REVERSE CARLESON MEASURES IN HARDY SPACES
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ABSTRACT. We give a necessary and sufficient condition for a measure y in the closed unit disk
to be a reverse Carleson measure for Hardy spaces. This extends a previous result of Lefevre,
Li, Queffélec and Rodriguez-Piazza [LLQR]. We also provide a simple example showing that the
analogue for the Paley-Wiener space does not hold. As it turns out the analogue never holds in
any model space.

1. INTRODUCTION

For 1 < p < oo let H? be the Hardy space on the unit disk D equipped with its usual norm

2T ] do 1/p
— 0y|p 7 )
111 = (s [ 1rveye 57)

Denote by M, (D) the set of positive, finite Borel measures supported on D, and let n € M, (D).
A well known theorem by Carleson (see [Gar, Chap.I Th. 5.6]) states that /” embeds into
LP(D, p): there exists C' > 0 such that

(1.1) [ llze@y < Cllflle,  f € H,
if and only if 1 satisfies the Carleson condition: there exists C' > 0 such that for all arcs I in 0D
(1.2) u(Sr) < Ol

where S; = {z € D: 1 — |I| < |z| < 1,2/|z| € I} is the usual Carleson window. This theorem
has been extended to several other spaces, like Bergman, Fock, model spaces etc., and we refer
the reader to the huge bibliography on this topic for further information.

Note that H” contains a dense set of continuous functions for which the embedding (1.1) still
makes sense when the measure has a part supported on the boundary. Then (1.2) implies that
the restriction of the measure p to the boundary has to be absolutely continuous with respect to
Lebesgue measure and with bounded Radon-Nikodym derivative. It is thus possible to consider,

more generally, positive, finite Borel measures supported on the closed unit disk: M (D).

Here, we are interested in reverse Carleson inequalities || f||, < C||fll;»g,). f € C (D) N
HP(D), 1 < p < oo. In [LLQR] Lefevre et al. proved that when p is already a Carleson measure
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these hold if and only it there exists C' > 0 such that for all arcs I C D
w(Sr) = C1|.

We will show that this result can be deduced from a well-known balayage argument which
does not require the Carleson condition. It will be clear from this argument that we have a
reproducing kernel thesis for the reverse embedding: if the embedding holds on the reproducing
kernels, then it actually holds for every function.

It turns out that the interesting part of the measure has to be supported on the boundary, while
the part supported in the disk can be dropped.

Finally, we provide a simple example showing that the analogous reproducing kernel thesis
for the reverse embedding in the Paley-Wiener space does not hold. We will actually show that
the reproducing kernel thesis for the reverse embedding never holds in any model space. In a
previous version of this work, the construction valid in the Paley-Wiener space was generalized
to the situation of so-called one-component inner functions. We are very grateful to Anton Bara-
nov who suggested the shorter proof presented below and which gives the result in general model
spaces.

We shall use the following standard notation: f < ¢ means that there is a constant C' indepen-
dent of the relevant variables such that f < C'g, and f ~ g means that f < gand g < f.

2. MAIN RESULT

For 1 < p < oo and A € D consider the reproducing kernel in H?

ka(z) = = zeD,

and its normalized companion
kx

A=

1EAllp
A standard computation shows that ||k, ||, =~ (1 — |A|)~Y/%, where 1/p + 1/p' = 1.
Our main result reads as follows.

Theorem 2.1. Let 1 < p < oo and let up € M, (D). Then the following assertions are equivalent:

(1) There exists Cy > 0 such that for every function f € HP N C(D),

[ = e,
D
(2) There exists C'y > 0 such that for every \ € D,

1= ¢,

D

(3) There exists C5 > 0 such that for every arc I C 0D,
1(S1) = Gs|I].

(4) There exists Cy > 0 such that the Radon-Nikodym derivative of ji|sp with respect to the
length measure is bounded below by C|.
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The key implication of the above result if of course (2) = (3) which is based on a balayage
argument.

Observe that in this theorem we do not require absolute continuity of the restriction p|sp.
Still, if we want to extend (1) to the entire HP-space, then, in order that fﬁ | f|Pdp makes sense
for every function in H?, we need to impose absolute continuity on z|gp. Note that the integral
J5 | fIPdp can be infinite for certain f € H? when the Radon-Nikodym derivative of f[sp is not
bounded.

Proof. (1) = (2) is clear.

(3) = (4). Take h > 0 so that ||/h is a large integer N and consider the modified Carleson
window
Sin={2€D:1-h<|2| <1, z/|]z| € I}.
Split [ into NV subarcs [}, such that |I;| = h (and hence Sy, ,, = Sr,). Then

N N
1(Srp) = U Spen) =Y _u(Sin) > Cs > | I = CslI.
k=1 k=1

Now, for every open set O in D for which I C O there exists h > 0 such that S;;, C O. Since
w € M, (D7) is outer regular (see [Ru, Theorem 2.18]) we thus have

p(I) = inf p(0) 2 }LI;%M(SI,h) > C3I|.

ICO openinD

We deduce that the Lebesgue measure on JD, denoted by m, is absolutely continuous with
respect to the restriction of 1 to D and that the corresponding Radon-Nikodym derivative of 1
is bounded below by C's. In particular one can choose Cy = C.

(4) = (1) Clearly, for all f € H?,

/ Pdu > / FPdu = Cy / flrdm = Cul £
D oD oD

(in particular, one can choose C'; = C}).

(2) = (3). Observe that when p = 2, then |K(2)|? is nothing but the Poisson kernel, for
which the arguments below are very transparent. Let us however do the argument for general p.
By hypothesis, integrating over S;;, with respect to area measure dA on D we get

(1 — | A2/
ColI| x h < | K\|Pdp dA(A ————dA\)du(z).
Sin /D S1h 11— )‘Z|p

Set
1 1 — [AP2)p 1 1—|A2)Pt
=5 [ (L= A dA()\):—/ A=A A,
h St.n ’1 - )‘Z|p h St ‘1 - )‘Z’p
so that the previous estimate becomes
@ [ en@)dut) 2 111
D

We claim that B
{ ~1 ifzel,

lim ¢,(2) =0 otherwise.

h—0
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Indeed, if = ¢ 1, then there are 6, hy > 0 such that for every 0 < h < hg and for every A\ € Sy,
we have |1 — A\z| > & > 0, and the result follows from the estimate
LIl xh

O<g0(z):l/ md/l(/\)<_ (Qh)p_1<hp_1
= hls, [L— Az =3 h ~

Suppose now that z = ¢ € I. Let h < |I|, then setting A = (1 — t)ei‘9 for A € Sy, we have

1 (1= 1 / /
_ 1 1 — 1)dtdd
on(2) h/ T et Jo T 1—t> 1)
7 / _
> 2 P e
hJo Jio—ooi<teiver |0 — OolP + P

1 [h =1
> 1 / / P t6dt.
h Jo Jig—6o<tever 2tP

Since 0 <t < h < |I|and z = " € I, the set {¢ : |§ — 6y| < t,e” € I} contains an interval
of length at least ¢ /2, we get

On the other hand, integrating in polar coordinates, we get

1 (1= AP 1 /1 2 1/ 1
= — ———dA(\) = — 1—ro)P . dOrd
A2 h/ TS Y AR AT DT

1 h
< —/ P~ —dt ~ 1.
h Jo tp/p’

Hence ¢}, converges pointwise to a function comparable to x7, and ¢y, is uniformly bounded in
h. Now, from (2.1) and by dominated convergence we finally deduce that

u = [ = [ i enGlauz) = Jim [ onGlauz) 2111

Remark. The following example shows that the reproducing kernel thesis fails for the reverse
Carleson inequalities in the Paley-Wiener space PV, the space of Fourier transforms of square
integrable functions on [—m, 7r|. In Section 2 we will show how it can be adapted to any model
space.

Consider the sequence S = {;, }nez\ (0}, Where
n+1/8 ifniseven
Ty = . .
n—1/8 if nisodd.

By the Kadets-Ingham theorem (see e.g. [Nik, Theorem D4.1.2]) S would be a minimal sampling
sequence if we added the point 0. Since S is not sampling the discrete measure 4 := ) £0 Ox,

does not satisfy the reverse inequality || f||r2w) S || fllr2(n), f € PWh.
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Let us see that, on the other hand, the x-norm of the normalized reproducing kernels
sin(m(z — A))
w(z—A)

is uniformly bounded from below. If X is such that | Im A\| > 1 then |sin(7 (2, — \))| = ™ ™A

and hence
24 9 2 N | Tm | N
[P = 3 S P e}

It is thus enough to consider points A € C with |Im A| < 1. Let x,,, be the point of .S closest to
A; then there is § > 0, independent of \, such that

[ @Paute) = Y [ =
C n#0
It is interesting to point out that x4 is a Carleson measure for PW,, since S is in a strip and
separated.

Ky(z) = cysinc(m(z — A)) = ¢y 2~ (14 |Im A|)e 2 m A

sin(m(z, — \))
(T, — A)

2
>0 .

sin(m(zp, — A))
Tr(mno - /\)

3. FAILURE IN GENERAL MODEL SPACES

The previous construction can be generalized to certain model spaces in the disk. The model
space associated to an inner function © is Ko = H? © © H?, and the reproducing kernel corre-
sponding to A € D is given by

0 L= O0IeE)

— , ze€D.
1— XAz

If © is a finite Blaschke product of degree strictly bigger than one, picking for instance p = d
we immediatly get the reverse inequality on reproducing kernels (see (3.1)). Clearly p is Car-
leson, and since the degree of © is not one, we can combine two linearly independent functions
of Ko vanishing at 0.

In the general case we need to construct a measure supported on T.
Theorem 3.1. Let © be an inner function which is not a finite Blaschke product. Then there

exists a measure . on T such that Kg C L?(u), the measure y satisfies the reverse estimate on
reproducing kernels k2,

(3.1) 122 = CllkR ]2, A €D,

but the reverse Carleson embedding for the space Kg does not hold.

Proof. Let us first assume that © vanishes at 2y = 0, and let © = 20,. Denote by u the Clark
measure for O, that is y is defined by

1+ 69(2) 1— |2

Re——= [ ———d )
o e

Clark introduced these measures in [Cl]. Observe first that K¢ = C & 2K, which implies that

Ko C LQ(,M). Continuous functions are dense in K¢ (see [Al3] or [CMR, p.187]) and functions
in Kg are pu-measurable (see [P]). In particular, if we had reverse embedding on continuous
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functions then we would have it on the whole space Kg. It is thus sufficient to find a non-zero
function f € Kg with zero L?(p)-norm. To this end, pick f(z) = 1 — ©(z) which belongs to
Ke. Clearly f = 0 p-a.e, so that [ | f]*dp = 0.

Let us show that (3.1) is satisfied. Any reproducing kernel £ has representation as the (or-
thogonal) sum
kS (2) = k{0 (2) + ©o(N)Oy(2),
and
K113 = 1550113 + [©0 (V).
In particular,
1/2
- N 22 < RS z2g + (1(T))

Also, since i is a Clark measure for Kg,, we have

A Nz2ay = NER°[l2-

Thus, we clearly have

1/2 1/2
kS 1220 = 1A 22y — (D)7 2 K Nle = 1 = (u(T)) " = SIS ]2

DO | —

for A such that || k9|l > 2(1 + (u(T))"?).

Assume that there exists a sequence A, such that ||k ||» < 2(1 + (M(T))l/z) and (3.1) does
not hold for \,, with any positive C'. Since the norms of the kernels are supposed bounded on A,
this implies that

Hk?ﬂ HLQ(M) — 0.
Passing if necessary to a subsequence we may assume that \,, — )\, and it follows from the fact
that the norms ||k ||» are uniformly bounded that even in the case when A\, € T we still have that
the kernel k:?o is correctly defined and belongs to Kg. Then, by the Fatou lemma, we have that

155 |12 = 0. Hence, 1 — ©(X)O(z) = 0 p-a.e. But ©g(z) = 1 p-a.e. Thus, 1 — O(Ag)z =0
p-a.e. z, which is impossible if the support of 1 contains at least two points (but it does, since
Oy is not a single Blaschke factor).

Let us now discuss the situation when © does not vanish at 0. For a = ©(0), the Frostman
shift

_ O(2)—a
Ou(z) == 1360

has a zero at 0. By the above discussions, there is a measure i, such that Ko, C L*(p,), the
reverse estimate holds on the kernels:

(3.2) 1S 22y = ClNES N2 A €D,
and there is a non zero function f; € Ke, with | fo||z2(.,) = 0. Recall that the Crofoot transform

U§ : Ke — Ko, defined by
a _V - ’G|2

is isometric onto Ko, . An easy computation gives
©a _
kS = Udlcaphl), A €D,



where
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1—lal?
Co) = ——————.
“A T 1 —ae(n)

Setting now

(o) = [yl

(which is well defined since |a| < 1), we have for every f € Ko,

Nl z2(w) = 1USf |22 (ua)-

Using (3.2) and the isometry property of the Crofoot transform, we get

ClIkSll2 = CIUSKS |l2 < 1USKS llz2uay = 163l 220,

and so p satisfies (3.1). We also have the Carleson measure condition for this measure: for every

fe€Ke

Iflle = 1U8fll2 2 NU8F Nl 2y = [[F1l z2-

Finally, since there is 0 # fo € Ke, with || fo||12(.,) = O, take the unique 0 # gy € Kg with
Udgo = fo, then

llgollz2 ) = 1US90ll L2(u) = I follL2(ua) = O
[ |

Note that the above proof actually works for finite Blaschke product with degree at least 3.
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