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Abstract 31 

 32 

Oxygen isotopes of diatom silica and petrographical characterization of diatomaceous laminated 33 

sediments of Lago Chungará (northern Chilean Altiplano), have allowed us to establish its 34 

palaeohydrological evolution during the Late Glacial-Early Holocene (ca 12,000 – 9400 cal 35 

years BP). These laminated sediments are composed of light and dark pluriannual couplets of 36 

diatomaceous ooze formed by different processes. Light sediment laminae accumulated during 37 

short term diatom blooms whereas dark sediment laminae represent the baseline limnological 38 

conditions during several years of deposition. Oxygen isotope analysis of the dark diatom 39 

laminae show a general 18O enrichment trend from the Late Glacial to the Early Holocene. 40 

Comparison of these 18Odiatom values with the previously published lake level evolution suggest 41 

a correlation between 18Odiatom and the evaporation/precipitation ratio, but also with the 42 

evolution of other local hydrological factors as changes in the ground water outflow as well as 43 

shifts in the surface area to volume ratio of Lago Chungará. 44 

 45 
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 53 

1.  Introduction 54 

 55 

Oxygen isotopes of diatom silica have been used extensively in palaeoenvironmental 56 

reconstructions from lake sediments in the last decade (see Leng and Barker, (2006) for a 57 

comprehensive review). Using oxygen isotope ratios in palaeoenvironmental reconstruction is 58 

however not easy, because the sedimentary record can be influenced by a wide range of 59 

interlinked environmental processes ranging from regional climate change to local hydrology. 60 

The oxygen isotopic composition of diatom silica depends on the isotope composition of the 61 

water when the skeleton of the siliceous micro-organisms is secreted, and also on the ambient 62 

water temperature (Shemesh et al. 1992). Therefore, knowledge of all the environmental factors 63 

that may have influenced the isotope composition of the lake water is vital for the interpretation 64 

of the 18Odiatom signal (Leng et al. 2005a). One of these environmental factors is evaporation, 65 

which has a major influence on the isotope composition of any standing water body (Leng and 66 

Marshall, 2004). The 18O record can therefore be used, at least in closed lakes, as an indicator 67 

of changes in the precipitation to evaporation ratio (P/E) related to climatic changes (Leng and 68 

Marshall, 2004). Yet, before any palaeoclimatic interpretation of the isotope records from a lake 69 

is considered, other local palaeohydrological intervening factors from the basin need to be taken 70 

into account (Sáez and Cabrera, 2002; Leng et al. 2005a). 71 

The sedimentary records of high-altitude, Andean Altiplano lakes, are good candidates 72 

for carrying out oxygen isotope studies to reconstruct the Late Quaternary palaeoclimatology of 73 

the region, because they preserve an excellent centennial- to millennial-scale record of effective 74 

moisture fluctuations during the Late Glacial and Holocene (Abbot et al. 1997; Argollo and 75 

Mourguiart, 2000; Valero-Garcés et al., 2000, 2003; Grosjean et al., 2001; Baker et al., 2001a, 76 

2001b; Tapia et al., 2003; Fritz et al., 2004, 2006). The 18O analyses of carbonates, cellulose 77 

and biogenic silica have successfully been used to reconstruct the hydrological responses to 78 

climate change in different Andean lacustrine systems (Schwalb et al., 1999; Seltzer et al., 79 

2000; Abbott et al., 2000, 2003; Wolfe et al., 2001; Polissar et al., 2006).  80 

Up to now, only stable isotopes in carbonates have been examined in Lago Chungará 81 

(Valero-Garcés et al. 2003), although its sedimentary record is made up of rich diatomaceous 82 
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ooze ideal for diatom silica oxygen isotope studies. Lago Chungará currently behaves as a 83 

closed lake, without any surface outlet and evaporation as the dominant water loss process 84 

(Herrera et al., 2006); however it has shown a complex depositional history since the Late 85 

Glacial (Sáez et al., 2007) and the relative role of other factors (groundwater versus 86 

evaporation) should be evaluated. 87 

Here we examine a high resolution 18O diatom silica record of three selected sections 88 

belonging from the Late Glacial to Early Holocene (c. 12,000 – 9400 cal yrs BP) from Lago 89 

Chungará. We emphasise the role that some local factors such as sedimentary infill and 90 

palaeohydrology can play on the interpretation of the 18O diatom silica record and therefore the 91 

need to discriminate between the climatic and local environmental signals. 92 

 93 

2.  The Lago Chungará  94 

 95 

Geology, climate and limnology 96 

Lago Chungará (18º15’S, 69º10’W, 4520 m a.s.l.) is located at the NE edge of Lauca Basin, in 97 

the Chilean Altiplano. It lies in a highly active tectonic and volcanic context (Clavero et al., 98 

2002). The lake sits in the small hydrologically closed Chungará Sub-Basin which was formed 99 

as a result of a debris avalanche during the partial collapse of the Parinacota Volcano, damming 100 

the former Lauca River (Fig. 1A). Lago Chungará and Lagunas Cotacotani were formed almost 101 

immediately. The collapse post-avalanche event has been dated and the ages range between 102 

18,000 cal years BP, using He-exposure techniques (Wörner et al., 2000; Hora et al., 2007), 103 

and 11,155 – 13,500 14C yr BP, employing radiocarbon dating methods (Francis & Wells, 1988; 104 

Baied & Wheeler, 1993; Amman et al., 2001). In these cases the authors dated lacustrine 105 

sediments from Lagunas Cotacotani. In addition, Clavero et al. (2002, 2004) dated palaeosoil 106 

horizons by radiocarbon and proposed a maximum age of 8000 14C yr BP for the collapse. 107 

Lago Chungará is situated in the arid Central Andes, in region dominated by tropical 108 

summer moisture (Garreaud et al., 2003). The isotope composition of rainfall (Aravena et al., 109 

1999; Herrera et al., 2006) and the synoptic atmospheric precipitation patterns (Ruttlant and 110 

Fuenzalida, 1991) indicate that the main moisture source comes from the Atlantic Ocean via the 111 

Amazon Basin. During the summer months (DJFM) weak easterly flow prevails over the 112 



 5

Altiplano as a consequence of the southward migration of the subtropical jet stream and the 113 

establishment of the Bolivian high pressure system (Garreaud et al., 2003). This narrow time 114 

window defines the wet season in the Altiplano (Valero-Garcés et al., 2003). Mean annual 115 

rainfall in the Chungará region is about 350 mm yr-1, but the actual range is variable (100-750 116 

mm yr-1). Mean temperature is 4.2ºC and the potential evaporation was estimated at over 4750 117 

mm yr-1 (see references in Valero-Garcés et al., 2000).  118 

A significant fraction of the inter-annual variability of summer precipitation is currently 119 

related to the El Niño Southern Oscillation (ENSO) (Vuille, 1999). El Niño years seem to be 120 

recorded in the Sajama and Quelcaya ice-cores by significant decreases in snow accumulation 121 

(Thompson et al., 1986; Vuille, 1999). Instrumental data from the Chungará region show a 122 

reduction of the precipitation during moderate to intense El Niño years. However, there is no 123 

direct relationship between the relative El Niño strength and the amount of rainfall reduction (for 124 

further details see Valero-Garcés et al. 2003).  125 

Rainfall isotope composition in this region is characterised by a large variability in 18O 126 

(between +1.2 and –21.1‰ SMOW) and of D (between +22.5 and –160.1‰ SMOW). The 127 

origin of the lightest isotope values are the strong kinetic fractionation in the air masses from the 128 

Amazon. The altitudinal isotopic gradient of 18O in the Chungará region is very high (between 129 

+0.76‰/100 m and +2.4‰/100 m) compared with other worldwide regions (Herrera et al., 130 

2006).  131 

Lago Chungará has an irregular shape with a maximum length of 8.75 km, maximum 132 

water depth of 40 m, a surface area of 21.5 km2 and a volume of 400 x 106 m3 (Mühlhauser et 133 

al., 1995; Herrera et al., 2006) (Fig. 1B). The western and northern lake margins are steep, 134 

formed by the eastern slopes of Ajoya and Parinacota volcanoes. The eastern and southern 135 

margins are gentle, formed by the distal fringe of recent alluvial fans and the River Chungará 136 

valley (Sáez et al., 2007). At present, the main inlet to the lake is the Chungará River (300-460 l 137 

s-1) although secondary streams enter the lake in the south-western margin. The main water 138 

outlet is by evaporation (3.107 m3 y-1) but it has been estimated that groundwater outflow from 139 

Lago Chungará to Lagunas Cotacotani is about 6-7.106 m3y-1 (Risacher et al., 1999; Dorador et 140 

al., 2003). The calculated residence time for the water lake is approximately 15 years (Herrera 141 

et al., 2006). The lake is polymictic, oligomesotrophic to meso-eutrophic (Mühlhauser et al., 142 
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1995), contains 1.2 g l-1 of Total Dissolved Solids, its conductivity ranges between 1500 and 143 

3000 S cm-1 (Dorador et al. 2003) and the water chemistry is of Na-Mg-HCO3-SO4 type. 144 

Temperature profiles measured in November 2002 showed a gradient from the lake surface 145 

(9.1-12.1ºC) to the lake bottom (6.2-6.4ºC at 35 m of water depth), with a thermocline (0.5-146 

0.6ºC) located at about 19 m of water depth. Oxygen ranged from 11.9-12.5 ppm (surface) to 147 

7.6 ppm (bottom) and the pH oscillated between 8.99 (surface) and 9.30 (bottom). Lake water is 148 

enriched by evaporation with regard to rainfall and spring waters. The mean values of 18O and 149 

D are        –1.4‰ SMOW and –43.4‰ SMOW, respectively (Herrera et al., 2006). Primary 150 

productivity is mainly governed by diatoms and chlorophyceans (Dorador et al., 2003). 151 

Macrophyte communities in the littoral zone form dense patches that contribute to primary 152 

productivity. Seasonal measurements of conductivity, nitrate, phosphate and chlorophyll reveal 153 

changes in productivity and in the composition of algal communities mainly due to changes in 154 

water temperature and salinity (Dorador et al., 2003). The absence of raised lacustrine deposits 155 

around the lake margins suggests that the current level of the lake is at its highest since the 156 

lake formation (Sáez et al., 2007). 157 

 158 

Previous work and sedimentary sequence 159 

In November 2002 fifteen sediment cores (6.6 cm inner diameter and up to 8 m long) were 160 

recovered from Lago Chungará using a raft equipped with a Kullenberg system. All cores were 161 

cut in 1.5 m sections and physical properties (GRAPE-density, p-wave velocity and magnetic 162 

susceptibility) were measured in the laboratory using a GEOTEKTM Multi-Sensor Core Logger 163 

(MSCL) at 1 cm intervals. Afterwards, the cores were split in two halves, scanned using a DMT 164 

colour scanner, and the textures, colours and sedimentary structures were described. Smear 165 

slides were prepared for the description of the sediment composition and to estimate the 166 

biogenic, clastic and endogenic mineral content.  167 

After a detailed lithological correlation of the cores (Sáez et al., 2007), cores 10 and 11 168 

located offshore were selected for conducting the palaeoenvironmental reconstruction. A 169 

composite core recording the whole sedimentary infill (minimum thickness of 10 m) of the 170 

offshore zone was constructed from the detailed description and correlation of cores 10 and 11. 171 

From hereby all core depths are referred to this composite core. From the bottom to the top of 172 
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the core, two sedimentary units (units 1 and 2) were identified and correlated mainly using 173 

tephra keybeds. These lithological units were subdivided in two subunits (subunit 1a, 1b, 2a and 174 

2b). Basal unit 1a ranges between 0.58 m and 2.56 m of thickness and is made up of finely 175 

laminated green and whitish diatomaceous ooze. Unit 1b (from 0.62 m to 1.87 m thick) is 176 

composed of laminated and massive brown diatomaceous ooze with carbonate rich intervals. 177 

Unit 2a (between 1.56 m and 3.44 m thick) is made up of a brown diatomaceous ooze with 178 

tephra layers and carbonate-rich intervals. The sediments of the uppermost unit 2b range from 179 

0.86 m to 3 m in thickness and they are composed of dark grey to black diatomaceous ooze 180 

with abundant tephra layers (for further details see Moreno et al., 2007 and Sáez et al., 2007).  181 

The cores have been analysed for a number of proxies including X-Ray Fluorescence 182 

(XRF), X-Ray Diffraction (XRD), Total Organic and Inorganic Carbon (TOC and TIC), pollen, 183 

diatoms and total biogenic silica (Moreno et al., 2007 and Sáez et al., 2007) 184 

The chronological model for the sedimentary sequence of Lago Chungará is based on 185 

17 AMS 14C dates of bulk organic matter and aquatic plant macrofossils, and one 238U/230Th 186 

date from carbonates. The radiocarbon dates were performed in the Poznan Radiocarbon 187 

Laboratory (Poland), whereas the 238U/230Th sample was analysed by high-resolution ICP-IRMS 188 

multicollector at the University of Minnesota (Edwards et al., 1987; Cheng et al., 2000; Shen et 189 

al., 2002). The present day reservoir effect was determined by dating the dissolved inorganic 190 

carbon (DIC) of the lake water at the Beta Analytics Inc. laboratory (USA). The real reservoir 191 

effect of the lake was calculated by correcting the DIC radiocarbon date for the effects of the 192 

thermonuclear bomb tests (Hua and Barbetti, 2004). The calibration of radiocarbon dates was 193 

performed using the CALIB 5.02 software and the INTCAL98 curve (Stuvier et al., 1998; Reimer 194 

et al., 2004). The software described in Heegaard et al. (2005) was used to construct the final 195 

age-depth model (see Moreno et al. (2007) and Giralt et al. in press for details). 196 

 197 

3.  Materials and methods 198 

 199 

Three intervals from unit 1 were selected and sampled for thin section study and 18O 200 

diatom silica analysis. The interval 1 (located at the subunit 1a, between 831 cm and 788 cm of 201 

core depth) is made up of the finely laminated green and whitish sediments. Interval 2 (between 202 
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605 cm and 622 cm of core depth) is found in the transition between the subunit 1a and the 203 

subunit 1b and it is made up of laminated green and pale brown diatomaceous ooze. The 204 

interval 3 (located at the subunit 1b, between 537 cm and 574 cm of core depth) is made up of 205 

laminated dark brown and white diatomaceous ooze with carbonates.  206 

The chronological model defines the corresponding age of the three intervals. Interval 1 207 

was deposited between 11,990 and 11,530 cal years BP, interval 2 between 10,430 and 10,260 208 

cal years BP and interval 3 between 9,890 and 9,430 cal years BP. 209 

Each interval was continuously covered by thin sections. Thin sections of 120 mm x 35 210 

mm (30 m in thickness), with an overlapping of 1 cm at each end, were obtained after freeze-211 

drying and balsam-hardening. Detailed petrographical descriptions and lamina thickness 212 

measurements were performed with a Zeiss Axioplan 2 Imaging petrographic microscope. 213 

Several samples were also selected for observation with a Jeol JSM-840 electron microscope in 214 

order to complement the petrographical study. 215 

Each lamina of the three intervals was sampled with a blade for isotope analysis. A total 216 

of 190 samples (111 samples from interval 1, 37 samples from interval 2 and 42 samples from 217 

interval 3) were obtained. However, a selection of 37 samples were analysed according to its 218 

facies composition, level of purification, and stratigraphic position. Analysis of the oxygen 219 

isotope composition of diatom silica from these 37 samples requires that the material is almost 220 

pure diatomite (Juillet-Leclerc, 1986), so a meticulous protocol involving chemical attack, 221 

sieving, settling and laminar flow separation was performed. Specifically our samples were 222 

treated following the method proposed by Morley et al. (2004) with some variations (Fig. 2A). 223 

The first stage (chemical attack) followed the standard method in order to remove the 224 

carbonates (10% HCl) and organic matter (hydrogen peroxide) (Battarbee et al. 2001), but also 225 

included a further step using concentrated HNO3 in order to remove any remaining organic 226 

matter. The second stage (sieving at 125 µm) allowed us to eliminate resistant charcoal and 227 

terrigenous particles. The 63 m and 38 m sieves allowed us to obtain a fraction of quasi-228 

monospecific diatoms (Cyclostephanos andinus) in most of the samples. The third stage was an 229 

alternative approach to heavy liquid separation. Gravitational split-flow thin fractionation 230 

(SPLITT) was employed in the Lancaster University (UK) (Rings, et al., 2004; Leng and Barker, 231 

2006). The SPLITT technique was only applied to the most problematic samples which 232 
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contained remaining difficult to separate clay and fine tephra particles. In the final step, the 233 

purified diatom samples were dried at 40ºC between 24h and 48h. After the cleaning process 234 

six samples were checked with XRD, TC analysis and SEM observations. This checking 235 

process revealed that the samples did not contain significant terrigenous matter. The TC values 236 

were below 0.5% wt and the terrigenous content (clays or tephra) was less than 1% wt (Fig. 237 

2B). Although a large amount of diatoms were broken during the cleaning process, this does not 238 

affect the final isotope data. We therefore assume that the 18O values of the purified samples 239 

retained climatic and hydrological information (Morley et al., 2004; Leng and Barker, 2006). 240 

Oxygen extraction for isotope analyses followed the classical step-wise fluorination 241 

method (Matheney and Knauth, 1989). The method involved three steps. First, the hydrous 242 

layer was stripped by outgassing in nickel reaction tubes at room temperature. Second, a 243 

prefluorination clean up step involving a stoichiometric deficiency of reagent, bromine 244 

pentafluoride (BrF5), heated at 25ºC for several minutes. The final step was a full reaction at 245 

450ºC for 12 hours with an excess of BrF5. The oxygen liberated was converted to CO2 by 246 

exposure to hot graphite (following Clayton and Mayeda (1963)). The oxygen yield was 247 

monitored, for every sample, by comparison with the calculated theoretical yield for SiO2. The 248 

intervals examined here had mean yields of 69% - 70% of their theoretical yield based on silica. 249 

This fact suggests that around 30% of the material, including hydroxyl and loosely bonded water 250 

(both OH– and H2O), was removed during prefluorination. A random selection of 5 samples 251 

were analysed in duplicate giving a reproducibility between 0.01‰ and 0.6‰ (1). The standard 252 

laboratory quartz and a diatomite control sample (BFC) had a mean reproducibility over the 253 

period of analysis of 0.2‰. The CO2 was analysed for 18O/16O using a FinniganTM Matt 253 254 

mass spectrometer. The results were calibrated versus NBS-28 quartz international standard. 255 

Data are reported in the usual delta form () as per mille (‰) deviations from V-SMOW. The 256 

fluorination process and the 18O/16O ratios measured were carried out at the NERC Isotope 257 

Geosciences Laboratory, British Geological Survey (UK). 258 

 259 

4.  Results: Petrography and isotope composition of diatoms 260 

 261 
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Smear slide, SEM, and several analyses (XRD, TC, biogenic silica) of the lake sediments before 262 

they were prepared for isotope analysis showed that the samples were composed of both 263 

amorphous and crystalline material. The amorphous fraction comprises biogenic silica (between 264 

47%-58% weight), organic matter and volcanic glass. The crystalline fraction represented <10% 265 

of the sediments.  266 

 267 

4.1. Interval 1 (11,990 – 11,530 cal years BP) 268 

 269 

Diatom concentration range from 108.3 to 633.8 million valves g-1. The interval is 270 

dominated by euplanktonic diatoms ranging from 79.1% to 93.9% of the diatom assemblage. 271 

The thicknesses of the laminae are between 0.9 and 10.3 mm (Fig. 3A). Smear slide, thin 272 

section and SEM observations showed that light laminae were quasi-monospecific layers of 273 

large Cyclostephanos andinus (diameter > 50 m). The upper contact of the light laminae with 274 

the dark laminae is transitional, showing an increase in diatom diversity with subdominant 275 

tychoplanktonic (Fragilaria spp.) and benthic diatoms (mainly Cocconeis spp., Achnanthes spp., 276 

Navicula spp. and Nitzschia spp.) (Fig. 4A) whereas the lower contact is abrupt (Fig. 4C). 277 

Diatom valves show good preservation with no preferred orientation in the lower part, but 278 

increasingly oriented upwards. The content of the organic matter also increases upwards. Dark 279 

laminae comprise a more diverse mixture of diatoms, including the euplanktonic smaller 280 

Cyclostephanos andinus (diameter < 50 m) than those found in light laminae, and diatoms of 281 

the Cyclotella stelligera complex, as well as tychoplanktonic and benthic diatoms. These dark 282 

laminae are also enriched in organic matter probably originated by diatoms and other algae 283 

groups. The lower contact of dark laminae is transitional whereas the upper one is abrupt. Up to 284 

41 light and dark laminae couplets were defined. The thickness of these couplets ranges 285 

between 4.2 mm and 22.5 mm and, according to the chronological model they are pluriannual 286 

(mean about 10 years). The rythmite starts with the dominance of light laminae progressively 287 

changing to a dominance of dark laminae.  288 

The 18Odiatom values of the purified diatoms in interval 1 range from +35.5‰ to +39.2‰ 289 

(Fig. 3A). Higher 18Odiatom occur in the lower part of the interval (around 822 cm of core depth). 290 

There is an upwards decreasing trend (~1.9‰/100 years) attaining a minimum of +35.5‰ 291 
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around 803 cm depth. This stretch is followed by an increasing shift of ~2.9‰/100 years 292 

towards the upper part of the interval where a relative maximum of +38.8‰ is reached at 793 293 

cm depth. The uppermost two samples show a light depletion. The mean 18Odiatom value of this 294 

interval is +37.8±0.85‰. 295 

 296 

4.2. Interval 2 (10,430 – 10,260 cal years BP) 297 

 298 

Diatom concentration ranged from 95.2 to 218 million valves g-1 in the interval 2. Almost 299 

94% of the diatom assemblages of this interval were made up of euplanktonic diatoms. Benthic 300 

taxa show the minimum values for the three analysed intervals. The thickness of diatomaceous 301 

ooze laminae ranged from 1.8 mm to 16 mm (Fig. 3B). Light laminae were dominated by large 302 

Cyclostephanos andinus (diameter > 50 m) with some tychoplanktonic (Fragilaria spp.) and 303 

benthic diatoms, as well as minor amounts of siliciclasts and organic matter. Dark laminae are 304 

composed of a mixture of small and large Cyclostephanos andinus valves, with more abundant 305 

tychoplanktonic and benthic diatoms (as well as organic matter) compared to light laminae. 306 

Diatom valves are not so well preserved as in interval 1 sometimes showing a high degree of 307 

fragmentation and a preferred orientation. The contact between the laminae is similar to those 308 

found in interval 1. Clear couplets were only observed in the upper two thirds of the interval and 309 

only 10 couplets could be identified (Fig. 3B). They are pluriannual (mean couplet represents 310 

about 10 years of sedimentation) and their thicknesses range between 5.5 and 19 mm. Light 311 

laminae were more abundant in the upper part of the interval 2, whereas dark laminae are more 312 

abundant in the lower part. 313 

The 18Odiatom curve shows a clear increasing trend during this interval (Fig. 3B). The 314 

lowest 18Odiatom value (+36‰) was recorded at the bottom of the interval (617 cm depth) and 315 

the maximum at the two uppermost samples (+39.7‰ and +39.6‰; 606-605 cm of core depth). 316 

The magnitude of the increasing trend is much higher between the two lowermost samples 317 

(~18.5‰/100 years) than for the rest of the interval (~0.6‰/100 years). The mean 18Odiatom 318 

value of this interval is +38.7±1.4‰. 319 

 320 

4.3. Interval 3 (9890 – 9430 cal years BP) 321 
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 322 

Diatom concentration ranges between 163.8 and 255.8 million valves g-1 for interval 3. 323 

Euplanktonic diatoms (68.6% - 98.1%) also dominate this interval, and have the minimum 324 

18Odiatom values for the three intervals. On the contrary, benthic diatoms show moderate values 325 

(up to 31.4%), being the highest for the three intervals. Light diatomaceous ooze laminae 326 

ranged between 0.9 and 12.3 mm in thickness (Fig. 3C), and they comprise Cyclostephanos 327 

andinus (diameter > 50 m) increasing upwards in both taxonomic diversity and organic matter 328 

content. The lower contact with dark laminae shows an abrupt change in diatom size whereas 329 

the upper one is gradual. Diatom valves show good preservation with no orientation in the lower 330 

part but are preferentially oriented upwards. Dark laminae comprise a mixture of smaller 331 

Cyclostephanos andinus (diameter < 50 m), with subdominant tychoplanktonic and benthic 332 

diatoms, as well as a high organic matter content. The lower contact is gradual whereas the 333 

upper one abrupt. Up to 18 light and dark pluriannual couplets were defined (mean couplet 334 

represent around 12 years). These couplets are 3 to 18 mm thick. The rythmite starts with light 335 

laminae progressively changing to dark laminae.  336 

The 18Odiatom curve for interval 3 (Fig. 3C) shows an overall continuous increasing trend 337 

of ~0.9‰/100 years from +39.1‰ (570 cm of core depth) to +41.3‰ (548 cm of core depth). 338 

Superimposed over the general trend are short-term fluctuations. The mean 18Odiatom value of 339 

this interval is +40.1±0.77‰. 340 

The three intervals have different 18Odiatom averages displaying a progressive low-341 

frequency enrichment from the interval 1 (+37.8±0.85‰) to interval 3 (+40.1±0.77‰). The 342 

overall isotopic enrichment is 2.1‰ throughout these intervals.  343 

 344 

5. Discussion 345 

 346 

5.1. The sedimentary model of diatom rythmites 347 

 348 

 Laminated diatomaceous oozes in the sedimentary record of Lago Chungará comprise 349 

variable thickness couplets of alternating light and dark laminae. These couplets display 350 

different features (colour and mean thickness) in the three intervals described here although 351 
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they exhibit similar diatom assemblages and textural characteristics and therefore it is assumed 352 

that their formation is by similar environmental processes. Rythmite types have been 353 

established  (Fig. 4); light laminae are formed almost exclusively by diatom skeletons of a quasi-354 

monospecific assemblage of Cyclostephanos andinus, while dark laminae with a high organic 355 

matter content comprise a mixture of a more diverse diatom assemblage including the 356 

euplanktonic Cyclostephanos andinus although diatoms of the Cyclotella stelligera complex are 357 

the dominant taxa. Subdominant groups are some tychoplanktonic (Fragilaria spp.) and benthic 358 

taxa (Cocconeis spp., Achnanthes spp., Navicula spp., Nitzschia spp.).  359 

 Each couplet was deposited during time intervals ranging from 4 to 24 years according 360 

to our chronological model. Couplets are therefore not a product of annual variations in 361 

sediment supply but to some kind of pluriannual processes. The good preservation and size of 362 

diatom valves in the light laminae suggest accumulation during short-term extraordinary diatom 363 

blooms perhaps of only days to weeks in duration. These diatom blooms could have been 364 

triggered by climatically driven strong nutrient inputs to the lake and/or to nutrient recycling 365 

under extreme turbulent conditions and mixing affecting the whole water column. On the 366 

contrary, the baseline conditions are represented by the dark laminae. Each of these laminae is 367 

made up of the remains (organic matter and diatom skeletons) of a diverse planktonic 368 

community deposited throughout several years under different water column mixing regimes. 369 

The preserved remains are therefore a reflection of different stages in the phytoplankton 370 

succession throughout several years (Reynolds, 2006).  371 

  372 

 5.2 Lake level and 18Odiatom changes 373 

 374 

A preliminary lake level reconstruction of Lago Chungará was undertaken employing the 375 

variations of euplanktonic diatoms, Botryoccocus and macrophyte remains (see Sáez et al., 376 

2007). This reconstruction shows a general deepening trend during the Late Glacial and Early 377 

Holocene. This overall increase in lake level is punctuated by one deepening (D1; Fig. 5) and by 378 

two shallowing episodes (S1 and S2; Fig. 5). According to this model the three selected 379 

intervals described here represent two different lacustrine conditions. Intervals 1 and 3 are likely 380 

shallower episodes whereas interval 2 occurred during a period between two shallow intervals, 381 
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and likely with higher lake level conditions. However, the resolution of the lake level 382 

reconstruction provided by Sáez et al (2007) does not preclude the occurrence of other 383 

shallowing episodes as those detected. The isotope analyses presented here of these three 384 

intervals have allowed us to characterise the hydrological evolution of the lake during three key 385 

time windows of the Late Glacial and Early Holocene. Dark laminae were selected for 18Odiatoms 386 

analyses to investigate the baseline hydrological evolution of Lago Chungará. The 18Odiatom 387 

variation can result from a variety of processes (Jones et al., 2004; Leng et al., 2005b) but for 388 

closed lakes, particularly in arid regions where water loss is mainly through evaporation, 389 

measured 18O values are always higher than those of ambient precipitation since the oxygen 390 

lighter isotope (16O) is preferentially lost via evaporation. Under these circumstances, the 18O 391 

record can be used as an indicator of changes in the precipitation to evaporation ratio (P/E) 392 

related to climatic changes (Leng and Marshall, 2004). 393 

Lago Chungará is a hydrologically closed lake and its main outflow is currently via 394 

evaporation, thus meaning that changes in 18O values should be directly related to shifts in the 395 

precipitation to evaporation ratio (P/E). The lake level change from the deeper water conditions 396 

recorded during the sedimentation of the interval 2 to the shallower conditions occurred during 397 

the deposition of the interval 3 according to the Sáez et al. (2007) reconstruction, is compatible 398 

with the observed increase in 18O values. However, the isotope values and the lake level 399 

reconstruction do not agree over the transition from interval 1 to interval 2. The isotope values 400 

suggest a reduced P/E (shallower) stage whereas several proxy indicators suggest deeper 401 

conditions (Fig. 5). A possible explanation for this could involve shifts in 18O related to other 402 

environmental circumstances, such as variations in the morphometrical parameters and 403 

changes in the groundwater outflow. Changes in the surface to volume ratio and in the 404 

groundwater outflow of Lago Chungará from the Late Glacial to Early Holocene are the factors 405 

likely to account for most of the shifts found in the 18O values.  406 

Besides fluctuations in the evaporation/precipitation ratio, another factor to take into 407 

account is the basin morphology. During the lake’s evolution the lake’s surface to volume ratio 408 

would have changed. A tentative palaeobathymetric reconstruction of Lago Chungará based on 409 

the lake level curve from Sáez et al. (2007) (Fig. 6) shows that during the Late Glacial the lake 410 

only occupied the present central plain area. The rise in the lake level during the Early 411 
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Holocene, although punctuated by some oscillations, flooded the extensive eastern and 412 

southern lake’s shallow margins. Under this situation, the lake underwent a significant increase 413 

in its surface area (Fig. 6). Because the eastern margin is much shallower than the central plain 414 

(Fig. 1), the whole lake’s surface area to volume ratio would have significantly increased, and 415 

also concurrently the relative importance of evaporation. So the observed 18O high values of 416 

the interval 3 could be explained not only by the shallowing trend from interval 2 to interval 3, 417 

but also by the increasing of the lake’s surface to volume ratio between both intervals.  418 

There are no signs of subaerial exposition in the recovered sediments of the eastern 419 

platform, which indicates that lake water level did not drop significantly afterwards. Although 420 

lake water depth conditions were deeper during interval 3 than during the interval 1, the                              421 

mean isotope value is higher during interval 3. This fact could be explained by the increase of 422 

the surface to volume ratio and by the reduction of groundwater losses. Hence, the morphology 423 

of the lake, and not only water depth, must be considered as a key factor in any interpretation of 424 

the 18Odiatoms in terms of changes in P/E. 425 

Furthermore, changes in the groundwater fluxes in Lago Chungará could have been a 426 

significant factors for the shifts found in the 18O values from the Late Glacial to Early Holocene. 427 

The groundwater outflow from the lake during the Late Glacial was probably higher than during 428 

the Holocene. This condition would progressively change with the sedimentary infill of the basin. 429 

Drainage, through the breccia barrier would progressively become less efficient as the 430 

groundwater outflows silted-up (Leng et al., 2005a). Thus, the evaporative outflow would have 431 

predominated over groundwater during the Early Holocene. This highlights the fact that stable 432 

isotopes would not have, in this case, a direct correspondence with changes in the lake water 433 

level. 434 

In summary, the relative increase in evaporation due to the magnification of the lake’s 435 

surface to volume ratio between the studied intervals would have played a significant role. 436 

Superimposed onto this situation, the increase in the 18O values from the Late Glacial (when 437 

the lake was at its shallowest) to the Early Holocene (when the overall deepening trend started) 438 

is also likely to have been related to a change to a predominant evaporative lake as the lake’s 439 

bottom became more impermeable with the sediment’s infilling.  440 

 441 
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 442 

6. Conclusions 443 

The thin section study of the diatomaceous laminated sediments shows that rythmite 444 

type is made up of light quasi monospecific lamina of the euplanktonic diatom Cyclostephanos 445 

andinus and a pluriannual dark lamina rich in organic matter and a mixture of a more diverse 446 

diatom assemblage. The formation of light laminae is related to the short term (days to weeks) 447 

diatom blooms whereas dark laminae represents the recovery of the baseline conditions lasting 448 

several years.  449 

The oxygen isotope record of the dark laminae diatoms of Lago Chungará indicates a 450 

progressive 18O enrichment from the Late Glacial to Early Holocene. Besides changes in the 451 

evaporation/precipitation ratio, two other factors would have governed shifts in the Lago 452 

Chungará 18O record: the lake’s stepped morphology forced the expansion of the lake towards 453 

the eastern and southern shallow lake margins during the rising trend. These changes provoked 454 

an increase in the lake’s surface to volume ratio thus enhancing the evaporation which caused 455 

isotope enrichment during the Early Holocene. In addition changes in the 456 

groundwater/evaporation outflow ratio and changes in the lake’s extend. The hydrology of the 457 

lake was modified during the Late Glacial to Early Holocene transition as the lake’s groundwater 458 

outflow became progressively sealed by sediments, thereby increasing lake water residence 459 

time and potential evaporation  460 

Previous work has focused on issues of diagenesis, contamination and host-water 461 

interactions that can all influence 18Odiatom whereas local hydrological factors have been largely 462 

neglected. These results point to the complex interplay among the different factors which 463 

intervene in the diatom oxygen isotope record of closed lakes and how interpretation needs to 464 

be adapted to the different evolutionary stages of the lake’s ontogeny. This study highlights the 465 

importance of reconstructing local palaeohydrology as this may be only indirectly related to 466 

palaeoclimate.  467 

 468 
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