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ABSTRACT. We give a necessary and sufficient condition for a measure µ in the closed unit disk
to be a reverse Carleson measure for Hardy spaces. This extends a previous result of Lefèvre,
Li, Queffélec and Rodrı́guez-Piazza [LLQR]. We also provide a simple example showing that the
analogue for the Paley-Wiener space does not hold. As it turns out the analogue never holds in
any model space.

1. INTRODUCTION

For 1 ≤ p <∞ let Hp be the Hardy space on the unit disk D equipped with its usual norm

‖f‖p =

(
sup
r<1

∫ 2π

0

|f(reiθ)|p dθ
2π

)1/p

.

Denote by M+(D) the set of positive, finite Borel measures supported on D, and let µ ∈M+(D).
A well known theorem by Carleson (see [Gar, Chap.I Th. 5.6]) states that Hp embeds into
Lp(D, µ): there exists C > 0 such that

‖f‖Lp(D,µ) ≤ C‖f‖p, f ∈ Hp,(1.1)

if and only if µ satisfies the Carleson condition: there exists C > 0 such that for all arcs I in ∂D

µ(SI) ≤ C|I|,(1.2)

where SI = {z ∈ D : 1− |I| ≤ |z| ≤ 1, z/|z| ∈ I} is the usual Carleson window. This theorem
has been extended to several other spaces, like Bergman, Fock, model spaces etc., and we refer
the reader to the huge bibliography on this topic for further information.

Note that Hp contains a dense set of continuous functions for which the embedding (1.1) still
makes sense when the measure has a part supported on the boundary. Then (1.2) implies that
the restriction of the measure µ to the boundary has to be absolutely continuous with respect to
Lebesgue measure and with bounded Radon-Nikodym derivative. It is thus possible to consider,
more generally, positive, finite Borel measures supported on the closed unit disk: M+(D).

Here, we are interested in reverse Carleson inequalities ‖f‖p ≤ C‖f‖Lp(D,µ), f ∈ C(D) ∩
Hp(D), 1 < p <∞. In [LLQR] Lefèvre et al. proved that when µ is already a Carleson measure
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these hold if and only it there exists C > 0 such that for all arcs I ⊂ ∂D
µ(SI) ≥ C|I|.

We will show that this result can be deduced from a well-known balayage argument which
does not require the Carleson condition. It will be clear from this argument that we have a
reproducing kernel thesis for the reverse embedding: if the embedding holds on the reproducing
kernels, then it actually holds for every function.

It turns out that the interesting part of the measure has to be supported on the boundary, while
the part supported in the disk can be dropped.

Finally, we provide a simple example showing that the analogous reproducing kernel thesis
for the reverse embedding in the Paley-Wiener space does not hold. We will actually show that
the reproducing kernel thesis for the reverse embedding never holds in any model space. In a
previous version of this work, the construction valid in the Paley-Wiener space was generalized
to the situation of so-called one-component inner functions. We are very grateful to Anton Bara-
nov who suggested the shorter proof presented below and which gives the result in general model
spaces.

We shall use the following standard notation: f . g means that there is a constant C indepen-
dent of the relevant variables such that f ≤ Cg, and f ' g means that f . g and g . f .

2. MAIN RESULT

For 1 < p <∞ and λ ∈ D consider the reproducing kernel in Hp

kλ(z) =
1

1− λz
, z ∈ D,

and its normalized companion

Kλ :=
kλ
‖kλ‖p

.

A standard computation shows that ‖kλ‖p ' (1− |λ|)−1/p′ , where 1/p+ 1/p′ = 1.

Our main result reads as follows.

Theorem 2.1. Let 1 < p <∞ and let µ ∈M+(D). Then the following assertions are equivalent:

(1) There exists C1 > 0 such that for every function f ∈ Hp ∩ C(D),∫
D
|f |pdµ ≥ C1‖f‖pp ,

(2) There exists C2 > 0 such that for every λ ∈ D,∫
D
|Kλ|pdµ ≥ C2 ,

(3) There exists C3 > 0 such that for every arc I ⊂ ∂D,

µ(SI) ≥ C3|I| .
(4) There exists C4 > 0 such that the Radon-Nikodym derivative of µ|∂D with respect to the

length measure is bounded below by C4.
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The key implication of the above result if of course (2) =⇒ (3) which is based on a balayage
argument.

Observe that in this theorem we do not require absolute continuity of the restriction µ|∂D.
Still, if we want to extend (1) to the entire Hp-space, then, in order that

∫
D |f |

pdµ makes sense
for every function in Hp, we need to impose absolute continuity on µ|∂D. Note that the integral∫
D |f |

pdµ can be infinite for certain f ∈ Hp when the Radon-Nikodym derivative of µ|∂D is not
bounded.

Proof. (1)⇒ (2) is clear.

(3)⇒ (4). Take h > 0 so that |I|/h is a large integer N and consider the modified Carleson
window

SI,h = {z ∈ D : 1− h ≤ |z| ≤ 1, z/|z| ∈ I} .
Split I into N subarcs Ik such that |Ik| = h (and hence SIk,h = SIk). Then

µ(SI,h) = µ(
N⋃
k=1

SIk,h) =
N∑
k=1

µ(SIk,h) ≥ C3

N∑
k=1

|Ik| = C3|I|.

Now, for every open set O in D for which I ⊂ O there exists h > 0 such that SI,h ⊂ O. Since
µ ∈M+(D−) is outer regular (see [Ru, Theorem 2.18]) we thus have

µ(I) = inf
I⊂O open in D

µ(O) ≥ inf
h>0

µ(SI,h) ≥ C3|I|.

We deduce that the Lebesgue measure on ∂D, denoted by m, is absolutely continuous with
respect to the restriction of µ to ∂D and that the corresponding Radon-Nikodym derivative of µ
is bounded below by C3. In particular one can choose C4 = C3.

(4)⇒ (1) Clearly, for all f ∈ Hp,∫
D
|f |pdµ ≥

∫
∂D
|f |pdµ ≥ C4

∫
∂D
|f |pdm = C4‖f‖pp

(in particular, one can choose C1 = C4).

(2) ⇒ (3). Observe that when p = 2, then |Kλ(z)|2 is nothing but the Poisson kernel, for
which the arguments below are very transparent. Let us however do the argument for general p.
By hypothesis, integrating over SI,h with respect to area measure dA on D we get

C2|I| × h ≤
∫
SI,h

∫
D
|Kλ|pdµ dA(λ) '

∫
D

∫
SI,h

(1− |λ|2)p/p
′

|1− λz|p
dA(λ)dµ(z).

Set

ϕh(z) =
1

h

∫
SI,h

(1− |λ|2)p/p
′

|1− λz|p
dA(λ) =

1

h

∫
SI,h

(1− |λ|2)p−1

|1− λz|p
dA(λ),

so that the previous estimate becomes

(2.1)
∫
D
ϕh(z)dµ(z) & |I| .

We claim that

lim
h→0

ϕh(z)

{
' 1 if z ∈ I,
= 0 otherwise.
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Indeed, if z /∈ I , then there are δ, h0 > 0 such that for every 0 < h < h0 and for every λ ∈ SI,h,
we have |1− λz| ≥ δ > 0, and the result follows from the estimate

0 ≤ ϕh(z) =
1

h

∫
SI,h

(1− |λ|2)p−1

|1− λz|p
dA(λ) ≤ 1

δp
|I| × h
h

× (2h)p−1 . hp−1.

Suppose now that z = eiθ0 ∈ I . Let h ≤ |I|, then setting λ = (1− t)eiθ for λ ∈ SI,h we have

ϕh(z) =
1

h

∫
SI,h

(1− |λ|2)p−1

|1− λz|p
dA(λ) ≥ 1

h

∫
eiθ∈I

∫ h

0

tp−1

|eiθ0 − (1− t)eiθ|p
(1− t)dtdθ

&
1

h

∫ h

0

∫
|θ−θ0|≤t,eiθ∈I

tp−1

|θ − θ0|p + tp
dθdt

≥ 1

h

∫ h

0

∫
|θ−θ0|≤t,eiθ∈I

tp−1

2tp
dθdt.

Since 0 ≤ t ≤ h ≤ |I| and z = eit ∈ I , the set {eiθ : |θ − θ0| ≤ t, eiθ ∈ I} contains an interval
of length at least t/2, we get

ϕh(z) &
1

h

∫ h

0

t

2
× tp−1

2tp
dt ' 1.

On the other hand, integrating in polar coordinates, we get

ϕh(z) =
1

h

∫
SI,h

(1− |λ|2)p−1

|1− λz|p
dA(λ) =

1

h

∫ 1

1−h
(1− r2)p−1

∫
I

1

|1− rei(θ−θ0)|p
dθrdr

.
1

h

∫ h

0

tp−1 1

tp/p′
dt ' 1.

Hence ϕh converges pointwise to a function comparable to χI , and ϕh is uniformly bounded in
h. Now, from (2.1) and by dominated convergence we finally deduce that

µ(I) =

∫
D−
χIdµ '

∫
D

lim
h→0

ϕh(z)dµ(z) = lim
h→0

∫
D
ϕh(z)dµ(z) & |I| .

�

Remark. The following example shows that the reproducing kernel thesis fails for the reverse
Carleson inequalities in the Paley-Wiener space PWπ, the space of Fourier transforms of square
integrable functions on [−π, π]. In Section 2 we will show how it can be adapted to any model
space.

Consider the sequence S = {xn}n∈Z\{0}, where

xn =

{
n+ 1/8 if n is even
n− 1/8 if n is odd.

By the Kadets-Ingham theorem (see e.g. [Nik, Theorem D4.1.2]) S would be a minimal sampling
sequence if we added the point 0. Since S is not sampling the discrete measure µ :=

∑
n6=0 δxn

does not satisfy the reverse inequality ‖f‖L2(R) . ‖f‖L2(µ), f ∈ PWπ.
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Let us see that, on the other hand, the µ-norm of the normalized reproducing kernels

Kλ(z) = cλ sinc(π(z − λ)) = cλ
sin(π(z − λ))

π(z − λ)
, c2

λ ' (1 + | Imλ|)e−2π| Imλ|,

is uniformly bounded from below. If λ is such that | Imλ| > 1 then | sin(π(xn − λ))| ' eπ| Imλ|,
and hence ∫

C
|Kλ(x)|2dµ(x) =

∑
n6=0

c2
λ

∣∣∣∣sin(π(xn − λ))

π(xn − λ)

∣∣∣∣2 '∑
n6=0

| Imλ|
|xn − λ|2

' 1.

It is thus enough to consider points λ ∈ C with | Im λ| ≤ 1. Let xn0 be the point of S closest to
λ; then there is δ > 0, independent of λ, such that∫

C
|Kλ(x)|2dµ(x) =

∑
n6=0

|Kλ(xn)|2 ≥
∣∣∣∣sin(π(xn0 − λ))

π(xn0 − λ)

∣∣∣∣2 ≥ δ .

It is interesting to point out that µ is a Carleson measure for PWπ, since S is in a strip and
separated.

3. FAILURE IN GENERAL MODEL SPACES

The previous construction can be generalized to certain model spaces in the disk. The model
space associated to an inner function Θ is KΘ = H2 	 ΘH2, and the reproducing kernel corre-
sponding to λ ∈ D is given by

kΘ
λ (z) =

1−Θ(λ)Θ(z)

1− λz
, z ∈ D.

If Θ is a finite Blaschke product of degree strictly bigger than one, picking for instance µ = δ0

we immediatly get the reverse inequality on reproducing kernels (see (3.1)). Clearly µ is Car-
leson, and since the degree of Θ is not one, we can combine two linearly independent functions
of KΘ vanishing at 0.

In the general case we need to construct a measure supported on T.

Theorem 3.1. Let Θ be an inner function which is not a finite Blaschke product. Then there
exists a measure µ on T such that KΘ ⊂ L2(µ), the measure µ satisfies the reverse estimate on
reproducing kernels kΘ

λ ,

(3.1) ‖kΘ
λ ‖L2(µ) ≥ C‖kΘ

λ ‖2, λ ∈ D,
but the reverse Carleson embedding for the space KΘ does not hold.

Proof. Let us first assume that Θ vanishes at z0 = 0, and let Θ = zΘ0. Denote by µ the Clark
measure for Θ0, that is µ is defined by

Re
1 + Θ0(z)

1−Θ0(z)
=

∫
T

1− |z|2

|τ − z|2
dµ(τ).

Clark introduced these measures in [Cl]. Observe first that KΘ = C⊕ zKΘ0 which implies that
KΘ ⊂ L2(µ). Continuous functions are dense in KΘ (see [Al3] or [CMR, p.187]) and functions
in KΘ are µ-measurable (see [P]). In particular, if we had reverse embedding on continuous



6 ANDREAS HARTMANN, XAVIER MASSANEDA, ARTUR NICOLAU, & JOAQUIM ORTEGA-CERDÀ

functions then we would have it on the whole space KΘ. It is thus sufficient to find a non-zero
function f ∈ KΘ with zero L2(µ)-norm. To this end, pick f(z) = 1 − Θ0(z) which belongs to
KΘ. Clearly f = 0 µ-a.e, so that

∫
|f |2dµ = 0.

Let us show that (3.1) is satisfied. Any reproducing kernel kΘ
λ has representation as the (or-

thogonal) sum
kΘ
λ (z) = kΘ0

λ (z) + Θ0(λ)Θ0(z),

and
‖kΘ

λ ‖2
2 = ‖kΘ0

λ ‖
2
2 + |Θ0(λ)|2.

In particular,
‖kΘ0

λ ‖L2(µ) ≤ ‖kΘ
λ ‖L2(µ) +

(
µ(T)

)1/2
.

Also, since µ is a Clark measure for KΘ0 , we have

‖kΘ0
λ ‖L2(µ) = ‖kΘ0

λ ‖2.

Thus, we clearly have

‖kΘ
λ ‖L2(µ) ≥ ‖kΘ0

λ ‖L2(µ) −
(
µ(T)

)1/2 ≥ ‖kΘ
λ ‖2 − 1−

(
µ(T)

)1/2 ≥ 1

2
‖kΘ

λ ‖2

for λ such that ‖kΘ
λ ‖2 ≥ 2(1 +

(
µ(T)

)1/2
).

Assume that there exists a sequence λn such that ‖kΘ
λn
‖2 ≤ 2(1 +

(
µ(T)

)1/2
) and (3.1) does

not hold for λn with any positive C. Since the norms of the kernels are supposed bounded on λn,
this implies that

‖kΘ
λn‖L2(µ) → 0.

Passing if necessary to a subsequence we may assume that λn → λ0, and it follows from the fact
that the norms ‖kΘ

λn
‖2 are uniformly bounded that even in the case when λ0 ∈ T we still have that

the kernel kΘ
λ0

is correctly defined and belongs to KΘ. Then, by the Fatou lemma, we have that
‖kΘ

λ0
‖L2(µ) = 0. Hence, 1−Θ(λ0)Θ(z) = 0 µ-a.e. But Θ0(z) = 1 µ-a.e. Thus, 1−Θ(λ0)z = 0

µ-a.e. z, which is impossible if the support of µ contains at least two points (but it does, since
Θ0 is not a single Blaschke factor).

Let us now discuss the situation when Θ does not vanish at 0. For a = Θ(0), the Frostman
shift

Θa(z) :=
Θ(z)− a
1− aΘ(z)

has a zero at 0. By the above discussions, there is a measure µa such that KΘa ⊂ L2(µa), the
reverse estimate holds on the kernels:

‖kΘa
λ ‖L2(µa) ≥ C‖kΘa

λ ‖2, λ ∈ D,(3.2)

and there is a non zero function f0 ∈ KΘa with ‖f0‖L2(µa) = 0. Recall that the Crofoot transform
Ua

Θ : KΘ −→ KΘa , defined by

(Ua
Θf)(z) :=

√
1− |a|2

1− aΘ(z)
f(z), z ∈ D,

is isometric onto KΘa . An easy computation gives

kΘa
λ = Ua

Θ(ca,λk
Θ
λ ), λ ∈ D,
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where

ca,λ =

√
1− |a|2

1− aΘ(λ)
.

Setting now

dµ(z) =
1− |a|2

|1− aΘ(z)|2
dµa(z)

(which is well defined since |a| < 1), we have for every f ∈ KΘ,

‖f‖L2(µ) = ‖Ua
Θf‖L2(µa).

Using (3.2) and the isometry property of the Crofoot transform, we get

C‖kΘ
λ ‖2 = C‖Ua

Θk
Θ
λ ‖2 ≤ ‖Ua

Θk
Θ
λ ‖L2(µa) = ‖kΘ

λ ‖L2(µ),

and so µ satisfies (3.1). We also have the Carleson measure condition for this measure: for every
f ∈ KΘ

‖f‖2 = ‖Ua
Θf‖2 & ‖Ua

Θf‖L2(µa) = ‖f‖L2(µ).

Finally, since there is 0 6= f0 ∈ KΘa with ‖f0‖L2(µa) = 0, take the unique 0 6= g0 ∈ KΘ with
Ua

Θg0 = f0, then
‖g0‖L2(µ) = ‖Ua

Θg0‖L2(µa) = ‖f0‖L2(µa) = 0.

�

Note that the above proof actually works for finite Blaschke product with degree at least 3.
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