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Abstract. We analyze microscopic many-body calculations of the nuclear symmetry energy and its density
dependence. The calculations are performed in the framework of the Brueckner—Hartree—Fock and the Self—
Consistent Green’s Functions methods. Within Brueckner—Hartree—Fock, the Hellmann—Feynman theorem
gives access to the kinetic energy contribution as well as the contributions of the different components
of the nucleon-nucleon interaction. The tensor component gives the largest contribution to the symmetry
energy. The decomposition of the symmetry energy in a kinetic part and a potential energy part provides
physical insight on the correlated nature of the system, indicating that neutron matter is less correlated
than symmetric nuclear matter. Within the Self-Consistent Green’s Function approach, we compute the
momentum distributions and we identify the effects of the high momentum components in the symmetry
energy. The results are obtained for the realistic interaction Argonne V18 potential, supplemented by the
Urbana IX three-body force in the Brueckner—Hartree—Fock calculations.
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1 Introduction

The nuclear symmetry energy, defined as the difference
between the energy per particle of pure neutron matter
(PNM) and symmetric nuclear matter (SNM), and, in
particular, its density dependence, is a crucial ingredient
to understand many properties of isospin-rich nuclei and
neutron stars [Il2]. A major scientific experimental and
theoretical effort is being devoted to study the proper-
ties of asymmetric nuclear systems. Laboratory experi-
ments, such as those recently performed or being planned
in existing or next-generation radioactive ion beam facili-
ties such as the Facility for Antiproton and Ion Research
(FAIR, Germany), Rikagaku Kenkyusho (RIKEN, Japan),
the Heavy Ion Research Facility in Lanzhou (HIRFL,
China), SPIRAL2 at the Grand Accelerateur National
d’Tons Lourds (GANIL, France), and the upcoming Fa-
cility for Rare Isotope Beams (FRIB, Michigan State Uni-
versity) can probe the density behavior of the symmetry
energy [I]. More precisely, experimental information on
the density dependence of the symmetry energy below,
close to and above the saturation density of nuclear matter
can be obtained from isospin diffusion measurements [3],
giant [4] and pigmy resonances [5], isobaric analog states
[6], isoscaling [7] or meson production in heavy ion colli-

sions [89]. Moreover, the accurate measurements of the
neutron skin thickness in 2°®Pb via parity-violating elec-
tron scattering (PREX experiment) [I0/[11] or by means of
antiprotonic atom data [I2l[13] also constrain the density
dependence of the symmetry energy because of the so-
called Typel-Brown correlation [14]. A recent update and
a critical analysis of these constraints on the nuclear sym-
metry energy can be found in Ref. [I5]. Further details on
these and other methods are given in other contributions
to this special volume.

Additional information on the symmetry energy can
be gathered from astrophysical observations of compact
objects, which open a new window into both the bulk
and microscopic properties of nuclear matter at extreme
isospin asymmetries [2]. In fact, the symmetry energy de-
termines to a large extent the composition of S-stable mat-
ter and therefore the structure and mass of neutron stars
[16]. In particular, the characterization of the core-crust
transition in neutron stars [I7I8[19.20], or the analysis
of power-law correlations, such as the relation between the
radius of a neutron star and the equation of state [21], can
put stringent constraints on the symmetry energy. From
the theoretical point of view, the symmetry energy has
been determined using both phenomenological and mi-
croscopic many-body approaches. Phenomenological ap-
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proaches, either relativistic or non-relativistic, are based
on effective interactions that are usually fit to reproduce
the binding energy of stable nuclei [22]. Therefore, pre-
dictions at high asymmetries should be taken with care.
The Skyrme-Hartree-Fock [23] and the Relativistic Mean
Field [24] methods are the most common ones. However,
in spite of the large amount of constraints imposed in the
fitting procedures of the effective interactions, there is still
a large dispersion on the results for the symmetry energy
(and its derivatives) provided by the phenomenological
approaches. Hence, fully microscopic approaches look as a
safe and necessary alternative.

Microscopic approaches start from realistic nucleon-
nucleon (NN) interactions that reproduce the scattering
and bound state properties of the free two-nucleon sys-
tem. In-medium correlations are then built using many-
body techniques that incorporate the effects of the nu-
clear medium and account for isospin asymmetry effects
such as, for instance, the difference in the Pauli block-
ing factors of neutrons and protons in asymmetric mat-
ter [25]. Among this type of approaches the most popu-
lar ones are the Brueckner-Bethe-Goldstone (BBG) [26]
and the Dirac—Brueckner—Hartree—Fock [27] theories, the
variational method [28], the correlated basis function for-
malism [29], the self-consistent Green’s function technique
(SCGF) [30] or, recently, perturbative calculations using
Viowk interactions [31]. In this work, we discuss results for
the Brueckner—Hartree—Fock (BHF') [26] approximation of
the BBG theory and for the SCGF approach.

Unfortunately, whatever realistic two-nucleon force
(2NF) is used in a non-relativistic many-body calcula-
tion, the saturation properties of nuclear matter fail to
be reproduced. Saturation densities are too large and sat-
uration energies too attractive, with calculations falling in
the so-called Coester band [32]. Three-body forces (3BF)
are expected to take care of this limitation. 3BF's are also
required in light nuclei, whose binding energies are not
correctly predicted when computed with 2NF only [33].
In this work, we employ the Argonne V18 (AV18) NN po-
tential [34] in all calculations. Moreover, BHF calculations
have been supplemented with the Urbana IX 3BF, reduced
to a two-body density-dependent force by averaging over
the third nucleon in the medium [35]. The extension of the
SCGF formalism to include 3BFs has been achieved only
recently [36].

In the following, we report microscopic calculations of
the nuclear symmetry energy and its density dependence
[37]. We also explore the different effect of NN correlations
on SNM and PNM. We discuss how the isospin depen-
dence of NN correlations affects the symmetry energy. To
this end, we study the contribution of the different terms
in the NN interaction, particularly the tensor one, to the
symmetry energy [38]. We describe how NN correlations
produce high-momentum components and how these af-
fect the kinetic energy and the symmetry energy [39]. As
mentioned above, the calculations are performed in the
framework of BHF and SCGF approaches, which are well
suited for this type of analysis.
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Fig. 1. (Color online) Density dependence of the symmetry
energy coefficients S2 and S4 calculated in the BHF approxi-
mation using the AV18 interaction plus a 3BF of the Urbana
type, as indicated in the text.

2 Isospin asymmetric nuclear matter

Assuming charge symmetry for nuclear forces, the en-
ergy per particle of asymmetric nuclear matter can be ex-
panded around SNM in the isospin asymmetry parameter,
B=(N—-2Z)/(N+Z) = (pn—pp)/p only in terms of even
powers of f3:

~(0.8) = Bswut(p) + Sa(p)5 +81(0)5" + 0(6). (1)

Here, Esna(p) is the energy per particle of SNM, S>(p)
is identified (neglecting surface contributions [613]) with
the usual symmetry energy in the semiempirical mass for-
mula
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The dominant dependence of the energy per particle of
asymmetric nuclear matter on g is essentially quadratic
[25/40,41). Therefore, contributions from S; and other
higher terms can be neglected. One can then estimate the
symmetry energy by subtracting the energy per particle
of PNM and that of SNM, according to

S2(p) ~ (0. 1) = 2(6,0). (W

To check this approximation, we plot in Fig. [[l the density
dependence of the coefficients So and S obtained in our
BHF calculation. As expected, the coefficient S, is very
small and S3(p) is an increasing function of p in the den-
sity region considered (0 — 0.3 fm~3). In other words, the
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Fig. 2. (Color online) Isospin asymmetry dependence of the density (left panel), energy per particle (middle panel), and
incompressibility coefficient (right panel) at the saturation point of asymmetric nuclear matter. Solid lines show the results of
the BHF calculation whereas dashed lines indicate the results of the expansion of Eqgs. (I2)), (I3) and (I4)). Units of Eo(8) and

Ko(B) are given in MeV, whereas po(3) is given in fm 3.

energy per particle of PNM is always larger than that of
SNM and no isospin instability shows up [42].

To characterize the density dependence of the sym-
metry energy around saturation, it is useful to perform a
series expansion in terms of the density. To this end, one
considers first the density dependence of the energy per
particle of SNM around the saturation density pg in terms
of a few bulk parameters,

Ko (p—po\> Qo (p—po\°
0+ 5 ( 300 ) + 6 300 +O( )
(5)

The coefficients FEy, Ko and Q)¢ correspond to the en-
ergy per particle, the incompressibility coefficient, and the
third derivative of the energy of SNM at saturation,

Esnm (P)

0°F
Eo = Esnum(p=po), Ko=9p5 ZNQM(M} , (6)
14 P=po
and P E ()
_ 97,30 LSNMIP) ) 7
Q=215 ™)

Similarly, the symmetry energy around saturation can
also be characterized in terms of a few parameters,
P —Po K p—po\’
S2(p) = Esym + L + =
2(P) = Eoym ( 3po ) 2 3po

Q p—p\’
LAl 04
B ( 3po ) +oW),

(8)

where E,y,, is the symmetry energy at saturation, and
the quantities L, Kgym and Qsym are related to its slope,
curvature, and third derivative, at saturation density,

052(p)
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Kaym = 9 (9)

and

9°Sa(p)

Qum =210 52|
Y Po Ip> lp=po

(10)

Combining the expansions of Egs. (), (@) and (),
one can predict the existence of a saturation density, sat-
isfying a zero pressure condition. For a given asymme-
try, the energy per particle can be expanded around the
new, asymmetry-dependent saturation density, po(3) ~

po(1 —3(L/Ko)B?), as

e Ko(8) (p=po(8)\
0.0 = ol + S0 (220 )

Qo(B) (p—po(B)\’
7 (3/)0(5) ) tow), 4y

where the coefficients Ey(3), Ko(5), and Qo(8) define the
energy per particle, the incompressibility coefficient, and
the third derivative at the new saturation density, po(53).
These coefficients can be written in terms of the quantities
defined at po, i.e., the saturation density for § = 0:

0

Q0(6) = Qo+ @um —OLTDF +O). (10
In Fig. @ we explore the behavior of the saturation
density po(8) (left panel), energy per particle Ey(5) (mid-
dle panel) and incompressibility K(S) (right panel) as a
function of 32, up to an asymmetry of 3 ~ 0.6, for which
one still finds a saturation density. The figure, shows the
very good agreement between the expansion up to second
order in 8 (dashed lines) and the exact numerical calcu-
lations (solid lines). For 8 = 0, one recovers the results of
SNM. As f increases, however, the saturation density, the
binding energy, and the incompressibility decrease.

We finish this section by showing in Fig. Bl the density
dependence of the symmetry energy S2(p) and its slope
parameter, L, defined in Eq. (@), as obtained in our BHF
calculation.
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Fig. 3. (Color online) Density dependence of the symmetry
energy and the slope parameter L calculated in the BHF ap-

proximation using the AV18 interaction plus a 3BF of Urbana
type as indicated in the text.

3 The tensor component of the NN
interaction

Realistic NN interactions should fulfill a minimum set of
requirements. In particular, realistic potentials are built
to reproduce the Nijmegen database [43], which contains a
full set of NN elastic scattering phase shifts up to energies
of about 350 MeV, with and accuracy of x?/Nyata ~ 1.
Only potentials that fulfill this condition should be used
as input for the so-called ab initio many-body schemes,
which aim at providing a first-principles description of the
equation of state (EoS) of PNM and SNM. The Argonne
V18 potential [34] is one such realistic interaction, that
has been used for ab initio calculations in nuclear matter
and finite nuclei with a diversity of many-body approaches
[44).

Applying symmetry arguments, the strong interaction
part of the AV18 potential can be expressed as a sum of

18 operators,
Z ’Up(Tij)ij.
p=1,18

Vij = (15)

The first 14 operators are associated to the spin, isospin,
tensor, spin-orbit, and quadratic spin-orbit components of
the nuclear force:
OZ:L'"’M =LlL71i 7,0 05 (1 7;)(0; 0;),
Sij,Sij(Ti . Tj),L . S,L . S(Tz . Tj),
LQ,L2(Ti . Tj),L2(0'i . O'j),

L (1i-7;) (0 o)),

(L-S)*, (L-S)*(i - 7)) (16)
The four additional operators,
O 118 = Ty, Tyj(0405), TigSigs (rai +725), (17)

Table 1. Deuteron D-state probability Pp, quadrupole mo-
ment Qq (in fm?), total binding energy, kinetic and potential
energy, and their decomposition (in the second row) in partial
waves, calculated for the AV18 NN interaction. All energies are
given in MeV.

Pp(%)  Qa E K v

5.78 0.27 —-2.24 19.86 —22.10
Ks Kp Vs Vb 2 Vsp

11.30 856 —3.95 0.77 —18.91

where T;; = 37,;7.; — 7;7; is the isotensor operator, break
charge independence. The radial functions that multiply
each operator are adjusted by fitting experimental data
on two-body scattering phase shifts as well as deuteron
properties.

The tensor component of the NN interaction, which
is crucial in the generation of NN correlations in the nu-
clear medium, plays a central role in the reproduction of
the experimental phase shifts. Moreover, the tensor is also
largely responsible for the structure and binding energy of
the deuteron, the simplest bound nucleonic system. Even
though the deuteron only probes the NN potential in the
38, =3 D, partial waves, the analysis of the independent
contributions of the different waves (S—, D— and mixed
channel) highlights the importance of the different compo-
nents of the NN interaction [44.[45]. The first observation is
that for a realistic potential, as AV18, the binding energy
of the deuteron results from a strong cancellation between
the kinetic and the interaction energies (see first row of
Table [M)). For the AV18, the binding energy, £ = —2.24
MeV, comes from a large kinetic, K = 19.86 MeV, and
interaction, V. = —22.10 MeV, energies. Note that this
is the binding energy obtained with only the strong in-
teraction part of AV18, i.e., when all small electromag-
netic terms are omitted. These repulsive electromagnetic
terms shift the binding energy to the true experimental
value F = —2.22 MeV. It is also worth stressing that the
charge-dependent terms of V,(p = 15, ..., 18), described in
terms of an isotensor operator, have no contribution in the
isosinglet deuteron state.

The D—state probability as well as the quadrupole
moment are also a direct consequence of the tensor com-
ponent of the nuclear force that allows for the coupling
between the S and the D wave. It is instructive to sep-
arate the contributions of the 3S; and 3D; states to the
total kinetic and potential energies (see second row of Ta-
ble [T]). Assuming that the deuteron is a properly normal-
ized combination of the 35, and 3D; partial waves, we
define the contributions of the S and D states to the ki-
netic energy, Kg = (351|K|3>S1) and Kp = (3D;|K|*Dy),
and to the potential energy, Vs = (351|V[3S;) and Vp =
(®D1|V]3D;). The latter also receives a contribution from
the 357 —3 Dy mixing, Vsp = (3S1|V[3D;). Actually the
largest contribution comes from the mixing term, Vgp,
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Table 2. Contribution of the different components of the NN
AV18 interaction to the binding energy of the deuteron. All
energies are given in MeV.

Central Tensor Spin-orbit L?

-4.45 -16.62  -3.75 2.72

which accounts for more than 85% of the final value of
the potential energy.

Additional information can be obtained by looking at
the expectation values of the different components of the

potential on the ground-state wave function of the deuteron.

We have grouped the 18 components into four sets: the
first four operators (p =1,..., 4)7 the tensor components,
Si; (p = 5,6), the spin-orbit components (p = 7,8 and
p = 13,14), and the quadratic orbital angular momen-
tum components L? (p =9, ...,12). The group of charge-
dependent terms, p = 15,...,18, does not contribute to
the deuteron. The results of this decomposition are pre-
sented in Table 2 As expected, the largest contribution
corresponds to the tensor component. All contributions
are attractive, except the one proportional to L?, which
is slightly repulsive. Notice also that the spin-orbit contri-
bution is non-negligible and amounts to 17 % of the total
potential energy.

4 Brueckner—Hartree—Fock results

The energy per particle of asymmetric nuclear matter in
the BHF approach is calculated as

E 1
Z(ﬁhﬂ)izz >

T |k|<kr,

<h2k2 + 1R [UT(M) . as)

2m

where U, (k) represents the mean field “felt” by a nucleon
(1 = n,p) due to its interaction with the other nucleons
of the medium. U, (k) is calculated through the “on-shell
energy” GG matrix,

U, = Z Z <kkl | GTT’;TT’(W = 67.(/{3)+€7—/(k/)) | kk/>A

T |k|<ke,

(19)
where the sum runs over all neutron and proton occu-
pied states, and the matrix elements are properly antisym-
metrized. The single particle energy, ¢, (k), is defined in
terms of the single-particle kinetic energy and the single-
particle potential,

_ hPk?

" om,

(k) + Re[U, (k)] (20)

Finally, the G-matrices describing the effective interaction
between two nucleons in the medium are constructed by

Table 3. Bulk parameters characterizing the density depen-
dence of the energy of SNM and the symmetry energy around
the saturation density for our BHF calculation with and with-
out 3BF. All quantities are in MeV, except po, given in fm~2.

o Eo Ko Qo
BHF (no 3BF) 0.240 -17.30 213.6 -225.1
BHF (3BF) 0.187 -15.23 195.5 -280.9

Esym L Ksym stm
BHF (no 3BF) 358 63.1  -27.8 -159.8
BHF (3BF) 34.3 66.5 -31.3 -112.8

solving the Bethe-Goldstone equation

Griryirars (W) = Vairyirgry (21)
Qrrr,
+ Zk Vv TlTQ;Tkaw p : n + 7/7] Tka;737-4(w) )
J

where V' denotes the free-space NN interaction, Q;,, is
the Pauli operator which allows only for intermediate states
compatible with the Pauli principle, and w is the so-called
starting energy, which corresponds to the sum of non-
relativistic energies of the interacting nucleons. Note that
the whole procedure requires a self-consistent process. It
has been shown by Song et al., [46] that the contribution to
the energy from three-hole-line diagrams (that account for
the effect of three-body correlations) is minimized when
the so-called continuous prescription [47] is adopted for
the in-medium potential, which is a strong indication of
the convergence of the BBG expansion. We adopt this
prescription in our calculation.

The BHF calculations discussed in this work have been
performed with the realistic AV18 NN interaction supple-
mented with a 3BF of Urbana type. This 3BF contains two
parameters that are fixed by requiring that the BHF cal-
culation reproduces the energy and saturation density of
SNM. The results reported here correspond to the original
set of parameters of Baldo and Ferreira in Ref. [35]. More-
over, the 3BF has been reduced to a two-body density-
dependent force by averaging over the third nucleon in
the medium [35]. See also Refs. [48[49[50] for an exten-
sive analysis of the use of 3BFs in nuclear and neutron
matter.

We start the discussion of the BHF results by showing
in Table [Blthe bulk parameters characterizing the density
dependence of the energy of SNM and the symmetry en-
ergy around saturation density. We report the BHF results
obtained with and without three-body forces. The com-
parison of the different quantities is strongly influenced by
the fact that they are calculated at a value of the satura-
tion density which is different with and without 3BF. Note
that, in general, the effects of the 3BF are more important
on the isoscalar properties, like Ky. Our BHF calculation
gives a value of L = 66.5 MeV, compatible with recent
experimental constraints (see e.g., Fig. 1 of Ref. [51]).
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Table 4. Free-Fermi gas contribution, AEgxr and total en-
ergy per particle of PNM and SNM. The respective contribu-
tions to Esym and L are also reported. The results correspond
to the saturation density of the BHF approach, po = 0.187
fm~3 for the AV18+3BF. All results are given in MeV

Epnm Esnm Esym L
FFG 38.911 24.529 14.382  28.779
AEppr -19.682 -39.600 19.918 37.721
Total 19.229  -15.071 34.300 66.500

The properties associated with the density dependence
of the symmetry energy are little affected by the 3BF.
This is due to both a shift in saturation density and to a
similarly repulsive effect on the energy of both SNM and
PNM once the density shift is taken into account. Overall,
there is a small dependence of the isovector properties on
the 3BF, even though the independent contributions on
SNM and PNM are not small. Recently, the importance
of 3BF's has been revisited in the context of chiral pertur-
bation theory [52]. New fitting protocols of two-nucleon
forces seem to indicate that the effect of 3BF could actu-
ally be rather small in PNM. Nevertheless, the relative im-
portance of the two- and three-body contributions change
with the resolution scale. It is not clear that such obser-
vations, valid for the somewhat soft chiral interactions,
apply when considering a hard interaction like AV18. In
any case, one does not expect isovector properties to de-
pend much on the presence or absence of 3BFs.

In the BHF approach, one calculates the correction,
AEppur, to the energy of the free Fermi gas (FFG), i.e.,
the underlying non-interacting system, and expresses the
total energy as

Epur = Errc + AEBHF . (22)
In Table @, we report this decomposition for the energy
per particle of SNM and PNM, at the saturation density
provided by the AV18+3BF calculation. The symmetry
energy is calculated as the difference of the total energy
per particle of PNM and SNM. The FFG energy is larger
for neutron matter than for symmetric matter and there-
fore its contribution to the symmetry energy is positive
and amounts to ~ 14.38 MeV. AEgyF is less attractive
for neutron matter than for nuclear matter and also gives
a positive contribution (~ 19.92 MeV) to the symmetry
energy. The addition of these two quantities, which are
of the same order, provides a symmetry energy of ~ 34.3
MeV. The contributions to L can be decomposed similarly,
but in this case the contribution of AEggr (37.22 MeV)
is slightly larger than that of the FFG, which amounts to
28.78 MeV.

To get a further physical insight into AFpyp, it is
useful to look at its spin-isospin (5, 7T) decomposition, re-
ported in Table Bl As expected, the main contribution is
from the (1,0) channel which is acting only in SNM and
has a large attractive contribution. It is precisely in this

Table 5. Spin-isospin (S,T) channel decomposition of AEgxF
for PNM and SNM. The respective contributions to Esym and
L are also reported. The results correspond to the satura-
tion density of the BHF approach, po = 0.187 fm~2 for the
AV18+3BF. All results are given in MeV

(S,T) Epnm  Esnmu  Eeym L

(0,00 0 5.894 -5.894  -23.085
(0,1) -21.041  -17.764 -3.277 -3.142

(1,0) 0 28363 28.363 51.696

(1,1) 1.359 0.633 0.726 12.252

channel where the tensor component of the NN force is
active. Note that the T" = 1 channels give similar contri-
butions in nuclear and neutron matter and therefore its
contribution to the symmetry energy is small. The chan-
nel (0,0) gives a repulsive contribution to the total energy
in SNM and since it does not play any role in neutron
matter, its contribution to the total symmetry energy is
negative. Notice again that the tensor force is not acting
in this channel.

Let us further this analysis by looking at the contribu-
tions of the different partial waves to AEgy g, as shown
in Table Notice that the 1Sy contribution, which is
dominated by the central component of the NN poten-
tial, has a similarly large contribution to both PNM and
SNM and therefore its effect on the symmetry energy is
almost negligible. The largest contribution is provided by
the 357 =2 Dy partial wave, which corresponds to T = 0,
active only in nuclear matter. For larger values of J, the
contributions become smaller and many cancellations take
place. In general, one observes that the final energy is the
result of a large cancellation between Frpg and AEpyp
and that the absolute value of the correction AEgyF for
neutron matter is significantly smaller than for nuclear
matter. This observation points to the well accepted fact
that neutron matter is less correlated than nuclear matter.

In the case of the deuteron, the total binding energy
is the result of a strong cancellation between the kinetic
energy and the potential energy. The large kinetic energy
is a consequence of the NN correlations existing in the
deuteron, i.e., in the 3S; —3 Dy channel. In that sense, we
would like to study the decomposition of the total energy
of the infinite system in the kinetic and potential energy.
This kinetic energy will contain the effects of correlations
and will be larger than the energy of the FFG. Therefore
the difference between the correlated kinetic energy and
Erpe can quantify NN correlations.

Unfortunately, the BHF approach does not give di-
rect access to the separate contribution of the kinetic and
potential energies because it does not provide the corre-
lated many-body wave function, |¥). However, it has been
shown [53] that the Hellmann—Feynman theorem [54] can
be used to estimate the ground state expectation value of
the interaction energy. The kinetic energy can then be cal-
culated simply by subtracting the expectation value of the
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Table 6. Partial wave decomposition of AEgyF for PNM and
SNM. The contributions of each partial wave to Esy,, and L are
also reported. The results correspond to the saturation density
of the BHF approach, po = 0.187 fm ™2 for the AV18+3BF. All
results are given in MeV.

Partial wave Epyny Esnm Esym L

1S -14.330 -14.407 0.077  11.229
351 0 -24.865 24.865 35.521
P 0 5.193 -5.193  -20.201
3P, -4.522  -3.713  -0.809 0.224
3P 18.459  12.002  6.457  27.702
3p, -13.550 -8.102  -5.448 -17.784
1Dy -5.850  -3.154  -2.696 -10.888
3Dy 0 1.036 -1.036  -3.894
3Dy 0 -3.795  3.795 15.844
3Dg 0 -0.522 0.522  3.305
1py 0 0.699 -0.699  -3.394
3Fy -0.651  -0.221  -0.430 -1.515
3F; 2.022 0.826 1.196  5.026
3Fy -0.743  -0.183  -0.560 -3.006
e -0.810  -0.247  -0.563  -3.029
3Gs 0 0.002 -0.002  0.425
3G, 0 -0.213  0.213  0.449
3Gs 0 -0.053  0.053  0.617
1HS 0 0.029 -0.029 0.122
SHy 0.034 0.040 -0.007 0.224
3SHs 0.226 -0.033  0.258  0.949
3He 0.044 0.035 0.010  0.136

Table 7. Kinetic, (K), and potential, (V'), contributions to
Epnm, Esnn, Esym and L. Units are given in MeV.

Epnm Esnm Esym L
(K) 53.321 54.294  -0.973  14.896
(V) -34.251  -69.524 35.273 51.604
Total 19.070  -15.230 34.300 66.500

potential energy from Eppgr. Writing the nuclear hamilto-
nian as H = T+ V, and defining a A dependent potential,
H(\) = T 4+ AV, the expectation value of the potential

energy is given by:
ar
d\ )y

In Table [[ we show the kinetic and potential energy con-
tributions to the total energy of PNM, SNM, E,,, and L
at the saturation density, pg = 0.187 fm~3, provided by
the AV18+4-3BF within the BHF approach.

As in the case of the deuteron, the total energy of
both PNM and SNM are the result of a strong cancella-
tion between the kinetic and potential energies. It is worth
noticing that the kinetic energy contribution to Ey., is
very small and slightly negative. This is in contrast to
the results for the FFG (see Table H]). The increase of the

= i)

) (23)

Table 8. Spin-isospin (S,T) channel decomposition of the po-
tential contribution to Epny, Esvy and Egym and L. The
results correspond to the saturation density of the BHF ap-
proach, po = 0.187 fm~2 for the AV18+3BF. All results are
given in MeV.

(S,T) Epnm  Esnmu  Eeym L

0,0) 0 5.6 5.6 -21.457
(0,1) -29.889 -23.064 -6.825 -17.950
(1,00 o0 -49.836  49.836  90.561

(1,1) -4.362 -2.224 -2.138  0.450

kinetic energy with respect to the FFG energy, which is
due mainly to short range and tensor correlations, is much
larger for SNM than for PNM. Again this is an indication
that, at the same density, SNM is more correlated than
PNM.

It is also worth mentioning that the kinetic contribu-
tion to L is smaller than the corresponding one of the FFG
(Lrra ~ 29.2MeV) reported in Table dl Clearly the ma-
jor contribution to both Ej,, and L is due to the poten-
tial energy part. Note that this contribution is practically
equal to the total value of Ey,,, and it represents ~ 78% of
L. Results along these lines have been recently reported by
Xu and Li [55] using a phenomenological model for n(k).

The spin-isospin (S, T') channel decomposition of the
potential part of Epnar, Esnm, Esym and L is also illus-
trative. This is reported in Table 8 at py. As in the case
of AEpur, the largest contribution to both Egy., and L
is provided by the (S = 1, T' = 0) channel, which is where
the tensor is active. Interestingly, the S = 0 channels have
a small and similar negative contribution to Fyy,, and also
a moderate negative contribution to L showing in total a
strong cancellation with the contribution of the channel
(S =1, T = 0). However, the origin of these contribu-
tions is qualitatively different. While the channel (S = 0,
T = 0) does not contribute to neutron matter and has a
small repulsive contribution to nuclear matter, the con-
tribution of the channel (S = 0,7 = 1) is the result of a
strong cancellation of large attractive contributions of this
channel in both PNM and SNM. Analogous conclusions
can be obtained from Table [, where the partial wave de-
composition of the potential energy is reported. Note that
similar arguments have been already pointed out by other
authors [254255156,57,5859,60,6 162,63 64165].

Next, we analyze the contribution to the potential en-
ergy of the different components of the nuclear force. To
such end, we apply the Hellmann—Feynman theorem to
the separate components of the AV18 potential and the
Urbana IX three-body force. The results are reported in
Table[IO The central contribution (V) is large, attractive
and similar for neutron and nuclear matter and therefore
gives a small contribution to Fgy,,. The largest contribu-
tion to isovector properties is from the tensor (Vs,, (,+,));
which acts very efficiently to supply attraction in SNM.
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Table 9. Partial wave decomposition of the potential part of
Epnm, Esnm, Esym and L . The results correspond to the
saturation density of the BHF approach, po = 0.187 fm~3 for
the AV18+4-3BF. Units are given in MeV.

Partial wave Epnyn Esnv Esym L

180 -23.070  -19.660 -3.410 -3.459
3%, 0 -45.810 45.810  71.855
p 0 4.904 -4.904 -18.601
3P -5.312  -4.029  -1.292 -1.898
3p 16.110  10.720  5.390  21.9149
3Py -16.000 -9.334  -6.666 -21.168
1D, -5.956  -3.201  -2.755 -11.033
3Dy 0 0.981 -0.981  -3.739
3D, 0 -3.982  3.982  16.601
3Ds 0 -0.798  0.798  4.895
1Fy 0 0.694 -0.694  -3.348
3Fy -0.695  -0.229  -0.466 -1.799
3Fy 2.000 0.821 1.179  4.883
3Fy -0.796  -0.194  -0.602 -3.239
en -0.812  -0.247  -0.565 -3.036
3G 0 -0.001  0.001  0.441
Sen 0 -0.213  0.213  0.449
3Gs 0 -0.057  0.057  0.650
LH, 0 0.029 -0.029  0.107
SHy 0.033 0.040 -0.007 0.232
3H; 0.225 -0.033  0.258  0.968
3Hyg 0.043 0.034 0.009 0.144

As mentioned above, the Urbana IX 3BF is reduced to
an effective density-dependent two-body force when used
in the BHF approach. This reduced, effective two-body

force contains three components of the type (7 , p)ij

where ij:l’g =1,(0;-0j)(Ti T;),S:(Ti - 7). This in-
troduces additional central, o7 and tensor terms, which
are reported on the last three rows of Table [IT (see e.g.,
Ref. [35] for details). The contribution of the two-body
density dependent effective force to Esy,, can be consid-
ered small, with the tensor component being the most
important. These results clearly confirm that the tensor
force gives the largest contribution to both Egy,, and L.
The contributions from the other components are either
negligible, or almost cancel out.

5 High-momentum components in the
symmetry energy

In the previous section, we have used the kinetic energy
difference between the correlated system and the under-
lying FFG as a measure of NN correlations. The kinetic
energy is the result of integrating the momentum distribu-
tion weighted with the kinetic energy associated to each
momentum. The presence of correlations modifies the step
function associated to the FFG, ©(kp — k). There is a pro-
motion of particles to higher momentum states and, as a
consequence, there is also a depletion below kr. Thus, the

Table 10. Contributions to Epnwm, Esnur, Esym and L from
the different components of the AV18 potential (indicated as
(Vi)) and the reduced Urbana three-body force (indicated as
(Ui)). The results correspond to the saturation density of the
BHF approach, pp = 0.187 fm ™3 for the AV18+3BF. Units are
given in MeV.

(V) Epnyvy Esnmu Esym L

(V1) 31212 -32710 1498  -5.580
(Vair,) 4957 3.997 8954 -20.383
<Vg’ia'j> -0.319 -0.382 0.063 2.392
(Virir)(oiop))  -5.724 -11.388 5664 2521
(Vei,) 0792 1912 2704 -4.998
Vs, (rim) 4989 -37.592 32603 47.095
(Vis) -7.538 -1.754 -5.784  -12.251
(Visirir) 2671 -6539  3.868  3.969
(Vi2) 11.850 13.610 -1.760  1.521
(Viz(rir,)) 2788 0270  -3.058 -14.262
(Viz(oron) 1265 1383 -0.118  1.405
(Vitioronriey) 0051 0008  0.043  -0.341
(Vizs)2) 4194 5682  -1.488 -0.327
(Viesyiriry) 5169 6190 11359  31.368
(Vr,,) 0.003 0039  -0.036 -0.022
(Vi (oi0)) 0017 -0.106  0.089  0.042
(Vr,s,) 0.004 0079  -0.075 -0.124
(Viray 472,) 20.084 -0.001 -0.083 -0.331
(Uh) 2.985 3.251 -0.266  -0.630
(Uiriryoiop) 2252 3999 1745 -7.228
(s, (ormsy 0935 -7.002 6157  27.768

single-particle momentum distributions can be taken also
as a probe of the correlations embedded in the nuclear
wave function.

In this section, we would like to discuss the effects
of correlations directly on the momentum distributions.
To this end, we rely on another microscopic many-body
approach, the Self-Consistent Green’s Function method.
This approach provides access to the single particle prop-
erties in a natural way. In particular, n(k) can be obtained
and, as a consequence, the kinetic energy can be studied.
We will analyze how NN correlations affect differently the
momentum distribution in symmetric and neutron matter
and, therefore, which is the effect of the high momentum
components on the symmetry energy [39).

In the SCGF method, a diagrammatic expansion is
employed to solve for the in-medium one-body propaga-
tor, rather than for the energy of the system. For infinite
matter, the method is conventionally applied at the lad-
der approximation level. SCGF calculations give direct ac-
cess to microscopic properties related to the single-particle
propagator. These include self-energies, spectral functions
and momentum distributions, from which one can derive
microscopic and bulk properties. The ladder approxima-
tion provides a microscopic description of short-range and
tensor effects via a fully dressed propagation of nucleons
in nuclear matter. This is achieved by: a) computing the
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scattering of particles via a T-matrix (or effective inter-
action) in the medium, b) extracting a self-energy out of
the effective interaction and, c) using the Dyson equation
to build two-body propagators which are subsequently in-
serted in the scattering equation. To solve this closed set
of equations, a self-consistency procedure is required. The
formalism is well established for two-body potentials and
its extension to include three-body forces has been only re-
cently considered [66,30]. Here, all the SCGF results have
been obtained with the AV18 NN interaction. Three-body
forces are not included in this part of the work.

The bulk properties of nuclear matter and neutron
matter are obtained within the SCGF approach through
the Galitskii-Migdal-Koltun sum-rule:

E v d3k dwl [ k?

A p/ (27)3 / ) (2m +W) Ak, w)f(w), (24)
where v = 4(2) is the spin-isospin degeneracy of nuclear
(neutron) matter, p is the total density and f(w) = [1 +
e(@=m/T)=1 i5 a Fermi-Dirac distribution. A(k,w) is the
one-body spectral function which, loosely speaking, rep-
resents the probability of knocking out or adding a parti-
cle with a given single-particle momentum, k, and energy,
w. The single-particle spectral function provides the full
knowledge of the one-body propagator and gives access
to the calculation of all the one-body properties of the
system. For instance, the momentum distribution, n(k),
is obtained by convoluting the spectral function with a
Fermi-Dirac factor:

nk) = [ 2 Ak w)f(w). (25)
T
The total density sum-rule,
d3k
PV/W n(k), (26)

is used to extract the chemical potential p. This can also
be calculated using its thermodynamical definition, i.e.,
by a density derivative of the free-energy density. The
agreement between these two determinations of the chem-
ical potential is taken as a test of the thermodynamical
consistency of the approach. Notice that, to avoid pairing
instabilities, the SCGF calculations have been performed
at finite temperature (T=5 MeV) [67].

As mentioned earlier, correlations beyond the mean-
field approximation have a particularly clear manifesta-
tion in the momentum distribution [68]. A sizable deple-
tion appears below the Fermi sea, while high-momentum
components are populated. To illustrate this point, we
show in Fig. @ the momentum distribution of SNM (left
panel) and PNM (right panel), at p = 0.16 fm ™3 and T' =
5 MeV. The results obtained within the SCGF method for
AV18 (solid lines) are compared to the momentum distri-
butions of the FFG in the same conditions (dashed lines).
The FFG is used here as a reference for the thermal ef-
fects, as deviations from the step function give a measure
of the importance of finite temperature. A common char-
acteristic of the SCGF and the FFG n(k) is the softening

Table 11. Contributions of different momentum regions to
the integrated strength with m = 2 (columns 2 and 5), kinetic
(3 and 6, in MeV) and total energies (4 and 7, in MeV). SNM
(PNM) results are presented in columns 2, 3 and 4 (5, 6 and 7).
Rows 3 to 6 show SCGF results with the AV18 NN interaction,
whereas rows 7 to 10 correspond to the FFG results. All results
are computed at p = 0.16 fm ™3 and T = 5 MeV.

SNM PNM
(ki ky) b2 K/A E/A | ¢ K/A E/A
(©, kr) 0.755 156 -7.65 | 0.863 28.7 11.6
(kp, 2kp) | 0194 114  -1.00 | 0.119 103 3.24
(2kp, 00) | 0.051 145 -1.29 | 0.018 7.16 0.32
(0, o0) 1.00 415 -9.94 | 1.00 462 15.2
(©, kr) 0861 17.7 177 | 0912 304 304
(kr, 2kr) | 0139 6.00 6.00 | 0.089 575 5.75
(2kr, 00) | 0.00  0.00 0.00 | 0.00 0.00 0.00
(0, o0) 100 237 237 | 1.00 362 362

of the distribution around the Fermi surface, k = kp, as-
sociated to the finite temperature. Notice also that the
density p = 0.16 fm~2 does not correspond to the satura-
tion point of the AV18 potential. Actually, AV18 within
SCGF approach at T=5 MeV, gives a saturation density
p = 0.19fm 3, smaller than the one obtained in BHF with
AV18 (see Table [B). The inclusion of three-body forces
should improve the saturation properties (as it happens
in the BHF approach) without qualitative changes in the
isovector properties [66].

Correlation effects in the momentum distribution are
substantially different in SNM than in PNM [68]. The ef-
fects of the tensor component in the S — D channel in the
isospin saturated system induce a large amount of cor-
relations. Consequently, the Fermi surface is quite more
depleted for SNM than for PNM (compare the left and
right panels in Fig. @]). Characteristic values for these de-
pletions are obtained from the occupation at zero momen-
tum, namely, n(0) ~ 0.87 for SNM and n(0) ~ 0.96 for
PNM. As the momentum distribution is normalized to the
total density (see Eq. (26])), the high-momentum compo-
nents are also rather different for both systems at the same
density. A useful way to characterize these differences is
to look at the integrated strength over different regions of
momentas:

Om ki, ky) =

/ Y k(). (27)
ki

2m2p

The integral with m = 2 represents the fractional contri-
bution of a given momentum region to the total density,
while the integral with m = 4 is related to the total kinetic
energy of the system.

In Table [[Il we report the integrated strengths with
m = 2 for SNM (columns 2 to 4) and PNM (columns 5
to 7) at p = 0.16 fm™3 and T' = 5 for the AV18 potential
(rows 3 to 6) and the FFG (rows 7 to 10). As expected,
in SNM there is a substantial depletion of states below
the Fermi surface, i.e., only ~ 75% of the strength is in
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Fig. 4. (Color online) Momentum distribution of SNM (left panel) and PNM (right panel) obtained with the SCGF approx-
imation for AV18 (full lines). The momentum distribution of the FFG (dashed line) obtained in the same conditions are also

shown.

the region between 0 and kp. Part of the depletion has
thermal origin, and the comparison with the FFG in the
same momentum region suggests that between 1/2 and
2/3 of the integrated depletion comes from the softening of
the Fermi surface due to finite temperature. The effect of
correlations is also important in populating states beyond
the Fermi surface: for SNM (PNM) there is still a 3-5 %
(1-2%) of strength in the region k > 2kp.

The energy per particle is also affected by short-range
and tensor correlations. In particular, the kinetic energy,

(KYy v [ d°k B°k?

A p / (2m)2 2m
noticeably increases with respect to the FFG due to the
population of high-momentum components. The contri-
butions of the different momentum regions to the kinetic
energy of nuclear an neutron matter are also reported in
columns 3 and 6 of Table [[1l The first thing to notice is
that the total integrated values (see rows 4 and 8 of Table
[IT)) of the correlated kinetic energies are larger than those
of the FFG. For SNM, dynamical correlations produce and
increase of 17 MeV with respect to the FFG, while the in-
crement is only 10 MeV for neutron matter, in agreement
with the BHF estimations. Overall, this reinforces the idea
that correlations play a smaller role in PNM than in SNM.
Paying attention to the different regions, we see that the
momentum components beyond kg amount to more than
50 % of the total in SNM, while in PNM they account for
around 25 % . In contrast, for the FFG at this tempera-
ture, the contributions of states above k is less than 25 %
for SNM and less than 15 % for PNM. The FFG strength
above the Fermi surface is due to thermal effects, which
for low temperatures are mainly localized within a small
region around kp. As a consequence, there is almost no
contribution beyond 2kp. Therefore, this contribution in
the interacting case can be entirely attributed to NN cor-
relations. In the case of AV18, which is considered to be
a hard interaction, the contribution beyond 2kp is even
larger than that between the Fermi surface and 2kp. Sim-
ilar analysis have been also performed for other realistic
two-body potentials in Ref. [39].

n(k), (28)

To compute the symmetry energy as the difference of
the PNM and SNM energies, we have to resort to the
quadratic dependence of the total energy on the isospin
asymmetry. This quadratic behavior has been validated in
Fig. 2 for the total energy calculated in BHF. The SCGF
formalism has been generalized to isospin asymmetric sys-
tems and hence we can directly check the quadratic asym-
metry dependence of the energy [41]. Moreover, to explore
the influence of the high momentum components on the
symmetry energy, we have decomposed the symmetry en-
ergy in its kinetic and potential energy parts. In the BHF
approach, we have used the Hellmann—Feynman theorem
to evaluate the kinetic energy. In the SCGF method, the
kinetic energy is directly accessible from the momentum
distribution and the potential energy can be found from
the Galitskii-Migdal-Koltun sum-rule. Consequently, and
as a first step before computing isovector properties, we
validate the quadratic behavior of both pieces of the total
energy with the asymmetry parameter.

In Fig. Bl we show the kinetic, potential and total en-
ergy for the AV18 potential at p = 0.16 fm™2 an T = 5
MeV as a function of 2. In general, the three components
seem to have a well-defined parabolic dependence on the
asymmetry parameter. The slope of the linear regression
reduces to the different components (kinetic, potential and
total) of the symmetry energy when the parabolic approx-
imation holds exactly. In the upper panel of Fig. Bl we
compare the kinetic energy provided by the AV18 poten-
tial and the one of the FFG (triangles). As expected, the
correlated kinetic energy is larger than the FFG at all
asymmetries. However, the isospin dependence is differ-
ent than the one of the FFG. While the kinetic energy of
AV18in SNM is K/A ~ 42 MeV and that of PNM is ~ 46
MeV, the FFG gas provides ~ 24 MeV and ~ 36 MeV
respectively. The difference between the correlated kinetic
energies associated to PNM and SNM is smaller than for
the FFG. This agrees with the estimate provided by the
BHF approach at T" = 0. The small value of the kinetic
symmetry energy (clearly smaller than the FFG estima-
tion) is a very noticeable aspect of the decomposition of
the symmetry energy in a kinetic and a potential energy
component. The origin of this behavior can be related to
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Fig. 5. (Color online) Dependence of the kinetic (upper panel),
total (central panel) and potential (lower panel) energy on the
asymmetry parameter for the AV18 interaction (squares) at
p =016 fm™> and T = 5 MeV. The triangles in the upper
panel give the energy of the FFG in the same conditions. Dot-
ted lines are linear regressions to guide the eye.

the tensor and short range repulsive components of the NN
force, that when acting on SNM, induce large correlations
and produce an important renormalization of the kinetic
energy with respect to the FFG. The absence of this com-
ponents in PNM (some partial waves are suppressed due
to the Pauli principle) reduces the relative enhancement
of the kinetic energy. Consequently, the difference in to-
tal kinetic energies of PNM and SNM is smaller for the
correlated case than for the FFG value.

The asymmetry dependence of the total energy per
particle is driven by a balance between the kinetic and
potential terms. The size of both contributions is density
dependent but, at p = 0.16 fm 3, the potential term dom-
inates the isospin dependence, as seen in Fig. [6l In other
words, the potential energy contribution to the symme-
try energy is 20.2 MeV, while the kinetic energy part is
only 4.9 MeV. The total value for the symmetry energy is
Sy = 25.1 MeV, somewhat below the BHF result includ-
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ing 3BFs. However, one should take into account that the
BHF calculation is done at 7' = 0 and computed at a sat-
uration density of 0.187 fm~3. Regarding thermal effects,
the symmetry energy of the FFG can provide an indica-
tion of their importance. At p = 0.16 fm 3, the symmetry
energy increases from 12.4 MeV at zero temperature to 13
MeV at T' = 5 MeV. Overall, this indicates a very small
effect of temperature on the symmetry energy. This is a
result of the cancellation of the somewhat similar tem-
perature dependences of symmetric and neutron matter
[1].

The total symmetry energy predicted by the SCGF
approach is a little below the currently accepted value of
~ 32 MeV [69]. In principle, the inclusion of 3BF's should
bring the SCGF results closer to experiment. A first esti-
mation of the effect of 3BF can be obtained from the BHF
calculations including 3BF. Around p = 0.16 fm—3, 3BF
tend to increase the symmetry energy by 3 — 4 MeV. A
similar increase in the SCGF case would bring the value
closer to experiment.

In general, we see that the symmetry energies pro-
vided by SCGF calculations tend to be smaller than the
BHF ones with the same 2NF force. The origin of this dif-
ference can be argued as follows. Compared to the BHF
approach, the ladder summation in the SCGF approach
includes hole-hole diagrams as well as the full dressing
of the intermediate propagators. It is known that both
things have an overall repulsive effect in the total energy
of the system with respect to the BHF values [(0]. This
repulsive effect is mostly associated to correlations and,
since these are more relevant in SNM, we expect more re-
pulsion in SNM than in PNM. The difference in energies
between PNM and SNM is therefore reduced with respect
to BHF and the SCGF symmetry energy becomes smaller
than the BHF one. Note that, since this repulsive effect
increases with density, the slope of the symmetry energy
as a function of density is also expected to decrease.

The density dependence of the kinetic and potential
energy components of the symmetry energy is shown in
Fig. The symmetry energy and its components grow
steadily in the density range considered. The potential
part is always larger in absolute value than the kinetic
one, and dominates the contribution to Ss. It is interest-
ing to note that the kinetic symmetry energy becomes
negative at densities around 0.04-0.08 fm~2. One might
expect thermal effects to be important in this regime, but
the comparison with the FFG once again demonstrates
that finite temperature has a negligible effect on the sym-
metry energy. As a matter of fact, the comparison between
the symmetry energy of the FFG at T' = 0 (dashed line)
and at T =5 MeV (solid line) shows that the differences
are extremely small (less than 1 MeV) in the whole den-
sity regime. As mentioned above, the small influence of
the temperature on the symmetry energy is caused by the
relatively similar thermal corrections of SNM and PNM
[71]. When taking the difference of both energies, one
eliminates practically the temperature dependence. Con-
sequently, the negative kinetic symmetry energies at low
densities can be considered a NN correlation effect. This
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Fig. 6. (Color online) Components of the symmetry energy
for the AV18 interaction calculated in the SCGF approach, as
a function of density at 7' = 5 MeV. Circles, squares and tri-
angles represent the total, kinetic and potential contributions,
respectively. The continuous (dashed) lines correspond to the
FFG symmetry energy at T'=5 (T = 0) MeV.

is similar to the BHF case around saturation density and
has also been confirmed in other many-body calculations.

6 Summary and Conclusions

We have studied the density dependence of the symmetry
energy within the microscopic Brueckner-Hartree—Fock
and the Self-Consistent Green’s Function approaches, us-
ing the realistic AV18 NN potential as a starting point.
In the BHF case, we have supplemented our calculations
with the Urbana IX three-body force. The BHF calcu-
lations provide a symmetry energy, Es,, = 34.3 MeV,
and a value of the slope parameter, L = 66.5 MeV, com-
patible with recent experimental constraints. Using the
Hellmann—Feynman theorem, we have evaluated the sep-
arate contributions of the different components of the NN
interaction to the nuclear symmetry energy and to the
slope parameter. This allows for a decomposition of the
symmetry energy in a kinetic and potential energy parts.
The results show that the potential part gives the main
contribution to both E,,,, and L and that the kinetic en-
ergy contribution is very small. We have also performed a
partial-wave as well as a spin-isospin channel decomposi-
tion of the potential part of Eyy,, and L, showing that the
largest contribution is given by the spin-triplet (S = 1)
and isospin singlet (T" = 0) channels. All results point
to the dominant role of the tensor component of the NN
force, which gives the largest contribution to both Egyn,
and L.

We have completed our analysis by an explicit cal-
culation of the momentum distributions within the Self-
Consistent Green’s function approach. We have shown

how correlations affect differently the momentum distri-
butions of SNM and PNM. We have performed the anal-
ysis by quantifying the contribution of momenta beyond
the Fermi surface to the kinetic and total energies by us-
ing the Galitskii-Migdal-Koltun sum-rule. The change in
the high momentum components as the isospin asymme-
try is modified confirms the decrease of the kinetic energy
component of the symmetry energy with respect to the
free Fermi gas. Both changes, namely the decrease in the
kinetic energy component of the symmetry energy as well
as the change in n(k) with respect to the uncorrelated step
function, are used as an indicator of the presence of corre-
lations in SNM and PNM. Also, both measures point to-
wards the same conclusion, namely that correlations play
a smaller role in PNM than in SNM. Or, in other words,
pure neutron matter is a less correlated system than sym-
metric nuclear matter.
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