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method input parameters was verified by taking into account several scenarios of 
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correspondence with facies, predicting the distribution of these properties using the 

reconstructed facies distribution as a template proved to be a powerful approach, 

yielding more accurate and realistic reconstructions of these properties in the coal seam 

zone. 

Keywords: 3D facies interpolation, indicator kriging, areal trend, coal seam, cross validation 

1. Introduction 

1.1. Problem statement 

Many efforts have been devoted to the assessment of coal resources through 2D 

interpolations, either by using thickness maps (Starks et al., 1982; Journel and Rossi, 

1989; Schuenemeyer and Power, 2000; Hohn and McDowell 2001; Tercan and 

Karyigit, 2001) or percentage maps showing distribution of coal quality properties 

(Davis and Greenes, 1983; Bancroft and Hobbs, 1986; Watson et al., 2001; Turner and 

Richardson, 2004). Such approaches provide useful predictions when dealing with 

homogeneous coal seams, as well as for the general assessment of reserves. 

In the case of heterogeneous coal seam zones, closely and regularly spaced 2D 

cross sections or depth slices are also useful to manage coal exploration and mining. 

Nevertheless, 3D interpolation will deliver better results because it enables to integrate 

larger amounts of information in an efficient and optimum manner. Interpolation results 

include a 3D visualization capturing coal seam zone complexity, that can be further 

used for refining exploration and mining. Interpolation is applied in many earth sciences 

disciplines. Herein is used to obtain pixel-based property reconstructions by estimating 

the values of a given property at the cells of a grid (Jones et al., 1986). Several 
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interpolation strategies and methods exist; however, to the authors’ knowledge these 

have not been widely applied to the analysis of facies distribution in coal seam deposits. 

1.2. Aims 

This study aimed at comparing and testing several strategies for the 3D 

interpolation of facies distribution. The case study chosen for this is the so-called coal 

seam zone 6AW, a thick, heterogeneous coal dominated interval that has been 

extensively drilled and mined in the As Pontes basin (Oligocene-Early Miocene, NW 

Spain).  

Interpolation strategies were defined based on the variation of three crucial 

aspects: 1) the grid layering style, 2) the interpolation method, and 3) the number of 

data points averaged in order to obtain each estimated grid cell (searching conditions). 

Optimum and robust 3D interpolation strategies were derived using visual comparison 

and cross validation (CV). Optimality herein refers to reconstruction of facies 

distributions that show a realistic geological appearance and minimal CV errors and 

smoothing. Robustness refers to a solution that is stable respect to variations in the 

interpolation method input parameters. Robustness was evaluated by considering 

different scenarios of input parameter uncertainty.  

This paper proves that 3D facies reconstruction improves the comprehension of 

spatial facies distribution and mutual relationships. In addition, since some coal quality 

properties (e.g. calorific value or sulphur percentage) can be often correlated with 

facies, the 3D facies distributions obtained through interpolation were also tested as a 

template for obtaining more accurate and realistic distributions for these properties.  



 4

2. Setting 

2.1. Geological setting 

The small (12 km2), non-marine As Pontes basin resulted from the activity of an 

Oligocene-Early Miocene strike-slip fault system (Santanach et al., 1988, 2005) Fig. 

1A). During the early evolutionary stages of this system two subbasins developed 

(Eastern and Western), bounded by contractive and extensional structures (Ferrús, 1998; 

Santanach et al., 2005, Fig 1B to 1D). The basin infill in both subbasins resulted from 

the interaction of sedimentation in alluvial fans and lacustrine to marsh-swamp systems, 

and consists of brown coal seams together with siliciclastic facies assemblages (Bacelar 

et al., 1988; Cabrera et al., 1995, 1996; Ferrús, 1998, Fig. 1C).  

The basin infill has been split into 5 major genetic stratigraphic units (Ferrús, 

1998; Sáez and Cabrera, 2002, Fig. 1C). Unit 1 in the Western subbasin and Units 2 to 5 

in both basins are made up by several coal bearing composite sequences. Each 

composite sequence includes a lower interval, which is made up of a widespread, nearly 

basin-wide coal seam that interfingers with siliciclastic alluvial and lacustrine 

successions along the basin margins. This coal-bearing interval is overlain by an upper 

coal barren interval, which is dominated by major sandy and mudstone deposits 

resulting from an extensive basinward alluvial fan spreading. These composite 

sequences are bounded by isochronous or near-isochronous surfaces related to the 

settling and quick spreading of the major coal seams (Fig. 1C). 

The coal seam zone 6AW is located in the upper part of Unit 1 and makes up the 

lower interval of the sixth composite sequence in the Western subbasin (Fig. 1C). 

Deposition of 6AW took place in well-developed marshes and swamps related to areally 
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very restricted marginal alluvial and lacustrine zones, where close interfingering 

between mudstone and coal deposits occur. Simultaneously, sedimentation in the 

Eastern subbasin resulted from the interplay between alluvial fan and shallow to deeper 

lacustrine zones where no coal accumulated (Fig. 1C and 1D; Cabrera et al., 1995; Sáez 

and Cabrera, 2002). The 6AW coal zone is about 30 m thick in average and reaches its 

maximum thickness (~50m) towards the northern basin margin. These coal deposits are 

thickest in the northern and central zones of the Western subbasin, but also onlap the 

basement toward the southern Western subbasin margin, and reached a maximum areal 

extent of 2.5 km2 during the late depositional stages of 6AW (Fig 1D). 

2.2. The coal seam zone facies 

The As Pontes basin coal deposits can be classified as low mature lignite B 

(ASTM) or class 11/12 (UN-ECE), with huminite reflectance (ranging from 0.31% to 

0.39%), and relatively high to very high ash contents and low to moderate calorific 

values (Cabrera et al., 1995). Coal deposition took place in diverse marsh-swamp 

environments where a diversity of tropical vegetal communities developed (Cavagnetto, 

2002). Ash and total sulphur percentages in the As Pontes basin coal deposits, and 

particularly in the 6AW zone, are high if compared to other commercial coals. These 

characteristics resulted from both the alluvial fan influence and the probably closed-

restricted basin drainage conditions, which led to the significant sulphate inputs into the 

basin to be captured in the anoxic peat forming environments (Huerta et al., 1997; 

Huerta, 1998, 2001).  

Three major coal facies makes up most of the 6AW deposits: a) dark brown coal 

(DBC), b) pale yellow brown coal (PBC), and c) xiloid brown coal (XBC). These facies 

have been described elsewhere (Cabrera et al., 1992, 1995; Hagemann et al., 1997; 
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Huerta et al., 1997; Huerta, 1998, 2001). The DBC is a huminite dominated, often very 

biodegraded brown coal generated in subaerial to shallow subaqueous marshes and 

arbored swamps. The PBC is a liptinite-rich brown coal resulting from the accumulation 

of highly degraded aquatic and marsh plant remains. These accumulations would be 

deposited either under perennial or ephemeral shallow subaqueous water conditions 

(open aquatic marshes; Huerta, 1998). The XBC records the accumulation of middle to 

large sized wood remnants, either in place on forested swamps or slightly transported to 

neighbouring areas by low-energy currents and then randomly deposited (Huerta, 1998). 

Two minor mudstone facies occur interbedded and interfingered with the coal 

facies: a) light coloured, grey to brown alluvial massive mudstones (AM) and b) green 

massive to dark thinly bedded lacustrine mudstones and shales (LM). AM record 

sedimentation in the distal and marginal zones of the alluvial fans that impigned from 

the basin margins and surrounded the peat-forming environments (Fig. 1D). LM record 

deposition in relatively stable shallow to deeper lacustrine zones, which were subject to 

intense detritic input from the marginal alluvial fans and changing organic matter 

contribution. The relatively deeper water conditions compared to mire zones and the 

detritic input would have inhibited peat accumulation. 

Coal facies (DBC, PBC and XBC) show frequent vertical contacts and 

transitions as well as lateral interfingering among them and with the siliclastic facies 

(AM and LM). This fact is due to the complex and varied paleonvironmental evolution, 

and resulted in a complex spatial facies distribution that is difficult to capture through 

2D analysis. As a consequence, the 3D interpolation was considered a powerful 

approach to improve the visualization and the comprehension of the facies distribution 

of the coal seam zone. 
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2.3. The data set 

Owing to its economic interest as a coal basin, the As Pontes basin infill has 

been extensively drilled. Core descriptions of the wells drilled through the 6AW coal 

seam zone were used as the input data for this study (Fig. 2). These were complemented 

with surface observations and further study and sampling of the coal seam outcrops in 

the open pit mining trenches (Cabrera et al., 1992, 1995; Hagemann et al., 1997; Huerta 

et al., 1997; Huerta, 1998, 2001). 

A total of 174 wells, amounting approximately 4000 meters of core description, 

were available for 6AW. Wells were drilled along a nearly regular square grid with a 

spacing of approximately 105 m (Fig. 2). Core descriptions, recorded by ENDESA 

MINA PUENTES, resolved beds over 0.15 m thick. For this study original descriptions 

were simplified to 5 representative facies taking into account the results of the 

lithological-textural and petrological analyses; these facies display diverse development 

in terms of percentage in the 6AW cores: LM (3%), PBC (12%), DBC (53%), XBC 

(7%) and AM (25%). 

Besides facies records, the dataset also includes coal quality properties 

(moisture, ash content, volatile matter, calorific value and sulphur percentage). These 

data have been used to test the correlation of the three major coal facies with some of 

their characteristics. The results show that in some cases a good statistical 

correspondence exists, for example XBC is characterized by higher calorific values than 

PBC and DBC (Fig. 3A), whereas DBC is characterized by higher sulphur percentages 

than XBC and PBC (Fig. 3B), both on a dry base.  
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3. Methodology for interpolation strategies 

Interpolation provides a unique and smooth property distribution honouring 

input data and aiming at local accuracy (Isaaks and Srivastava, 1989; Journel et al., 

2000). The most common interpolation methods obtain the estimated values for a 

property at any given point by averaging nearby sampled property values. Weighting for 

each data point averaged may be assigned according to inverse of distance criteria or 

spatial covariance criteria (kriging-based methods; Journel, 1986). 

3.1. Continuous property interpolation methods background 

Continuous properties take real or integer values ordered continuously (e.g. 

thickness, sulphur percentage…). Interpolation methods have been widely used to map 

these properties. The search for optimum interpolation strategies has resulted in a large 

number of comparative studies based on visual appearance, CV results (i.e. a statistical 

test based on estimating the property value at locations where the true value is known, 

but has been temporally removed from the input data, and comparing the estimated 

values to the true data in order to judge the goodness of the estimation strategy, Isaaks 

and Srivastava, pp. 351-368, 1989), or measures of further responses (which are based 

on the interpolated property). Most of these studies have been applied to natural or 

synthetic properties defined in 2D, and have yielded diverse results. In some cases, 

geostatistical kriging-based methods have performed better (Rouhani, 1986; Brummert 

et al., 1991; Weber and Englund, 1994; Borga and Vizzaccaro, 1997; Zimmerman et al., 

1999; Goovaerts, 2000; Teegavarapu and Chandramouli, 2005), but in others, inverse 

distance weighting or splines methods have produced similar or even better results 

(Brummert et al., 1991; Weber and Englund, 1992; Boman et al., 1995; Borga and 

Vizzaccaro, 1997; Dirks et al., 1998; Moyeed and Papritz, 2002). 
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3.2. 3D geological categorical properties and general set up 

Interpolations for facies distribution were carried out using shifted vertical 

coordinates transforming the top of 6AW to a horizontal datum. This enabled 

restoration of most of the structural deformation along the northern basin margin 

(Santanach et al., 2005), and allowed an easier visualization of facies distribution. When 

dealing with a geological property like facies defined in 3D, an additional critical aspect 

related to the geometry of the interpolation grid exists. 3D interpolation grids were built 

bounded by base and top surfaces. Each grid consists of a number of adjacent cells of 

parallepiped geometry. Sides of the cells are vertical and define a rectangular mesh, 

whereas bases and tops (i.e. the grid layering) may deviate from horizontal. Grid 

layering should be designed to mimic those planes along which facies display more 

continuity (i.e. paleodepositional surfaces or bedding, Jones, 1988), and reproduce 

tectonic and sedimentary arrangements such as onlap, offlap, burial effects and erosion. 

To illustrate the importance of grid layering it was considered useful to compare four 

different styles.  

Contrasting to continuous properties, facies distribution is a typical example for 

a categorical property (Deutsch, 2002). Categorical properties take discrete values, 

which do not need to follow any ordering (i.e. from category A to category C a 

transitional step with category B may not exist). Due to the variety of results related to 

optimum interpolation strategies for continuous properties and the paucity of studies 

comparing strategies for categorical properties (de Marsily et al., 2005), it was 

considered useful to compare six different average-based interpolation methods for 

reconstruction of facies distribution. To illustrate the effect of the number of neighbours 

averaged in order to obtain each estimate seven different scenarios were considered. 
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A common feature to average-based interpolation methods is that the property at 

each grid cell is obtained independently of the other estimated cells enabling a faster use 

of CV test. It should be also noted that the standard deviation of the reconstruction is 

smaller than the standard deviation of the original input data (i.e. smoothing effect; 

Isaaks and Srivastava, 1989; Journel et al., 2000), whereas the spatial continuity 

(variogram range) is increased. In terms of facies reconstructions the smoothing effect 

implies that resultant facies proportions differ from those in the original input data, with 

an increase in the relative proportions of the most extended categories.  

In summary, interpolation strategies, which are detailed below, were defined 

based on the following crucial aspects: 1) the grid layering style, 2) the interpolation 

method and 3) the searching conditions.  

3.3. Grid layering style and grid construction 

The four different grid layering styles compared in the 6AW coal zone were: a) 

layering parallel to the top of the coal zone (top layering, Fig. 4A), b) layering parallel 

to the base of the coal zone (base layering, Fig. 4B), c) layering proportional between 

the top and the base of the coal zone (proportional layering, Fig. 4C) and d) a combined 

layering approach (geological layering, Fig. 4D). For geological layering, a proportional 

layering was used in the centre of the basin and its northern and eastern active basin 

margins, and parallel to top layering (i.e. horizontal) was used for the southern passive 

margin. 

The vertical grid spacing was set to 0.15 m based on the resolution of core 

descriptions. In proportional and geological layering, cell thickness varied, but was 

equally set with a mean of nearly 0.15 m. Horizontally; the grid axes were aligned with 
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the positions of the wells (Fig. 2). The horizontal grid spacing was set to 20 m. Each 

grid cell can only have one facies assigned to it; therefore, facies described in the cores 

were upscaled to the size of grid cells. This was conducted for each layering style and 

by assigning the most abundant logged facies to each cell. Upscaled categories were the 

input data for all subsequent interpolations. 

3.4. Interpolation methods  

The interpolation methods compared were based on: a) resolving the categorical 

property distribution as multiple truncations of a continuous property (truncated 

approach methods: truncated inverse squared distance weighting (TISDW), truncated 

kriging (TK), and truncated kriging with an areal trend (TK-T)), or b) on the indicator 

approach for categorical properties (indicator approach methods: indicator inverse 

squared distance weighting (IISDW), indicator kriging (IK), and indicator kriging with 

an areal trend (IK-T)) (Table 1). GSLIB code (Deutsch and Journel, 1998) was used for 

kriging-based methods; GSTAT package (Pebesma and Wesseling, 1998) was used for 

inverse distance-based methods. 

3.4.1. Truncated approach methods 

Methods based on the truncated approach start by transforming facies categories 

to a single continuous property. This requires a previous ordering of facies. In our case 

this was done following energy-related paleonvironment criteria (LM, PBC, DBC, XBC 

and AM). These methods compute the thresholds between facies; assuming a Gaussian 

distribution, the areas between thresholds correspond to the proportions measured in the 

upscaled well data (de Marsily, 1998). The next step is to assign to each facies a value 
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between their thresholds; constant values located in the centre of each category were 

used. 

The continuous values assigned to well data were used to derive experimental 

variograms with standardized sills. Theoretical variogram models were adjusted to the 

experimental ones (Fig. 5). Differences in horizontal variograms along different 

azimuths were not significant, and thus, horizontal isotropic ranges were used. The 

vertical variogram sills did not reach the standard deviation of the continuous property 

(Fig. 5). This fact is explained by the presence of an areal trend, as not all the vertical 

wells encounter the full variability of facies distribution (Kupfersberger and Deutsch, 

1999; Gringarten and Deutsch, 2001).  

Interpolation of the continuous property was conducted using three different 

algorithms (inverse distance weighting, kriging, and kriging with an areal trend; see 

below). In all cases, the final step of truncated approach methods was to truncate the 

continuous property interpolation with the thresholds between facies categories. 

Truncated inverse squared distance weighting (TISDW) 

Interpolation of the continuous property was carried out using inverse squared 

distance weighting (Kane et al., 1982; Pebesma and Wesseling, 1998) and conditioned 

by the well data. As indicated by the relationship between vertical and horizontal 

variogram ranges (Fig. 5) an important geometric anisotropy exists (Kupfersberger and 

Deutsch, 1999). This anisotropy is typical of sedimentary deposits, and in inverse 

squared distance weighting was considered by multiplying the vertical coordinates by 

an anisotropy factor prior to the interpolation (Jones et al, 1986; Zoraster, 1996). In 

order to get a reasonable value for the anisotropy factor, the ratio between horizontal 

and vertical variogram ranges was used. 
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Truncated kriging (TK) 

Interpolation of the continuous property was also carried out using ordinary 

kriging (Matheron, 1963; Journel and Huijberts, 1978; Cressie, 1990) and conditioned 

by the well data and the adjusted theoretical variograms (Fig. 5).  

Truncated kriging with an areal trend (TK-T) 

The presence of an areal trend (Gringarten and Deutsch, 2001), as demonstrated 

by vertical variograms not reaching the standard deviation of the continuous property 

(Fig. 5), motivated the use of an interpolation method considering this trend explicitly 

(TK-T). The areal trend was modelled following the decomposition into a mean and a 

residual, as suggested by Langlais et al (1993) and Deutsch (2002). The mean 

corresponds to a 2D map derived from the interpolation of averaged values of the 

continuous property along each well (Fig. 6). In the well data locations, the residual was 

obtained by subtracting the mean from the original transformed property.  

Experimental variograms were derived from the residual property and 

standardized sills were used (Fig. 7). As expected, experimental vertical variograms of 

the residual property did not show strong indication of areal trends. Theoretical 

variogram models were adjusted to the experimental ones. Differences in horizontal 

variograms along different azimuths were not significant, and thus, horizontal isotropic 

ranges were used. Interpolation of the residual property was carried out using ordinary 

kriging (Matheron, 1963; Journel and Huijbregts, 1978; Cressie, 1990) and conditioned 

by the residual at well data locations and the adjusted theoretical variograms. The 

results of the residual property interpolations were added to the mean. 
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3.4.2. Indicator approach methods 

When dealing with categorical properties like facies, the indicator approach  

(Journel, 1983; Gómez-Hernández and Srivastava, 1990) transforms each facies into a 

new property, and the value of each new property corresponds to the probability of 

finding the related facies at a given position. Where well data exist, the value of the 

property corresponding to the facies present was set to one, whereas the values of the 

other properties were set to zero. 

The transformed well data were used to estimate indicator variograms for each 

facies. In the case of indicator variograms, non-standardized sills were used, as the sill 

of an indicator variogram is related to the percentage of each facies. The theoretical 

variogram models were adjusted to the experimental ones (Fig. 8). Depending upon the 

spatial continuity shown by each facies, the horizontal and vertical variogram ranges 

varied. For each facies, differences in horizontal variograms along different azimuths 

were not significant, and therefore, horizontal isotropic ranges were used. The vertical 

variograms sills did not reach the standard deviation of the indicator properties 

(Kupfersberger and Deutsch, 1999; Gringarten and Deutsch, 2001); this effect was 

larger for facies DBC and AM (Fig. 8C and 8E). As in the case of the continuous 

approach, vertical variograms not reaching the sill are related to the presence of an areal 

trend. 

Again, interpolation of the indicator properties was conducted using three 

different algorithms (inverse distance weighting, kriging, and kriging with an areal 

trend; see below). Results from the interpolation of indicator properties corresponded to 

the probability of finding each facies at each grid cell, and the final step of indicator 
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approach methods was to select the facies with the highest probability of occurrence at 

each grid cell. 

Indicator inverse squared distance weighting (IISDW) 

Interpolation of each new indicator property was carried out using inverse 

squared distance weighting and conditioned by the transformed well data. As horizontal 

and vertical variogram ranges varied depending upon the facies (Fig. 8), geometric 

anisotropy and the ratio between horizontal and vertical range also varied. Therefore, 

different anisotropy ratios were used for each facies.  

Indicator kriging (IK) 

Interpolation of each new indicator property was also carried out using ordinary 

kriging (Matheron, 1963; Journel and Huijbregts, 1978; Cressie, 1990) and conditioned 

by the transformed well data and the theoretical indicator variograms (Fig. 8).  

Indicator kriging with an areal trend (IK-T) 

The presence of an areal trend (Gringarten and Deutsch, 2001), as demonstrated 

by vertical indicator variograms not reaching the sill value (Fig. 8), motivated the use of 

an interpolation method explicitly considering this trend (IK-T). Areal trends for each 

facies were modelled following the same approach as for the continuous approach. 

For each new indicator property, 2D mean maps were derived from the 

interpolation of averaged values along each well (Fig. 9). These maps corresponded to 

the areal proportion of each facies, and showed a clear non-stationary distribution. In 

the well data locations, for each indicator property, residuals were obtained by 

subtracting the mean maps to the original indicator properties.  
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Experimental variograms were derived from the residual properties, each 

corresponding to a different facies, and standardized sills were used. As expected, 

experimental vertical variograms of the residual properties did not show strong 

indication of areal trends (Fig. 10). The theoretical variogram models were adjusted to 

the experimental ones (Fig. 10). Differences in horizontal variograms along different 

azimuths were not significant for each facies, and thus, horizontal isotropic ranges were 

used. Interpolation of the residual properties was carried out using ordinary kriging 

(Matheron, 1963; Journel and Huijberts, 1978; Cressie, 1990) and conditioned by the 

residual properties at well data locations and the adjusted theoretical variograms (Fig. 

10). The results of the residual properties interpolations were added to the mean maps 

for each facies. 

3.5. Searching conditions 

Searching conditions refer to the number of neighbouring data points averaged 

to obtain each grid cell estimate (NN). In this study, octant restrictions were not used 

since the input well data was already distributed over a nearly regular grid. The seven 

different NN scenarios used were: 4, 12, 24, 48, 96, 192 and 288. 

4. Methodology for comparison criteria 

Interpolation strategies were compared based on the geological realism of facies 

reconstructions and CV results (i.e. looking for minimum CV error and minimum CV 

smoothing).  
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4.1. Definition of the cross validation error  

Several variations in the CV procedure and the error definition exist (Davis, 

1987; Isaaks and Srivastava, 1989). In the case of categorical properties defined from 

well data, the following procedure was used to cross validate the results. First, an entire 

upscaled well was temporally extracted from input data. Second, facies interpolations 

were carried out on the grid cells intersected by the extracted well using the remnant 

data. Third, the predicted facies distribution in the extracted well was compared to the 

true distribution. This procedure was repeated for all the wells. The probability of 

obtaining an erroneous facies prediction was obtained by averaging results for all the 

grid cells intersected by the wells. Each grid cell was assigned the same weight, 

independently of its thickness. This CV error definition is a variant of the commonly 

used mean absolute error (Zimmermann et al., 1999; Teegavarapu and Chandramouli, 

2005) adapted to categorical variables defined in 3D by well data. In all cases, the 

theoretical variogram models fitted with the complete data set were used (Figs. 5, 7, 8 

and 10). For interpolation methods using areal trends (TK-T and IK-T), the areal trends 

were derived from the remnant wells when computing CV results. 

4.2. Cross validation error and smoothing effect 

Smoothing effect related to each interpolation strategy (defined by grid layering 

style, interpolation method and searching conditions) influences the probability of an 

erroneous facies prediction. Smoothing was measured herein by measuring the 

proportion of the most extended category (DBC) predicted by CV. Proportion of DBC 

as estimated from CV was larger and directly related to the proportion of DBC as 

estimated from a complete 3D facies interpolation (Fig. 11A). This is because mean 

distances between cross-validated locations and averaged data points are always larger 
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in CV than mean distances between estimated grid cells and averaged data points for a 

facies interpolation along the entire grid. This increase in average distance limits the use 

of CV error as an exact measure for interpolation accuracy, even though it can be used 

as an approximation or as a relative measure for ranking interpolation strategies. 

Considering randomly generated facies estimates, it can be observed that the 

probability of obtaining erroneous predictions decreases as the smoothing effect 

increases (Fig. 11B). However, excessive smoothing should be avoided, since it would 

imply an artificial increase in spatial continuity of the facies distributions and an 

additional decrease of global accuracy (Goovaerts, 1997; Journel et al., 2000; 

Yamamoto, 2005). For any given degree of smoothing, CV interpolation errors were in 

all cases lower than the errors obtained using randomly generated unconditioned facies 

estimates (Fig. 11B). 

5. Results  

Visual analysis and CV test was conducted for 168 different interpolation 

strategies (4 grid layering styles, 6 interpolation methods and 7 NN scenarios). 

5.1. Grid layering style 

Visual appearance of facies reconstructions considering different grid layering 

styles is markedly different (Fig. 12). Fig. 13A shows CV results for indicator approach 

methods considering different grid layering styles and intermediate NN (48). 

At the same smoothing degree, each grid layering style yield different randomly 

estimated CV errors (Fig. 11B). This effect is due to the use of CV results not corrected 

for cell thickness. Actually, layering styles show small differences in the upscaled facies 
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proportions not corrected by cell thickness, these differences are perfectly correlated to 

CV error (Fig. 14). In order to compare CV errors from different grid layering styles, 

the bias introduced by computing CV results without weighting for true thickness was 

removed. This was achieved by dividing CV errors by the CV error obtained using 

estimates with total smoothing (DBC facies proportion at 100%, i.e. mean mapping) 

(Fig. 13B). 

In terms of CV errors corrected for cell-thickness, the worst layering style is that 

parallel to the base, independently of the interpolation method and searching conditions 

(Fig. 13B). This fact quantitatively reflects the importance of considering a nearly 

horizontal layering style for interpolation; recall that interpolation is carried out 

considering the top of the interval as a horizontal datum. 

Parallel to the top, proportional and geological grid layering styles yield similar 

errors, with rankings differing depending on the interpolation method considered. For 

IK and IIDW the smallest errors are obtained by the proportional layering (Fig. 13B), 

whereas for IK-T the smallest error is obtained for the layering parallel to the top (Fig. 

13B). 

Based upon geological knowledge of the coal zone deposition and post-

depositional evolution of the basin (Cabrera et al., 1995; Ferrús, 1998; Santanach et al., 

2005) it is reasonable to consider the presence of post-depositional folded stratification 

in the central parts and in the northern active basin margins (Fig. 1 and 2); that makes 

the proportional and geological grid layering styles more appropriate (Fig. 12C and D). 

Differences in the geological and proportional layering are mostly limited to the 

southern passive basin margin, being geological layering the most realistic, because it 

reproduces the onlap typical of expansive zones like 6AW (Fig. 12D). 
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5.2. Interpolation method and searching conditions 

Fig. 15 shows facies reconstructions for the different interpolation methods. Fig. 

16 and 17 show CV results for the different interpolation methods and using different 

NN. Interpolation methods can be ranked based on the results for the more realistic 

geological and proportional grid layering styles (section 5.1). In nearly all cases, 

rankings are also valid for the other two grid layering styles (parallel to the base and 

parallel to top). Results can be summarized as: 

1) As expected (Herzfeld et al., 1993), CV smoothing increases as NN increases 

(Fig. 16). 

2) Truncated approach methods yield CV estimates with higher smoothing (71-

95%) than indicator approach methods (57-82%) (Fig. 16). 

3) CV errors show different patterns depending upon the interpolation method 

approach (Fig 16). Truncated approach methods yield more restricted errors (from 43% 

to 49%), than indicator approach methods (from 39 to 52%). 

4) Considering only truncated approach methods: a) for small NN (4-12), 

TISDW performs better than kriging-based methods (Fig. 17A); b) for intermediate NN 

(48), CV error for TISDW remains slightly smaller than kriging-based methods error, 

but the smoothing is greater (Fig. 17B); c) for large NN (192-288), kriging-based 

methods perform better than TISDW (Fig. 17C); and d) except for small NN, TK-T 

yield better results than TK (Fig 17). 

5) Considering only indicator approach methods: a) for small NN (4-12), 

kriging-based methods yield the smallest CV error, whereas the lowest smoothing 

correspond to IISDW (Fig. 17A); b) for intermediate to large NN (48-288), kriging-



 21

based methods have the lowest smoothing, whereas IISDW have the lowest CV error 

(Fig. 17B and 17C); and c) in all cases IK-T yields lower smoothing than IK, whereas 

CV error depend on the NN (Fig. 17), for low NN (4-12), CV error is smallest for IK-T; 

and for intermediate to high NN (48-288), CV error is smallest for IK. 

6) Indicator approach methods perform better than truncated approach methods 

(Fig. 16). Visual comparison also supports this result (Fig. 15); the facies distributions 

obtained with indicator methods appear more heterogeneous and realistic. 

5.3. Method robustness 

To study the sensitivity of the resultant facies reconstructions to variations in the 

method input parameters, four different anisotropy scenarios were compared: 1) the first 

scenario corresponded to an overestimation of horizontal variogram ranges by a factor 

of two, 2) the second scenario to the actual values measured from input data, 3) the third 

scenario to an underestimation by a factor of two, and 4) the fourth scenario to an 

underestimation by a factor of ten. No uncertainty in vertical variogram ranges was 

considered since it is usually well constrained by vertical wells. 

Fig. 18 and 19 show respectively facies reconstructions and CV results 

considering the different uncertainty scenarios. Only the results for indicator approach, 

kriging-based methods, assuming a geological and proportional layering, and using NN 

set to 48 are shown. Results for truncated approach methods and inverse distance-based 

methods are not presented due to their limited optimality (section 5.2). Intermediate NN 

(48) provides an optimum balance between visual results, CV error and smoothing 

effect (section 5.2 and 6.2).  
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Relatively small changes (scenario 1 and 3) to the anisotropy measured from 

well data  (scenario 2) do not significantly alter the appearance of resultant facies 

distributions (Fig. 18A, B and C). The only differences correspond to restricted 

variations in the facies continuity, with the first scenario yielding the most continuous 

results. Variations in facies continuity have a moderate impact on CV smoothing and 

CV error (Fig. 19); changes in the anisotropy are inversely proportional to smoothing 

and directly proportional to CV error. The fourth scenario provides visually different 

results (Fig. 18D). This scenario yields the lowest CV error, but at expenses of a higher 

smoothing and a non-realistic appearance. In all the uncertainty scenarios, IK-T yields 

lower CV smoothing than IK, but at expenses of a slight increase in CV error (Fig. 19). 

6. Discussion 

6.1. Grid layering style 

Layering was used to preset the surfaces along which facies should display 

larger continuity, and in this study demonstrated a critical influence on the resultant 

facies distributions appearance and realism (Fig. 12). Grid layering must be assumed 

and is only necessary when dealing with 3D geological properties. This assumption 

should be strongly supported by a previous geological knowledge of the bedding 

attitude. As has been shown, CV can be used to verify the idoneity of the definition of 

grid layering. 

6.2 Interpolation method and searching conditions  

Indicator approach methods rank as the optimum for facies interpolation of the 

6AW coal zone. Truncated approach methods produce the worst results; these methods 
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are based on simplifying facies distribution to a single variable. This simplification 

imposes: 1) continuous facies ordering, and 2) use of only one variogram or anisotropy 

factor to characterize spatial variability, with all facies sharing the same anisotropy (de 

Marsily et al., 1998). Truncated approach methods are useful mainly in depositional 

settings with a highly ordered facies distribution. On the other hand, indicator approach 

methods allow more flexibility in defining the spatial variability of each facies 

separately, but at the cost of an increase in the number of input parameters and the 

computing time roughly proportional to the number of facies considered. 

Results for different indicator approach methods are very similar. From the 

visual comparison (Fig. 15) it was difficult to choose an optimal method. Method 

ranking using CV results is very sensitive to changes in NN. IIDW is the most sensitive 

method to variations in NN (Fig. 16). Similar results have been reported for 

interpolation dealing with continuous variables (Weber and Englund, 1992 and 1994). 

IK and IK-T are also sensitive to NN, but their CV error and CV smoothing stabilise 

beyond and intermediate NN (NN = 48, Fig. 16). Therefore indicator approach kriging-

based methods were the preferred for facies interpolation (Fig. 17).  

One of the most important advantages of kriging-based methods with respect to 

simpler inverse distance-based methods is the ability to take into account the relative 

positions of sampling data in order to select an optimal weighting scheme. This 

advantage is more significant when intermediate to high NN are considered. In addition, 

if input data were more irregularly distributed, differences in performance between 

kriging-based methods and inverse distance-based methods would increase.  

An intermediate number of nodes (48) was chosen as an optimum compromise 

to minimize both CV error and smoothing effect (Fig. 16), and at the same time 
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obtaining a realistic facies distribution (Fig. 15). Using larger NN also implies a  

dramatically increase in computing time. 

IK-T does not yield significantly better CV results than IK despite the presence 

of marked non-stationary facies distributions (i.e. areal trends). This agrees with results 

by Journel and Rossi (1989) dealing with a continuous variable. These authors stated 

that when interpolating using a limited NN, explicitly considering a trend does not 

significantly improve results obtained without explicitly considering the trend. This 

happens because in the latter case the trend is implicit when using a limited NN. 

Explicitly considering a trend proves more useful for extrapolation. In our study, the use 

of a trend with intermediate to large NN values (NN over 48) results in a diminution of 

CV smoothing, but at the expenses of a slight increase in CV error. The diminution of 

smoothing effect produced by the IK-T makes us consider it the optimum method for 

facies interpolation. The slight increase in CV error when explicitly using the trend 

agrees with the results by Zimmermann et al. (1999) dealing with a complex continuous 

variable. 

6.3. Method robustness 

Moderate errors in the determination of anisotropy (up to an overestimation or 

underestimation by a factor of two) do not significantly alter the results, confirming the 

robustness of the interpolation method. Large errors in the determination of anisotropy, 

particularly when corresponding to an underestimation, cause a large impact on the 

geological realism of the resultant facies distribution. However, such large errors are not 

likely to occur because interpolation is considered useful only when dense well data 

coverage is available, permitting a reasonable approximation to anisotropy. Hard data is 

the most important input for conditioning interpolation results. 
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6.4 The resulting 3D facies reconstruction 

Once an optimum and robust 3D facies interpolation strategy was determined 

(IK-T using NN set to 48 and a geological grid layering style), the resultant 3D facies 

reconstruction was analysed. This reconstruction (Fig. 20A) allows a better 

understanding of spatial and geometrical relationships of facies (vertical and lateral 

changes, lateral continuity, coal seam splitting, etc). 

The interaction between alluvial fans and the mire and lacustrine zones was the 

main factor controlling the areal development of the 6AW coal seam and the seam 

splitting by siliciclastic inputs. The areal distribution of the main environments in the 

coal zone (distal alluvial fan, marsh, swamp and lacustrine) varied during its deposition. 

These variations depended on the balance between allogenic factors (climate, tectonics 

and the resulting water and detritic inputs), as well as on the autogenic alluvial fan and 

mire evolution (Cabrera et al., 1995; Ferrús, 1998). 

AM facies deposited in the distal and marginal zones of the alluvial fans that 

spread into the basin from its margins. Consequently this facies fringes the seam 

boundaries, particularly in the northern and eastern active basin margins, where small, 

fine-grained dominated alluvial fans developed related to tectonic structures (Fig. 1D 

and Fig. 20A). AM facies interfinger and even spread into the inner coal seam zone, 

causing its splitting. The 3D facies reconstruction allows us to recognize and trace these 

splitting zones precisely. This analysis is a powerful previous step to the accurate 

prediction and evaluation of the coal/mudstone rate changes that often occur as mining 

advances (Fig. 20A). 

LM facies occur as isolated pods scattered along some marginal basin zones  

(Fig. 20A). The development and persistence of the small lakes where LM facies 
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deposited was probably favoured by a larger subsidence/sedimentation rate produced 

along the northern and eastern tectonic basin margins. However, their occurrence along 

the non-tectonically active southern margin also suggests the influence of other factors 

not yet fully understood. The resulting 3D reconstruction shows the occurrence of these 

coal barren zones that must be preventively considered during mining operations. 

DBC facies makes up most of the coal seam and constitutes the dominant 

background. DBC beds are thick and laterally extensive and may spread all over the 

extent of the seam zone (Fig. 20A). PBC facies are a less important component in the 

seam zone. This facies often makes up laterally extensive but lenticular bodies that are 

embedded in the DBC dominated sequences. Exceptionally thick and persistent, 

laterally more restricted PBC sequences appear in the northeastern basin margin (Fig. 9 

and 20A), which corresponds to one of the most subsiding areas during deposition of 

6AW. The shallow subaqueous conditions suitable for deposition of PBC facies would 

developed persistently in this notheastern margin (where PBC attains its maximum 

thickness), and in some of the inner parts of the seam, far away from the detritic inputs 

that filled up the aquatic zones and prevented aquatic peat accumulation. The limited 

horizontal continuity of PBC facies is revealed by the 3D reconstruction and agrees well 

with the relatively small horizontal indicator variogram range (Fig. 8B). The XBC 

facies appears even as more randomly distributed than DBC and PBC and make up 

laterally restricted and mostly thin bodies (Fig. 20A). This conspicuous random 

distribution pattern accords well with the environmental conditions and processes that 

resulted in its deposition. 

It is not possible to establish an obvious basinwide sequence evolutionary trend 

considering the relative DBC, PBC and XBC facies succession and development. In fact 

the local sequence evolutionary patterns are quite diverse in the different basin zones. 
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From this point of view the obtained 3D reconstruction arises as a powerful tool to 

capture the diverse facies distribution and the local variations of the facies-related coal 

properties (see section 6.5).  

6.5. Interpolation of coal quality properties based on the 3D facies reconstruction 

The facies reconstruction was also applied as a template to improve the realism 

and accuracy of coal quality property interpolations; this makes sense only when these 

properties depend at some extent on the facies category. In the case of the 6AW coals, a 

relationship between facies and calorific value (on a dry base) (Fig. 3A), and facies and 

total sulphur percentage (on a dry base) was observed (Fig. 3B).  

Calorific value and total sulphur percentage interpolations were carried out using 

kriging with NN set to 48 and assuming a geological grid layering style. Two different 

interpolation strategies were compared: 1) interpolating the measured values of coal 

properties directly, without using facies as a template; and 2) interpolating facies and 

using the interpolated facies as a template to interpolate the values of the coal properties 

(i.e. taking into account the interpolated facies distribution in order to restrict averaged 

data points to those neighbours belonging to the same facies, Fig. 20B and C). Cross 

sections of the 3D interpolations are presented in Fig. 21 and 22. CV was used to 

quantitatively discriminate which strategy provides the most accurate coal property 

interpolations. When considering facies as a template two options were compared: a) 

using also cross-validated facies, and b) considering facies in the cross-validated well as 

already known. 

The interpolations using facies as a template provide better CV results than the 

interpolations obtain without using facies (Table 2). Results using facies as a template 
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yield the lowest differences between the true mean and the interpolated distribution 

mean (conditional bias) and the true standard deviation and interpolated standard 

deviation (smoothing). Results using facies as a template also yield the lowest mean 

absolute error and relative mean absolute error (accuracy). CV results considering 

already known facies in the cross-validated wells are even better than the CV results 

using also cross-validated facies. The lower relative mean absolute errors yielded by 

calorific value respect to sulphur percentage (Table 2) is related to the fact that calorific 

value is better correlated to facies than sulphur, which is highly influenced by other 

factors (i.e. amount of sulphate inputs and redox conditions in each subbasin zone). 

7. Conclusions 

1) 3D interpolation permits the correlation of facies in a large number of wells. 

This technique proves to be useful when facies distribution is reasonably well captured 

by dense well data coverage. 

2) Visual appearance and cross validation (CV) results prove to be valid tools to 

compare and rank different categorical property interpolation strategies and input 

parameter uncertainty scenarios. CV error is affected by the interpolation smoothing and 

tends to decrease as the smoothing increases. 

3) The optimal and most robust facies interpolation strategy for the chosen case 

study (6AW coal seam zone, As Pontes basin) is indicator kriging with an areal trend 

(IK-T), using a number of data points averaged to obtain each estimate (NN) set to 48, 

and using a geological grid layering style.  

4) An accurate definition of the grid layering style, based on a priori geological 

knowledge, prove very important to generate realistic facies reconstructions. 
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5) The indicator approach methods provide visually similar facies distributions. 

Results of indicator kriging (IK) are slightly less robust to variations in the input 

method parameters than results of IK-T, and indicator inverse squared distance results 

are more sensitive to variations in searching conditions than IK and IK-T. Truncated 

approach methods yield the worst results.  

5) Smoothing effect increases with NN; intermediate NN values provide an 

optimum compromise between CV error, CV smoothing and computing time. 

7) 3D interpolations provide a useful representation of facies distribution, which 

enables a better understanding of spatial and geometrical aspects of facies distribution in 

the coal seam zone. 

8) As sulphur percentage and calorific value depend at some extent on coal 

facies, 3D facies reconstructions enables a more accurate interpolation of these 

properties. 

9) This work demonstrates how 3D facies reconstructions are suitable and 

advisable for optimising coal exploration and mining in extensively drilled and 

sampled, thick and heterogeneous coal seam zones. Such reconstructions would help in 

planning selective mining according to the facies distribution and their related 

properties. 
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Figure Captions 

Figure 1. Geological setting and characteristics of the As Pontes basin. (A) Location of 
the As Pontes basin. (B) Geological map of the basin showing the main tectonic 
structures that affect the basement. Note the strike-slip fault and associated thrusts, 
which bound the northern basin margin; the N–S oriented normal faults and the E–W 
and NE–SW oriented thrusts. (C) Longitudinal sketch of the basin showing the main 
stratigraphic units, sedimentary facies and basement structures (see arrows for location 
on 1B), notice the stratigraphic position of the 6AW coal zone. (D) Paleogeographic 
sketches of the basin during deposition of the 6A interval. 

Figure 2. Well location in the studied part of 6AW zone. Location of the NW-SE 
reference section that is used as an example in Figures 4, 12, 15, 18, 21 and 22 is 
shown. Coordinates in the lower left frame are in kilometres. See Figure 1B and 1D for 
structural details. 

Figure 3. Relative frequency of calorific values (A) and sulfur percentages (B) in the 
three major coal facies in the 6AW coal seam zone. Plotted information corresponds to 
the core data upscaled to the size of grid cells. These were computed biased to the facies 
logs and assuming a geological layering (see section 5.1). Upscaled data (see section 
3.3) are close to the original because of the fine grid used. Original data consisted in 
more than 2500 analyses (513 in PBC, 1840 in DBC, and 227 in XBC) for each 
property. 

Figure 4. Reference section showing the different grid layering styles used for facies 
interpolations. See location of the section in Figure 2. Note that only one tenth of the 
grid layers is shown as reference. Vertical exaggeration 10x. 

Figure 5. Standardized variograms for the transformed Gaussian property. Grey dots 
and dashed curves correspond to the experimental variograms derived from upscaled 
well data. No significant differences were observed in the experimental variograms 
derived from the four different grid layering styles. Continuous curves correspond to the 
theoretical model fitted (Hr and Vr stands for horizontal and vertical variogram ranges 
respectively):  

γ(h) = 0.6·Exp (Hr  = 500m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m). 

Figure 6. Areal trend derived from the interpolation of averaged values of the 
continuous property values along each well. The different shades reflect the average 
facies along each well. A clear non-stationary facies distribution is shown. Higher 
values are located predominantly near the basin margins (specially in the northern) 
where facies AM dominates. Intermediate-low values occur in the centre of the coal 
zone where facies DBC dominates. The lower values are restricted to some zones with 
dominance of facies PBC and LM. 

Figure 7. Standardized variograms for the residual of the transformed continuous 
Gaussian property. Grey dots and dashed curves correspond to the experimental 
variograms derived from upscaled well data. No significant differences were observed 
in the experimental variograms derived from the four different layering styles. 
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Continuous curves correspond to the theoretical model fitted (Hr and Vr stands for 
horizontal and vertical variogram ranges respectively):  
γ (h) = 0.6·Exp (Hr = 400m, Vr = 1.4m) + 0.4·Exp (Hr= 100m, Vr =3m). 

Figure 8. Non-standardized indicator variograms assuming a geological layering. Grey 
dots and dashed curves correspond to the experimental variograms derived from 
upscaled well data. No significant differences were observed in the experimental 
variograms derived from the four different layering styles. Continuous curves 
correspond to the theoretical models fitted (Hr and Vr stands for horizontal and vertical 
variogram ranges respectively):  
γ (h) LM  =  0.018·Exp (Hr = 500m, Vr = 1.4m) + 0.012·Exp (Hr = 100m, Vr =3m).  
γ (h) PBC = 0.063·Exp (Hr = 200m, Vr = 1.4m) + 0.042·Exp (Hr = 100m, Vr =3m).  
γ (h) DBC = 0.150·Exp (Hr = 500m, Vr = 1.4m) + 0.100·Exp (Hr = 100m, Vr =3m).  
γ (h) XBC = 0.039·Exp (Hr = 300m, Vr = 1.4m) + 0.026·Exp (Hr = 100m, Vr =3m).  
γ (h) AM  =  0.113·Exp (Hr = 700m, Vr = 1.4m) + 0.076·Exp (Hr = 100m, Vr =3m). 

Figure 9. Areal trends for each indicator property derived from the interpolation of 
averaged values along each well. The maps correspond to the areal proportions of each 
facies. Note the difference in the range of the greyscale among the different facies. 

Figure 10. Standardized variograms for the residual of the indicator properties, 
assuming a geological layering. Grey dots and dashed curves correspond to the 
experimental variogram derived from upscaled well data. No significant differences 
were observed in the experimental variograms derived from the four different layering 
styles. Continuous curves correspond to the theoretical models fitted (Hr and Vr stands 
for horizontal and vertical variogram ranges respectively):  
γ (h) LM    =  0.6·Exp (Hr = 500m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).  
γ (h) PBC  =  0.6·Exp (Hr = 200m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).  
γ (h) DBC =  0.6·Exp (Hr  = 500m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).  
γ (h) XBC =  0.6·Exp (Hr = 300m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).  
γ (h) AM   =  0.6·Exp (Hr = 700m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m). 

Figure 11. (A) Relationship between DBC proportion predicted by CV and by the 
interpolation along the entire grid. Results shown correspond to a geological grid 
layering style and NN set to 48. (B) CV errors and smoothing using randomly generated 
unconditioned facies estimates, each line corresponds to a different grid layering style 
and was generated through the linear regression of the results for 100 realizations with 
varying DBC proportion, correlation factor (R2) was in all cases above 0.99. 

Figure 12. Reference section showing facies distribution obtained by using different 
grid layering styles. In all frames the interpolation method used was indicator kriging 
with an areal trend (IK-T) and NN set to 48. See location of the section in Figure 2. 
Arrows indicate the position of intersected wells. Vertical exaggeration 10x. 

Figure 13. (A) Relationship between DBC proportion predicted by CV (smoothing 
effect) and CV error for the different grid layering styles tested. Only results for 
indicator approach methods and NN set to 48 are shown; results for truncated approach 
methods are not presented due to their limited performance (section 5.2), intermediate 
NN (48) provided a good balance between visual results, CV error and smoothing 
(section 5.2). (B) Relationship between smoothing effect, and CV error divided by the 
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CV error obtained with total smoothing (DBC facies proportion at 100%, i.e. mean 
mapping). 

Figure 14. Relationship between the original upscaled DBC proportion and the CV 
error using facies estimates with total smoothing (DBC facies proportion at 100%, i.e. 
Mean mapping) for the different grid layering styles. 

Figure 15. Reference section showing facies distribution obtained by using different 
interpolation methods assuming a geological grid layering style. In all cases NN was set 
to 48. See location of the section in Figure 2. Arrows indicate the position of intersected 
wells. Vertical exaggeration 10x. 

Figure 16. Relationship between DBC proportion predicted by CV (smoothing effect) 
and CV error for each interpolation method compared, considering geological (A) and 
proportional (B) grid layering styles. Results for different NN (4, 12, 24, 48, 96, 192 
and 288) are shown. 

Figure 17. Relationship between DBC proportion predicted by CV (smoothing effect) 
and CV error for each interpolation method compared, geological and proportional grid 
layering styles, and different NN set ups: 12 (A), 48 (B) and 192 (C). 

Figure 18. Reference section showing facies distribution obtained by changing 
horizontal variogram ranges. In all frames the interpolation method used was indicator 
kriging with an areal trend (IK-T) and NN was set to 48. See location of the section in 
Figure 2. Arrows indicate the position of intersected wells. Vertical exaggeration 10x 

Figure 19. Relationship between DBC proportion predicted by cross validation CV 
(smoothing effect) and CV error for each scenario of horizontal variogram range 
uncertainty. 

Figure 20. Fence diagrams viewed from the S showing 3D reconstructions of the 6AW 
zone. (A) Facies reconstruction using IK-T (NN set to 48 and a geological grid layering 
style). (B) Interpolation of calorific values using the facies distribution as a template. 
(C) Interpolation of total sulphur percentages using the facies distribution as a template. 
Vertical exaggeration 10x. See Figure 21 and 22, and supplementary material for further 
detail. 

Figure 21. Reference section showing calorific value interpolations without using facies 
distribution as a template (A) and using facies distribution as a template (B). See 
location of the section in Figure 2. Arrows indicate the position of intersected wells. 
Vertical exaggeration 10x. 

Figure 22. Reference section showing total sulphur percentage interpolations without 
using facies distribution as a template (A) and using facies distribution as a template 
(B). See location of the section in Figure 2. Arrows indicate the position of intersected 
wells. Vertical exaggeration 10x. 



 38

Table Captions 

Table 1: Classification of the interpolation methods compared. This classification is 
based on the approach to deal with the categorical property, the weighting criteria and 
the inclusion of trends. 

Table 2: Cross validation results for calorific value (dry basis) (a) and total sulphur 
percentage (dry basis) (b). See text for related discussion 

Supplementary Material 

Facies_IK-T_Geo_NN48.wrl file: virtual reality file with 3D view in Figure 20A 

PCAdb_using facies.vrl file: virtual reality file with 3D view in Figure 20B 

SULdb_using facies.wrl: virtual reality file with 3D view in Figure 20C 

corvrml.exe file: executable file with the Cortona VRML Client (by Parallel 

Graphics©) for navigating .vrl files with Internet Explorer 



Figure 1. (A) (B)

(D)

Location of the As Pontes basin.

Longitudinal sketch of the basin showing the main stratigraphic units, sedimentary facies and

basement structures (see arrows for location on 1B), notice the stratigraphic position of the 6AWcoal zone.

Paleogeographic sketches of the basin during deposition of the 6Ainterval.

Geological setting and characteristics of the As Pontes basin.

Geological map of the basin showing the main tectonic structures that affect the basement. Note the strike-slip fault and

associated thrusts, which bound the northern basin margin; the N–S oriented normal faults and the E–W and NE–SW

oriented thrusts. (C)
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Figure 3. (A)

(B)

Relative frequency of calorific values

and sulfur percentages in the three major coal

facies in the 6AW coal seam zone. Plotted information

corresponds to the core data upscaled to the size of grid

cells. These were computed

assuming a geological layering ( ).

Upscaled data ( ) are close to the original

because of the fine grid used. Original data consisted

in more than 2500 analyses (513 in PBC, 1840 in

DBC, and 227 in XBC) for each property.

biased to the facies logs

and see section 5.1

see section 3.3
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Figure 4. Reference section showing the different grid

layering styles used for facies interpolations. See

location of the section in Figure 2. Note that only one

tenth of the grid layers is shown as reference. Vertical

exaggeration 10x

Layering parallel to the top of the coal zone (top layering)
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Figure 5: Standardized variograms for the transformed Gaussian property. Grey dots and dashed curves correspond to

the experimental variograms derived from upscaled . No significant differences were observed in the

experimental variograms derived from the four different grid layering styles. Continuous curves correspond to the

theoretical model fitted (Hr and Vr stands for horizontal and vertical variogram ranges respectively):

(h) = 0.6·Exp (Hr = 500m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).
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Figure 6. Areal trend derived from the interpolation of

averaged values of the continuous property values

along each well. The different shades reflect the

average facies along each well. A clear non-stationary

facies distribution is shown. Higher values are located

predominantly near the basin margins (specially in the

northern) where facies AM dominates. Intermediate-

low values occur in the centre of the coal zone where

facies DBC dominates. The lower values are restricted

to some zones with dominance of facies PBC and LM.
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Figure 7: Standardized variograms for the residual of the transformed continuous Gaussian property. Grey dots and

dashed curves correspond to the experimental variograms derived from upscaled well data. No significant differences

were observed in the experimental variograms derived from the four different layering styles. Continuous curves

correspond to the theoretical model fitted :

(h) = 0.6·Exp (Hr = 400m, Vr = 1.4m) + 0.4·Exp (Hr= 100m, Vr =3m).

(Hr and Vr stands for horizontal and vertical variogram ranges respectively)
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Indicator variograms for pale brown coal facies (PBC)

Indicator variograms for dark brown coal facies (DBC)

Indicator variograms for xyloid brown coal facies (XBC)

Indicator variograms for alluvial mudstone facies (AM)

Figure 8: Non-standardized indicator variograms assuming a geological layering. Grey dots and dashed curves

correspond to the experimental variograms derived from upscaled . No significant differences were observed in

the experimental variograms derived from the four different layering styles. Continuous curves correspond to the

theoretical models fitted :

(h) LM = 0.018·Exp (Hr = 500m, Vr = 1.4m) + 0.012·Exp (Hr = 100m, Vr =3m).

well data

(Hr and Vr stands for horizontal and vertical variogram ranges respectively)

(h) PBC = 0.063·Exp (Hr = 200m, Vr = 1.4m) + 0.042·Exp (Hr = 100m, Vr =3m).

(h) DBC = 0.150·Exp (Hr = 500m, Vr = 1.4m) + 0.100·Exp (Hr = 100m, Vr =3m).

(h) XBC = 0.039·Exp (Hr = 300m, Vr = 1.4m) + 0.026·Exp (Hr = 100m, Vr =3m).

(h)AM = 0.113·Exp (Hr = 700m, Vr = 1.4m) + 0.076·Exp (Hr = 100m, Vr =3m).
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Figure 9. Areal trends for each indicator property derived from the interpolation of averaged values along each well.

The maps correspond to the areal proportions of each facies. Note the difference in the range of the greyscale among the

different facies.
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Figure 10: Standardized variograms for the residual of the indicator properties, assuming a geological layering. Grey

dots and dashed curves correspond to the experimental variogram derived from upscaled . No significant

differences were observed in the experimental variograms derived from the four different layering styles. Continuous

curves correspond to the theoretical models fitted

:

(h) LM = 0.6·Exp (Hr = 500m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).

well data

(Hr and Vr stands for horizontal and vertical variogram ranges

respectively)

(h) PBC = 0.6·Exp (Hr = 200m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).

(h) DBC = 0.6·Exp (Hr = 500m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).

(h) XBC = 0.6·Exp (Hr = 300m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).

(h)AM = 0.6·Exp (Hr = 700m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).
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Figure 11. (A)

B)

Relationship between DBC proportion predicted by CV and by the interpolation along the entire grid.

Results shown correspond to a geological grid layering style and NN set to . ( CV errors and smoothing using

randomly generated unconditioned facies estimates, each line corresponds to a different grid layering style and was

generated through the linear regression of the results for 100 realizations with varying DBC proportion, correlation

factor (R ) was in all cases above 0.99.
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Figure 12: Reference section showing facies distribution obtained by using different grid layering styles. In all frames

the interpolation method used was indicator kriging with an areal trend (IK-T) and NN set to 48. See location of the

section in Figure 2.Arrows indicate the position of intersected wells. Vertical exaggeration 10x
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Figure 13. (A)

(B)

Relationship between DBC proportion predicted by CV (smoothing effect) and CV error for the

different grid layering styles tested. Only results for indicator approach methods and NN set to 48 are shown; r

Relationship between

smoothing effect, and CV error

esults for

truncated approach methods are not presented due to their limited performance ( ), intermediate NN (48)

provided a good balance between visual results, CV error and smoothing ( ).

divided by the CV error obtained with total smoothing (DBC facies proportion at 100%,

i.e. mean mapping).
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Figure 14. Relationship between the original upscaled

DBC proportion and the CV error using facies

estimates with total smoothing (DBC facies

proportion at 100%, i.e. Mean mapping) for the

different grid layering styles.
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Figure 15: Reference section showing facies distribution obtained by using different interpolation methods assuming a

geological grid layering style. In all cases NN was set to 48. . Arrows indicate the

position of intersected wells. Vertical exaggeration 10x.

See location of the section in Figure 2
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Figure 16.

(A) (B)

Relationship between CV error for each

interpolation method compared, considering geological and proportional grid layering styles. Results for

different NN ( 4, 12, 24, 48, 96, 192 and 288) are shown.
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Figure 17.

(A)

(B) (C)

Relationship between CV error for each

interpolation method compared, geological and proportional grid layering styles, and different NN set ups: 12 , 48

and 192 .
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Figure 18: Reference section showing facies distribution obtained by changing horizontal variogram ranges. In all

frames the interpolation method used was indicator kriging with an areal trend (IK-T) and NN was set to 48.

. Vertical exaggeration 10x

See location

of the section in Figure 2 Arrows indicate the position of intersected wells.
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Figure 19. Relationship between DBC proportion predicted by cross validation CV (smoothing effect) and CV error for

each scenario of horizontal variogram range uncertainty.

CV results changing horizontal variogram range

Third scenario (anisotropy underestimation, factor of 2)

Geological layering

38
50

60

70

80

90

100

C
V

D
B

C
p

ro
p

o
rt

io
n

(%
)

First scenario (anisotropy overestimation, factor of 2)

CV Error (%)
40 42 44 46 48 50 52

Random
ly

generated
facies

estim
ates

Second scenario (measured anisotropy)

Fourth scenario (anisotropy underestimation, factor of 10)

IK

IK-T

4

3
4

3 2

2

1
1

1

2

3

4

n

n

Proportional layering

50

60

70

80

90

100
C

V
D

B
C

p
ro

p
o

rt
io

n
(%

)

CV Error (%)
38 40 42 44 46 48 50 52

Random
ly

generated
facies

estim
ates

Third scenario (anisotropy underestimation, factor of 2)

First scenario (anisotropy overestimation, factor of 2)

Second scenario (measured anisotropy)

Fourth scenario (anisotropy underestimation, factor of 10)

IK

IK-T

1

2

3

4

n

n

4

3

2

1

4

3

2

1



N

N

10.0

7.5

5.0

0

Sulphur
(% dry base)

5000
4000
3000

0

Calorific value
(Kcal/Kg dry base)

N

Base of
6A coal seam

LM
facies

Reference section
in Fig. 12, 15, 18, 21
and 22. See location
in Fig. 2

LM
facies

Exceptionally thick
accumulations of PBC

Coal seam splitting due to
interfingering with AM facies

2000
1000

Reference section
in Fig. 12, 15, 18, 21
and 22. See location
in Fig. 2

Reference section
in Fig. 12, 15, 18, 21
and 22. See location
in Fig. 2

A

B

C

Lacustrine mudstone

Pale brown coal

Dark brown coal

Xyloid brown coal

Alluvial mudstone

Figure 20. (A)

(B)

Fence diagrams viewed from the S showing 3D reconstructions of the 6AW zone. Facies reconstruction

using Interpolation of calorific values using the facies

distribution as a template. (C) Interpolation of total sulphur percentages using the facies distribution as a template.

Vertical exaggeration 10x. See Figure 21 and 22, and supplementary material for further detail

IK-T (NN set to 48 and a geological grid layering style).



Figure 21: (A)

(B)

Reference section showing calorific value interpolations without using facies distribution as a template

and using facies distribution as a template . See location of the section in Figure 2. Arrows indicate the position of

intersected wells. Vertical exaggeration 10x.
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Figure 22:

(A) (B)

Reference section showing total sulphur percentage interpolations without using facies distribution as a

template and using facies distribution as a template . See location of the section in Figure 2. Arrows indicate the

position of intersected wells. Vertical exaggeration 10x.
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 Approach to deal with the  

categorical property 

Weighting 
criteria 

Inclusion of 
areal trends 

Truncated Approach 
Methods 

Indicator Approach 
Methods 

Inverse of 
distance Implicitly 

Truncated Inverse Squared 
Distance Weighting 

(TISDW) 

Indicator Inverse Squared  
Distance Weighting 

(IISDW) 

Implicitly Truncated Kriging (TK) Indicator Kriging (IK) Minimization of 
estimation 

variance Explicitly Truncated Kriging with an 
areal Trend (TK-T) 

Indicator Kriging with an 
areal Trend (IK-T) 

 
Table 1: Classification of the interpolation methods compared. This classification is based on the 
approach to deal with the categorical property, the weighting criteria and the inclusion of trends. 



A) Calorific value cross validation results 
 

 Mean Std. 
Dev. 

Mean absolute
error 

Relative mean 
absolute error 

True values 2968 1925   

CV estimates without 
using facies as a 
template 

3316 1519 1181 40% 

Facies also 
cross-
validated 

3117 1804 1060 36% 
CV 
estimates 
using 
facies as a 
template Facies 

already 
known 

3003 1897 324 11% 

 
B) Sulphur percentage cross validation results 
 

 Mean Std. 
Dev. 

Mean absolute 
error 

Relative mean 
absolute error 

True values 5.66 3.98   

CV estimates without 
using facies as a 
template 

6.01 2.76 2.76 49 % 

Facies also 
cross-
validated 

5.88 3.48 2.50 44 % 
CV 
estimates 
using 
facies as a 
template Facies 

already 
known 

5.52 3.56 1.06 19 % 

 
Table 2: Cross validation results for calorific value (dry basis) (a) and total sulphur percentage (dry 
basis) (b). See text for related discussion 
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the positions of the wells (Fig. 2). The horizontal grid spacing was set to 20 m. Each 

grid cell can only have one facies assigned to it; therefore, facies described in the cores 

were upscaled to the size of grid cells. This was conducted for each layering style and 

by assigning the most abundant logged facies to each cell. Upscaled categories were the 

input data for all subsequent interpolations. 

3.4. Interpolation methods  

The interpolation methods compared were based on: a) resolving the categorical 

property distribution as multiple truncations of a continuous property (truncated 

approach methods: truncated inverse squared distance weighting (TISDW), truncated 

kriging (TK), and truncated kriging with an areal trend (TK-T)), or b) on the indicator 

approach for categorical properties (indicator approach methods: indicator inverse 

squared distance weighting (IISDW), indicator kriging (IK), and indicator kriging with 

an areal trend (IK-T)) (Table 1). GSLIB code (Deutsch and Journel, 1998) was used for 

kriging-based methods; GSTAT package (Pebesma and Wesseling, 1998) was used for 

inverse distance-based methods. 

3.4.1. Truncated approach methods 

Methods based on the truncated approach start by transforming facies categories 

to a single continuous property. This requires a previous ordering of facies. In our case 

this was done following energy-related paleonvironment criteria (LM, PBC, DBC, XBC 

and AM). These methods compute the thresholds between facies; assuming a Gaussian 

distribution, the areas between thresholds correspond to the proportions measured in the 

upscaled well data (de Marsily, 1998). The next step is to assign to each facies a value 
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between their thresholds; constant values located in the centre of each category were 

used. 

The continuous values assigned to well data were used to derive experimental 

variograms with standardized sills. Theoretical variogram models were adjusted to the 

experimental ones (Fig. 5). Differences in horizontal variograms along different 

azimuths were not significant, and thus, horizontal isotropic ranges were used. The 

vertical variogram sills did not reach the standard deviation of the continuous property 

(Fig. 5). This fact is explained by the presence of an areal trend, as not all the vertical 

wells encounter the full variability of facies distribution (Kupfersberger and Deutsch, 

1999; Gringarten and Deutsch, 2001).  

Interpolation of the continuous property was conducted using three different 

algorithms (inverse distance weighting, kriging, and kriging with an areal trend; see 

below). In all cases, the final step of truncated approach methods was to truncate the 

continuous property interpolation with the thresholds between facies categories. 

Truncated inverse squared distance weighting (TISDW) 

Interpolation of the continuous property was carried out using inverse squared 

distance weighting (Kane et al., 1982; Pebesma and Wesseling, 1998) and conditioned 

by the well data. As indicated by the relationship between vertical and horizontal 

variogram ranges (Fig. 5) an important geometric anisotropy exists (Kupfersberger and 

Deutsch, 1999). This anisotropy is typical of sedimentary deposits, and in inverse 

squared distance weighting was considered by multiplying the vertical coordinates by 

an anisotropy factor prior to the interpolation (Jones et al, 1986; Zoraster, 1996). In 

order to get a reasonable value for the anisotropy factor, the ratio between horizontal 

and vertical variogram ranges was used. 
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Truncated kriging (TK) 

Interpolation of the continuous property was also carried out using ordinary 

kriging (Matheron, 1963; Journel and Huijberts, 1978; Cressie, 1990) and conditioned 

by the well data and the adjusted theoretical variograms (Fig. 5).  

Truncated kriging with an areal trend (TK-T) 

The presence of an areal trend (Gringarten and Deutsch, 2001), as demonstrated 

by vertical variograms not reaching the standard deviation of the continuous property 

(Fig. 5), motivated the use of an interpolation method considering this trend explicitly 

(TK-T). The areal trend was modelled following the decomposition into a mean and a 

residual, as suggested by Langlais et al (1993) and Deutsch (2002). The mean 

corresponds to a 2D map derived from the interpolation of averaged values of the 

continuous property along each well (Fig. 6). In the well data locations, the residual was 

obtained by subtracting the mean from the original transformed property.  

Experimental variograms were derived from the residual property and 

standardized sills were used (Fig. 7). As expected, experimental vertical variograms of 

the residual property did not show strong indication of areal trends. Theoretical 

variogram models were adjusted to the experimental ones. Differences in horizontal 

variograms along different azimuths were not significant, and thus, horizontal isotropic 

ranges were used. Interpolation of the residual property was carried out using ordinary 

kriging (Matheron, 1963; Journel and Huijbregts, 1978; Cressie, 1990) and conditioned 

by the residual at well data locations and the adjusted theoretical variograms. The 

results of the residual property interpolations were added to the mean. 
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3.4.2. Indicator approach methods 

When dealing with categorical properties like facies, the indicator approach  

(Journel, 1983; Gómez-Hernández and Srivastava, 1990) transforms each facies into a 

new property, and the value of each new property corresponds to the probability of 

finding the related facies at a given position. Where well data exist, the value of the 

property corresponding to the facies present was set to one, whereas the values of the 

other properties were set to zero. 

The transformed well data were used to estimate indicator variograms for each 

facies. In the case of indicator variograms, non-standardized sills were used, as the sill 

of an indicator variogram is related to the percentage of each facies. The theoretical 

variogram models were adjusted to the experimental ones (Fig. 8). Depending upon the 

spatial continuity shown by each facies, the horizontal and vertical variogram ranges 

varied. For each facies, differences in horizontal variograms along different azimuths 

were not significant, and therefore, horizontal isotropic ranges were used. The vertical 

variograms sills did not reach the standard deviation of the indicator properties 

(Kupfersberger and Deutsch, 1999; Gringarten and Deutsch, 2001); this effect was 

larger for facies DBC and AM (Fig. 8C and 8E). As in the case of the continuous 

approach, vertical variograms not reaching the sill are related to the presence of an areal 

trend. 

Again, interpolation of the indicator properties was conducted using three 

different algorithms (inverse distance weighting, kriging, and kriging with an areal 

trend; see below). Results from the interpolation of indicator properties corresponded to 

the probability of finding each facies at each grid cell, and the final step of indicator 
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approach methods was to select the facies with the highest probability of occurrence at 

each grid cell. 

Indicator inverse squared distance weighting (IISDW) 

Interpolation of each new indicator property was carried out using inverse 

squared distance weighting and conditioned by the transformed well data. As horizontal 

and vertical variogram ranges varied depending upon the facies (Fig. 8), geometric 

anisotropy and the ratio between horizontal and vertical range also varied. Therefore, 

different anisotropy ratios were used for each facies.  

Indicator kriging (IK) 

Interpolation of each new indicator property was also carried out using ordinary 

kriging (Matheron, 1963; Journel and Huijbregts, 1978; Cressie, 1990) and conditioned 

by the transformed well data and the theoretical indicator variograms (Fig. 8).  

Indicator kriging with an areal trend (IK-T) 

The presence of an areal trend (Gringarten and Deutsch, 2001), as demonstrated 

by vertical indicator variograms not reaching the sill value (Fig. 8), motivated the use of 

an interpolation method explicitly considering this trend (IK-T). Areal trends for each 

facies were modelled following the same approach as for the continuous approach. 

For each new indicator property, 2D mean maps were derived from the 

interpolation of averaged values along each well (Fig. 9). These maps corresponded to 

the areal proportion of each facies, and showed a clear non-stationary distribution. In 

the well data locations, for each indicator property, residuals were obtained by 

subtracting the mean maps to the original indicator properties.  
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Experimental variograms were derived from the residual properties, each 

corresponding to a different facies, and standardized sills were used. As expected, 

experimental vertical variograms of the residual properties did not show strong 

indication of areal trends (Fig. 10). The theoretical variogram models were adjusted to 

the experimental ones (Fig. 10). Differences in horizontal variograms along different 

azimuths were not significant for each facies, and thus, horizontal isotropic ranges were 

used. Interpolation of the residual properties was carried out using ordinary kriging 

(Matheron, 1963; Journel and Huijberts, 1978; Cressie, 1990) and conditioned by the 

residual properties at well data locations and the adjusted theoretical variograms (Fig. 

10). The results of the residual properties interpolations were added to the mean maps 

for each facies. 

3.5. Searching conditions 

Searching conditions refer to the number of neighbouring data points averaged 

to obtain each grid cell estimate (NN). In this study, octant restrictions were not used 

since the input well data was already distributed over a nearly regular grid. The seven 

different NN scenarios used were: 4, 12, 24, 48, 96, 192 and 288. 

4. Methodology for comparison criteria 

Interpolation strategies were compared based on the geological realism of facies 

reconstructions and CV results (i.e. looking for minimum CV error and minimum CV 

smoothing).  
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4.1. Definition of the cross validation error  

Several variations in the CV procedure and the error definition exist (Davis, 

1987; Isaaks and Srivastava, 1989). In the case of categorical properties defined from 

well data, the following procedure was used to cross validate the results. First, an entire 

upscaled well was temporally extracted from input data. Second, facies interpolations 

were carried out on the grid cells intersected by the extracted well using the remnant 

data. Third, the predicted facies distribution in the extracted well was compared to the 

true distribution. This procedure was repeated for all the wells. The probability of 

obtaining an erroneous facies prediction was obtained by averaging results for all the 

grid cells intersected by the wells. Each grid cell was assigned the same weight, 

independently of its thickness. This CV error definition is a variant of the commonly 

used mean absolute error (Zimmermann et al., 1999; Teegavarapu and Chandramouli, 

2005) adapted to categorical variables defined in 3D by well data. In all cases, the 

theoretical variogram models fitted with the complete data set were used (Figs. 5, 7, 8 

and 10). For interpolation methods using areal trends (TK-T and IK-T), the areal trends 

were derived from the remnant wells when computing CV results. 

4.2. Cross validation error and smoothing effect 

Smoothing effect related to each interpolation strategy (defined by grid layering 

style, interpolation method and searching conditions) influences the probability of an 

erroneous facies prediction. Smoothing was measured herein by measuring the 

proportion of the most extended category (DBC) predicted by CV. Proportion of DBC 

as estimated from CV was larger and directly related to the proportion of DBC as 

estimated from a complete 3D facies interpolation (Fig. 11A). This is because mean 

distances between cross-validated locations and averaged data points are always larger 
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in CV than mean distances between estimated grid cells and averaged data points for a 

facies interpolation along the entire grid. This increase in average distance limits the use 

of CV error as an exact measure for interpolation accuracy, even though it can be used 

as an approximation or as a relative measure for ranking interpolation strategies. 

Considering randomly generated facies estimates, it can be observed that the 

probability of obtaining erroneous predictions decreases as the smoothing effect 

increases (Fig. 11B). However, excessive smoothing should be avoided, since it would 

imply an artificial increase in spatial continuity of the facies distributions and an 

additional decrease of global accuracy (Goovaerts, 1997; Journel et al., 2000; 

Yamamoto, 2005). For any given degree of smoothing, CV interpolation errors were in 

all cases lower than the errors obtained using randomly generated unconditioned facies 

estimates (Fig. 11B). 

5. Results  

Visual analysis and CV test was conducted for 168 different interpolation 

strategies (4 grid layering styles, 6 interpolation methods and 7 NN scenarios). 

5.1. Grid layering style 

Visual appearance of facies reconstructions considering different grid layering 

styles is markedly different (Fig. 12). Fig. 13A shows CV results for indicator approach 

methods considering different grid layering styles and intermediate NN (48). 

At the same smoothing degree, each grid layering style yield different randomly 

estimated CV errors (Fig. 11B). This effect is due to the use of CV results not corrected 

for cell thickness. Actually, layering styles show small differences in the upscaled facies 
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proportions not corrected by cell thickness, these differences are perfectly correlated to 

CV error (Fig. 14). In order to compare CV errors from different grid layering styles, 

the bias introduced by computing CV results without weighting for true thickness was 

removed. This was achieved by dividing CV errors by the CV error obtained using 

estimates with total smoothing (DBC facies proportion at 100%, i.e. mean mapping) 

(Fig. 13B). 

In terms of CV errors corrected for cell-thickness, the worst layering style is that 

parallel to the base, independently of the interpolation method and searching conditions 

(Fig. 13B). This fact quantitatively reflects the importance of considering a nearly 

horizontal layering style for interpolation; recall that interpolation is carried out 

considering the top of the interval as a horizontal datum. 

Parallel to the top, proportional and geological grid layering styles yield similar 

errors, with rankings differing depending on the interpolation method considered. For 

IK and IIDW the smallest errors are obtained by the proportional layering (Fig. 13B), 

whereas for IK-T the smallest error is obtained for the layering parallel to the top (Fig. 

13B). 

Based upon geological knowledge of the coal zone deposition and post-

depositional evolution of the basin (Cabrera et al., 1995; Ferrús, 1998; Santanach et al., 

2005) it is reasonable to consider the presence of post-depositional folded stratification 

in the central parts and in the northern active basin margins (Fig. 1 and 2); that makes 

the proportional and geological grid layering styles more appropriate (Fig. 12C and D). 

Differences in the geological and proportional layering are mostly limited to the 

southern passive basin margin, being geological layering the most realistic, because it 

reproduces the onlap typical of expansive zones like 6AW (Fig. 12D). 
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5.2. Interpolation method and searching conditions 

Fig. 15 shows facies reconstructions for the different interpolation methods. Fig. 

16 and 17 show CV results for the different interpolation methods and using different 

NN. Interpolation methods can be ranked based on the results for the more realistic 

geological and proportional grid layering styles (section 5.1). In nearly all cases, 

rankings are also valid for the other two grid layering styles (parallel to the base and 

parallel to top). Results can be summarized as: 

1) As expected (Herzfeld et al., 1993), CV smoothing increases as NN increases 

(Fig. 16). 

2) Truncated approach methods yield CV estimates with higher smoothing (71-

95%) than indicator approach methods (57-82%) (Fig. 16). 

3) CV errors show different patterns depending upon the interpolation method 

approach (Fig 16). Truncated approach methods yield more restricted errors (from 43% 

to 49%), than indicator approach methods (from 39 to 52%). 

4) Considering only truncated approach methods: a) for small NN (4-12), 

TISDW performs better than kriging-based methods (Fig. 17A); b) for intermediate NN 

(48), CV error for TISDW remains slightly smaller than kriging-based methods error, 

but the smoothing is greater (Fig. 17B); c) for large NN (192-288), kriging-based 

methods perform better than TISDW (Fig. 17C); and d) except for small NN, TK-T 

yield better results than TK (Fig 17). 

5) Considering only indicator approach methods: a) for small NN (4-12), 

kriging-based methods yield the smallest CV error, whereas the lowest smoothing 

correspond to IISDW (Fig. 17A); b) for intermediate to large NN (48-288), kriging-
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based methods have the lowest smoothing, whereas IISDW have the lowest CV error 

(Fig. 17B and 17C); and c) in all cases IK-T yields lower smoothing than IK, whereas 

CV error depend on the NN (Fig. 17), for low NN (4-12), CV error is smallest for IK-T; 

and for intermediate to high NN (48-288), CV error is smallest for IK. 

6) Indicator approach methods perform better than truncated approach methods 

(Fig. 16). Visual comparison also supports this result (Fig. 15); the facies distributions 

obtained with indicator methods appear more heterogeneous and realistic. 

5.3. Method robustness 

To study the sensitivity of the resultant facies reconstructions to variations in the 

method input parameters, four different anisotropy scenarios were compared: 1) the first 

scenario corresponded to an overestimation of horizontal variogram ranges by a factor 

of two, 2) the second scenario to the actual values measured from input data, 3) the third 

scenario to an underestimation by a factor of two, and 4) the fourth scenario to an 

underestimation by a factor of ten. No uncertainty in vertical variogram ranges was 

considered since it is usually well constrained by vertical wells. 

Fig. 18 and 19 show respectively facies reconstructions and CV results 

considering the different uncertainty scenarios. Only the results for indicator approach, 

kriging-based methods, assuming a geological and proportional layering, and using NN 

set to 48 are shown. Results for truncated approach methods and inverse distance-based 

methods are not presented due to their limited optimality (section 5.2). Intermediate NN 

(48) provides an optimum balance between visual results, CV error and smoothing 

effect (section 5.2 and 6.2).  
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Relatively small changes (scenario 1 and 3) to the anisotropy measured from 

well data  (scenario 2) do not significantly alter the appearance of resultant facies 

distributions (Fig. 18A, B and C). The only differences correspond to restricted 

variations in the facies continuity, with the first scenario yielding the most continuous 

results. Variations in facies continuity have a moderate impact on CV smoothing and 

CV error (Fig. 19); changes in the anisotropy are inversely proportional to smoothing 

and directly proportional to CV error. The fourth scenario provides visually different 

results (Fig. 18D). This scenario yields the lowest CV error, but at expenses of a higher 

smoothing and a non-realistic appearance. In all the uncertainty scenarios, IK-T yields 

lower CV smoothing than IK, but at expenses of a slight increase in CV error (Fig. 19). 

6. Discussion 

6.1. Grid layering style 

Layering was used to preset the surfaces along which facies should display 

larger continuity, and in this study demonstrated a critical influence on the resultant 

facies distributions appearance and realism (Fig. 12). Grid layering must be assumed 

and is only necessary when dealing with 3D geological properties. This assumption 

should be strongly supported by a previous geological knowledge of the bedding 

attitude. As has been shown, CV can be used to verify the idoneity of the definition of 

grid layering. 

6.2 Interpolation method and searching conditions  

Indicator approach methods rank as the optimum for facies interpolation of the 

6AW coal zone. Truncated approach methods produce the worst results; these methods 
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are based on simplifying facies distribution to a single variable. This simplification 

imposes: 1) continuous facies ordering, and 2) use of only one variogram or anisotropy 

factor to characterize spatial variability, with all facies sharing the same anisotropy (de 

Marsily et al., 1998). Truncated approach methods are useful mainly in depositional 

settings with a highly ordered facies distribution. On the other hand, indicator approach 

methods allow more flexibility in defining the spatial variability of each facies 

separately, but at the cost of an increase in the number of input parameters and the 

computing time roughly proportional to the number of facies considered. 

Results for different indicator approach methods are very similar. From the 

visual comparison (Fig. 15) it was difficult to choose an optimal method. Method 

ranking using CV results is very sensitive to changes in NN. IIDW is the most sensitive 

method to variations in NN (Fig. 16). Similar results have been reported for 

interpolation dealing with continuous variables (Weber and Englund, 1992 and 1994). 

IK and IK-T are also sensitive to NN, but their CV error and CV smoothing stabilise 

beyond and intermediate NN (NN = 48, Fig. 16). Therefore indicator approach kriging-

based methods were the preferred for facies interpolation (Fig. 17).  

One of the most important advantages of kriging-based methods with respect to 

simpler inverse distance-based methods is the ability to take into account the relative 

positions of sampling data in order to select an optimal weighting scheme. This 

advantage is more significant when intermediate to high NN are considered. In addition, 

if input data were more irregularly distributed, differences in performance between 

kriging-based methods and inverse distance-based methods would increase.  

An intermediate number of nodes (48) was chosen as an optimum compromise 

to minimize both CV error and smoothing effect (Fig. 16), and at the same time 
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obtaining a realistic facies distribution (Fig. 15). Using larger NN also implies a  

dramatically increase in computing time. 

IK-T does not yield significantly better CV results than IK despite the presence 

of marked non-stationary facies distributions (i.e. areal trends). This agrees with results 

by Journel and Rossi (1989) dealing with a continuous variable. These authors stated 

that when interpolating using a limited NN, explicitly considering a trend does not 

significantly improve results obtained without explicitly considering the trend. This 

happens because in the latter case the trend is implicit when using a limited NN. 

Explicitly considering a trend proves more useful for extrapolation. In our study, the use 

of a trend with intermediate to large NN values (NN over 48) results in a diminution of 

CV smoothing, but at the expenses of a slight increase in CV error. The diminution of 

smoothing effect produced by the IK-T makes us consider it the optimum method for 

facies interpolation. The slight increase in CV error when explicitly using the trend 

agrees with the results by Zimmermann et al. (1999) dealing with a complex continuous 

variable. 

6.3. Method robustness 

Moderate errors in the determination of anisotropy (up to an overestimation or 

underestimation by a factor of two) do not significantly alter the results, confirming the 

robustness of the interpolation method. Large errors in the determination of anisotropy, 

particularly when corresponding to an underestimation, cause a large impact on the 

geological realism of the resultant facies distribution. However, such large errors are not 

likely to occur because interpolation is considered useful only when dense well data 

coverage is available, permitting a reasonable approximation to anisotropy. Hard data is 

the most important input for conditioning interpolation results. 
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6.4 The resulting 3D facies reconstruction 

Once an optimum and robust 3D facies interpolation strategy was determined 

(IK-T using NN set to 48 and a geological grid layering style), the resultant 3D facies 

reconstruction was analysed. This reconstruction (Fig. 20A) allows a better 

understanding of spatial and geometrical relationships of facies (vertical and lateral 

changes, lateral continuity, coal seam splitting, etc). 

The interaction between alluvial fans and the mire and lacustrine zones was the 

main factor controlling the areal development of the 6AW coal seam and the seam 

splitting by siliciclastic inputs. The areal distribution of the main environments in the 

coal zone (distal alluvial fan, marsh, swamp and lacustrine) varied during its deposition. 

These variations depended on the balance between allogenic factors (climate, tectonics 

and the resulting water and detritic inputs), as well as on the autogenic alluvial fan and 

mire evolution (Cabrera et al., 1995; Ferrús, 1998). 

AM facies deposited in the distal and marginal zones of the alluvial fans that 

spread into the basin from its margins. Consequently this facies fringes the seam 

boundaries, particularly in the northern and eastern active basin margins, where small, 

fine-grained dominated alluvial fans developed related to tectonic structures (Fig. 1D 

and Fig. 20A). AM facies interfinger and even spread into the inner coal seam zone, 

causing its splitting. The 3D facies reconstruction allows us to recognize and trace these 

splitting zones precisely. This analysis is a powerful previous step to the accurate 

prediction and evaluation of the coal/mudstone rate changes that often occur as mining 

advances (Fig. 20A). 

LM facies occur as isolated pods scattered along some marginal basin zones  

(Fig. 20A). The development and persistence of the small lakes where LM facies 
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deposited was probably favoured by a larger subsidence/sedimentation rate produced 

along the northern and eastern tectonic basin margins. However, their occurrence along 

the non-tectonically active southern margin also suggests the influence of other factors 

not yet fully understood. The resulting 3D reconstruction shows the occurrence of these 

coal barren zones that must be preventively considered during mining operations. 

DBC facies makes up most of the coal seam and constitutes the dominant 

background. DBC beds are thick and laterally extensive and may spread all over the 

extent of the seam zone (Fig. 20A). PBC facies are a less important component in the 

seam zone. This facies often makes up laterally extensive but lenticular bodies that are 

embedded in the DBC dominated sequences. Exceptionally thick and persistent, 

laterally more restricted PBC sequences appear in the northeastern basin margin (Fig. 9 

and 20A), which corresponds to one of the most subsiding areas during deposition of 

6AW. The shallow subaqueous conditions suitable for deposition of PBC facies would 

developed persistently in this notheastern margin (where PBC attains its maximum 

thickness), and in some of the inner parts of the seam, far away from the detritic inputs 

that filled up the aquatic zones and prevented aquatic peat accumulation. The limited 

horizontal continuity of PBC facies is revealed by the 3D reconstruction and agrees well 

with the relatively small horizontal indicator variogram range (Fig. 8B). The XBC 

facies appears even as more randomly distributed than DBC and PBC and make up 

laterally restricted and mostly thin bodies (Fig. 20A). This conspicuous random 

distribution pattern accords well with the environmental conditions and processes that 

resulted in its deposition. 

It is not possible to establish an obvious basinwide sequence evolutionary trend 

considering the relative DBC, PBC and XBC facies succession and development. In fact 

the local sequence evolutionary patterns are quite diverse in the different basin zones. 
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From this point of view the obtained 3D reconstruction arises as a powerful tool to 

capture the diverse facies distribution and the local variations of the facies-related coal 

properties (see section 6.5).  

6.5. Interpolation of coal quality properties based on the 3D facies reconstruction 

The facies reconstruction was also applied as a template to improve the realism 

and accuracy of coal quality property interpolations; this makes sense only when these 

properties depend at some extent on the facies category. In the case of the 6AW coals, a 

relationship between facies and calorific value (on a dry base) (Fig. 3A), and facies and 

total sulphur percentage (on a dry base) was observed (Fig. 3B).  

Calorific value and total sulphur percentage interpolations were carried out using 

kriging with NN set to 48 and assuming a geological grid layering style. Two different 

interpolation strategies were compared: 1) interpolating the measured values of coal 

properties directly, without using facies as a template; and 2) interpolating facies and 

using the interpolated facies as a template to interpolate the values of the coal properties 

(i.e. taking into account the interpolated facies distribution in order to restrict averaged 

data points to those neighbours belonging to the same facies, Fig. 20B and C). Cross 

sections of the 3D interpolations are presented in Fig. 21 and 22. CV was used to 

quantitatively discriminate which strategy provides the most accurate coal property 

interpolations. When considering facies as a template two options were compared: a) 

using also cross-validated facies, and b) considering facies in the cross-validated well as 

already known. 

The interpolations using facies as a template provide better CV results than the 

interpolations obtain without using facies (Table 2). Results using facies as a template 
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yield the lowest differences between the true mean and the interpolated distribution 

mean (conditional bias) and the true standard deviation and interpolated standard 

deviation (smoothing). Results using facies as a template also yield the lowest mean 

absolute error and relative mean absolute error (accuracy). CV results considering 

already known facies in the cross-validated wells are even better than the CV results 

using also cross-validated facies. The lower relative mean absolute errors yielded by 

calorific value respect to sulphur percentage (Table 2) is related to the fact that calorific 

value is better correlated to facies than sulphur, which is highly influenced by other 

factors (i.e. amount of sulphate inputs and redox conditions in each subbasin zone). 

7. Conclusions 

1) 3D interpolation permits the correlation of facies in a large number of wells. 

This technique proves to be useful when facies distribution is reasonably well captured 

by dense well data coverage. 

2) Visual appearance and cross validation (CV) results prove to be valid tools to 

compare and rank different categorical property interpolation strategies and input 

parameter uncertainty scenarios. CV error is affected by the interpolation smoothing and 

tends to decrease as the smoothing increases. 

3) The optimal and most robust facies interpolation strategy for the chosen case 

study (6AW coal seam zone, As Pontes basin) is indicator kriging with an areal trend 

(IK-T), using a number of data points averaged to obtain each estimate (NN) set to 48, 

and using a geological grid layering style.  

4) An accurate definition of the grid layering style, based on a priori geological 

knowledge, prove very important to generate realistic facies reconstructions. 
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5) The indicator approach methods provide visually similar facies distributions. 

Results of indicator kriging (IK) are slightly less robust to variations in the input 

method parameters than results of IK-T, and indicator inverse squared distance results 

are more sensitive to variations in searching conditions than IK and IK-T. Truncated 

approach methods yield the worst results.  

5) Smoothing effect increases with NN; intermediate NN values provide an 

optimum compromise between CV error, CV smoothing and computing time. 

7) 3D interpolations provide a useful representation of facies distribution, which 

enables a better understanding of spatial and geometrical aspects of facies distribution in 

the coal seam zone. 

8) As sulphur percentage and calorific value depend at some extent on coal 

facies, 3D facies reconstructions enables a more accurate interpolation of these 

properties. 

9) This work demonstrates how 3D facies reconstructions are suitable and 

advisable for optimising coal exploration and mining in extensively drilled and 

sampled, thick and heterogeneous coal seam zones. Such reconstructions would help in 

planning selective mining according to the facies distribution and their related 

properties. 
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Figure Captions 

Figure 1. Geological setting and characteristics of the As Pontes basin. (A) Location of 
the As Pontes basin. (B) Geological map of the basin showing the main tectonic 
structures that affect the basement. Note the strike-slip fault and associated thrusts, 
which bound the northern basin margin; the N–S oriented normal faults and the E–W 
and NE–SW oriented thrusts. (C) Longitudinal sketch of the basin showing the main 
stratigraphic units, sedimentary facies and basement structures (see arrows for location 
on 1B), notice the stratigraphic position of the 6AW coal zone. (D) Paleogeographic 
sketches of the basin during deposition of the 6A interval. 

Figure 2. Well location in the studied part of 6AW zone. Location of the NW-SE 
reference section that is used as an example in Figures 4, 12, 15, 18, 21 and 22 is 
shown. Coordinates in the lower left frame are in kilometres. See Figure 1B and 1D for 
structural details. 

Figure 3. Relative frequency of calorific values (A) and sulfur percentages (B) in the 
three major coal facies in the 6AW coal seam zone. Plotted information corresponds to 
the core data upscaled to the size of grid cells. These were computed biased to the facies 
logs and assuming a geological layering (see section 5.1). Upscaled data (see section 
3.3) are close to the original because of the fine grid used. Original data consisted in 
more than 2500 analyses (513 in PBC, 1840 in DBC, and 227 in XBC) for each 
property. 

Figure 4. Reference section showing the different grid layering styles used for facies 
interpolations. See location of the section in Figure 2. Note that only one tenth of the 
grid layers is shown as reference. Vertical exaggeration 10x. 

Figure 5. Standardized variograms for the transformed Gaussian property. Grey dots 
and dashed curves correspond to the experimental variograms derived from upscaled 
well data. No significant differences were observed in the experimental variograms 
derived from the four different grid layering styles. Continuous curves correspond to the 
theoretical model fitted (Hr and Vr stands for horizontal and vertical variogram ranges 
respectively):  

γ(h) = 0.6·Exp (Hr  = 500m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m). 

Figure 6. Areal trend derived from the interpolation of averaged values of the 
continuous property values along each well. The different shades reflect the average 
facies along each well. A clear non-stationary facies distribution is shown. Higher 
values are located predominantly near the basin margins (specially in the northern) 
where facies AM dominates. Intermediate-low values occur in the centre of the coal 
zone where facies DBC dominates. The lower values are restricted to some zones with 
dominance of facies PBC and LM. 

Figure 7. Standardized variograms for the residual of the transformed continuous 
Gaussian property. Grey dots and dashed curves correspond to the experimental 
variograms derived from upscaled well data. No significant differences were observed 
in the experimental variograms derived from the four different layering styles. 



 36

Continuous curves correspond to the theoretical model fitted (Hr and Vr stands for 
horizontal and vertical variogram ranges respectively):  
γ (h) = 0.6·Exp (Hr = 400m, Vr = 1.4m) + 0.4·Exp (Hr= 100m, Vr =3m). 

Figure 8. Non-standardized indicator variograms assuming a geological layering. Grey 
dots and dashed curves correspond to the experimental variograms derived from 
upscaled well data. No significant differences were observed in the experimental 
variograms derived from the four different layering styles. Continuous curves 
correspond to the theoretical models fitted (Hr and Vr stands for horizontal and vertical 
variogram ranges respectively):  
γ (h) LM  =  0.018·Exp (Hr = 500m, Vr = 1.4m) + 0.012·Exp (Hr = 100m, Vr =3m).  
γ (h) PBC = 0.063·Exp (Hr = 200m, Vr = 1.4m) + 0.042·Exp (Hr = 100m, Vr =3m).  
γ (h) DBC = 0.150·Exp (Hr = 500m, Vr = 1.4m) + 0.100·Exp (Hr = 100m, Vr =3m).  
γ (h) XBC = 0.039·Exp (Hr = 300m, Vr = 1.4m) + 0.026·Exp (Hr = 100m, Vr =3m).  
γ (h) AM  =  0.113·Exp (Hr = 700m, Vr = 1.4m) + 0.076·Exp (Hr = 100m, Vr =3m). 

Figure 9. Areal trends for each indicator property derived from the interpolation of 
averaged values along each well. The maps correspond to the areal proportions of each 
facies. Note the difference in the range of the greyscale among the different facies. 

Figure 10. Standardized variograms for the residual of the indicator properties, 
assuming a geological layering. Grey dots and dashed curves correspond to the 
experimental variogram derived from upscaled well data. No significant differences 
were observed in the experimental variograms derived from the four different layering 
styles. Continuous curves correspond to the theoretical models fitted (Hr and Vr stands 
for horizontal and vertical variogram ranges respectively):   
γ (h) LM    =  0.6·Exp (Hr = 500m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).  
γ (h) PBC  =  0.6·Exp (Hr = 200m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).  
γ (h) DBC =  0.6·Exp (Hr  = 500m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).  
γ (h) XBC =  0.6·Exp (Hr = 300m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m).  
γ (h) AM   =  0.6·Exp (Hr = 700m, Vr = 1.4m) + 0.4·Exp (Hr = 100m, Vr =3m). 

Figure 11. (A) Relationship between DBC proportion predicted by CV and by the 
interpolation along the entire grid. Results shown correspond to a geological grid 
layering style and NN set to 48. (B) CV errors and smoothing using randomly generated 
unconditioned facies estimates, each line corresponds to a different grid layering style 
and was generated through the linear regression of the results for 100 realizations with 
varying DBC proportion, correlation factor (R2) was in all cases above 0.99. 

Figure 12. Reference section showing facies distribution obtained by using different 
grid layering styles. In all frames the interpolation method used was indicator kriging 
with an areal trend (IK-T) and NN set to 48. See location of the section in Figure 2. 
Arrows indicate the position of intersected wells. Vertical exaggeration 10x. 

Figure 13. (A) Relationship between DBC proportion predicted by CV (smoothing 
effect) and CV error for the different grid layering styles tested. Only results for 
indicator approach methods and NN set to 48 are shown; results for truncated approach 
methods are not presented due to their limited performance (section 5.2), intermediate 
NN (48) provided a good balance between visual results, CV error and smoothing 
(section 5.2). (B) Relationship between smoothing effect, and CV error divided by the 
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CV error obtained with total smoothing (DBC facies proportion at 100%, i.e. mean 
mapping). 

Figure 14. Relationship between the original upscaled DBC proportion and the CV 
error using facies estimates with total smoothing (DBC facies proportion at 100%, i.e. 
Mean mapping) for the different grid layering styles. 

Figure 15. Reference section showing facies distribution obtained by using different 
interpolation methods assuming a geological grid layering style. In all cases NN was set 
to 48. See location of the section in Figure 2. Arrows indicate the position of intersected 
wells. Vertical exaggeration 10x. 

Figure 16. Relationship between DBC proportion predicted by CV (smoothing effect) 
and CV error for each interpolation method compared, considering geological (A) and 
proportional (B) grid layering styles. Results for different NN (4, 12, 24, 48, 96, 192 
and 288) are shown. 

Figure 17. Relationship between DBC proportion predicted by CV (smoothing effect) 
and CV error for each interpolation method compared, geological and proportional grid 
layering styles, and different NN set ups: 12 (A), 48 (B) and 192 (C). 

Figure 18. Reference section showing facies distribution obtained by changing 
horizontal variogram ranges. In all frames the interpolation method used was indicator 
kriging with an areal trend (IK-T) and NN was set to 48. See location of the section in 
Figure 2. Arrows indicate the position of intersected wells. Vertical exaggeration 10x 

Figure 19. Relationship between DBC proportion predicted by cross validation CV 
(smoothing effect) and CV error for each scenario of horizontal variogram range 
uncertainty. 

Figure 20. Fence diagrams viewed from the S showing 3D reconstructions of the 6AW 
zone. (A) Facies reconstruction using IK-T (NN set to 48 and a geological grid layering 
style). (B) Interpolation of calorific values using the facies distribution as a template. 
(C) Interpolation of total sulphur percentages using the facies distribution as a template. 
Vertical exaggeration 10x. See Figure 21 and 22, and supplementary material for further 
detail. 

Figure 21. Reference section showing calorific value interpolations without using facies 
distribution as a template (A) and using facies distribution as a template (B). See 
location of the section in Figure 2. Arrows indicate the position of intersected wells. 
Vertical exaggeration 10x. 

Figure 22. Reference section showing total sulphur percentage interpolations without 
using facies distribution as a template (A) and using facies distribution as a template 
(B). See location of the section in Figure 2. Arrows indicate the position of intersected 
wells. Vertical exaggeration 10x. 
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Table Captions 

Table 1: Classification of the interpolation methods compared. This classification is 
based on the approach to deal with the categorical property, the weighting criteria and 
the inclusion of trends. 

Table 2: Cross validation results for calorific value (dry basis) (a) and total sulphur 
percentage (dry basis) (b). See text for related discussion 

Supplementary Material 

Facies_IK-T_Geo_NN48.wrl file: virtual reality file with 3D view in Figure 20A 

PCAdb_using facies.vrl file: virtual reality file with 3D view in Figure 20B 

SULdb_using facies.wrl: virtual reality file with 3D view in Figure 20C 

corvrml.exe file: executable file with the Cortona VRML Client (by Parallel 

Graphics©) for navigating .vrl files with Internet Explorer 


