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The possibility of quantum computation using non-Abelian anyons has been considered for over a
decade. However, the question of how to obtain and process information about what errors have occurred in
order to negate their effects has not yet been considered. This is in stark contrast with quantum computation
proposals forAbelian anyons, forwhich decodingalgorithmshavebeen tailor-made formany topological error-
correcting codes and error models. Here, we address this issue by considering the properties of non-Abelian
errorcorrection, ingeneral.Wealsochoosea specific anyonmodel anderrormodel toprobe theprobleminmore
detail. The anyon model is the charge submodel ofDðS3Þ. This shares many properties with important models
suchastheFibonaccianyons,makingourmethodmoregenerallyapplicable.Theerrormodelisastraightforward
generalization of those used in the case ofAbelian anyons for initial benchmarking of error correctionmethods.
It is found that error correction is possible under a threshold value of 7% for the total probability of an error on
each physical spin. This is remarkably comparable with the thresholds for Abelian models.
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I. INTRODUCTION

Topological quantum computation is the proposed use of
anyonic quasiparticles to nonlocally store quantum informa-
tion and process it in a way that is immune to the effects of
small perturbations [1–5]. As such, it is often said to be
“inherently fault tolerant” and “topologically protected.”
However, it is important to note that this topological
protection does not replace the need for active error correc-
tion. In fact, the topological protectiononly ariseswhen error
correction is employed. For anyonic systems, this correction
involves continual measurement of anyon occupations to
determinewhen and where errors cause unwanted anyons to
be created. These results must be classically processed in
order to determinehow these anyons canbe removedwithout
disturbing the computation. We refer to the combination of
themeasurements and processing as the decoding algorithm.
For schemes based on non-Abelian anyons [6–10], the

requirement for active error correction is often ignored.
The presence of an energy gap that suppresses the creation
of unwanted anyons may seem to replace the need for error
correction. However, anOð1Þ gap will only suppress anyon
creation to a limited extent. Once the computation becomes
sufficiently large, in terms of either the size of the quantum
computer or its runtime, the presence of unwanted anyons
becomes almost certain. The computation will then be

unable to proceed correctly. The lack of error correction
then means the lack of scalability, which is a fundamental
requirement for a true quantum computer.
This is in stark contrast to computation schemes based on

Abelian anyon models [11–14]. For these models, the fact
that the topological protection arises only when using
active error correction has long been understood. As such,
the required methods to achieve error correction have been
intensively studied, and many efficient and effective decod-
ing algorithms have been produced [15–23].
Researchintothecorrespondingmethodsrequiredfornon-

Abelian error correction is long overdue. Even a basic
understandingof thedecodingproblemisyet tobedeveloped.
This is a serious issue for proposals based on non-Abelian
models, since without proper proof that the required error
correction is possible, it is hard to argue that these proposals
could truly realize fault-tolerant quantum computation.
In this paper, we seek to address this important issue. We

consider the problem of error correcting non-Abelian anyon
models, in general, determining similarities to and funda-
mental differences from the Abelian case. We therefore lay
out the framework for future study of non-Abelian error
correction towards the goal of a full demonstration that
fault tolerance is possible. We also choose a specific anyon
model and error model to probe the problem in more detail.
The anyon model chosen is the charge submodel of the
DðS3Þ or Φ − Λ model [5,6,10]. This model shares many
important properties with Fibonacci anyons and all other
models that are known to be universal for quantum
computation. It is also known to be universal itself when
supplemented with nontopological operations. The error
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model is a straightforward generalization of those used in
the case of Abelian anyons for initial benchmarking of
error-correction methods. It is shown that error correction is
indeed possible in this case as long as the total probability
of error on each spin is below 7%. Remarkably, this
threshold value is almost identical to that obtained for
Abelian anyons using the same method [23].

II. ABELIAN AND NON-ABELIAN ANYONS

Anyons belong to two classes: Abelian and non-Abelian.
The class of Abelian anyons holds all particle types for
which fusion with any other type yields a single definite
result. Non-Abelian anyons are such that fusion with at
least one other particle type yields a multiplicity of results.
Any anyon model that contains at least one type of non-
Abelian anyon is called a non-Abelian anyon model.
In general, most non-Abelian anyon models have fusion

rules in which the fusion of two non-Abelian anyons can
yield further non-Abelian anyons. This fact is particularly
relevant from the perspective of quantum computation,
since all known models that can achieve universality using
topological operations alone have this kind of behavior.
This includes the Fibonacci anyon model [9] and non-
Abelian quantum-double models [6,7]. However, this kind
of behavior is completely opposed to the simplicity found
in Abelian models. This will likely mean that the decoding
of non-Abelian anyons is much more complex than the
Abelian case, in general, and may even mean that suc-
cessful decoding is not possible. If true, this will have dire
effects on many proposals for topological quantum com-
putation with non-Abelian anyons.
It is therefore important to begin the investigation into

the decoding of anyon models with this general form of
behavior. Here, we investigate one of the simplest such
models, and the only known one to be well described by a
classical simulation. This of course means that it is not
universal for quantum computation by topological oper-
ations alone. However, it can be made universal with the
addition of straightforward nontopological elements [10].
A simple error model is considered, and numerical evi-
dence is presented to show that it is indeed possible to
successfully decode the model below a threshold noise rate.
It is worth noting that there are some non-Abelian anyon

models for which the fusion of two non-Abelian anyons
always yields an Abelian anyon. The most prominent
example is the Ising anyon model [24], which is not
universal by topological operations alone. The simple
structure of the fusion rules makes the problem of decoding
this model quite different from the general case.

III. Φ − Λ MODEL

An important class of non-Abelian anyon models that
may be realized on spin lattice systems are those of the
quantum-double construction [5,6]. Each of these is based

on a non-Abelian group G and is then referred to as the
DðGÞ anyon model (Abelian anyon models can be similarly
constructed from Abelian groups). In all quantum-double
models, all types of anyons fall into three classes: charge,
flux, and dyon. Fusion of charge anyons with each other
will only yield charge anyons or the vacuum. Therefore,
they form their own fully complete and consistent anyon
model: the charge submodel of DðGÞ.
The simplest non-Abelian group is the permutation group

of three objects, S3. The simplest non-Abelian quantum-
double anyon model is therefore DðS3Þ. Even so, it is a
highly complex anyon model with many different anyon
types. The ability to further simplify this case by considering
only the charge submodel, which has only two nontrivial
types of anyons, is therefore highly advantageous. We will
consider this simplification here. We refer to the charge
submodel of DðS3Þ as the Φ − Λ model, in reference to the
common labels for its two anyon types, Φ and Λ.
To define an anyon model, one starts by listing all

possible particle types. Since this list is complete, all
composite particles must also behave according to one
of these types. The rules by which this occurs are known as
the fusion rules. When the composite of particles of type a
and b behave either as type c or d, the rule is written
a × b ¼ cþ d. The orders of factors and terms in these
rules holds no physical relevance. The composite of any
particle type with the vacuum, which is usually denoted 1,
always yields the original type. Such rules are therefore
usually left unwritten. The fusion rules can also be read
backwards as splitting rules, and so a × b ¼ cþ d implies
that both a particle of type c or a particle of type d can split
into a pair of particles consisting of one a and one b.
For the Φ − Λmodel, the three possible particle types are

the vacuum, 1, an Abelian anyon, Λ, and a non-Abelian
anyon, Φ. Their nontrivial fusion rules are,

Λ×Λ¼ 1; Φ×Λ¼Φ; Φ×Φ¼ 1þΛþΦ: (1)

Note that both Λ and Φ are their own antiparticles, since
fusion of either type with itself can yield 1. However, the
composite of two Φ’s sometimes results in a Λ or even
another Φ rather than annihilation to the vacuum.
There are many distinguishable processes by which n

particles can be created from a single particle (such as the
vacuum). The resulting states belong to the so-called fusion
space of the n-anyons. Some of the processes differ only in
the anyon types used for intermediate steps. The resulting
states are referred to as different fusion states within the
same fusion basis. When a completely different process is
used, the resulting fusion states belong to a different fusion
basis. See Fig. 1 for an illustration.
There are also many ways by which n particles may

be fused back to the original particle type. These are the
reverse of the processes used to create the anyons, and they
correspond to a measurement of the particles. The choice of
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a specific fusion process determines the fusion basis that
the particles are measured in, and the identity of the
intermediate particles determines the specific outcomes
that result.
The relationships between all the many possible fusion

bases for all the many possible collections of anyons can
be determined by a few simple unitary transformations: the
F matrices. These are the basic building blocks of basis
transformation from which all others can be derived. Their
definition is shown in Fig. 1. For the Φ − Λ model, there
is only one nontrivial F matrix. This describes the trans-
formation when three Φ’s have been created from a single
Φ, and it takes the form

FΦ
ΦΦΦ ¼ 1

2

0
B@

1 1 −
ffiffiffi
2

p

1 1
ffiffiffi
2

p

−
ffiffiffi
2

p ffiffiffi
2

p
0

1
CCA; (2)

in the basis 1, Λ, Φ for the intermediate result [25].
The effect of exchanging two adjacent anyons a and b is

twofold. First, there is the permutation of the particle types,
and second, a phase will be acquired. The latter depends on
what the outcome would be if a and b were fused. In the
case where a and b fuse to c, the phase is written Rc

ab. For
the Φ’s, these phases are R1

ΦΦ ¼ RΦ
ΦΦ ¼ 1 and RΛ

ΦΦ ¼ −1.
For most non-Abelian anyon models, the effect of

exchanges not only represents the permutation of the
particles, but it also leads to additional rotations within
the fusion space. However, this is not the case for this
model, where the exchanges have no effect beyond per-
mutation. Even so, they do affect the fusion behavior. In
fact, these effects mean that the braiding is a non-Abelian
representation of the permutation group. As such, the
Φ − Λ model is rightly called a non-Abelian anyon model.

A more detailed demonstration of the fusion and braiding
properties of this model can be found in Appendix A.
To show that the decoding methods considered for this

model also have relevance to other non-Abelian models, let
us consider the Fibonacci anyon model. This model has a
single nontrivial anyon type τ and a single nontrivial fusion
rule τ × τ ¼ 1þ τ. Using the correspondence τ → Φ, we
can see that this is the same as the Φ × Φ rule in the Φ − Λ
model, except for the addition of the AbelianΛ anyon in the
latter. Therefore, if one decodes the Φ − Λ model by first
considering only the Φ’s until none remains, and only then
considering the Λ’s, the decoding algorithm is also directly
applicable to Fibonacci anyons. This point is expanded
upon in Appendix C.

IV. CLASSICAL SIMULATION OF THE
NON-ABELIAN ANYONS

The standard means by which the Φ − Λ model can be
realized on a spin lattice is by using the quantum-double
construction of Refs. [5,6] for the group S3. This results in a
complex and highly entangled spin model. However, here
we define a classical model based on the Z6 quantum-
double model (which is itself a good error-correcting code)
that allows an efficient simulation of these anyons. This
classical model used is defined on the spin lattice shown in
Fig. 2, where a six-level spin is placed on each edge. The
state of the jth spin is denoted jsji and will always be one

FIG. 2. Lattice used to simulate the Φ − Λ model. Six-level
spins, shown by blue dots, are placed on each edge. Plaquettes are
bicolored white and grey in chessboard fashion. The size of the
lattice is measured by L, the number of spins along each edge.
L ¼ 5 in the lattice shown.

FIG. 1. (a) The two fusion bases for three anyons (a, b, and c)
created from an anyon d. The definition of the F matrix that
relates these is shown. (b) The two fusion bases for four Φ anyons
created from the vacuum. One is depicted to the left of the
equation, whose intermediate step is labeled by x. The other, to
the right, has an intermediate step x0. These are related by the
same F matrix as three Φ anyons created from one Φ, as shown.
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of the basis states fj0i; j1i…; j5ig. We will consider the
following unitary operator on these spins,

Rg
j ¼

X
sj

jsj þ gmod 6ihsjj: (3)

This rotates a spin state sj to sj þ gmod 6. Clearly,
R6−g ¼ ðRgÞ−1.
There are two types of plaquettes: white and grey in

chessboard fashion. For white plaquettes, we associate a
value σ ¼ þ1, and for grey, we have σ ¼ −1. For each
plaquette p, we define a variable bp as follows:

bp ¼ σp
X
j∈p

sj mod 6: (4)

Here, the summation runs over all spins j, around the
plaquette p. For the majority of plaquettes, there are four
such spins, but the plaquettes on the top and bottom edges
have only three. When calculating the sum, we use the
convention that −xmod 6 ¼ 6n − xmod 6, where n is an
integer that satisfies 6n ≥ x. Similar variables bl and br are
also defined for the left and right edges. These are
calculated using a sum over all L spins on the extreme
left and right edges of the code, respectively. The term
contributed by the spin j is sj if j is part of a grey plaquette
and −sj otherwise. Equivalent but independent variables
can be defined for the vertices and top and bottom edges.
However, since these are equivalent, it is sufficient to
consider only the plaquettes.
The value of bp is used to define the anyon occupancy of

the plaquette p (or edge l or r). If bp ¼ 0, the plaquette is
said to hold only vacuum. If bp ¼ 3, the plaquette is said
to hold a Λ. Otherwise (bp ∈ f1; 2; 4; 5g), the plaquette
is said to hold a Φ. As such, we will use the notation
ϕ ¼ f1; 2; 4; 5g from now on.
Consider the state for which all plaquettes hold only

vacuum. When defined properly, this total vacuum state
should be an equally weighted mixture of all topologically
equivalent states with bp ¼ 0 ∀p. This is in order to hide
the “strings” of anyons once they are created. Note that this
would be an equally weighted superposition in the quantum
DðZ6Þ code on which the classical simulation is based.
Any spin j will be part of two plaquettes, one white and

one grey. The application of R3
j to the vacuum state will

change the value of bp on both of these plaquettes to 3. The
effect of the rotation is therefore to create a pair of Λ
anyons. Similarly, application of Rg

j for g ∈ ϕ will change
bp on the white plaquette to g and that on the grey to 6 − g.
This creates a pair of Φ anyons. Further applications of
these operations on spins can be used to move the anyons
around. Note that when a Φ on plaquette p with bp ¼ β is
moved to an initially empty plaquette p0, this will result in
bp ¼ 0 (reflecting the fact that p is now empty) and

bp0 ¼ β. As such, the value β is an internal state of the
anyon that is carried with it.
If two anyons are moved to the same plaquette, the

resulting occupation of that plaquette will be the result of
their fusion. When an anyon i with internal state βi meets
an anyon j with state βj, the result is an anyon k with
βk ¼ βi þ βj mod 6. From this, it is clear to see that two Λ’s
will annihilate, a Λ fused with a Φ always results in a Φ,
and two Φ’s will either annihilate, form a Λ, or form
another Φ. This behavior exactly reproduces the fusion
rules of Eq. (1).
For a good simulation of theΦ − Λmodel, it is important

to reproduce the correct statistics as well as the correct
fusion rules. In order to do this, randomness must be
incorporated into the way in which a single 1, Λ, or Φ splits
into a pair of Φ’s. To do this, the state ρðΦ;ΦjxÞ of two Φ
anyons that were split out of an anyon type x is defined as

ρðΦ;Φj1Þ ¼ 1

4

X
j∈ϕ

jβj; β−jihβj; β−jj;

ρðΦ;ΦjΛÞ ¼ 1

4

X
j∈ϕ

jβj; β3−jihβj; β3−jj;

ρðΦ;ΦjΦÞ ¼ 1

8

X
i∈f1;2g

X
j;k∈f0;3g

jβiþj; βiþkihβiþj; βiþkj: (5)

In other words, to split two Φ’s out of a 1 or Λ anyon in a
plaquette p, the rotation Rj

i should be applied to one of the
spins around p, with the value of j ∈ ϕ chosen randomly.
If it is a Φ in p, corresponding to a value βk, the value
of j should be chosen randomly from the values {1, 4} for
k ∈ f2; 5g or vice versa.
Note that the randomness in each Φ anyon means that

they can only be manipulated using controlled operations.
The splitting of one Φ to two involves such an operation,
since the rotation Rj

i used depends on the internal state of
the Φ. Clearly, the same is true for the operation required to
move a Φ. It is important that the internal state is not
recorded during such operations in order to maintain the
randomness.
Demonstrations of how this classical model reproduces

the behavior of the Φ − Λ model can be found in the
appendixes. A plausibility argument, using only concepts
introduced here and in Sec. III, can be found in
Appendix A. A more rigorous proof using the structure
of the DðS3Þ lattice model and the error model of the
following section can be found in Appendix B.

V. ERROR MODEL

For the purposes of this study, we consider that, as in the
standard DðZ2Þ planar code [15], information is stored
using states for which all plaquettes are empty of anyons,
and different anyon occupancies of the edges are used for
the different logical states. The effect of noise is then to
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apply operations randomly to the spins, creating Φ and Λ
anyons on plaquettes and changing the anyon occupancy of
the edges. To undo the effects of the errors, the resulting
anyon configuration on the plaquettes must be measured
and the result processed. Further rounds of measurements
and classical processing may also be required. The desired
end result is to determine how to annihilate the anyons in a
way that is topologically equivalent to the means by which
they were created. In this case, topological equivalence
means that the final edge occupancies are the same as their
initial values. The stored information will then be pre-
served, without ever needing to measure and disturb it.
More details on the edges for a specific lattice model that
realizes the Φ − Λ anyons can be found in Ref. [26].
The success of the decoding procedure is measured by

the so-called logical error rate, P. This is the probability
that the decoding procedure will not annihilate the anyons
in a manner that is topologically equivalent to their
creation. A good decoder should achieve a logical error
rate of P ¼ Oðexp ½−αðpÞLβ�Þ for positive β ¼ Oð1Þ. Here,
p denotes the strength of the noise that creates the anyons.
The exact interpretation of p depends on the error model
used. The quantity αðpÞ ≥ 0 governs the decay of the
logical error rate. If successful decoding is possible,
there will be a finite threshold value p ¼ pc such that
αðpÞ > 0 ∀p < pc.
We will consider errors that act independently on each

spin and apply “flip” operations of the form Rj
i (we can

consider an equivalent but independent anyon model
defined using the vertices of the lattice to equivalently
and independently deal with phase errors). In order to be
consistent with Eq. (5) and maintain the proper simulation
of the anyon, we must ensure that the probability for the
spin flips Rj

i are equal for j ∈ ϕ. We will use pΦ to denote
the probability that one of these flips will be applied, and so
each will be applied with probability pΦ=4. We will use pΛ
to denote the probability that the flip R3

i will be applied
to each spin. The probability 1 − pΦ − pΛ is therefore the
probability that a spin suffers no flip. In this study, we will
consider the case of p ¼ pΦ ¼ pΛ. The total probability of
an error on each spin is then 2p.

VI. THE DECODING ALGORITHM

The nature of syndrome extraction in the non-Abelian
decoding problem means that fusion measurements must
be made in order to provide sufficient information to
decode. The most subtle way to do this, extracting as
much information as possible, is to fuse pairs of anyons (as
opposed to fusing clusters). However, these fusions cannot
be chosen arbitrarily (as explained later in Sec. VIII) but
must instead be chosen carefully according to the likely
error configurations. We consider one means to do this,
though others are also possible.
The decoding algorithm used is that studied in Ref. [23].

It is applied, in this case, as follows:

(1) Loop through all plaquettes to find Φ anyons. By
convention, loop from left to right and top to bottom.

(2) For each anyon, search through all plaquettes at a
Manhattan distance of k. Initially, k ¼ 1.

(3) If another Φ anyon (or the edge) is found at this
distance, pair them. Move one to fuse with the other
by performing the required controlled Rj

i rotations
on the connecting spins. The direction of the move-
ment is such that, if the fusion yields a Φ, this is
found later in the loop. If there are multiple
possibilities for the pairing at this distance, pair
with the first Φ found.

(4) If there are still Φ anyons present, repeat the process
for k ¼ kþ 1.

(5) When all Φ anyons have been removed, reset k to 1
and repeat for the Λ anyons.

Once complete, the correction procedure will have
removed all anyons created by the errors. The procedure
is a success if the total operator applied to the code, by both
errors and correction together, is of the trivial equivalence
class. The equivalence class of an operator is defined
by its effects on the logical subspace, in this case, the edge
occupations (see Refs. [18,20] for more on topological
equivalence classes in relevant codes). Any nontrivial
action on this subspace will correspond to a logical error.
This algorithm pairs anyons that are mutual nearest

neighbors. The reason why nearest neighbors are chosen is
that they are more likely to have been created by the same
chain of errors than more well-separated anyons. However,
allowing anyons to simply pair with nearest neighbors
would be too greedy, since the pairing may appear likely to
one of the anyons but unlikely to the other. The requirement
for the pairings to be of mutual nearest neighbors then
provides a barrier to such unwanted pairings.
The computational complexity of the algorithm is not

deterministic. However, an upper bound for the worst-case
scenario can be easily derived. The maximum number of
anyons present during each level of the search (i.e., each
value of k considered) is OðL2Þ. For each of these, k
plaquettes are searched, and so the complexity for each
level is OðkL2Þ. The maximum number of levels consid-
ered will beOðLÞ, since no anyon is more than this distance
from the edge, making the total complexity never more than
OðPL

k¼1 kL
2Þ ¼ OðL4Þ. For the best-case scenario, where

all anyons are paired within an Oð1Þ distance, the total
complexity is OðL2Þ. Here, we have neglected the logL
factors required to store the necessary numbers during the
process. The total complexity is clearly polynomial with
system size, and a moderately low ordered polynomial also.
The algorithm therefore allows for fast and efficient decoding.

VII. RESULTS

In order to properly benchmark the decoder, the logical
error rate P was determined for many spin-flip error rates,
p, and linear system sizes, L. In each case, this was done by
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randomly generating an error configuration for the spins of
the code according to the error rate, applying the decoder to
the resulting anyons, and finally determining whether or
not a logical error occurred for each sample. The number of
samples, n, used in each case was the amount required in
order for 103 logical errors to occur. The logical error rate
was then calculated as P ¼ 103=n.
The data were obtained to determine the following

aspects of the algorithm’s behavior:
(a) The threshold error rate pc under which error correc-

tion is possible.
(b) The minimum system size required such that P < p,

and so error correction becomes evident, for each p.
(c) The decay of the logical error rate for spin-flip error

rates well below threshold, to show that effective error
correction occurs.

(d) The values of αðpÞ for each p, when the above data are
fitted to a function P ¼ 0ðe−αðpÞLÞ [27].

The results can all be found in Fig. 3, and they suggest a
threshold pc of around 3.5%. The threshold for the total
error probability on each spin will then be around 7%,
which is very comparable to similar results from Abelian
models. Indeed, the corresponding decoder and error model
for the DðZ2Þ model also achieves a threshold of around
7% [23]. Note that the value of this threshold depends on
our choice of decoder. The maximum possible threshold for
an optimal decoder could be much greater but will likely be
of the same order of magnitude.
We find that logical error rates of P < p can be

obtained by using a small code of size L < 10 for all
p≲ pc=3, and then they rise sharply for higher p. This
differs slightly from the decoding of Abelian anyons, for
which such small system sizes typically perform well up
to pc=2. However, this may be due to the properties of the
decoder rather than the decoding problem itself. For
p≲ pc=2, we find that the logical error rate decays very
quickly as L → ∞.
The data show a good fit to an exponential decay of the

form P ¼ Oðexp ½−αðpÞLβ�Þwith β ¼ 1, though we expect
that a lower value of β will become evident as L → ∞. For
the case of pΦ ¼ 0 and p ¼ pΛ, it is known that β ¼ log3 2
[23,28]. We expect the same for pΦ > 0, but this remains to
be determined.
Another important benchmark of performance is the

minimum number of errors required to cause a logical error.
We will use ϵ to denote the value of this number realized
by an exhaustive decoder and ϵ0 to denote the value for a
practical decoder. For this code, ignoring Oð1Þ corrections,
it is clear that ϵ ¼ L=2. This is the minimum number of
spin flips required to create a pair of anyons such that it
takes less flips to pair them with opposite edges than with
each other. This decoder, however, does not achieve this
optimal behavior. Instead, by straightforward application of
the result derived for theDðZ2Þ planar code in Ref. [23], we
find ϵ=4 ≤ ϵ0 < ϵ=2, up to constant Oð1Þ correction terms.

(d)

(c)

(b)

(a)

FIG. 3. (a) Graph of logical error rate P against error rates p
around threshold. (b) Graph of minimum linear system size
required for error correction to become evident, L�, against p.
(c) Graph of P against linear system size L for various p well
below threshold. Fittings to an exponential of the form P ¼ ce−αL

are shown. (d) A graph of α against p calculated using this fitting.
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This is not ideal, but the fact that it scales linearly with L
should allow good error suppression.

VIII. NATURE OF SYNDROME EXTRACTION

For Abelian anyon models, the fusion product of two
anyons can be predicted exactly in all cases. As such,
Abelian decoding can be achieved by first measuring and
then classically processing the syndrome.
The decoding process described above, however, is more

complex. First, the positions of the anyons are measured.
This gives partial syndrome information since the fusion
results of anyons remain unknown. The results are then
processed to choose a pair of anyons to fuse. The result of this
is measured, giving additional syndrome information. Further
processing, fusion, and measurement cycles are made until
no more anyons are present. This decoding therefore
switches constantly between partial syndrome measurement
and partial processing, with the syndrome measurements
made at each step being guided by the processing of the last
step. The fusion basis used to fuse all anyons and hence
extract all syndrome information is therefore chosen care-
fully. The results from each round of fusions is used to
determine the nature of the fusions in the next round.
It is interesting to consider whether non-Abelian decod-

ing must necessarily take this form, or whether some means
of full syndrome extraction followed by full processing is
possible. In the latter case, the fusion basis used for full
syndrome extraction cannot depend at all on the anyon
configuration since no processing will be performed
between anyon configuration measurements and the fusion
measurements in order to make this choice. The fusion
basis measurement must therefore be done using a pre-
determined convention, fusing the contents of the pla-
quettes in a certain order with no regard to what those
contents are. If decoding is possible with such syndrome
extractions, it should then be possible to process the results
of all measurements (the initial positions of the anyons as
well as their fusion results) to determine which logical
operation was performed by the combined error and
measurement process.
To see that this is not possible, consider the creation from

the vacuum of a pair of x anyons for x ∈ f1;Λ;Φg. After
this, a pair of Φ anyons is created, with one Φ fused with
each x. Let us consider the case where both fusions yield a
Φ. This always occurs for x ∈ f1;Λg, and it occurs with a
probability of 1=2 for x ¼ Φ. In all cases, the result is
simply a pair of Φ anyons created from vacuum, in a state
that does not depend at all on the value of x. Indeed, the
fusion space of two Φ’s to vacuum is one dimensional, so
there is nowhere for this information to be stored. Any Φ
pair created from the vacuum is therefore equivalent to a Φ
pair that fused pairwise with a randomly chosen x pair
created from vacuum immediately before.
Information is stored in the code using the edge

occupations. Creating a pair of anyons from vacuum and

fusing one with each edge therefore performs a logical
operation. Doing this randomly results in an uncorrectable
logical error since the syndrome carries no trace. With the
properties of the Φ’s described above, fusing a Φ with each
edge is equivalent to first performing an uncorrectable
logical error and then fusing a Φ with each edge. As such,
this process always results in an uncorrectable logical error,
even when it is known that it has occurred. There is no way
to reverse the fusion of a Φ with each edge to restore the
original state.
With this property, it is easy to see that decoding is not

possible for full syndrome measurement according to the
predetermined fusion basis. For any such fusion basis, there
will be at least one spin such that if a pair of Φ’s is created
by an operation on that spin, these will end up fusing with
opposite edges. Only one such pair creation is required on
this single spin in order to cause an uncorrectable logical
error. The probability of a logical error will then always be
≥ pϕ, and so it will not decay with system size at any finite
error rate.
These properties also hold for arbitrary anyon models. In

any non-Abelian model, we can consider an arbitrary non-
Abelian anyon ν and its antiparticle ν̄. There then exists at
least one nontrivial anyon μ (with antiparticle μ̄) such that
the fusion ν × μ can lead to the outcome ν. The uniqueness
of antiparticles then implies that ν̄ × μ̄ will also have the
possible outcome ν̄. A ν − ν̄ pair created from the vacuum
is then equivalent to such a pair that fused pairwise with a
μ − μ̄ pair created from the vacuum directly before. Fusing
this pair with different edges or well-separated computa-
tional anyons will therefore cause an uncorrectable logical
error in the same way as above and thus again prevent good
decoding when a predetermined fusion basis is used.
Because of this, any decoding algorithm for any non-

Abelian model requires at least the following sequence of
steps: (i) an initial syndrome measurement; (ii) classical
processing based on the results to determine the next set
syndrome measurements to be made; (iii) these measure-
ments; (iv) classical processing of measurement results.
Further cycles may also be required, in general.
There is one notable caveat to this. Consider an anyon

model for which the fusion product of two non-Abelian
anyons is always either an Abelian anyon or a uniquely
defined composite. The Ising anyon model is a prime
example of this. In such cases, error correction could be run
on the non-Abelian anyons in a single step and then run on
the resulting Abelian syndrome in another step. This two-
step correction is necessary to fully remove the effects of
the errors on the logical subspace, in accordance with the
arguments above. However, note that successful correction
in the first step will remove the effects of non-Abelian
anyons that fused with the edge and leave only the effects of
the Abelian edge fusions to be dealt with by the second. If
logical information is encoded only in the type of non-
Abelian anyon present on the edge, the first step of the
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error correction will then be sufficient. Therefore, though
single-step error correction is not enough to fully remove
the effects of errors, the partial correction it gives can still
be useful in this limited class of non-Abelian models. Note
that this caveat only applies when edge occupations are
used to store logical states. The fusion rules of the relevant
models mean that the required encoding is not possible
when the fusion states of computational anyons are used.

IX. CONTINUOUS ERROR CORRECTION

The error model considered in this work is for the one-
time case, where the system is first prepared, then errors
occur, and then (perfect) measurement and processing are
performed to remove the effects of the errors at the time of
readout. The relevant time scale between preparation and
readout is then Oð1Þ (unless a self-correcting Hamiltonian
such as in Refs. [4,29] is applied). We do not consider the
case for which errors occur continuously. In this case, the
aim of error correction is to allow the effects of all errors to
be removed over a typical time scale of Oðexp½OðLβÞ�Þ.
For the decoding of Abelian anyons using perfect

syndrome measurements, the existence of a decoding
algorithm for the one-time case that achieves exponential
suppression of the logical error rate directly implies the
existence of a decoding algorithm for the continuous case
that achieves an exponential lifetime. This is because the
code can simply have a full syndrome measurement
performed periodically [with Oð1Þ time between each
measurement] until the time of readout. Processing can
be done as the measurements are made or can be deferred
until the end. For each time slice, the syndrome is taken to
be the difference between the present measurement result
and the previous one, giving only the effects of the errors
that occurred between the two. The decoding can then be
performed independently for each time slice. The cumu-
lative results allow the total logical operation performed on
the stored information to be determined and its effects
negated. As long as the error rate between time slices
remains below the threshold value for the one-time decoder,
the probability that the decoding fails at each time slice
decays exponentially with Lβ. The typical time before such
a logical error occurs, the lifetime of the quantum memory
stored in the code, is then Oðexp½OðLβÞ�Þ.
Similar arguments do not apply to the decoding of non-

Abelian anyons using perfect syndrome measurements. In
this case an algorithm that gives exponential suppression
for one-time decoding does not imply the existence of one
that gives an exponential lifetime for continuous decoding.
This is due to the behavior described in the previous
section. One difference in the non-Abelian case is that
processing cannot be deferred until the end. As soon as the
probability of an error that creates a Φ pair (or any particle-
antiparticle pair of non-Abelian anyons in any non-Abelian
model) on each spin is above the bond percolation thresh-
old of the lattice, which will occur in Oð1Þ time, the effect

will be the same as a pair of Φ’s, each of which is fused
with a different edge. Even though the periodic measure-
ments may allow the decoder to know such a process has
occurred, it will nevertheless cause an uncorrectable logical
error. Constant operations are therefore required to keep the
number of anyons sufficiently low.
Another difference is that full decoding cannot be

performed based on the results of a single round of
measurements. The decoder must instead make measure-
ments, process the results, and then make more measure-
ments based on these results. However, if further errors occur
during the time taken by this processing, the exact nature of
the measurements to be made becomes ambiguous. The
processing could have called for two anyons to be fused and
the result measured. However, if they move during the time
taken to determine this, it is no longer clear where those
anyons are. They may also have fused with other anyons.
The decoder could therefore do more processing to deter-
mine how to change its plans accordingly. However, more
errors and thus more changes will have occurred.
Another possibility is to attempt the operations specified

by the processing without regard to any changes. This
would be possible in the Abelian case, where the operation
required to fuse any two anyons is a well-defined product of
single-spin flips. This can therefore be performed even if
the errors have moved the anyons away. The effect will be
the same as if the anyons were fused first and the errors
followed after. However, non-Abelian anyons can only be
moved using controlled operations. Clearly, if the anyon is
no longer present in its expected position, the fusion
required by the processing cannot be performed.
Because of these complications, the decoding algorithm

used for the above numerics only applies in the case of one-
time error correction. The lifetime of the quantum memory
in this case would therefore need to be extended using
additional techniques, such as energetic suppression of
errors or a self-correcting Hamiltonian [4,29]. The problem
of how decoding can be achieved for continuous error
correction is still open.
Note that the above considerations also apply to the case

of imperfect syndrome measurements, where many syn-
drome measurements must be made in order to accurately
determine the true syndrome. Because of this, even one-time
readout will need some aspects of continuous decoding.

X. CONCLUSIONS

We have shown that good decoding, which achieves
logical error rates suppressed exponentially with L below a
finite threshold noise rate, is indeed possible for the Φ − Λ
non-Abelian anyon model for a simple case of noise. This
result is expected to hold for many other, if not all, non-
Abelian decoding problems based on similar noise models.
We also showed that, unlike the Abelian case, the proof

of principle for this simple one-time noise model cannot be
straightforwardly extended to the more general case of
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continuous error correction. No proof of principle for this
case has yet been made, especially with the more realistic
consideration of imperfect syndrome measurements.
Future work will progress towards the decoding of the

model for the full fault-tolerant case, consisting of con-
tinuous error correction and imperfect syndrome measure-
ments. This should determine whether or not there exists a
decoding algorithm with computationally efficient process-
ing that is able to provide such error correction. If so, it
would provide a very good justification that such decoding
algorithms also exist for Fibonacci anyons and other
universal models.
Note that, while our workwas in preparation, the problem

of decoding the Ising model was discussed in Ref. [30].
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APPENDIX A: FUSION AND BRAIDING
IN THE Φ − Λ MODEL

To demonstrate the equivalence of the classical simu-
lation and the Φ − Λ model, we will explicitly consider the
case of four Φ pairs created from the vacuum. This case
contains all forms of behavior present in more general
anyon configurations. The equivalence of the classical
simulation and the Φ − Λ model in this case is therefore
strong evidence for the equivalence in general (a full proof
can be found in Appendix B). The relationship between
braiding and permutation, the way this is represented as an
action on the fusion space, is also discussed.

1. Fusion and braiding of four Φ anyons

We consider in detail the behavior of the Φ − Λ model
for the simplest nontrivial case, that of four Φ’s created
from the vacuum. There are only two possible fusion bases
in this case, as depicted in Fig. 1(b). Assuming that only
topological operations (splitting, braiding, and fusion) are
allowed, the statistics of the model are fully described by
the statistics of fusion outcomes.
First, we consider the case in which no braiding occurs

between creation and fusion. If the anyons are fused in the
same basis as they were created, the intermediate particle
found in the fusion measurement will be exactly the same
as that appearing in the creation. When fusion is done in a
different basis than creation, there will be some randomness
to the results. We use pðx0jxÞ to denote the probability that,
when the state is created according to the left basis [in
Fig. 1(b)] with x used in the intermediate step, fusion
according to the right basis will yield x0 in the intermediate
step. Using the F matrix of Eq. (2), we find that these
probabilities are

pðx0jxÞ ¼ 1

4
; pðx0jΦÞ ¼ pðΦjxÞ ¼ 1

2
;

pðΦjΦÞ ¼ 0;
(A1)

where x and x0 in the above are restricted to the set f1;Λg.
Note that, since the F matrix is Hermitian, these proba-
bilities also apply when states prepared using the left basis
are fused using the right.
We now consider the case for which braiding can occur.

Without loss of generality, we can assume all braiding occurs
after the creation of all the particles and before any fusion.
If any two anyons with a definite fusion outcome are
exchanged, the effect is trivial. We therefore ignore these.
Since braiding of the Φ anyons is a representation of the
permutationgroup, it isclear thatanytwosuccessivenontrivial
exchangeswill return the anyons to their initial configuration,
or they will map between the fusion bases. In either case,
the state prior to fusion is simply a fusion basis state and thus
isdescribedby theprobabilities above. It is therefore sufficient
to consider only the effects of single exchanges.
For a state prepared in the left basis, the only nontrivial

exchange is that of the two middle anyons. For a state in the
right basis, there are two possible nontrivial exchanges that
are equivalent in effect. These are of the left pair of anyons
or of the right pair. In all cases, the resulting state yields the
same probabilities as Eq. (A1) for fusion in both bases
(unlike before, neither basis has a deterministic result).
Given that braiding only represents permutation and has

no additional effect, these probabilities can be expressed
more simply as follows. For either a left or right basis state
with an intermediate using x, we can think of the four
anyons as being two pairs, each split from an anyon of
type x. The probability for outcomes when fusing anyons
from the same pair, whether braiding has been used to move
these towards each other or not, is pðx0jxÞ ¼ δx;x0 . The
probabilities when fusing from different pairs (whether
braiding is used or not) are those of Eq. (A1).
These can now be compared to the probabilities for

fusion outcomes in the classical simulation. From Eq. (5), it
is clear that the state of the two pairs for x ∈ f1;Λg is

1

16

X
j;k∈ϕ

jβj; βX−j; βk; βX−kihβj; βX−k; βk; βX−jj: (A2)

Here, X ¼ 0 for x ¼ 1 and X ¼ 3 for x ¼ Λ. Clearly, the
internal states for two Φ anyons from different pairs are
uncorrelated. Their reduced density matrix will simply be
ρ⊗2
Φ , where

ρΦ ¼
X
j∈ϕ

jβjihβjj: (A3)

Since fusion to vacuum corresponds to four possibilities
(k ¼ −j for j ∈ ϕ), as does fusion to a Λ (k ¼ 3 − j for
j ∈ ϕ), whereas Φ corresponds to eight possibilities (k ¼ j
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and k ¼ jþ 3 for j ∈ ϕ), the probabilities for the fusion
results will be as in Eq. (A1) for the x ∈ f1;Λg case.
For the case of x ¼ Φ, the state of the two pairs will be

1

16

X
i∈f1;2g;

j;k;l∈f0;3g

jβiþj; βiþk; β−iþl; β−iþjþkþli

hβiþj; βiþk; β−iþl; β−iþjþkþlj: (A4)

The reduced density matrix of two anyons from different
pairs is then

1

8

X
i∈f1;2g
k;l∈f0;3g

jβiþk; β−iþlihβiþk; β−iþlj: (A5)

The fusion outcome will be βkþl for k, l ∈ f0; 3g. The only
two possible outcomes are then vacuum and Λ, which each
occur with a probability of 1=2. This reproduces the
probabilities of Eq. (A1) for the x ¼ Φ case. The classical
simulation is therefore statistically equivalent to the case of
four Φ anyons created from vacuum in all cases.

2. Braiding and permutation

The braiding of this model only represents the permu-
tation of the anyons and has no additional effect on the
fusion space. However, it is important to note that this does
not mean the effect on the fusion space is trivial. The
abstract theory of anyons treats anyons of the same type as
indistinguishable. Different states of these anyons are
therefore only distinguished by their fusion basis states,
which describe the outcomes of fusing anyons in neighbor-
ing positions. Permutation of anyons changes which any-
ons are in which positions. A state for which two
neighboring positions are occupied by anyons with a
definite fusion outcome might then be changed to one
for which the anyons in these positions have a random
outcome. This would clearly change the state of the system
and therefore must act nontrivially on the fusion space.
It is also important to note that the braiding is a non-

Abelian representation of the permutation group. As an
example of this, consider the case of four Φ anyons, as
above. Specifically, consider the left basis state with x ¼ 1.
Let us label the positions of the anyons A to D from left to
right and also label the anyons themselves Φa to Φd from
left to right. The initial state is then one for which eachΦj is
in position J, and Φa × Φb ¼ Φc × Φd ¼ 1.
Now, let us consider two exchange operations: (i) the

exchange of the anyons at positions A and B and (ii) the
exchange of the anyons at B and C. After both operations
are complete, the anyons in positions B andCwill be fused.
If exchange (i) is applied before (ii), the anyons fused at the
end will be Φa and Φc. These are from different pairs, and
so the result will be random. If the exchange (ii) is applied
before (i), the anyons fused are Φa and Φb. Since the

braiding has no effect beyond permutation, the Φa×Φb¼1
behavior from the initial state is retained. The outcome of
the fusion is then always vacuum. Since the probability
distribution for the fusion outcome depends on the order of
exchanges, it is clear that the braiding is non-Abelian.

APPENDIX B: CLASSICAL SIMULATION OF
DðS3Þ LATTICE MODEL SUBJECT TO NOISE

The noise experienced by topological codes based on
non-Abelian anyons will depend on various factors, such as
the details of the physical system used and the nature of the
coupling between the system and the environment.
Nevertheless, the noise will always be interpreted in terms
of the creation, transport, and fusion of the anyons. Since
our aim in this study is to consider the decoding problem
from a general anyonic perspective, we choose an error
model that is straightforward in terms of these simple
anyonic processes. To do this for the Φ − Λ model, let us
first look at the physical system on which it may be realized.
TheDðS3Þ lattice model is the standard lattice realization

of the Φ and Λ anyons. This can be found using the
construction of Ref. [6] with the group S3. This model was
considered in greater detail in Ref. [5]. The group S3 is the
permutation group of three objects, which has two gen-
erators, t and c. Using the rules t2 ¼ c3 ¼ e and tc ¼ c2t, it
is clear that the group has six elements that can be denoted
e, c, c2, t, tc, and tc2.
Like the latticemodel used in Sec. IV, themodel is defined

on a square lattice with a six-level spin on each edge.
However, in this case, the basis states are labeled by the
elements of S3. Both vertices and plaquettes can hold
quasiparticles, and so the corresponding projectors are
defined on each. Charge anyons reside on plaquettes, and
the so-called flux anyons resideonvertices [31]. Sinceweare
interested only in the charges, we consider the case of
vacuum on each vertex. The simplest state to satisfy this is
that for which all spins are in state jei. Wewill therefore use
this as our starting point when defining charge states.
We define operators on the spins according to the group

multiplication. We define both right and left multiplication
operators Rhjgi ¼ jghi and Lhjgi ¼ jhgi, respectively, for
g, h ∈ S3. With these, we define the gauge transformations

Tg ¼
Y
j∈p

Rg
j; Tg ¼

Y
j∈p

Lg−1

j ; (B1)

on white and grey plaquettes, respectively. These can then
be used to construct the following projectors for each
quasiparticle type:

P1 ¼
1

6
ðTe þ Tc þ Tc2 þ Tt þ Ttc þ Ttc2Þ; (B2)

PΛ ¼ 1

6
ðTe þ Tc þ Tc2 − Tt − Ttc − Ttc2Þ; (B3)
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Pϕ ¼ 1

3
ðTe þ ωTc þ ω2Tc2Þ; (B4)

Pϕ̄ ¼ 1

3
ðTe þ ω2Tc þ ωTc2Þ: (B5)

Here, ω ¼ ei2π=3. These projectors are mutually orthogonal
and commute with each other and the vertex projectors. The
projector P1 corresponds to states for which the plaquette
holds vacuum charge, and PΛ corresponds to the Λ anyon.
The projectors Pϕ and Pϕ̄ correspond to different internal
states of the Φ anyon. A single Φ projector can be obtained
from their sum,

PΦ ¼ 1

3
ð2Te − Tc − Tc2Þ: (B6)

However, it will be advantageous in the following to
consider the internal states separately. We will refer to
these as “quasiparticles” rather than “anyons.”
The ϕ and ϕ̄ quasiparticles can be considered antipar-

ticles of each other. To create a ϕ on a white plaquette and a
ϕ̄ on a neighboring grey plaquette, the operator

Wϕ ¼ jeihej þ ωjcihcj þ ω2jc2ihc2j (B7)

should be applied to the shared spin. To create the ϕ on
the grey plaquette and ϕ̄ on the white, the operator
Wϕ̄ ¼ W†

ϕ should be applied. A Φ pair corresponds to a
superposition of these two possibilities and is created
with WΦ ¼ Wϕ −Wϕ̄ [5,10].
Note that these operators are not unitary, and so the

state after their application will need to be renormalized.
However, they can be applied deterministically using
adaptive operations [5].
A pair of Λ anyons can similarly be created by the

unitary operator

WΛ¼jeihejþjcihcjþjc2ihc2j
− jtihtj− jtcihtcj− jtc2ihtc2j: (B8)

Note that all these creation operators are diagonal in the
basis labeled by group elements. This ensures that they do
not create, annihilate, or transport any quasiparticles
present on the vertices [5].
These operators not only create anyons on initially

empty plaquettes, but they will also fuse the anyons with
whatever is initially present. They therefore implement all
the basic anyonic operations of creation, transport, and
fusion. The simplest error model will then be one for which
WΦ or WΛ is applied to each spin with respective
probabilities pΦ and pΛ. We will now show that this error
model can be classically simulated as described in
Secs. IV and V.

To do this, we will consider the creation of quasiparticle
pairs such that they overlap on a plaquette p. By doing so,
we will be able to determine their fusion behavior by
applying the projectors of Eq. (B2) to the resulting state
on p. In order to ensure that the results are due only to the
quasiparticles created, and not to any preexisting ones, the
initial state we use will be such that the plaquette p and
all four surrounding plaquettes hold only vacuum, as do all
vertices. As noted above, all vertices hold vacuum when all
spins are in state jei. We may then apply the P1 projectors
for p and the surrounding plaquettes to obtain a state for
which these also hold only vacuum. Since we are only
interested in the outcome of the fusion on p, we then take
the reduced density matrix for the spins of p. This yields an
equally weighted mixture of all states of the form

1ffiffiffi
6

p
X
g∈S3

jg; gh2; gh3; gh4i (B9)

for hj ∈ S3. These states apply to both white and grey p.
Note that the summation variable g is used for the state of
the first spin, and the state of the jth spin differs by a
relative factor hj. However, this is a notational convenience
and does not confer any special status on the first spin.
Since these states correspond to vacuum on plaquette p,

we will denote them j1h2;h3;h4i. Wewill also use the notation
jGh2;h3;h4i ¼ jg; gh2; gh3; gh4i. These states may then be
expressed as

j1h2;h3;h4i ¼
1ffiffiffi
6

p
X
g∈S3

jGh2;h3;h4i: (B10)

It can be easily verified that P1j1h2;h3;h4i ¼ j1h2;h3;h4i and
PΛj1h2;h3;h4i ¼ Pϕj1h2;h3;h4i ¼ Pϕ̄j1h2;h3;h4i ¼ 0 for all such
states.
Since we have a mixture of states that prohibits inter-

ference effects between them, we can consider each
separately. We will first apply the operator WΛ to the first
spin (though the effect on any other would be equivalent).
This yields

jΛh2;h3;h4i ¼
1ffiffiffi
3

p
�X

g∉½t�
jGh2;h3;h4i −

X
g∈½t�

jGh2;h3;h4i
�
;

where ½t� ¼ ft; tc; tc2g. It can be easily verified that
P1jΛi ¼ PϕjΛi ¼ Pϕ̄jΛi ¼ 0 and PΛjΛi ¼ jΛi for both
grey and white plaquettes. So the application of WΛ to a
spin creates a Λ on both adjacent plaquettes. Applying WΛ
twice on the same plaquette, either on the same spin or on
different spins, i and j, clearly gives Wi

ΛW
j
Λj1i ¼ �j1i.

The global phase of −1 occurs if hi belongs to ½t� and hj
does not, or vice versa. However, as a global phase to a state
within a mixture, it has no physical effects. Fusing two Λ
anyons by placing them on the same plaquette therefore
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always leads to their annihilation, thus realizing the
Λ × Λ ¼ 1 fusion rule.
Now we consider the ϕ and ϕ̄ quasiparticles. Applying

the operator Wϕ to the first spin (though the effect on any
other would be equivalent) for the vacuum state j1h2;h3;h4i
yields

jϕh2;h3;h4i ¼
1ffiffiffi
3

p ðjEh2;h3;h4i þ ωjCh2;h3;h4i þ ω2jC2
h2;h3;h4

iÞ:

It is easy to see that P1jϕh2;h3;h4i ¼ PΛjϕh2;h3;h4i ¼ 0 for
both the case in which the plaquette p is a grey plaquette
and the case in which it is a white plaquette. In the former
case, the Φ projectors act as Pϕjϕh2;h3;h4i ¼ jϕh2;h3;h4i and
Pϕ̄jϕh2;h3;h4i ¼ 0. In the latter case, the roles of ϕ and ϕ̄ are
reversed. This shows that the effect of theWϕ operator on a
spin is to create a ϕ on the white plaquette adjacent to the
spin and a ϕ̄ on the grey plaquette.
The operator Wϕ̄ applied to the vacuum state yields

jϕ̄h2;h3;h4i ¼
1ffiffiffi
3

p ðjEh2;h3;h4i þ ω2jCh2;h3;h4i þ ωjC2
h2;h3;h4

iÞ:

This behaves similarly to the state jϕh2;h3;h4i. The only
difference is that here the ϕ̄ is placed on the white plaquette
and the ϕ on the grey.
Let us now consider the effect of applying the operator

Wϕ (or equivalently Wϕ̄) twice to the same plaquette. This
corresponds to moving either two ϕ quasiparticles into the
same white plaquette or two ϕ̄ quasiparticles into the same
grey one. In both cases, this results in the fusion of the
quasiparticles. If both operators are applied to the same
spin, we may use the fact that ðWi

ϕÞ2 ¼ Wϕ̄. The fusion
of two ϕ quasiparticles on the same plaquette will then
deterministically yield a ϕ̄, and vice versa, in this case.
If, however, one Wϕ is applied to the first spin and the

other to the jth, the effect depends on the relative factor hj
according to

W1
ϕW

j
ϕj1h2;h3;h4i ¼ ΩðhjÞjϕ̄h2;h3;h4i;

ΩðcnÞ ¼ ωn; Ωðg ∈ ½t�Þ ¼ 0:

The state is then either projected out (the effects of which
will be dealt with when the mixed state as a whole is
renormalized) or yields jϕ̄h2;h3;h4i up to an irrelevant global
phase. The final mixed state will then be composed only of
states for which a ϕ̄ resides on p. This case therefore also
results in two ϕ quasiparticles fusing deterministically to a
ϕ̄, and vice versa. This fusion behavior can therefore be
represented by the fusion rules ϕ × ϕ ¼ ϕ̄ and ϕ̄ × ϕ̄ ¼ ϕ.
The fusion behavior of a ϕwith a ϕ̄ can be determined by

applying both Wϕ and Wϕ̄ to the vacuum state. This yields

W1
ϕ̄
Wj

ϕj1h2;h3;h4i ¼ ΩðhjÞð1þW1
ΛÞj1h2;h3;h4i: (B11)

The result of the fusion is then randomly either vacuum or
Λ, with an irrelevant global phase. This fusion behavior can
be represented with the fusion rule ϕ × ϕ̄ ¼ 1þ Λ.
Finally, let us consider creating a Φ (either in the form of

a ϕ or a ϕ̄) on the same plaquette as a Λ. It can easily be
seen that

Wi
ϕW

j
Λj1i ¼ �Wi

ϕj1h2;h3;h4i ¼ �jϕh2;h3;h4i;
Wi

ϕ̄
Wj

Λj1i ¼ �Wi
ϕj1h2;h3;h4i ¼ �jϕ̄h2;h3;h4i:

The WΛ therefore has no effect (up to an irrelevant global
phase) when applied in conjunction with theWϕ orWϕ̄, and
so the Λ is hidden. This can be represented by the fusion
rules ϕ × Λ ¼ ϕ and ϕ̄ × Λ ¼ ϕ̄.
The process by which quasiparticles may be moved from

one plaquette to a neighboring plaquette is as follows. First,
an operator is applied to the spin shared by both the initial
and final plaquettes. This should be the operator that creates
the antiparticle of the quasiparticle to be moved on the
initial plaquette and the quasiparticle on the final plaquette.
For the case of Λ anyons, the operation is then complete
since the resulting occupation of the initial plaquette is
vacuum. When moving a ϕ or ϕ̄, however, the occupation
of the initial plaquette will be either vacuum or Λ.
A measurement should then be made to determine which
is the case. If a Λ is present,WΛ should be applied to move
this onto the final plaquette, and therefore into the ϕ or ϕ̄
that was moved. This then completes the transport of the
quasiparticle. As noted in Ref. [5], the operators that create
and move the quasiparticles are diagonal in the basis
labeled by group elements. As such, they trivially com-
mute, and so the braiding of the quasiparticles has no effect
on the fusion beyond permutation.
Now that we have determined the fusion and braiding

behavior of the ϕ, ϕ̄, and Λ quasiparticles, we can
determine the statistics of measurement outcomes when
a given pattern of the WΛ, Wϕ, and Wϕ̄ operations is
applied to the spins of the model. Given the fusion
behavior, it is clear that a definite pattern of the operators
will lead to a definite pattern of ϕ and ϕ̄ quasiparticles.
However, any plaquette on which a ϕ and ϕ̄ fused will lead
to randomness in the result, with both vacuum and Λ being
possible. For a given measurement, both outcomes will
occur with equal probability. However, we can also con-
sider what correlations may be present between the out-
comes. The conservation law for the anyons means that,
once all ϕ and ϕ̄ quasiparticles are fused, the end result
must be vacuum. There is therefore an overall parity
constraint on the outcomes of these fusions. This is in
fact the only correlation present, with the outcomes being
otherwise completely random. This can be seen from the
fact that the quasiparticle creation operators satisfy
WΛWϕ ¼ Wϕ and WΛWϕ̄ ¼ Wϕ̄. Since the application
of WΛ to any spin on which Wϕ or Wϕ̄ has already been
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applied yields no effect, one can randomly apply WΛ with
probability 1=2 to all spins on which these operations have
been applied. Such a process would clearly randomize the
outcomes of any fusions (while respecting the parity
constraint) and thus wash out any additional correlations
present. Since the process has no effect, it follows that no
such correlations are present.
In the above, we consider the Wϕ and Wϕ̄ operators and

the ϕ and ϕ̄ quasiparticles that they create. However, our
real interest is in Φ anyons created by WΦ ¼ Wϕ −Wϕ̄.
Note that any application of WΦ ¼ Wϕ −Wϕ̄ on a spin
creates an equally weighted superposition of the states
that would result from applications of Wϕ and Wϕ̄. The
probability distribution for measurement outcomes after a
pattern of WΦ operations are applied is then similar to the
probability distribution if each WΦ was replaced by either
Wϕ orWϕ̄ with equal probability. The difference is that the
probabilities for the former superposition state will be
subject to interference effects, whereas those for the latter
mixed state will not. However, a regime can be easily
defined for which there are no interference effects, and thus
probability distributions for measurement outcomes in the
two cases are equivalent.
This regime is that for which the superpositions caused

by the fusion of two Φ anyons are immediately deco-
hered. This could be due to a measurement of the
corresponding plaquette occupancy immediately after
the fusion. Note that such a measurement will be
performed by the syndrome measurement anyway. The
requirement for decoherence is then only relevant in the
case for which two Φ anyons fuse on a plaquette and then
at least one more Φ fuses with the result. With the error
model considered in this work, where the probability of a
Φ creation operation applied to any spin is around 1%, the
probability of more than two such errors on any plaquette
is around 10−4%. Since the need to perform the
decoherence is so unlikely, it seems reasonable that it
will not have a significant effect on the nature our results.
Furthermore, known means by which the anyons can be
created and moved include an ancilla-assisted adaptive
procedure. This naturally causes decoherence of the
fusion result [5]. The means by which such operations
are applied by the environment can then also be expected
to cause such decoherence. We therefore feel that the
study of this regime is well justified.
To see that this regime does not allow interference effects

to change the probabilities when a given pattern ofWΛ and
WΦ operations is applied to the spins, consider the
application of the operations one by one according to
some order. Physically, this will be the temporal order in
which the operations were applied first by the environment
and then by the error correction process. To discuss
intermediate states, let n be the number of operations
applied so far, with any decoherence applied as required
during the process. If the nþ 1th operation to be applied is

WΦ on the spin shared by two plaquettes p and p0, there are
four distinct cases to consider.
The first case is that for which the state has no Φ on

either p or p0. TheWΦ will then simply create a Φ on both.
These will absorb any Λ anyons initially present on the
plaquettes. Since the decoherence ensures that any random-
ness in the Λ occupation is not due to a coherent super-
position, such fusion does not lead to any unwanted
coherence in the fusion space.
The second case is that for which the state after the first n

operations is such that p holds a Φ but p0 does not (or vice
versa). The result on p will depend on the internal state of
the two particles fused. A Φwill result, for example, if both
particles have the same internal state ϕ or ϕ̄. Since these
two internal states yield the same result, one might expect
that the probability for that result could depend on
interference effects between them. To show that this is
not the case, the state of the system can be expressed in the
basis of anyon occupancies as

1ffiffiffi
2

p ðjϕip ⊗ j1ip0 ⊗ jϕ̄irest − jϕ̄ip ⊗ j1ip0 ⊗ jϕirestÞ:
(B12)

Note that jϕip and jϕip here represent the state of the
plaquettes p and p0 holding quasiparticle ϕ and vacuum,
respectively. They do not represent the state of the four
spins around p, as was used earlier. Also, jϕ̄irest denotes the
state of all other plaquettes and the edges. We do not need
to know the exact details. The only important point is that
the fusion of all such quasiparticles will yield a Φ with an
opposite internal state from that on p, such that the two fuse
to vacuum. Because of this entanglement, the state of the
occupancy of p alone can be expressed (in the basis of
anyon occupancies) as

ρp ¼ 1

2
ðjϕiphϕj þ jϕ̄iphϕ̄jÞ:

Since this is a mixture of the two internal states and it has
no coherence, it is clear that the probabilities for outcomes
when applying WΦ will not be affected by interference
effects.
The third case is that both p and p0 hold a Φ, created by

WΦ operations on spins other than that shared by the two.
The Φ’s with which these were created in pairs reside in the
rest of the lattice and thus ensure that the rest of the lattice
knows the internal state of both. This entanglement again
ensures that the mixed state of the plaquettes p and p0 does
not have sufficient coherence to allow interference effects
when the WΦ is applied.
Because of the above behavior, an error model that

randomly creates Λ and Φ anyons by applying 1, WΛ, or
WΦ independently to each spin with respective probabilities
1 − pΦ − pΛ, pΛ, and pΦ gives the same probability
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distribution for measurement outcomes as one which
applies 1, WΛ, Wϕ, or Wϕ̄ with respective probabilities
1 − pΦ − pΛ, pΛ, pΦ=2, and pΦ=2. We now need to show
that this can be realized by the classical model used in
our study.
In the classical model of Sec. IV, we associate Λ anyons

with β ¼ 3 and Φ anyons with β ∈ f1; 2; 4; 5g. For the
quasiparticles discussed here, we split the latter into ϕ
quasiparticles for β ∈ f1; 4g and ϕ̄ quasiparticles for
β ∈ f2; 5g. The result of fusing two quasiparticles with
corresponding internal states βi and βj is βk ¼
βi þ βjmod 6. From this result, it is evident that the
classical model reproduces the fusion rules found above
for ϕ and ϕ̄.
Pairs of Λ anyons are created in the classical model using

the operator R3. This therefore plays the same role as WΛ.
TheWϕ operator in theDðS3Þ lattice model creates a ϕ on a
white plaquette and a ϕ̄ on the neighboring grey plaquette.
For the classical model, the same can be achieved by
applying the R1 or R4 operators. However, note that though
WΛWϕ ¼ Wϕ and thus the creation of a Λ pair on top of a
ϕ=ϕ̄ pair has no effect, the same is not true for the classical
operators. Instead, R3R1 ¼ R4 and R3R4 ¼ R1. This can be
rectified not by creating a ϕ=ϕ̄ pair using a definite choice
of either R1 or R4 but instead using a random choice. If the
probability of choosing each is equal, the permutation of
the two caused by the R3 has no effect. The Wϕ̄ operation
similarly corresponds to the random application of R2 or
R5. The operator WΦ then corresponds to the random
application of R1, R2, R4, or R5, all with equal probability.
This ensures that the fusion of Φ anyons with internal states
ϕ and ϕ̄ yields either 1 or Λ with equal probability, and that
two ϕ’s will fuse deterministically to a ϕ̄ and vice versa, as
required. The error model considered in Sec. V for the
classical model is therefore equivalent to that on the DðS3Þ
lattice model where 1,WΛ, orWΦ is applied independently
to each spin with respective probabilities 1 − pΦ − pΛ, pΛ,
and pΦ.
Also note that the decoding problem of the main text

assumes that the syndrome measurements correspond to the
projectors P1, PΛ, and PΦ. However, one could instead
replace the latter with Pϕ and Pϕ̄, giving more detailed
syndrome information. This case is not considered due to
the fact that this trick is specific to this model, and the aim
of this study is to consider general behavior as much as
possible. However, it is interesting to ask whether mea-
surements that allow such greater detail to be extracted may
be present for other non-Abelian models.

APPENDIX C: APPLICABILITY OF THE
DECODER TO THE FIBONACCI

ANYON MODEL

The Fibonacci model consists of a single (nontrivial)
anyon type, τ, with the fusion rule τ × τ ¼ 1þ τ. For a
decoding algorithm to be applicable to a syndrome that

consists of such anyons, it must have the following
characteristics.
(1) It must be able to deal with the possibility of a pair of

non-Abelian anyons fusing to a non-Abelian anyon
(since this can happen in the Fibonacci model).

(2) It does not need to distinguish between different
types of non-Abelian anyons in order to gain enough
information to decode (since the model has only
one type).

(3) It does not need to use information regarding
any Abelian anyons to decode (since the model
has none).

The Φ − Λ model has two nontrivial anyon types: a non-
Abelian anyon Φ and an Abelian anyon Λ. The most
important fusion rule is Φ × Φ ¼ 1þ Λþ Φ. From this
rule, we can see that a decoding algorithm applicable to
these anyons must also fulfill the first two requirements
above since two Φ anyons can fuse to a Φ and since this is
the only type of non-Abelian anyon. However, such a
decoder need not fulfill the third requirement. Instead, it
could use information concerning the presence of Λ anyons
to better decode the Φ’s. This possibility is due to the fact
that the creation of two Φ anyons on the same plaquette
will result in aΦ × Φ fusion, which can yield a Λ. Since Λ’s
can be created from the same errors that create Φ’s by this
secondary process, the Λ syndrome will be helpful in
correcting these errors.
Despite this possible advantage, the decoder we consider

does not use the Λ syndrome to help decode the Φ anyons.
Instead, it first runs a process that considers the Φ anyons
alone and then considers the Λ’s only when all Φ’s have
been removed. As such, the decoder does fulfill the third
requirement. It can therefore be applied to the case of
Fibonacci anyons without alteration.
Even so, the fact that the decoder admits a finite

threshold for the Φ − Λ anyons does not mean that it will
also do so for the Fibonacci model. The non-Abelian
anyons of these models have different behavior, especially
with regards to braiding. The effect of braiding for the Φ
anyons merely represents their permutation and has no
further effect on the fusion space. The braiding of τ anyons,
on the other hand, is universal for quantum computation.
However, this difference can be expected not to have too
much of an effect on the decoding.
To see why this is the case, consider the effect of the

braiding of non-Abelian anyons in general. If errors cause a
pair of anyons to braid, it will change the probabilities for
fusion results when those anyons are fused with others. It
does not change the probabilities for their fusion with each
other. It is therefore equivalent to the pair not braiding but
instead having other pairs of anyons (for which the fusion
product of this pair is the vacuum) coherently tunneled
between them.
The braiding of a pair of anyons that are separated by a

distance l will require OðlÞ errors to occur. For an error
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model such as the one considered in this work, this means
that the probability of such a braiding will decay as ðCpÞl
for some coefficient C < 1. The probability that errors will
tunnel anyons over the same distance decays similarly. So
these two processes not only have similar effects but also
occur with similar probability.
The fact that Φ anyons have trivial braiding should

therefore not have a significant effect on their error
correctability since they are subject to errors that have
the same effect as nontrivial braiding and that occur with a
similar probability. The fact that a finite threshold is found
for the Φ − Λ in this work therefore strongly suggests the
same for the Fibonacci anyons subject to a corresponding
error model.
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