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ABSTRACT 

Diazoxide, a well-known mitochondrial KATP channel opener with neuroprotective 

effects, has been proposed for the effective and safe treatment of neuroinflammation. To 

test whether diazoxide affects the neurogenesis associated with excitotoxicity in brain 

injury, we induced lesions by injecting excitotoxic N-Methyl-D-Aspartate (NMDA) into 

the rat hippocampus and analyzed the effects of a daily oral administration of diazoxide 

on the induced lesion. Specific glial and neuronal staining showed that NMDA elicited 

a strong glial reaction associated with progressive neuronal loss in the whole 

hippocampal formation. Doublecortin immunohistochemistry and bromo-deoxyuridine 

(BrdU)-NeuN double immunohistochemistry revealed that NMDA also induced cell 

proliferation and neurogenesis in the lesioned non-neurogenic hippocampus. 

Furthermore, glial fibrillary acidic protein (GFAP)-positive cells in the injured 

hippocampus expressed transcription factor Sp8 indicating that the excitotoxic lesion 

elicited the migration of progenitors from the subventricular zone and/or the 

reprograming of reactive astrocytes. Diazoxide treatment attenuated the NMDA-

induced hippocampal injury in rats, as demonstrated by decreases in the size of the 

lesion, neuronal loss and microglial reaction. Diazoxide also increased the number of 

BrdU/NeuN double-stained cells and elevated the number of Sp8-positive cells in the 

lesioned hippocampus. These results indicate a role for KATP channel activation in 

regulating excitotoxicity-induced neurogenesis in brain injury. 

 

KEYWORDS: Diazoxide; KATP channel; microglia; adult neurogenesis; 

neuroinflammation; tissue regeneration. 
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Adult neurogenesis occurs in delimited brain areas such as the subgranular zone (SGZ) 

of the dentate gyrus (DG) and the subventricular layer of the lateral ventricles (Lledo et 

al., 2006). This neurogenesis is associated with the presence of immature adult 

progenitor cells that have self-renewal capacity and can differentiate into one of the 

main neural cell types: neurons, astrocytes and oligodendrocytes (Lledo et al., 2006). 

Brain damage promotes neurogenesis in the SGZ of the DG and the subventricular zone 

(SVZ). Furthermore, injury or pathological stimuli are known to elicit the invasion and 

integration of newborn neurons into lesioned non-neurogenic regions. Following 

ischemia or brain trauma, proliferation increases in the SGZ of the DG (Kleindienst et 

al., 2005) and newborn neurons are also observed in the striatum and cortex (Bernier et 

al., 2002; Zhang et al., 2004; Ortega et al., 2013). The latter is attributed to the atypical 

migration of neuronal precursors from the SVZ towards the damaged areas and the 

activation of a latent neurogenic program in local astrocytes and parenchymal N2 glia 

(Péron and Berninger, 2015). The presence of newborn cell clusters in cortical areas 

close to blood vessels also suggests the recruitment of resident quiescent stem-like cells, 

or the infiltration of blood-borne cells (Zhang et al., 2004). Pathological conditions, 

therefore, trigger neurogenesis in central nervous system (CNS) regions where adult 

neurogenesis is usually non-existent.  

Microglia are the primary immune effector cells in the brain that release factors 

promoting the proliferation, migration, and differentiation of precursor cells (Deierborg 

et al., 2010). When microglia become reactive in response to injury, they release pro-

inflammatory cytokines that are generally anti-neurogenic. (Monje et al., 2003; Song 

and Wang, 2011; Ji et al., 2013; Mattei et al., 2014). However, microglia have been also 

reported to enhance neurogenesis under inflammatory conditions (Ekdahl et al., 2009; 

Sierra et al., 2014). Therefore, microglial activity depends on an equilibrium of the 

molecules secreted within the microenvironment (Salter and Beggs, 2014). Based on 

this theory, pharmacological control of microglial activation, which has been proposed 

to provide neuroprotection against neuroinflammation (Chen and Trapp, 2016), should 

also regulate the microglial influence on neurogenesic processes. 

Ion channels expressed by microglia modulate cell functions and directly regulate of 

microglial activity during injury (Stebbing et al., 2015). ATP-sensitive potassium 

(KATP) channels are postulated to be one of these channels controlling microglial 

activity (Ortega et al., 2012; Rodríguez et al., 2013). KATP channels are hetero-

octameric complexes composed of four regulatory sulfonylurea receptor (SURx) 
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subunits and four pore-forming inwardly-rectifying potassium (Kir6.x) subunits (Proks 

and Ashcroft, 2009). They act as metabolic sensors that regulate potassium flux and 

couple membrane excitability to cellular energy metabolism. KATP channels are also 

located on the mitochondrial inner membrane, where they participate in the control of 

mitochondrial volume and ATP synthesis (Cancherini et al., 2003). It is clear that KATP 

channel is a major component of the inflammatory response following brain injury. We 

and others have demonstrated that it regulates the reactive state of microglia, controls 

the release of inflammatory mediators, such as nitric oxide (NO) and tumor necrosis 

factor-alpha (TNFα), and modifies phagocytic activity (Zhou et al., 2008; Virgili et al., 

2011; Ortega et al., 2012). Despite these findings, the role of KATP channel in the 

neurogenesis associated with inflammatory conditions is still largely unknown. 

Diazoxide (7-chloro-3-methyl-4H-1,2,4-benzothiadiazine 1,1-dioxide; Dzx) is a well-

known drug that opens KATP channels showing high affinity for mitochondrial KATP 

(mito KATP) channels (Ashcroft and Gribble, 2000; Rodríguez et al., 2013). Dzx 

activates KATP channels in pancreatic 𝛽 cells and the smooth muscle of blood vessels, 

which results in the inhibition of insulin secretion and vasorelaxation (Richer et al., 

1990; Petit and Loubatières-Mariani, 1992) and a subsequent increase in the plasma 

glucose concentration. Because of that, Dzx has been approved and used since the 

1970s for treating malignant hypertension and hypoglycemia (Koch-Weser, 1976). Oral 

Dzx crosses the blood brain barrier (Kishore et al., 2011) and exerts neuroprotective 

effects in the CNS. Previous studies have demonstrated that oral administration of Dzx 

ameliorates disease progression and causes neuroprotection in animal models of 

Alzheimer’s disease and multiple sclerosis (Liu et al., 2010; Virgili et al., 2011). 

Furthermore, Dzx can exert neuroprotective effects on the brain against ischemia, 

trauma, and neurotoxicants (Roseborough et al., 2006; Robin et al., 2011; Shukry et al., 

2015). These results indicate novel roles for Dzx as a glia-mediated anti-inflammatory 

and neuroprotective agent. Here, we tested our hypothesis that Dzx modifies the 

microglial influence on the neurogenesis induced by brain damage using an in vivo 

experimental model of neurodegeneration	  that impairs performance in learning-memory 

tasks (Bardgett et al., 2003). We stereotaxically microinjected N-methyl-D-aspartate 

(NMDA) into the rat hippocampal formation (HF) to induce a neurodegenerative 

process triggering a potent microglia-mediated inflammatory reaction (Rodríguez et al., 

2013; Batlle et al., 2015; Espinosa-Parrilla et al., 2015). We then orally administered 

Dzx and analyzed any changes in lesion-induced neuroinflammation and neurogenesis. 
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Our results indicated that Dzx reduced NMDA-induced neuroinflammation and 

enhanced neurogenesis in the HF. 

 

EXPERIMENTAL PROCEDURES 

Animals and materials 

Adult male Wistar rats were obtained from the animal housing facilities of the School of 

Medicine (Universitat de Barcelona). Rats weighed 200-225 g at the beginning of the 

study and were housed with free access to food and water on a 12/12 hour light/dark 

cycle. Animals were manipulated according to the European Communities Council 

Directive of 24 November 1986 (86/609/EEC). For sufficient statistical power, we 

estimated that 6 rats should be included in each group (tolerance interval ± 0.9, 

confidence level 95%). Great efforts were made to minimize the number of animals 

used and their suffering. Procedures were approved by the Ethics Committee of the 

Universitat de Barcelona, under supervision of the local authorities. 

NMDA, Dzx, dimethyl sulfoxide (DMSO), diaminobenzidine (DAB), bromo-

deoxyuridine (BrdU), mouse monoclonal anti-glial fibrillary acidic protein (anti-GFAP) 

antibody, biotin-conjugated isolectin B4 (IB4) from Bandeiraea simplicifolia, and TRI 

Reagent® RNA isolation reagent were purchased from Sigma (St. Louis, MO, USA). 

Rat monoclonal anti-BrdU antibody was purchased from Immunologicals Direct 

(Oxford, UK); mouse monoclonal anti-NeuN antibody from Millipore (Boston, USA), 

and goat monoclonal anti-doublecortin (DCX) antibody was obtained from Santa Cruz 

Biotechnology (Santa Cruz, CA). Rabbit polyclonal anti-Sp8 antibody was purchased 

from Millipore (Boston, USA). Immunohistochemical reagents and secondary 

peroxidase-conjugated antibodies were purchased from Sigma, and the different 

fluorophorus-conjugated antibodies were purchased from Invitrogen (Carlsbad, CA, 

USA). The First Strand cDNA Synthesis kit was from Fermentas (St. Leon-Rot, 

Germany), whilst the SensiFASTTM SYBR No-ROX One-Step mix was purchased from 

Applied Biosystems (Foster, CA). PCR primers for the target genes were obtained from 

RealTimePrimers (Elkins Park PA, USA). 

Stereotaxic procedure and treatment of rats 

The stereotaxic procedure was performed as previously described (Batlle et al., 2015; 

Espinosa Parrilla et al., 2015). Briefly, rats were anesthetized with equithesin and 
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placed in a stereotaxic instrument (David Kopf, Carnegie Medicin, Sweden) with the 

incisor bar set at -3.3 mm. The stereotaxic coordinates were 3.3 mm caudal to bregma, 

2.2 mm lateral to bregma, and 2.9 mm ventral from dura, according to the Atlas of 

Paxinos and Watson (1986). For the unilateral intracerebral injection into the 

hippocampal parenchyma, we used a 5.0-µl Hamilton syringe and an infusion pump 

(CMA/100; Carnegie Medicin, Sweden). A volume of 0.5 µl was injected over 5 

minutes. Rats received either a single microinjection of 20 nmol NMDA diluted in 50 

mM phosphate buffered saline (PBS; pH 7.4) (NMDA group) or a microinjection of 50 

mM PBS (pH 7.4) (sham group). 

To study the effects of Dzx, this drug was administered daily per os from the 8th day 

until the day of sacrifice using an animal-feeding needle of size 76.2 mm from Harvard 

Apparatus (Holliston, MA, USA). Some rats were administered either 1 mg/kg Dzx 

(treated group) or diluent (0.3% DMSO in water, vehicle group). A total of 120 rats 

were distributed into the following groups (12 rats per group): Sham rats (sacrificed on 

days 5, 15 or 38 post-injection); Sham + Dzx rats (sacrificed on day 15 post-injection, 

treated with Dzx for 7 days, or  sacrificed on day 38 post-injection, treated with Dzx for 

30 days); NMDA 5 days (sacrificed on day 5 post-lesion); NMDA 15 days (sacrificed 

on day 15 post-lesion); NMDA 38 days (sacrificed on day 38 post-lesion) NMDA 15 

days + Dzx (sacrificed at post-lesion day 15, treated with Dzx for 7 days) NMDA 38 

days + Dzx (sacrificed on day 38 post-lesion, treated with Dzx for 30 days). Half of the 

animals (6 rats in each group) were used for biochemical studies and the other half were 

used for histological investigations (Figure 1). The Dzx and NMDA doses were chosen 

according to previous studies (Virgili et al., 2011; Rodríguez et al., 2013; Batlle et al., 

2015). 

To determine the effects of Dzx treatment on glycaemia, we monitored blood glucose 

levels in NMDA+Dzx rats before and 2 hours after Dzx treatment, every two days. 

Glucose measurements were performed using an Accu-ChekTM Aviva glucometer 

(Roche Diagnostics, Basel, Switzerland). Blood samples were obtained from the distal 

part of the tail. According to the animal welfare guidelines, glucose concentrations 

higher than 176 mg/dL were considered hyperglycemic. The selected Dzx dose did not 

affect glycemia in rats (Figure 2A). As they were used at low concentrations, the 

anesthetics did not interfere with the function of the NMDA receptors (Batlle et al., 

2015).  
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To determine the proliferation peak induced by the NMDA injection into the rat 

hippocampus, 6 sham and 6 NMDA rats received an intraperitoneal injection of BrdU 

(50 mg/Kg in 50 mM PBS) on different starting days after toxin injection (from day 1 to 

day 4, day 4 to 8, 8 to 12, and 12 to 15) (Figure 1A). All rats were sacrificed 15 days 

post-lesion by transcardial perfusion of 4% paraformaldehyde. Cell proliferation was 

assessed by BrdU immunohistochemistry and cells were stereologically counted using 

the optical fractionator method (see bellow). Once the time of the proliferation peak was 

determined (Figure 2B), all rats sacrificed on day 15 or 38 post-lesion received an 

intraperitoneal injection of BrdU (50 mg/Kg in 50 mM PBS) from day 4 to day 8 post-

lesion. The fate of the newly generated cells at the proliferation peak was examined in 

the group of animals sacrificed 30 days after the last BrdU injection (day 38 post-

lesion).  

Real-time RT-PCR 

At the indicated post-lesion time (Figure 1B), 6 rats from each group were anaesthetized 

and decapitated. The brain was then removed and the HF dissected, before being 

quickly frozen in liquid N2 and stored at -80°C prior to use. Total RNA was isolated 

using the TRIzol reagent (Invitrogen, Paisley, UK), following manufacturer’s 

instructions. We synthesized 2 µg of first-strand cDNA with random primers using the 

First Strand cDNA Synthesis kit. The RT reaction was performed at 42°C for 60 

minutes followed by 5 minutes at 70°C. Real-time PCR was conducted using the 

SensiFASTTM SYBR No-ROX One-Step mix according to manufacturer’s instructions. 

The PCR program was: 2 minutes at 95°C for denaturation; 45 cycles of 15 seconds at 

95°C for amplification and 1 minute at 60°C for final extension. For each target gene, 

the expression level was normalized to the mRNA level of GAPD. Primer sequences for 

target gene and endogenous controls are presented in Table 1. The ΔΔCT method was 

used to analyze the data as described by Bookout et al. (2006).  

Histology, immunohistochemistry, and image analysis 

After anesthesia, rats were transcardially perfused with 300 ml of 0.01 M PBS followed 

by 300 ml of 4% (w/v) paraformaldehyde in 0.01 M phosphate buffer (PB). The brains 

were removed, post-fixed, and transferred to 15% (w/v) sucrose in PB at 4ºC. The 

brains were then frozen with powdered dry ice and stored at -80ºC until use. Eight series 

of 25 adjacent 14-µm coronal sections from the whole hippocampus were obtained from 

the brains and mounted on poly-L-lysine-pretreated slides (10% w/v in distilled water). 
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Standard Nissl staining was performed to evaluate the areas of neuronal loss and the 

morphometry of the HF. Microglial cells were labeled for isolectin B4 (Rodríguez et al., 

2009). Briefly, sections were incubated overnight at 4ºC with IB4 diluted at 1:25 in 

normal goat serum (NGS, 1:100 v/v in 0.01 M PBS; pH 7.4). Then, they were incubated 

with ExtrAvidin (1:250) and developed in a 0.05-M Tris solution containing 0.03% 

(w/v) DAB and 0.006% (v/v) H2O2. 

Immunohistochemistry was carried out as previously described (Rodríguez et al., 2004) 

using the biotin-avidin-peroxidase method. Anti-GFAP antibodies were used to assess 

astroglial reactivity. Neuronal staining was undertaken with the anti-NeuN antibody, 

and the study of immature neurons performed with the anti-DCX and anti-Sp8 

antibodies. Briefly, sections were incubated overnight at 4ºC with the primary antibody 

diluted in NGS at the appropriate concentration. After incubation with the appropriate 

biotinylated secondary antibody, sections were incubated with ExtrAvidin and 

developed in DAB and H2O2. Proliferating cells and their progeny were detected by 

BrdU incorporation into the DNA of cells in the S-phase of the cell cycle (Nowakowski 

et al., 1989). BrdU was detected using mouse monoclonal anti-BrdU antibody. After 

DNA denaturation with 2M HCl at 37 ºC and incubation with 0.1M boric acid in 0.01M 

PBS, pH 8.5, sections were incubated overnight at 4ºC with the rat monoclonal anti-

BrdU antibody diluted at 1:100 (v/v) in NGS. After incubation with biotinylated mouse 

anti-rat antibody (1:100), sections were incubated with ExtrAvidin (1:250), and 

developed in DAB and H2O2.  

The fate of the new proliferating cells was determined by double immunohistochemical 

staining with BrdU and specific cellular markers (Figure 1C). After DNA denaturation 

with 2M HCl at 37ºC and incubation with 0.1M boric acid in 0.01M PBS, pH 8.5, 

sections were co-incubated overnight at 4ºC with the rat monoclonal anti-BrdU 

antibody and one of the following antibodies: mouse monoclonal anti-GFAP antibody 

for astroglial cells; mouse monoclonal anti-NeuN antibody for neurons; or goat 

monoclonal anti-DCX for immature neurons. For GFAP and NeuN, sections were then 

sequentially incubated in the dark with biotinylated mouse anti-rat IgG (1:100), FITC-

conjugated ), ExtrAvidin (1:250), and finally goat anti-mouse antibody conjugated with 

Alexa Fluor-555 (1:100). For DCX, sections were sequentially incubated with 

biotinylated mouse anti-rat IgG (1:100) and then with donkey anti-goat-IgG conjugated 

with Alexa Fluor-488 (1:100) and Cy3-conjugated ExtrAvidin (1:100). To determine 

the microglial phenotype of the newly generated cells sections were co-incubated 
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overnight at 4ºC with the rat monoclonal anti-BrdU antibody and the biotinylated IB4. 

Sections were then sequentially incubated in the dark with Cy3-conjugated ExtrAvidin 

(1:250) to label biotinylated IB4, and with biotinylated mouse anti-rat antibody (1:100) 

followed by FITC-conjugated ExtrAvidin (1:250) to detect BrdU. All sections were 

mounted in ProLong antifade mountant and kept in the dark. Incubations with either 

goat or mouse IgG as primary antibodies were used for negative controls. A Leica TCS 

SL laser scanning confocal microscope (Leica Microsystems Heidelberg GmbH, 

Manheim, Germany) was used to acquire confocal images. 

The hippocampal size, different hippocampal subfield areas, and areas showing 

neuronal loss were measured on Nissl-stained sections using the Image-Pro Plus image 

analysis software (Media Cybernetics Inc., MD, USA). Microglial and astroglial 

reaction areas were measured in IB4-stained and GFAP-immunostained sections, 

respectively, using the same software. In all cases, the area of contralateral 

hippocampus was measured to estimate the effects of histological procedures on tissue 

size and, thus, to correct for individual variability in brain size and tissue shrinkage. 

Stereological counting of proliferating cells was performed on sections stained for BrdU 

and on sections double-stained for BrdU and either GFAP, IB4, NeuN, or DCX. We 

applied the optical fractionator method to count labeled cells, as previously described 

(Ortega et al., 2013). Lesioned regions of the HF were identified under 2.5x 

magnification on arbitrary uniform random (AUR) coronal sections. For cell counting, 

we used the Mercator Pro 7.0 software (ExploraNova, france) to select AUR-sampled 

sites, and individual cells were viewed and counted under 40x magnification. 

Confocal images were acquired using a Leica TCS SL laser scanning spectral confocal 

microscope. Co-localization of fluorescent labeling in the hippocampus was analyzed in 

single confocal images, as published elsewhere (Espinosa-Parrilla et al., 2015). Briefly, 

for each image, the map showing the spatial distribution of normalized mean deviation 

product (MDP) values (Jaskolski et al., 2005) and the scatter plot of pixel distribution 

were obtained and analyzed. The co-localization study also included the determination 

of Pearson’s “r” coefficient, the overlap coefficient R, and the overlap coefficients for 

the green (k1) and red (k2) channels. All image analyses were performed with 

FluoColoc (ExploraNova, France) and ImageJ software. 

Statistical analysis 
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For each parameter, the normal distribution of data was tested analyzing Kurtosis and 

Skewness moments. Statistical analysis was performed using a one-way analysis of 

variance (ANOVA), followed by Bonferroni’s post hoc test for pairwise group 

comparisons. Values are presented as mean ± standard error of the mean (SEM), with 

significance determined at P<0.05. Neuronal loss is expressed as values relative to those 

of the sham group. All analyses were performed with the statistic package 

STATGRAPHICS (STSC Inc., Rockville, MD, USA). 

 

RESULTS 

Diazoxide attenuates the NMDA-induced neurodegenerative process in the rat 

hippocampus 

In our previous study (Rodríguez et al., 2013) we showed that activated microglia 

expressed KATP channels in the rat NMDA-lesioned hippocampus. To monitor this 

microglial expression, here, we quantified by RT-qPCR the mRNA levels of Kir6.1, 

Kir6.2, SUR1 and SUR2 in the hippocampus of sham and NMDA-lesioned rats at 

different post-lesion times. We also analyzed the effects of Dzx on these expression 

levels (Table 2). Compared to sham rats, we found significant increases in Kir6.1 (2.59-

fold; p = 0.009) and SUR2 (2.21-fold; p = 0.007) expression 5 days after the NMDA 

injection. This increase in expression was not significant at longer times after lesion 

induction. Dzx significantly increased SUR2 expression only on day 38 post-lesion 

(2.47-fold; p = 0.046; Table 2).  

We then studied the long-term effects of chronic Dzx oral administration on 

excitotoxicity-induced neurodegeneration. Inspections of Nissl-stained sections revealed 

that 20 nmol NMDA produced major disorganization, neuronal loss and gliosis in all 

the layers of the HF. A daily dose of 1 mg/kg/day Dxz attenuated these NMDA-induced 

effects on days 15 and 38 post-lesion (Figure 3A-C). We measured morphological 

changes in the lesioned hippocampal area using Nissl-stained sections. We noted that 50 

mM PBS microinjection caused no significant lesion in the hippocampus except for the 

needle puncture wound, at any of the four studied time points (Figure 3G). By contrast, 

20 nmol NMDA induced a progressive increase in the lesioned area that reached a 

maximal size covering 41 ± 5% of the whole hippocampus 38 days after lesion 

induction (p = 0.0004). This area of the lesion was 24 ± 3% smaller (p = 0.015) in the 

hippocampus of NMDA-lesioned rats receiving a daily dose of Dzx (Figure 3G). 
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We then assessed the area of NMDA-induced neuronal loss in the pyramidal CA and 

granular DG layers of NeuN-immunostained HF (Figure 3D-F). In NMDA rats, the area 

of neuronal loss covered 28 ± 7% of the pyramidal CA1 and CA2 layers 5 days post-

lesion, progressively reaching a maximal value of 71 ± 9% on day 38 post-lesion (p = 

0.0099). Dzx treatment decreased this area of neuronal loss by 31 ± 4%  on day15 post-

lesion; however there was no significant effect on day 38 post-lesion (figure 3H). In the 

granular layer of the DG, Dzx reduced the area of NMDA-induced neuronal loss by 42 

± 8% on day 15 post-lesion (p = 0.0450), this decrease remaining significant on day 38 

post-lesion (Figure 3I). 

We studied microglial reaction by IB4 histochemistry (Figure 4A-C). Whilst there was 

no significant microglial reaction in sham rats, except that associated with the needle 

puncture wound, NMDA induced microglial reactivity covering 36.50 ± 4.33% of the 

total hippocampal area on day 5 post-lesion (p = 0.0005). This area increased with time 

to reach a maximal value of 61 ± 7% of the whole HF on day 15 post-lesion (Figure 

4G), slightly decreasing on day 38 post-lesion. Dzx treatment significantly reduced this 

microglial reaction area to the 33 ± 5% of the whole hippocampus on day 15 (reduction 

of 47 ± 6%; p = 0.0032), which remained decreased on day 38 post-lesion (Figure 4G). 

The area of NMDA-induced astrogliosis was assessed by GFAP-immunohistochemistry 

(Figure 4D-F). In sham animals, this area was restricted to the needle puncture wound, 

reaching a maximal value of 6.5 ± 4% of the whole hippocampal area 5 days post-lesion 

(Figure 4H). We detected reactive astrocytes in 24.36 ± 5.69% of the hippocampal area 

5 days after NMDA microinjection. This area of astrogliosis reached a maximal size of 

49 ± 4% on day 15 post-lesion (p = 0.0005), slightly decreasing on day 38 post-lesion. 

Dzx decreased the area of NMDA-induced astrogliosis by 26 ± 6% on day 15 post-

lesion (p = 0.0456), this decrease remaining significant 38 days after lesion induction 

(Figure 4H). 

Diazoxide enhances NMDA-induced neurogenesis in the rat hippocampus  

NMDA induced cell proliferation in the hippocampus that reached a maximal value 4 to 

8 days after lesion induction, as detected by BrdU immunohistochemistry (Figure 2B). 

To determine the cell type of the newly generated cells, we performed double 

immunohistochemical staining and confocal microscopy to identify cells stained with 

BrdU and a cell-specific marker 38 days post-lesion. BrdU-NeuN double-

immunostained cells in the lesioned area accounted for 40 ± 3% of all the mitogenic 
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cells (Figure 5A). Of the cells co-expressiong BrdU and NeuN, 78 ± 5% were in the 

lesioned hippocampal parenchyma and CA layers, while only 22 ± 1% where in the DG 

(Figure 5B). Only 5.8 ± 0.7% of BrdU-positive cells displayed IB4 staining and were 

homogeneously distributed throughout the hippocampal lesioned area (Figure 5C-D). 

Meanwhile, 51 ± 4% of BrdU-positive cells were immunoreactive for GFAP. These 

cells were widely distributed throughout the entire hippocampal lesioned area, with only 

3.7 ± 0.2% located in the DG (Figure 5E-F). Dzx treatment did not modify the number 

and distribution of BrdU-positive cells but did significantly affect cell fate (Figure 5G) 

since only 8.5 ± 1% of BrdU-positive cells were also immunoreactive for GFAP 

whereas the 32 ± 3% were positive for IB4 and the remaining 59.5 ± 7% 

immunopositive for NeuN (Figure 5B, D, F, G). 

We monitored the location of DCX-immunostained cells to study the neurogenic time 

course in the lesioned area (Figure 6A-F). Sham animals displayed the same number of 

DCX-stained immature neurons within the SGZ during the course of the study. In 

NMDA-lesioned rats, DCX-positive cells were mainly scattered throughout the entire 

lesioned hippocampus (Figure 6G). When quantifying cells co-expressing BrdU and 

DCX, 75 ± 5% of DCX-positive cells were immunonegative for BrdU (Figure 6H). 

BrdU-DCX-positive cells were less abundant in the lesioned DG than in the SGZ and 

the lesioned hippocampus. Comparison of BrdU-DCX-positive cells 15 days post-lesion 

with BrdU-NeuN double-stained neurons 38 days post-lesion demostrated a 43% 

decrease in the area of the lesioned hippocampus (Figures 5B, 6H).  

Diazoxide enhances the NMDA-induced presence of SP8-GFAP-positive cells in the 

hippocampus 

As most neuroblasts and newly generated neurons were not mainly located in the DG, 

we evaluated their putative SVZ origin by immunohistochemically analyzing the 

transcription factor Sp8. Cells immunopositive for Sp8 were detected in the SVZ along 

the entire lateral wall of the ventricles, but there was no specific staining in the intact 

SGZ of the DG (Figure 7A, B) On day 15 post-lesion, Sp8 immunopositive cells were 

present in all the lesioned hippocampal subfields, mainly in the oriens and radiatum 

strata of CA1, the lacunosum moleculare, and the ventral part of the hippocampus near 

the thalamus (Figure 7C). These cells presented Sp8 staining in the nucleus and 

cytoplasm, some showing intense immunostaining in the cellular processes (Figure 7D). 

The numbers of Sp8-positive cells were similar in all the lesioned layers 38 days post-
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lesion (Figure 7F). Dzx treatment showed no clear effect on hippocampal Sp8-

immunolabeling 15 days post-lesion, but did increase the number of Sp8-positive cells 

by 103 ± 21% on day 38 post-lesion (p = 0.0341) (Figure 7G-I). 

To determine whether these Sp8-positive cells were of neuronal or glial nature, we 

performed both Sp8-NeuN and Sp8-GFAP double immunostaining of hippocampal 

slices obtained from day 38 post-lesion. Confocal mmicroscopic analysis of cells 

stained with anti-Sp8 and anti-NeuN antibodies reveales that Sp8-positive cells were not 

neuronal. (Figure 8A - F), producing a mean Pearson’s r value of 0.095 for the MDP 

images analyzed. Almost all the Sp8-positive cells were GFAP-immunopositive (Figure 

8G - L), with a mean Pearson‘s r value of 0.34 for the red channel and 0.19 for the 

green channel. 

 

DISCUSSION 

KATP channel activators such as Dzx are well-known compounds approved for treating 

hypoglycemia and hypertension, with additional neuroprotective properties against 

ischemia, trauma, and neurotoxicants (Robin et al., 2011; Shukry et al., 2015). Recently, 

we and others have reported novel roles for Dzx as an anti-inflammatory agent, which 

could contribute to the neuroprotective effects. Dzx has been shown to prevent 

microglial TNF𝛼, NO and interleukin-6 production after activation with different 

stimuli in vitro (Zhou et al., 2008; Virgili et al., 2011). Here, our in vivo results 

demonstrated that Dzx preserves neurons and decreases microglial reaction against an 

excitotoxic neurodegenerative insult, possibly through its anti-inflammatory action.  

Different CNS cell types, including neurons (Humphries and Dart, 2015), 

oligodendrocytes (Fogal et al., 2010) and microglia (Virgili et al., 2011; Ortega et al., 

2012), express KATP channels as a combination of Kir6.2 and SUR1 subunits. KATP 

channels are also expressed by endothelial cells, where they could be involved on the 

vascular response to physiological events (Rosenblum, 2003). Thus, Dzx not only acts 

on microglial cells, but also on other cell types in a dose-dependent manner. At the dose 

used in the present study (1 mg/kg/day) we found no effects of Dzx on peripheral 

glucose concentration, confirming the specificity of Dzx activity on CNS cells. 

In our model, oral administration of Dzx at a low concentration (1mg/kg/day) preserved 

NMDA-induced cell death. Other studies in different animal models have shown that 

Dzx protects against cell death from excitotoxicity or inflammation, generating 

beneficial outcomes (Zhou et al., 2008; Liu et al., 2010; Virgili et al., 2011) and 
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modulating the innate immune response (Virgili et al., 2014). 

The mechanisms underlying such actions of Dzx are not yet completely understood. 

Dzx-mediated neuroprotection is thought to be linked to the mitochondria, which are the 

main ATP-generating sites in the cell. Microglial activation involves a metabolic 

reprograming that leads to potentiation of anaerobic glycolysis (Gimeno-Bayón et al., 

2014), higher numbers of mitochondria labeled with [3H]PK11195 (Bernal et al., 2009) 

and increased mitoKATP channel expression (Rodríguez et al., 2013). Activation of 

mitoKATP channels increases potassium flux into the mitochondrial matrix and avoids 

excessive mitochondrial contraction that is deleterious for electron transport (Cancherini 

et al., 2003). Indeed, cells treated with Dzx demonstrate favorable energy profiles with 

limited damage following stress challenges (Iwai et al., 2000). Furthermore, Dzx has 

been reported to provide cardioprotection through mitoKATP activation (Henn et al., 

2015). Thus, Dzx could exert its neuroprotective effects through increasing the 

ATP/ADP ratio in the mitochondria and cytoplasm of reactive microglia. If we consider 

the specific action of Dzx on plasmalemma KATP channels, KATP channel activity at the 

cell membrane would therefore be regulated by ATP-mediated inhibition and Dzx-

induced activation (Rodríguez et al., 2013).	  	  

Our in vivo results revealed that NMDA-induced excitotoxicity increased the 

proliferation and maturation of newborn neurons in the lesioned HF. Many studies have 

described enhanced adult SGZ neurogenesis after acute injury such as ischemia, 

traumatic brain injury, experimentally induced epilepsy and trimethyltin intoxication 

(Corvino et al., 2005; Kleindienst et al., 2005; Hattiangady and Shetty, 2008). However, 

the induction of proliferation in those studies is not sustained long term and the number 

of newly generated neurons is limited. The reasons for this limited neurogenesis could 

be asymmetric or symmetric division of newborn cells leading to mature glial cells and 

the formation of the glial scar (Sofroniew, 2009; Sierra et al., 2015) or newly generated 

neurons hardly integrating into the hippocampal circuits and thus, degenerating (Sun et 

al., 2005). In any case, this neurogenesis eventually accelerates the depletion of the 

neural stem cell pool (Sierra et al., 2015; Zhang et al., 2015). However, here, we report 

a new finding of neuroblasts and newly generated neurons being detected in the 

lesioned HF by both DCX-immunohistochemistry and BrdU-NeuN double staining. 

Moreover, the expression of the transcription factor Sp8 by GFAP-positive cells in the 

injured hippocampus indicates that an excitotoxic lesion induces neurogenesis by 

eliciting the migration of progenitors from the SVZ and/or reprograming reactive 
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astrocytes in the lesioned HF. 

Sp8-positive cells are the major population of olfactory bulb GABAergic interneurons 

constantly produced in the SVZ (Waclaw et al., 2006; Liu et al., 2009) and are not 

present in the SGZ of the DG. The presence of several Sp8-positive cells in the lesioned 

HF may reflect infiltration of blood-borne cells (Zhang et al., 2004). However, the Sp8-

GFAP positive cells we found indicate either a robust recruitment of neuroblasts from 

the SVZ into the damaged hippocampus or reactive astrocytes acquiring progenitor cell 

properties after injury, as previously described for ischemic brain injury (Sirko et al., 

2013). In either case the appearance of Sp8-positive neuroblasts in the lesioned 

hippocampus would compensate for the reduced neuroblast pool in the SGZ. It is 

important to point out that most DCX-positive cells were not immunopositive for BrdU, 

suggesting that migration or the appearance of these new neuroblasts in the damaged 

hippocampus is not preceded by the induction of cell proliferation. The constitutive 

expression of Sp8 by neuroblasts during the course of the study, which has been also 

observed in the striatum after stroke (Liu et al., 2009), indicates that the intrinsic 

differentiation program of adult neuroblasts is not altered by brain area-specific external 

factors or cerebral injury. 

Our data indicate that neurogenesis is a microglial-dependent process, with microglia 

being required for controlling of progenitor cell migration and differentiation (Sato, 

2015) and exacerbated microgliosis being detrimental for neurogenesis (Solano Fonseca 

et al., 2016). In the pathogenic brain, together with reactive astrocytes, microglia 

produce trophic factors that promote neurogenesis (Ribeiro Xavier et al., 2015) and 

inflammatory compounds that inhibit neurogenesis (Monje et al., 2003; Song and 

Wang, 2011; Ji et al., 2013; Mattei et al., 2014). Given that Dzx decreased chronic 

microglial reaction and the extent of the lesion in our model, and that in vitro Dzx 

attenuates the pro-inflammatory activity of reactive microglia (Zhou et al., 2008; Virgili 

et al., 2011), Dzx may promote neurogenesis by reducing the synthesis of inflammatory 

compounds. As there is no evidence of KATP channel expression in neuroblasts (Ortega 

et al., 2014), the effect of Dzx on neurogenesis could be through controlling microglial 

reactivity. Thus, by regulating the reactive phenotype of microglia through KATP 

channel activation, we Dzx increased the number of newly generated NeuN-positive 

cells and the occurrence of Sp8-GFAP-positive cells in the lesioned HF in the present 

study. The latter cells could have migrated from the pool located in the SVZ or from 

layers I and II of the cerebral cortex (Zhang et al., 2015). Whatever the case, the 
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mechanisms underlying microglial recruitment of these cells remain to be elucidated. 

Not all anti-inflammatory therapies may be beneficial for restoring neurogenesis. In a 

previous study, we demonstrated that blocking of microglial KATP-channels enhanced 

microglial release of MCP-1 and neurosphere proliferation, while partly affecting cell 

fate determination (Ortega et al., 2014). These results were consistent with those of 

other showing that neuroinflammation promotes neurogenesis. For example, anti-

inflammatory treatment with minocycline does not affect neurogenesis (Ng et al., 2012), 

nor reduce proliferation of SVZ progenitors after inflammation (Deierborg et al., 2010). 

Furthermore, some inhibitors of cyclooxigenase-2, which is highly expressed by 

reactive microglia, are potent suppressors of neurogenesis (Goncalves et al., 2010). 

These findings reinforce the idea that some pro-inflammatory modulators do not inhibit 

adult neurogenesis. Thus, as microglial activation mediates inflammation at the site of 

injury (Domercq et al., 2013) and neuroblasts from the SVZ respond positively to 

inflammatory mediators (Ekdahl et al., 2009), therapies completely abrogating 

inflammation could be detrimental under certain conditions in regulating neurogenesis 

after injury. Thus, compounds like Dzx that modulate, but do not abolish, microglial 

inflammatory activity could be used to promote neurogenesis in cerebral damage.  

Newborn hippocampal neurons after ischemia have been reported to be partially 

functional three months after the injury and to ameliorate the induced neurological 

deficits in rats (Nakatomi et al., 2002). However, the fact that neuroblasts retain their 

SVZ phenotype during the course of the study may indicate an aberrant neurogenesis 

and impairment of hippocampal functioning, as described in pathological situations 

such as stress, depression and epilepsy (Ming and Song, 2011). It would be interesting 

to ascertain the role of the newly generated Sp8-positive cells in the injured HF, as they 

may act as newborn type II astrocytes or differentiate into neurons with the same 

function as those of hippocampal GABAergic interneurons (Zhang et al., 2015). If the 

latter is correct, this would reinforce the use of therapeutic approaches promoting the 

long-term capacity of the brain to regenerate hippocampal function in neurological 

disorders (Picard-Riera et al., 2004). However, the main degenerating cells in the 

injured hippocampus are glutamatergic pyramidal neurons, whose regeneration should 

be considered when developing therapies.  

 

CONCLUSION 
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Our results provide clear evidence of the neuroprotective and anti-inflammatory effects 

of activating KATP channels during excitotoxicity in the rat hippocampus. We also 

demonstrate the role of KATP channel opening in controlling of excitotoxicity-induced 

neurogenesis. Whether the increased neurogenic response to Dzx is beneficial remains 

uncertain and further experiments are needed to solve this issue. If it were confirmed, 

regulating reactive microglial activity through pharmacologically manipulating of the 

KATP-channels could be used to curtail neuroinflammation and promote regeneration in 

the treatment of neurodegenerative diseases.  
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FIGURE LEGENDS 

FIGURE 1: Experimental groups and procedures. The different animal groups are 

represented as horizontal bars and grouped into three different experiments. The Dzx 

arrowhead in the time scale points to the day starting the diazoxide treatment. (A) For 

the study of the proliferation peak NMDA rats received an i.p. BrdU injection (50 

mg/Kg in 50 mM PBS) on different starting days after NMDA injection (arrows) and 

were sacrificed at day 15 post-lesion. (B) For the study of the Dzx effects on NMDA-

induced neurodegeneration rats were distributed into 10 different groups. Dzx (1 mg/kg 

diluted in 0.3% DMSO in water) was daily administered per os to rats from 4 groups 

(dark bars). (C) Some groups from (B) were included in the immunohistochemical study 

of the Dzx effects on neurogenesis (see text for details). IHQ, immunohistochemistry.  

 

FIGURE 2: Rat glycemic measurements and determination of the NMDA-induced 

proliferation peak. (A) Rat blood glucose levels before and 2 hours after 1 mg/kg Dzx 

treatment,  measured every two days. (B) BrdU-positive cell counts, with a maximal 

value 4 to 8 days after the lesion induction (411% vs sham, KW=1.54; p=0.017). 

Photomicrograph illustrates BrdU-immunostaining restricted to the cell nucleus, with 

irregular and dark punctuated forms corresponding to condensed chromatin. n = 6 

rats/group. Scale bar 10 µm 

 

FIGURE 3: Effect of Dzx treatment on the NMDA-induced hippocampal lesion. 

Microphotographs of the rat hippocampus 38 days after the injection of vehicle (sham), 

20 nmol NMDA (NMDA 38 days), or 20 nmol NMDA and the oral administration of 

1mg/kg/day Dzx (NMDA+Dzx 38 days). (A-C) Cresyl violet staining reveals strong 

neuronal loss in the NMDA and NMDA+Dzx groups, with most hippocampal layers 

showing great disorganization. (D-F) NeuN immunohistochemistry (IHC) shows 

NMDA associated neuronal loss. (G-I) Quantification of Dzx effects on NMDA-

induced hippocampal lesion. Time-course study of (G) the lesioned area, and neuronal 

loss in (H) the pyramidal CA1 and (I) the granular layer of dentate gyrus Arrows in A-F 

indicate the injection site. PyrCA1, pyramidal stratum of Cornu Ammonis 1; grDG 

granular layer of the dentate gyrus. Scale bar 1 mm. n = 6 rats/group, * p < 0.05 

different from the sham group, # p < 0.05 different from the NMDA group, 

(Bonferroni’s post hoc test).  
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FIGURE 4: Effect of Dzx treatment on NMDA-induced neuroinflammation. 

Microphotographs of the rat hippocampus 38 days after the injection of vehicle (sham), 

20 nmol NMDA (NMDA 38 days), or 20 nmol NMDA and the oral administration of 

1mg/kg/day Dzx. (NMDA+Dzx 38 days). (A-C) IB4 histochemistry shows microglial 

reaction to the NMDA-induced lesion (D-F) GFAP immunohistochemistry (IHC) shows 

the astroglial reaction to the lesion. (G-H) Quantification of Dzx effects on the NMDA-

induced neuroinflammation. Time-course study of the (G) area of microgliosis , and (H) 

the area of astrogliosis. Arrows in A-F indicate the injection site. PyrCA1, pyramidal 

stratum of Cornu Ammonis 1; grDG granular layer of the dentate gyrus Scale bar 1 mm. 

n = 6 rats/group, * p < 0.05 different from the Sham group, # p < 0.05 different from the 

NMDA group, (Bonferroni’s post hoc test).  

 

FIGURE 5. Proliferating cells showing glial and neuronal phenotypes 38 days after 

NMDA injection. Confocal images of (A) NeuN-BrdU, (C) IB4-BrdU, and (E) GFAP-

BrdU double-stained cells evidenced some cells positive for BrdU and different cellular 

markers (arrowheads). Histograms showing the number of (B) double Brdu-NeuN, 

(D)BrdU-IB4, and (F) BrdU-GFAP ico-expressinge cells 38 days post-lesion, in the 

different layers of the hippocampal formation. (G) Relative number of neurons (NeuN), 

astrocytes (GFAP), and microglia (IB4) double-stained BrdU-positive cells in the entire 

HF. SGZ, Subgranular zone; Par, hippocampal parenchyma. n = 6 rats/group, * p < 0,05 

different from the Sham, group # p < 0,05 different from the NMDA group 

(Bonferroni’s post hoc test). Scale bar 20µm. 

 

FIGURE 6: Most DCX-immunopositive cells are BrdU negative. Confocal images of 

DCX-BrdU co-localization in (A-C) the SGZ and (D-F) the lesioned hippocampus 15 

days after NMDA injection. Histograms show numbers of (G) DCX-immunopositive 

cells and (H) BrdU-DCX-immunoreactive cells on day 15 post-lesion. SGZ, 

subgranular zone; hipp, hippocampus. * p<0.05 different from the sham group 

(Bonferroni’s post hoc test). Scale bar 50 µm. Inset scale bar 10 µm. 

 

FIGURE 7: Localization of Sp8-positive cells in the lesioned hippocampus. 

Photomicrographs of the (A) control hippocampal formation and (B) SVZ, and (C,D) of 

the NMDA-lesioned hippocampus. (E,F) Photomicrographs of immunofluorescent Sp8 
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staining illustrate differences between the hippocampus of NMDA-lesioned rats and 

NMDA+Dzx rats, 15 and 38 days after the lesion. (I) Numbers of Sp8 positive cells in 

the hippocampus of sham, NMDA and NMDA+Dzx rats. CA1, Cornus Ammonis 1; 

DG, dentate gyrus; LV, Lateral ventricle. n = 6 rats/group. # p < 0,05 when compared to 

day 15 post-lesion (Bonferroni’s post hoc test). Scale bar 500 µm for A and C; 100 µm 

for B and D; and 1 mm for E-G . 

 

FIGURE 8: Sp8 expression in GFAP-immunopositive cells. (A-C) Confocal images of 

NeuN and Sp8 double staining in the hippocampus of NMDA-lesioned rats. (D) 

Confocal image of an XY plane with the merged channels, (E) the MDP map showing 

the colocalization map of the red and green channels, and (F) the scatter plot from the 

merged image. (G-I) Confocal images of GFAP and Sp8 double staining in the 

hippocampus of NMDA-lesioned rats. (J) Confocal image of an XY plane with the 

merged channels, (K) the MDP map and (L) the scatter plot from the merged image. In 

the scatter plots, the green channel intensity increases from left to right on the X-axis, 

and the red channel intensity increases from bottom to top in the Y-axis. The absence of 

yellow dots in (E) and (F) denotes no colocalization of the two channels. The presence 

of yellow dots in (K) and (L) denotes colocalization of the two channels. Scale bar, 40 

µm.  
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Table 1: Primer and probe sequences for real-time RT-PCR 

Target  Gene Sequence (5’-3’) Size 
(bp) Accesion Nº 

GAPD rat Gapd 
F: AGA CAG CGC ATC TTC TTG T 

R: CTT GCC GTG GGT AGA GTCAT 
207 NM_017008 

Kir 6.1 rat Kcnj8 
F: CAC AAG AAC ATC CCG AGA GCA 

R: CGT GAA TGA CCT GAC ATT GG 
246 NM_017099 

Kir 6.2 rat Kcnj11 
F: CCA CCC ATT CTC TGT CTG TC 

R: CCA GGA TTT GAA CCA ATC CAG 
166 NM_031358 

SUR 1 rat Abcc8 
F: TGA ACA CAG CTA TCC CCA TT 

R: CTC TGC ACT GGA CAG GAA CT 
218 NM_013039 

SUR 2 rat Abcc9 
F: CCA ACA TCG TCT TTT TGG AC 

R: AAC ACA CTG CCA TCC TTC AT 
184 NM_013040 
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Table 2. KATP channel gene expression in NMDA-lesioned hippocampus 

Gene Group Fold change vs sham 95% CI p-value 

Kir6.1 

NMDA 5 days 2.596 1.88 - 3.31 0.009 

NMDA 15 days 0.477 0.25 - 0.75 0.32 

NNMDA 38 days 0.968 0.51 - 1.43 0.91 

NMDA+Dzx 15 days 1,573 0.17 - 2.97 0.33 

NMDA+Dzx 38 days 1,469 1.02 - 1.91 0.35 

Kir6.2 

NMDA 5 days 1.766 0.83 - 2.7 0.19 

NMDA 15 days 0.733 0.41 - 0.57 0.54 

NNMDA 38 days 1.054 0.92 - 1.19 0.92 

NMDA+Dzx 15 days 1.267 0.08 - 2.45 0.67 

NMDA+Dzx 38 days 2.236 1.36 - 3.10 0.07 

SUR1 

NMDA 5 days 1.189 0.61 - 1.77 0.56 

NMDA 15 days 0.440 0.31 - 0.57 0.16 

NNMDA 38 days 0.944 0.85 - 1.04 0.99 

NMDA+Dzx 15 days 1.027 0.44 - 1.61 0.84 

NMDA+Dzx 38 days 1.585 0.31 - 2.85 0.29 

SUR2 

NMDA 5 days 2.218 1.35 - 3.09 0.007 

NMDA 15 days 1.484 0.80 - 2.16 0.13 

NNMDA 38 days 0.945 0.04 - 1.84 0.98 

NMDA+Dzx 15 days 1.101 0.12 - 2.08 0.69 

NMDA+Dzx 38 days 2.470 0.50 - 4.43 0.046 
CI, Confidence interval. 

  



	  29	  

FIGURE 1: Experimental groups and procedures. 

 

 

 

FIGURE 2: Rat glycemic measurements and determination of the NMDA-induced 
proliferation peak. 
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FIGURE 3: Effect of Dzx treatment on the NMDA-induced hippocampal lesion 
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FIGURE 4: Effect of Dzx treatment on NMDA-induced neuroinflammation 
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FIGURE 5. Proliferating cells showing glial and neuronal phenotypes 38 days after 
NMDA injection 
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FIGURE 6: Most DCX-immunopositive cells are BrdU negative. 
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FIGURE 7: Localization of Sp8-positive cells in the lesioned hippocampus 
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FIGURE 8: Sp8 expression in GFAP-immunopositive cells 

 

 

 


