

attributed to intense mid to late Holocene drought phases leading to persistent low water 

tables, sub-aerial exposure and erosion of sediments (Man et al., 2008, Sáez et al., 

2009). This has been useful as it demonstrates that, in this lake, the final decline of palm 

pollen occurred before AD 1200. In Rano Kao, further dating efforts with KAO2 led to 

a coherent sequence for the last millennium with a shorter sedimentary gap between 

about 2000 cal years BP and 500 cal years BP (AD 1500) (Butler and Flenley, 2001; 

Flenley et al., 2007). In this way, the early human disturbance of the palm forest that 

occurred around 1900 cal years BP, its subsequent recovery at ca. 500 cal years BP, and 

the final decline after this date, were recorded (Flenley et al., 2007). An additional core 

obtained at Rano Kao (KAO05-3A) covers the entire Holocene with only a minor hiatus 

between 1200 14C years BP and 600 14C years BP (Gossen, 2007). A set of 

paleoecological and paleoclimatic analyses are in progress at present with this core. A 

solution is beginning to emerge for one of the Easter Island’s enigmas (Flenley and 

Bahn, 2003). 
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6. Final remarks and possible future studies 

 

The purpose of this review has not been to refute the idea of a forested island, but to 

show that this is not the only hypothesis compatible with the available evidence. Our 

strategy was to establish the facts first and then look for an explanation, as the merging 

of factual and explanatory elements can lead to circular reasoning. In this review, the 

first part has been accomplished. After discussion of the evidence, we believe that the 

forested island hypothesis has not yet been fully established and remains as one 

reasonable hypothesis among others to be tested with future studies. The only locations 

where recent (local) deforestation is well supported are the Rano Kao and Rano Raraku 

craters. As a consequence, speculations about the eventual deforestation's causes are 

still premature and should wait for a more definite assessment regarding Easter Island’s 

original vegetation. 

 

The tone that the Easter Island debate has acquired recently (e.g., Flenley et al., 2007; 

Hunt and Lipo, 2007) suggests that the explanatory capacity of the available evidence 

has been exhausted and that new evidence is needed for more conclusive statements. So 

far, efforts have been concentrated on the causes and consequences of the recent 

“ecological disaster,” likely because this is more attractive from a human point of view, 

and not only scientific but also philosophical and socio-political consequences can be 

derived. This has obscured many other equally interesting aspects such as detailed 

paleoclimatological reconstructions (ENSO, etc.) and the response of natural systems to 

environmental changes in such a unique place on Earth. As an isolated and small piece 

of land, Easter Island is a natural laboratory whose lakes and bogs are a gift for those 

interested in paleoecology and paleoclimatology. Fortunately, new sedimentary 

sequences have been obtained during recent years that will hopefully contribute to more 

sound conclusions (Gossen, 2007; Azizi and Flenley, 2008; Mann et al., 2008; Sáez et 

al., 2009). Several lines of research have been suggested throughout this paper, some of 

which should be prioritized. 

 

First, it is important to compare the pollen records with similar situations from oceanic 

islands where modern analogs are available. The impossibility of having modern 

analogs for Easter Island’s past vegetation -a not unusual problem in paleoecology 

(Jackson and Williams, 2004)- would be palliated with studies from elsewhere that are 
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reasonably comparable. The key question is whether known palm-dominated forests can 

be characterized with studies of modern sedimentation and differentiated from the local 

pollen signal of more reduced palm stands or from mosaic vegetation. Models can also 

help in this task by attempting to reconstruct pollen sources from sedimentary 

assemblages and climatological parameters with emphasis on wind direction and 

intensity. Second, to obtain accurate and reliable paleoecological reconstructions of the 

Pleistocene and Holocene, it will be essential to develop high-resolution multi-proxy 

studies of the available sequences. The detailed analysis of sediments from pre-human 

times is crucial for elucidating whether climate changes or other environmental forcing 

factors have been important for Easter Island’s ecological history. It would be also 

interesting to obtain deeper sediments that can provide longer reconstructions, as these 

could reveal the consequences of glacial-interglacial alternation. The Rano Aroi swamp, 

in spite of its presumed higher paleoclimatic sensitivity (Hunter-Anderson, 1998), has 

been less studied than the two lakes, probably because Flenley et al. (1991) presumed 

that its upper layers -likely containing the deforestation record- have been recently 

disturbed. However, this seems to be a key site, and the search for new suitable coring 

locations in this bog is a worthy pursuit. 

 

The issue of DNA analysis is not closed, and the search for suitable materials should not 

be stopped. Furthermore, it is expected that recent and future technical developments 

will enhance the possibility of applying these methodologies. The isotopic composition 

of charcoal and organic remains would help to identify the original vegetation from 

which these fragments derive, and would shed light on the composition and abundance 

of former vegetation patterns. Finally, the possibility of seismic surveys and coring 

campaigns in the surrounding marine sediments should be considered, under the 

hypothesis that the deforestation indeed occurred and most of the missing organic 

matter budget lies outside the island. In this case, the combined use of pollen, DNA and 

isotopic analyses would be especially useful to deduce the provenance of the 

sedimentary organic matter. Given the narrowness of the shelf around the island (Fig. 1) 

and the fact that it is constantly beaten by waves, it is unlikely that suitable sediments 

would be found in it, so the prospective sites would be at deeper locations. 
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Figure captions 

 

1. Map of Easter Island with the localities discussed in the text represented as black 

diamonds. Present-day (planted) forests, mainly of Eucalyptus, are indicated by dark-

grey areas. The approximate extension of the shelf is also indicated by the -100 m 

dotted curve (after Landaeta et al., 2003; Mujica, 2006). 

 

2. Schematic cross-section of a N-S transect showing the inferred groundwater system 

under the middle altitude volcanic core (in black) hypothesis. The other hypotheses 

(namely “low altitude core” and “high altitude core,” respectively) maintain the same 

morphology for the coastal freshwater wedges. The approximate altitude of the Rano 

Raraku (RR) and Rano Kao (RK) lakes is indicated by solid horizontal lines. Modified 

from Herrera & Custodio (2008). 

 

3. Pictures of the three volcanic craters with continuous cores used for pollen analysis. 

A) Rano Aroi, B) Rano Kao and C) Rano Raraku (photos by V. Rull). 

 

4. Sketch of Easter Island’s landscape evolution since the late glacial period to the 

present, according to the current interpretation of pollen diagrams from Rano Kao, Rano 

Raraku and Rano Aroi (Flenley & King, 1984; Flenley et al., 1991). Redrawn from 

Flenley & Bahn (2003). 
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