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Classical-like behavior in quantum walks with inhomogeneous, time-dependent coin operators
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Although quantum walks exhibit peculiar properties that distinguish them from random walks, classical
behavior can be recovered in the asymptotic limit by destroying the coherence of the pure state associated
to the quantum system. Here I show that this is not the only way: I introduce a quantum walk driven by an
inhomogeneous, time-dependent coin operator, which mimics the statistical properties of a random walk at all
time scales. The quantum particle undergoes unitary evolution and, in fact, the high correlation evidenced by the
components of the wave function can be used to revert the outcome of an accidental measurement of its chirality.
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I. INTRODUCTION

Quantum walks (QWs) [1] were originally termed “quan-
tum random walks” [2–5], as they were thought of as the
quantum-mechanical version of the discrete random walk
(RW) in one dimension: the Markov process in which a particle
changes its position at each clock tick by jumping to one of the
two nearest sites depending on the random outcome of a coin
toss. This source of randomness could be seen as superfluous
in the quantum world, where the location of a particle is
a probabilistic magnitude, governed by its wave function.
Therefore, in the design of these “quantum random walks,”
the coin toss was replaced by some (unitary) operator that
affects the state of a quantum binary property of the system,
e.g., the spin or the chirality, and the wave function is shifted
according to the value of this qubit.

Consequently, beyond the intrinsic uncertainty of the quan-
tum phenomena, “quantum random walks” are not random at
all—and thus this term is now deprecated. The most prominent
sign of this deterministic nature of QWs is the ballistic behavior
they can show [6], the ability to connect any two sites after
a lapse of time that is proportional to the distance between
these sites, even if the walk is undirected. This fact comes in
conflict with the diffusive nature of unbiased RWs, which, to
perform the same operation, needs a time period that grows
quadratically with the separation of the sites. This speed-up
readily caught the attention of the scientific community, albeit
there are other properties that distinguish QWs from RWs [7].
In spite of those differences, QWs are indeed the quantum
analogues of RWs, and therefore they may experience a change
from ballistic to diffusive motion when the quantum coherence
of the state is affected by multiple reasons [8–12]. In fact, it
has been proven that, under mild conditions, the introduction
of temporal or spatial fluctuations in the properties of the coin
operator acting upon the QW leads to classical behavior in
the asymptotic limit: the standard deviation of the position of
the quantum walker grows with the square root of the elapsed
time, and the corresponding rescaled distribution converges to
a Gaussian [13,14].
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Soon after the birth of the very concept of quantum
computers [15], i.e., computers whose operation cannot be
understood without the laws of quantum mechanics [16], the
first genuine quantum algorithms appeared [17–19], algo-
rithms that were more efficient than their classic counterparts.
And since many of those classical algorithms use RWs as
building blocks, it is not surprising that the ballistic transport
of QWs was seen as the key feature in the design of faster
algorithms [20–22]. But QWs can play an even more important
role in quantum computation, as they may be regarded as
universal computational primitives [23,24], i.e., they can be
used to implement all the logic gates that a universal quantum
computing machine needs to work [25].

While it is still an open issue whether universal quantum
computers can efficiently simulate arbitrary physical sys-
tems [26], in this paper I will give an affirmative answer to
a related but much more limited question: Can a quantum
walk be used to simulate the behavior of a classical system
whose evolution follows a random walk?

Specifically, I will look for a QW that shows exactly the
same probabilistic properties of a RW at all time scales. This
objective must not be reached as a result of the introduction
of exogenous disturbances that can induce decoherence in the
pure quantum state: The purpose is to obtain the classical
distribution (the binomial distribution) by means of reversible
unitary evolution at every time step. Therefore, this QW with
classical-like attributes could replace the corresponding RW in
the simulation of the dynamics of the desired classical system
on a quantum computer.

With this aim, I consider here a discrete-time QW on
the line endowed with an inhomogeneous, time-dependent
coin operator. Extensions of this kind were considered in
the past: one can find in the literature examples of QWs
driven by inhomogeneous, site-dependent coins [27–31], time-
dependent coins [32–36], or history-dependent coins [37,38].

The paper is organized as follows. Section II reviews
the formalism used in the construction of the discrete-time
quantum walk on the line with a time-dependent coin operator.
Section III shows how one can devise a QW that behaves
like an unbiased RW. I extend the framework to encompass
general RWs in Sec. IV. Section V explores the possibility of
reverting the consequences of a measurement of the chirality
and quantifies the entanglement between the chirality and
the position of the particle by means of von Neumann’s
entropy. When this correlation is destroyed, Sec. VI, the
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walker becomes vulnerable to decoherence. The paper ends
with Sec. VII, where conclusions are drawn.

II. QW WITH AN INHOMOGENEOUS, TIME-DEPENDENT
COIN OPERATOR

I begin the discussion by introducing the foundations of
the inhomogeneous, time-dependent quantum walk on the
line. I denote by Hp the Hilbert space of discrete particle
positions in one dimension, spanned by the basis {|n〉 : n ∈ Z},
and by Hc the Hilbert space of coin states, spanned by the
basis {|+〉,|−〉}. The discrete-time, discrete-space quantum
walk on the Hilbert space H ≡ Hc ⊗ Hp is the result of the
action of the evolution operator T̂t , T̂t ≡ Ŝ Ût , where the coin
Ût is an inhomogeneous, time-dependent, real-valued unitary
operator:

Ût ≡
∞∑

n=−∞
[cos θn,t |+〉〈+| + sin θn,t |+〉〈−|

+ sin θn,t |−〉〈+| − cos θn,t |−〉〈−|] ⊗ |n〉〈n|, (1)

with 0 � θn,t � π , and Ŝ is the shift operator that moves the
walker depending on the respective coin state:

Ŝ|±〉 ⊗ |n〉 = |±〉 ⊗ |n ± 1〉. (2)

As the time increases in discrete steps, one chooses the time
units so that the time variable t is just an integer index, and
the state of the system at a later time, |ψ〉t+1, is recovered by
applying T̂t to the present state |ψ〉t :

|ψ〉t+1 = T̂t |ψ〉t . (3)

Equation (3) induces the following set of recursive equations:

ψ+(n + 1,t + 1) = cos θn,t ψ+(n,t) + sin θn,t ψ−(n,t), (4)

ψ−(n − 1,t + 1) = sin θn,t ψ+(n,t) − cos θn,t ψ−(n,t), (5)

on the wave-function components, ψ±(n,t), the projections of
the state of the walker into the elements of the basis of the
Hilbert space:

ψ+(n,t) ≡ 〈n| ⊗ 〈+|ψ〉t , (6)

ψ−(n,t) ≡ 〈n| ⊗ 〈−|ψ〉t . (7)

The evolution of the system is fully determined once |ψ〉0 ≡
|ψ〉t=0 is set. Since the final aim is to simulate a RW, we must
consider that the particle is initially located at the origin. When
the coin operator is homogenous and time-independent, it is
well known that the chirality of such localized state affects the
ulterior behavior of the system [39,40]. In our case, as we will
see later on, this choice is not so delicate. Thus, for the sake of
simplicity, I assume that there is no preferred direction in the
chirality:

|ψ〉0 = 1√
2

(|+〉 + |−〉) ⊗ |0〉, (8)

that is ψ±(0,0) = 1/
√

2. Note that a real-valued state at time
t = 0 precludes the possibility of having a complex-valued
wave function at a later time, cf. Eqs. (4) and (5).

We want to connect the evolution of our quantum system
with the statistical properties of a random walker. This
connection must be done through the pairing of the probability
mass function (PMF) of the two processes: Let us call ρ(n,t)
the likelihood of finding the particle in a particular position
n at a given time t . In the case of the quantum walker this
probability depends on the wave-function components,

ρ(n,t) ≡ |ψ+(n,t)|2 + |ψ−(n,t)|2. (9)

Our goal is to get that ρ(n,t) equals the PMF of a random
walk, the binomial distribution:

ρ(n,t) = t!(
t+n

2

)
!
(

t−n
2

)
!
p

t+n
2 (1 − p)

t−n
2 , (10)

for n ∈ {−t,−t + 2, . . . ,t−2,t}. Function ρ(n,t) determines
the different moments of the stochastic process,

〈X̂k〉t ≡
t∑

n=−t

nkρ(n,t),

among which are worth to be highlighted the expectation
value of the walker position, 〈X̂〉t , and its uncertainty �Xt ,
magnitudes that should amount to

〈X̂〉t = (2p − 1)t, (11)

�Xt ≡
√

〈X̂2〉t − 〈X̂〉2
t = 2

√
p(1 − p)t, (12)

if the classical expression Eq. (10) is valid. Note that, since the
probability is conserved, the change in the expectation value
of the position at consecutive instants reads

〈X̂〉t+1 = 〈X̂〉t +
t∑

n=−t

J (n,t), (13)

where J (n,t),

J (n,t) ≡ cos 2θn,t [ψ
2
+(n,t) − ψ2

−(n,t)]

+ 2 sin 2θn,tψ+(n,t)ψ−(n,t), (14)

is the net flux of probability entering or leaving site n, and its
explicit expression stems from Eqs. (4) and (5). As we will
see in the next section, Eqs. (13) and (14) pave the way for
achieving our purpose.

III. UNBIASED WALK

Our task is therefore to deduce a functional form for cos θn,t

that can be accommodated in Eqs. (4) and (5) and ultimately
lead to the desired PMF, Eq. (10). In order to grasp the
appropriate procedure, I will consider the unbiased version
of the RW in the first place,

ρ(n,t) = 1

2t

t!(
t+n

2

)
!
(

t−n
2

)
!
, (15)

for n ∈ {−t,−t + 2, . . . ,t−2,t}. This results in a great simpli-
fication since in this case the expectation value of the position
is null, 〈X̂〉t = 0, for any time value. This property is preserved
by Eq. (13) if J (n,t) = 0, a sufficient condition. The absence
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of probability flux can be readily achieved, see Eq. (14), if

cos 2θn,t = −2ψ+(n,t)ψ−(n,t)

ρ(n,t)
, (16)

sin 2θn,t = ψ2
+(n,t) − ψ2

−(n,t)

ρ(n,t)
, (17)

that is,

cos θn,t = 1√
2

ψ+(n,t) − ψ−(n,t)√
ρ(n,t)

, (18)

sin θn,t = 1√
2

ψ+(n,t) + ψ−(n,t)√
ρ(n,t)

. (19)

It is easy to check that Eqs. (18) and (19) represent valid
trigonometric expressions. Now, one can introduce these
formulas in Eqs. (4) and (5) and obtain

ψ+(n + 1,t + 1) = ψ−(n − 1,t + 1) =
√

ρ(n,t)

2
, (20)

leading to

ψ+(n,t) =
√

(t − 1)!

2t
(

t+n−2
2

)
!
(

t−n
2

)
!
, (21)

ψ−(n,t) =
√

(t − 1)!

2t
(

t+n
2

)
!
(

t−n−2
2

)
!
, (22)

for n ∈ {−t + 2,−t + 4, . . . ,t − 4,t − 2}, and

ψ+(t,t) = ψ−(−t,t) = (
1
2

) t
2 , (23)

ψ+(−t,t) = ψ−(t,t) = 0. (24)

Note that for n 	= 0, ψ+(n,t) 	= ψ−(n,t). In fact, ψ+(n,t) =
ψ−(n − 2,t), see Fig. 1, a property whose implications I
discuss below. Once one has the explicit expression for the

FIG. 1. The two components of the wave function at t = 31. The
red dots correspond to ψ+(n,t), whereas the blue diamonds mark the
values of ψ−(n,t).

components of the wave function, the coin weights read

cos θn,t = 1

2

(√
1 + n

t
−

√
1 − n

t

)
, (25)

sin θn,t = 1

2

(√
1 + n

t
+

√
1 − n

t

)
. (26)

IV. BIASED WALK

All these results can be easily modified to encompass the
generic case: we simply need to replace the factor 2−t in
Eqs. (21) and (22) by the proper combination of powers of
p and (1 − p). Moreover, condition Eqs. (23) and (24) should
be mapped into

ψ+(t,t) = p
t
2 ,

ψ+(−t,t) = ψ−(t,t) = 0,

ψ−(−t,t) = (1 − p)
t
2 ,

which suggests the choice

ψ+(n,t) =
√

(t − 1)!(
t+n−2

2

)
!
(

t−n
2

)
!
p

t+n
4 (1 − p)

t−n
4 , (27)

ψ−(n,t) =
√

(t − 1)!(
t+n

2

)
!
(

t−n−2
2

)
!
p

t+n
4 (1 − p)

t−n
4 , (28)

for n ∈ {−t + 2,−t + 4, . . . ,t − 4,t − 2}; see Fig. 2. In other
words, Eq. (20) now splits into

ψ+(n,t) = √
p
√

ρ(n − 1,t − 1), (29)

ψ−(n,t) =
√

1 − p
√

ρ(n + 1,t − 1). (30)

Finally, we have to use recursive Eqs. (4) and (5) to isolate
cos θn,t and sin θn,t :

cos θn,t =
√

p

2

√
1 + n

t
−

√
1 − p

2

√
1 − n

t
, (31)

sin θn,t =
√

1 − p

2

√
1 + n

t
+

√
p

2

√
1 − n

t
, (32)

FIG. 2. The two components of the wave function at t = 100, for
p = 0.75. The red dots denote ψ+(n,t), whereas the blue diamonds
designate the values of ψ−(n,t).
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which satisfy all the desired constraints. Note how Eqs. (31)
and (32) are ill defined for n = t = 0: in fact, Eqs. (18) and (19)
evidenced this same issue. To be consequent with the previous
setup and, in particular, with Eq. (8), the right option is the
most obvious, i.e.,

cos θ0,0 =
√

p

2
−

√
1 − p

2
, (33)

sin θ0,0 =
√

1 − p

2
+

√
p

2
, (34)

but since our coin operator is time dependent, one could modify
θ0,0 and |ψ〉0 at will, as long as one has

|ψ〉1 = √
p |+〉 ⊗ |1〉 +

√
1 − p |−〉 ⊗ | − 1〉, (35)

unchanged. This invariance is just one of the many pos-
sible transformations that preserves the functional form of
ρ(n,t) [41], but this will be the subject of future research.

V. REDUNDANCY AND COHERENCE

Consider now the following prominent consequence of
Eqs. (29) and (30). On the one hand, we have a high degree
of redundancy, with almost the same information stored in
each component of the wave function. On the other hand, this
information is the PMF of the system one time step before.
All together implies that one can undo the consequences of an
accidental measurement of the chirality at time t , by means of
unitary transformations. In particular, if |ψ〉t → |ψ̃+〉t , one
has

ψ̃+
+ (n,t) =

√
(t − 1)!(

t+n−2
2

)
!
(

t−n
2

)
!
p

t+n−2
4 (1 − p)

t−n
4 , (36)

ψ̃+
− (n,t) = 0, (37)

and the recovery procedure is

|ψ〉t = L̂ Ŝ V̂ +|ψ̃+〉t , (38)

where V̂ +,

V̂ + ≡ [
√

p|+〉〈+| +
√

1 − p|+〉〈−|
+

√
1 − p|−〉〈+| − √

p|−〉〈−|] ⊗ Î p, (39)

is a homogeneous coin operator, and L̂,

L̂ ≡ Î c ⊗
∞∑

n=−∞
|n − 1〉〈n|, (40)

represents a systematic shift to the left. Thus, the joint
operation of L̂ Ŝ displaces the negative component of the wave
function two sites to the left, whereas the positive component
remains in place. On the contrary, if one has obtained |ψ̃−〉t ,
the unitary operation is

|ψ〉t = R̂ Ŝ V̂ −|ψ̃−〉t , (41)

with

V̂ − ≡ [−
√

1 − p|+〉〈+| + √
p|+〉〈−|

+√
p|−〉〈+| +

√
1 − p|−〉〈−|] ⊗ Î p, (42)

and

R̂ ≡ Î c ⊗
∞∑

n=−∞
|n + 1〉〈n|. (43)

In the last expressions Î c and Î p denoted the identity operator
of the corresponding Hilbert space.

The procedure just described can revert the system to the
previous state provided that the outcome of the accidental mea-
surement of the chirality is known. Otherwise, the quantum
walker will suffer decoherence since there is some probability
that one chooses the erroneous unitary transformation, i.e., that
one applies Eq. (38) when the right choice is Eq. (41), and vice
versa.

Consider, for instance, that the fortuitous measurement
occurs after the first time step, yielding

|ψ̃−〉1 = |−〉 ⊗ |−1〉,
and that we perform the wrong unitary transformation:

|φ〉1 ≡ L̂ Ŝ V̂ +|ψ̃−〉1

=
√

1 − p |+〉 ⊗ |−1〉 − √
p |−〉 ⊗ | − 3〉. (44)

The new PMF is clearly different from the one we had but
in a way that is difficult to quantify. Standard methods of
information theory, as the Kullback-Leibler divergence [44],
require that the null sets of both probability measures are
equal, which is not the case here, cf. Eqs. (35) and (44). One
cannot resort to simple quantum arguments to establish the
resemblance between |φ〉t and |ψ〉t either: Note that as

〈ψ̃+|ψ̃−〉t = 0,

one must have necessarily

〈ψ |φ〉t = 0,

since the recovery procedure is unitary.
The potential relevance of an incidental and unnoticed

measurement of the coin state will drastically depend on
the actual correlation between the two components of the
wave function: the higher the correlation, the lower the
consequences. In other words, the impact will decrease with
the actual level of entanglement between chiral and spatial
degrees of freedom of the original quantum state.

A way to assess this level of entanglement of the walker is
through the entropy of entanglement [42,43], a special instance
of von Neumann’s entropy. The von Neumann entropy S(t) of
a quantum system is defined in analogy of the Gibbs entropy
by

S(t) ≡ −tr(ρ̂t log2 ρ̂t ), (45)

where ρ̂t is the density matrix operator at time t , and tr(·) is
the trace, e.g.,

tr(ρ̂t ) =
∞∑

n=−∞
〈n| ⊗ [〈+|ρ̂t |+〉 + 〈−|ρ̂t |−〉] ⊗ |n〉. (46)

In our case, since the time evolution before the accidental
measurement is unitary, we will have

ρ̂t = |ψ〉t 〈ψ |, (47)
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and consequently S(t) = 0. However, as we are interested in
quantifying the entanglement intensity between chirality and
position, one can use the reduced von Neumann entropy,

Sc(t) ≡ −trc
(
ρ̂ c

t log2 ρ̂ c
t

)
, (48)

where ρ̂ c
t is the reduced density matrix operator obtained when

a partial trace is taken over the positions:

ρ̂ c
t = P+(t)|+〉〈+| + Q(t)|+〉〈−|

+Q(t)|−〉〈+| + P−(t)|−〉〈−|, (49)

with [45,46]

P+(t) ≡
t∑

n=−t

|ψ+(n,t)|2, (50)

P−(t) ≡
t∑

n=−t

|ψ−(n,t)|2, (51)

Q(t) ≡
t∑

n=−t

ψ+(n,t)ψ−(n,t), (52)

and trc(·) is the trace restricted to Hc. Here

P+(t) = p, (53)

P−(t) = 1 − p, (54)

for all t , see Eqs. (29) and (30), and

Q(t) =
√

p(1 − p)
t∑

n=−t

√
ρ(n − 1,t − 1)ρ(n + 1,t − 1).

(55)

Under these circumstances, the entropy of entanglement
can be expressed in terms of λc

±(t), the eigenvalues of the
reduced density matrix at time t ,

Sc(t) = −λc
+(t) log2 λc

+(t) − λc
−(t) log2 λc

−(t), (56)

with

λc
±(t) = 1

2 ±
√

1
4 − p(1 − p) + Q2(t). (57)

FIG. 3. Evolution of the entropy of entanglement as a function
of time for p = 0.5, green boxes, and p = 0.75, magenta triangles.
Observe how the entropy decreases monotonically in both cases.

FIG. 4. Decay of the entropy of entanglement as a function of
time. The green solid line corresponds to p = 0.5, whereas the
magenta dashed line shows the behavior of the entanglement when
p = 0.75. The black dotted line (∼[log2 4t]/4t) serves as a guide for
the eye.

Figure 3 shows the values of the entropy for t � 1,
for the two examples considered in previous sections, the
unbiased walk, p = 0.5, and the biased one, p = 0.75. In
both instances, the entanglement is maximal for t = 1, when
there are no off-diagonal terms in ρ̂ c

t , and one has a one-to-one
equivalence between the information carried by chirality and
the spatial location—this is just the case of the explicit
example shown above, Eqs. (35) and (44). After that point,
the magnitude of the entanglement in both cases converges and
decreases monotonically toward zero: there is less information
susceptible of getting lost.

This conclusion can also be derived from the direct analysis
of Q(t) for t � 1. In this regime, one can approximate

ρ(n − 1,t − 1) ∼ ρ(n + 1,t − 1),

so that

lim
t→∞ Q(t) =

√
p(1 − p), (58)

and thus

lim
t→∞ Sc(t) = 0. (59)

A more detailed analysis reveals that the leading term of
the reduced entropy is of the form

Sc(t) ∼ 1

4t
log2 4t, (60)

and therefore it does not depend on the value of p, as it can be
seen in Fig. 4.

VI. DECOHERENCE

From the analysis above, one can conclude that the present
QW is particularly resistant to decoherence, but by no means
is it immune to it. This is a somewhat paradoxical situation
since the general rule dictates that quantum walks turn into
random walks when decohered [47], and our starting point is a
process whose distribution already coincides with the classical
one: when t is large enough,

ρ(n,t) → 2√
2πσ 2t

e
− (n−μt)2

2σ2 t , (61)
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FIG. 5. Probability mass function ρ(n,t) at t = 100, for p =
0.75. Red dots were obtained from the wave function of the coherent
process, whereas the black dashed line corresponds to a Gaussian
approximation, Eq. (61).

where μ = 2p − 1, σ 2 = 4p(1 − p), and the factor 2 is due
to the odd/even alternating nature of n—see Fig 5.

For homogeneous, time-independent coins as, e.g., the
Hadamard coin, the introduction of random measurements
on both position and chirality of the quantum particle is
enough to induce the shift from the original ballistic behavior
of the system, with a variance that scales as t2, to the
classical behavior of a random walk with a variance that grows
linearly with time, and whose exact expression is a function of
the measurement probability per unit of time, q [48]. This
approach does not suffice in the present case, due to the
aforementioned existing link between chiral and positional
degrees of freedom.

Hence, we have to remove any residual correlation in the
system to ensure the validity of the central limit theorem: We
will perform measurements of the location of the particle at
random times and, after having pinned down its position, we
will restore the chirality of the system to its initial state [49].
With this method, our QW turns into a sum of independent
random variables, which are not identically distributed, since
the coin operator is still site- and time-dependent.1

This lack of homogeneity in the coin operator implies
that the random walk obtained through decoherence will
be a biased random walk, even if p = 0.5. This bias
may lead to limiting probability density functions that are
Gaussian, but it is well known [50] that depending on the
strength of persistence, bimodal distributions may appear:
Hence, in general, we will not recover the same statis-
tical properties of the process whose evolution we were
mimicking.

We can observe all these phenomena in Fig. 6. Small
measurement probabilities, q  0.1, result in normal distribu-
tions with variance reduction. After that point approximately,
q � 0.1, variance starts increasing with q, and eventually
becomes larger than the original value. This happens for
measurement probabilities q � 0.25—see the collapse of the

1In some practical implementations of the discrete-time QW, the
role of the time variable is assumed by an auxiliary spatial dimension,
which breaks in practice temporal homogeneity [38].
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FIG. 6. Probability mass function ρ(n,t) for t = 100, p = 0.5,
and different values of the measurement probability q. Data were
obtained by averaging 1 000 000 different realizations of the process,
except for the case q = 0.00 that corresponds to the coherent walk.
Labels are ordered to indicate increasing variance.

plots corresponding to q = 0 and q = 0.25 in Fig. 6. Finally,
for values of the measurement probability of about q � 0.7,
bimodal distributions do appear.

VII. CONCLUSION

Inspired by the fact that quantum walks are universal
computation primitives, and thus they can solve any problem
that can be tackled by a general-purpose computer, I looked
for a particular instance that reproduced the statistical features
of a random walk.

The aim was to design a nontrivial version of the discrete-
time quantum walk on the line with exactly the same
probability of site occupation as the classical process at any
time scale, not as a byproduct of the asymptotic loss of
coherence in the quantum evolution. In the text, I have proved
that one possible way to get the desired behavior is through
the introduction of an inhomogeneous, time-dependent coin
operator.

The correlation level shown by both components of the
wave function is so high that one can use it to restore the
system to the same state previous to a measurement of its
chirality. This perfect reversion can be performed with the
only aid of unitary operators whenever one knows the output
of the measuring process. Moreover, the analysis of the entropy
of entanglement between positional and chiral degrees of free-
dom shows that the latter information loses significance as time
increases.

Finally, this restoring procedure can be seen as a simple
protection mechanism against accidental degradation of the
coherence of the quantum state, but it can lead to some other
yet undiscovered interesting implications.
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