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1 Introduction

An assignment game is a model for a two-sided market introduced by Shapley and Shubik
(1972). There are buyers, sellers, and a valuation matrix that collects the joint profit
of each buyer-seller pair. Once a matching between buyers and sellers that maximizes
the total profit in the market is determined, the coalitional game theory studies how to
allocate this profit among the agents.

The best known solution concept for coalitional games is the core, (Gillies, 1959),
that consists of those allocations that are undominated (according to von Neumann-
Morgenstern notion of domination). The first notion of solution that appears in the
literature is not the core but the stable sets. Roughly speaking, a stable set is a set of
imputations (individually rational allocations) such that an imputation in the set does
not dominate another imputation in the set and at the same time every imputation
outside the set is dominated by some imputation inside. Lucas (1968) shows that a
game may have no stable set. On the other hand, when there exists, the stable set
may not be unique. The core of a coalitional game always satisfies the first condition
(internal stability) but may fail to satisfy the second one (external stability).

When the core is not externally stable, the argument to dismiss an imputation be-
cause it is outside the core is rather weak, since the imputation that dominates it might
be also outside the core and hence no better than the first one. This does not happen
when the core is externally stable and hence a stable set. Moreover, when the core is a
stable set, it is the unique one.

Solymosi and Raghavan (2001) prove that the core of an assignment game with as
many buyers as sellers is stable (it is a stable set) if and only if the valuation matrix has
a dominant diagonal, that is, the matrix entries associated with an optimal matching are
row and column maxima. To prove that, the authors make use of some graph-theoretical
arguments.

In some personal notes of Shapley, probably dated around the time of publication of
Shapley and Shubik (1972), there appears a conjecture on the existence of a stable set
for the assignment game formed by the union of the cores of some specific subgames.
The proof in these notes is not complete and the above conjecture was finally proved in
Núñez and Rafels (2013).

Now, based on Núñez and Rafels (2002), where a lower bound for the core payoff
of a buyer-seller pair is provided, we are able to offer a proof of the characterization of
core stability for assignment games that is alternative to the one provided in Solymosi
and Raghavan (2001).

2 Preliminaries on the assignment game

Let M and M ′ be two disjoint finite sets. An assignment market (M,M ′, A) consists of
two different sectors, let us say buyers and sellers, denoted byM andM ′ respectively, and
a non-negative matrix A = (aij) i∈M

j∈M ′
that represents the potential joint profit obtained

by each mixed-pair (i, j) ∈M×M ′. As in Solymosi and Raghavan (2001) and Núñez and
Rafels (2002), we will assume that the assignment market is square, that is |M | = |M ′|.
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A matching µ between M and M ′ is a subset of the cartesian product, M×M ′, such
that each agent belongs to at most one pair. A matching µ ∈M(M,M ′) is optimal for
market (M,M ′, A) if

∑
(i,j)∈µ

aij ≥
∑

(i,j)∈µ′
aij for all other µ′ ∈ M(M,M ′). We denote by

MA(M,M ′) the set of all optimal matchings for market (M,M ′, A). The corresponding
assignment game, (M ∪ M ′, wA), has player set M ∪ M ′ and characteristic function
wA(S ∪ T ) = max

µ∈M(S,T )

∑
(i,j)∈µ

aij for all S ⊆M and T ⊆M ′.

Without loss of generality, assume the main diagonal corresponds to an optimal
matching. We use “j” to denote both the jth buyer and the jth seller, since the distinction
will be clear from the context.

Given an assignment game (M ∪M ′, wA), an allocation is a payoff vector (u; v) ∈
RM×RM ′

, where ul denotes the payoff to buyer l ∈M and vl denotes the payoff to seller
l ∈M ′. An imputation is a non-negative payoff vector that is efficient,

∑
i∈M

ui+
∑
j∈M ′

vj =

wA(M ∪M ′). We denote the set of imputations of an assignment game (M ∪M ′, wA)
by I(wA).

Given an optimal matching µ ∈ MA(M,M ′), we define the µ-principal section of
(M ∪ M ′, wA) as the set of payoff vectors such that ui + vj = aij for all (i, j) ∈ µ,
and the payoff to agents unassigned by µ is zero. We denote it by Bµ(wA). In the µ-
principal section the only side payments that take place are those among agents matched
together by µ. Assume, without loss of generality, that µ = {(i, i) | i ∈M} is an optimal
matching. Notice that the allocation (a; 0), that is ui = aii for all i ∈ M and vj = 0
for all j ∈ M ′ always belongs to the µ-principal section. The same happens with the
allocation (0; a). We will refer to these two points as the sector-optimal allocations.

The core of an assignment game, C(wA), is the set of imputations such that no
coalition can improve upon. An imputation, (u; v) ∈ I(wA), belongs to the core if for
all (i, j) ∈ M ×M ′ it holds ui + vj ≥ aij. Shapley and Shubik (1972) show that an
assignment game (M ∪M ′, wA) has always a non-empty core.

A binary relation, known as domination, is defined on the set of imputations. Given
two imputations (u; v) and (u′; v′), we say that (u; v) dominates (u′; v′) if and only if
there exists a pair (i, j) ∈M ×M ′ such that ui > u′i, vj > v′j and ui + vj ≤ aij. We then

write (u; v) dom A
{i,j}(u

′; v′). We write (u; v) domA(u′; v′) to denote that (u; v) dominates
(u′; v′) by means of some pair (i, j).1

The core of an assignment game can be defined also by means of this dominance re-
lation. It coincides with the set of undominated imputations. Another solution concept
defined by means of domination is the von Neumann-Morgenstern stable set (von Neu-
mann and Morgenstern, 1944).

A subset V of the set of imputations I(wA) is a von Neumann-Morgenstern stable
set if it satisfies internal stability, that is, for all (u; v), (u′; v′) ∈ V , (u; v) domA(u′; v′)
does not hold; and external stability, that is, for all (u′; v′) ∈ I(wA) \ V , there exists
(u; v) ∈ V such that (u; v) domA(u′; v′). Notice that the core always satisfies internal
stability whilst external stability may fail.

Solymosi and Raghavan (2001) introduce the dominant diagonal property for valua-

1For assignment games this dominance relation that only makes use of mixed-pair allocations is
equivalent to the usual dominance relation of von Neumann and Morgenstern (1944).
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tion matrices. A square valuation matrix A has a dominant diagonal if the profit every
agent attains with her optimally matched partner is the most she could achieve with any
other partner. That is to say, under the assumption that an optimal matching is on the
main diagonal, all diagonal elements are row and column maximum: aii ≥ max{aij, aji}
for all (i, j) ∈M ×M ′.

It is straightforward to see that a valuation matrix A has a dominant diagonal if
and only if the sector optimal allocations (a; 0) and (0; a) belong to the core. Then, it
is proved in Solymosi and Raghavan (2001) that the core of a square assignment game
(M ∪ M ′, wA) is a von Neumann-Morgenstern stable set if and only if the valuation
matrix A has a dominant diagonal. Their proof is based on some graph-theoretical
arguments while we base ours on the properties of the buyer-seller exact representative of
an assignment game proposed in Núñez and Rafels (2002). Given any assignment game
(M ∪M ′, wA), there exists a unique valuation matrix Ar such that C(wA) = C(wAr) and
Ar is the maximum with this property. That is, if any enty in Ar is raised, the resulting
market has a different core. The matrix Ar is the buyer-seller exact representative of A,
since for all (i, j) ∈M ×M ′ there exists (u, v) ∈ C(wAr) such that ui + vj = arij. Notice
that for each (i, j) ∈M ×M ′, arij is the lower bound for the joint payoff of agents i ∈M
and j ∈M ′ in the core.

In Núñez and Rafels (2002), it is provided a formula to obtain the entries arij for all
(i, j) ∈M ×M ′ and any given assignment game (M ∪M ′, wA). This result will be used
in the proof of our Theorem 2.

3 Core stability

In this section we provide an alternative proof of the characterization of core stability
for the two-sided assignment game.

To this end, we first adapt to the core a lemma that Shapley provides, without a
proof, in his notes for the stable sets of the assignment game. Shapley’s lemma states
that for any point in a stable set V of an assignment game, there is a monotonic curve
passing through this point and connecting the two sector optimal-allocations. Now,
under the assumption that the valuation matrix has a dominant diagonal, we prove
something similar for the core: for each core allocation there is a monotonic curve
through it that is included in the core and connects the two sector-optimal allocations
(a; 0) and (0; a). The payoff to any agent in this curve, for a given value of the parameter
τ , is computed as the median of three terms.

Lemma 1. Let (M ∪ M ′, wA) be a square two-sided assignment game such that its
valuation matrix A has a dominant diagonal. Given any (u; v) ∈ C(wA), for all τ ∈ R
all vectors of the form (u(τ); v(τ)) where

ui(τ) = med{0, ui − τ, aii} for all i ∈M, (1)

vi(τ) = med{0, vi + τ, aii} for all i ∈M ′,

belong to the core C(wA) of the game.

Proof. Let us assume without loss of generality that µ = {(i, i) | i ∈ M} is an optimal
matching. Note first that for τ = max

i∈M
aii, (u(τ); v(τ)) = (0; a) and for τ = −max

i∈M
aii,
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(u(τ); v(τ)) = (a; 0). Now, take i ∈ M and consider different cases to check that
(u(τ); v(τ)) satisfies the core equality constraints. Notice that since (u; v) ∈ C(wA), we
have ui + vi = aii for all i ∈M and hence

vi + τ = aii − ui + τ = aii − (ui − τ). (2)

We will show that ui(τ) + vi(τ) = aii for all i ∈M .

1. 0 ≤ ui − τ ≤ aii.
Hence, 0 ≤ vi + τ ≤ aii. Then, ui(τ) + vi(τ) = ui − τ + vi + τ = ui + vi = aii.

2. ui−τ ≤ 0, implies ui(τ) = 0. By (2) we get vi+τ ≥ aii. Then, vi(τ) = aii. Hence,
ui(τ) + vi(τ) = aii.

3. ui−τ ≥ aii, implies ui(τ) = aii. By (2) we get vi+τ ≤ 0. Then, vi(τ) = 0. Hence,
ui(τ) + vi(τ) = aii.

Take now i 6= j and consider different cases to check that (u(τ); v(τ)) satisfies the core
inequality constraints:

1. ui(τ) = aii, implies ui(τ) + vj(τ) ≥ ui(τ) = aii ≥ aij where the last inequality
follows from the dominant diagonal assumption. The same follows when vj(τ) =
ajj.

2. ui(τ) = 0, implies ui − τ ≤ 0. Thus, τ ≥ ui ≥ 0 and we get vj + τ ≥ 0. Then,
vj(τ) is either ajj or vj + τ .

(a) If vj(τ) = ajj, then ui(τ) + vj(τ) = ajj ≥ aij where the last inequality follows
from the dominant diagonal assumption.

(b) If vj(τ) = vj + τ , then ui(τ) + vj(τ) = vj + τ ≥ ui + vj ≥ aij.

3. The proof for the case vj(τ) = 0 is analogous.

4. ui(τ) = ui−τ and vj(τ) = vj+τ , implies ui(τ)+vj(τ) = ui−τ+vj+τ = ui+vj ≥
aij.

We have shown that for all cases the core constraints are satisfied, which concludes the
proof.

Next, we show that the core of a two-sided square assignment game is a von Neumann-
Morgenstern stable set if and only if its valuation matrix has a dominant diagonal.

Theorem 2. Let (M ∪ M ′, wA) be a two-sided square assignment game. Then the
following statements are equivalent:

i A has a dominant diagonal.

ii C(wA) is a von Neumann-Morgenstern stable set.
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Proof. Assume µ is an optimal matching on the main diagonal. Recall that the core of
a game is always internally stable. The fact that every allocation outside the principal
section is dominated by some core allocation is proved in Shapley’s notes and also in
Solymosi and Raghavan (2001), but we reproduce the proof for the sake of comprehen-
siveness. Assume (x; y) ∈ I(wA) \ Bµ(wA). Then, xi + yi < aii for some i ∈ M . Thus,
xi < aii − yi, which implies that there exists 0 ≤ xi < λ < aii − yi ≤ aii. By Lemma 1,
there exists (u; v) ∈ C(wA) with ui = λ. Then, ui > xi and ui < aii − yi which implies
yi < aii − ui = vi. Moreover, xi + yi < aii = ui + vi. Hence (u; v) domA

{i,i}(x; y).
Now take (x; y) ∈ Bµ(wA) \ C(wA). We want to show that it is also dominated by

some core allocation. We first need to prove the following claim.

Claim. Given (x; y) ∈ Bµ(wA) \ C(wA), there exists a pair (i, j) ∈M ×M ′ and a core
allocation (ū; v̄) ∈ C(wA) such that xi + yj < aij = ūi + v̄j.

Proof. We know that for any two-sided assignment game (M ∪ M ′, wA) there exists
another assignment game (M ∪M ′, wAr) with the same core (Núñez and Rafels, 2002).
Hence, if (x; y) /∈ C(wA) then (x; y) /∈ C(wAr). Then, there exists a core allocation
(ū; v̄) such that

xi + yj < arij = ūi + v̄j. (3)

If arij = aij, the claim is proved. Otherwise, by the definition of Ar, arij = aik1 + ak1k2 +
ak2k3 + ...+ akrj − ak1k1 − ...− akrkr for some k1, ..., kr ∈M \ {i, j} and different.

Since (ū; v̄) is a core allocation and the main diagonal is an optimal matching,

ūi + v̄j = aik1 + ak1k2 + ...+ akrj − ak1k1 − ...− akrkr (4)

= aik1 + ak1k2 + ...+ akrj − (ūk1 + v̄k1)− ...− (ūkr + v̄kr).

By rearraging (4) we get

ūi + v̄k1 + ūk1 + v̄k2 + ...+ ūkr + v̄j = aik1 + ...+ akrj. (5)

Since (ū; v̄) ∈ C(wA), any pair (i, j) ∈M ×M ′ satisfies ūi + v̄j ≥ aij. Together with (5)
we get ūl1 + v̄l2 = al1l2 where (l1, l2) ∈ {(i, k1), (k1, k2), ..., (kr−1, kr), (kr, j)}.

Since (x; y) ∈ Bµ(wA), al1l2 = xkt + ykt for all t ∈ {1, 2, ..., r}. Now, replacing at (4)
and (3) we obtain

xi + yk1 + xk1 + yk2 + ...+ xkr + yj < aik1 + ak1k2 + ...+ akrj

which means that either xi + yk1 < aik1 = ūi + v̄k1 or xkl + ykl+1
< aklkl+1

= ūkl + v̄kl+1

for some l ∈ {1, ..., r− 1} or xkr + yj < akrj = ūkr + v̄j, which concludes the proof of the
claim.

Continuing with the proof of the theorem, we first consider (i) ⇒ (ii). We see,
by the claim, that there exists a pair (i, j) ∈ M ×M ′ and (ū; v̄) ∈ C(wA) such that
xi + yj < aij = ūi + v̄j. Now, assume without loss of generality ūi > xi. If also v̄j > yj,
we get (ū; v̄) domA

{i,j}(x; y).
Otherwise, assume v̄j ≤ yj. Since both (x; y) and (ū; v̄) belong to Bµ(wA), xj + yj =

ūj + v̄j = ajj. Then, ūj ≥ xj. Notice that ūi > xi + yj − v̄j = xi + (ūj + v̄j − xj)− v̄j =
xi+ ūj−xj. Hence, ūj− ūi+xi < xj. We want to show that there exists a core allocation
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that dominates (x; y) via coalition {i, j}. Hence, we need to lower jth component of ū
in order to increase jth component v̄. To this end, consider the monotonic curve defined
as in (1) through (ū; v̄), and take the point corresponding to τ = ūi − xi − ε where
0 < ε ≤ aii − xi. Then, we prove that, for some ε > 0, (ū(τ); v̄(τ)) dominates (x; y) via
{i, j}. To this end, we consider some cases:

1. xj > 0. Take ūi(τ) = med{0, xi + ε, aii} and consider two cases:

(a) xi = aii. Since, by assumption, ūi > xi, we get aii = xi < ūi which contradicts
(ū, v̄) ∈ C(wA).

(b) 0 < xi < aii. Then, there exists a small enough ε1 > 0 such that ūi(τ) =
xi + ε1 > xi. Take now ūj(τ) = med{0, ūj − ūi + xi + ε, ajj}. Note that,
since ūj − ūi + xi < xj ≤ ajj, for ε = ε2 small enough we can guarantee that
ūj − ūi + xi + ε2 < xj and hence ūj(τ) 6= ajj. Then, we examine two cases:

i. ūj(τ) = ūj − ūi + xi + ε2. Then, take ε = min{ε1, ε2} and notice
that ūi(τ) > xi, ūj(τ) < xj or equivalently v̄j(τ) > yj which prove
(ū(τ); v̄(τ)) domA

{i,j}(x; y).

ii. ūj(τ) = 0 < xj. Then, v̄j(τ) = ajj > yj and we also get, for ε = ε1, that
ūi(τ) > xi and v̄j(τ) > yj and we are done.

2. xj = 0. Since (x; y) ∈ Bµ(wA), yj = ajj. We get from xi + yj < aij that ajj < aij
which contradicts the dominant diagonal assumption on the valuation matrix.

This shows that any (x; y) ∈ Bµ(wA) \ C(wA) is dominated by a core allocation via
coalition {i, j} which concludes the proof of (i)⇒ (ii).

Next, we prove (ii) ⇒ (i). Let us suppose on the contrary, that the core of a two-
sided square assignment game (M ∪M ′, wA) is a von Neumann-Morgenstern stable set
but its corresponding valuation matrix A has not a dominant diagonal. Since A does not
have a dominant diagonal, there exists a sector-optimal allocation, let us say (a; 0), that
does not belong to the core. Since the assumption states that C(wA) is a von Neumann-
Morgenstern stable set, there exists (u; v) ∈ C(wA) such that (u; v) domA

{i,j}(a; 0). Then
ui > aii which contradicts (u; v) ∈ C(wA).

References

Gillies DB (1959) Solutions to general non-zero-sum games. In: Tucker A, Luce RD
(eds) In contributions to the theory of games, IV, in: Annals of Mathematics Studies,
vol 40, pp 47–85

Lucas WF (1968) A game with no solution. Bulletin of the American Mathematical
Society 74:237–239
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