
CHARACTERIZATION OF SCHATTEN-CLASS
HANKEL OPERATORS ON WEIGHTED BERGMAN
SPACES

JORDI PAU

Abstract
We completely characterize the simultaneous membership in the Schatten ideals Sp ,
0 < p <1 of the Hankel operators Hf and Hf on the Bergman space, in terms of
the behavior of a local mean oscillation function, proving a conjecture of Kehe Zhu
from 1991.

1. Main results

Problem
Describe the simultaneous membership in the Schatten ideals Sp of the Hankel oper-
ators Hf and Hf acting on weighted Bergman spaces.

The answer given below is the main result of the paper.

THEOREM 1
Let f 2L2.Bn; dv˛/ and let 0 < p <1. The following are equivalent:
(a) Hf and Hf are in Sp.A2˛;L

2.Bn; dv˛//.
(b) MOr.f / 2L

p.Bn; d�n/ for some (any) r > 0.

Here

d�n.z/D
dv.z/

.1� jzj2/nC1

is the Möbius invariant volume measure on Bn, andMOr.f / is a certain type of local
mean oscillation function to be defined next, after we discuss briefly the history of the
problem.
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When f is holomorphic on Bn one has Hf D 0, and the membership of Hf in
Sp is described by f being in the analytic Besov space Bp if p > �n, and f constant
if 0 < p � �n (see [1], [2], [5], [8], [12], [13]). The cutoff point is �n D 1 if nD 1,
and �n D 2n if n� 2. The equivalence between (a) and (b) was conjectured (at least
for p � 1) by Zhu [13]. It was previously known that, if p > 2n

nC1C˛
, then (a) is

equivalent to
(c) MO˛.f / 2L

p.Bn; d�n/,
whereMO˛.f / is a “global” mean oscillation type function. The equivalence between
(a) and (c) for p > 2n

nC1C˛
was proved in several steps: Zhu [13] proved the case

p � 2; Xia [9], [10] obtained the case max.1; 2n
nC1C˛

/ < p � 2, and the last case
2n

nC1C˛
< p � 1 has been proven recently by Isralowitz [4]. It is also well known

that condition (c) cannot characterize the membership on the Schatten ideals on the
missing range 0 < p � 2n=.nC1C˛/ since, on this range, condition (c) implies that
f is a constant (see [17, p. 233]). Now we recall the concepts and definitions.

We denote by Bn the open unit ball of Cn, and we let dv be the usual Lebesgue
volume measure on Bn, normalized so that the volume of Bn is one. We fix a real
parameter ˛ with ˛ >�1 and write dv˛.z/D c˛.1�jzj2/˛ dv.z/, where c˛ is a posi-
tive constant chosen so that v˛.Bn/D 1. The weighted Bergman spaceA2˛ WDA

2
˛.Bn/

is the closed subspace of L2˛ WDL
2.Bn; dv˛/ consisting of holomorphic functions. It

is a Hilbert space with inner product

hf;gi˛ D

Z
Bn

f .z/g.z/dv˛.z/:

The corresponding norm is denoted by kf k˛ . The orthogonal (Bergman) projec-
tion P˛ WL2.Bn; dv˛/!A2˛.Bn/ is an integral operator given by

P˛f .z/D

Z
Bn

f .w/dv˛.w/

.1� hz;wi/nC1C˛
; f 2L2.Bn; dv˛/:

Given a function f 2L2.Bn; dv˛/, the Hankel operator Hf with symbol f is

Hf D .I �P˛/Mf ;

where Mf denotes the operator of multiplication by f . It is well known that the
simultaneous study of the Hankel operators Hf and Hf is equivalent to the study of
the commutator ŒMf ;P˛� WDMf P˛ �P˛Mf acting on L2˛ , by virtue of the identity

ŒMf ;P˛�DgHf � .gHf /�;
where gHf WDHf P˛ acts now on L2˛ .

Let H and K be separable Hilbert spaces, and let 0 < p <1. A compact oper-
ator T from H to K is said to belong to the Schatten class Sp D Sp.H;K/ if its
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sequence of singular numbers belongs to the sequence space `p (the singular num-
bers are the square roots of the eigenvalues of the positive operator T �T , where T �

is the Hilbert adjoint of T ). For p � 1, the class Sp is a Banach space with the norm
kT kp D .

P
n j�nj

p/1=p , while for 0 < p < 1 one has (see [6, Theorem 2.8]) the
inequality kS C T kpp � kSk

p
p C kT k

p
p . Also, if A is a bounded operator on H , B

is a bounded operator on K , and T is in Sp , then BTA is in Sp . We refer to [17,
Chapter 1] for a brief account on Schatten classes.

For z 2 Bn and r > 0, the Bergman metric ball at z is given by D.z; r/D ¹w 2
Bn W ˇ.z;w/ < rº, where ˇ.z;w/ denotes the hyperbolic distance between z and w
induced by the Bergman metric. If f is locally square integrable with respect to the
volume measure on Bn, the mean oscillation of f at the point z 2 Bn in the Bergman
metric is

MOr.f /.z/D
h 1

v˛.D.z; r//

Z
D.z;r/

ˇ̌
f .w/� bfr .z/ˇ̌2 dv˛.w/i1=2;

where the averaging function bfr is given by

bfr.z/D 1

v˛.D.z; r//

Z
D.z;r/

f .w/dv˛.w/:

It is well known (see [13], [17]) that the simultaneous boundedness and compactness
of the Hankel operators Hf and Hf acting on the Bergman space A2˛ can be char-
acterized in terms of the properties of the function MOr.f /. The Hankel operators
Hf andHf are both bounded if and only ifMOr.f / 2L1.Bn/; they are compact if
and only if MOr.f / 2 C0.Bn/. The same characterization holds when using a more
“global” oscillation function, which we introduce next. For any f 2L2.Bn; dv˛/ and
z 2 Bn, let

MO˛.f /.z/D
�
B˛
�
jf j2

�
.z/�

ˇ̌
B˛.f /.z/

ˇ̌2�1=2
;

where B˛.g/ denotes the Berezin transform of a function g 2L1.Bn; dv˛/ defined as

B˛.g/.z/D hgkz; kzi˛;

where kz are the normalized reproducing kernels ofA2˛ ; that is, kz DKz=kKzk˛ with
Kz being the reproducing kernel of A2˛ at the point z, given by

Kz.w/D
1

.1� hw;zi/nC1C˛
; w 2 Bn:

To prove Theorem 1, we must introduce a more general Berezin-type transform
B˛;tf , and a more general “mean oscillation” function MO˛;t .f /. For ˛ > �1 and
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t � 0, let

Ktz.w/DR
˛;tKz.w/D

1

.1� hw;zi/nC1C˛Ct
: (1.1)

We also denote htz to be its normalized function; that is, htz DK
t
z=kK

t
zk˛ . In (1.1),

we use R˛;t to denote the fractional differential operator appearing in [15, Chapter 1,
p. 18]. Because kKtzk˛ � .1� jzj

2/�
1
2 .nC1C˛C2t/, we have

ˇ̌
htz.w/

ˇ̌
�
.1� jzj2/

1
2 .nC1C˛C2t/

j1� hw;zijnC1C˛Ct
:

If g 2L1.Bn; dv˛/, the Berezin-type transform B˛;t .g/ is defined as

B˛;t .g/.z/D hgh
t
z; h

t
zi˛:

For f 2L2.Bn; dv˛/, we also set

MO˛;t .f /.z/D
�
B˛;t

�
jf j2

�
.z/�

ˇ̌
B˛;t .f /.z/

ˇ̌2�1=2
:

It is easy to see that

MO˛;t .f /.z/D
��f htz �B˛;t .f /.z/htz��˛

and that one has also the following double-integral expression

MO˛;t .f /.z/
2 D

Z
Bn

Z
Bn

ˇ̌
f .u/� f .w/

ˇ̌2ˇ̌
htz.u/

ˇ̌2ˇ̌
htz.w/

ˇ̌2
dv˛.u/dv˛.w/:

The idea to use the functionMO˛;t .f / in the study of Hankel operators has also been
suggested by other authors independently (see, e.g., [4], [11]). We have the following
result.

THEOREM 2
Let ˛ >�1, r > 0, f 2L2.Bn; dv˛/, and 0 < p <1. Then, for each t � 0 such that
p > 2n=.nC 1C ˛C 2t/, we haveZ

Bn

MO˛;t .f /.z/
p d�n.z/� C

Z
Bn

MOr.f /.z/
p d�n.z/:

It is easy to check that, for any z 2 Bn and r > 0, one has

MOr.f /.z/D
h 1

2v˛.D.z; r//2

Z
D.z;r/

Z
D.z;r/

ˇ̌
f .u/� f .w/

ˇ̌2
dv˛.u/dv˛.w/

i1=2
:
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From this expression it follows that the behavior of the local mean oscillation func-
tion MOr.f / is independent of the parameter ˛. Also, from this and the double-
integral expression of MO˛;t .f /, it is straightforward to see that MOr.f /.z/ �
CMO˛;t .f /.z/. From this observation and Theorem 2, we see that Theorem 1 is
equivalent to the following.

THEOREM 3
Let ˛ >�1, f 2L2.Bn; dv˛/, and 0 < p <1. The following are equivalent:
(a) Hf and Hf are both in Sp.A2˛;L

2
˛/;

(b) for each (or some) t � 0 with p.nC 1C ˛C 2t/ > 2n, one has MO˛;t .f / 2
Lp.Bn; d�n/.

From this, it can be seen that the conjecture stated at the end of [4] is also true.
The paper is organized as follows. After some preliminaries given in Section 2,

we prove Theorem 2 in Section 3. All the implications in Theorem 1 are proved in
Section 4, except the necessity in the case 0 < p � 2n=.nC1C˛/. This part is proved
in Section 5.

We are not worried about the computation of the exact values of certain constants
when they are not dependent on the important quantities involved. Namely, we use C
to denote a positive constant such as one whose exact value may change at different
occurrences. Sometimes we use the notation A�B to indicate that there is a positive
constant C such that A � CB , and the notation A� B means that both A � B and
B �A hold.

2. Some known lemmas
We need a well-known result on decomposition of the unit ball Bn. A sequence ¹akº
of points in Bn is called a separated sequence (in the Bergman metric) if there exists a
positive constant ı > 0 such that ˇ.ai ; aj / > ı for any i ¤ j . By [15, Theorem 2.23],
there exists a positive integer N such that for any 0 < r < 1 we can find a sequence
¹akº in Bn with the following properties:
(i) Bn D

S
kD.ak ; r/;

(ii) the sets D.ak; r=4/ are mutually disjoint;
(iii) each point z 2 Bn belongs to at most N of the sets D.ak ; 4r/.

Any sequence ¹akº satisfying the above conditions is called an r -lattice in the
Bergman metric. Obviously any r -lattice is separated.

We need the following well-known integral estimate that has become very useful
in this area of analysis (see, e.g., [15, Theorem 1.12]).



6 JORDI PAU

LEMMA A
Let t >�1, and let s > 0. There is a positive constant C such thatZ

Bn

.1� jwj2/t dv.w/

j1� hz;wijnC1CtCs
� C

�
1� jzj2

��s
for all z 2 Bn.

We also need the following well-known discrete version of the previous lemma.

LEMMA B
Let ¹zkº be a separated sequence in Bn, and let n < t < s. Then

X
k

.1� jzkj
2/t

j1� hz; zkijs
� C

�
1� jzj2

�t�s
; z 2 Bn:

Lemma B can be deduced from Lemma A after noticing that, if a sequence ¹zkº is
separated, then there is a constant r > 0 such that the Bergman metric balls D.zk; r/
are pairwise disjoint.

We also need the following version of Lemma A, with an extra (unbounded)
factor ˇ.z;w/ in the integrand.

LEMMA 2.1
Let t >�1, and let s; c > 0. There is a positive constant C such that

I WD

Z
Bn

.1� jwj2/tˇ.z;w/c dv.w/

j1� hz;wijnC1CtCs
� C

�
1� jzj2

��s
for all z 2 Bn.

Proof
Pick " > 0 so that t � c" > �1 and s � c" > 0. Since ˇ.z;w/ grows logarithmically,
we have

ˇ.z;w/D ˇ
�
0;'z.w/

�
� C

�
1�

ˇ̌
'z.w/

ˇ̌2��"
:

Here 'z denotes the Möbius transformation sending z to 0. It follows from the basic
identity

1�
ˇ̌
'z.w/

ˇ̌2
D
.1� jwj2/.1� jzj2/

j1� hz;wij2
(2.1)
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that

I �
�
1� jzj2

��c" Z
Bn

.1� jwj2/t�c" dv.w/

j1� hz;wijnC1CtCs�2c"
:

The desired result then follows from Lemma A.

The corresponding discrete version is stated below.

LEMMA 2.2
Let ¹zkº be a separated sequence in Bn. Let n < t < s, and let c > 0. Then

X
k

.1� jzkj
2/tˇ.z; zk/

c

j1� hz; zkijs
� C

�
1� jzj2

�t�s
; z 2 Bn:

We also need the following elementary result.

LEMMA 2.3
For r > 0 let ¹akº be an r -lattice on Bn. Then

X
k

MOr.f /.ak/
p � C1

Z
Bn

MO2r.f /.z/
p d�n.z/� C2

X
k

MO4r.f /.ak/
p

for all 0 < p <1.

Proof
It follows from the double-integral expression of the mean oscillation that

MOr.f /.ak/� CMO2r.f /.z/; z 2D.ak; r/:

From this, the result is easily deduced.

3. Proof of Theorem 2
Let ¹akº be an .r=3/-lattice on Bn. Because r > 0 is arbitrary, due to Lemma 2.3, it
is enough to proveZ

Bn

MO˛;t .f /.z/
p d�n.z/� C

X
k

MO2r.f /.ak/
p: (3.1)

Let Dk D D.ak ; r/. Then, using the double-integral expression of MO˛;t .f /,
we have

MO˛;t .f /.z/
2 �

X
j;k

Z
Dj

Z
Dk

ˇ̌
f .u/� f .w/

ˇ̌2 ˇ̌
htz.u/

ˇ̌2
dv˛.u/

ˇ̌
htz.w/

ˇ̌2
dv˛.w/:
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Since jhtz.u/j � jh
t
z.ak/j for u 2Dk (see estimate (2.20) in [15, p. 63]), we get

MO˛;t .f /.z/
2 �

X
j;k

ˇ̌
htz.ak/

ˇ̌2ˇ̌
htz.aj /

ˇ̌2 Z
Dj

Z
Dk

ˇ̌
f .u/� f .w/

ˇ̌2
dv˛.u/dv˛.w/:

Due to the triangle inequality, we see that

MO˛;t .f /.z/
2 �A1.f; z/CA2.f; z/;

and because of the symmetry of the terms, in order to establish (3.1) it is enough to
show that Z

Bn

A1.f; z/
p=2 d�n.z/�

X
j

MO2r.f /.aj /
p (3.2)

with

A1.f; z/ WD
X
j;k

ˇ̌
htz.ak/

ˇ̌2 ˇ̌
htz.aj /

ˇ̌2
jDkj˛

Z
Dj

ˇ̌
f .u/� bfr .z/ˇ̌2 dv˛.u/:

Here we use the notation jDkj˛ D v˛.Dk/� .1�jakj2/nC1C˛ . By Lemma B, we get

A1.f; z/�
X
j

ˇ̌
htz.aj /

ˇ̌2 Z
Dj

ˇ̌
f .u/� bfr .z/ˇ̌2 dv˛.u/;

and by the triangle inequality we have

A1.f; z/�A11.f; z/CA12.f; z/ (3.3)

with

A11.f; z/D
X
j

ˇ̌
htz.aj /

ˇ̌2 Z
Dj

ˇ̌
f .u/� bfr .aj /ˇ̌2 dv˛.u/

D
X
j

ˇ̌
htz.aj /

ˇ̌2
jDj j˛MOr.f /.aj /

2

and

A12.f; z/D
X
j

ˇ̌
htz.aj /

ˇ̌2
jDj j˛

ˇ̌bfr .aj /� bfr .z/ˇ̌2: (3.4)

To estimate A12.f; z/ we need the following technical lemma.

LEMMA 3.1
Let r > 0, and let ¹�mº be an .r=3/-lattice on Bn. Let 0 < p <1, and let d; ı > 0.
For a; z 2 Bn, we have
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ˇ̌bfr.z/� bfr .a/ˇ̌� hı.a; z/Np.f; a/1=p ˇ̌1� hz; aiˇ̌d ;
with

Np.f; a/D
X
m

MO2r.f /.�m/
p.1� j�mj

2/ıp

j1� h�m; aijpd

and

hı.a; z/D
�
1C ˇ.a; z/

��
min

�
1� jzj; 1� jaj

���ı
:

Proof
Denote by �.t/, 0� t � 1, the geodesic in the Bergman metric going from z to a. Let
N D Œˇ.z; a/=R�C 1 with RD r=3, and tm Dm=N , 0�m�N , where Œx� denotes
the largest integer less than or equal to x. Set zm D �.tm/, 0�m�N . Clearly

ˇ.zm; zmC1/D
ˇ.z; a/

N
�RD r=3:

By the triangle inequality, we have

ˇ̌bfr .z/� bfr .a/ˇ̌� � NX
mD1

ˇ̌bfr .zm�1/� bfr.zm/ˇ̌�:
For each m, take a point �m in the lattice with ˇ.zm; �m/ < r=3. It is not difficult to
see that jbfr .�/� bfr.w/j�MO2r.f /.�/ if ˇ.�;w/� r (see [17, p. 211]). Thenˇ̌bfr .zm�1/� bfr.zm/ˇ̌� ˇ̌bfr.zm�1/� bfr .�m/ˇ̌C ˇ̌bfr .�m/� bfr.zm/ˇ̌

�MO2r.f /.�m/:

This gives

ˇ̌bfr .z/� bfr .a/ˇ̌� NX
mD1

MO2r.f /.�m/: (3.5)

Because the Möbius transformation 'z sends the geodesic joining z and a to the
geodesic joining 0 and 'z.a/, we haveˇ̌

1�
˝
'z.a/; 'z.zm/

˛ˇ̌
D 1�

ˇ̌
'z.a/

ˇ̌ˇ̌
'z.zm/

ˇ̌
� 1�

ˇ̌
'z.zm/

ˇ̌2
:

Developing this inequality by using the basic identity (2.1) together with its polarized
analogue (see [15, Lemma 1.3])

1�
˝
'z.a/; 'z.b/

˛
D

.1� jzj2/.1� ha; bi/

.1� ha; zi/.1� hz; bi/
;
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we arrive at

j1� ha; zmij

j1� ha; zij
�
.1� jzmj

2/

j1� hz; zmij
;

which gives ˇ̌
1� ha; zmi

ˇ̌
� 2

ˇ̌
1� ha; zi

ˇ̌
:

Putting these inequalities into (3.5), with the help of the estimate j1 � h�m; aij �
j1� hzm; aij (see [15, p. 63]), we obtain

ˇ̌bfr.z/� bfr .a/ˇ̌� NX
mD1

MO2r.f /.�m/

j1� h�m; aijd

ˇ̌
1� hz; ai

ˇ̌d
:

From here, the result easily follows, since

NX
mD1

MO2r.f /.�m/

j1� h�m; aijd
�
� NX
mD1

MO2r.f /.�m/
p

j1� h�m; aijpd

�1=p
; 0 < p � 1;

and Hölder’s inequality yields

NX
mD1

MO2r.f /.�m/

j1� h�m; aijd
�N 1=p0

� NX
mD1

MO2r.f /.�m/
p

j1� h�m; aijpd

�1=p
; 1 < p <1:

Finally, since N � .1C ˇ.a; z//, the inequality

min
�
1� jaj; 1� jzj

�
�
�
1� jzmj

�
�
�
1� j�mj

�
completes the proof of the lemma.

Returning to the estimate for A12.f; z/, putting the inequality of Lemma 3.1 into
(3.4), with d D 1

2
.nC 1C ˛C 2t/� ", where " > 0 is taken so that pd > n, we see

that A12.f; z/ is less than constant times

�
1� jzj2

�nC1C˛C2t
Np.f; z/

2=p
X
j

.1� jaj j
2/nC1C˛

j1� haj ; zij2.nC1C˛Ct�d/
hı.aj ; z/

2;

with ı > 0 taken so that ˛�2ı >�1 and pd �pı > n. By Lemma B and Lemma 2.2,
we have

A12.f; z/�
�
1� jzj2

�2d�2ı
Np.f; z/

2=p:
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Then Z
Bn

A12.f; z/
p=2d�n.z/

�
Z
Bn

Np.f; z/
�
1� jzj2

�p.d�ı/
d�n.z/

D
X
m

MO2r.f /.�m/
p
�
1� j�mj

2
�ıp Z

Bn

.1� jzj2/p.d�ı/ d�n.z/

j1� h�m; zijpd

�
X
m

MO2r.f /.�m/
p; (3.6)

after an application of Lemma A.
It remains to estimate

R
Bn
A11.f; z/

p=2 d�n.z/. In the case that 0 < p � 2, we
have

A11.f; z/
p=2 �

X
j

ˇ̌
htz.aj /

ˇ̌p
jDj j

p=2
˛ MOr.f /.aj /

p:

This together with Lemma A (due to our condition p > 2n=.nC 1 C ˛ C 2t/, its
application is correct) givesZ

Bn

A11.f; z/
p=2 d�n.z/

�
X
j

�
1� jaj j

2
�p
2 .nC1C˛/MOr.f /.aj /

p

Z
Bn

.1� jzj2/
p
2 .nC1C˛C2t/

j1� hz; aj ijp.nC1C˛Ct/
d�n.z/

�
X
j

MOr.f /.aj /
p:

If p > 2, by Hölder’s inequality with exponent p=2 > 1 (denoting its dual exponent
by .p=2/0) and Lemma B, we see that

�X
j

jDj j˛MOr.f /.aj /
2

j1� haj ; zij2.nC1C˛Ct/

�p=2

is less than

X
j

.1� jaj j
2/
p
2 .1C˛/MOr.f /.aj /

p

j1� haj ; zij
p
2 .nC2C2˛C2t�"/

�X
j

.1� jaj j
2/n.

p
2 /
0

j1� haj ; zij
.p2 /
0.nC"/

�p
2 �1

�
�
1� jzj2

��"p2 X
j

.1� jaj j
2/
p
2 .1C˛/MOr.f /.aj /

p

j1� haj ; zij
p
2 .nC2C2˛C2t�"/

:
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Hence, for p > 2, we have

A11.f; z/
p=2 �

�
1� jzj2

�p
2 .nC1C˛C2t�"/

X
j

.1� jaj j
2/
p
2 .1C˛/MOr.f /.aj /

p

j1� haj ; zij
p
2 .nC1C˛Ct/

:

Therefore, we obtainZ
Bn

A11.f; z/
p=2 d�n.z/

�
X
j

�
1� jaj j

2
�p
2 .1C˛/MOr.f /.aj /

p

Z
Bn

.1� jzj2/
p
2 .nC1C˛C2t�"/ d�n.z/

j1� haj ; zij
p
2 .nC2C2˛C2t�"/

�
X
j

MOr.f /.aj /
p;

because as " > 0 has been taken so that p
2
.nC 1C˛C 2t � "/ > n, by Lemma A, we

have Z
Bn

.1� jzj2/
p
2 .nC1C˛C2t�"/ d�n.z/

j1� haj ; zij
p
2 .nC2C2˛C2t�"/

�
�
1� jaj j

2
��p

2
.1C˛/

:

Thus, we have proved thatZ
Bn

A11.f; z/
p=2 d�n.z/�

X
j

MOr.f /.aj /
p; 0 < p <1:

This together with (3.6) and (3.3) proves (3.2), finishing the proof of the theorem.

4. Proof of Theorem 1: First steps
We first establish some auxiliary results that can be of independent interest. Recall
that htz DK

t
z=kK

t
zk˛ with Ktz defined in (1.1). We begin with a tricky lemma.

LEMMA 4.1
Let ˛ >�1, t � 0, and f 2L2.Bn; dv˛/. Then

MO˛;t .f /.z/� C �
�
kHf h

t
zk˛ CkHf h

t
zk˛

�
for each z 2 Bn.

Proof
An easy computation gives��.f � �/htz��2˛ DB˛;t�jf j2�.z/� ˇ̌B˛;t .f /.z/ˇ̌2C ˇ̌B˛;t .f /.z/� �ˇ̌2:
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Thus, we have

MO˛;t .f /.z/D
�
B˛;t

�
jf j2

�
.z/�

ˇ̌
B˛;t .f /.z/

ˇ̌2�1=2
�
��f htz � gz.z/htz��˛
�
��f htz �P˛.f htz/��˛ C ��P˛.f htz/� gz.z/htz��˛
D kHf h

t
zk˛ C

��P˛.f htz/� gz.z/htz��˛;
where gz denotes the holomorphic function on Bn given by

gz.w/D
P˛.f h

t
z/.w/

htz.w/
; w 2 Bn:

Now we use the identity

gz.z/h
t
z D P˛Ct .gzh

t
z/: (4.1)

To see this, since Ktz.w/DK
t
w.z/, we have, by the reproducing formula,

gz.z/h
t
z.w/D kK

t
zk
�1
˛ gz.z/K

t
w.z/D kK

t
zk
�1
˛ hgzK

t
w ;Kzi˛

D kKtzk
�1
˛ hKz; gzK

t
wi˛ D kK

t
zk
�1
˛ hK

t
z; gzK

t
wi˛Ct

D hgzh
t
z;K

t
wi˛Ct D P˛Ct .gzh

t
z/.w/:

Therefore, (4.1) together with the boundedness of P˛Ct on L2.Bn; dv˛/ yields��P˛.f htz/� gz.z/htz��˛ D ��P˛.f htz/�P˛Ct .gzhtz/��˛
D
��P˛Ct�P˛.f htz/� gzhtz���˛

� kP˛Ctk �
��P˛.f htz/� gzhtz��˛: (4.2)

Finally, ��P˛.f htz/� gzhtz��˛ � ��f htz �P˛.f htz/��˛ Ckf htz � gzhtzk˛
D kHf h

t
zk˛ Ckf h

t
z � gzh

t
zk˛

D kHf h
t
zk˛ C

��f htz �P˛.f htz/��˛
D kHf h

t
zk˛ CkHf h

t
zk˛:

This proves the result with constant C D .1C kP˛Ctk/. Observe that, when t D 0,
since kP˛k D 1, one gets C D 1 since in (4.2) one has the term kP˛.f kz �gzkz/k˛ ,
and thus it is not necessary to use again the triangle inequality.
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The case t D 0 of Lemma 4.1 appears in [3] and [13], with a proof that seems
to be specific to the Hilbert space case. Observe that our proof is flexible enough to
work when studying Hankel operators acting on Ap˛ (see [14], where a version of
Lemma 4.1 for t D 0 in this setting was proved with a different method).

The following inequality is also satisfied:

kHf h
t
zkC kHf h

t
zk � 2MO˛;t .f /.z/: (4.3)

Indeed, we have

kHf h
t
zk
2
˛ D

��.I �P˛/.f htz/��2˛ D kf htzk2˛ � ��P˛.f htz/��2˛:
Now, by Cauchy–Schwarz,ˇ̌

B˛;t .f /.z/
ˇ̌
D
ˇ̌
hf htz; h

t
zi˛
ˇ̌
D
ˇ̌˝
P˛.f h

t
z/; h

t
z

˛
˛

ˇ̌
�
��P˛.f htz/��˛:

Since kf htzk
2
˛ DB˛;t .jf j

2/.z/, it follows that kHf htzk˛ �MO˛;t .f /.z/.
The following result can be found in [7, Lemma 2].

LEMMA C
Let ˛ >�1, and let T WA2˛.Bn/!A2˛.Bn/ be a positive operator. For t � 0, set

fT t .z/D hT htz ; htzi˛; z 2 Bn:

(a) Let 0 < p � 1. If fT t 2Lp.Bn; d�n/, then T is in Sp .
(b) Let p � 1. If T is in Sp , then fT t 2Lp.Bn; d�n/.

If we apply this lemma with the positive operator T DH�
f
Hf , then due to (4.3)

and Lemma 4.1, we obtain the necessity in Theorem 3 for p � 2 and the sufficiency
for p � 2. This together with the inequality MOr.f /.z/ �MO˛;t .f /.z/ gives the
implication that (a) implies (b) in Theorem 1 for p � 2, and if we use Theorem 2 we
see that (b) implies (a) for p � 2. Summarizing, the following proposition has been
proven.

PROPOSITION 4.2
Let ˛ >�1, and let f 2L2˛ . Then:
(i) Let 2 � p <1. If the Hankel operators Hf and Hf are simultaneously in

Sp.A
2
˛;L

2
˛/, then MOr.f / is in Lp.Bn; d�n/.

(ii) Let 0 < p � 2. If MOr.f / 2 Lp.Bn; d�n/, then Hf and Hf are both in
Sp.A

2
˛;L

2
˛/.
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Next, we consider the Hankel operator H �

f
defined by

H
�

f
D .I �P� /Mf :

With this notation, we have Hf DH˛
f

.

LEMMA 4.3
Let ˛ > �1, f 2 L2˛ , and � > ˛. If H˛

f
is in Sp.A2˛;L

2
˛/ (or compact), then H �

f
is

also in Sp.A2˛;L
2
˛/ (or compact).

Proof
Since for � > ˛, the projection P� is bounded on L2˛ and P�P˛ D P˛ , we have

H
�

f
DH˛

f C .P˛ �P� /Mf DH
˛
f �P�H

˛
f :

Hence the result follows.

PROPOSITION 4.4
Let ˛ > �1, f 2 L2˛ , and 2 < p <1. If MO2r.f / 2 Lp.Bn; d�n/, then Hf and
Hf are both in Sp.A2˛;L

2
˛/.

Proof
This follows from Theorem 2 with t D 0, and the well-known fact that MO˛;0.f / 2
Lp.Bn; d�n/ implies the conclusion of the proposition. However, we will provide a
self-contained proof based on Lemma 3.1. Since MO2r.f /DMO2r.f / it suffices
to prove that Hf is in Sp.A2˛;L

2
˛/. Write f D f1C f2 with

f1 D f � bfr ; f2 D bfr ;
and proceed to show that both Hf1 and Hf2 are in Sp . From [17, p. 211] we have

ĵf1j2r .z/�MO2r.f /.z/2:

Hence, by [16, Theorem 1] (see also [17, Corollary 7.14]), the Toeplitz operator Tjf1j2
belongs to Sp=2.A2˛/. As

Hf1H
�
f1
D Tjf1j2 � Tf1T

�
f1
� Tjf1j2

this implies that the Hankel operator Hf1 is in Sp.A2˛;L
2
˛/.

Next we are going to show that Hf2 is in Sp . Note that the condition implies that
H˛
f2

is compact (just take a look at Lemma 2.3, which implies that MOr.f /.z/! 0

as jzj ! 1 and this easily implies that MOr.bfr/.z/! 0), and in view of Lemma 4.3,
the operator H �

f2
is also compact for all � > ˛. Since P� D P˛P� on L2˛ and
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H˛
f2
�H

�

f2
D .P� �P˛/Mf2 D P˛H

�

f2
;

it is enough to show that H �

f2
belongs to Sp.A2˛;L

2
˛/ for � big enough, say, � D

˛C 4t with pt > n. By [17, Theorem 1.33], it suffices to prove thatX
m

kH
�

f2
emk

p
˛ � C

for any orthonormal set ¹emº of A2˛ , with a constant C not depending on the choice of
the orthonormal set. Let " > 0 so that ˛�" >�1. By Cauchy–Schwarz and Lemma A,
we have

kH
�

f2
emk

2
˛ �

Z
Bn

�Z
Bn

jf2.z/� f2.w/jjem.w/j

j1� hz;wijnC1C�
dv� .w/

�2
dv˛.z/

�
Z
Bn

�Z
Bn

jbfr .z/� bfr .w/j2jem.w/j2
j1� hz;wijnC1C�

dv�C".w/
�
dv˛�".z/:

Now, Fubini’s theorem, Hölder’s inequality with exponent p=2 > 1, and kemk˛ D 1
yield

kH
�

f2
emk

p
˛

�
Z
Bn

ˇ̌
em.w/

ˇ̌2�Z
Bn

jbfr .z/� bfr .w/j2 dv˛�".z/
j1� hz;wijnC1C�

�p=2
dv˛Cp2 .��˛C"/

.w/:

Because ¹emº is an orthonormal set, we can use the inequalityX
m

ˇ̌
em.w/

ˇ̌2
� kKwk

2
˛ D

�
1� jwj2

��.nC1C˛/
to obtainX

m

kH
�

f2
emk

p
˛

�
Z
Bn

�Z
Bn

jbfr .z/� bfr.w/j2 dv˛�".z/
j1� hz;wijnC1C�

�p=2�
1� jwj2

�p
2 .��˛C"/ d�n.w/:

Set

Ip.f;w/ WD
�Z

Bn

jbfr .z/� bfr .w/j2 dv˛�".z/
j1� hz;wijnC1C�

�p=2
:

Take a lattice ¹�kº, and apply Lemma 3.1 with d D t and ı > 0 satisfying pt�pı > n
and ˛ � "� 2ı >�1 to obtain
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Ip.f;w/�Np.f;w/
�Z

Bn

h.z;w/dv˛�".z/

j1� hz;wijnC1C��2d

�p=2
with

Np.f;w/D
X
k

MO2r.f /.�k/
p.1� j�kj

2/ıp

j1� hw;�kijpd

and

h.z;w/D
�
1C ˇ.z;w/

�2�
min

�
1� jzj; 1� jwj

���2ı
:

By Lemma A and Lemma 2.1, we haveZ
Bn

h.z;w/dv˛�".z/

j1� hz;wijnC1C��2d
�
�
1� jwj2

�2d��C˛�"�2ı
:

This, together with Lemma A, gives

X
m

kH
�

f2
emk

p
˛ �

Z
Bn

Ip.f;w/
�
1� jwj2

�p
2 .��˛C"/ d�n.w/

�
Z
Bn

Np.f;w/
�
1� jwj2

�pd�pı
d�n.w/

D
X
k

MO2r.f /.�k/
p
�
1� j�kj

2
�ıp Z

Bn

.1� jwj2/pd�pı

j1� hw;�kijpd
d�n.w/

�
X
k

MO2r.f /.�k/
p:

In view of Lemma 2.3 this finishes the proof.

Taking into account Propositions 4.2 and 4.4, to complete the proof of Theorem 1
it remains to show that (a) implies (b) for 0 < p < 2. The case 2n

nC1C˛
< p < 2 follows

immediately from (c) and the fact that MOr.f /.z/�MO˛.f /.z/. The final case is
done in the next section.

5. The last case: Necessity for 0 < p � 2n
nC1C˛

To prove this case, we will fix a number ˇ > ˛ satisfying p.nC 1C ˇ/ > 2n. We
will show that condition (a) of Theorem 1 implies that both Hˇ

f
and Hˇ

f
are in

Sp.A
2
ˇ
;L2

ˇ
/. Then the case already proved will give MOr.f / 2Lp.Bn; d�n/.

We will use that, under the pairing h�; �i� with � D .˛Cˇ/=2, the dual of L2˛ can
be identified with L2

ˇ
. Thus, if T is an operator in L2˛ , we can consider its adjoint
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operator S with respect to the pairing h�; �i� (acting now on L2
ˇ

) defined by the rela-
tion

hT u;vi� D hu;Svi� ; u 2L2˛; v 2L
2
ˇ : (5.1)

LEMMA 5.1
Let T 2 Sp.L2˛/. Then the operator S defined by (5.1) is in Sp.L2ˇ /. Moreover,
kT kSp � kSkSp .

Proof
Let

T uD
X
n

�nhu; eni˛�n; u 2L2˛;

be the canonical decomposition of the operator T , where ¹enº and ¹�nº are orthonor-
mal sets of L2˛ , and ¹�nº are the singular values of T . For each n, consider the func-
tions

fn.z/D en.z/
�
1� jzj2

�˛��
and hn.z/D �n.z/

�
1� jzj2

�˛��
:

Then ¹fnº and ¹hnº are orthogonal sets in L2
ˇ

, with kfnkˇ D khnkˇ D
p
cˇ=c˛ ,

where c˛ is the normalizing constant appearing in the definition of dv˛ . Also,

hu; eni˛ DK˛;� hu;fni�

with K˛;� D c˛=c� . Then it follows that

SvDK˛;�
X
n

�nhv; �ni�fn; v 2L2ˇ :

Since h�n; vi� D .c�=cˇ /hhn; viˇ , by normalizing the functions fn and hn in L2
ˇ

we

see that ¹�nº are the singular values of the operator S acting on L2
ˇ

. This gives the
result.

LEMMA 5.2
Suppose that H˛

f
and H˛

f
are both in Sp.A2˛;L

2
˛/. Then the commutator ŒMf ;P� � is

in Sp.L2˛/.

Proof
It is enough to show that ŒMf ;P� �� ŒMf ;P˛� is in Sp.L2˛/. Some algebraic manip-
ulations give
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ŒMf ;P� �� ŒMf ;P˛�DMf P� �P�Mf �Mf P˛ CP˛Mf

DMf .P� �P˛/�
gH �

f
�P�Mf P� CgH˛

f
CP˛Mf P˛:

Here gH s
f
D .I �Ps/Mf Ps . We already know that gH˛

f
is in Sp.L2˛/, and by Lemma

4.3 we also have gH �

f
2 Sp.L

2
˛/ because P� WL2˛!A2˛ is bounded. Thus, it is enough

to see that the operator

T WDMf .P� �P˛/�P�Mf P� CP˛Mf P˛

is in Sp.L2˛/. Since P� D P˛P� and P˛ D P�P˛ on L2˛ , we have

T D .I �P˛/Mf .P� �P˛/C .P˛ �P� /Mf P�

DgH˛
f
.P� � I /�P�gH˛

f
P� :

This shows that T is in Sp.L2˛/, finishing the proof.

Now that we know that the commutator T D ŒMf ;P� � is in Sp.L2˛/, an appli-
cation of Lemma 5.1 gives that its adjoint S with respect to the pairing h�; �i� is
in Sp.L2ˇ /. A simple computation gives S D �ŒMf ;P� �. Since P� is bounded on

L2
ˇ

(from [15, Theorem 2.11] we have that Ps is bounded on L2� if and only if
2.1Cs/ > 1C� ; in our case, � D ˇ and s D � D .˛Cˇ/=2, so that we get the condi-
tion ˛ >�1), we have that gH �

f
D ŒMf ;P� �P� is also in Sp.L2ˇ /. HenceH �

f
belongs

to Sp.A2ˇ ;L
2
ˇ
/, and finally we will show that this implies Hˇ

f
in Sp.A2ˇ ;L

2
ˇ
/. To see

this it is enough to prove that Hˇ

f
�H

�

f
is in Sp.A2ˇ ;L

2
ˇ
/, but using P� D PˇP� , we

have

H
ˇ

f
�H

�

f
D .P� �Pˇ /Mf D�PˇH

�

f
;

and the result follows. In the same manner we also have Hˇ

f
in Sp.A2ˇ ;L

2
ˇ
/. This

completes the proof of Theorem 1.

6. Further remarks
One can also consider the problem of describing the simultaneous membership ofH˛

f

and H˛

f
in Sp.L2ˇ ;A

2
˛/, that is, when the weights are not necessarily the same, in the

lines of the results of Janson [5] and Wallstén [8] in the holomorphic case. The result
that must be obtained following the proof given here is that H˛

f
and H˛

f
are both in

Sp.A
2
ˇ
;L2˛/ if and only if the function .1 � jzj2/�MOr.f /.z/ is in Lp.Bn; d�n/,

with � D .˛ � ˇ/=2. The general form of Theorem 2 that can be proved is: let � 2R
with 2� < 1C ˛, and let 0 < p <1. Then, for each t � 0 such that p > 2n=.nC
1C ˛C � C 2t/, one has
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Bn

�
1� jzj2

��p
MO˛;t .f /.z/

p d�n.z/� C

Z
Bn

�
1� jzj2

��p
MOr.f /.z/

p d�n.z/:

The proof, as well as the other analogues needed, seems to be essentially the same but
more technical in the sense that more parameters are involved.
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