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Abstract

This memoir is divided into two parts, devoted to two different but related
topics in (abstract) algebraic logic. In the first part we develop a hierarchy
in which propositional logics L are classified according to the definability
conditions enjoyed by the truth sets of the matrix semantics Mod∗L. More
precisely, we focus on conditions belonging to the proper conceptual frame-
work of the Leibniz hierarchy, in the sense that they can be characterized by
means of the order-theoretic behaviour of the Leibniz operator (restricted
to deductive filters). Thus, the hierarchy we present is an extension of the
standard Leibniz hierarchy. The starting point of the discussion is the obser-
vation that the methods of [83] can be applied to capture the fact that truth is
definable in Mod∗L by means of universally quantified equations leaving one
variable free. We study the logics that satisfy this condition and investigate
their relation with the Frege hierarchy. Subsequently we move our attention
to logics for which truth is implicitly definable in Mod∗L and show that the
injectivity of the Leibniz operator does not transfer in general from theories
to deductive filters over arbitrary algebras, answering the open question
[83, Problem 1]. Nevertheless, we show that injectivity transfers for logics
expressed in a countable language. Finally we consider an intermediate
condition on the truth sets in Mod∗L that corresponds to the order-reflection
of the Leibniz operator. We conclude the first part of this memoir by taking
a computational glimpse to the two hierarchies typical of abstract algebraic
logic. More precisely, we show that the problems of classifying the logic of a
given Hilbert calculus inside the Leibniz or Frege hierarchies is undecidable.
On the other hand, we show that the problem of classifying the logic of a
given finite set of finite matrices of finite type in most classes of the Leibniz
hierarchy is decidable.

In the second part of this memoir we present an algebraic and combinato-
rial description of right adjoint functors between generalized quasi-varieties,
inspired by [73]. This result is achieved by developing a correspondence
between the concept of adjunction and a new notion of translation between
relative equational consequences. More precisely, we introduce a notion
of translation that satisfy the following condition: given two generalized
quasi-varieties K and K′, every translation of the equational consequence
relative to K into the one relative to K′ corresponds to a right adjoint func-
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Abstract

tor from K′ to K and vice-versa. This correspondence between adjunctions
and translations provides a general explanation of the correspondence that
appears in some well-known translations between logics, e.g., Gödel’s trans-
lation of intuitionistic logic into the gobal modal logic S4 corresponds to
the functor that takes an interior algebra to the Heyting algebra of its open
elements and Kolmogorov’s translation of classical logic into intuitionistic
logic corresponds to the functor that takes a Heyting algebra to the Boolean
algebra of its regular elements. Then, we investigate the preservation of
some logico-algebraic properties, such as the (contextual) deduction theorem,
the inconsistency lemma and the fact of having a generalized disjunction,
in presence of an adjunction. We conclude this second part by showing
that every prevariety is categorically equivalent to the equivalent algebraic
semantics of an algebraizable logic.
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Resum

Aquesta memòria es divideix en dues parts, dedicades respectivament a
dos temes diferents i alhora relacionats de lògica algebraica abstracta. En la
primera part descrivim una jerarquia on es classifiquen les lògiques proposi-
cionals L segons les condicions de definibilitat que compleixen els conjunts
de veritat de la semàntica de matrius Mod∗L. Més concretament, ens centrem
en l’estudi de condicions de definibilitat que pertanyen al marc conceptual
propi de la jerarquia de Leibniz, en el sentit que es poden caracteritzar gràcies
al comportament de l’operador de Leibniz (restringit als filtres deductius).
Per tant, la jerarquia que presentem és una extensió de la jerarquia de Leibniz
estàndard. El nostre punt de partida és l’observació que les eines introduı̈des
en [83] es poden fer servir per capturar el fet que la veritat sigui definible
en Mod∗L a través d’equacions quantificades universalment deixant lliure
una variable. Estudiem la classe de les lògiques que compleixen aquesta
condició i les seves relacions amb la jerarquia de Frege. Després considerem
la famı́lia de les lògiques que tenen la veritat implı́citament definible en la
semàntica Mod∗L i provem que la injectivitat de l’operador de Leibniz no
es transfereix en general de les teories als filtres deductius sobre àlgebres
arbitràries, resolent un problema obert de [83, Problem 1]. No obstant això,
mostrem que la injectivitat de l’operador de Leibniz sı́ es transfereix per a
lògiques formulades en un llenguatge numerable. Finalment, considerem una
condició de definibilitat intermèdia sobre els conjunts de veritat de Mod∗L,
que correspon al fet que l’operador de Leibniz reflecteixi l’ordre. Concloem
la primera part d’aquesta memòria amb una aproximació computacional a les
dues jerarquies de la lògica algebraica abstracta. Concretament, provem que
els problemes de classificar la lògica d’un càlcul de Hilbert en la jeraquia de
Leibniz o en la de Frege són en general indecidibles. D’altra banda, mostrem
que el problema de classificar la lògica determinada per un conjunt finit de
matrius finites en un llenguatge finit en la majoria dels nivells de la jerarquia
de Leibniz és decidible.

En la segona part d’aquesta memòria presentem una descripció alge-
braica i combinatòria dels functors adjunts a la dreta entre quasi-varietats
generalitzades, inspirada pel treball [73]. Aquest resultat s’obté desenvolu-
pant una correspondència entre el concepte d’adjunció i el d’una nova noció
de traducció entre conseqüències equacionals relatives. Concretament, in-
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Resum

troduı̈m una noció de traducció que compleix la següent condició: donades
dues quasi-varietats generalitzades K i K′, cada traducció de la conseqüència
equacional relativa a K en la relativa a K′ correspon a un functor adjunt a
la dreta de K′ a K i viceversa. Aquesta correspondència entre adjuncions i
traduccions proporciona una explicació general de la correspondència que
apareix en algunes traduccions conegudes entre lògiques. Per exemple, la
traducció de Gödel de la lógica intuı̈cionista en la lògica modal global S4
correspon al functor que envia una àlgebra d’interior a l’àlgebra de Heyting
dels seus elements oberts; i la traducció de Kolmogorov de la lògica clàssica
en la lògica intuı̈cionista correspon al functor que envia una àlgebra de
Heyting a l’àlgebra de Boole dels seus elements regulars. A continuació
estudiem la preservació, en presència d’una adjunció, d’algunes propietats
lògico-algebraiques, tals com el teorema (contextual) de la deducció, el lema
d’inconsistència o el fet de tenir una disjunció generalitzada. Concloem aque-
sta segona part mostrant que cada prevarietat és categorialment equivalent a
la semàntica algebraica equivalent d’una lògica algebritzable.
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Introduction

The goal of this dissertation is to make a contribution to abstract algebraic
logic in two quite different directions, both related to the fundamental intu-
itions that give the field its unity and distinctive character. One of the basic
ideas that motivate the algebraic approach to the study of propositional logics
is that the deducibility relation of every logic can be mimicked by a semantic
consequence relation defined in terms of algebraic structures. Historically
the first algebraic completeness theorems had the following structure (here
described in modern terms). A propositional logic L was related to a class of
algebras K by means of a structural translation τ of formulas into equations.
Thus the completeness theorem stated that a deduction holds in the logic L
if and only if its translation holds in the equational consequence relative to
the class of algebras K, in symbols:

Γ `L ϕ⇐⇒ τ(Γ) �K τ(ϕ) (∗)

for every set of formulas Γ ∪ {ϕ}. This phenomenon is reflected for example
in the completeness theorems of superintuitionistic logics with respect to
varieties of Heyting algebras. In these cases τ is the translation that converts
every formula ϕ into the equation ϕ ≈ 1.

The situation expressed in (∗) can be generalized in at least two different
ways, which correspond to the two parts in which this memoir is structured.
First observe that condition (∗) means that the logic L is complete with respect
to the class of logical matrices whose algebraic reducts are the algebras in K
and whose designated elements are the solutions of the equations τ(x), i.e.,
with respect to matrices of the form

〈A, {a ∈ A : A � τ(a)}〉 with A ∈ K.

Keeping this in mind, we can rephrase (∗) in terms of a definability condition
on the set of designated elements of a matrix semantics. More precisely, (∗)
amounts to the fact that the logic L is complete with respect to the class of
logical matrices based on K, whose set of designated elements are equationally
definable by means of the equations τ(x). It is therefore natural to ask the
following question (addressed in Part I of this memoir):
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• Can we conceive completeness results with respect to classes of logical
matrices, whose designated elements enjoy some definability condition
(possibly) weaker than the equational one? And, in particular, can we
classify logics according to the definability conditions enjoyed by the
designated elements of their matrix semantics?

A different direction in which we can generalize the situation expressed
by (∗) comes from a slightly more abstract reading of the concept of complete-
ness. More precisely, the completeness phenomenon occurring in (∗) amounts
to the fact that the deducibility relation of the logic L can be interpreted into
the equational consequence relative to the class of algebras K by means of the
structural translation τ (of formulas in equations). We can abstract this idea
and say that a completeness theorem is in general any result that relates two
consequence relations ` and `′ between possibly different syntactic objects
(e.g., formulas, equations or whatever) through a suitable translation τ in
such a way that

A ` a⇐⇒ τ(A) `′ τ(a)

for every set A ∪ {a} of syntactic objects of `. It is therefore natural to ask
the following question (addressed in Part II of this memoir):

• Can we conceive a general notion of translation between equational con-
sequences relative to classes of algebras in (possibly) different languages?
And, in particular, can we do this in such a way that the equational con-
sequences relative to two classes of algebras K and K′ are related by a
completeness theorem exactly when there is some strong mathematical
relation between K and K′?

In the following we discuss how this memoir addresses the two questions
separately.

Part I: Truth Predicates in Matrix Semantics

The investigation of this part is developed in the framework of classical
abstract algebraic logic [27, 38, 40, 41], which is a theory that aims to provide
general tools for the algebraic study of arbitrary propositional logics. One
of the most striking achievements of this theory is the discovery of the
importance of the so-called Leibniz operator. This is the map ΩA : P(A) →
ConA, defined for every algebra A, that sends every subset F ⊆ A to the
largest congruence θ of A such that F is a union of blocks of θ. The importance
of the Leibniz operator is two-fold. On the one hand it allows to associate a
special class of matrices Mod∗L with every logic L, obtaining a completeness
result for L. Remarkably, in the best-known cases the class of matrices
Mod∗L coincides with the intended algebraic semantics of L, e.g., in the case
of superintuitionistic logics, Mod∗L is the class of matrices based on a variety
of Heyting algebras with the top element as designated element. In order to
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explain the other fundamental usage of the Leibniz operator, we take a very
short detour. It is well known that a logical matrix 〈A, F〉 can be regarded as
a first-order structure, namely, as an algebra equipped with the interpretation
of a predicate symbol P(x). The intuitive reading of logical matrices suggests
that the set of designated elements F represents truth inside the set of truth-
values A. Accordingly P(x) can be understood as a truth predicate and F as
a truth set. Keeping this in mind, it makes sense to refer to the truth sets
of a class of matrices. Now, the importance of the Leibniz operator comes
from the fact that its behaviour on the deductive filters of a given logic L
determines interesting facts about logical equivalence and about the truth sets
of the matrix semantics Mod∗L. This discovery led to the development of the
so-called Leibniz hierarchy, where logics are classified according to properties
related to the behaviour of the Leibniz operator. Keeping this in mind, we
can reformulate in a more precise fashion the objective of this part of the
dissertation:

• We develop a hierarchy in which propositional logics L are classified
according to the definability conditions enjoyed by the truth sets of Mod∗L.
In particular, we will do this in such a way that these conditions fit inside
the Leibniz hierarchy, i.e., they are characterized by the behaviour of the
Leibniz operator (when restricted to deductive filters).

The program described above has already been considered in the abstract
algebraic logic literature, especially in [22, 30, 56, 83]. Thus in this memoir
we will both propose some original contributions and organize the previous
work under a general perspective (credits will be given along the way).

The definability condition reflected in completeness theorems of the form
(∗) is the following. We say that truth is equationally definable in Mod∗L if
there is a set of equations τ(x) such that the truth sets of Mod∗L are exactly
the solutions of the equations τ. This idea can be generalized by consider-
ing equational completeness theorems in which we admit the presence of
universally quantified equations. More precisely, we say that truth is almost
universally definable if there is a set of equations τ(x,~y) such that the non-
empty truth sets in Mod∗L are exactly the sets of solutions of the equations
τ(x,~y) once we bound the parameters ~y by a universal quantifier. The reader
may wonder why we restrict this last definition to non-empty truth sets.
This is because we prove that, when applied to all the truth sets of Mod∗L,
the notion of equational and universal definability coincide (Corollary 2.10).
In particular, this implies that these two definability conditions are equiv-
alent for logics with theorems. However, theorem-less logics have always
a reduced model of the form 〈1, ∅〉 (where 1 is the trivial algebra), whose
truth set is never definable by equations (with or without parameters), and
hence the restriction was unavoidable. A family of logics L whose truth
sets are almost universally, but not equationally, definable in Mod∗L comes
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Introduction

from the consideration of lattice-based examples. Among them, we find the
conjunctive and disjunctive fragments of classical logic (Examples 2.15 and
2.18), a logic associated with normal Kleene algebras (Example 2.20) and the
logic of distributive bilattices (Example 2.21).

Logics whose truth sets are equationally and almost universally definable
can be characterized by means of the behaviour of the Leibniz operator. More
precisely, it turns out that truth is equationally (resp. almost universally)
definable in Mod∗L if and only if ΩA is completely order-reflecting over
(resp. non-empty) deductive filters for every algebra A. This condition on
the Leibniz operator can be equivalently restricted to the theories of the logic
L (Theorems 2.8 and 2.9). These results were first discovered by Raftery for
equational definability in [83]. Then we move our attention to the relation
between these logics and the Frege hierarchy, a hierarchy in which logics are
classified by means of general replacement properties [40]. We show that if a
Fregean logic L has a very weak kind of disjunction or conjuction, then truth
is almost universally definable in Mod∗L. We show that for logics whose truth
sets are almost universally definable, the Frege hierarchy reduces to three
distinct classes (Theorem 2.29). In particular, we describe a characterization
of equational and universal definability in terms of the behaviour of full
generalized models (Lemma 2.27 and Corollary 2.28). Some of these results
have an antecedent in [6], where only equational definability is taken into
account.

Until now we focused on logics whose truth sets can be defined by
means of some linguistic translation of formulas into equations. This idea
presents some analogy with the one of explicit definability in first-order logic,
in the sense that it requires that the definition of the truth sets is witnessed
by some linguistic construction, i.e., by sets of equations. Now, Beth’s
definability theorem states that in first-order logic explicit definability and
implicit definability coincide. Building on this analogy, it is natural to
consider some suitable version of the notion of implicit definability in the
framework of truth sets and to ask under which conditions these two kinds
of definability coincide. Accordingly, given a logic L, we say that truth is
implicitly definable in Mod∗L if the matrices in Mod∗L are determined by their
algebraic reduct. The analogy with Beth’s definability theorem culminates
in the discovery [30, 56, 58] that the notions of implicit and equational
definability coincide when L is a protoalgebraic logic (here obtained as
Corollary 3.4).

Now, implicit definability can be characterized in terms of the behaviour
of the Leibniz operator. More precisely, it has long been known that truth is
implicitly definable in Mod∗L if and only if the Leibniz operator is injective
over the deductive filters of every algebra (Lemma 3.2). This fact posed the
problem of whether the injectivity of the Leibniz operator transfers from
the theories, i.e., the filters over the term algebra with countably many free
generators, to filters over arbitrary algebras [83, Problem 1]. The feeling
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that this question could have a positive answer is motivated by the fact that
the main conditions on the Leibniz operator considered in the literature
transfer from theories to filters over arbitrary algebras. In fact Czelakowski
and Jansana provided in [30] a positive answer under the assumption of
protoalgebraicity (Theorem 3.6). We solve this problem by showing that
its answer depends on the cardinality of the language in which the logic is
formulated. More precisely, if the language is countable, then the injectivity of
the Leibniz operator transfers from theories to arbitrary filters (Theorem 3.8).
On the other hand, we show that it is possible to construct counterexamples
for logics expressed in uncountable languages (Example 3.9).

An intermediate definability condition that we take into account is the
following: we say that truth is small in Mod∗L when the truth sets in this
class are the smallest deductive filters of the logic L. We prove that this
condition is equivalent to the fact that the Leibniz operator is order-reflecting
over deductive filters of every algebra (Lemma 3.12). As it was the case
for injectivity, the order-reflection of the Leibniz operator transfers from
theories to filters over arbitrary algebras for logics expressed in a countable
language (Theorem 3.13), while there are counterexamples among logics
whose language is uncountable.

The work described until now originates an expansion of the Leibniz
hierarchy with additional, weaker classes of logics corresponding to the
definability conditions on the truth sets considered here. The expanded
hierarchy is depicted in Figure 1 on page xviii.

Finally we consider the computational aspects of the problem of clas-
sifying logics according to the way their truth sets can be defined. While
doing this, we adopt a wider perspective and consider, from a computa-
tional point of view, the problem of classifying logics within the Leibniz and
Frege hierarchies in general. We show that the problem of classifying the
logic determined by a finite consistent Hilbert calculus in the Leibniz (or
Frege) hierarchy is undecidable (Theorems 4.10 and 4.23). This is achieved
by reducing Hilbert’s tenth problem on Diophantine equations to the one of
classifying logics of Hilbert calculi in the Leibniz hierarchy, and by reducing
the problem of determining the equational theory in one variable of relation
algebras to the one of classifying logics of Hilbert cacluli in the Frege hierar-
chy. Remarkably, our proof shows that the problem of classifying logics in
the Frege hierarchy remains undecidable even if we restrict our attention to
Hilbert calculi that determine a finitary and finitely algebraizable logic. On
the other hand, the situation changes if we consider a semantic version of the
same question. We show that the problem of classifying the logic determined
by a finite set of finite matrices (of finite type) in the main classes of the
Leibniz hierarchy is decidable (Theorem 4.17), and that the same happens
for some classes in the Frege hierarchy (Theorem 4.24 and Corollary 4.25).
However, the classification problem of logics semantically presented is still
open in other cases (Problems 3 and 4).
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Introduction

Part II: Adjunctions as Translations

As we mentioned, the aim of this part of the dissertation is to provide a
notion of translation between equational consequences relative to classes K
and K′ of algebras possibly in different languages. Moreover, we aim to do
this in such a way that the existence of a translation of this kind corresponds
to the existence some strong mathematical relation between the classes K and
K′. It is evident that this project has to be made more precise, since it can lead
to completely different outcomes depending on the mathematical relation
between K and K′. In fact we restrict our attention to the case where K and
K′, viewed as categories, are related by an adjunction. There are at least
two reasons that motivate this choice. On the one hand, category theory
[2, 8, 69] provides a formalism to describe the relations between different
collections of mathematical objects and, within this formalism, adjunctions
are probably the most prominent example of this kind of relations. On the
other hand, it turns out that adjunctions can be associated with a certain kind
of translations, that encompass some well-known examples in the logical
literature. Thus the objective of this part of the dissertation can be made
more precise as follows:

• We aim to develop a notion of translation between equational consequences
relative to classes of algebras K and K′ in such a way that each of these
translations corresponds to an adjunction between K and K′ and vice-versa.

Our approach to this problem is inspired by the work of McKenzie
on category equivalences [73]. Roughly speaking, McKenzie discovered an
algebraic and combinatorial characterization of category equivalence between
prevarieties of algebras. In particular, he showed that if two prevarieties
K and K′ are categorically equivalent, then we can transform K into K′ by
applying two kinds of deformations to K. The first of these deformations is
the matrix power construction. Very roughly speaking, the matrix power with
exponent n of an algebra A is a new algebra A[n] with universe An and whose
basic m-ary operations are all n-sequences of (m× n)-ary term functions of
A, which are applied component-wise. Again roughly speaking, the other
basic deformation is defined as follows. Suppose that σ(x) is a unary term.
Then, given an algebra A, we let A(σ) be the algebra whose universe is
the range of the term-function σA : A→ A and whose n-ary operations are
the restrictions to σ[A] of the term functions of A of the form σt(x1, . . . , xn),
where t is an n-ary term. McKenzie’s work shows that the prevarieties
categorically equivalent to K are exactly the ones obtained deforming K by
means of the matrix power and σ(x) constructions, where σ is a unary term
satisfying some additional condition (Theorem 5.18). This algebraic approach
to the study of category equivalence has been reformulated in categorical
terms for example in [81, 82] and has an antecedent in [36].
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Building on McKenzie’s work, we show that every right adjoint functor
between generalized quasi-varieties (which are particular kinds of preva-
rieties) can be decomposed into a combination of two deformations that
generalize the ones devised by McKenzie in the special case of category
equivalence. These deformations are matrix powers with (possibly) infinite
exponent and the following generalization of the σ(x) construction. Given
an algebra A, we say that a set of equations in one variable θ is compatible
with a sublanguage L of the language of A if the set of solutions of θ in
A is closed under the restriction of the operations in L . In this case we let
A(θ, L ) be the algebra obtained by equipping the set of solutions of θ in A
with the restriction of the operations in L . We show (Theorem 5.29) that
every right adjoint functor between generalized quasi-varieties is, up to a
natural isomorphism, a composition of the matrix power construction and
the generalized σ(x) construction. Moreover, every functor obtained as a
composition of these deformations is a right adjoint.

Now observe that the two deformations above have a clear syntactic
flavour, as they are defined by means of term-functions, equations and sub-
languages. It turns out that we can exploit the syntactic nature of these
deformations to introduce a new notion of translation between relative equa-
tional consequences in a way that our decomposition of right adjoints can be
rephrased as follows. Given two generalized quasi-varieties K and K′, every
translation of the equational consequence relative to K into the one relative
to K′ corresponds to a right adjoint functor from K′ to K and vice-versa
(Theorems 5.23 and 5.27). In other words, right adjoints reverse the direction
of translations. It should be mentioned that the notion of translation that
we obtain in this way is not especially simple. Roughly speaking the idea is
that a translation of this kind is a pair 〈τ, Θ〉, where τ is a map that converts
every equation of K into κ-many equations of K′ (where κ is a fixed cardinal)
and Θ is a set of equations of K′ in κ-many variables. The translation is
required to satisfy the following condition:

Φ �K ε ≈ δ =⇒ τ(Φ) ∪
⋃
j<λ

Θ(~xj) �K′ τ(ε ≈ δ) (>)

for every set of equations Φ ∪ {ε ≈ δ} in λ variables. There are some
remarkable points about the condition expressed in (>). First observe that in
general we do not require that the right-to-left direction in (>) holds. In fact it
turns out that it holds exactly when the left adjoint functor in the adjunction
induced by the translation is faithful (Lemma 6.4). Second, observe that in
the antecedent of the right-hand side of (>) the equations Θ appear. This
represents an asymmetry with respect to the situation expressed in (∗), where
the context Θ is not present.

Nevertheless it should be remarked that the context Θ appears, although
not explicitly, in some of the best-known translations between propositional
logics, when reformulated (using algebraizability) as translations between
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the the equational consequences relative to the corresponding quasi-varieties.
For example, Gödel’s translation induces an interpretation of the equational
consequence relative to the variety of Heyting algebra into the one relative to
the variety of interior algebras, where the role of Θ is played by the equation
�x ≈ x. This is related to the fact that this translation is associated with the
functor that extracts the Heyting algebra of open elements, i.e., the solutions
of �x ≈ x, from an interior algebra (Examples 5.21 and 5.24). Similarly
Kolmogorov’s translation induces an interpretation of the equational conse-
quence relative to the variety of Boolean algebras into the one relative to the
variety of Heyting algebras, where the role of Θ is played by the equation
¬¬x ≈ x. Again, this corresponds to the fact that this translation is associated
with the functor that extracts the Boolean algebra of regular elements, i.e.,
the solutions of ¬¬x ≈ x, out of a Heyting algebra (Examples 5.22 and 5.24).

In the last chapter we apply the machinery, constructed to describe
the correspondence between adjunctions and translations, to develop some
applications to the preservation of logico-algebraic properties related in
some way to congruences. It is easy to see that every left adjoint functor
F : X → Y between generalized quasi-varieties induces a residuated map
γA : ConXA → ConYF (A) for every A ∈ X. Then we find sufficient and
necessary conditions under which the global map γ is a complete lattice
embedding (Theorem 6.5). In this spirit, we find sufficient and necessary
conditions under which γ preserves compact congruences and F preserves
finitely generated algebras (resp. Lemmas 6.9 and 6.15), and we apply them
to the study of the preservation of EDPRC and its generalization known
as ESRPC (resp. Theorems 6.11 and 6.17). Finally, we provide a logical
interpretation of these results. In particular, we study the preservation of
the (contextual) deduction theorem [20], of generalized disjunctions [27]
and of the inconsistency lemma [84] between algebraizable logics whose
equivalent algebraic semantics are related by an adjunction (Theorems 6.22,
6.21 and 6.23). Moreover, we show how the matrix power construction
can be applied to prove that every prevariety is categorically equivalent to
the equivalent algebraic semantics of an algebraizable logic expressed in
enough variables (Theorem 6.26). This contrasts with the well-known fact
that there are varieties that are not the equivalent algebraic semantics of
any algebraizable logic (e.g., all non-trivial varieties of lattices). The memoir
closes with a section (Section 6.5) of a somehow collateral interest in which
we relate our logical interpretation of adjunctions to the general theory of
equivalence between structural closure operators initiated in [16].

Conclusions

This memoir presents two contributions to the field of abstract algebraic logic.
On the one hand we study some definability conditions on the truth sets
of classes of matrices of the form Mod∗L. We characterize these conditions
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by means of the behaviour of the Leibniz operator and investigate their
interaction with the Frege hierarchy. Finally, we consider the problem of
classifying logics in the Leibniz and Frege hierarchies from a computational
point of view. On the other hand, we describe a correspondence that relate
adjunctions between generalized quasi-varieties and translations between
their relative equational consequences. Then we study the preservation of
logico-algebraic properties between algebraizable logics whose equivalent
algebraic semantics are related by an adjunction. These investigations are
both related to the fundamental idea, which is found everywhere in abstract
algebraic logic, of interpreting a consequence relation into another one.
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CHAPTER 1
Preliminaries

1.1 Sets and functions

For a general background on residuation theory we refer the reader to [48].
Consider two posets 〈A,6〉 and 〈B,6〉. A map f : A→ B is residuated if there
exists another map f+ : B→ A such that

f (a) 6 b⇐⇒ a 6 f+(b)

for every a ∈ A and b ∈ B. In this case f+ is unique and is called the residuum
of f . For example, consider an arbitrary function f : X → Y between two
sets X and Y. The map f can be lifted to the power-sets as f : P(X)→ P(Y)
setting

f (A) := { f (a) : a ∈ X}

for every A ⊆ X. It is easy to see that f is a residuated map between the
posets 〈P(X),⊆〉 and 〈P(Y),⊆〉. The residuum of f is the map f−1 : P(Y)→
P(X) defined as

f−1(B) := {a ∈ A : f (a) ∈ B}

for every B ⊆ Y. The map f−1 is the inverse image of f . Residuated maps
between complete lattices enjoy a very useful characterization. More precisely,
if A and B are complete lattices, then a map f : A→ B is residuated if and
only if it commutes with arbitrary joins.

We denote cardinal numbers by λ, κ, µ etc. Given two cardinals κ and λ,
we denote their product as cardinals by κ · λ and their cartesian product by
κ × λ. Keep this in mind, since sometimes it will be useful to distinguish
between the two operations. We denote the set of natural numbers by ω.

1



1. Preliminaries

1.2 Closure operators

A closure operator on a set A is a monotone function C : P(A)→ P(A) such
that X ⊆ C(X) = C

(
C(X)

)
for every X ∈ P(A). A closure system on A is a

family C ⊆ P(A) closed under arbitrary intersections and such that A ∈ C.
It is well known that the closed sets (fixed points) of a closure operator
on A form a closure system and that, given a closure system C, one can
construct a closure operator C by letting C(X) =

⋂{Y ∈ C |X ⊆ Y} for
every X ∈ P(A). These transformations are indeed inverse to one another.
Therefore definitions and results established for closure operators transfer
naturally to closure systems and vice-versa. Given a closure system C ⊆ P(A)
and F ∈ C, we let CF := {G ∈ C : F ⊆ G}. It is easy to prove that CF is still a
closure system on A.

A closure operator C : P(A)→ P(A) is finitary if for every X ∪ {a} ⊆ A,

a ∈ C(X) if and only if there is a finite Y ⊆ A such that a ∈ C(Y).

A closure operator is finitary if and only if the corresponding closure system
is inductive, i.e., it is closed under unions of upward directed non-empty
subfamilies. Let C ⊆ P(A) be a closure system on A. We say that an element
a ∈ A is a theorem of C if a ∈ ⋂ C. Accordingly, we say that C has theorems if⋂ C 6= ∅. If this is not the case, we say that C is purely inferential. There are at
least two other extreme cases of closure systems that deserve a special name:
C is inconsistent if C = {A} and almost inconsistent if C = {∅, A}. We say that
C is trivial if it is either inconsistent or almost inconsistent.

1.3 Logics and relative equational consequences

Given an algebraic language L and a set X, we denote by Fm(L , X) the
set of formulas over L built up with the variables in X, and by Fm(L , X)
the corresponding absolutely free algebra. We also denote by Eq(L , X) the
set of equations built up from X. Formally speaking, equations are pairs
of formulas, i.e., Eq(L , X) := Fm(L , X)× Fm(L , X). Moreover, End(L , X)
denotes the monoid of endomorphisms of Fm(L , X). When the language
L is clear from the context, we simply write Fm(X), Eq(X), Fm(X) and
End(X).∗ Since every cardinal κ is a set, sometimes we write Fm(L , κ) to
stress the cardinality of the set of variables. The same convention applies to
equations, term algebras and endomorphisms monoids.

While working with a fixed algebraic language L , we will denote by
Fm the set of formulas over L built up with denumerably many variables
Var denoted by x, y, z, etc., and by Fm the corresponding algebra. A logic L
is a closure operator CL : P(Fm) → P(Fm) which is structural in the sense

∗In particular, in Part I we will work with a fixed but arbitrary algebraic language, while
in Part II we will compare classes of algebras with different languages.
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1.4. Classes of algebras

that σCL(Γ) ⊆ CLσ(Γ) for every Γ ⊆ Fm and every endomorphism σ of Fm
(also called substitution). Given Γ ∪ {ϕ} ⊆ Fm we write Γ L̀ ϕ to denote
the fact that ϕ ∈ CL(Γ). Sometimes expressions of the form Γ `L ϕ will be
called informally deductions of L. In practice, we often define a logic L by
describing the relation `L. We denote the closure system associated with CL
by T hL. A set Γ ⊆ Fm is a theory of L if Γ ∈ T hL.

Given two logics L and L′, we will write L 6 L′ if CL(Γ) ⊆ CL′(Γ) for
every Γ ⊆ Fm; in this case we say that L′ is an extension of L. A logic L is a
conversative expansion of a logic L′ if the language of L includes the language
of L′ and for every set of formulas Γ ∪ {ϕ} in the language of L′, we have
Γ `L ϕ if and only if Γ `L′ ϕ.

Given a class of algebras K and Φ ∪ {ϕ ≈ ψ} ⊆ Eq(X), we define

Φ �K ϕ ≈ ψ⇐⇒ for every A ∈ K and every h : Fm(X)→ A
if hε = hδ for every ε ≈ δ ∈ Φ, then hα = hβ.

The relation �K is called the equational consequence relative to K. The map
CK : P(Eq(X))→ P(Eq(X)) defined by the rule

CK(Φ) := {ϕ ≈ ψ : Φ �K ϕ ≈ ψ}, for every Φ ⊆ Eq(X)

is a closure operator over Eq(X).

1.4 Classes of algebras

Our main references for universal algebra are [13, 24, 74]. We denote by I, H,
S, P, P

sd
and P

u
respectively the class operators of isomorphism, homomor-

phic images, subalgebras, direct products, (isomorphic copies of) subdirect
products and ultraproducts. We assume that product-style class operators
admit empty set of indexes. We denote algebras by bold capital letters A,
B, C, etc. (with universes A, B, C, etc.). Given a class of algebras K, we
denote its language by LK. A prevariety is a class of algebras axiomatized by
arbitrary generalized quasi-equations or, equivalently, a class closed under
I,S and P. A generalized quasi-variety is a class of algebras axiomatized by
generalized quasi-equations whose number of variables is bounded by some
infinite cardinal. These can be equivalently characterized [16] as the classes
of algebras closed under I,S,P and Uκ (for some infinite cardinal κ), where
for every class of algebras K:

Uκ(K) := {A : B ∈ K for every κ-generated subalgebra B 6 A}.

A quasi-variety is a class of algebras axiomatized by quasi-equations or, equiv-
alently, a class closed under I, S, P and P

u
. A variety is a class of algebras

axiomatized by equations or, equivalently, closed under H, S and P. Given a
class of algebras K, we will denote by GQκ(K) the models of the generalized

3



1. Preliminaries

quasi-equations in κ-many variables that hold in K and respectively by Q(K)
and V(K) the quasi-variety and the variety generated by K. It is well known
that

GQκ(K) = UκISP(K) Q(K) = ISPP
u
(K) V(K) = HSP(K).

It is worth to remark that both the existence and the non-existence of a pre-
variety that is not a generalized quasi-variety are consistent with Neumann-
Bernays-Gödel (NBG) class theory with the axiom of choice. In fact in NBG
the assumption that every prevariety is a generalized quasi-variety is equiv-
alent to the Vopěnka Principle, according to which every class of pair-wise
non-embeddable models of a first-order theory is a set [1] (see also [55,
Proposition 2.3.18]).

Given a class of algebras K and a set X 6= ∅, we denote by FmK(X)
the free algebra over K with free generators X. In general the free algebra
FmK(X) is constructed as a quotient of the term algebra Fm(X) and its
elements are congruence classes of formulas equivalent in K. Sometimes we
identify the universe of FmK(X) with a set of its representatives, i.e., with a
set of formulas in variables X. It is well known that FmK(X) ∈ ISP(K). Thus
prevarieties contain free algebras with arbitrary large sets of free generators.
Prevarieties contain also trivial algebras, which we denote generically by 1.

Given a class of algebras K and an algebra A, we say that a congruence θ
of A is a K-congruence if A/θ ∈ K, and denote the collection of K-congruences
by ConKA. In particular, we will denote by πθ : A → A/θ the canonical
projection on the quotient and by 0A and 1A the identity and total congruence
of A. If K is a prevariety, we have that ConKA forms a closure system when
ordered under the inclusion relation: this is due to the fact that prevarieties
are closed under the formation of subdirect products and contain trivial
algebras. Accordingly, we denote by CgA

K the closure operator of generation
of K-congruences. While speaking of congruence generation in the absolute
sense, we will simply write CgA. It is easy to see that for every class of
algebras K, the validity of generalized quasi-equations in K corresponds to
the validity of deductions in the equational consequence relative to K in the
sense that

K �
∧
i∈I

ϕi ≈ ψi → ε ≈ δ⇐⇒ {ϕi ≈ ψi : i ∈ I} �K ε ≈ δ.

This is reflected in the fact that if K is a prevariety, then the set of fixed points
of CK : : P(Eq(X))→ P(Eq(X)) coincides with ConKFm(X). Now let K be a
quasi-variety and A an arbitrary algebra. The lattice ConKA is algebraic and
its compact elements CompKA are the finitely generated K-congruences. In
particular, the closure operator CgA

K is finitary. An algebra A ∈ K is K-finitely
presentable if there is some n ∈ ω and some finitely generated K-congruence
θ of FmK(n) such that A is isomorphic to FmK(n)/θ.
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1.5. Logical congruences

A non-trivial algebra A is subdirectly irreducible if for every class of algebras
K, if A ∈ P

sd
(K), then A ∈ I(K). Equivalently, A is subdirectly irreducible

when the poset 〈ConA r {0A},⊆〉 has a minimum element (called the mono-
lith of A). Given a class of algebras K, we denote by Ksi the collection of its
subdirectly irreducible members. It is well known that if K is a variety, then
K = P

sd
(Ksi). A variety K is congruence distributive when ConA is a distribu-

tive lattice for every A ∈ K. Every variety of algebras with a lattice-reduct is
congruence distributive. Jónsson’s lemma states that if K is a class of algebras
that generates a congruence distributive variety, then V(K)si ⊆ HSP

u
(K).

When K is a finite set of finite algebras, this specializes to V(K)si ⊆ HS(K).

1.5 Logical congruences

From now on we will review well-known concepts and results of abstract
algebraic logic. For further informations we refer the reader to [18, 19, 27, 38,
40, 41, 85]. Given an algebra A and a set F ⊆ A, a congruence θ ∈ ConA is
compatible with F when

if a ∈ F and 〈a, b〉 ∈ θ, then b ∈ F

for every a, b ∈ A. There exists the largest congruence of A compatible with
F. We denote this congruence by ΩAF and refer to it as the Leibniz congruence
of F (over A). In the case of the term algebra Fm we will omit the superscript
in the Leibniz congruence.

Lemma 1.1. Let h : A→ B be an homomorphism and F ⊆ B.
1. h−1ΩBF ⊆ ΩAh−1[F].

2. If h is surjective, then ΩAh−1[F] = h−1ΩBF.

Given an algebra A, a closure system C on A and a closed set F ∈ C, the
Suzko congruence (relative to C) of F is

∼
ΩA
C F :=

⋂
{ΩAG : G ∈ C and F ⊆ G}.

In particular, we have that
∼
ΩA
C F ⊆ ΩAF. A useful property of the Suszko

congruence is the following:

if F ⊆ G, then
∼
ΩA
C F ⊆ ∼

ΩA
C G

for every F, G ∈ C. Given an algebra A and a closure system C on A, the
Tarski congruence of C (over A) is

∼
ΩAC :=

⋂
{ΩAF : F ∈ C}.

The Leibniz, Suszko and Tarski congruences can be characterized in terms of
the indiscernibility of elements with respect to filters and closure systems in
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1. Preliminaries

the following way. Given an algebra A, a function p : An → A is a polynomial
function if there are a natural number m, a term ϕ(x1, . . . , xn+m) and elements
b1, . . . , bm ∈ A such that

p(a1, . . . , an) = ϕA(a1, . . . , an, b1, . . . , bm)

for every a1, . . . , an ∈ A. Observe that the notation ϕ(x1, . . . , xn+m) means
just that the variables really occurring in ϕ are among, but not necessarily all,
{x1, . . . , xn+m}.

Lemma 1.2. Let A be an algebra, C ⊆ P(A) be a closure system, F ⊆ A and
a, b ∈ A.
1. 〈a, b〉 ∈ ΩAF ⇐⇒ (p(a) ∈ F if and only if p(b) ∈ F) for every unary polyno-

mial function p on A.

2. 〈a, b〉 ∈ ∼
Ω A
C F ⇐⇒ C(F ∪ {p(a)}) = C(F ∪ {p(b)}) for every unary polyno-

mial function p on A.

3. 〈a, b〉 ∈ ∼
ΩAC ⇐⇒ C(p(a)) = C(p(b)) for every unary polynomial function p

on A.

Given an algebra A, the Leibniz operator (relative to A) is the function
ΩA : P(A)→ ConA that associates ΩAF with a set F ⊆ A. Given a closure
system C over A, the Suszko operator (relative to A and C) is the map

∼
Ω A
C : C →

ConA that associates
∼
Ω A
C F with a set F ∈ C.

1.6 Matrix semantics

A pair 〈A, F〉 is a matrix when A is an algebra and F ⊆ A. A matrix 〈A, F〉
is trivial if A the trivial algebra and F = A. Every class of matrices M
determines a logic in the following way. Given Γ ∪ {ϕ} ⊆ Fm we let

Γ `M ϕ⇐⇒ for every 〈A, F〉 ∈ M and every homomorphism
h : Fm→ A, if h[Γ] ⊆ F, then h(ϕ) ∈ F.

A logic L is complete w.r.t. a class of matrices M if L coincides with the logic
determined by M.

Given a logic L and an algebra A, a set F ⊆ A is a deductive filter (or
simply a filter) of L over A when

if Γ L̀ ϕ, then for every homomorphism h : Fm→ A,
if h[Γ] ⊆ F, then h(ϕ) ∈ F

for every Γ ∪ {ϕ} ⊆ Fm. We denote by FiLA the set of deductive filters of
L over A, which turns out to be a closure system. Observe that the filters
of L over Fm coincide with the theories of L. A matrix 〈A, F〉 is a model
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of a logic L when F ∈ FiLA. The class of models of L is closed under the
natural extension to matrices of the operators I,S,P and P

sd
. The reduction of

a matrix 〈A, F〉 is 〈A, F〉∗ := 〈A/ΩAF, F/ΩAF〉. A matrix 〈A, F〉 is reduced
when ΩAF = 0A. A matrix and its reduction determine the same logic. The
Leibniz congruence allows to associate two special classes of models and a
special class of algebras with a logic L:

LMod∗L := I
{
〈Fm, Γ〉 : Γ ∈ T hL and ΩΓ = 0Fm

}
Mod∗L :=

{
〈A, F〉 : F ∈ FiLA and ΩAF = 0A

}
Alg∗L :=

{
A : there is F ∈ FiLA such that ΩAF = 0A

}
.

We will refer to LMod∗L and Mod∗L respectively as to the classes of
Lindenbaum-Tarski models and reduced models of L. It is well known that
L is complete w.r.t. both LMod∗L and Mod∗L.

When dealing with the closure system FiLA associated with a fixed
logic L, we shall write

∼
ΩA
LF instead of

∼
ΩA
FiLAF. It is often useful to restrict

the Leibniz and Suszko operators to FiLA. For example we will say that
the Leibniz (resp. Suszko) operator is injective over FiLA if the restriction
ΩA : FiLA → ConA (resp.

∼
ΩA
L : FiLA → ConA) is injective. The same

convention applies to order-theoretic properties such as monotonicity, order-
reflection, etc.

The Suszko-reduction of a model 〈A, F〉 of L is the matrix 〈A/
∼
ΩA
LF, F/

∼
ΩA
LF〉.

A matrix 〈A, F〉 is Suszko-reduced, when
∼
ΩA
LF = 0A. The Suszko congruence

allows to associate a class of models and a class of algebras with a logic L:

ModSuL :=
{
〈A, F〉 : F ∈ FiLA and

∼
ΩA
LF = 0A

}
AlgL :=

{
A : there is F ∈ FiLA such that

∼
ΩA
LF = 0A

}
.

ModSuL is the class of Suszko-reduced models of L and AlgL is the algebraic
counterpart of L. It turns out that ModSuL = P

sd
Mod∗L and AlgL = P

sd
Alg∗L.

Observe that L is complete w.r.t. ModSuL.

Lemma 1.3. If L is complete w.r.t. a class of matrices M, then AlgL is included
into the variety generated by the algebraic reducts of M.

A finite set of finite matrices of finite type is called strongly finite. A logic is
strongly finite if it is complete w.r.t. a strongly finite set of matrices.† Given a
class of matrices M and a set X, we denote by FmM(X) the free algebra with
free generators X over the variety generated by the algebraic reducts of M.

†Observe that the finiteness of the type is not required in the usual definition of a strongly
finite logic [96].
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1.7 G-matrix semantics

A pair 〈A, C〉 is a g-matrix when A is an algebra and C is a closure system
over A. Every logic L can be seen as the g-matrix 〈Fm, T hL〉. Given two
g-matrices 〈A, C〉 and 〈B,D〉, a strict homomorphism h : 〈A, C〉 → 〈B,D〉 is an
homomorphism h : A→ B such that h−1D = C.

Lemma 1.4. Let 〈A, C〉 and 〈B,D〉 be g-matrices and h : A → B a surjective
homomorphism. h : 〈A, C〉 → 〈B,D〉 is strict if and only if the extended function
h : P(A)→ P(B) restricts to an order isomorphism between C and D (both ordered
under set-theoretical inclusion) and its inverse is the residual function h−1.

Let M be a class of g-matrices. The logic determined by M is the logic
determined by the class of matrices

{〈A, F〉 : F ∈ C for some 〈A, C〉 ∈ M}.

A logic L is complete w.r.t. a class of g-matrices M, when L coincides with
the logic determined by M. A g-matrix 〈A, C〉 is a g-model of a logic L if
C ⊆ FiLA. The reduction of a g-matrix 〈A, C〉 is the g-matrix 〈A, C〉∗ :=
〈A/

∼
ΩAC, C/

∼
ΩAC〉. Given a logic L, we will denote by

∼
ΩL the Tarski

congruence associated with the g-matrix 〈Fm, T hL〉. The congruence
∼
ΩL is

fully invariant. Given a logic L, we have that

AlgL = {A : there is a g-model 〈A, C〉 of L such that
∼
ΩAC = 0A}.

1.8 The Leibniz hierarchy

The study of the Leibniz hierarchy is one of the main topics of abstract
algebraic logic. Since the reader is expected to have some working knowledge
of the topic, we will not recall here all the relevant standard definitions and
results (that can be found for example in [27]). In particular, we will state
explicitly only the results that will be used later on. As a consequence, some
of the most famous theorems of the general theory are omitted.

A logic L is protoalgebraic if there is a set of formulas ρ(x, y,~z) in two
variables x and y (possibly) with parameters ~z such that for every algebra A,
every F ∈ FiLA and every a, b ∈ A

〈a, b〉 ∈ ΩAF ⇐⇒ ρA(a, b,~c) ⊆ F for every ~c ∈ A. (1.1)

In this case ρ(x, y,~z) is a set of congruence formulas with parameters for L.
Analogously, a logic is called (finitely) equivalential if there is a (finite) set
of formulas ρ(x, y) in two variables and without parameters that satisfies
(1.1). In this case ρ(x, y) is called a set of congruence formulas for L. Clearly
equivalential logics are protoalgebraic, but the converse is not true in general.
Protoalgebraic and equivalential logics can be characterized syntactically. Let
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1.8. The Leibniz hierarchy

us explain briefly how. A set of formulas in two variables ρ(x, y) is a set of
protoimplication formulas for a logic L if the following conditions hold:

∅ `L ρ(x, x) (R)
x, ρ(x, y) `L y. (MP)

Then it is possible to show that the existence of a set of protoimplication
formulas characterizes protoalgebraic logics.

Theorem 1.5.

1. L is protoalgebraic⇐⇒ it has a set of protoimplication formulas.

2. L is equivalential⇐⇒ it has a set of protoimplication formulas ρ(x, y) such that⋃
i6n

ρ(xi, yi) `Lρ(λ(x1 . . . xn), λ(y1 . . . yn)) (Rep)

for every n-ary function symbol λ.

It is natural to ask how to construct a set of congruence formulas with
parameters from a given set of protoimplication formulas. The next lemma
provides the answer.

Lemma 1.6. If ρ(x, y) is a set of protoimplication formulas for L, then

µ(x, y,~z) := {α(ϕ(x,~z), ϕ(y,~z)) : α(x, y) ∈ ρ(x, y) and ϕ(x,~z) ∈ Fm}

is a set of congruence formulas with parameters for L.

Given a set of formulas ∆(x, y,~z) in two variables x and y and parameters ~z,
we define

∆〈x, y〉 :=
⋃
{∆(x, y,~δ) : ~δ ∈ Fm}.

Lemma 1.7. Let ∆(x, y,~z) and ∆′(x, y,~z) be sets of formulas and L a logic. If
∆(x, y,~z) is a set of congruence formulas with parameters for L, then also ∆′(x, y,~z)
is so if and only if ∆〈x, y〉 a`L ∆′〈x, y〉.

Protoalgebraic logics can be characterized by means of the behaviour of
the Leibniz and Suszko operators over deductive filters.

Theorem 1.8. The following conditions are equivalent:
(i) L is protoalgebraic.

(ii) ΩA is monotone over FiLA for every algebra A.

(iii) Ω is monotone over T hL.

(iv)
∼
Ω A
LF = ΩAF for every F ∈ FiLA and every algebra A.

In this case Mod∗L = ModSuL.
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1. Preliminaries

Now we move our attention to the theory of algebrizable logics. A
structural transformer τ : P(Fm)→ P(Eq) (from formulas into equations) is
a residuated map that commutes with substitutions. It is easy to see that a
structural transformer can be identified with a set of equations τ(x) in just
one variable x by requiring that

τ(Γ) :=
⋃
{τ(γ) : γ ∈ Γ}

for every Γ ⊆ Fm. Structural transformers ρ : P(Eq)→ P(Fm) (from equa-
tions into formulas) are defined analogously and can be identified with sets
of formulas ρ(x, y) in two variables x and y. A logic L is algebraizable with
equivalent algebraic semantics the generalized quasi-variety K (axiomatized
by generalized quasi-equations in countably many variables) if there are
structural transformers τ : P(Eq) ←→ P(Eq) : ρ for which the following
conditions hold:
A1. Γ `L ϕ if and only if τΓ �K τϕ;

A2. x ≈ y =||=K τρ (x ≈ y)
for every Γ ∪ {ϕ} ⊆ Fm. Condition A2 is usually referred to as stating that
τ(x) and ρ(x, y) are mutually inverse (modulo K). Algebraizable logics enjoy
a syntactic characterization:

Theorem 1.9. A logic L is algebraizable if and only if there are a set of equations
τ(x) and a set of formulas ρ(x, y) such that:

∅ `Lρ(x, x) (R)
x, ρ(x, y) `Ly (MP)⋃

i6n

ρ(xi, yi) `Lρ(λx1 . . . xn, λy1 . . . yn) (Rep)

x a`Lρτ(x) (A3)

for every n-ary function symbol λ.

In particular, this implies that every algebraizable logic has a set of congru-
ence formulas ρ(x, y) and, therefore, is equivalential.

There are some prominent strengthenings and weakenings of the con-
cept of algebraizability. A logic L is finitely algebraizable if it is algebraizable
through some finite structural transformer ρ(x, y). A logic L is weakly alge-
braizable if it is protoalgebraic and truth is equationally definable in Mod∗L.‡

The last family of logics that we consider embraces many of the best-
known examples, such as superintuitionistic logics. A logic L is assertional if

‡The reader may have noticed that we have not explained yet what does it mean that
truth is equationally definable in Mod∗L. Since this will not cause any confusion, we chose to
postpone this explanation to Definition 2.2.
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1.9. The Frege hierarchy

there is a class K of algebras with a constant term 1 such that L is complete
with respect to the class of matrices

{〈A, {1A}〉 : A ∈ K}.

Assertionality can be strengthened as follows. A logic L is regularly (resp.
weakly) algebraizable if it is assertional and (resp. weakly) algebraizable. A
logic L is finitely regularly algebraizable if it is regularly and finitely algebraiz-
able. In order to characterize assertional logics, we need to introduce some
concepts. Let M be a class of matrices. M is almost unital if F is either empty
or a singleton for every 〈A, F〉 ∈ M. M is unital if F is a singleton for every
〈A, F〉 ∈ M.

Theorem 1.10.
1. If L is determined by an almost unital class of matrices M, then Mod∗L is also

almost unital.

2. L is assertional if and only if Mod∗L is unital.

Lemma 1.11. Let L be an algebraizable logic. L is regularly algebraizable if and
only if

x, y `L ρ(x, y) (G)

for some (or, equivalently, every) of its sets of congruence formulas ρ(x, y).

The classes of logics considered so far form the Leibniz hierarchy depicted
in Figure 1.1 (where arrows denote the inclusion relation).§

1.9 The Frege hierarchy

The study of the Frege hierarchy is another pillar of abstract algebraic logic.
Again, we don’t pursue here a systematic exposition of the topic (that can be
found for example in [40]) and state only the results that will be used later
on. The central concepts of the Frege hierarchy are built on the notion of a
particular kind of g-models. A g-matrix 〈A, C〉 is a full g-model of a logic L if
C/

∼
ΩAC = FiL(A/

∼
ΩAC). A useful characterization of full g-models is the

following one:

Lemma 1.12. Let 〈A, C〉 be a g-matrix, L a logic and A an algebra. 〈A, C〉 is a full
g-model of L if and only if C = {F ∈ FiLA :

∼
ΩAC ⊆ ΩAF}.

Corollary 1.13. If L is purely inferential, then ∅ ∈ C for every full g-model 〈A, C〉
of L.

§Looking at Figure 1.1, the reader may notice that the class of truth-equational logic has
not been defined yet. We chose to postpone its discussion, but the interested reader may
consult the footnote at pag. 20.
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Figure 1.1: The Leibniz hierarchy

The Frege relation of a closure system C on A is the following relation:

ΛC :=
{
〈a , b〉 ∈ A× A : C{a} = C{b}

}
.

This construction applies to logics: we write ΛL or a`L for the Frege relation
of T hL. If A is the universe of an algebra A, there is a strong connection
between the Frege relation and the Tarski congruence of C, namely that

∼
ΩAC

is the largest congruence of A below ΛC.
We say that a g-matrix 〈A, C〉 has the (PCONG), i.e., the property of

congruence, if the relation ΛC is a congruence on A. Then 〈A, C〉 has the
(SPCONG), i.e., the strong property of congruence, if 〈A, CF〉 has the (PCONG)
for every F ∈ C. This allows us to classify logics according to the sort of
replacement properties they satisfy. Let L be a logic, then:

1. L is selfextensional when 〈Fm, T hL〉 has the (PCONG).

2. L is Fregean when 〈Fm, T hL〉 has the (SPCONG).

3. L is fully selfextensional when all its full g-models have the (PCONG).

4. L is fully Fregean when all its full g-models have the (SPCONG).

These classes of logics form the so-called Frege hierarchy, depicted in Figure
1.2.

Lemma 1.14. If L is selfextensional and ϕ a`L ψ, then AlgL � ϕ ≈ ψ.
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Figure 1.2: The Frege hierarchy

1.10 Adjoint functors

For a systematic treatment of category theory we refer the reader to [2, 8, 69].
In particular, we assume that the reader is familiar with the basic notions of
category, functor, natural transformation, limit and colimit. In fact the usage
of category theory in this dissertation is very limited and will be centred
on the notion of adjoint functors. For this reason we chose to recall some
basic facts and definitions related to adjunctions. To this end, we will limit
our discussion to locally small categories, i.e., categories whose hom-sets are
ordinary sets.

An adjunction between two categories X and Y is a tuple 〈F ,G, ε, η〉 where
F : X→ Y and G : Y → X are functors and η : 1X → GF and ε : FG → 1Y are
natural transformations such that

1F (A) = εF (A) ◦ F (ηA) and 1G(B) = G(εB) ◦ ηG(B)

for every A ∈ X and B ∈ Y. In this case we say that F is left adjoint to G
and that G is right adjoint to F , in symbols F a G. Moreover, η and ε are
respectively the unit and counit of the adjunction. We say that a functor is
right adjoint (resp left adjoint) if it is right (resp. left) adjoint to some functor.
It is worth to remark that if a functor has two right (left) adjoints, they are
naturally isomorphic. Right adjoint functors preserve limits and left adjoint
functors preserve colimits. A category equivalence between two categories X
and Y is an adjunction 〈F ,G, ε, η〉 where ε and η are natural isomorphisms.
In this case the functors F and G preserve all categorical constructions. We
say that two categories are categorically equivalent when they are related by a
category equivalence.

A hom-set adjunction between two categories X and Y is a triple 〈F ,G, µ〉
where F : X→ Y and G : Y → X are functors and µ is a natural isomorphism
between the functors:

homY(F (·), ·) : Xop × Y → Set and homX(·,G(·)) : Xop × Y → Set.
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1. Preliminaries

Here homY(F (·), ·) is the functor that takes a pair 〈A, B〉, where A ∈ X
and B ∈ Y, to the set of arrows homY(F (A), B) and that takes a pair
〈 f , g〉 : 〈A1, B1〉 → 〈A2, B2〉, where f : A2 → A1 and g : B1 → B2 are arrows
in X and Y respectively, to the set-theoretic function

g ◦ (·) ◦ F ( f ) : homY(F (A1), B1)→ homY(F (A2), B2).

The functor homX(·,G(·)) is defined in a similar fashion. When 〈F ,G, µ〉 is a
hom-set adjunction as above, we say that F is left adjoint to G and that G is
right adjoint to F , in symbols F a G.

Adjunctions and hom-set adjunctions are two sides of the same coin. To
explain why, consider an adjunction 〈F ,G, ε, η〉 between X and Y with F a G.
Then for every 〈A, B〉 ∈ Xop × Y we let

γ〈A,B〉 : homY(F (A), B)→ homX(A,G(B))

be the map that sends an arrow f to G( f ) ◦ ηA. It turns out that the global
map

γ : homY(F (·), ·)→ homX(·,G(·))

is a natural isomorphism. Thus the triple 〈F ,G, γ〉 is a hom-set adjunction
between X and Y with F a G. Vice-versa consider a hom-set adjunction
〈F ,G, γ〉 between X and Y with F a G. For every A ∈ X and B ∈ Y we define
ηA := γ〈A,F (A)〉(1F (A)) and εB := γ−1

〈G(B),B〉(1G(B)). It turns out that the global
maps η : 1X → GF and ε : FG → 1Y are natural transformations and that
〈F ,G, ε, η〉 is an adjunction with F a G. Keeping this in mind we can speak
of the hom-set adjunction associated with an adjunction and vice-versa.
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Part I

Truth predicates in matrix
semantics





CHAPTER 2
Equational definability

In the late 80’s the theory of algebraizable logics was introduced by Blok
and Pigozzi [19] as a general mathematical framework to express the relation
between a propositional logic L and its natural algebra-based semantics K,
called the equivalent algebraic semantics of L. Its key point is the use of
two structural transformers τ : P(Fm) ←→ P(Eq) : ρ of sets formulas into
sets of equations and vice-versa to establish a deductive equivalence between
the consequence of L and the equational consequence relative to K. Blok
and Pigozzi considered that also one half of the relation between L and K
(induced by τ and ρ) was interesting on its own. More precisely, they say
that a logic L has an algebraic semantics if there is a class of algebras K and
a structural transformer τ : P(Fm)→ P(Eq) of sets of formulas into sets of
equations that allows to interpret L into the equational consequence relative
to K in the sense of (A1) on page 10. Of course, the main difference between
this and the notion of algebraizability is that in this case we do not require
τ to be invertible in the sense of (A2) on page 10, with respect to another
structural transformer ρ.

The study of the notion of algebraic semantics was further developed by
Blok and Rebagliato in [22]. Among other results, they proved that every logic
that is complete with respect to a class of matrices with an idempotent basic
n-ary operation has an algebraic semantics [22, Theorem 3.6]. In particular,
every logic that is defined by means of a class of matrices with a semilattice
reduct has an algebraic semantics. Moreover, it turned out that the same
logic may have different algebraic semantics, which, in addition, generate
different prevarieties. This happens already in the classical case, since by
Glivenko’s theorem the varieties of Boolean and of Heyting algebras are both
algebraic semantics for classical propositional logic through the structural
transformer τ(x) := {¬¬x ≈ 1}. These facts inspire the feeling that it is
unlikely to discover a general method of highlighting an algebraic semantics
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2. Equational definability

for a given logic among the ones that it may have, and that the notion of
an algebraic semantics does not fit naturally inside the study of the Leibniz
hierarchy in the same sense that the other classes do.

Nevertheless, building on the works of Hermann [57, 58] and Jansana
and Czelakowski [30], Raftery characterized truth-equational logics, i.e., log-
ics L for which there is a structural transformer τ : P(Fm) → P(Eq) that
defines the truth sets of Mod∗L [83]. In this case both Alg∗L and AlgL are
algebraic semantics for L through the structural transformer τ(x). Raftery’s
characterization (Theorems 2.9 and 2.13) is made in terms of concepts typ-
ical of the Leibniz hierarchy and can therefore be viewed as providing the
best approximation to the notion of algebraic semantics that fits within the
framework of classical abstract algebraic logic.

Both the concept of an algebraic semantics and that of a truth-equational
logic rely on the idea of translating formulas into equations in a way that
yields an equational completeness theorem. In this chapter we generalize
this idea by considering equational completeness theorems in which we
admit the presence of universally quantified equations. When this kind of
completeness theorem holds w.r.t. the class Mod∗L we say that the truth
sets of L are universally definable. The theory of logics whose truth sets are
universally definable retains several features of the original framework of
truth-equationality. In particular, these logics can be characterized by means
of the behaviour of the Leibniz operator (Theorem 2.8). Then we motivate
the study of this new class with some concrete examples, mainly related to
the variety of lattices (e.g., Lemma 2.16 and Theorem 2.17). We conclude
by investigating the relations that hold between logics whose truth sets are
universally definable and the Frege hierarchy (Theorem 2.29).

2.1 Definability with parameters

Before beginning our trip through the study of truth predicates, let us spend
a few words on some terminological convention, which will considerably
simplify the formulation of the main results. We say that the Leibniz operator
ΩA : P(A) → ConA enjoys a certain set- or order-theoretic property over
FiLA, if its restriction to FiLA enjoys it. Moreover, we say that ΩA almost
enjoys that property over FiLA if its restriction to FiLA r {∅} enjoys it. For
example we will say that ΩA is almost injective over FiLA if ΩA : FiLA r
{∅} → ConA is injective. The reader may wonder why do we care so much
about the empty filter. This is because we will be concerned with several
examples of purely inferential logics, i.e., logics without theorems and it is easy
to prove that ∅ ∈ FiLA if and only if L is purely inferential. Therefore it will
be often the case that the collection of deductive filters of our logics contains
the empty-set, which represents a limit case and shall be eliminated in the
formulation of the main results (that would be false otherwise). An analogous
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expedient will apply to matrices as follows. We say that a matrix 〈A, F〉 is
almost trivial if F = ∅. Observe that the unique almost trivial reduced matrix
is 〈1, ∅〉. A class of matrices M almost enjoys a certain property, if every
non-almost trivial member of M enjoys it.

Definition 2.1. A universal translation is a set τ(x,~y) ⊆ Eq of equations in
a distinguished variable x with parameters ~y. An equational translation is a
universal translation without parameters.

Universal and equational translations witness the definability of truth
sets in classes of matrices by bounding parameters (if any) by an universal
quantifier and considering the solutions of the resulting universally quantified
equations. This motivates the name for the two kind of translations, since only
in the presence of parameters the universal quantification plays a meaningful
role in the determination of the corresponding solution set. More precisely,
given an universal translation τ(x,~y) and an algebra A, we let

SlA(τ) := {a ∈ A : A � τ(a,~c) for every ~c ∈ A}. (2.1)

When τ(x,~y) = {ε ≈ δ}, we shall simply write SlA(ε ≈ δ) instead of
SlA({ε ≈ δ}). Observe that if τ(x,~y) = τ(x) is an equational translation,
then (2.1) simplifies to the following:

SlA(τ) = {a ∈ A : A � τ(a)}.

Definition 2.2. A universal (resp. equational) translation τ defines truth in M,
if SlA(τ) = F for every 〈A, F〉 ∈ M. Truth is universally (resp. equationally)
definable in M if there is a universal (resp. equational) translation that defines
truth in M.

Example 2.3 (Lattices). Let A be a lattice with a maximum element a. Then
consider the matrix 〈A, {a}〉. For every b ∈ A we have that

b = a ⇐⇒ c 6 b for every c ∈ A
⇐⇒ c ∧ b = c for every c ∈ A
⇐⇒ A � τ(b, c) for every c ∈ A

where τ is the universal translation {x ∧ y ≈ y}. This shows that τ defines
truth in 〈A, {a}〉. On the other hand if A is non-trivial, there is no equational
translation that defines truth in 〈A, {a}〉. This is due to the fact that (up to
equivalence) the unique lattice equation in variable x is x ≈ x. The situation
changes if we add a constant 1 to the type of A. In particular, let A+ be
the expansion of A where 1 is interpreted as a. Then truth is equationally
definable in 〈A+, {a}〉 by the equational translation x ≈ 1. �
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Observe that when truth is almost universally definable in M, the almost
non-trivial matrices in M are determined by their algebraic reduct. More
precisely, if 〈A, F〉, 〈A, G〉 ∈ M are almost non-trivial, then F = G. This obser-
vation will be used in several proofs. It is clear that if truth is equationally
definable in M, then it is universally definable too.

We will be interested in logics L for which truth is universally or equa-
tionally definable in Mod∗L. For this reason it will be convenient to introduce
some terminological convention. We say that the truth sets of a logic L are
universally (resp. equationally) definable, as an abbreviation for the fact that
truth is universally (resp. equationally) definable in Mod∗L. In the case of
equational definability, logics that satisfy this property have been studied in
depth by Raftery [83].∗

Formally speaking an equation equation ε ≈ δ is just a pair 〈ε, δ〉. Thus,
given an algebra A and a tuple ~a ∈ A, the expression εA(~a) ≈ δA(~a) will
denote the pair 〈εA(~a), δA(~a)〉 ∈ A× A. Keeping this in mind, we have the
following:

Lemma 2.4. Let τ(x,~y) be a universal translation and 〈A, F〉 a non-almost trivial
matrix. τ(x,~y) defines truth in 〈A, F〉∗ if and only if for every a ∈ A,

a ∈ F ⇐⇒ τA(a,~c) ⊆ ΩAF for every~c ∈ A.

Proof. Apply the fact that ΩAF is compatible with F. �

The main goal of this section will be to characterize whose truth sets are
almost universally definable in terms of the behaviour of the Leibniz operator
over deductive filters. The first step in this direction consists in the following
transfer result.

Lemma 2.5. A universal translation almost defines truth in Mod∗L if and only if
it almost defines truth in LMod∗L.

Proof. It will be enough to check the “if” part. Let τ be a universal translation
which almost defines truth in LMod∗L. We want to show that τ almost
defines truth in Mod∗L too. By Lemma 2.4 this amounts to proving that for
every algebra A, F ∈ FiLA r {∅} and a ∈ A:

a ∈ F ⇐⇒ τA(a,~c) ⊆ ΩAF for every ~c ∈ A. (2.2)

First recall that LMod∗L is (up to isomorphism) the class of countably gener-
ated reduced models of L. Together with Lemma 2.4, this implies that (2.2)
holds in case A is countably generated.

∗Raftery calls truth-equational the logics L for which truth is equationally definable in
Mod∗L. Here we prefer not to give them any particular name, in order to obtain a more
uniform naming scheme when dealing with different kinds of definability conditions.
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Then consider the case where A is not countably generated. We begin
by proving the “if” part of (2.2). Let a ∈ A and F ∈ FiLA r {∅} be
such that τA(a,~c) ⊆ ΩAF for every ~c ∈ A. Then choose any b ∈ F and
consider the subalgebra of B of A generated by {a, b}. Let G := F ∩ B.
Observe that G ∈ FiLB r {∅}, since b ∈ G. Moreover, we have τB(a,~c) ⊆
ΩAF ∩ (B× B) ⊆ ΩBG for every ~c ∈ B. Since B is countably generated, we
conclude that a ∈ G ⊆ F.

Now we prove the “only if” part of (2.2). Suppose that a ∈ F. Then
consider ε ≈ δ ∈ τ and ~c ∈ A. Let also p(x) : A→ A be a unary polynomial
function. By definition there is an (n + 1)-ary term ϕ and a sequence ~e of n
elements of A such that ϕA(b,~e) = p(b) for every b ∈ A. We will prove that

p(εA(a,~c)) ∈ F ⇐⇒ p(δA(a,~c)) ∈ F. (2.3)

First suppose that p(εA(a,~c)) ∈ F. Then consider the subalgebra B of A
generated by {a, e1, . . . , en, c1, . . . , ck}, where c1, . . . ck are the elements of ~c
corresponding to the variables in ~y occurring in ε and δ. Then let G := F ∩ B.
We know that G ∈ FiLB r {∅}, because a ∈ G. Since B is countably
generated and a ∈ G, we have that

〈εB(a, c1, . . . , ck), δB(a, c1, . . . , ck)〉 ∈ ΩBG.

Since p(εB(a,~c)) ∈ G, by compatibility we obtain that p(δB(a,~c)) ∈ G ⊆ F.
This establishes condition (2.3). By point 1 of Lemma 1.2, we conclude that
〈εA(a,~c), δA(a,~c)〉 ∈ ΩAF. �

One may wonder why in the above lemma we were interested in logics L
for which truth is almost universally definable, and not simply universally
definable. This is because logics L for which truth is universally definable
in Mod∗L coincide with logics L for which truth is equationally definable in
Mod∗L (Corollary 2.10).

The following technical result is stated without a detailed proof in [28,
Proposition 1.5(8)] and will be needed in the sequel.

Lemma 2.6 (Czelakowski). σ
∼
ΩLCL{x} ⊆

∼
ΩLCL{σx} for every substitution σ.

Proof. Consider a pair 〈ϕ, ψ〉 ∈ ∼
ΩLCL{x}. We have to prove that 〈σϕ, σψ〉 ∈∼

ΩLCL{σx}. By point 2 of Lemma 1.2 it will be enough to check that

γ(σ(ϕ),~z), σx a`L σx, γ(σ(ψ),~z), for every γ(x,~z) ∈ Fm.

To this end, consider γ(x,~z) ∈ Fm and a new substitution σ such that:
1. σ and σ′ coincide on the variables actually occurring in ϕ and ψ.

2. For every variable v 6= x actually occurring in γ, there is a variable u such
that σ′(u) = v.
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Now, consider the formula δ obtained by replacing in γ each variable v 6= x
by the corresponding u. Applying point 2 of Lemma 1.2 to the fact that
〈ϕ, ψ〉 ∈ ∼

ΩLCL{x}, we obtain that

x, δ(ϕ,~u) a`L δ(ψ,~u), x.

By structurality we obtain that

σ′x, σ′δ(ϕ,~u) a`L σ′δ(ψ,~u), σ′x.

But this is exactly γ(σ(ϕ),~z), σx a`L σx, γ(σ(ψ),~z). �

Definition 2.7. Let X and Y be complete lattices and f : X → Y be a map.
1. f is order-reflecting if for every a, b ∈ X, if f (a) 6 f (b), then a 6 b.

2. f is completely order-reflecting if for every A ∪ {b} ⊆ X,

if
∧

a∈A

f (a) 6 f (b), then
∧

a∈A

a 6 b.

Observe that every completely order-reflecting map is order-reflecting
and that every order-reflecting map is injective. We are now ready to state
our desired characterization result of logics L whose truth sets are almost
universally definable. It is worth to remark that it opens the door of the
Leibniz hierarchy to non-trivial purely inferential logics.†

Theorem 2.8. The following conditions are equivalent:
(i) Truth is almost universally definable in Mod∗L.

(ii) ΩA is almost completely order-reflecting over FiLA for every algebra A.

(iii) Ω is almost completely order-reflecting over T hL.
In this case τ(x,~y) :=

∼
ΩLCL{x} almost defines truth in Mod∗L.

Proof. (i)⇒(ii): Consider an arbitrary algebra A and let F ∪ {G} ⊆ FiLA r
{∅} such that

⋂{ΩAF : F ∈ F} ⊆ ΩAG. Then consider a ∈ ⋂F . From
Lemma 2.4 and the assumptions it follows that

τA(a,~c) ⊆ ΩAF for every ~c ∈ A and F ∈ F .

This implies that τA(a,~c) ⊆ ΩAG for every ~c ∈ A. With another application
of Lemma 2.4 we conclude that a ∈ G.

(ii)⇒(iii): Straightforward. (iii)⇒(i): Choose a variable x and define
τ(x,~y) :=

∼
ΩLCL{x} where ~y is the list of all variables different from x.

†Up to now the weakest conditions considered in the study of the Leibniz hierarchy were
protoalgebraicity and having truth sets equationally definable. It is well known that every
logic L whose truth sets are equationally definable in Mod∗L has theorems (see Corollary
2.10) and that the unique purely inferential protoalgebraic logic (in a given language) is the
almost inconsistent one.
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2.1. Definability with parameters

Thanks to Lemma 2.5 it will be enough to prove that τ almost defines truth
in LMod∗L. By Lemma 2.4 this reduces to proving the following:

Γ `L ϕ if and only if τ(ϕ,~γ) ⊆ ΩΓ for every ~γ ∈ Fm (2.4)

for every ϕ ∈ Fm and Γ ∈ T hLr {∅}. For the “only if” part of (2.4) suppose
that Γ `L ϕ. Then consider any sequence ~γ ∈ Fm and let σ be a substitution
sending x to ϕ and ~y to ~γ. Applying Lemma 2.6, we obtain that

τ(ϕ,~γ) = στ(x,~y) = σ
∼
ΩLCL{x} ⊆

∼
ΩLCL{σx}

=
∼
ΩLCL{ϕ} ⊆ ∼

ΩLΓ ⊆ ΩΓ.

Then we turn to prove the “if” part of (2.4). Suppose that τ(ϕ,~γ) ⊆ ΩΓ
for every sequence ~γ ∈ Fm. Recall that Γ 6= ∅. Then we can choose a formula
ψ ∈ Γ and consider the substitution σ defined as

σ(z) =
{

ϕ if z = x
ψ otherwise

for every variable z. From point 1 of Lemma 1.1 and the assumption it follows
that ∼

ΩCL{x} = τ(x,~y) ⊆ σ−1ΩΓ ⊆ Ωσ−1Γ.

Since inverse images of theories under substitutions are theories, we know
that σ−1Γ ∈ T hL. Moreover, observe that y ∈ σ−1Γ for every variable
different from x. Thus σ−1Γ 6= ∅. Therefore we can apply the fact that Ω
is completely order-reflecting over T hLr {∅} and get CL{x} ⊆ σ−1Γ. This
yields that ϕ ∈ Γ and concludes the proof of condition (2.4). �

Now we provide a proof of the characterization of logics L whose truth
sets are equationally definable that first appeared in [83, Theorem 28].

Theorem 2.9 (Raftery). The following conditions are equivalent:
(i) Truth is equationally definable in Mod∗L.

(ii) ΩA is completely order-reflecting on FiLA for every algebra A.

(iii) Ω is completely order-reflecting on T hL.
In this case τ(x) := σx

∼
ΩLCL{x} defines truth in Mod∗L, where σx is the substi-

tutions sending every variable to x.

Proof. (i)⇒(ii): By the assumption truth is also almost universally definable
in Mod∗L. Then consider an arbitrary algebra A. From Theorem 2.8 it
follows that ΩA is almost completely order-reflecting over FiLA. Recall
that the matrix 〈1, {1}〉 is a reduced model of every logic. Since truth is
equationally definable in Mod∗L, this implies that 〈1, ∅〉 /∈ Mod∗L. Hence L
has theorems and FiLA = FiLA r {∅}, which means that ΩA is completely
order-reflecting over FiLA.
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2. Equational definability

(ii)⇒(iii): Straightforward. (iii)⇒(i): Observe that L has theorems. Sup-
pose the contrary towards a contradiction, i.e., that ∅ ∈ T hL. We would have
that ΩFm = Fm× Fm = Ω∅ and Fm * ∅, contradicting the assumption
that Ω is (completely) order reflecting. Then define τ(x) := σx

∼
ΩLCL{x}

where σx is the substitution sending each variable to x. Together with the
fact that L has theorems, Lemmas 2.4 and 2.5 imply that it will be enough to
show that

Γ `L ϕ if and only if τ(ϕ) ⊆ ΩΓ (2.5)

for every ϕ ∈ Fm and Γ ∈ T hL. To prove the “only if” part of (2.5) suppose
that ϕ ∈ Γ. In the proof of part (iii)⇒(i) of Theorem 2.8 we showed that
σ
∼
ΩLCL{x} ⊆ ΩΓ for every substitution σ such that σ(x) = ϕ. Together

with Lemma 2.6 this implies that

τ(ϕ) = σσx
∼
ΩL{x} ⊆ σ

∼
ΩLCL{x} ⊆ ΩΓ.

Then we turn to check the “if” part of (2.5). Suppose that τ(ϕ) ⊆ ΩΓ. Then
let σ be any substitution such that σ(x) = ϕ. From point 1 of Lemma 1.1 and
the assumption it follows that

∼
ΩCL{x} ⊆ σ−1

x σ−1ΩΓ ⊆ Ωσ−1
x σ−1Γ.

Since Ω is completely order reflecting, we obtain that x ∈ σ−1
x σ−1Γ and

therefore ϕ ∈ Γ. �

Combining Theorems 2.8 and 2.9 we can prove a surprising result, namely
that truth is universally definable in the whole class of Leibniz-reduced
models of a logic if and only if it is equationally definable in it. In other
words, it turns out that the notion of universal definability makes sense only
for purely inferential logics since, in the presence of theorems, it collapses
into that of equational definability.

Corollary 2.10. The following conditions are equivalent:
(i) Truth is equationally definable in Mod∗L.

(ii) Truth is universally definable in Mod∗L.

(iii) Truth is almost universally definable in Mod∗L and L has theorems.
In particular, if truth is equationally definable in Mod∗L, then L has theorems.

Proof. (i)⇒(ii): Straightforward. (ii)⇒(iii): Suppose towards a contradiction
that L is purely inferential, i.e., that ∅ ∈ T hL. Then both 〈1, {1}〉 and
〈1, ∅〉 are reduced models of L. But this contradicts the fact that truth is
universally definable in Mod∗L. (iii)⇒(i): Together with Theorem 2.8, the
assumption implies that Ω is completely order-reflecting over T hL. Thus
with an application of Theorem 2.9 we are done. �

24



2.1. Definability with parameters

Corollary 2.11. Let L be a logic for which truth is almost universally definable in
Mod∗L. There is a conservative expansion L′ of L, where the expansion consists
in adding a new constant symbol 1, such that truth is equationally definable in
Mod∗L′.

Proof. Let τ(x,~y) be the universal translation that almost defines truth in
Mod∗L. Then let K be the class of algebras obtained as follows. We expand
the algebras in Alg∗L by adding to them a new constant 1 that is interpreted
arbitrarily in the set of solutions of τ. Observe that an algebra A ∈ K can be
expanded in different ways if SlA(τ) has more than one element. Then let L′
be the logic determined by the following class of matrices:

{〈A, SlA(τ)〉 : A ∈ K}.

It is easy to see that L′ is a conservative expansion of L. In particular, this
implies that if 〈A, F〉 ∈ Mod∗L′, then 〈A′, F〉 ∈ Mod∗L where A′ is the 1-free
reduct of A. As a consequence we obtain that truth is almost universally
definable in Mod∗L′. Now observe that L′ has theorems, since ∅ `L′ 1. Thus,
with an application of Corollary 2.10 we conclude that truth is equationally
definable in Mod∗L′. �

Remarkably, equational definability can be characterized by means of the
behaviour of the Suszko operator. In order to prove this, we will make use of
the following technical result.

Lemma 2.12. The following conditions are equivalent:
(i) ΩA is almost completely order-reflecting over FiLA.

(ii) For every F, G ∈ FiLA such that G 6= ∅, if
∼
Ω A
LF ⊆ ΩAG, then F ⊆ G.

Proof. (i)⇒(ii): Straightforward. (ii)⇒(i): Let F ∪ {G} ⊆ FiLA r {∅} such
that

⋂
F∈F ΩAF ⊆ ΩAG. Observe that

∼
Ω A
L
⋂
F ⊆

⋂
F∈F

∼
Ω A
LF ⊆

⋂
F∈F

ΩAF.

From the assumption it follows that
⋂F ⊆ G. �

The equational definability of truth sets can be characterized by means of
the behaviour of the Suszko operator [83, Theorem 11]. Since we will make
use of this fact, we chose to include a proof for the sake of completeness.

Theorem 2.13 (Raftery). Truth is equationally definable in Mod∗L if and only if∼
Ω A
L is injective over FiLA for every algebra A.

Proof. We begin by the “only if” part. Suppose that truth is equationally
definable in Mod∗L. Then consider F, G ∈ FiLA such that

∼
Ω A
LF =

∼
Ω A
LG.

We have that
∼
Ω A
LF ⊆ ∼

Ω A
LG ⊆ ΩAG. By Theorem 2.8 and Lemma 2.12 we

obtain that F ⊆ G. The fact that G ⊆ F is proved analogously.
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2. Equational definability

Then we turn to prove the “if” part. We will make use of the following
observation [28, Theorem 7.8]: For every 〈A, F〉 ∈ ModSuL, we have that
minFiLA = F. To prove this, let G := minFiLA. Since the Suszko operator
is monotone, we have that

∼
ΩA
LG = 0A =

∼
ΩA
LF. Together with the assumption,

this implies that F = G as desired.
Now, observe that L has theorems, otherwise

∼
ΩL would not be injective

over T hL. Thus by Corollary 2.10 it will be enough to prove that truth
is almost universally definable in Mod∗L. To this end, we will make use
of Lemma 2.12. Consider an algebra A and and F, G ∈ FiLA such that∼
ΩA
LF ⊆ ΩAG. Let h : A/

∼
ΩA
LF → A/ΩAG be the natural epimorphism.

We have that h−1[G/ΩAG] ∈ FiL(A/
∼
ΩA
LF). Therefore we can apply the

assumption, yielding that F/
∼
ΩA
LF ⊆ h−1[G/ΩAG]. Consider a ∈ F. We have

that a/
∼
ΩA
LF ∈ F/

∼
ΩA
LF ⊆ h−1[G/ΩAG] and, therefore, a/ΩAG ∈ G/ΩAG.

By compatibility, this implies that a ∈ G as desired. �

Problem 1. It is natural to ask whether the following generalization of the
theorem above holds: Truth is almost universally definable in Mod∗L if and
only if

∼
Ω A
L is almost injective over FiLA for every algebra A.

If the reader is interested in solving this problem, she may find useful
the following remarks. The proof of Theorem 2.13 relies on the fact that
for every algebra A, if

∼
Ω A
L is injective over FiLA and 〈A, F〉 ∈ ModSuL,

then F = minFiLA. However, the following generalization is false: for
every algebra A, if

∼
Ω A
L is almost injective over FiLA and 〈A, F〉 ∈ ModSuL

is almost non-trivial, then F = min(FiLA r {∅}). This is shown in the
following counterexample.

Example 2.14. Let A = 〈{a, b, c},�, a, b, c〉 be the algebra where � is the
unary operation defined as follows: �a = �b = a and �c = c. Then
consider the logic L determined by the matrices 〈A, {a}〉 and 〈A, {c}〉. From
the definition of L it follows that a, c `L x and b `L x. In particular, this
implies that FiLA = {∅, {a}, {c}, A}. With this information at hand, one can
check that

∼
Ω A
L is almost injective over FiLA. Finally observe that the model

〈A, {a}〉 is Suszko reduced and that {a} 6= ∅ = min(FiLA r {∅}). �

2.2 Lattice-based examples

In general it is not easy to find logics L for which truth is almost universally
definable, but not equationally definable in Mod∗L. In this section we will
review a family of natural examples of this kind, that comes from logics
whose algebra-based semantics has an unbounded lattice (or semilattice)
reduct. The easiest one is probably the following:
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2.2. Lattice-based examples

Example 2.15 (Distributive Lattices). Let CPC∧∨ be the 〈∧,∨〉-fragment of clas-
sical propositional logic. For every non-almost trivial 〈A, F〉 ∈ Mod∗CPC∧∨
the following conditions hold:

(i) A is a distributive lattice with a maximum 1.

(ii) F = {1}.
(iii) For every a, b ∈ A, if a < b, then there is c ∈ A such that a ∨ c 6= 1 and

a ∨ c = 1.
This was proved in [39, Pag. 127], but see [45] for further information on
the logic CPC∧∨. In particular, this result implies that the truth sets of
CPC∧∨ are almost universally definable through the universal translation
τ(x,~y) = {x ∧ y ≈ y}, as shown in Example 2.3. It is worth to remark that
AlgCPC∧∨ is the variety of distributive lattices DL [45, Corollary 4.5], while
Alg∗CPC∧∨ does not contain the three element chain and, therefore, is strictly
included into DL. �

It is well known that for every A ∈ DL the collection FiCPC∧∨A coincides
with the set of (possibly empty) lattice filters. Next results generalize this
situation to logics related to (possibly non-distributive) classes of lattices.
Keep in mind that these logics are expressed in the language of lattices 〈∧,∨〉.

Lemma 2.16. Let L be a logic whose truth sets are almost universally definable. If
AlgL is a class of lattices, then one of the following conditions holds:
1. FiLA is a set of (possibly empty) lattice filters, for every A ∈ AlgL.

2. FiLA is a set of (possibly empty) lattice ideals, for every A ∈ AlgL.

Proof. We claim that F is closed under ∧ and ∨ for every F ∈ FiLA with A ∈
AlgL. Suppose towards a contradiction that F is not closed under ∧. Then
there are a, b ∈ F such that a∧ b /∈ F. Clearly a and b are incomparable. Then
consider the submodel of 〈A, F〉 with universe {a ∧ b, a}. It is isomorphic to
〈2, {1}〉, where 2 is the two-element lattice. We will prove that F is closed
under ∨. Suppose towards a contradiction that c ∨ d /∈ F for some c, d ∈ A.
Similarly this implies that 〈2, {0}〉 is a model of L. But then we would have
two different non-almost trivial reduced models of L with the same algebraic
reduct, contradicting the assumption. Thus F is closed under ∨. In particular,
this implies that a ∨ b ∈ F. Then consider the submodel of 〈A, F〉 with
universe {a, b, a ∧ b, a ∨ b}. It is the four-element diamond, where everything
except the bottom is designated. It is easy to check that it is reduced. But
observe that also the direct square of 〈2, {1}〉 is a model of L. This is the
four-element diamond, where only the top is designated. Also this model
is reduced. Thus we constructed two different non-almost trivial reduced
models with the same algebraic reduct, contradicting the assumptions. This
shows that F is closed under ∧. A dual argument shows that F is closed
under ∨, establishing the claim.
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2. Equational definability

Now suppose towards a contradiction that conditions 1 and 2 are false.
Then there are two models 〈A, F〉 and 〈B, G〉 of L with A, B ∈ AlgL such
that F is not a filter and G is not an ideal. By the claim we know that F is
closed under the lattice operations. Then F is not an up-set. Then there are
elements a < b such that a ∈ F and b /∈ F. The submodel of 〈A, F〉 with
universe {a, b} is isomorphic to 〈2, {0}〉. Applying a dual argument to G, it
is easy to show that also 〈2, {1}〉 is a model of L. This contradicts the fact
that truth is almost universally definable in Mod∗L. �

It is well known that a lattice is distributive if and only if it has no
subalgebra isomorphic to one of the two lattices depicted below (called
respectively M3 and N5). Moreover a lattice is modular if and only if it
contains no subalgebra isomorphic to N5.

• •
•

• • • •
•

• •

Theorem 2.17. Let K be a non-trivial variety of lattices.
1. K is not the algebraic counterpart of a logic whose truth sets are equationally

definable.

2. V(M3) is the algebraic counterpart of a logic whose truth sets are almost univer-
sally definable.

3. If K is non-modular or contains the variety of modular lattices, then it is not
the algebraic counterpart of any logic whose truth sets are almost universally
definable.

Proof. 1. Suppose towards a contradiction that K is the algebraic counterpart
of a logic L for which truth is equationally definable in Mod∗L. Consider a
non-trivial subdirectly irreducible algebra A ∈ K. Since P

sd
Alg∗L = AlgL =

K, we have that A ∈ Alg∗L. Then there must be a reduced model of the
form 〈A, F〉, where F is equationally definable. Up to equivalence the unique
lattice equation in one variable x is x ≈ x. This is a consequence of the fact
that the free one-generated lattice is trivial. Thus we conclude that F = A
and, therefore, that A is the trivial algebra, against the assumption.

2. From Jónsson’s lemma it follows that the subdirectly irreducible
members of V(M3) are M3 and 2. Then consider the logic L determined by
the matrices 〈M3, {1}〉 and 〈2, {1}〉. Since these matrices are reduced, we
obtain that

V(M3) = P
sd
(M3, 2) ⊆ P

sd
Alg∗L = AlgL.

On the other hand AlgL ⊆ V(M3) by Lemma 1.3. Hence V(M3) is the
algebraic counterpart of L. Observe that L has been defined by a class of
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almost unital matrices. By Theorem 1.10 this implies that F is a singleton
for every non-almost trivial 〈A, F〉 ∈ Mod∗L. Together with Lemma 2.16 this
implies that if 〈A, F〉 ∈ Mod∗L is non-almost trivial, then A has a maximum
1 and F = {1}. As a consequence, truth is almost universally definable in
Mod∗L via τ(x,~y) := {x ∧ y ≈ y}.

3. Suppose that K is non-modular. Then N5 ∈ K. Suppose towards a
contradiction that K is the algebraic counterpart of a logic L such that truth
is almost universally definable in Mod∗L. We denote by {a, b, c, 0, 1} the
universe of N5, where a < b are incomparable with c. Since P

sd
Alg∗L =

AlgL = K and N5 ∈ K is subdirectly irreducible, we have that N5 ∈ Alg∗L.
Thus there must be F ∈ FiLN5 that separates a and b. From Lemma 2.16

we know that the deductive filters of L are either lattice filters or lattice
ideals. Since N5 is isomorphic to its dual, we can assume w.l.o.g. that they
are lattice filters. Hence {b, 1} ⊆ F and a /∈ F. Now let f : N5 → N5 be the
homomorphism that sends b to a and is the identity on N5 r {b}. Clearly
G := f−1(F) is a deductive filter. Moreover, it is easy to check that G ( F
and a, b /∈ G. Clearly ΩN5 F = 0N5 ⊆ ΩN5 G. Together with Theorem 2.8, this
implies that F ⊆ G, which is false. Hence we conclude that K is not the
algebraic counterpart of any logic L such that truth is almost universally
definable in Mod∗L.

Then consider the case where K contains the variety of modular lattices.
Let A be the infinite modular lattice depicted below:

•

• • •

• • • • •

• • • • • • •

• • •

We claim that A is simple. To prove this, consider two different a, b ∈ A and
let θ := Cg(a, b). We can assume w.l.o.g. that a ∧ b < a. Clearly θ identifies
the interval [a∧ b, a]. Observe that [a∧ b, a] contains two elements that belong
to one of the small copies B of M3. Thus θ identifies the whole B. Then θ
identifies also the small copies of M3 that share a side with B. Repeating this
argument, we obtain that θ is the total relation. Hence A is simple.

In particular this implies that A ∈ Alg∗L, since A ∈ K = AlgL = P
sd
Alg∗L.

Then there is a reduced model 〈A, F〉 of L with F 6= ∅. From Lemma 2.16 we
know that F is either a lattice filter or a lattice ideal. Suppose w.l.o.g. that F
is a lattice filter. Since F 6= A, there are elements a < b with a /∈ F and b ∈ F.
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2. Equational definability

Clearly the interval [a, b] has finite height. Thus there are elements c, d ∈ A
such that d covers c and c /∈ F and d ∈ F. Tacking a closer look at A, this
implies that there is a small copy B of M3 inside A such that G := B ∩ F is
a proper filter of B that contains at least two elements. Let {0, 1, a, b, c} be
the universe of B. We can assume w.l.o.g. that G = {a, 1}. Since there is an
automorphism of B that interchanges a and b, we obtain that also 〈B, {b, 1}〉
is a model of L. Together with the fact that B is simple, this implies that
there are two different reduced models of L with the same algebraic reduct.
But this contradicts the fact that the truth is almost universally definable in
Mod∗L. �

Problem 2. Characterize the varieties of lattices that are the algebraic coun-
terpart of a logic L such that truth is almost universally definable in Mod∗L.
We know that these varieties must be properly contained into the variety of
modular lattices. Observe that the argument applied in point 2 of Lemma 2.16

can be used to produce several examples of varieties that are the algebraic
counterpart of a logic whose truth sets are almost universally definable, e.g.,
all semisimple finitely generated varieties.

Another family of examples comes from the study of semilattices, that are
the algebraic counterpart of the conjunctive and of the disjunctive fragment
of classical logic.

Example 2.18 (Semilattices). Let CPC∧ be the 〈∧〉-fragment of classical propo-
sitional logic. Let also 2 = 〈{0, 1},∧〉 be the two-element meet semilattice
with 0 < 1. Every almost non-trivial member of Mod∗CPC∧ is an isomorphic
copy either of 〈2, {1}〉 or of 〈1, {1}〉. This was first claimed in [89, Pag. 68-
69], but see [42, Corollary 6.3] for an explicit proof. It follows that the truth
sets of CPC∧ are almost universally definable by the universal translation
τ(x,~y) = {x ∧ y ≈ y}.

Let CPC∨ be the 〈∨〉-fragment of classical propositional logic. The almost
non-trivial members of Mod∗CPC∨ can be characterized exactly as those of
CPC∧∨ in Example 2.15, but replacing distributive lattice by semilattice [89, Pag.
68-69]. It follows that the truth sets of CPC∨ are almost universally definable
by the universal translation τ(x,~y) = {x ∨ y ≈ x}.

Finally, observe that the algebraic counterpart of both CPC∧ and CPC∨
is the variety of semilattices SL [42, Example 4.4]. An argument, similar to
the one used in the proof of point 1 of Theorem 2.17, shows that SL is not
the algebraic counterpart of any logic L whose truth sets are equationally
definable in Mod∗L. �

Until now we met four examples of logics whose truth sets are almost uni-
versally (but not equationally) definable, namely the fragments CPC∧∨, CPC∧
and CPC∨, and the logic associated with the variety V(M3) in Theorem 2.17.
All these logics are exemplifications of the following general phenomenon:
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2.2. Lattice-based examples

Lemma 2.19. Let K be a class of algebras with meet (join) semilattice reduct. Truth
is almost universally definable in the class of reduced models of the logic determined
by the class of matrices

{〈A, {1}〉 : A ∈ K has a top element 1}.

Proof. First observe that L is determined by matrices whose filters are sin-
gletons. By Theorem 1.10 F is a singleton for every non-almost trivial
〈A, F〉 ∈ Mod∗L. Then consider one of these models 〈A, F〉. From Lemma
1.3 it follows that A ∈ V(K), thus A has a meet-semilattice reduct 〈A,∧〉.
Observe that by definition of L

x, y `L x ∧ y x ∧ y `L x x ∧ y `L y.

Thus F is a filter of 〈A,∧〉 which, moreover, is a singleton. Hence 〈A,∧〉
has a top element 1 such that F = {1}. We conclude that truth is almost
universally definable in Mod∗L via τ(x,~y) := {x ∧ y ≈ y}. �

Example 2.20 (Normal Kleene Algebras). Let C3 = 〈C3,∧,∨,¬, n〉 be the three-
element lattice 0 < n < 1 with an involution ¬ whose unique fixed point
is n. The class of normal Kleene algebras is the variety generated by C3. In
[76] the logic L determined by the matrix 〈C3, {1}〉 is studied. From Lemma
2.19 it follows that the truth sets of L are almost universally definable. In
particular, we have that for every non-almost trivial 〈A, F〉 ∈ Mod∗L the
following conditions hold:

(i) A is a normal Kleene algebra with maximum 1.

(ii) F = {1}.
(iii) For every a, b ∈ A such that a, b > n, if a < b, then there is c ∈ A such

that a ∨ c < b ∨ c = 1.
This was proved in [76, Theorem 3.5]. From Jónsson’s lemma it follows that
C3 is the unique subdirectly irreducible normal Kleene algebras. Together
with the above characterization of Mod∗L and the fact that AlgL = P

sd
Alg∗L,

this implies that AlgL is the variety of normal Kleene algebras [76, Theorem
3.2]. It is not difficult to see that this variety is also the algebraic counterpart
of a logic L′ whose truth sets are equationally definable, namely the one
determined by the matrix 〈C3, {n, 1}〉. �

It makes sense to wonder whether there are examples of meaningful
logics L for which truth is almost universally (but not equationally) definable
in Mod∗L, except those that fall under the scope of Lemma 2.19. One of
them comes from the study of bilattices, i.e., algebras which have two lattice-
theoretic order relations.

Example 2.21 (Distributive Bilattices). An algebra L = 〈L,∧,∨,⊗,⊕〉 is a pre-
bilattice if 〈L,∧,∨〉 and 〈L,⊗,⊕〉 are lattices. In this case we will denote by 6
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2. Equational definability

the lattice order associated with 〈L,∧,∨〉 and by v the one associated with
〈L,⊗,⊕〉. An algebra A = 〈A,∧,∨,⊗,⊕,¬〉 is a bilattice if 〈A,∧,∨,⊗,⊕〉 is
a pre-bilattice such that ¬¬a = a and

a 6 b =⇒ (¬b 6 ¬a and ¬a v ¬b)

for every a, b ∈ A (see [53]). A bilattice is distributive if the four lattice
operations satisfy all the combined distributive axioms. Distributive bilattices
form a variety which we denote by DBL. This variety is generated by
the bilattice B4 with universe {0, 1, a, b}, where 〈B4,v〉 is the four-element
diamond bounded by 0 < 1, while 〈B4,6〉 is the four-element diamond
bounded by a < b, and ¬ interchanges a and b and is the identity on {0, 1}.

The so-called logic of distributive bilattices LB is defined through the matrix
〈B4, {b, 1}〉, see [23, 90]. By Corollary 2.10 truth is not equationally definable
in Mod∗LB, since LB is purely inferential. This is a consequence of the fact
that {0} is the universe of a subalgebra of B4. Our goal will be to prove
that truth is almost universally definable in Mod∗LB. To this end, we need
to recall the following construction from [23]. Given a distributive lattice
L = 〈L,u,t〉, let L� L = 〈L× L,∧,∨,⊗,⊕,¬〉 be the twist structure defined
as

〈a1, a2〉 ∧ 〈b1, b2〉 := 〈a1 u b1, a2 t b2〉
〈a1, a2〉 ∨ 〈b1, b2〉 := 〈a1 t b1, a2 u b2〉
〈a1, a2〉 ⊗ 〈b1, b2〉 := 〈a1 u b1, a2 u b2〉
〈a1, a2〉 ⊕ 〈b1, b2〉 := 〈a1 t b1, a2 t b2〉

¬〈a1, a2〉 := 〈a2, a1〉

for every 〈a1, a2〉, 〈b1, b2〉 ∈ L× L. It turns out that L� L ∈ DBL.
We claim that the universal translation τ(x,~y) := {(x⊕ y) ∧ x ≈ x⊕ y}

almost defines truth in Mod∗LB. If 〈A, F〉 ∈ Mod∗LB is non-almost trivial,
then A ∼= L� L for some lattice L such that the following conditions hold:

(i) L is a distributive lattice with maximum 1.

(ii) F ∼= {1} × L.

(iii) For every a, b ∈ L, if a < b, then there is c ∈ L such that at c < bt c = 1.
This was proved in [23, Theorem 4.13]. For the sake of simplicity, we assume
that A = L� L. For every 〈a1, a2, 〉, 〈b1, b2〉 ∈ A we have that

A � τ(〈a1, a2〉, 〈b1, b2〉)⇐⇒ b1 6 a1.

This in particular yields that SlA(τ) = {1} × L, matching condition (ii)
above. �

All the logics considered so far were equipped either with a disjunction
or with a conjunction, which was interpreted as a semilattice operation. Re-
markably, within the landscape of Fregean logics, the presence of a weak
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disjunction (conjunction) forces the truth sets to be almost universally defin-
able. To explain how, let us recall the following concept, originating in [80,
Convention 3.1]:‡

Definition 2.22. A logic L has a protodisjunction if there is an (at most) binary
term ∨ such that x `L x ∨ y and y `L x ∨ y.

Observe that every logic with theorems has a protodisjunction. This
can be easily proved by showing that each theorem can be converted into a
protodisjunction, by replacing each variable occurring in it by the variable x.

Theorem 2.23. If L is Fregean and has a protodisjunction, then the universal
translation τ(x,~y) = {x ∨ y ≈ x} almost defines truth in Mod∗L.

Proof. Thanks to Lemma 2.5 it will be enough to prove that τ almost uni-
versally defines truth in LMod∗L. By Lemma 2.4 this amount to checking
that

Γ `L ϕ if and only if 〈ϕ, ϕ ∨ ψ〉 ∈ ΩΓ for every ψ ∈ Fm

for every Γ ∈ T hLr {∅} and ϕ ∈ Fm. For the “only if” part assume that
Γ `L ϕ and observe that ϕ, Γ a`L Γ, ϕ ∨ ψ, because ∨ is a protodisjunction.
Since L is Fregean, this implies that 〈ϕ, ϕ ∨ ψ〉 ∈ Λ(T hL)Γ =

∼
ΩLΓ ⊆ ΩΓ.

For the “if” part choose ψ ∈ Γ. This can be done since Γ 6= ∅. Since ∨ is
a protodisjunction, we have that Γ `L ϕ ∨ ψ. By compatibility we conclude
that Γ `L ϕ. �

Drawing consequences from this result, we obtain an essentially different
proof of the following known result [6, Theorem 14]:

Corollary 2.24. A Fregean logic L has theorems if and only if truth is equationally
definable in Mod∗L.

Proof. The “if” part was proven in Corollary 2.10. For the “only if” part, let
L be a Fregean logic with theorems. In particular, L has a protodisjunction.
Thus from Theorem 2.23 it follows that truth is almost universally definable
in Mod∗L. Together with Corollary 2.10 and the fact that L has theorems,
this implies that truth is equationally definable in Mod∗L. �

Now we consider Fregean logics with a binary connective which behaves
like a weak conjunction.

Definition 2.25. A logic L has a protoconjunction if there is an (at most) binary
term ∧ such that {x, y} `L x ∧ y, {x, x ∧ y} `L y and {y, x ∧ y} `L x.

‡It is worth to remark that in [80, Convention 3.1] protodisjunctions are defined as sets
of formulas. Here we will assume they are just formulas and our results depend on this
assumption.
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Theorem 2.26. If L is Fregean and has a protoconjunction, then the universal
translation τ(x,~y) = {x ∧ y ≈ y} almost defines truth in Mod∗L.

Proof. Again it will be enough to prove that

Γ `L ϕ if and only if 〈ψ, ϕ ∧ ψ〉 ∈ ΩΓ for every ψ ∈ Fm

for every Γ ∈ T hLr {∅} and ϕ ∈ Fm. For the “only if” part observe that
if Γ `L ϕ, then ψ, Γ a`L Γ, ϕ ∧ ψ since ∧ is a protodisjunction. Since L is
Fregean, this implies that 〈ψ, ϕ ∧ ψ〉 ∈ Λ(T hL)Γ =

∼
ΩLΓ ⊆ ΩΓ. For the “if”

part choose ψ ∈ Γ. This can be done since Γ 6= ∅. By compatibility we have
that Γ `L ϕ ∧ ψ. Since ∧ is a protoconjunction, we conclude that Γ `L ϕ. �

2.3 The Frege hierarchy

We saw that logics L whose truth sets are almost universally definable in
Mod∗L fit inside the framework of the Leibniz hierarchy (Theorem 2.8). Thus
it is natural investigate which is their behaviour with respect to the Frege
hierarchy, the other hierarchy typical of abstract algebraic logic. In particular,
we will show that for these logics the Frege hierarchy reduces to three classes
that are mutually different. Even if we don’t provide precise quotations, all
the results presented in this section have an antecedent in [6], where only
equational definability is taken into account.

Since the definition of some levels of the Frege hierarchy refers to the
notion of a full g-model, it will be useful to obtain a characterization of logics
whose truth sets are almost universally definable in terms of the behaviour
of full g-models. To this end, given a logic L, an algebra A and a deductive
filter F ∈ FiLA, we define

F i◦LAF :=
{
FiLAF if L has theorems
FiLAF ∪ {∅} otherwise.

Given a theory Γ ∈ T hL, we will write simply T h◦LΓ instead of F i◦LFmΓ.

Lemma 2.27. The following conditions are equivalent:
(i) Truth is almost universally definable in Mod∗L.

(ii) The g-matrix 〈A,F i◦LAF〉 is a full g-model of L, for every F ∈ FiLA and
every algebra A.

(iii) The g-matrix 〈Fm, T h◦LΓ〉 is a full g-model of L, for every Γ ∈ T hL.

Proof. (i)⇒(ii): Consider an algebra A and F ∈ FiLA. Observe that
∼
ΩAF i◦LAF =∼

Ω A
LF, since ΩA ∅ = A× A. By Lemma 1.12 it will be enough to show that

F i◦LAF = {G ∈ FiLA :
∼
Ω A
LF ⊆ ΩAG}.
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The inclusion from left to right follows from the definition of Suszko congru-
ence, together with the fact that ΩA ∅ = A× A. To prove the other inclusion,
consider G ∈ FiLA such that

∼
Ω A
LF ⊆ ΩAG. If G = ∅, then L is purely

inferential and we are done. Then suppose that G 6= ∅. With an application
of Theorem 2.8 and Lemma 2.12 we conclude that F ⊆ G.

(ii)⇒(iii): Straightforward. (iii)⇒(i): Again by Theorem 2.8 and Lemma
2.12 it will be enough to prove that for every Γ, Γ′ ∈ T hL such that Γ′ 6= ∅ if∼
ΩLΓ ⊆ ΩΓ′, then Γ ⊆ Γ′. Since Ω∅ = Fm× Fm we have that

∼
ΩT h◦LΓ =

∼
ΩLΓ ⊆ ΩΓ′.

By Lemma 1.12 we conclude that Γ′ ∈ (T h◦L)Γ. Since Γ′ 6= ∅, this yields
that Γ ⊆ Γ′. �

Corollary 2.28. The following conditions are equivalent:
(i) Truth is equationally definable in Mod∗L.

(ii) The g-matrix 〈A,FiLAF〉 is a full g-model of L, for every F ∈ FiLA and
every algebra A.

(iii) The g-matrix 〈Fm, T hLΓ〉 is a full g-model of L, for every Γ ∈ T hL.

Proof. (i)⇒(ii): By Corollary 2.10 the logic L has theorems. In particular, this
implies that FiLA = F i◦LAF for every algebra A and F ∈ FiLA. Thus we can
apply Lemma 2.27. (ii)⇒(iii): Straightforward. (iii)⇒(i): By assumption the
g-matrix 〈Fm, {Fm}〉 is a full g-model of L. Together with Corollary 1.13, this
implies that L has theorems. Thus T hLΓ = T h◦LΓ for every Γ ∈ T hL. Then
we can apply Lemma 2.27, obtaining that truth is almost universally definable
in Mod∗L. Keeping in mind that L has theorems, with an application of
Corollary 2.10 we are done. �

Building on this characterization, we obtain the following:

Theorem 2.29. A logic whose truth sets are almost universally definable is fully
selfextensional if and only if it is fully Fregean. Moreover, inside the class of logics
whose truth sets are almost universally definable, the classes of selfextensional,
Fregean and fully Fregean logics are different.

Proof. Suppose that L is fully selfextensional and that truth is almost uni-
versally definable in Mod∗L. Then consider a full g-model 〈A, C〉 of L and
F ∈ C. We have to prove that 〈A, CF〉 has the (PCONG). We define

C◦F :=
{
CF if L has theorems
CF ∪ {∅} otherwise.

Observe that 〈A, CF〉 has the (PCONG) if and only if 〈A, C◦F〉 has it.
Since L is fully selfextensional, it will be enough to check that 〈A, C◦F〉
is a full g-model of L. Since 〈A, C〉 if a full g-model of L, we know that
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C/
∼
ΩAC = F iL(A/

∼
ΩAC). From Lemma 1.4 it follows that the natural sur-

jection from A to A/
∼
ΩAC extends to an isomorphism between C◦F and

(F i◦LA/
∼
ΩAC)F/

∼
ΩAC and, therefore, to a strict surjective homomorphism be-

tween the corresponding g-matrices. This yields in particular that

〈A, C◦F〉∗ ∼= 〈A/
∼
ΩAC, (F i◦LA/

∼
ΩAC)F/

∼
ΩAC〉∗. (2.6)

From Lemma 2.27 we know that 〈A/
∼
ΩAC, (F i◦LA/

∼
ΩAC)F/

∼
ΩAC〉 is a full

g-model of L. Together with (2.6), this implies that 〈A, C◦F〉 is also a full
g-model of L. This establishes the first statement of the theorem.

To justify the second statement of the theorem, we reason as follows. In
[9] a Fregean logic, which is not fully Fregean, is presented. Since this logic
has theorems, by Corollary 2.24 we know that truth is equationally definable
in the class of its reduced models. Therefore it will be enough to construct a
selfextensional, but not Fregean logic L for which truth is almost universally
definable in Mod∗L. This is done in the following example. �

Example 2.30 (Non-Fregean Logic). Consider the language 〈→,�, a, b, c, 1〉 of
type 〈2, 1, 0, 0, 0, 0〉, and the set A := {a, b, c, 1} with the order structure given
by the following graph, whose top element is 1:

•

• • •
We equip it with the structure of an algebra A = 〈A,→,�, a, b, c, 1〉 of the
above similarity type, where the four constants are interpreted in the obvious
way, and for every p, q ∈ A,

p→ q :=

{
1 if p 6 q,
q otherwise,

�p :=

{
b if p ∈ {1, a, c},
1 otherwise.

Observe that the implicative reduct of A is a Hilbert algebra. Let L be the
logic determined by the g-matrix 〈A, C〉, where

C := {{1}, {a, 1}, {c, 1}, A}.

Observe that all the members of C are implicative filters.

Fact 2.30.1. L is a finitary algebraizable logic.

L is finitary, since it is determined by a finite set of finite g-matrices. Then
we turn to check that L is algebraizable. The implicative fragment of L is
a logic defined by a family of implicative filters of a Hilbert algebra, and
is therefore an implicative logic in the sense of [88]. Moreover, it is easy to
check that

x → y, y→ x `L �x → �y.

As a consequence, L itself is implicative and, therefore, algebraizable [19,
§ 5.2].
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Fact 2.30.2. L is selfextensional.

Observe that the closure system C separates points in A, therefore
ΛC = 0A, and hence

∼
ΩAC = 0A, that is, the g-matrix 〈A, C〉 has the property

of congruence (and is reduced). This easily implies [31, Theorem 82] that
〈Fm, T hL〉 has the property of congruence, that is, the logic L is selfexten-
sional.

Fact 2.30.3. L is not fully Fregean.

It is easy to see that the following deductions hold

∅ `L 1 a, c `L x b `L x,

and that this implies that FiLA = C. Therefore 〈A, C〉 is a full g-model of
L. Now, consider the closure system C{a,1} = {{a, 1}, A}. It is clear that
〈c, b〉 ∈ ΛC{a,1}, because c and b belong to the same members of C{a,1}, and
that 〈�c,�b〉 /∈ ΛC{a,1}, because �c = b /∈ {a, 1} while �b = 1 ∈ {a, 1}.
Hence the g-model 〈A, C{a,1}〉 does not have the property of congruence,
which is to say that the full g-model 〈A, C〉 has not the strong property of
congruence.

Fact 2.30.4. L is not Fregean.

A finitary protoalgebraic logic is Fregean if and only if it is fully Fregean
[31, Corollary 80]. Since L is a non-Fregean finitary algebraizable logic, we
conclude that it is also non-Fregean. �

Corollary 2.31. A logic with theorems is fully Fregean if and only if it is both
Fregean and fully selfextensional.

Proof. Let L be a Fregean and fully selfextensional logic with theorems. From
Corollary 2.24 it follows that the truth is equationally definable in Mod∗L.
Thus we can apply Theorem 2.29, obtaining that L is fully Fregean. �

37





CHAPTER 3

Definability without equations

In the previous chapter we focused on logics whose truth predicates can be
defined by means of some linguistic translation of formulas into equations
in one variable and, possibly, with parameters. In this chapter we consider
some definability conditions that make no refrerences to equations or to
any other syntactic object. More precisely, we say that truth is implicitly
definable in a class of matrices M if the matrices in M are determined by
their algebraic reduct. It is well known that, when applied to the Leibniz
reduced models Mod∗L of a given logic L, the notion of implicit definability
corresponds to the injectivity of the Leibniz operator over FiLA for every
algebra A (Lemma 3.2). Czelakowski and Jansana showed in [30] that for
protoalgebraic logics the injectivity of the Leibniz operator transfers from
theories to filters over arbitrary algebras (Theorem 3.6). This fact posed
the problem of whether the injectivity of the Leibniz operator transfers for
arbitrary logics [83, Problem 1]. We solve this problem by showing that its
answer depends on the cardinality of the language in which the logic is
expressed. More precisely, if the language is countable, then the injectivity
of the Leibniz operator transfers from theories to arbitrary filters (Theorem
3.8). On the other hand, we construct a counterexample with an uncountable
language (Example 3.9).

When applied to classes of matrices, the concept of implicit definability
has inspired an analogy with Beth’s definability theorem which states that
in first-order logic explicit definability and implicit definability coincide. In
particular, Hermann [56, 58] and Czelakowski and Jansana [30] proved a
series of results, collectively called Beth’s definability theorems, whose main
outcome is that the notion of equational and implicit definability coincide,
when referred to the class of reduced models of a protoalgebraic logic (Corol-
lary 3.4). Remarkably this result is an achievement of matrix theory which
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cannot be inferred from the original Beth definability theorem, since the class
of reduced models of a logic is not an elementary class in general.

As we mentioned, a natural way to introduce new conditions on the
truth sets of a matrix semantics is to move the attention to conditions that
make no reference to linguistic objects (such as structural transformers), as
in the case of implicit definability. In this spirit we introduce the concept of
a class of matrices M whose truth sets are small, in the sense that the they
are the smallest non-empty deductive filters of the logic determined by M. It
turns out that this condition, when applied to the class of reduced models
Mod∗L, corresponds to the fact that the Leibniz operator is order-reflecting
over FiLA for every algebra A (Lemma 3.12). Again, the order-reflection of
the Leibniz operator transfers from theories to filters over arbitrary algebras
for logics expressed in a countable language (Theorem 3.13), while there are
counterexamples among logics whose language is uncountable.

3.1 Implicit definability

The next step we make in the analysis of truth sets in matrix semantics, is that
of considering classes of matrices whose truth sets are implicitly definable.

Definition 3.1. Truth is implicitly definable in M if matrices in M are deter-
mined by their algebraic reducts, i.e., if 〈A, F〉, 〈A, G〉 ∈ M, then F = G.

It is part of the folklore of abstract algebraic logic that the implicit de-
finability of truth sets in the class of Leibniz-reduced models of a logic,
corresponds to the fact that the Leibniz operator is injective on deductive
filters over arbitrary algebras. For the sake of completenes, we sketch a proof
of this fact.

Lemma 3.2 (Folklore). Truth is (almost) implicitly definable in Mod∗L if and only
if ΩA is (almost) injective on FiLA for every algebra A.

Proof. Suppose that truth is implicitly definable in Mod∗L. Then let F, G ∈
FiLA such that ΩAF = ΩAG. Thus the reduced models 〈A, F〉∗ and 〈A, G〉∗
have the same algebraic reduct. Since the truth sets of L are implicitly
definable, we conclude that F/ΩAF = G/ΩAG, and hence by compatibility
F = G. For the converse suppose that ΩA is injective on FiLA for every
algebra A, and consider two reduced models 〈A, F〉 and 〈A, G〉 of L. Clearly
we have that ΩAF = 0A = ΩAG. From the assumption it follows that
F = G. The almost case is handled just restricting this argument to non-empty
filters. �

Clearly implicit definability generalizes equational and universal defin-
ability:

Lemma 3.3. Let M be a class of matrices.
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1. If truth is equationally definable in M, then it is also implicitly definable in M.

2. If truth is almost universally definable in M, then it is also almost implicitly
definable in M.

Under certain assumptions implicit and equational definability may coin-
cide. This phenomenon has been interpreted as providing a version of Beth’s
definability theorem of first-order (classical) logic, namely one that is intrinsic
to propositional logics and logical matrices. More precisely, we have [83,
Theorem 28 and Corollary 29]:

Corollary 3.4 (Hermann and Raftery). The following conditions are equivalent:
(i) Truth is equationally definable in Mod∗L.

(ii) Truth is equationally definable in ModSuL.

(iii) Truth is implicitly definable in ModSuL.
In particular, if L is protoalgebraic, then truth is equationally definable in Mod∗L if
and only if it is implicitly definable in Mod∗L.

Proof. (i)⇒(ii): This is a consequence of the fact that ModSuL is the closure
under subdirect products of Mod∗L. (ii)⇒(iii): Straightforward. (iii)⇒(i):
Suppose that truth is implicitly definable in ModSuL. An argument analogous
to the one in the proof of Lemma 3.2 shows that

∼
Ω A
L is injective over FiLA

for every algebra A. Thus, with an application of Theorem 2.13, we are done.
The last observation follows from the fact that the class of Leibniz and Suszko
reduced models coincide for protoalgebraic logics, by Theorem 1.8. �

The next example shows that there are fragments L of modal logics for
which truth is implicitly but not equationally definable in Mod∗L. Two ad hoc
logics of this kind have already been constructed in [83, Examples 2 and 3].

Example 3.5 (Modal Fragment). Let L be the {�, 1}-fragment of the local
modal system S4. Working with Kripke semantics, it is easy to show that L
is axiomatized by the following set of Hilbert-style rules:

∅ ` �1 �x ` x �x ` ��x.

Let A3 = 〈{a, b, 1},�, 1〉 be the algebra where �a = �b = b and �1 = 1.
Moreover, let A2 be the subalgebra of A3 with universe {1, b}.

Fact 3.5.1. Mod∗L is the closure under isomorphism of 〈A3, {1, a}〉, 〈A2, {1}〉
and the trivial matrix.

The inclusion from right to left is a straightforward application of the
Hilbert-style characterization of L. We turn to prove the other one. Consider
〈A, F〉 ∈ Mod∗L. If A is trivial, then 〈A, F〉 is the trivial matrix since L has
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theorems. Then suppose that A is non-trivial. From point 1 of Lemma 1.2 it
follows that for every a, b ∈ A:

a = b if and only if (a ∈ F ⇔ b ∈ F and �a ∈ F ⇔ �b ∈ F). (3.1)

We know that 1 ∈ F. Moreover, since A is non-trivial, there is b /∈ F. We
claim that A r F = {b} and that �b = b. To prove this, let c ∈ A r F. From
b, c /∈ F and �x `L x it follows that �b,�c /∈ F. By (3.1) we conclude that
b = c. Hence A r F = {b}. Analogously, the fact that �b /∈ F together with
�x `L x, implies that ��b /∈ F. Therefore, with an application of (3.1), we
conclude that �b = b. This establishes our claim.

It is easy to show that 1,�1 and ��1 are theorems of L. Together
with (3.1) this implies that �1 = 1. Hence if F = {1}, we conclude that
〈A, F〉 ∼= 〈A2, {1}〉. Then suppose that there is a ∈ F different from 1.
Together with (3.1), this implies that �a /∈ F. Observe that ��a /∈ F,
since �x `L x. From (3.1) we obtain �a = b. Now we turn to prove
that A = {a, b, 1}. Suppose the contrary towards a contradiction. Since
A r F = {b}, there is c ∈ F r {a, 1}. Clearly either �c ∈ F or �c /∈ F. In
both cases we have that c ∈ {1, a} by (3.1), contradicting the assumptions.
Hence A = {a, b, 1} and therefore 〈A, F〉 ∼= 〈A3, {1, a}〉.

Fact 3.5.2. ΩA3 is not order-reflecting over FiLA3.

Observe that {1}, {1, a} ∈ FiLA3 and that ΩA3{1, a} ⊆ ΩA3{1}.

Fact 3.5.3. Truth is implicitly, but not equationally, definable in Mod∗L.

The fact that truth is implicitly definable in Mod∗L is a direct consequence
of the characterization of Mod∗L. Moreover, Fact 3.5.2 and Theorem 2.9 imply
that truth is not equationally definable in Mod∗L. �

Up to now it was an open problem whether the injectivity of the Leibniz
operator transfers, in general, from the theories of a given logic to its deduc-
tive filters over arbitrary algebras [83, Problem 1] (see also [35]). The main
goal of this section is two-fold. On the one hand we will prove that this is
the case for protoalgebraic logics (Theorem 3.6) and for logics expressed in
a countable language (Theorem 3.8). On the other hand, we will show that
the injectivity of the Leibniz operator does not transfer in general (Example
3.9). The transfer result for protoalgebraic logics was first proved in [30,
Proposition 3.7], but the following proof is considerably easier.

Theorem 3.6 (Czelakowski and Jansana). For protoalgebraic logics the injectivity
of the Leibniz operator transfers from theories to filters over arbitrary algebras.

Proof. Suppose that L is protoalgebraic and that Ω is injective over T hL. We
will show that Ω is also completely order-reflecting over T hL. By Lemma
2.12 it will be enough to show that

if
∼
ΩLΓ ⊆ ΩΓ′, then Γ ⊆ Γ′ (3.2)

42



3.1. Implicit definability

for every Γ, Γ′ ∈ T hL. Suppose that
∼
ΩLΓ ⊆ ΩΓ′. By Theorem 1.8 the

Leibniz operator (when restricted to T hL) commutes with intersections and
coincides with the Suszko operator. Therefore we obtain that

ΩΓ =
∼
ΩLΓ =

∼
ΩLΓ ∩ΩΓ′ = ΩΓ ∩ΩΓ′ = Ω(Γ ∩ Γ′).

Since Ω is injective over T hL we conclude that Γ ⊆ Γ′, establishing (3.2).
With an application of Theorem 2.9 we are done. �

Now we turn to prove the transfer result for logics expressed in a count-
able language. To this end, we will make use of the following technical result
which generalizes [27, Proposition 0.7.6].

Lemma 3.7. Let κ be an infinite cardinal larger or equal to |L | and let 〈A, F〉 and
〈A, G〉 be a pair of reduced matrices. Every κ-generated subalgebra C of A can be
extended to another κ-generated subalgebra B of A such that the matrices 〈B, F ∩ B〉
and 〈B, G ∩ B〉 are reduced.

Proof. First observe that κ-generated algebras are of cardinality 6 κ, since κ
is infinite and larger or equal to |L |. Then we define recursively an infinite
family of subsets of A. We begin with X0 := C. To define Xn+1, we go
through the following construction: For every pair of different elements
a, b ∈ SgA(Xn) we pick two finite sequences ~c and ~d of elements of A for
which there is a pair of formulas ϕ(x,~y) and ψ(x,~z) such that

ϕA(a,~c) ∈ F ⇐⇒ ϕA(b,~c) /∈ F

ψA(a, ~d) ∈ G ⇐⇒ ψA(b, ~d) /∈ G.

The existence of the sequences ~c and ~d is ensured by point 1 of Lemma 1.2
together with the fact that 〈a, b〉 /∈ 0A = ΩAF = ΩAG. We then let Yn be the
set of all elements in the sequences constructed in this way. Finally we set

Xn+1 := Xn ∪Yn.

Now consider the union
⋃

n∈ω SgA(Xn). It is easy to prove that it is the
universe of a subalgebra B of A. Clearly B extends C, since X0 = C. We
claim that 〈B, F ∩ B〉 is reduced. To prove this, consider two different a, b ∈ B.
There is n ∈ ω such that a, b ∈ SgA(Xn). By definition of Xn+1, we know that
there is a finite sequence ~c of elements of Xn+1 and a formula ϕ(x,~y) such
that ϕA(a,~c) ∈ F ⇐⇒ ϕA(b,~c) /∈ F. Since a, b,~c ∈ B and B is a subalgebra of
A, we conclude that ϕB(a,~c), ϕB(b,~c) ∈ B and, finally, that

ϕB(a,~c) ∈ F ∩ B⇐⇒ ϕB(b,~c) /∈ F ∩ B.

By point 1 of Lemma 1.2 we conclude that 〈a, b〉 /∈ ΩB(F ∩ B) and therefore
that ΩB(F ∩ B) = 0B. This concludes the proof of our claim. An analogous
argument yields that the the matrix 〈B, G ∩ B〉 is reduced too.
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3. Definability without equations

It only remains to show that B is κ-generated. We begin by showing
inductively that |Xn| 6 κ for every n ∈ ω. For n = 0 we have that X0 = C.
Recall from the assumption that C is κ-generated and, therefore, of cardinality
6 κ. For the n + 1 case observe that, by the inductive hypothesis, |Xn| 6 κ.
Then SgA(Xn) is κ-generated and again of cardinality 6 κ. Now observe that,
while constructing Yn, we added to Xn at most a finite number of elements
for every pair of elements of SgA(Xn). Therefore the cardinality of Yn can be
bounded above by ℵ0 · |SgA(Xn)| · |SgA(Xn)|. In particular, this yields that

|Yn| 6 ℵ0 · |SgA(Xn)| · |SgA(Xn)| 6 ℵ0 · (κ · κ) 6 κ.

Since Xn+1 = Xn ∪Yn is the union of two sets of cardinality smaller or equal to
κ, we conclude that |Xn+1| 6 κ. This concludes our proof by induction. Then
let n ∈ ω. The fact that |Xn| 6 κ implies that SgA(Xn)is of cardinality 6 κ.
Thus B =

⋃
n∈ω SgA(Xn) is the union of countably many sets of cardinality

smaller of equal to κ. Since κ is infinite, we conclude that B has cardinality
6 κ, hence a fortiori it is κ-generated. �

We are now ready to prove our transfer result:

Theorem 3.8. For logics expressed in a countable language the (almost) injectivity
of the Leibniz operator tansfers from theories to filters over arbitrary algebras.

Proof. We apply Lemma 3.2. Consider two reduced models 〈A, F〉 and 〈A, G〉
of L. We have to prove that F = G. By symmetry it is enough to prove
that F ⊆ G. Consider an element a ∈ F and let C be the subalgebra of A
generated by {a}. Clearly C is countably generated. Since |L | 6 ℵ0, we
can apply Lemma 3.7 and extend C to a countably generated subalgebra B
of A such that both 〈B, F ∩ B〉 and 〈B, G ∩ B〉 are reduced matrices. Clearly
they are both models of L. Since B is countably generated, we can choose
a surjective homomorphism h : Fm → B. Then we define Γ := h−1[F ∩ B]
and Γ′ := h−1[G ∩ B]. We have Γ, Γ ∈ T hL. With an application of point 2 of
Lemma 1.1 we obtain

ΩΓ = Ωh−1[F ∩ B] = h−1ΩB(F ∩ B) = h−10B

= h−1ΩB(G ∩ B) = Ωh−1[G ∩ B] = ΩΓ′.

Together with the assumption, this implies that Γ = Γ′. In particular, this
implies that a ∈ F ∩ B = G ∩ B ⊆ G. This concludes the proof that F ⊆ G
and therefore we are done. The almost case follows by restricting the proof to
non-empty filters. �

As we mentioned, if we move our attention to logics expressed in un-
countable languages, it is possible to construct examples where the injectivity
of the Leibniz operator does not transfer from theories to deductive filters
over arbitrary algebras.
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Example 3.9 (Transfer Problem). Let R be the set of real numbers. We consider
the algebraic type that consists of a set of binary connectives {(i: i ∈
Rr {1, 2}}, a set of constants {ci : i ∈ Rr {2}} and a unary connective �.
Then let A be the algebra with universe

A := ((Rr {2})× {0}) ∪ (R× {1})

and operations defined as follows:

〈a1, a2〉(i 〈b1, b2〉 :=

{
〈1, 1〉 if a1 = b1 = i, a2 = 0 and b2 = 1
〈1, 0〉 otherwise

�〈a1, a2〉 :=

{
〈1, 1〉 if either a2 = 0 or (a2 = 1 and a1 < 2)
〈1, 0〉 otherwise

ci := 〈i, 1〉

for every 〈a1, a2〉, 〈b1, b2〉 ∈ A. To simplify the notation put

F := R× {1} and G := (R× {1})r {〈2, 1〉}.

We consider the logic L determined by the pair of matrices 〈A, F〉 and 〈A, G〉.

Fact 3.9.1. ΩA is not injective over FiLA.

We claim that for every pair of different 〈a1, a2〉, 〈b1, b2〉 ∈ A, there is a
polynomial function p(z) of A that satisfies one of the following conditions:

p〈a1, a2〉 ∈ F ∩ G and p〈b1, b2〉 /∈ F ∪ G
p〈b1, b2〉 ∈ F ∩ G and p〈a1, a2〉 /∈ F ∪ G.

We split the proof of the claim in three main cases:
1. a2 6= b2.

2. a2 = b2 = 0.

3. a2 = b2 = 1.
1. Assume w.l.o.g. that a2 = 0 and b2 = 1. If b1 6= 2, then 〈a1, a2〉 /∈ F ∪ G
and 〈b1, b2〉 ∈ F ∩ G. Then suppose that b1 = 2. We have that

�〈a1, a2〉 = 〈1, 1〉 ∈ F ∩ G and �〈b1, b2〉 = 〈1, 0〉 /∈ F ∪ G.

2. Since 〈a1, a2〉 6= 〈b1, b2〉, we have that either a1 6= 1 or b1 6= 1. Assume
w.l.o.g. that a1 6= 1. We consider the unary polynomial function

p(z) := z(a1 〈a1, 1〉.

Observe that the operation(a1 exists, since a1 /∈ {1, 2}. Clearly we have that
p〈a1, a2〉 ∈ F ∩ G, while p〈b1, b2〉 /∈ F ∪ G.
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3. Definability without equations

3. We have two subcases: either {a1, b1} 6= {1, 2} or {a1, b1} = {1, 2}.
Suppose that {a1, b1} 6= {1, 2}. Since 〈a1, a2〉 6= 〈b1, b2〉 and a2 = b2, we know
that a1 6= b2. Together with the fact that {a1, b1} 6= {1, 2}, this implies that
either a1 /∈ {1, 2} or b1 /∈ {1, 2}. Assume w.l.o.g. that a1 /∈ {1, 2}. Then we
can safely consider the polynomial function

p(z) := 〈a1, 0〉(a1 z.

It is easy to see that p〈a1, a2〉 ∈ F ∩ G, while p〈b1, b2〉 /∈ F ∪ G. Then we
consider the case where {a1, b1} = {1, 2}. Assume w.l.o.g. that a1 = 1 and
b1 = 2. We have that

�〈a1, a2〉 = 〈1, 1〉 ∈ F ∩ G and �〈b1, b2〉 = 〈1, 0〉 /∈ G ∪ F.

This establishes our claim. From Lemma 1.2 it follows that ΩAF = ΩAG.
Since F 6= G we are done.

Fact 3.9.2. Consider Γ ∈ T hL, ϕ ∈ Γ and a formula of the form α(z)(i β(z) in
which z actually occurs. If Γ `L α(ϕ)(i β(ϕ), then 〈ϕ, ci〉 ∈ ΩΓ.

Suppose that Γ `L α(ϕ) (i β(ϕ). By Lemma 1.2 it will be enough to
prove that h(ϕ) = h(ci) for every homomorphism h : Fm → A such that
h[Γ] ⊆ R× {1}. Then consider an homomorphism h of this kind. Since
h[Γ] ⊆ R× {1} we have that h(α(ϕ) (i β(ϕ)) ∈ R× {1}. Looking at the
definition of(i, it is easy to see that this happens only if h(α(ϕ)(i β(ϕ)) =
〈1, 1〉. In particular, this is to say that

hα(ϕ) = 〈i, 0〉 and hβ(ϕ) = 〈i, 1〉.

Looking at the definition of the basic operations of A and keeping in mind
that i ∈ Rr {1, 2}, it is possible to see that α(ϕ) must be a variable and that
β(ϕ) must be either a variable or ci. Then we have cases:

either α(ϕ)(i β(ϕ) = x(i y or α(ϕ)(i β(ϕ) = x(i ci (3.3)

for some variables x and y. Now, from the assumption we know that z occurs
in α(z) (i β(z). We claim that z does not appear really in α(z). To prove
this, suppose the contrary towards a contradiction. By (3.3) we would have
that ϕ = x. Then

hϕ = hα(ϕ) = 〈i, 0〉 /∈ R× {1}.

But this contradicts the fact that Γ `L ϕ, establishing the claim. In particular,
the claim implies that z occurs in β(z). Together with (3.3), this means that
β(ϕ) = ϕ. This easily implies that

h(ϕ) = hβ(ϕ) = 〈i, 1〉 = h(ci).

Fact 3.9.3. If ϕ is neither a variable nor a constant, then ∅ `L �ϕ.
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Observe that ��x and �(x(i y) are theorems of L, for every i /∈ {1, 2}.
This follows directly from the definition of L. In particular, this implies that
also �ϕ is a theorem.

Fact 3.9.4. For every Γ ∪ {ϕ} ⊆ Fm one of the following conditions hold:
1. For every i < 2 and formula α(z) in which z actually occurs: Γ `L �α(ϕ)⇐⇒

Γ `L �α(ci).

2. For every i > 2 and formula α(z) in which z actually occurs: Γ `L �α(ϕ)⇐⇒
Γ `L �α(ci).

First consider the case in which Γ `L �α(ϕ) for every formula α(z) in
which z really occurs. We want to prove that condition 1 is satisfied. Then
consider ci with i < 2 and a formula α(z) in which z really occurs. If α(z) is
not a variable, then �α(ci) is a theorem by Fact 3.9.3. Then consider the case
where α(z) is a variable. Clearly α = z. Also in this case �α(ci) is a theorem.
Thus we conclude that condition 1 is satisfied.

Then consider the case where there is at least one formula α(z), in which
z really occurs, such that Γ 0L �α(ϕ). From Fact 3.9.3 it follows that α(z) = z
and, therefore, that Γ 0L ϕ. Together with Fact 3.9.3 this implies that for
every formula β(z), in which z really occurs, we have that

Γ `L �β(ϕ)⇐⇒ β 6= z.

Then consider a constant ci with i > 2 and a formula β(z) in which z
really occurs. From Fact 3.9.3 and from the definition of � it follows that
Γ `L �β(ci) if and only if β 6= z. Thus condition 2 is satisfied.

Fact 3.9.5. For every Γ ∈ T hL and ϕ ∈ Γ, there is i ∈ Rr {2} such that
〈ϕ, ci〉 ∈ ΩΓ.

If Γ is the inconsistent theory, then ΩΓ = Fm× Fm and, therefore, we
are done. Then consider the case where Γ is consistent. Suppose towards a
contradiction that 〈ϕ, ci〉 /∈ ΩΓ for every i ∈ Rr {2}. From Lemma 1.2 it
follows that for every i ∈ Rr {2} there is a formula p(z) such that

Γ `L p(ϕ)⇐⇒ Γ 0L p(ci). (3.4)

By Fact 3.9.4 one of the following conditions hold:
1. For every i < 2 and formula α(z) in which z actually occurs: Γ `L
�α(ϕ)⇐⇒ Γ `L �α(ci).

2. For every i > 2 and formula α(z) in which z actually occurs: Γ `L
�α(ϕ)⇐⇒ Γ `L �α(ci).

Assume that condition 1 holds (the proof for case 2 is analogous). Then
consider 1 6= i < 2. There is a polynomial function p(z) that satisfies
(3.4). Thus z actually occurs in p(z). By condition 1, we know that the
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main connective of p(z) cannot be �. Therefore p(z) = α(z) (j β(z) for
some j ∈ Rr {1, 2} and formulas α and β. Together with Fact 3.9.2 and
〈ϕ, ci〉 /∈ ΩΓ, this implies that

Γ `L α(ci)(j β(ci).

Since Γ is consistent, there is a homomorphism h : Fm → A such that
h[Γ] ⊆ R× {1}. We have that h(α(ci)(j β(ci)) ∈ R× {1}. But this is to say
that

hα(ci) = 〈j, 0〉 and hβ(ci) = 〈j, 1〉.

From the definition of(j it follows that α(ϕ) must be a variable yi and that
β(ϕ) must be either a variable or cj (this is because i 6= 1). Since z actually
occurs in α(z)(j β(z) we conclude that α(ci)(j β(ci) = yi (j ci. Keeping
in mind that h(yi (j ci) ∈ R× {1}, we obtain that j = i. Therefore we
conclude that Γ `L yi (i ci. Now, we proved that for every 1 6= i < 2 there
is a variable yi such that

Γ `L yi (i ci. (3.5)

Consider the homomorphism h above. From (3.5) it follows that h(yi) = 〈i, 0〉
for every i < 2. But this contradicts the fact that there are uncountably many
reals smaller than 2 and different from 1 and only countably many variables
in Fm.

Fact 3.9.6. Ω is order-reflecting (and therefore injective) over T hL.

Consider two theories Γ, Γ′ ∈ T hL such that ΩΓ ⊆ ΩΓ′. Then pick
ϕ ∈ Γ (we can always do this, since L has theorems). By Fact 3.9.5 there is a
constant ci such that 〈ϕ, ci〉 ∈ ΩΓ ⊆ ΩΓ′. Since ∅ `L ci, by compatibility we
obtain that ϕ ∈ Γ′. Hence ΩΓ ⊆ ΩΓ′ as desired. �

3.2 Small truth predicates

The last condition on the truth sets of a matrix semantics that we consider is
the following:

Definition 3.10. Let M be a class of matrices and L the logic it defines. Truth
is small in M, if min(FiLA r {∅}) exists and coincides with F, for every
〈A, F〉 ∈ M.

In general there are classes of matrices is which truth is small but not
equationally definable (Example 3.14) and vice-versa (Example 3.15). The
notion of smallness becomes better behaved if we restrict the attention to
classes of matrices of the form Mod∗L for some logic L. In particular, we say
that the truth sets of logic L are small, if truth is small in Mod∗L. Observe that
the truth sets of L are small if and only if they are almost small and L has
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theorems. This means that, in order to prove that the truth sets of a logic
with theorems are small, it is enough to prove that they are almost small. We
have the following:

Lemma 3.11.

1. If truth is (almost) small in Mod∗L, then it is (almost) implicitly definable in
Mod∗L.

2. If truth is (almost universally) equationally definable in Mod∗L, then it is also
(almost) small in Mod∗L.

Proof. 1. Suppose that truth is almost small in Mod∗L. Then consider two
non-almost trivial reduced models 〈A, F〉 and 〈A, G〉 of L. Since truth is
almost small in Mod∗L, we have that F = min(FiLA r {∅}) = G.

2. Suppose that truth is almost universally definable in Mod∗L. Then
consider a non-almost trivial reduced model 〈A, F〉 of L and any G ∈ FiLAr
{∅}. We have that ΩAF = 0A ⊆ ΩAG. With an application of Theorem
2.8 we obtain that F ⊆ G. Since F 6= ∅, we conclude that F = min(FiLA r
{∅}). �

The smallness of truth sets can be characterized by means of the behaviour
of the Leibniz operator as follows:

Theorem 3.12. Truth is (almost) small in Mod∗L if and only if ΩA is (almost)
order reflecting over FiLA for every algebra A.

Proof. We begin by the “only if” part. Consider F, G ∈ FiLA r {∅} such
that ΩAF ⊆ ΩAG. Let h : A/ΩAF → A/ΩAG be the natural surjection. We
have that h−1[G/ΩAG] ∈ FiL(A/ΩAF). By the assumption we know that
F/ΩAF = min(FiLA/ΩAF r {∅}). Since h−1[G/ΩAG] 6= ∅, we conclude
that F/ΩAF ⊆ h−1[G/ΩAG]. Then let a ∈ F. We have that a/ΩAF ⊆
h−1[G/ΩAG] and, therefore, a ∈ G.

Then we turn to check the “if” part. Consider a non-almost trivial
reduced model 〈A, F〉 of L and a filter G ∈ FiLA r {∅}. We have that
ΩAF = 0A ⊆ ΩAG. By the assumption we obtain F ⊆ G. Since F 6= ∅, we
conclude that F = min(FiLA r {∅}). �

It is natural to ask whether the order-reflection of the Leibniz operator
transfers from theories to filters over arbitrary algebras. In Example 3.9 we
already showed that this is not the case in general. Nevertheless, a natural
adaptation of the proof of Theorem 3.8 yields the following result:

Theorem 3.13. For logics expressed in a countable language the (almost) order-
reflection of the Leibniz operator transfers from theories to filters over arbitrary
algebras.
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Proof. We apply Theorem 3.12. Suppose that Ω is order-reflecting over T hL.
This easily implies that L has theorems and, therefore, that its deductive
filters are non-empty. Consider a reduced model 〈A, F〉 of L. We have to
prove that F = minFiLA r {∅}. Then consider G ∈ FiLA r {∅} and a ∈ F.
We know that G 6= ∅. Thus we can choose an element b ∈ G. We let C be the
subalgebra of A, generated by {a, b}. Since C is finitely generated, we can
apply Lemma 3.7 and extend it to a countably generated subalgebra B of A
such that 〈B, F ∩ B〉 is a reduced model of L.

Since B is countable, there is a surjective homomorphism h : Fm → B.
Then let Γ := h−1[F∩ B] and Γ′ := h−1[G∩ B]. Notice that F∩ B and G∩ B are
non-empty, and hence Γ and Γ′ are non-empty as well. Clearly Γ, Γ′ ∈ T hL.
From point 2 of Lemma 1.1 we obtain that

ΩΓ = Ωh−1[F ∩ B] = h−1ΩB(F ∩ B) = h−10B = Ker(h).

Moreover, since Ker(h) is compatible with Γ′, we know that ΩΓ = Ker(h) ⊆
ΩΓ′. Hence we can apply the assumption and conclude that Γ ⊆ Γ′. Together
with the fact that h is surjective, this implies that

F ∩ B = hh−1[F ∩ B] = h[Γ] ⊆ h[Γ′] = hh−1[G ∩ B] ⊆ G ∩ B.

Therefore we obtain that a ∈ F ∩ B ⊆ G ∩ B ⊆ G. This shows that F ⊆ G. �

We already met tacitly the example of logic whose truth sets are implicitly
definable but not small. More precisely, let L be the logic defined in Example
3.5. In Fact 3.5.3 we proved that the truth sets of L are implicitly definable.
Moreover from Fact 3.5.2 and Theorem 3.12 it follows that the truth sets of L
are not small. The next example present a logic whose truth sets as small but
not equationally definable.

Example 3.14 (Small Truth). Let L be the logic, expressed in the language
〈�, 1〉 of type 〈1, 0〉, axiomatized by the following Hilbert-style rules:

∅ ` 1 ∅ ` �1 ��x ` y.

We will prove that truth is small, but not equationally definable, in Mod∗L.
To this end, let A4 = 〈{a, b, c, 1},�, 1〉 be the algebra where � is defined for
every x ∈ A4 as follows:

�p =

{
a if p ∈ {1, c}
b otherwise.

Let A3 be the subalgebra of A4 with universe {1, a, b}.

Fact 3.14.1. Mod∗L is the closure under isomorphism of 〈A4, {1, a}〉, 〈A3, {1, a}〉
and the trivial matrix.

50



3.2. Small truth predicates

The inclusion from right to left follows from the definition of L. Then
we turn to prove the other inclusion. Consider 〈A, F〉 ∈ Mod∗L. If A is
trivial, then also 〈A, F〉 is trivial since L has theorems. The suppose that A is
non-trivial. The fact that ��x `L y implies that that characterization of the
Leibniz congruence given in point 1 of Lemma 1.2 can be finitized, yielding
the following result: for every p, q ∈ A

p = q if and only if (p ∈ F ⇔ q ∈ F and �p ∈ F ⇔ �q ∈ F). (3.6)

Since ∅ `L 1 and ∅ `L �1, we know that 1,�1 ∈ F. The facts that
��x `L y and that 〈A, F〉 is non-trivial and reduced, imply that �n1 /∈ F for
every n > 2. In particular, this implies that �1 6= 1 and �21 = �31 by (3.6).
Now let p ∈ F. We have cases: either �p ∈ F or �p /∈ F. By (3.6) in both
cases p ∈ {1,�1}. Hence F = {1,�1}.

If A = {1,�1,��1}, then 〈A, F〉 ∼= 〈A3, {1, a}〉. Then consider the case
where A 6= {1,�1,��1}. There is p ∈ A r {1,�1,��1}. In particular, this
yields that p /∈ F. By (3.6) and the fact that p 6= ��1, we know that �p ∈ F.
Again, since ��x `L y and A is non-trivial, we obtain that ��p /∈ F. Thus
from (3.6) we conclude that �p = �1.

If A = {1,�1,��1, p}, then 〈A, F〉 ∼= 〈A4, {1, a}〉. Suppose the contrary
towards a contradiction. Then there is q ∈ A r {1,�1,��1, c}. Since F =
{1,�1}, we know that q /∈ F. But from (3.6) it follows that either q = ��1 or
q = p, against the assumption.

Fact 3.14.2. Truth is small in Mod∗L.

This is a direct application of the definition of L to the characterization of
the class Mod∗L given in Fact 3.14.1.

Fact 3.14.3. Truth is not equationally definable in Mod∗L.

Observe that the terms in one variable x up to equivalence in V(A4)
are {x,�x,��x, 1,�1}. It is easy to check that x ≈ x is the only equation,
built up with these terms, that is satisfied by the designated elements of
〈A4, {1, a}〉. Since 〈A4, {1, a}〉 is a reduced model of L, we conclude that
truth is not equationally definable in Mod∗L. �

Example 3.15 (Non-Small Truth). We will construct a matrix in which truth
is equationally definable, but not small. Let A = 〈{a, b, c, 1},�, 1〉 be the
algebra equipped with the unary operation � defined for every p ∈ A as

�p =

{
1 if p ∈ {a, b}
c otherwise.

Let L be the logic determined by the matrix 〈A, {a, b}〉.

Fact 3.15.1. The equation �x ≈ 1 defines truth in 〈A, {a, b}〉.
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Fact 3.15.2. L is axiomatized by the rules �x ` y and 1 ` y.

Clearly these rules are sound for L. Then we turn to prove completeness.
Let L′ be the logic determined by the two rules above. Consider Γ ∪ {ϕ} ⊆
Fm such that Γ `L ϕ. Observe that Γ 6= ∅, since L is purely inferential. We
have two cases: either Γ is a set of variables or not. In the first case, taking
a look at the matrix 〈A, {a, b}〉, it is easy to see that ϕ ∈ Γ. Thus Γ `L′ ϕ.
In the second case, there is γ ∈ Γ that is not a variable. Hence either γ = 1
or γ = �nx for some variable x and some n > 1. In both cases the rules
axiomatizing L′ yield that γ `L′ ϕ, therefore Γ `L′ ϕ and we are done.

Fact 3.15.3. Truth is not small in 〈A, {a, b}〉.

By means of the Hilbert-style axiomatization of L, it is easy to prove that
{a} ∈ FiLA. Thus we conclude that truth is not small in 〈A, {a, b}〉. �

In Figure 3.1 the reader can find a diagram (where arrows represent
inclusions) that subsume the definability conditions considered so far in the
framework of the Leibniz hierarchy. It is worth to remark that all classes in
that diagram are different.
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3.2. Small truth predicates
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Figure 3.1: The Leibniz hierarchy

53





CHAPTER 4

Computational aspects

This chapter studies several computational aspects of the problem of clas-
sifying logics within the Leibniz and Frege hierarchies. Since logics can be
presented syntactically and semantically, we have studied the problem for
these two kind of logics separately. Accordingly, on the one hand we will
consider the following problems:
• Let K be a level of the Leibniz (resp. Frege) hierarchy. Is it possible to

decide whether the logic of a given finite consistent Hilbert calculus in a
finite language belongs to K?

It turns out that in general the answer is negative both for the Leibniz and
the Frege hierarchies. To show the first case, we reduce Hilbert’s tenth
problem on Diophantine equations to the problem of classifying the logic of
a (finite consistent) Hilbert calculus in the Leibniz hierarchy, thus obtaining
that also the last one is undecidable (Theorem 4.10). In the process we
will also describe and axiomatize a new logic, whose deductions mimic
the equational theory of commutative rings with unit (Theorem 4.6). In
order to prove that also the problem of classifying the logic of a (finite
and consistent) Hilbert calculus in the Frege hierarchy is undecidable, we
rely on the undecidability of the equational theory of relation algebras in a
single variable. Remarkably, our proof shows that this classification problem
remains undecidable even if we restrict our attention to Hilbert calculi that
determine a finitary algebraizable logic (Theorem 4.23).

On the other hand, we consider the semantic version of the same problem:
• Let K be a level of the Leibniz (resp. Frege) hierarchy. Is it possible to

decide whether the logic of a given strongly finite set of matrices belongs
to K?

In this case the situation is different and the change is due to the fact that
most levels of the Leibniz hierarchy admit a characterization in terms of the
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existence of sets of formulas (or equations) with certain properties. Building
on the observation that the finitely generated free algebras over a given
finite set of finite algebras of finite type can de described mechanically, we
will be able to prove or disprove algorithmically the existence of those sets
of formulas (or equations). As a consequence we obtain that the problem
of classifying logics semantically presented inside the main classes of the
Leibniz hierarchy is decidable (Theorem 4.17). The situation becomes more
delicate if we shift our attention to the Frege hierarchy. This is because not all
the replacement principles typical of the Frege hierarchy can be expressed as
a requirement on formulas: some of them involve separation properties that
refer to the behaviour of deductive filters on arbitrary algebras. An argument
analogous to the one devised for the Leibniz hierarchy allows to prove that it
is possible to determine whether a semantically presented logic enjoys the
replacement principles of the Frege hierarchy that refer only to the behaviour
of formulas (Theorem 4.24 and Corollary 4.25). But it is still an open question
(Problem 4) to solve the same problem for the remaining classes of the Frege
hierarchy (see also Problem 3). The majority of the results of this chapter are
contained in [78].

4.1 The classification problem in the Leibniz hierarchy

We will begin our work on some computational aspects of abstract algebraic
logic by considering the problem of classifying logics in the Leibniz hierarchy.
In this section the expression Leibniz hierarchy will refer to the hierarchy
depicted in Figure 3.1. In particular, we will focus on two problems. Let
K be a level of the Leibniz hierarchy. The first one asks, given a finite and
consistent Hilbert-style calculus H in a finite language, to decide whether
the logic determined by H belongs to K (Theorem 4.10). The second one
asks, given a strongly finite set of matrices M, to decide whether the logic
determined by M belongs to K (Theorem 4.17). Accordingly, we chose to
divide the rest of the section into two parts that correspond respectively to
the analysis of the first and of the second problem.

The syntactic case

The main outcome of this part is that the problem of classifying logics
determined by a finite consistent Hilbert calculus in a finite language in the
Leibniz hierarchy is in general undecidable (Theorem 4.10). Our strategy
is the following: for every Diaphantine equation p ≈ 0 we define a finite
consistent Hilber calculus L(p) such that L(p) belongs to a given level of the
Leibniz hierarchy if and only if p ≈ 0 has an integer solution. For the sake
of completeness we recall some concepts. An algebra A = 〈A,+, ·,−, 0, 1〉
of type 〈2, 2, 1, 0, 0〉 is a commutative ring if 〈A,+,−, 0〉 is an Abelian group,

56



4.1. The classification problem in the Leibniz hierarchy

〈A, ·, 1〉 is a commutative monoid, and

a · (b + c) = (a · b) + (a · c)

for every a, b, c ∈ A. We denote by CR the variety of commutative rings. The
algebra Z := 〈Z,+, ·,−, 0, 1〉, where Z is the collection of integer numbers,
is a commutative ring. A Diophantine equation is an equation of the form
p(z1, . . . , z1) ≈ 0, where p(z1, . . . , z1) is a term in the language of commu-
tative rings. Hilbert’s tenth problem asked for an algorithm that, given a
Diophantine equation, tells us whether it has a solution in Z or not. It is
well known that such an algorithm does not exist (see for example [12]). In
other words, it turned out that the problem of determining whether a given
Diophantine equation has an integer solution is undecidable.

In order to relate this problem to the that of the classification of logics into
the Leibniz hierarchy, we will construct a logic that mimics the behaviour of
(Diophantine) equations in commutative rings. In [42, 43] a way of doing this
for arbitrary varieties is described. More precisely, given a non-trivial variety
V, we let LV be the logic determined by the following class of matrices:

{〈A, F〉 : A ∈ V and F ⊆ A}.

Given Γ ∪ {ϕ} ⊆ Fm, we will write Γ `V ϕ as a shortening for Γ `LV
ϕ. The

following result will be used later on:

Lemma 4.1. Let V be a non-trivial variety and Γ ∪ {ϕ} ⊆ Fm.
1. Alg∗LV ⊆ AlgLV = V.

2. LV is fully selfextensional.

3. Γ `V ϕ if and only if there is γ ∈ Γ such that V � γ ≈ ϕ.

Proof. 1. It is a general fact that Alg∗LV ⊆ AlgLV, while the inclusion
AlgLV ⊆ V is a consequence of Lemma 1.3. Therefore it only remains to
prove that V ⊆ AlgLV. Since AlgLV = P

sd
Alg∗LV, it will be enough to prove

that Vsi ⊆ Alg∗LV. To this end, consider a non-trivial A ∈ Vsi. We know that
there are two different elements a, b ∈ A such that CgA(a, b) is the monolith
of A. It is easy to see that the matrix 〈A, {a}〉 is reduced. Since 〈A, {a}〉 is a
model of LV, we conclude that A ∈ Alg∗LV as desired.

2. Recall that a logic L is fully selfextensional if and only if for every
A ∈ AlgL and a, b ∈ A:

FiA
L{a} = FiA

L{b} ⇐⇒ a = b.

By point 1 we know that AlgLV = V. Moreover, for every A ∈ V we have
that FiLV

A = P(A). In particular, this implies that FiA
LV
{a} = {a} for every

a ∈ A. Therefore the characterization of full selfextensionality given above is
trivially satisfied.
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3. The “if” part follows from the fact that LV is defined through a class
of matrices whose algebraic reducts live in V. Now we turn to prove the
“only if” part. Suppose that Γ `V ϕ. Then consider the natural surjection
π : Fm→ FmV(Var). We denote the elements of the free algebra FmV(Var)
by JγK, since they are congruence classes of equivalent formulas. The matrix
M = 〈FmV(Var), {JγK : γ ∈ Γ}〉 is a model of LV by definition. Clearly h
maps Γ into the filter ofM. Thus the same happens for ϕ. But this means
that JγK = JϕK for some γ ∈ Γ. Since FmV(Var) is the free algebra of LV, we
conclude that V � γ ≈ ϕ. �

Digression. Next we are going to axiomatize the logic LCR, but first let us
consider the general problem of axiomatizing the logic LV for an arbitrary
non-trivial variety V. Suppose that we are given an equational basis V for V. It
would be nice to have a natural way of transforming V into an axiomatization
of the logic LV. This can be done easily, adapting Birkhoff’s Completeness
Theorem of equational logic [24, Theorem 14.19, Section II], if what we are
looking for is a Gentzen system adequate to LV [43, Theorem 1.2].∗ On the
contrary, there is no natural way of building a nice Hilbert calculus for LV

out of V . In particular, the obvious idea of considering the logic axiomatized
by the rules α a` β for all α ≈ β ∈ V does not work in general. For example,
it is possible to see that the logic S determined by the rules

x a` x ∧ x x ∧ y a` y ∧ x x ∧ (y ∧ z) a` (x ∧ y) ∧ z (4.1)

is not the logic LSL associated with the variety of semilattices SL (cfr. [42,
Example 3.8]). This is because the matrix 〈Z3, {1, 2}〉, where Z3 is the additive
semigroup of integers modulo 3, is easily proved to be a reduced model of
S . In particular this implies that Z3 ∈ AlgS and, therefore, that AlgS 6= SL.
Hence S 6= LSL, by point 1 of Lemma 4.1. In order to obtain a complete
Hilbert-style axiomatization of LSL one has to add to the rules in (4.1) the
following ones:

u ∧ x a` u ∧ (x ∧ x)
u ∧ (x ∧ y) a` u ∧ (y ∧ x)

u ∧ (x ∧ (y ∧ z)) a` u ∧ ((x ∧ y) ∧ z)

This is mainly due to the fact that selfextensionality, which is not easily
expressible by means of Hilbert-style rules, fails for S , while LSL is selfexten-
sional by point 2 of Lemma 4.1. Even if it is not straightforward to present
an explicit Hilbert-style axiomatization of LV, given a base V for V, one
may wonder whether there exists (no matter which one) a finite Hilbert-style
axiomatization of LV when V is finite. In the next example we show that in
general this is not the case.

∗Even if we won’t pursue this here, it is possible to show that there is no Gentzen system
fully adequate to LV.

58



4.1. The classification problem in the Leibniz hierarchy

Example 4.2 (Finite Axiomatizability). An algebra A = 〈A, ·〉 is a commutative
magma if · is a binary commutative operation. Clearly the class of commu-
tative magmas forms a finitely based variety, which we denote by CM. We
will prove that the logic LCM is not axiomatizable by means of a finite set
of Hilbert-style rules. In order to do this, let CM be a finite set of rules
holding in LCM. We will show that there is a model of CM that is not a
model of LCM. First observe that there is a natural number n that bounds
the number of occurrences of (possibly equal) variables in terms appearing
in the rules of CM. We can assume, without loss of generality, that n > 2.
Then we consider the algebra A = 〈{0, 1, 2, . . . , n}, ·〉 equipped with a binary
operation such that 1 · 2 := 2 and 2 · 1 := 1 and

a · b = b · a :=


a if a 6= n and b = 0
0 if a = n and b = 0
a if b = a− 1 and a > 3
a− 1 if b = a− 2 and a > 3
1 otherwise

for every a, b ∈ A such that {a, b} 6= {1, 2}.
We first show that 〈A, {0}〉 is not a model of LCM. Observe that A /∈ CM,

since 1 · 2 6= 2 · 1. By point 1 of Lemma 4.1 we know that it will be enough
to prove that 〈A, {0}〉 is a reduced matrix. By point 1 of Lemma 1.2 this
amounts to checking whether for every different a, b ∈ A r {0} there is a
polynomial function p : A → A such that p(a) = 0 if and only if p(b) 6= 0.
This is what we do now: consider a pair of different a, b ∈ A r {0}. Assume,
without loss of generality, that a < b. Then we consider the polynomial
function

p(x) := (. . . (((. . . ((. . . ((1 · 2) · 3) · . . . ) · a) · . . . · b− 1) · x) · b + 1) · . . . · n) · 0.

It is easy to see that p(b) = 0. Then we turn to show that p(a) 6= 0. We
consider two cases, whether b− 1 < 3 or not. First consider the case in which
b− 1 < 3. We have that either (a = 1 and b = 2) or (a = 1 and b = 3) or
(a = 2 and b = 3). It is easy to prove that

if a = 1 and b = 2, then p(a) = n− 1
if a = 1 and b = 3, then p(a) = 1
if a = 2 and b = 3, then p(a) = 1.

Then we turn to the case in which 3 6 b− 1. We have that:

p(a) = (. . . ((b− 1 · a) · b + 1) . . . · n) · 0 =

{
n if a = b− 2
1 otherwise.

Therefore we obtain that p(a) 6= 0. This concludes the proof that 〈A, {0}〉 is
not a model of LCM.
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Now we turn to prove that 〈A, {0}〉 is a model of CM. Consider a rule
Γ ` ϕ in CM. Then pick a homomorphism h : Fm→ A such that h[Γ] ⊆ {0}.
From point 3 of Lemma 4.1 we know that there is γ ∈ Γ such that CM � γ ≈ ϕ.
In particular, we have that h(γ) = 0. We claim that {h(ε), h(δ)} 6= {1, 2} for
every subformula ε · δ of γ. Suppose the contrary towards a contradiction.
Then there is a subformula ε · δ of γ such that {h(ε), h(δ)} = {1, 2}. Since at
most n (possibly equal) variables occur in γ, and ε · δ contains at least two
of them, we know that if we draw the subformulas tree of γ there are at
most n− 2 nodes γ1 < γ2 < · · · < γn−2 (with γn−2 = γ) strictly above ε · δ.
Looking at the definition of · it is possible to see that 1 6 h(γm) 6 m + 2
for every m 6 n− 2. Therefore we obtain that 1 6 h(γ) 6 n, against the
assumption that h(γ) = 0. This concludes the proof of our claim.

Now, recall that CM � γ ≈ ϕ. It is easy to prove by induction on the
length of the proofs of Birkhoff’s equational logic that ϕ is obtained from γ in
the following way. We replace a subformula γ1 · γ2 of γ by γ2 · γ1 and denote
by γ′ the formula obtained in this way. Then we repeat this process on γ′.
Iterating this construction a finite number of times we reach ϕ. Now, observe
that the operation · in A commutes always except for the case in which its
arguments exhaust the set {1, 2}. This fact, together with our claim and the
observation on equational logic, implies that h(γ) = h(ϕ). In particular, this
means that h(ϕ) = 0. Hence 〈A, {0}〉 is a model of the rules in CM. �

End of digression

The digression shows that the quest for a finite Hilbert-style axiomatiza-
tion of the logic LCR is not in principle a trivial one: such an axiomatization
may even fail to exist, as in the case of commutative magmas of Example 4.2.
Nevertheless we will provide an explicit and finite Hilbert calculus for the
logic LCR (Theorem 4.6). To this end we introduce the following

Definition 4.3. Let CR be the following Hilbert calculus and the logic it
determines in the language of commutative rings:

w + (u · ((x · y) · z)) a` w + (u · (x · (y · z)) (A)
w + (u · (x · y)) a` w + (u · (y · x)) (B)
w + (u · (x · 1)) a` w + (u · x) (C)

w + (u · ((x + y) + z)) a` w + (u · (x + (y + z))) (D)
w + (u · (x + y)) a` w + (u · (y + x)) (E)
w + (u · (x + 0)) a` w + (u · x) (F)

w + (u · (x +−x)) a` w + (u · 0) (G)
w + (u · (x · (y + z))) a` w + (u · ((x · y) + (x · z))) (H)

w + (u · −(x + y)) a` w + (u · (−x +−y)) (I)
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w + (u · −(x · y)) a` w + (u · (−x · y)) (L)
w + (u · −(x · y)) a` w + (u · (x · −y)) (M)

0 + x a` x (N)
x + (1 · y) a` x + y (O)

The following technical result on the special nature of deductions of CR,
will be useful in the subsequent proofs.

Lemma 4.4. Let Γ ∪ {ϕ} ⊆ Fm. If Γ `CR ϕ, then there is γ ∈ Γ and a finite
sequence of formulas 〈α1, α2, . . . , αn〉 such that α1 = γ, αn = ϕ and for every
m < n there is a rule ε a` δ of the calculus CR and a substitution σ such that
{σε, σδ} = {αm, αm+1}.

Proof. The result follows from two observations. First, that the calculus CR
consists of rules with only one premise. Second, that if α ` β ∈ CR, then
β ` α ∈ CR too. �

Our main goal will be to prove that CR is in fact a finite axiomatization of
LCR. To do this we will make use of the following lemma, whose easy proof
involves some tedious calculations. The reader may safely choose to skip it
in order keep track of the proof of the main result of the section.

Lemma 4.5. The logic CR is selfextensional.

Proof. First we check that a`CR preserves the connective −. To do this,
consider ψ, ϕ ∈ Fm such that ψ a`CR ϕ: we have to prove that −ψ a`CR −ϕ.
By Lemma 4.4 it will be enough to check that −α a`CR −β for every
α a` β ∈ CR. We shall make use of some deductions. In particular, by
suitable substitutions and applying (N) and (O) to (B), (D), (E), (H), (I), (L)
and (M), we obtain that

x · y a`CR y · x (B’)
(x + y) + z a`CR x + (y + z) (D’)

x + y a`CR y + x (E’)
x · (y + z) a`CR (x · y) + (x · z) (H’)
−(x + y) a`CR −x +−y (I’)

w +−(x · y) a`CR w + (−x · y) (L’)
w +−(x · y) a`CR w + (x · −y) (M’)

Then suppose that we are given a rule of our calculus (X), different from (N)
and (O). Then (X) is of the form w + (u · ε) a` w + (u · δ) for some formulas
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ε and δ. But we have that

−(w + (u · ε)) a`CR −w +−(u · ε) (I’)
a`CR −w + (−u · ε) (L’)
a`CR −w + (−u · δ) (X)
a`CR −w +−(u · δ) (L’)
a`CR −(w + (u · δ)) (I’)

Therefore it only remains to prove the cases of (N) and (O). This is what we
do now:

−(0 + x) a`CR 0 +−(0 + x) (N)
a`CR 0 + (1 · −(0 + x)) (O)
a`CR 0 +−(1 · (0 + x)) (M’)
a`CR 0 + (−1 · (0 + x)) (L’)
a`CR 0 + (−1 · x) (F)
a`CR 0 +−(1 · x) (L’)
a`CR 0 + (1 · −x) (M’)
a`CR 0 +−x (O)
a`CR −x (N)

and

−(x + (1 · y)) a`CR −x +−(1 · y) (I’)
a`CR −x + (1 · −y) (M’)
a`CR −x +−y (0)
a`CR −(x + y) (I’)

Therefore we conclude that a`CR preserves −.
Then we turn to prove that a`CR preserves + and · too. In order to do

this, it will be enough to show that if ψ a`CR ϕ, then χ + ψ a`CR χ + ϕ and
χ · ψ a`CR χ · ϕ for every formula χ. Let us explain briefly why. Suppose
that this condition, call it (Y), holds. Then consider ψ1, ψ2, ϕ1, ϕ2 ∈ Fm such
that ψ1 a`CR ϕ1 and ψ2 a`CR ϕ2. We would have that

ψ1 + ψ2 a`CR ψ1 + ϕ2 (Y)
a`CR ϕ2 + ψ1 (E’)
a`CR ϕ2 + ϕ1 (Y)
a`CR ϕ1 + ϕ2 (E’)
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and

ψ1 · ψ2 a`CR ψ1 · ϕ2 (Y)
a`CR ϕ2 · ψ1 (B’)
a`CR ϕ2 · ϕ1 (Y)
a`CR ϕ1 · ϕ2 (B’)

concluding the proof. Therefore we turn to prove that if ψ a`CR ϕ, then
χ + ψ a`CR χ + ϕ and χ · ψ a`CR χ · ϕ for every formula χ. Suppose that
ψ a`CR ϕ and consider an arbitrary formula χ. By Lemma 4.4, to prove
that χ + ψ a`CR χ + ϕ and χ · ψ a`CR χ · ϕ, it will be enough to check that
χ + α a`CR χ + β and χ · α a`CR χ · β for every rule α a` β in CR. Then
suppose that we are given a rule (X) of CR, different from (N) and (O). Then
(X) is of the form w + (u · ε) a` w + (u · δ) for some formulas ε and δ. We
have that

χ + (w + (u · ε)) a`CR (χ + w) + (u · ε) (D’)
a`CR (χ + w) + (u · δ) (X)
a`CR χ + (w + (u · δ)) (D’)

and

χ · (w + (u · ε)) a`CR (χ · w) + (χ · (u · ε)) (H’)
a`CR (χ · w) + (1 · (χ · (u · ε))) (O)
a`CR (χ · w) + (1 · ((χ · u) · ε)) (A)
a`CR (χ · w) + ((χ · u) · ε) (O)
a`CR (χ · w) + ((χ · u) · δ) (X)
a`CR (χ · w) + (1 · ((χ · u) · δ)) (O)
a`CR (χ · w) + (1 · (χ · (u · δ))) (A)
a`CR (χ · w) + (χ · (u · δ)) (O)
a`CR χ · (w + (u · δ)) (H’)

Therefore it only remains to check cases (N) and (O). For what concerns (N)
we have that:

χ + (0 + x) a`CR (0 + x) + χ (E’)
a`CR 0 + (x + χ) (D’)
a`CR x + χ (N)
a`CR χ + x (E’)
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and

χ · (0 + x) a`CR 0 + (χ · (0 + x)) (N)
a`CR 0 + (χ · (x + 0)) (E)
a`CR 0 + (χ · x) (F)
a`CR χ · x (N)

Then we turn to prove the case of (O). We have that

χ + (x + (1 · y)) a`CR (χ + x) + (1 · y) (D’)
a`CR (χ + x) + y (O)
a`CR χ + (x + y) (D’)

and

χ · (x + (1 · y)) a`CR (χ · x) + (χ · (1 · y)) (H’)
a`CR (χ · x) + (χ · (y · 1)) (B)
a`CR (χ · x) + (χ · y) (C)
a`CR χ · (x + y) (H’)

This concludes the proof that CR is selfextensional. �

Drawing consequences from the fact that CR is selfextensional, the fol-
lowing result is easy to obtain.

Theorem 4.6. The rules CR provide a finite axiomatization of LCR.

Proof. First observe that each of the rules in CR corresponds to an equation,
which holds in CR. Together with point 3 of Lemma 4.1, this implies that
CR 6 LCR. Now, applying (N) and (O), it is easy to prove that

(x · y) · z a`CR x · (y · z)
x · y a`CR y · x
x · 1 a`CR x

(x + y) + z a`CR x + (y + z)
x + y a`CR y + x
x + 0 a`CR x

x +−x a`CR 0
x · (y + z) a`CR (x · y) + (x · z)

Since CR is selfextensional by Lemma 4.5, we can apply Lemma 1.14 obtain-
ing AlgCR ⊆ CR. On the other hand, from point 1 of Lemma 4.1 and the
fact that CR 6 LCR, it follows that CR = AlgLCR ⊆ AlgCR. Therefore we
conclude that AlgCR = CR. Since for every A ∈ CR and F ⊆ A the matrix
〈A, F〉 is a model of LCR, this implies that LCR 6 CR. Thus we conclude that
CR = LCR as desired. �
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Once we have built the machinery necessary to speak about commu-
tative rings by means of the propositional logic LCR, we turn back to the
classification of logics determined by finite Hilbert calculi in the Leibniz
hierarchy. We begin by describing a general way of associating a logic with
each Diophantine equation.

Definition 4.7. Let p(z1, . . . , zn) ≈ 0 be a Diophantine equation and x and y
two new different variables. Let L(p) be the logic, in the language of commu-
tative rings expanded with a new binary operation symbol↔, determined
by the following Hilbert calculus:

∅ `x ↔ x (R)
x ↔ y `y↔ x (S)

x ↔ y, y↔ z `x ↔ z (T)
x ↔ y ` − x ↔ −y (Rep1)

x ↔ y, z↔ u `(x + z)↔ (y + u) (Rep2)
x ↔ y, z↔ u `(x · z)↔ (y · u) (Rep3)
x ↔ y, z↔ u `(x ↔ z)↔ (y↔ u) (Rep4)

p(z1, . . . , zn)↔ 0, x, x ↔ y `y (MP’)
p(z1, . . . , zn)↔ 0, x a`x ↔ (x ↔ x), p(z1, . . . , zn)↔ 0 (A3’)
p(z1, . . . , zn)↔ 0, x, y `x ↔ y (G’)

∅ `α↔ β (CR)

for every α a` β ∈ CR.

Observe that L(p) is determined by an explicit finite Hilbert calculus
in a finite language. It turns out that there is a strong relation between the
existence of an integer solution to p(z1, . . . , zn) ≈ 0 and the location of L(p)
in the Leibniz hierarchy.

Theorem 4.8. Let p(z1, . . . , zn) ≈ 0 be a Diophantine equation. The following
conditions are equivalent:

(i) L(p) is finitely regularly algebraizable.

(ii) Truth is almost implicitly definable in Mod∗L(p).

(iii) L(p) is protoalgebraic.

(iv) The equation p(z1, . . . , zn) ≈ 0 has an integer solution.

Proof. Clearly (i) implies (ii) and (iii). Now we turn to prove (ii)⇒(iv). We
reason by contraposition. Suppose that p(z1, . . . , zn) ≈ 0 has no integer
solution. Now choose two different integers n and m. Then let Z be the
expansion of Z with a new binary function↔ defined as follows:

a↔ b :=
{

n if a = b
m otherwise
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for every a, b ∈ Z. Pick k /∈ {n, m}. It is easy to check that 〈Z, {n}〉 and
〈Z, {n, k}〉 are models of L(p), since p(z1, . . . , zn) ≈ 0 has no integer solution.
Moreover they are reduced. In order to see this, pick two different a, b ∈ Z
and consider the polynomial function q(z) := a↔ z. We have that q(a) = n
and that q(b) = m /∈ {n, k}. By point 1 of Lemma 1.2 we conclude both that
〈a, b〉 /∈ ΩZ{n} and that 〈a, b〉 /∈ ΩZ{n, k}. But this means that there are
two different reduced and non-almost trivial models of L(p) with the same
algebraic reduct and, therefore, that truth is not almost implicitly definable
in Mod∗L(p).

Now we prove (iii)⇒(iv). Suppose that L(p) is protoalgebraic. Then
there is a set of protoimplication formulas ρ(x, y). In particular, we have that
x, ρ(x, y) `L(p) y. Then there is a finite proof π of y from the premises in
{x} ∪ ρ(x, y). Taking a closer look at the axiomatization of L(p), it is easy to
see that either an application of (MP’) or of (A3’) must occur in π. This is
because the other rules yield complex conclusions. In particular, this implies
that there is a substitution σ such that x, ρ(x, y) `L(p) σp(z1, . . . , zn) ↔ σ0.
From Theorem 1.5 we know that ∅ `L(p) ρ(x, x). In particular, this means
that x `L(p) σxσp(z1, . . . , zn) ↔ σxσ0, where σx is the substitution which
sends all variables to x. But observe that every substitution leaves 0 fixed.
Therefore we conclude that

x `L(p) σxσp(z1, . . . , zn)↔ 0. (4.2)

Now we consider the algebra Z built in the proof of part (ii)⇒(iv). It is easy
to check that 〈Z, {n}〉 is a model of L(p). Therefore, pick an homomorphism
h : Fm→ Z that sends x to n. From (4.2) it follows that h(σxσp(z1, . . . , zn)↔
0) = n. But observe that

h(σxσp(z1, . . . , zn)↔ 0) = n ⇐⇒ h(p(σxσ(z1), . . . , σxσ(zn))↔ 0) = n
⇐⇒ pZ(hσxσ(z1), . . . , hσxσ(zn))↔ h0 = n
⇐⇒ pZ(hσxσ(z1), . . . , hσxσ(zn)) = h0
⇐⇒ pZ(hσxσ(z1), . . . , hσxσ(zn)) = 0.

Therefore we conclude that hσxσ(z1), . . . , hσxσ(zn) is an integer solution to
the equation p(z1, . . . , zn) ≈ 0.

It only remains to prove (iv)⇒(i). Suppose that the equation p(z1, . . . , zn) ≈
0 admits an integer solution. Recall that the free commutative ring with
free generators {z1, . . . , zn} is the polynomial ring Z[z1, . . . , zn]. Since Z
is a subalgebra of Z[z1, . . . , zn], this implies that there are constant terms
(in the language of commutative rings) α1, . . . , αn such that Z[z1, . . . , zn] �
p(α1, . . . , αn) ≈ 0 and, therefore, that CR � p(α1, . . . , αn) ≈ 0. From point 3 of
Lemma 4.1 it follows that p(α1, . . . , αn) a`CR 0. By Theorem 4.6 this is equiv-
alent to the fact that p(α1, . . . , αn) a`CR 0. Therefore we can apply Lemma
4.4 obtaining a finite sequence 〈γ1, γ2, . . . , γm〉, where γ1 = p(α1, . . . , αn),
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γm = 0 and for every k < m there is a rule α a` β ∈ CR and a substitution
σ (in the language of commutative rings) such that {σα, σβ} = {γk, γk+1}.
For each such k < m, α, β and σ consider the substitution σ in the language
of L(p). Recall that α ↔ β is an axiom of L(p) by (CR). Therefore, by
structurality, we obtain ∅ `L(p) σα ↔ σβ. Applying (S) if necessary, this
yields that ∅ `L(p) γk ↔ γk+1. Hence we proved that ∅ `L(p) γk ↔ γk+1 for
every k 6 m− 1. Applying m− 1 times (T) we conclude that

∅ `L(p) p(α1, . . . , αn)↔ 0. (4.3)

Recall that the variables x and y do not appear in the equation p(z1, . . . , zn) ≈
0 therefore, we can safely consider the substitution σ that sends zi to αi for
every i 6 n and leaves the other variables untouched. By (MP’), (A3’), (G’)
and (4.3) we obtain that

x, x ↔ y `L(p) y x a`L(p) x ↔ (x ↔ x) and x, y `L(p) x ↔ y.

Now it is easy to see that what we have proved is just the syntactic char-
acterization of algebraizability of Theorem 1.9 for τ(x) := {x ≈ x ↔ x}
and ρ(x, y) := {x ↔ y}. Therefore, with an application of Lemma 1.11, we
conclude that L(p) is finitely regularly algebraizable. �

Corollary 4.9. The logic L(p) is consistent for every Diophantine equation p ≈ 0.

Proof. It is easy to see that the matrix 〈Z, {n}〉 defined in the above proof is
a model of L(p). Since {n} 6= Z, we conclude that L(p) is consistent. �

Observe that every class of the Leibniz hierarchy is contained either into
the class of protoalgebraic logic or into the one of logics whose truth sets are
almost implicitly definable. Moreover every class of the Leibniz hierarchy
is contained into the one of finitely regularly algebraizable logics. Keeping
this is mind, Theorem 4.8 shows that the problem of determining whether
a logic of the form L(p) belong to a given level of the Leibniz hierarchy is
equivalent to the one of determining whether it belong to any level of the
Leibniz hierarchy. This does not contradicts the fact that in general these two
problems are different. By means of this peculiar feature of logics of the
form L(p), we are able to establish at once the undecidability of the various
problems (one for each level of the Leibniz hierarchy) of determining whether
a logic belong to a given level of the Leibniz hierarchy.

Theorem 4.10. Let K be a level of the Leibniz hierarchy in Figure 3.1. The problem
of determining whether the logic of a given consistent finite Hilbert calculus in a
finite language belongs to K is undecidable.

Proof. Suppose towards a contradiction that there is an algorithm A1 that,
given a consistent finite Hilbert calculus in a finite language, determines
whether its logic belongs to K. Then we define a new algorithm A2 as follows:
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given a Diophantine equation p ≈ 0, we construct the logic L(p) and check
with A1 whether it belongs to K. Observe that we can do this, since L(p) is
consistent by Corollary 4.9. Then in the positive case A2 returns yes, while no
otherwise. Observe that K contains the class of finitely regularly algebraizable
logics and is included either in the class of protoalgebraic logics or in the
class of logics whose truth sets are almost implicitly definable. Therefore we
can apply Theorem 4.8, yielding that:

L(p) ∈ K⇐⇒ p ≈ 0 has an integer solution.

Therefore A2 would provide a decision procedure for Hilbert’s tenth problem.
Since we know that such a procedure does not exist, we obtain a contradiction
as desired. �

The semantic case

We saw that the problem of classifying syntactically presented logics in
the Leibniz hierarchy is in general undecidable. If we move the attention
from syntax to semantics, we obtain a completely opposite situation. More
precisely, we will prove that for most levels K of the Leibniz hierarchy there
is an algorithm that determines whether the logic defined by a strongly
finite set of matrices belongs to K (Theorem 4.17). While doing this, we will
provide also some algorithmic constructions of syntactic objects related to
each level of the Leibniz hierarchy: for example if the logic of a strongly finite
set of matrices is protoalgebraic, then we will describe a mechanical way of
constructing a set of protoimplication and a set of congruence formulas with
parameters for it. The proofs of these results rely on the well-known fact
that there is an algorithm that, given a finite set of finite algebras A1, . . . , An
of finite type and a natural k ∈ ω, calculates a set of representatives for
the elements of FmV(k), where V is the variety generated by A1, . . . , An.
The Universal Algebra Calculator [46] contains an implementation of this
algorithm. Building on it, we implemented the algorithms described in this
section and developed a freely available software application [79]. In what
follows we will identify systematically the universe of FmV(k) with the set
of representatives.

We begin our analysis by the classes of protoalgebraic and equivalential
logics, which admit a syntactic characterization (Theorem 1.5).

Lemma 4.11. There is an algorithm that determines whether the logic of a given
strongly finite set of matrices is protoalgebraic and in the positive case returns a set
of protoimplication formulas ρ(x, y) and a set of congruence formulas with param-
eters µ(x, y,~z) for it.

Proof. We split our algorithm into two parts. The first one is intended to
answer the question of whether the logic of a strongly finite set of matrices
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is protoalgebraic or not and to provide a set of protoimplication formulas
for it in the positive case. Let protoimplication be the algorithm defined as
follows. Given a strongly finite set of matrices M, we construct the finite set
of terms FmM(x, y). Then we compute the set

ρ(x, y) := {α ∈ FmM(x, y) : ∅ `L α(x, x)}

where L is the logic of M. Finally we check whether the deduction x, ρ(x, y) `
y holds in L. In the positive case our algorithm returns yes and ρ(x, y), while
no otherwise. Now, recall from Theorem 1.5 that a logic is protoalgebraic if
and only if it has a set of protoimplication formulas. Keeping this in mind it
is an easy exercise to check that protoimplication works as expected.

In order to complete the proof, it will be enough to build a new al-
gorithm that provides a set of congruence formulas with parameters for
L in case protoimplication outputs yes. We define this new algorithm
p-congruence as follows. Given a strongly finite set of matrices M, we run
protoimplication. If it outputs no, then our new algorithm outputs no too.
Then suppose protoimplication outputs yes and provides ρ(x, y) as set of
protoimplication formulas. We define

t := max{|A| : 〈A, F〉 ∈ M}

and construct the set of terms FmM(z1, . . . , zt+1). Then we construct the set

µ(x, y,~z) :={α(ϕ(~z, x), ϕ(~z, y)) : α(x, y) ∈ ρ(x, y)
and ϕ(~z, zt+1) ∈ FmM(z1, . . . , zt+1)}.

Then our algorithm outputs yes and µ(x, y,~z).
It only remains to prove that p-congruence works as expected. If L is

not protoalgebraic, then p-congruence returns no. Then consider the case
in which L is protoalgebraic. In this case protoimplication returns yes and
a set of protoimplication formulas ρ(x, y) for L. In this case p-congruence

returns a set of formulas µ(x, y, z1, . . . , zt). Therefore it will be enough to
prove that this is a set of congruence formulas with parameters for L. To do
this, recall from Lemma 1.6 that

∆(x, y,~z) := {α(ϕ(~z, x), ϕ(~z, y)) : α(x, y) ∈ ρ(x, y) and ϕ(~z, x) ∈ Fm}

is a set of congruence formulas with parameters for L, since ρ(x, y) is a set
of protoimplication formulas for L. Then we claim that µ〈x, y〉 a`L ∆〈x, y〉.
Obviously, µ(x, y, z1, . . . , zt) ⊆ ∆(x, y,~z) and, therefore, ∆〈x, y〉 `L µ〈x, y〉.
Then we turn to prove the other direction. Let β ∈ ∆〈x, y〉. We want to prove
that µ〈x, y〉 `L β. In order to do this, observe that by definition of ∆(x, y,~z)
there are α(x, y) ∈ ρ(x, y), ϕ(v1, . . . , vk, x) ∈ Fm and δ1, . . . , δk ∈ Fm such
that β = α(ϕ(δ1, . . . , δk, x), ϕ(δ1, . . . , δk, y)). Then consider 〈A, F〉 ∈ M and a
homomorphism h : Fm→ A such that h[µ〈x, y〉] ⊆ F. We have that

h(β) = αA(ϕA(h(δ1), . . . , h(δk), h(x)), ϕA(h(δ1), . . . , h(δk), h(y))). (4.4)
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Since |A| 6 t, there are γ1, . . . , γn ∈ {δ1, . . . , δk} with n 6 t and a surjective
function f : {1, . . . , k} → {1, . . . , n} such that h(δm) = h(γ f (m)) for every
1 6 m 6 k. Pick n variables z1, . . . , zn different from x and y. We consider the
formula ψ(z1, . . . , zn, x) obtained by replacing in ϕ(v1, . . . , vk, x) the variable
vm by z f (m) for every 1 6 m 6 k. Now observe that α(ψ(~z, x), ψ(~z, y)) ∈
µ(x, y, z1, . . . , zt) and therefore that

α(ψ(γ1, . . . , γn, x), ψ(γ1, . . . , γn, y)) ∈ µ〈x, y〉.

Together with (4.4), this implies that h(β) ∈ F. But this means that µ〈x, y〉 `L
β, thus concluding the proof of our claim.

Applying Lemma 1.7 to our claim and to the fact that ∆(x, y,~z) is a set of
congruence formulas with parameters for L, we conclude that µ(x, y, z1, . . . , zt)
is a set of congruence formulas with parameters for L too. �

Lemma 4.12. There is an algorithm that determines whether the logic of a given
strongly finite set of matrices is equivalential and in the positive case returns a set
of congruence formulas ρ(x, y) for it.

Proof. Consider the algorithm defined as follows. Given a strongly finite set
of matrices M, we construct the set of formulas FmM(x, y). Then we check
whether there is a subset ρ(x, y) ⊆ FmM(x, y) that satisfies the conditions
of point 2 of Theorem 1.5 for the logic of M. If this is the case, then our
algorithm returns yes and ρ(x, y). Otherwise it outputs no. �

Now we move our attention to logics whose truth sets are almost univer-
sally definable. We will make use of the following technical result:

Lemma 4.13. Let L be complete w.r.t. a finite set M of finite matrices, n =
|FmM(x, y)| and τ(x, y1, . . . , yn) := FmM(x, y1, . . . , yn)2 ∩ ∼

ΩLCL{x}. Truth is
almost universally definable in Mod∗L if and only if for every Γ ∈ FiLFmM(x, y)r
{∅} and ϕ ∈ FmM(x, y):

ϕ ∈ Γ ⇐⇒ τ(ϕ,~γ) ⊆ ΩFmM(x,y)Γ for every ~γ ∈ FmM(x, y).

In this case τ almost defines truth in Mod∗L.

Proof. We begin by the “only if” part. Suppose that truth is almost universally
definable in Mod∗L. By Theorem 2.8 this fact is witnessed by the universal
translation τ′(x,~z) :=

∼
ΩLCL{x} where ~z = 〈zk : k ∈ ω〉 is the infinite tuple

of all variables different from x. Then consider Γ ∈ FiLFmM(x, y)r {∅} and
ϕ ∈ FmM(x, y). We have that

ϕ ∈ Γ ⇐⇒ τ′(ϕ,~γ) ⊆ ΩFmM(x,y)Γ for every ~γ ∈ FmM(x, y). (4.5)

First suppose that ϕ ∈ Γ. By (4.5) we obtain that for every ~γ ∈ FmM(x, y):

τ(ϕ,~γ) ⊆ τ′(ϕ,~γ) ⊆ ΩFmM(x,y)Γ.
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Now suppose that τ(ϕ,~γ) ⊆ ΩFmM(x,y)Γ for every ~γ ∈ FmM(x, y). We want
to prove that ϕ ∈ Γ. By (4.5) it will be enough to show that τ′(ϕ,~γ) ⊆
ΩFmM(x,y)Γ for every ~γ ∈ FmM(x, y). To this end, consider ε ≈ δ ∈ τ′ and
~γ ∈ FmM(x, y). Observe that the sequence ~γ contains at most n distinct
formulas δ1, . . . , δn. Then consider the substitution σ such that

σ(v) :=
{

x if v = x
yi if v = zk and γk = δi

for every variable v. Define ε′(x, y1, . . . , yn) := σε and δ′(x, y1, . . . , yn) := σδ.
We have that

ε′(ϕ, γ1, . . . , γn) = ε(ϕ,~γ) and δ′(ϕ, γ1, . . . , γn) = δ(ϕ,~γ).

From Lemma 2.6 it follows that:

ε′ ≈ δ′ ∈ στ′(x,~z) = σ
∼
ΩLCL{x} ⊆

∼
ΩLCL{σx} = ∼

ΩLCL{x} = τ′(x,~z).

Since ε′ and δ′ are in variables x, y1, . . . , yn there are formulas ε′′, δ′′ ∈
FmM(x, y1, . . . , yn) such that A � {ε′ ≈ ε′′, δ′ ≈ δ′′} for every 〈A, F〉 ∈ M.
In particular, this implies that ε′′ ≈ δ′′ ∈ τ′ and, therefore, ε′′ ≈ δ′′ ∈ τ. By
the assumption we have that

〈ε′′(ϕ, γ1, . . . , γn), δ′′(ϕ, γ1, . . . , γn)〉 ∈ ΩFmM(x,y)Γ.

Since A � {ε′′(ϕ, γ1, . . . , γn) ≈ ε(ϕ,~γ), δ′′(ϕ, γ1, . . . , γn) ≈ δ(ϕ,~γ)} for every
〈A, F〉 ∈ M, this implies that 〈ε(ϕ,~γ), δ(ϕ,~γ)〉 ∈ ΩFmM(x,y)Γ.

Now we turn to prove the “if” part. From Lemma 2.5 it will be enough to
prove that for every Γ ∈ T hLr {∅} and ϕ ∈ Fm:

Γ `L ϕ⇐⇒ τ(ϕ,~γ) ⊆ ΩΓ for every ~γ ∈ Fm.

First suppose that Γ `L ϕ. Consider ~γ ∈ Fm and a substitution σ such that
στ(x,~y) = τ(ϕ,~γ). By Lemma 2.6 we have

τ(ϕ,~γ) = στ(x,~y) ⊆ σ
∼
ΩLCL{x} ⊆

∼
ΩLCL{ϕ} ⊆ ∼

ΩLΓ ⊆ ΩΓ.

Then suppose that τ(ϕ,~γ) ⊆ ΩΓ for every ~γ ∈ Fm. Consider ~γ ∈ FmM(x, y).
Then choose a formula ψ ∈ Γ and let σ be a substitution such that σ(y) = ψ
and σ(x) = ϕ. We have that στ(x,~γ) ⊆ ΩΓ. Together with Lemma 1.1, this
implies that

τ(x,~γ) ⊆ σ−1ΩΓ ⊆ Ωσ−1Γ

Now let π : Fm(x, y) → FmM(x, y) be the canonical projection. Observe
that Ker(π) is compatible with Fm(x, y) ∩ σ−1(Γ) since L is complete w.r.t.
M. Moreover, observe that Fm(x, y) ∩ σ−1(Γ) ∈ FiLFm(x, y)r {∅} since
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y ∈ σ−1(Γ). Thus there is Γ′ ∈ FiLFmM(x, y)r {∅} such that π−1(Γ′) =
Fm(x, y) ∩ σ−1(Γ). We have that

τ(x,~γ) ⊆ Fm(x, y)2 ∩Ωσ−1Γ ⊆ ΩFm(x,y)(Fm(x, y) ∩ σ−1(Γ))

= ΩFm(x,y)π−1Γ′ = π−1ΩFmM(x,y)Γ′.

In particular, this implies that τ(x,~γ) ⊆ ΩFmM(x,y)Γ′ for every ~γ ∈ FmM(x, y).
Since Γ′ ∈ FiLFmM(x, y)r {∅}, we can apply the assumptions yielding
x ∈ Γ′. In particular, this means that x ∈ σ−1(Γ) and, therefore, that
ϕ = σ(x) ∈ Γ. �

The result above contains the key to describe a decision procedure for the
universal definability of truth sets. More precisely, we have the following:

Lemma 4.14. There are algorithms that determine whether the logic L of a given
strongly finite set of matrices has truth almost universally definable (resp. equation-
ally definable) in Mod∗L, and in the positive case return a set of defining equations
(resp. without parameters) τ(x,~y) for it.

Proof. Let universal be the algorithm defined as follows. Given a strongly
finite set of matrices M, we compute the cardinality of FmM(x, y). Suppose
that it is n ∈ ω. Then we construct the terms FmM(x, y1, . . . , yn). We define
m := max{|A| : 〈A, F〉 ∈ M}. Let L be the logic determined by M. Choose
variables z1, . . . , zm such that {z1, . . . , zm} ∩ {x, y1, . . . , yn}) = ∅. For every
equation ε ≈ δ with ε, δ ∈ FmM(x, y1, . . . , yn) we check whether

ϕ(ε, z1, . . . , zm), x a`L x, ϕ(δ, z1, . . . , zm)

for every ϕ ∈ FmM(x, z1, . . . , zm). Then let τ(x,~y) be the set of equations
ε ≈ δ that satisfy this condition. Finally we check whether for every Γ ∈
FiLFmM(x, y)r {∅} and ϕ ∈ FmM(x, y):

ϕ ∈ Γ ⇐⇒ τ(ϕ,~γ) ⊆ ΩFmM(x,y)Γ for every ~γ ∈ FmM(x, y).

Observe that this can be done mechanically, since the set FiLFmM(x, y) can
be constructed by means of the completeness of L w.r.t. M. In the positive
case our algorithm returns yes and τ(x,~y), while in the negative case it
returns no.

Now we show that universal determines whether truth is almost uni-
versally definable in Mod∗L. First observe that the set τ described above
coincides with FmM(x, y1, . . . , yn)2 ∩ ∼

ΩLCL{x}. This follows from point 2 of
Lemma 1.2 and the fact that m bounds the cardinality of the matrices in M.
Keeping this in mind, the fact that universal works well follows from 4.13.

Now we describe a decision procedure for the equational definability
of truth sets. Let equational be the algorithm defined as follows. Given a
strongly finite set of matrices M, we first run universal. If it outputs no, then
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also our new algorithm returns no. Otherwise universal returns yes and a
set τ. In this case we check whether the logic L of M has theorems. This can
be done mechanically, since L has theorems if and only if there is a theorem
among the formulas FmM(x). In case L is purely inferential, equational
returns no. Otherwise it returns yes and σxτ(x,~y).

Now observe that equational returns yes exactly when truth is equation-
ally definable in Mod∗L. This is due to the fact that truth is equationally
definable in Mod∗L if and only if truth is almost universally definable in
Mod∗L and L has theorems (Corollary 2.10). Then it only remains to prove
that if equational returns yes and σxτ(x,~y), then σxτ(x,~y) defines truth in
Mod∗L. From Lemma 2.6 it follows that

σxτ(x,~y) = FmM(x) ∩ σx
∼
ΩLCL{x}. (4.6)

Moreover, by Lemma 1.3 we know that Alg∗L ⊆ V{A : 〈A, F〉}. Together
with (4.6), this implies that σxτ(x,~y) defines truth in Mod∗L if and only if
σx

∼
ΩLCL{x} does so. Hence, since σx

∼
ΩLCL{x} defines truth in Mod∗L by

Theorem 2.9, we are done. �

One may wonder why the algorithm used in the proof of Lemma 4.14

needs to compute filters over free algebras, instead of looking just at the
behaviour of matrices in M. This is because, even under very strong assump-
tions, there need not be any direct relation between the truth sets of M and
the ones of Mod∗L, where L is the logic determined by M. The next example
presents an instance of this phenomenon.

Example 4.15. Let A = 〈{a, b, 1},�,3, 1〉 be the algebra with a constant 1
and unary operations � and 3 defined as follows:

�a = �b = b �1 = 1

3b = 31 = 1 3a = b.

Then we consider the matrix 〈A, {a, 1}〉 and let L be its logic. The first facts
are easy to check:

Fact 4.15.1. The matrix 〈A, {a, 1}〉 is reduced.

Fact 4.15.2. Truth is equationally definable in 〈A, {a, 1}〉 by �x ≈ 3x.

Fact 4.15.3. L has theorems, namely ∅ `L 1.

Fact 4.15.4. For every Γ ⊆ Fm and x ∈ Var, if Γ `L x, then there is n ∈ ω such
that �nx ∈ Γ.
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We reason by contraposition. Suppose that �nx /∈ Γ for every n ∈ ω.
Consider the evaluation h : Fm→ A defined as

h(z) :=
{

b if z = x
1 if z 6= x

for every variable z ∈ Var. Observe that h(γ) = 1 for every γ ∈ Γ with
Var(γ) 6= {x}. Then consider γ ∈ Γ such that Var(γ) = {x}. By assumption
we know that γ = ∆3∇x for some (possibly empty) finite sequences ∆
and ∇ of connectives in {�,3}. But this implies that h(γ) = h(∆3∇x) =
∆3∇(b) = ∆1 = 1 ∈ {a, 1}. Hence we conclude that h[Γ] ⊆ {a, 1} and
h(x) = b /∈ {a, 1}. This shows that Γ 0L x.

Fact 4.15.5. Truth is not implicitly definable in Mod∗L.

First observe that {1} ∈ FiLA. To prove this, let Γ ∪ {ϕ} ⊆ Fm such that
Γ `L ϕ. Then consider a homomorphism h : Fm→ A such that h[Γ] ⊆ {1}.
Since 〈A, {a, 1}〉 is a model of L, we know that h(ϕ) ∈ {a, 1}. Now, we
have cases: either h(ϕ) = a or h(ϕ) = 1. Suppose that h(ϕ) = a. Then, by
definition of A, we would have that ϕ = x for some x ∈ Var. By Fact 4.15.4
this implies that there is n ∈ ω such that �nx ∈ Γ. Therefore we would
have that h(�nx) = 1 against the assumption that h(�nx) = �nh(x) =
�na ∈ {a, b}. Therefore h(ϕ) 6= a, and hence h(ϕ) = 1. We conclude that
{1} ∈ FiLA. It is easy to prove that the matrix 〈A, {1}〉 is reduced. Therefore
both 〈A, {a, 1}〉 and 〈A, {1}〉 are reduced models of L. �

Finally, we consider the problem of determining whether the logic of a
strongly finite set of matrices is assertional.

Lemma 4.16. There is an algorithm that determines whether the logic of a given
strongly finite set of matrices is assertional.

Proof. Let assertional be the algorithm defined as follows. Given a strongly
finite set of matrices M, we check whether the set

{F/ΩAF : 〈A, F〉 ∈ M}

is a collection of singletons. In case it is not, then our algorithm outputs
no. Otherwise we construct the terms FmM(x) and check whether there is at
least one formula ϕ ∈ FmV(x) such that ∅ `L ϕ, where L is the logic of M.
In the positive case our algorithm outputs yes, while no otherwise.

To see that assertional works as expected, we reason as follows. First
suppose that L is assertional. From Theorem 1.10 we know that Mod∗L
is a unital class of matrices. Therefore the first step succeeds and our
algorithm goes on checking whether there is a theorem of L inside FmM(x).
Since assertional logics have theorems, by structurality we know that L has a
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theorem with at most the variable x. Therefore there is a formula ϕ ∈ FmV(x)
such that ∅ `L ϕ and our algorithm outputs yes.

Now suppose that L is not assertional. If {F/ΩAF : 〈A, F〉 ∈ M} is
not a collection of singletons, the algorithm outputs no. Now consider the
case where it is so. Recall that the classes M and M∗ determine the same
logic. Then by Theorem 1.10 we know that Mod∗L is a almost unital class of
matrices that is not unital. In particular, this implies that L has no theorems.
Therefore our algorithm outputs no. �

Now observe that equivalential logics determined by a strongly finite set
of matrices are always finitely equivalential. Therefore combining the results
obtained so far we obtain the following:

Theorem 4.17. Let K be a level of the Leibniz hierarchy contained either in the
class of protoalgebraic logics or in the that of logics L whose truth sets are almost
universally definable in Mod∗L. The problem of determining whether the logic of a
given strongly finite set of matrices belongs to K is decidable.

Our analysis leaves open the following:

Problem 3. Is there a decision procedure that, given a strongly finite set
of matrices, determines whether the truth sets of its logic L are implicitly
definable (small) in Mod∗L?

4.2 The classification problem in the Frege hierarchy

Now we move our attention to the problem of classifying logics in the Frege
hierarchy, which deals with several kinds of replacement properties. Also
in this case we will focus on two problems. Let K be a level of the Frege
hierarchy. The first one is, given a consistent finite Hilbert-style calculus H in
a finite language, to decide whether the logic determined by H belongs to
K (Theorem 4.23). The second one is, given a strongly finite set of matrices
M, to decide whether the logic determined by M belongs to K (Theorem 4.24

and Corollary 4.25). Again, we divide the rest of the section into two parts
that correspond respectively to the analysis of the first and of the second
problem.

The syntactic case

The aim of this section is to prove a result analogous to the one obtained
for the Leibniz hierarchy. More precisely, we will show that the problem
of classifying the logic of a consistent finite Hilbert calculus in a finite
language in the Frege hierarchy is in general undecidable (Theorem 4.23).
Remarkably, our argument shows that this classification problem remains
undecidable even if we restrict our attention to Hilbert calculi that determine
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a finitary algebraizable logic. Our strategy consists reducing an undecidable
problem related to the equational theory of relation algebras to the problem
of classifying logics of finite consistent Hilbert calculi in the Frege hierarchy.
For this reason we will recall some basic definitions. A relation algebra is an
algebra A = 〈A,∧,∨,¬, ·, ,̀ 1〉 of type 〈2, 2, 1, 2, 1, 0〉 such that:
1. 〈A,∧,∨,¬〉 is a Boolean algebra.

2. 〈A, ·, 1〉 is a monoid.

3. The operations · and ` distribute over ∨, i.e.

x · (y ∨ z) = (x · y) ∨ (x · z) and (x ∨ y)` = x` ∨ y`.

4. The operation ` is an involution, i.e.

x`` = x and (x · y)` = y` · x`.

5. The inequality x` · (x · y)` 6 y` holds.
We denote by RA the variety of relation algebras and by Φ its finite basis
obtained from the definition above.

Example 4.18 (Relation Algebras). Let X be an arbitrary set and R(X) the col-
lection of binary relations on it, i.e. P(X× X). Let ∩,∪ and ¬ be respectively
the set-theoretic intersection, union and complement operations. Moreover,
for every pair of relations R, S ∈ R(X) we define

R · S := {〈x, y〉 : 〈x, z〉 ∈ R and 〈z, y〉 ∈ S for some z ∈ X}
R` := {〈x, y〉 : 〈y, x〉 ∈ R}

1 := {〈x, x〉 : x ∈ X}.

Then the structure 〈R(X),∩,∪,¬, ·, ,̀ 1〉 is a relation algebra. �

The following result can be deduced from [94, Section 8.5(viii)]:†

Theorem 4.19 (Tarski and Givant). The set of all equations in a single variable
that hold in RA is undecidable.

We will denote by Eq(x) the set of equations in the language of relation
algebras in the variable x. Now we introduce a logic associated with every
equation of relation algebras in a given variable x. Observe that this logic
is expressed in the language of relation algebras expanded with two new
connectives � and→ that witness the algebraizability of the logic.

†See for example pag. 398 of [70] for an explicit statement of this fact.
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Definition 4.20. Let α ≈ β ∈ Eq(x). Then L(α, β) is the logic in the language
〈∧,∨,¬, ·, ,̀ 1,�,→〉 of type 〈2, 2, 1, 2, 1, 0, 1, 2〉 axiomatized by the following
Hilbert calculus:

∅ `x → x (R)
x, x → y `y (MP)

x → y, y→ x `3x → 3y (Rep1)
x → y, y→ x, z→ u, u→ z `(x ∗ z)→ (y ∗ u) (Rep2)

x a`�x → x, x → �x (A3)
∅ `ε→ δ, δ→ ε (RA)

α(ϕ)→ β(ϕ) `ϕ (DDT)

for every ε ≈ δ ∈ Φ, every ∗ ∈ {∧,∨, ·,→}, 3 ∈ {¬, `,�} and every formula
ϕ of the following list:

ϕ1 := x → (y→ x)
ϕ2 := (x → (y→ z))→ ((x → y)→ (x → z))
ϕ3 := (x → y)→ ((y→ x)→ (3x → 3y))
ϕ4 := (x → y)→ ((y→ x)→ ((z→ u)→ ((u→ z)→ ((x ∗ z)→ (y ∗ u)))))
ϕ5 := x → (x → �x)
ϕ6 := x → (�x → x)
ϕ7 := (�x → x)→ ((x → �x)→ x)

again with ∗ and 3 ranging over the unary and binary connectives respec-
tively.

The name of the set of rules (DDT) stands for deduction-detachment theorem.
The motivation of this choice will become evident in the proof of part (iii)⇒(i)
of Theorem 4.23. Before going on, observe that the syntactic characterization
of algebraizability (Theorem 1.9) implies that L(α, β) is finitely algebraizable
through the structural transformers

τ(x) = {x ≈ �x} and ρ(x, y) = {x → y, y→ x}.

The next result expresses the relation between the validity of the equation
α ≈ β in RA and the location of the logic L(α, β) in the Frege hierarchy.

Theorem 4.21. Let α ≈ β ∈ Eq(x). The following conditions are equivalent:
(i) L(α, β) is fully Fregean.

(ii) L(α, β) is selfextensional.

(iii) RA � α ≈ β.
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Proof. (i)⇒(ii) is trivial. Then we turn to prove (ii)⇒(iii). Suppose towards a
contradiction that L(α, β) is selfextensional and that RA 2 α ≈ β. Then let A
be the free relation algebra with countably many free generators {JzK : z ∈
Var}. Now we expand A with two new unary and binary operations � and
→ defined as

�a :=
{

J1K if a = JxK
a otherwise

a→ b :=


JxK if a 6= b
J1K if a = b 6= JxK
JyK if a = b = JxK

for every a, b ∈ A. Let B be the result of the expansion and put F :=
B r {JxK}.

Claim 4.21.1. 〈B, F〉 ∈ Mod∗L(α, β).

First observe that 〈B, F〉 is a reduced matrix. To prove this, consider two
different elements a, b ∈ B and the polynomial function p(x) := x → a. It is
easy to see that p(a) ∈ F and p(b) /∈ F. By point 1 of Lemma 1.2 we conclude
that 〈a, b〉 /∈ ΩBF and, therefore, that 〈B, F〉 is reduced. Then we turn to prove
that it is a model of L(α, β). The closure of F under the rules axiomatizing
L(α, β) is easily proved, except perhaps for the set of rules (DDT). Consider a
rule α(ϕ)→ β(ϕ) ` ϕ in (DDT) and a homomorphism h : Fm→ B such that
hα(ϕ)→ hβ(ϕ) ∈ F. Clearly we have that hα(ϕ) = hβ(ϕ). Since RA 2 α ≈ β
and A is the free relation algebra, we know that h(ϕ) /∈ {JzK : z ∈ Var}.
Together with the fact that the principal connective of ϕ is →, this implies
that h(ϕ) = J1K ∈ F, as desired. This establishes the claim.

Now observe that x ↔ x and 1 ↔ 1 are instances of (R) and, therefore,
they are theorems of L(α, β). In particular this means that x ↔ x a`L(α,β)
1↔ 1. Since L(α, β) is selfextensional, we obtain that AlgL(α, β) � x ↔ x ≈
1 ↔ 1 by Lemma 1.14. Let h : Fm → B the the natural surjection, which
sends z to JzK for every z ∈ Var. It is easy to see that

h(x ↔ x) = JyK 6= J1K = h(1↔ 1).

But from Claim 4.21.1 it follows that B ∈ AlgL. Therefore we reach a
contradiction as desired.

It only remains to prove part (iii)⇒(i). Suppose that RA � α ≈ β. Recall
that L(α, β) is algebraizable with set of congruence formulas ρ(x, y) = {x →
y, y→ x}. In particular, this implies that

∅ `L(α,β) ρ(γ, η)⇐⇒ AlgL(α, β) � γ ≈ η

for every γ, η ∈ Fm. Applying this observation to the axiom (RA), we
conclude that AlgL(α, β) is a class of expanded relation algebras. Together
with the fact that RA � α ≈ β, this implies that α→ β is a theorem of L(α, β).
Then consider any i 6 7. By structurality α(ϕi) → β(ϕi) is a theorem of
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L(α, β). Therefore we can apply the rules (DDT), obtaining that also ϕi is a
theorem of L(α, β).

Now, let L be the logic axiomatized only by {ϕi : i 6 7}, (RA) and (MP).

Claim 4.21.2. L = L(α, β).

Clearly we have that L 6 L(α, β). To show the other direction, observe
that L satisfies the rules (DDT). Moreover, with an application of (MP), it is
easy to see that L satisfies (Rep1), (Rep2) and (A3) too. It only remains to
show that L satisfies (R). But observe that L is an expansion of the implication
fragment IPC→ of propositional intuitionistic logic, which is axiomatized
by ϕ1, ϕ2 and (MP). Since x → x is a theorem of IPC→, we conclude that L
satisfies (R) and, therefore, that L(α, β) 6 L. Thus we established the claim.

It is well known that a finitary logic in a language containing→ satisfies
the classical version of the deduction-detachment theorem if and only if it is
an axiomatic extension of the logic defined in its language by the axioms ϕ1
and ϕ2 and the rule (MP) [96, Theorem 2.4.2]. Together with Claim 4.21.2,
this implies that

Γ `L(α,β) γ→ ψ⇐⇒ Γ, γ `L(α,β) ψ

for every Γ ∪ {γ, ψ} ⊆ Fm. In particular, this means that for every γ, ψ ∈ Fm:

γ a`L(α,β) ψ⇐⇒ ∅ `L(α,β) ρ(γ, ψ)⇐⇒ AlgL � γ ≈ ψ.

Keeping this in mind, it is easy to see that a`L(α,β) is a congruence of Fm.
Hence we conclude that L(α, β) is selfextensional. The fact that L(α, β) is also
fully Fregean, is a consequence of two general results of abstract algebraic
logic. First, every finitary selfextensional logic with a classical deduction-
detachment theorem is fully selfextensional [40, Theorem 4.46] (see also
[61]).‡ Secondly, every truth-equational fully selfextensional logic is also fully
Fregean [6, Theorem 22]. �

Corollary 4.22. The logic L(α, β) is consistent for every α ≈ β ∈ Eq(x).

Proof. The fact that L(α, β) is consistent when RA 2 α ≈ β has been proved in
part (i)⇒(ii) of Theorem 4.23. Then consider the case where RA � α ≈ β. In
part (iii)⇒(i) of Theorem 4.23, we showed that L(α, β) is the logic axiomatized
by only by {ϕi : i 6 7}, (RA) and (MP). Then consider any non-trivial Boolean
algebra A and expand it to a relation algebra by interpreting · as ∧, ` as the
identity map and 1 as the top element. Moreover let→ be the usual Boolean
implication and � be the constant function with value 1. Let B be the result
of the expansion. It is very easy to see that 〈B, {1}〉 is a model of {ϕi : i 6 7},
(RA) and (MP). �

‡In these references the classical deduction-detachment theorem is called uniterm
deduction-detachment theorem. The expression uniterm refers to the fact that this DDT
is witnessed by a single formula in two variables in contrast to the cases where the DDT is
witnesses by a set of formulas as in [20, 32].

79



4. Computational aspects

Now it is easy to complete the proof of our main result on the classification
of syntactically presented logics in the Frege hierarchy.

Theorem 4.23. Let K be a level of the Frege hierarchy. The problem of determining
whether the logic of a given finite consistent Hilbert calculus in a finite language
belongs to K is undecidable. Moreover, the problem remains undecidable when
restricted to the classification of finite consistent Hilbert calculi that determine a
finitely algebraizable logic.

Proof. Let K be a level of the Frege hierarchy. Suppose towards a contradiction
that there is an algorithm A1 which, given a finite consistent Hilbert calculus
in a finite language that moreover determines a finitely algebraizable logic,
decides whether its logic belongs to K. Then we define a new algorithm A2 as
follows: given an equation α ≈ β ∈ Eq(x), we construct the logic L(α, β) and
check with A1 if it belongs to K. Observe that we can do this, since L(α, β) is
finitely algebraizable and consistent by Corollary 4.22. In the positive case A2
returns yes, while no otherwise. Since K contains the class of selfextensional
logics and is included in the of class of fully Fregean ones, we can apply
Theorem 4.23 obtaining that

L(α, β) ∈ K⇐⇒ RA � α ≈ β.

Therefore A2 would provide a decision procedure for the validity in RA of
equations in one variable. From Theorem 4.19 we know that such a procedure
does not exist. Hence we obtain a contradiction as desired. �

The semantic case

Now we briefly consider the problem of classifying logics determined by a
strongly finite set of matrices in the Frege hierarchy. The main result in this
direction is the following:

Theorem 4.24. There is an algorithm that determines whether the logic of a given
strongly finite set of matrices is selfextensional.

Proof. We define the algorithm selfextensional as follows. Given a finite
set M of finite matrices of finite type, we compute n := max{|A| : 〈A, F〉 ∈
M} and, subsequently, the terms FmM(x1, . . . , xn). Then we check whether
for every α1, . . . , αk, β1, . . . , βk ∈ FmM(x1, . . . , xn) and every k-ary function
symbol λ the following condition holds:

if αi a`L βi for every i 6 k, then λ(α1, . . . , αk) a`L λ(α1, . . . , αk), (4.7)

where L is the logic of M. In the positive case our algorithm returns yes,
while no otherwise.

We check that this algorithm works as intended. It is easy to see
that if L is selfextensional, then it returns yes. Conversely, suppose that
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selfextensional returns yes. Then consider a k-ary function symbol λ
and formulas α1, . . . , αk and β1, . . . , βk such that αi a`L βi for every i 6 k.
Then consider a matrix 〈A, F〉 ∈ M and a homomorphism h : Fm→ A such
that hλ(α1, . . . , αk) ∈ F. Then for every a ∈ h[Var] we choose a variable
va ∈ h−1(a) and define a substitution σ : Fm→ Fm as σ(x) = vh(x) for every
x ∈ Var. Observe that hσ(ϕ) = h(ϕ) for every formula ϕ. By structurality we
know that σ(αi) a`L σ(βi) for every i 6 k. Moreover, we have

|Var{σ(αi) : i 6 k} ∪Var{σ(βi) : i 6 k}| 6 |A| 6 n.

This means that the formulas σ(α1), . . . , σ(αk), σ(β1), . . . , σ(βk) can be viewed
as elements of FmM(x1, . . . , xn). Therefore we can safely apply the assump-
tion, obtaining that σλ(α1, . . . , αk) a`L σλ(β1, . . . , βk). Since hσλ(α1, . . . , αk) =
hλ(α1, . . . , αk) ∈ F, this means that hσλ(β1, . . . , βk) ∈ F. But this is to say
that hλ(β1, . . . , βk) = hσλ(β1, . . . , βk) ∈ F. This shows that λ(α1, . . . , αk) `L
λ(β1, . . . , βk). Hence we conclude that L is selfextensional. �

Corollary 4.25. There is an algorithm that determines whether the logic of a
strongly finite set of matrices is Fregean.

Proof. The same strategy used in the proof of Theorem 4.24 allows to con-
struct a decision procedure for Fregeanity. The only difference is that the
notion of Fregean logic involves some premises Γ on both sides of the
interderivability relation. More precisely, let Fregean be the algorithm de-
fined as selfextensional except for the fact that, instead of checking con-
dition (4.7), it check the following: if Γ, αi a`L βi, Γ for every i 6 k, then
Γ, λ(α1, . . . , αk) a`L λ(β1, . . . , βk), Γ for every Γ ∪ {α1, . . . , αk, β1, . . . , βk} ⊆
FmM(x1, . . . , xn). If this condition holds Fregean returns yes, while it returns
no otherwise. It is easy to show that Fregean works as expected. �

The fact that it is possible to decide whether a logic of a strongly finite set
M of finite matrices is selfextensional or Fregean was to be expected. This is
because selfextensionality and Fregeanity are purely syntactic conditions and,
therefore, can be checked on the finitely generated free algebras over M, which
are finite. Full selfextensionality and full Fregeanity, on the contrary, make
reference to semantic concepts such as that of generated L-filter. Therefore
in principle it may be complicated to find a decision procedure for them,
even in the context of strongly finite logics. This poses the following open
question:

Problem 4. Are there decision procedures that, given a strongly finite set
of matrices, determines whether its logic is fully selfextensional (resp. fully
Fregean)?
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Part II

A logical and algebraic
characterization of adjunctions

between generalized
quasi-varieties





CHAPTER 5

Canonical decomposition

In the very influential paper [73] McKenzie discovered that category equiv-
alences between prevarieties can be described in purely algebraic terms.
Namely, he showed that if two prevarieties X and Y are categorically equiva-
lent, then we can transform X into Y by applying two kind of deformations
to X. In this chapter we generalize this approach to the study of adjunctions
between generalized quasi-varieties. Our main result will be that every right
adjoint functor between generalized quasi-varieties can be decomposed into a
combination of deformations that generalize the ones introduced by McKen-
zie (Theorem 5.29). This result is achieved by developing a correspondence
between the concept of adjunction and a new notion of translation between
relative equational consequences (Theorems 5.23 and 5.27). This provides a
general explanation of the correspondence that appears in some well-known
translations between logics:
1. Gödel’s translation of IPC into S4 corresponds to the functor that takes

an interior algebra to the Heyting algebra of its open elements (Examples
5.21 and 5.24).

2. Kolmogorov’s translation of CPC into IPC corresponds to the functor that
takes a Heyting algebra to the Boolean algebra of its regular elements
(Examples 5.22 and 5.24).

5.1 Categorical universal algebra

We already met classes of algebras in our road. However we implicitly chose
to overlook their categorical structure and to delay discussing it until the
moment where it becomes fundamental. Now that we want to give a logical
interpretation of the categorical notion of an adjunction, this moment has

85



5. Canonical decomposition

come. In particular, we will spend a few words on two distinct but related
topics. First we discuss some universal constructions in the framework of
prevarieties, and show how these constructions can be applied to characterize
right adjoint functors between generalized quasi-varieties. Accordingly, we
divide the rest of the section into two parts.

Universal constructions

All the constructions that we will review can be found in [5]. In particular,
our aim is to show that prevarieties seen as categories (where algebras are
objects and homomorphisms are arrows) are bicomplete, i.e., they have small
limits and small colimits. To this end, we will conform to the following
convention:∗ An algebraic language L admits empty models if and only if L
does not contain constant symbols. In particular, a prevariety K contains the
empty algebra if and only if its language does not contain a constant symbol.
This convention ensures the existence of the 0-generated free algebra over K.

We are now ready to describe the structure of limits and colimits in
prevarieties. Let K be a prevariety. Categorical products in K coincide with
direct products. Moreover, given a parallel pair of arrows f , g : A ⇒ B in
K, we have that h : C → A is an equalizer of f and g if and only if h is an
embedding and h[C] = {a ∈ A : f (a) = g(a)}. Observe that if the language
of K does not contain constant symbols, then C may happen to be empty. It
is well known that all other limits can be obtained as a combination of these
two constructions. The description of colimits is slightly more complicated.
Consider a family of algebras {Ai : i ∈ I} ⊆ K and assume w.l.o.g. that their
universes are pair-wise disjoint. For every i ∈ I we let πi : FmK(Ai)→ Ai be
the unique surjective homomorphism that maps identically Ai onto Ai. Then
consider the set X :=

⋃
i∈I Ai and define

θ := CgFmK(X)
K

⋃
i∈I

Ker(πi).

The algebra FmK(X)/θ, together with the maps pi : Ai → FmK(X)/θ that
send a ∈ Ai to a/θ, is a coproduct of {Ai : i ∈ I} ⊆ K. Observe that the
maps pi need not to be injective. Moreover, it is worth to remark that the
free κ-generated algebra is a κ-th copower of the free 1-generated algebra. In
general, if A is a coproduct in K of the family {Ai : i ∈ I} and fi : Ai → B
with i ∈ I are arrows in K, then we will denote by 〈 fi : i ∈ I〉 : A→ B the map
induced by the universal property of the coproduct. In case A = FmK(X)/θ
as above, the arrow 〈 fi : i ∈ I〉 is defined by the rule

ϕ(a1, . . . , an)/θ 7−→ ϕB( fk1(a1), . . . , fkn(an))

∗This convention was tacitly not applied in Part I, where algebras were assumed to have
non-empty universes.

86



5.1. Categorical universal algebra

for every ϕ(a1, . . . , an)/θ ∈ FmK(X)/θ with a1 ∈ Ak1 , . . . , an ∈ Akn .
Now, we move our attention to the other basic kind of colimit. Given

a parallel pair of arrows f , g : A ⇒ B in K, we have that h : B → C is a
coequalizer of f and g if and only if it is surjective and

Ker(h) = CgB
K{〈 f (a), g(a)〉 : a ∈ A}.

It is worth to remark that every surjective homomorphism in K arises as the
coequalizer of a pair of arrows. In particular, observe that every congruence
θ ∈ ConKA of A ∈ K can be seen as a subalgebra of the direct product
A× A. Keeping this in mind, θ can be associated with two homomorphisms
l, r : θ ⇒ A that sends a pair 〈a, b〉 ∈ θ respectively to its left and right
component. It is easy to prove that πθ is a coequalizer of l and r. Finally, it
is well known that all other colimits can be constructed as a combination of
coproducts and coequalizers.

Observe that the terminal object of K is the trivial algebra, while its initial
object is FmK(0). Therefore the initial object of K is empty if and only if the
language of K contains no constant symbols. Given two prevarieties X and Y,
the functors F : X←→ Y : G, where F sends everything to the initial object
and G sends everything to the terminal object, always form an adjunction
F a G. We call trivial the adjunctions of this kind. In particular, we say that a
left (right) adjoint functor between prevarieties is trivial if it sends everything
to the initial (terminal) object.

It is worth to spend some more time on a special kind of colimit con-
structions. These are κ-directed colimits, i.e., colimits of diagrams indexed by
posets in which every subset of cardinality < κ has an upper bound, for
a regular cardinal κ. In varieties they are constructed as usual, by taking
the disjoint union of the factors and identifying the elements that become
eventually equal. In the case of prevarieties K the only difference is that we
have to factor out the resulting algebra by its smallest K-congruence. Re-
markably, this last step can be avoided when K is a generalized quasi-variety
that can be axiomatized by generalized quasi-equations, whose number of
variables is less than κ. Then the κ-directed colimits of families of algebras in
K are obtained by just identifying elements that become eventually equal. In
particular, in quasi-varieties this is the case for usual ℵ0-directed colimits.

Right adjoint functors

All the definitions reviewed here can be found in [4]. Let κ be a regular
cardinal and K be a locally small category, i.e., a category whose hom-sets
are sets (as opposed to proper classes). An object A in K is κ-presentable if the
functor hom(A, ·) preserves κ-directed colimits. More explicitly, this means
that for every κ-directed diagram {Bi : i ∈ I} with colimit gi : Bi → B and
for every arrow h : A→ B the following conditions hold:
1. There is i ∈ I and an arrow p : A→ Bi such that gi ◦ p = h.
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2. The map p is essentially unique, in the sense that for every other arrow
q : A → Bi such that gi ◦ q = h there is j > i such that fij ◦ p = fij ◦ q,
where fij : Bi → Bj is an arrow of the κ-directed diagram.

Then K is locally κ-presentable if it is cocomplete, and has a set J of κ-
presentable objects such that every object in K is a κ-directed colimit of
objects in J. Finally, K is locally presentable if it is locally κ-presentable for
some regular cardinal κ. The following result is [4, Theorem 1.66]:

Theorem 5.1 (Adámek and Rosicky). A functor between locally presentable cat-
egories is right adjoint if and only if it preserves limits and κ-directed colimits for
some regular cardinal κ.

The aim of this section is to show that generalized quasi-varieties are
locally presentable categories and, therefore, that the above theorem charac-
terizes right adjoints between generalized quasi-varieties. The following is
essentially [4, Theorem 3.12]:

Lemma 5.2. Let κ be a regular cardinal and K be a generalized quasi-variety axiom-
atized by generalized quasi-equations in less than κ variables. An algebra A ∈ K
is κ-presentable if and only if it is (isomorphic to) a quotient of FmK(λ) under a
µ-generated K-congruence for some λ, µ < κ.

Proof. Observe that generalized quasi-varieties are locally small categories
and, therefore, that the definition of κ-presentable object makes sense in K.
First suppose that A is κ-presentable. Then consider the diagram whose
objects are the λ-generated subalgebras of A for every λ < κ and inclusion
maps between them. Since κ is a regular cardinal, this diagram is κ-directed.
It is easy to see that A is the colimit of the diagram. We consider the situation
where the role of the map h in the definition of κ-presentable object is played
by the identity map 1A : A→ A. Thus we obtain a λ-generated subalgebra
B 6 A for some λ < κ and a homomorphism p : A→ B such that p = 1A. In
particular, this implies that A is λ-generated. Then there is a K-congruence θ
and an isomorphism h : A→ FmK(λ)/θ.

Consider a new diagram whose objects are algebras of the form FmK(λ)/φ,
where φ ⊆ θ is a µ-generated K-congruence for some µ < κ, and whose
arrows are the canonical projections fφη : FmK(λ)/φ → FmK(λ)/η when
φ ⊆ η. Since κ is a regular cardinal, this diagram is κ-directed. More-
over, its colimit is given by FmK(λ)/θ and by the canonical projections
gφ : : FmK(λ)/φ → FmK(λ)/θ for every object FmK(λ)/φ in the diagram.
Thus, applying the fact that A is κ-presentable, we obtain a homomorphism
p : A → FmK(λ)/φ (where φ is µ-generated for some µ < κ) such that
gφ ◦ p = h. Now let {xj/θ : j < λ} be the natural generators of FmK(λ)/θ.
We know that there are {aj : j < λ} ⊆ A such that h(aj) = xj/θ. Then
for every j < λ we choose a term tj ∈ Fm(λ) such that tj belongs to the
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5.1. Categorical universal algebra

congruence class p(aj). We have that

xj/θ = h(aj) = gφ ◦ p(aj) = gφ(tj/φ) = tj/θ.

Hence we obtain that 〈xj, tj〉 ∈ θ for every j < λ. Then consider the K-
congruence η of FmK(λ) generated by the union X ∪ {〈xj, tj〉 : j < λ}, where
X is the set of generators of φ. The algebra FmK(λ)/η belongs to the diagram.
Then we consider the map fφη ◦ p : A→ FmK(λ)/η. It is very easy to check
that fφη ◦ p is injective. The fact that it is surjective follows from the fact
that its image covers the generators of FmK(λ)/η. We conclude that A
is isomorphic to FmK(λ)/η, where η is a µ-generated K-congruence and
λ, µ < κ.

For the other direction, let A be the quotient of FmK(λ) under a µ-
generated K-congruence θ for some λ, µ < κ. Then consider a κ-directed
diagram {Bi : i ∈ I} with arrows fij : Bi → Bj when i 6 j. Let C with
arrows gi : Bi → C be the colimit of the diagram. Suppose we have a
homomorphism h : A → C. Let {xj/θ : j < λ} be the natural generators of
FmK(λ)/θ. Since λ < κ and the diagram is κ-directed, there is i ∈ I and
elements {cj : j < λ} ⊆ Bi such that gi(cj) = h(xj/θ) for every j < λ.

Recall that θ is µ-generated. For each of its generators 〈ϕ, ψ〉, we have that
gi(ϕ(~c)) = gi(ψ(~c)). From the fact that K is axiomatized by generalized quasi-
equations in less than κ variables, it follows that the colimit C is obtained by
considering the disjoint union of the objects in the diagram and identifying
elements that become eventually equal along the arrows of the diagram.
Thus there is j > i such that fij(ϕ(~c)) = fij(ψ(~c)). Since the generators of θ
are less than κ and the diagram is κ-directed, there is a new i ∈ I and new
elements {cj : j < λ} ⊆ Bi such that

gi(cj) = h(xj/θ) and gi(ϕ(~c)) = gi(ψ(~c))

for every j < λ and every pair 〈ϕ, ψ〉 in the generators of θ. In particular, this
means the map p : A→ Bi, defined as p(ϕ/θ) := ϕBi(c) for every ϕ/θ ∈ A,
is a well-defined homomorphism such that gi ◦ p = h.

It only remains to prove that p is essentially unique. To this end, consider
any other arrow q : A → Bi such that gi ◦ q = h. In particular, we have
that gi ◦ p(xj/θ) = gi ◦ q(xj/θ) for every j < λ. Again, recall that the
colimit C is obtained by considering the disjoint union of the objects in
the diagram and identifying elements that become eventually equal along
the arrows of the diagram. Then for every j < λ there is r > i such that
fir ◦ p(xj/θ) = fir ◦ q(xj/θ). Since the diagram is κ-directed, there is a new
r > i such that fir ◦ p(xj/θ) = fir ◦ q(xj/θ) for every j < λ. Thus the arrows
fir ◦ p and fir ◦ q coincide on the generators of A and, therefore, are equal. �

As a consequence we obtain the following:

Lemma 5.3. Generalized quasi-varieties are locally presentable.

89



5. Canonical decomposition

Proof. Let K be a generalized quasi-variety. Clearly K is a locally small
category. Moreover, we know that K is cocomplete. K is axiomatized by
generalized quasi-equations in less than κ variables for some regular cardinal
κ. We want to prove that K is a locally κ-presentable category.

From Lemma 5.2 it follows that κ-presetable objects (up to isomorphism)
form a set. Then consider an algebra A ∈ K. Let π : FmK(A) → A be
the natural surjection and define θ := Ker(π). We consider the set of
algebras FmK(B)/φ where B ⊆ A has cardinality < κ and φ ⊆ θ is a K-
congruence generated by a set of cardinality < κ. We equip this set with
maps fφη : FmK(B)/φ → FmK(C)/η such that fφη(b/φ) := b/η for every
b ∈ B, when B ⊆ C and φ ⊆ η. By Lemma 5.2 this is a diagram of κ-
presentable objects that, moreover, is κ-directed. Since κ is strictly larger than
the number of variables occurring in the generalized quasi-equations that
axiomatize K, we know that the colimit of this diagram is obtained construct-
ing the disjoint union of the factors and then identifying the elements that
become eventually equal. Keeping this in mind, it is easy to see that this
colimit is isomorphic to A. �

Thanks to Lemma 5.3 a particular instance of Theorem 5.1 is the following:

Theorem 5.4 (Adámek and Rosicky). A functor between generalized quasi-
varieties is right adjoint if and only if it preserves limits and κ-directed colimits
for some regular cardinal κ.

5.2 Two deformations

In this section we will describe two general methods to deform a given gener-
alized quasi-variety, obtaining a new generalized quasi-variety that is related
to the first one by an adjunction. In particular, it turns out that every right
adjoint between generalized quasi-variety arises (up to natural isomorphism)
as a combination of these deformations (Theorem 5.29). Remarkably, in the
particular case of category equivalence, these deformations coincide with the
ones identified by McKenzie in [73] (see Examples 5.10 and 5.15).

The first deformation that we consider is just an infinite version of the
usual finite matrix power construction. Let X be a class of similar algebras and
κ be a cardinal. Then observe that every term ϕ ∈ Fm(κ) induces a map
ϕ : Aκ → A for every A ∈ X. Obviously this does not mean that κ-many
variables actually occur in ϕ, as κ may be infinite.

Definition 5.5. Let κ > 0 be a cardinal and X a class of similar algebras. Then
L κ

X is the algebraic language whose n-ary operations (for every n ∈ ω) are
all κ-sequences 〈ti : i < κ〉 of terms ti of the language of X built up with
variables

{xj
m : 1 6 m 6 n and j < κ}.
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Observe that each ti has a finite number of variables, possibly none, of each
sequence ~xm := 〈xj

m : j < κ〉 with 1 6 m 6 n. We will write ti = ti(~x1, . . . ,~xn)
to denote this fact.

Example 5.6. Consider the variety of distributive lattices DL. Examples of
basic binary operations of L 2

DL are:

〈x1
1, x2

1〉 u 〈x1
2, x2

2〉 := 〈x1
1 ∧ x1

2, x2
1 ∨ x2

2〉
〈x1

1, x2
1〉 t 〈x1

2, x2
2〉 := 〈x1

1 ∨ x1
2, x2

1 ∧ x2
2〉.

Moreover, ¬〈x1
1, x2

1〉 := 〈x2
1, x1

1〉 is a basic unary operation of L 2
DL. �

Definition 5.7. Consider an algebra A ∈ X and a cardinal κ > 0. We let
A[κ] be the algebra of type L κ

X with universe Aκ where a n-ary operation
〈ti : i < κ〉 is interpreted as

〈ti : i < κ〉(a1, . . . , an) = 〈tA
i (a1/~x1, . . . , an/~xn) : i < κ〉

for every a1, . . . , an ∈ Aκ. In other words 〈ti : i < κ〉(a1, . . . , an) is the κ-
sequence of elements of A defined as follows. Consider i < κ. Observe that
only a finite number of variables occurs in ti, say

ti = ti(xα1
1

1 , . . . , x
α1

m1
1 , . . . , xαn

1
n , . . . , xαn

mn
n )

where α1
1, . . . , α1

m1
, . . . , αn

1 , . . . , αn
mn

< κ. Then the i-th component of the se-
quence 〈ti : i < κ〉(a1, . . . , an) is

tA
i (a1(α

1
1), . . . , a1(α

1
m1
), . . . , an(α

n
1), . . . , a1(α

n
mn
)).

If X is a class of similar algebras, we set

X[κ] := I{A[κ] : A ∈ X}

and call it the κ-th matrix power of X.

Now, let [κ] be the map defined as follows:

A 7−→ A[κ]

f : A→ B 7−→ f [κ] : A[κ] → B[κ]

where f [κ]〈ai : i < κ〉 := 〈 f (ai) : i < κ〉, for every A, B ∈ X and every
homomorphism f .

Example 5.8. In Example 5.6 we described two binary operations u and t
and a unary operation ¬ in L 2

DL. Let us explain how they are interpreted in
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5. Canonical decomposition

the matrix power construction. Consider A ∈ DL. The universe of A[2] is just
the cartesian product A× A. We have that:

〈a, b〉 u 〈c, d〉 = 〈a ∧ c, b ∨ d〉
〈a, b〉 t 〈c, d〉 = 〈a ∨ c, b ∧ d〉

¬〈a, b〉 = 〈b, a〉

for every 〈a, b〉, 〈c, d〉 ∈ A× A.
Examples of matrix powers with infinite exponent are technically, but not

conceptually, more involved. We review two of them in Examples 6.10 and
6.14. �

Theorem 5.9. Let X be a generalized quasi-variety and κ > 0 a cardinal. If Y is
a generalized quasi-variety such that X[κ] ⊆ Y, then [κ] : X → Y is a right adjoint
functor.

Proof. It is not difficult to see that the map [κ] is a functor that preserves direct
products and equalizers. Since all limits can be constructed as combination
of products and equalizers, we conclude that [κ] preserves limits. In view
of Theorem 5.4 it only remains to show that it preserves λ-directed colimits
for some regular cardinal λ. To this end, let λ be a regular cardinal that
is larger than the number of variables occurring in the generalized quasi-
equations axiomatizing X and Y. This makes sense, since X and Y are
generalized quasi-varieties. Moreover, assume that λ is larger than κ. Then
consider a λ-directed diagram {Ai : i ∈ I} with arrows fij : Ai → Aj when
i 6 j in X. Since λ is larger than the number of variables occurring in
the generalized quasi-equations axiomatizing X, the directed colimit of this
diagram is the algebra A obtained as follows. First we consider the disjoint
union {〈a, i〉 : a ∈ Ai and i ∈ I}. Then we factor out by the quotient with
respect to the following equivalence relation

θ := {〈〈a, i〉, 〈b, j〉〉 : there is k > i, j such that fik(a) = f jk(b)}

and define operations in the natural way. Analogously, the colimit in Y of the
λ-directed diagram {A[κ]

i : i ∈ I} with arrows f [κ]ij : A[κ]
i → A[κ]

j when i 6 j
is the algebra B obtained as follows. First we consider the disjoint union
{〈~a, i〉 :~a ∈ Aκ

i and i ∈ I}, then we factor it out by the equivalence relation

φ := {〈〈~a, i〉, 〈~b, j〉〉 : there is k > i, j such that f [κ]ik (~a) = f [κ]jk (~b)}

and finally we define operations in the natural way.
We claim that the map g : B→ A[κ] defined as

g(〈~a, i〉/φ) := 〈〈~a(r), i〉/θ : r < κ〉
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for every 〈~a, i〉/φ ∈ B is an isomorphism. It is very easy to see that g is
well defined. To see that it is injective, we reason as follows. Suppose that
g(〈~a, i〉/φ) = g(〈~b, j〉/φ). This means that for every r < κ there is kr > i, j
such that fikr(~a(r)) = f jkr(

~b(r)). But since our diagram is λ-directed and
κ < λ, there is k ∈ I such that kr 6 k for every r < κ. In particular,
this implies that fik(~a(r)) = f jk(~b(r)) for every r < κ and, therefore, that

f [κ]ik (~a) = f [κ]jk (~b). This means that 〈~a, i〉/φ = 〈~b, j〉/φ, as desired.
Then we turn to show that g is surjective. Consider an element 〈〈ar, ir〉/θ :

r < κ〉 ∈ A[κ]. Again, since our diagram is λ-directed and κ < λ, there is
k ∈ I such that k > ir for every r < κ. In particular, this implies that
〈〈ar, ir〉/θ : r < κ〉 = 〈〈 firk(ar), k〉/θ : r < κ〉. Now observe that the element
~b := 〈 firk(ar) : r < κ〉 belongs to A[κ]

k . Moreover, we have that g(〈~b, k〉/φ) =
〈〈 firk(ar), k〉/θ : r < κ〉, as desired.

It only remains to show that g is a homomorphism. To this end, let ϕ
be a basic n-ary operation of Y and consider 〈~a1, i1〉/φ, . . . , 〈~an, in〉/φ ∈ B.
Consider an index j > i1, . . . , in. Then for every s < κ, we have the following
(where ϕs is the s-th component of ϕ):

ϕA[κ]
(g〈~a1, i1〉/φ, . . . , g〈~an, in〉/φ)(s)

= ϕA[κ]
(〈〈~a1(r), i1〉/θ : r < κ〉, . . . , 〈〈~an(r), in〉/θ : r < κ〉)(s)

= ϕA[κ]
(〈〈 fi1 j(~a1(r)), j〉/θ : r < κ〉, . . . , 〈〈 fin j(~an(r)), j〉/θ : r < κ〉)(s)

= ϕA
s (~x1/〈〈 fi1 j(~a1(r)), j〉/θ : r < κ〉, . . . ,~xn/〈〈 fin j(~an(r)), j〉/θ : r < κ〉)

= 〈ϕAj
s (~x1/ fi1 j(~a1), . . . ,~xn/ fin j(~an)), j〉/θ

= 〈ϕA[κ]
j ( f [κ]i1 j (~a1), . . . , f [κ]in j (~an))(s), j〉/θ

= g(〈ϕA[κ]
j ( f [κ]i1 j (~a1), . . . , f [κ]in j (~an)), j〉/φ)(s)

= g(ϕB(〈 f [κ]i1 j (~a1), j〉/φ, . . . , 〈 f [κ]in j (~an), j〉/φ))(s)

= g(ϕB(〈~a1, i1〉/φ, . . . , 〈~an, in〉/φ))(s).

This concludes the proof of our claim.
To prove that [κ] preserves λ-directed colimits, it only remains to show

that g ◦ qi = p[κ]i for every i ∈ I, where qi : A[κ]
i → B and pi : Ai → A are the

maps associated with the colimits B and A respectively. But this is an easy
consequence of the fact that

qi(~a) := 〈~a, i〉/φ and pi(a) := 〈a, i〉/θ

for every~a ∈ Aκ
i and a ∈ Ai. Therefore we can apply Theorem 5.4, concluding

that [κ] is a right adjoint functor. �
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Example 5.10 (Finite Exponent). It is worth to remark that, when κ is finite,
the functor [κ] : X→ X[κ] is a category equivalence [73, Theorem 2.3.(i)]. In
this case if X is a prevariety (or a generalized quasi-variety, a quasi-variety,
a variety), then so is X[κ]. This is not the case in general: when κ is infinite
it may happen that [κ] : X → Y fails to be a category equivalence for every
prevariety Y containing X[κ].

To construct the necessary counterexample, we reason as follows. First
observe that, given a prevariety K, an infinite algebra A ∈ K has cardinality λ
if and only if the following conditions hold:
1. The set hom(B, A) has cardinality 6 λ for every finitely generated algebra

B ∈ K.

2. There is a finitely generated algebra B ∈ K such that hom(B, A) has
exactly cardinality λ.

To see this, observe if A has infinite cardinality λ and B is n-generated,
then the cardinality of hom(B, A) is 6 λn = λ. Moreover there is a finitely
generated algebra B, e.g., the one-generated free algebra, such that hom(B, A)
has cardinality λ. This justifies the equivalence between having cardinality λ
and conditions 1 and 2.

Together with the fact that the notion of a finitely generated algebra is
categorical in prevarieties [73, Theorem 3.1.(5)] and that category equivalences
preserve the cardinality of hom-sets, this implies that category equivalences
preserve also infinite cardinalities.† We will use this fact to construct the
desired counterexample. Consider a generalized quasi-variety X of finite
type and an infinite cardinal κ. We know that the free algebra FmX(κ)
has cardinality κ and that its matrix power FmX(κ)

[κ] has cardinality κκ.
Since κ < κκ, we conclude that the functor [κ] does not preserve infinite
cardinalities. Thus [κ] : X → Y is not a category equivalence, for every
prevariety Y containing X[κ]. �

In order to describe the second kind of deformation, we need to introduce
a new concept:

Definition 5.11. Let X be a class of similar algebras and L ⊆ LX. A set of
equations θ ⊆ Eq(LX, 1) is compatible with L in X if for every n-ary operation
ϕ ∈ L we have that:

θ(x1) ∪ · · · ∪ θ(xn) �X θ(ϕ(x1, . . . , xn)).

In other words θ is compatible with L in X when the solution sets of θ in X
are closed under the interpretation of the operations and constants in L .

†This contrast with the fact that category equivalences between pravarieties do not
preserve the cardinality of finite algebras. Nevertheless, they preserve the fact of being finite
[73, Theorem 3.1.(7)].
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Now we will explain how it is possible to build a functor out of a set of
equations θ compatible with L ⊆ LX. For every A ∈ X, we let A(θ, L ) be
the algebra of type L whose universe is

A(θ, L ) := {a ∈ A : A � θ(a)}

equipped with the restriction of the operations in L . We know that A(θ, L )
is well-defined, since its universe is closed under the interpretation of the op-
erations in L and contains the interpretation of the constants in L . Observe
that by definition of compatibility A(θ, L ) can be empty if and only if L
contains no constant symbol. Given a homomorphism f : A → B in X, we
denote its restriction to A(θ, L ) by

θL ( f ) : A(θ, L )→ B(θ, L ).

It is easy to see that θL ( f ) is a well-defined homomorphism. Now, consider
the following class of algebras:

X(θ, L ) := I{A(θ, L ) : A ∈ X}.

Let θL : X→ X(θ, L ) be the map defined by the following rule:

A 7−→ A(θ, L )

f : A→ B 7−→ θL ( f ) : A(θ, L )→ B(θ, L ).

It is easy to check that θL is a functor.

Theorem 5.12. Let X be a generalized quasi-variety and θ ⊆ Eq(LX, 1) a set of
equations compatible with L ⊆ LX. If Y is a generalized quasi-variety such that
X(θ, L ) ⊆ Y, then θL : X→ Y is a right adjoint functor.

Proof. By Theorem 5.4 we know that the functor θL is a right adjoint if and
only if it preserves limits and κ-directed colimits for some regular cardinal
κ. We begin by proving that θL preserves limits. It will be enough to show
that it preserves direct products and equalizers. To do this, consider a family
{Ai : i ∈ I} ⊆ X. It is easy to see that

(∏
i∈I

Ai)(θ, L ) = ∏
i∈I

Ai(θ, L )

and that projections are sent to projections. As to equalizers, the situation
is analogous. Consider two homomorphisms f , g : A ⇒ B in X. Their
equalizer is the inclusion map e : C → A, where C is the subalgebra of A
with universe {a ∈ A : f (a) = g(a)}. Keeping this in mind, it is clear that
θL (e) : C(θ, L ) → A(θ, L ) is an inclusion map, whose range consists of
objects on which θL ( f ) and θL (g) are identical. Therefore it only remains
to prove that θL (e) covers all the elements on which θL ( f ) and θL (g)
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coincide. Pick a ∈ A(θ, L ) such that θL ( f )(a) = θL (g)(a). This means that
f (a) = g(a) and, therefore, that a ∈ C. Moreover a is a solution to all the
equations in θ, therefore we obtain that a ∈ C(θ, L ). This concludes the
proof that θL preserves limits.

It only remains to prove that θL preserves κ-directed colimits for some
regular cardinal κ. Let κ be regular cardinal larger than the number of
variables occurring in the generalized quasi-equations axiomatizing X. This
makes sense, since X is a generalized quasi-variety. Consider a κ-directed
diagram {Ai : i ∈ I} with arrows fij : Ai → Aj when i 6 j in X. Its directed
colimit is the algebra A obtained as follows. First we consider the disjoint
union {〈a, i〉 : a ∈ Ai and i ∈ I}. Then we pass to the quotient with respect
to the following equivalence relation

φ := {〈〈a, i〉, 〈b, j〉〉 : there is k > i, j such that fik(a) = f jk(b)}

and define operations in the natural way. It is now clear that the algebra
A(θ, L ) is obtained analogously out of the κ-directed diagram {Ai(θ, L ) :
i ∈ I} and θL ( fij) for i 6 j. Therefore the directed colimit of this diagram is
the quotient of A(θ, L ) with respect to its smallest Y-congruence. But this
congruence is the identity, because we assume that A(θ, L ) ∈ Y. Therefore
we conclude A(θ, L ) is the directed colimit of the diagram as desired. �

A familiar instance of the above construction is the following:

Example 5.13 (Subreducts). Let X be a (generalized) quasi-variety and L ⊆
LX. A L -subreduct of an algebra A ∈ X is a subalgebra of the L -reduct
of A. From [55, Proposition 2.3.19] it is easy to infer that the class Y of
L -subreducts of algebras in X is a (generalized) quasi-variety. For quasi-
varieties this fact was proved by Maltsev [72]. Consider the forgetful functor
U : X→ Y. It is easy to see that U = θL where θ = ∅. From Theorem 5.12 it
follows that U has a left adjoint. �

In the next example we will illustrate how the two deformations intro-
duced so far can be combined to describe right adjoint functors.

Example 5.14 (Kleene Algebras). A Kleene algebra A = 〈A,u,t,¬, 0, 1〉 is a De
Morgan algebra in which the equation x u ¬x 6 y t ¬y holds. We denote
by KA the variety of Kleene algebras and by DL01 the variety of bounded
distributive lattices. In [25] (but see also [62]) a way of constructing Kleene
algebras out of bounded distributive lattices is described. More precisely,
given A ∈ DL01, the Kleene algebra G(A) has universe

G(A) := {〈a, b〉 ∈ A2 : a ∧ b = 0}
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and operations defined as

〈a, b〉 u 〈c, d〉 := 〈a ∧ c, b ∨ d〉
〈a, b〉 t 〈c, d〉 := 〈a ∨ c, b ∧ d〉

¬〈a, b〉 := 〈b, a〉
1 := 〈1, 0〉
0 := 〈0, 1〉

for every 〈a, b〉, 〈c, d〉 ∈ G(A). Moreover, given a homomorphism f : A→ B
in DL01, the map G( f ) : G(A)→ G(B) is defined by replicating f component-
wise. It turns out that G : DL01 → KA is a right adjoint functor [25, Theorem
1.7].

It is worth to remark that DL01 and KA are not categorically equivalent
and, therefore, that G is not a category equivalence. This follows from the
following observations:
1. Category equivalences between prevarieties preserve the fact of being a

non-trivial subdirectly irreducible algebra.

2. DL01 has up to isomorphism only one non-trivial subdirectly irreducible
member (the two-element chain), while KA has two (the two and the
three-element chains).
In order to decompose G into a combination of our two deformations, we

reason as follows. First consider the matrix power functor [2] : DL01 → DL
[2]
01 .

Recall from Example 5.10 that it is a category equivalence and that DL[2]01 is a

variety. Now consider the following sublanguage L of the language of DL[2]01
(cfr. Example 5.6):

〈x1, x2〉 u 〈y1, y2〉 := 〈x1 ∧ y1, x2 ∨ y2〉
〈x1, x2〉 t 〈y1, y2〉 := 〈x1 ∨ y1, x2 ∧ y2〉

¬〈x1, x2〉 := 〈x2, x1〉
1 := 〈1, 0〉
0 := 〈0, 1〉.

Then consider the set of equations

θ := {〈x1 ∧ x2, x1 ∧ x2〉 ≈ 〈0, 0〉} ⊆ Eq(L
DL

[2]
01

, 1).

The set of equations θ is compatible with L . For example the compatibil-
ity of θ w.r.t. u amounts to the following condition: For every A ∈ DL01 and
〈a, b〉, 〈c, d〉 ∈ A× A if

〈x1 ∧ x2, x1 ∧ x2〉A[2]
(〈a, b〉) = 〈0, 0〉 and 〈x1 ∧ x2, x1 ∧ x2〉A[2]

(〈c, d〉) = 〈0, 0〉
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5. Canonical decomposition

then
〈x1 ∧ x2, x1 ∧ x2〉A[2]

(〈a, b〉 uA[2] 〈c, d〉) = 〈0, 0〉.
The condition above is equivalent to the following elementary fact: For every
A ∈ DL01 and 〈a, b〉, 〈c, d〉 ∈ A× A

if a ∧ b = 0 and c ∧ d = 0, then (a ∧ c) ∧ (b ∨ d) = 0.

This shows that θ is compatible with u. A similar argument shows that θ is
compatible with the whole L .

Moreover, for every A ∈ DL01 and a, b ∈ A we have that:

〈a, b〉 ∈ G(A) ⇐⇒ a ∧ b = 0
⇐⇒ 〈a ∧ b, a ∧ b〉 = 〈0, 0〉
⇐⇒ A[2] � 〈x1 ∧ x2, x1 ∧ x2〉 ≈ 〈0, 0〉Ja, bK
⇐⇒ 〈a, b〉 ∈ A(θ, L ).

Hence we conclude A[2](θ, L ) = G(A) ∈ KA for every A ∈ DL
[2]
01 . But this

implies that θL : DL[2]01 → KA is a right adjoint functor by Theorem 5.12.
Finally, the functor G coincides with the composition θL ◦ [2] as desired.
Observe that we showed that G is the composition of two right adjoint
functors. Thus we obtained a new and purely combinatorial proof of the fact
that G is a right adjoint functor. �

Before concluding this section, it is worth to remark that the deformations
described until now can be applied to decompose equivalence functors
between prevarieties. In order to explain how, let us recall the definition of a
special version of the θL construction.

Example 5.15 (Idempotent and Invertible Terms). Suppose that X is a prevariety
and σ(x) a unary term. We say that σ(x) is idempotent if X � σσ(x) ≈ σ(x)
and that σ(x) is invertible if there are an n-ary term t and unary terms
t1, . . . , tn such that

X � t(σt1(x), . . . , σtn(x)) ≈ x.

Given a unary and idempotent term σ(x) of X, we define

L := {σt : t is a basic symbol of X[1]}

and θ := {x ≈ σ(x)}. Moreover, we define

X(σ) := X[1](θ, L ).

McKenzie proved that the functor σ : X→ X(σ) defined as the composition
θL ◦ [1] is a category equivalence [73, Theorem 2.2.(ii)]. Moreover, if X is a
prevariety (or a generalized quasi-variety, a quasi-variety, a variety), then
so is X(σ). Following the literature, we will write A(σ) instead of σ(A) for
every A ∈ X. �
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To introduce McKenzie’s characterization of category equivalence we
need to recall some basic concepts [13, Definitions 4.76 and 4.77]:

Definition 5.16. Let X and Y be prevarieties. An interpretation of X in Y is a
map τ : LX → Fm(LY, ω) such that:
1. τ sends n-ary basic symbols to at most n-ary terms for every n > 1.

2. τ sends constants symbols to at most unary terms.

3. Aτ := 〈A, {τ(λ) : λ ∈ LX}〉 ∈ X.

Definition 5.17. Two prevarieties X and Y are term-equivalent if there are
interpretations τ and ρ of X′ in Y′ and of Y′ in X′ respectively such that for
every A ∈ X′ and B ∈ Y′

(Aρ)τ = A and (Bτ)ρ = B

where X′ and Y′ are the prevarieties obtained from replacing the constant
symbols by new constant unary terms in X and Y respectively.

When two prevarieties X and Y without constant symbols are term-
equivalent as in condition 4 of the above definition, the map that sends A ∈ X
to Aρ and is the identity on arrows is a category equivalence Fρ : X → Y.
Then we have the following [73, Theorem 6.1]:

Theorem 5.18 (McKenzie). If G : X→ Y is a category equivalence between preva-
rieties without constant symbols, then there is a natural n > 0, a unary idempotent
and invertible term σ(x) of X[n] such that
1. Y is term-equivalent to X[n](σ) under some interpretation ρ of Y in X[n](σ).

2. The functors G and Fρ ◦ (σ ◦ [n]) are naturally isomorphic.

Observe the restriction to prevarieties without constant symbols in Theo-
rem 5.18 is not very important. To see this, observe that, given a prevarety
K, we can always replace the constant symbols of K by constant unary op-
erations obtaining a new prevareity K′ whose only difference with K is the
presence of the empty algebra.

5.3 From translations to right adjoints

As we mentioned, our aim is to develop a correspondence between the ad-
junctions between two generalized quasi-varieties X and Y and the translations
between the equational consequences relative to X and Y. The first step we
make in this direction is to introduce a precise notion of translation between
relative equational consequences. Subsequently, we use these translations
to construct right adjoint functors (Theorem 5.23). To simplify the notation,
we will assume all along the section that X and Y are two fixed generalized
quasi-varieties (possibly in different languages).
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5. Canonical decomposition

Definition 5.19. Consider a cardinal κ > 0. A κ-translation τ of LX into LY

is a map from LX to L κ
Y that preserves the arities of function symbols.

In other words, if a basic symbol ϕ ∈ LX is n-ary, we have that τ(ϕ) =
〈ti : i < κ〉 for some terms ti = ti(~x1, . . . ,~xn) of language of Y, where
~xm = 〈xj

m : j < κ〉. It is worth to remark that τ sends constant symbols to
sequences of constant symbols. Thus if LX contains a constant symbol, then
also LY must contain one for a translation to exists.

A κ-translation τ extends naturally to arbitrary terms. Let us explain
briefly how. Given a cardinal λ, let Fm(LX, λ) be the set of terms of X written
with variables in {xj : j < λ} and let Fm(LY, κ × λ) be the set of terms of Y
written with variables in {xi

j : j < λ, i < κ}. We define recursively a map

τ∗ : Fm(LX, λ)→ Fm(LY, κ × λ)κ.

For variables and constants we set

τ∗(xj) := 〈xi
j : i < κ〉, for every j < λ

τ∗(c) := τ(c).

For complex terms we reason as follows. Suppose that we are given an n-ary
symbol ψ ∈ LX and ϕ1, . . . , ϕn ∈ Fm(LX, λ). We have that τ(ψ) = 〈ti : i <
κ〉 where ti = ti(~x1, . . . ,~xn). Keeping this in mind, we set

τ∗(ψ(ϕ1, . . . , ϕn))(i) := ti(τ∗(ϕ1)/~x1, . . . , τ∗(ϕn)/~xn) for every i < κ.

The map τ∗ can be lifted to sets of equations yielding a new function

τ∗ : P(Eq(LX, λ))→ P(Eq(LY, κ × λ))

defined by the following rule:

Φ 7−→ {τ∗(ε)(i) ≈ τ∗(δ)(i) : i < κ and ε ≈ δ ∈ Φ}.

Observe that there is a qualitative difference between τ∗ and τ∗: the map τ∗

translates sets of equations of X into sets of equations of Y, while τ∗ translates
terms of X into κ-sequences of terms (and not simply terms) of Y.

Definition 5.20. Consider a cardinal κ > 0. A κ-translation of �X into �Y is a
pair 〈τ, Θ〉 where τ is a κ-translation of LX into LY and Θ(~x) ⊆ Eq(LY, κ)
is a set of equations written with variables among {xi : i < κ} that satisfies
the following conditions:
1. For every cardinal λ and equations Φ ∪ {ε ≈ δ} ⊆ Eq(LX, λ) written with

variables among {xj : j < λ}:

if Φ �X ε ≈ δ, then τ∗(Φ) ∪
⋃
j<λ

Θ(~xj) �Y τ∗(ε ≈ δ).
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2. For every n-ary operation ψ ∈ LX:

Θ(~x1) ∪ · · · ∪Θ(~xn) �Y Θ(τ∗ψ(x1, . . . , xn)).

In 1 and 2 it is intended that ~xj = 〈xi
j : i < κ〉.

A κ-translation 〈τ, Θ〉 of �X into �Y is non-trivial‡ provided that: If there
is a (non-empty) sequence ~ϕ ∈ Fm(LY, 0)κ of constant symbols such that
Y � Θ(~ϕ), then there is i < κ and sequences of variables

~x = 〈xi : i < κ〉 and ~y = 〈yi : i < κ〉

such that
Θ(~x) ∪Θ(~y) 2Y xi ≈ yi.

Several translations between logics in the literature provide examples
of this general definition of translation between relative equational conse-
quences. Let us recall some of them:

Example 5.21 (Heyting and Interior Algebras). As shown by Gödel in [54], it
is possible to interpret the intuitionistic propositional calculus IPC into the
consequence relation associated with the global modal system S4 [67, 68].
Since these two logics are algebraizable with equivalent algebraic semantics
the variety of Heyting algebras HA and of interior algebras IA respectively,
this interpretation can be lifted from terms to equations. More precisely, let
τ be the 1-translation of LHA into LIA defined as follows:

x ? y 7−→ x ? y ¬x 7−→ �¬x x → y 7−→ �(x → y)

for ? ∈ {∧,∨}. The original version of Gödel’s translation reads as follows:

Γ `IPC ϕ⇐⇒ στ∗(Γ) `S4 στ∗(ϕ) (5.1)

for every Γ ∪ {ϕ} ⊆ Fm(LHA, λ), where σ is the substitution sending every
variable x to its necessitation �x. In fact Gödel proved the direction from
left to right of (5.1), while the other one was supplied in [75] (cfr. also
[37, 71] for some generalizations). In order to present this translation in our
framework, we have to deal with the fact that we allow only translations
that send variables to variables. This problem is overcome by introducing a
context in the premises. To explain how, we recall that the terms Fm(LHA, λ)
are written with variables among {xj : j < λ}. Then we have that:

στ∗(Γ) `S4 στ∗(ϕ)⇐⇒ τ∗(Γ) ∪ {xj ↔ �xj : j < λ} `S4 τ∗(ϕ). (5.2)

The left-to-right direction of (5.2) follows from the fact that the algebraic
meaning of xj ↔ �xj is xj ≈ �xj. To prove the other direction, suppose that

‡This condition of non-triviality is designed in order to identify translations that correspond
to non-trivial adjunctions. This will become clear in the proof of Theorem 5.23.

101



5. Canonical decomposition

the right-hand deduction holds. Then by structurality we can apply to it the
substitution σ. This fact, together with ∅ `S4 �x ↔ ��x, yields the desired
conclusion. Now, using the completeness of IPC and S4 with respect to the
corresponding equivalent algebraic semantics, we obtain that:

Φ �HA ε ≈ δ⇐⇒ τ∗(Φ) ∪
⋃
j<λ

Θ(xj) �IA τ∗(ε ≈ δ) (5.3)

for every Φ ∪ {ε ≈ δ} ⊆ Eq(LHA, λ), where Θ(x) = {x ≈ �x}. Observe that
(5.3) implies condition 1 of Definition 5.20. Moreover, observe that in this
case condition 2 of the same definition amounts to the following deductions,
which are all easy to check:

x ≈ �x �IA �¬x ≈ ��¬x
x ≈ �x, y ≈ �y �IA x ? y ≈ �(x ? y)
x ≈ �x, y ≈ �y �IA �(x → y) ≈ ��(x → y)

for each ? ∈ {∧,∨}. Therefore we conclude that 〈τ, Θ〉 is a translation of
�HA into �IA. �

Example 5.22 (Heyting and Boolean Algebra). The same trick can be applied
to subsume in our framework Kolmogorov’s interpretation of classical propo-
sitional calculus CPC into IPC [66]. Let τ be the 1-translation defined as
follows:

0 7−→ 0 1 7−→ 1 ¬x 7−→ ¬x x ? y 7−→ ¬¬(x ? y)

for every ? ∈ {∧,∨,→}. The original translation of Kolmogorov states that

Γ `CPC ϕ⇐⇒ στ∗(Γ) `IPC στ∗(ϕ)

for every Γ ∪ {ϕ} ⊆ Fm(L , λ), where σ is the substitution sending every
variable x to its double negation ¬¬x. Combining it with the observation that
∅ `IPC ¬x ↔ ¬¬¬x, it is easy to see that 〈τ, Θ〉 with Θ = {x ≈ ¬¬x} is a
translation of �BA into �HA, where BA is the variety of Boolean algebras. �

The importance of non-trivial κ-translations of �X into �Y is that they
correspond to non-trivial right adjoint functors from Y to X. In other words,
right adjoints reverse the direction of translations and vice-versa. To explain
how, consider a non-trivial κ-translation 〈τ, Θ〉 of �X into �Y. Then consider
the set:

L := {τ(ψ) : ψ ∈ LX} ⊆ L κ
Y . (5.4)

Observe that L is a sublanguage of the language of the matrix power Y[κ].
Then consider the set

θ := {~ε ≈ ~δ : ε ≈ δ ∈ Θ}
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where~ε and ~δ are the κ-sequences constant on ε and δ respectively. Observe
that θ is a set of identities between κ-sequences of terms of Y in κ-many
variables. Now, κ-sequences of terms of Y in κ-many variables can be viewed
as unary terms of the matrix power Y[κ]. Thus θ can be viewed as a set of
equations in one variable in the language of Y[κ]. Hence we have the three
basic ingredients of our construction: a matrix power Y[κ], a sublanguage
L ⊆ L κ

Y , and a set of equations θ ⊆ Eq(L κ
Y , 1).

There is still a technicality we must take into account: when κ is infinite
the matrix power Y[κ] may fail to be a generalized quasi-variety. Let K be the
class of algebras defined as follows:

K :=


Q(Y[κ]) if X and Y are quasi-varieties

and CgFmY(κ)
Y (Θ) is finitely generated

GQλ(Y
[κ]) otherwise, where λ > κ is infinite and Uλ(X) = X.

Observe that in the above definition λ is not uniquely determined, but any
choice would be equivalent for our purposes.

Theorem 5.23. Let X and Y be generalized quasi-varieties and 〈τ, Θ〉 be a non-
trivial κ-translation of �X into �Y and let K be the class just introduced. The maps
[κ] : Y → K and θL : K→ X defined above are right adjoint functors. In particular,
the composition θL ◦ [κ] : Y → X is a non-trivial right adjoint.

Proof. Observe that K is a generalized quasi-variety. Therefore we can apply
Theorem 5.9, yielding that [κ] : Y → K is a right adjoint functor. Now we
turn to prove the same for θL . We will detail the case where X and Y are
quasi-varieties and CgFmY(κ)

Y (Θ) finitely generated, since the other one is
analogous. Since Y is a quasi-variety and CgFmY(κ)

Y (Θ) is finitely generated,
there is a finite set {〈αi, βi〉 : i < n} ⊆ Θ such that {〈αi, βi〉 : i < n} =||=Y Θ.
It is easy to see that

{~αi ≈ ~βi : i < n} =||=Y[κ] θ (5.5)

where~αi and ~βi are the κ-sequences constant on αi and βi respectively.
Now from condition 2 of Definition 5.20 it follows that θ is compatible

with L in Y[κ], where L is the language defined in (5.4). From (5.5) we know
that this compatibility condition can be expressed by a set of deductions,
whose antecedent is finite, of the equational consequence relative to Y[κ], i.e.,⋃

j6m

{~αi ≈ ~βi : i < n}(~xj) �Y[κ] θ(τ(ψ)(~x1, . . . ,~xn))

for every m-ary ψ ∈ L . In particular, this implies that θ is still compatible
with L in K (recall that K is the quasi-variety generated by Y[κ]).

We claim that A(θ, L ) ∈ X for every A ∈ K. To prove this, consider any
finite deduction

ϕ1 ≈ ψ1, . . . , ϕm ≈ ψm �X ε ≈ δ.
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Let x1, . . . , xp be the variables that occur in it. From condition 1 of Definition
5.20 it follows that

{τ∗(ϕt) ≈ τ∗(ψt) : t 6 m} ∪
⋃
j6p

θ(~xj) �Y[κ] τ∗(ε) ≈ τ∗(δ)

where ~xj = 〈xi
j : i < κ〉. Thanks to (5.5) the above deduction can be expressed

by a collection of deductions, whose antecedent is finite, of the equational
consequence relative to Y[κ], i.e.,

{τ∗(ϕt) ≈ τ∗(ψt) : t 6 m} ∪
⋃
j6p

{~αi ≈ ~βi : i < n}(~xj) �Y[κ] τ∗(ε) ≈ τ∗(δ).

Since K is the quasi-variety generated by Y[κ], we know that the above deduc-
tion persists in K. Together with the fact that {~αi ≈ ~βi : i < n} ⊆ θ, this
implies that for every A ∈ K and every a1, . . . , ap ∈ A(θ, L ), we have that:

if A � τ∗(ϕ1) ≈ τ∗(ψ1), . . . , τ∗(ϕm) ≈ τ∗(ψm)Ja1, . . . , apK,
then A � τ∗(ε) ≈ τ∗(δ)Ja1, . . . , apK.

But this means exactly that

if A(θ, L ) � ϕ1 ≈ ψ1, . . . , ϕm ≈ ψmJa1, . . . , apK,
then A(θ, L ) � ε ≈ δJa1, . . . , apK.

Thus we showed that A(θ, L ) satisfies every quasi-equation that holds in X.
Since X is a quasi-variety, we conclude that A(θ, L ) ∈ X. This establishes our
claim. Hence we can apply Theorem 5.12 yielding that θL : K→ X is a right
adjoint functor. We conclude that θL ◦ [κ] : Y → X is a right adjoint functor.

It only remains to prove that θL ◦ [κ] is non-trivial, i.e., that it does not
send every algebra to the trivial one. First consider the case where there
is no sequence ~ϕ ∈ Fm(LY, 0)κ of constant symbols such that Y � Θ(~ϕ).
Then consider the free algebra FmY(0). We have that FmY(0)[κ](θ, L ) = ∅,
otherwise the equations Θ would have a constant solution (which is not the
case). Thus in this case the functor θL ◦ [κ] is non-trivial. Then consider
the case where there is a non-empty sequence ~ϕ ∈ Fm(LY, 0)κ such that
Y � Θ(~ϕ). Since 〈τ, Θ〉 is non-trivial, we have that

Θ(~x) ∪Θ(~y) 2Y xi ≈ yi.

This means that there is an algebra A ∈ Y and sequences~a,~c ∈ Aκ such that
that~a,~c ∈ A[κ](θ, L ) and~a 6= ~c. Thus the algebra A[κ](θ, L ) has at least two
elements and, therefore, is non-trivial as desired. �

If we apply the above construction to Gödel and Kolmogorov’s transla-
tions, we obtain some well-known transformations:
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Example 5.24 (Open and Regular Elements). Given A ∈ IA, an element a ∈ A
is open if �a = a. The set of open elements Op(A) of A is closed under the
lattice operations and contains the bounds. Moreover we can equip it with
an implication( and with a negation ∼ defined for every a, b ∈ Op(A) as
follows:

a( b := �A(a→A b) and ∼ a := �A¬Aa.

It is well known that

Op(A) := 〈Op(A),∧,∨,(,∼, 0, 1〉

is a Heyting algebra. Now, every homomorphism f : A→ B between interior
algebras restricts to a homomorphism f : Op(A) → Op(B). Therefore the
application Op: IA → HA can be regarded as a functor. As the reader
may have guessed, it is in fact the right adjoint functor induced by Gödel’s
translation of IPC into S4 (Example 5.21).

A similar correspondence arises from Kolmogorov’s translation of CPC
into IPC. More precisely, given A ∈ HA, an element a ∈ A is regular if
¬¬a = a. It is well known that the set of regular elements Reg(A) of A is
closed under ∧,¬ and→ and contains the bounds. Moreover we can equip
it with a new join t defined for every a, b ∈ Reg(A) as follows:

a t b := ¬A¬A(a ∨ b).

It is well known that

Reg(A) := 〈Reg(A),∧,t,→,¬, 0, 1〉

is a Boolean algebra. Now, every homomorphism f : A→ B between Heyting
algebras restricts to a homomorphism f : Reg(A)→ Reg(B). Therefore the
application Reg : HA → BA can be regarded as a functor, which is exactly
the right adjoint functor induced by Kolmogorov’s translation (Example
5.22). �

5.4 From right adjoints to translations

In the previous section we described one half of the correspondence between
translations and adjunctions, namely how to build an adjunction out of a
translation. Now we provide the other half, showing how to construct a
translation (between relative equational consequences) out of an adjunction
(between generalized quasi-varieties). To this end, in this section we will
work with a fixed (but arbitrary) non-trivial left adjoint functor F : X → Y
between generalized quasi-varieties. Our goal is to construct a translation of
�X into �Y. We will rely on the following observation:

Lemma 5.25. The universe of F (FmX(1)) is non-empty.
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Proof. Suppose towards a contradiction that F (FmX(1)) has an empty uni-
verse. Then it is the initial object of Y. Now consider any other algebra A ∈ X.
We know that there is a surjective homomorphism f : B→ A, where B is a
suitable free algebra of X. Categorically speaking we have that:
1. The arrow f is a coequalizer.§

2. B is a copower of FmX(1).
Now recall that left adjoint functors preserve colimits, e.g., coequalizers and
copowers. Therefore F (B) is a copower of ∅. Since copowers of the empty
algebras are empty, we obtain that F (B) = ∅. In particular, this implies
that F ( f ) : ∅→ F (A) is a coequalizer. As F ( f ) has empty domain, it must
be the coequalizer of a parallel pair ∅ ⇒ ∅. It is easy to check that the
coequalizer of ∅ ⇒ ∅ is the unique arrow ∅ → ∅. Thus we conclude that
F (A) = ∅. This shows that F sends every algebra to ∅, that is the initial
object of Y. But this contradicts the assumption that the left adjoint F : X→ Y
is non-trivial. �

Now we construct the announced translation 〈τ, Θ〉 out of F : X→ Y. By
Lemma 5.25 we know that F (FmX(1)) 6= ∅. Then we can choose a cardinal
κ > 0 and a surjective homomorphism π : FmY(κ)→ F (FmX(1)). Let Θ be
the kernel of π and observe that it can be viewed as a set of equations in
Eq(LY, κ). This is the set of equations of our translation.

In order to construct the κ-translation τ of LX into LY, we do the
following. Consider a cardinal λ > 0. Since F preserves copowers and the
algebra FmX(λ) is the λ-th copower of FmX(1), we know that F (FmX(λ))
is the λ-th copower of F (FmX(1)). Keeping in mind how coproducts look
like in prevarieties (see Section 5.1 if necessary), we can identify F (FmX(λ))
with the quotient of the free algebra FmY(κ × λ) with free generators {xi

j :
i < κ, j < λ} under the Y-congruence generated by⋃

j<λ

Θ(~xj) where ~xj = 〈xi
j : i < κ〉.

The above construction can be carried out also for the case λ = 0 as follows.
Recall that F preserves initial objects, since these are special colimits. Thus we
can assume that F (FmX(0)) = FmY(0). Now we have that FmY(0) is exactly
the quotient of FmY(κ × 0) under the Y-congruence generated by the union
of zero-many copies of Θ, i.e., under the identity relation. Thus we identified
F (FmX(λ)) with a quotient of FmY(κ× λ) for every cardinal λ. Accordingly,
we denote by πλ : FmY(κ × λ) → F (FmX(λ)) the corresponding canonical
projection.

§In Section 5.1 we showed that in prevarieties every surjective homomorphism is a
coequalizer.
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Definition 5.26. Let λ be a cardinal and ϕ ∈ Fm(LX, λ). We denote also by
ϕ : FmX(1)→ FmX(λ) the unique homomorphism that sends x to ϕ, where
x is the free generator of FmX(1).

We are finally ready to construct the κ-translation τ of LX into LY.
Consider an n-ary basic operation ψ ∈ LX. By the above definition it can
be viewed as an arrow ψ : FmX(1) → FmX(n). Since πn is surjective and
FmY(κ) is projective in Y (as it is a free algebra), there is a homomorphism

τ(ψ) : FmY(κ)→ FmY(κ × n)

that makes the following diagram commute.

FmY(κ)

π1

��τ(ψ)

��

F (FmX(1))

F (ψ)
��

FmY(κ × n)
πn
// F (FmX(n))

(5.6)

The map τ(ψ) can be identified with its values on the generators {xi : i < κ}
of FmY(κ). In this way it become a κ-sequence

〈τ(ψ)(xi) : i < κ〉 of terms in variables {xi
j : i < κ, 1 6 j 6 n}.

Let τ be the κ-translation of LX into LY obtained by applying this construc-
tion to every ψ ∈ LX. Hence we constructed a pair 〈τ, Θ〉, where τ is a
κ-translation of LX into LY and Θ ⊆ Eq(LY, κ).

Theorem 5.27. Let F : X→ Y be a non-trivial left adjoint functor between gener-
alized quasi-varieties. The pair 〈τ, Θ〉 defined above is a non-trivial translation of
�X into �Y.

Proof. Consider a cardinal λ. We know that τ can be extended to a func-
tion τ∗ : Fm(LX, λ) → Fm(LY, κ × λ)κ, where the terms Fm(LX, λ) and
Fm(LY, κ × λ) are built respectively with variables among {xj : j < λ} and
{xi

j : i < κ, j < λ}. Then consider ϕ ∈ Fm(LX, λ). Observe that τ∗(ϕ) is a
κ-sequence of terms of Y in variables {xi

j : i < κ, j < λ}. Thus τ∗(ϕ) can be
regarded as a map from the free generators of FmY(κ) to FmY(κ × λ). Since
FmY(κ) is a free algebra, this assignment extends uniquely to a homomor-
phism

τ∗(ϕ) : FmY(κ)→ FmY(κ × λ).
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5. Canonical decomposition

Claim 5.27.1. For every cardinal λ and ϕ ∈ Fm(LX, λ), the following diagram
commutes.

FmY(κ)
τ∗(ϕ) //

π1

��

FmY(κ × λ)

πλ

��
F (FmX(1)) F (ϕ)

// F (FmX(λ))

The proof works by induction on ϕ. We begin by the base case: ϕ is either
a variable or a constant. We can assume w.l.o.g. that the identification of
F (FmX(λ)) with a quotient of FmY(κ× λ) described above is done in a way
that the claim holds for variables. Then we consider the case where ϕ is a
constant c. Then consider the following diagram.

F (FmX(1)) F (c)

��

F (c)

��
FmY(κ)

τ(c)
//

τ∗(c) ))

π1
55

FmY(0) f
// F (FmX(λ))

FmY(κ × λ)
πλ

HH

(5.7)

Recall that we identified F (FmX(0)) with FmY(0) and that, under this iden-
tification, the map π0 becomes the identity map 1 : FmY(0) → FmY(0).
Keeping this in mind, we look at the left upper quadrant of diagram (5.7). It
is an instance of diagram (5.6), where we deleted the identity map π0 since it
plays no significant role. Therefore this quadrant commutes by construction
of τ. Then we consider the right upper quadrant of diagram (5.7), where f
is the unique homomorphism given by the universal property of the initial
object, i.e., the map that sends each constant term to its interpretation in
F (FmX(λ)). Then let g : FmX(0)→ FmX(λ) be the inclusion map. It is clear
that the following diagram commutes.

FmX(1)
c

��

c

��
FmX(0) g

// FmX(λ)

In particular, this implies that the image under F of the above diagram
commutes too. But observe that F (g) = f , since FmY(0) is the initial object
of Y. This shows that the right upper quadrant of diagram (5.7) commutes.
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5.4. From right adjoints to translations

We are now ready to prove the claim for ϕ = c. Let {xi : i < κ} be the free
generators of FmY(κ). Then consider i < κ and let ci ∈ LY be the constant
symbol that is the i-th component of the κ-sequence τ(c). Since the upper
part of diagram (5.7) commutes, we have that:

F (c) ◦ π1(xi) = f ◦ τ(c)(xi) = cF (FmX(λ))
i .

Moreover, observe that τ∗(c) = τ(c) by definition of τ∗. Together with the
fact that ci is a constant, this implies that

πλ ◦ τ∗(c)(xi) = πλ(c
FmY(κ×λ)
i ) = cF (FmX(λ))

i .

We conclude that πλ ◦ τ∗(c) = F (c) ◦ π1. This establishes the base case.
Then we turn to prove the inductive case. Consider a basic n-ary operation

ψ ∈ LX and ϕ1, . . . , ϕn ∈ Fm(LY, λ). Recall that the angle-bracket notation
was introduced in Section 5.1 to denote arrows induced by the universal
property of the coproduct. Applying in succession the inductive hypothesis
and the fact that F preserves coproducts, we obtain that

πλ ◦ 〈τ∗(ϕ1), . . . , τ∗(ϕn)〉 = 〈F (ϕ1), . . . ,F (ϕn)〉 ◦ πn

= F〈ϕ1, . . . , ϕn〉 ◦ πn

where ϕj : FmX(1)→ FmX(λ) and τ∗(ϕj) : FmY(κ)→ FmY(κ × λ) for every
j 6 n. Recall from the definition of τ that πn ◦ τ(ψ) = F (ψ) ◦ π1, where
ψ : FmX(1)→ FmX(n). Hence we conclude that

F (ψ(ϕ1, . . . , ϕn)) ◦ π1 = F (〈ϕ1, . . . , ϕn〉 ◦ ψ) ◦ π1

= F〈ϕ1, . . . , ϕn〉 ◦ F (ψ) ◦ π1

= F〈ϕ1, . . . , ϕn〉 ◦ πn ◦ τ(ψ)

= πλ ◦ 〈τ∗(ϕ1), . . . , τ∗(ϕn)〉 ◦ τ(ψ)

= πλ ◦ τ∗(ψ(ϕ1, . . . , ϕn)).

This establishes the claim.

Claim 5.27.2. 〈τ, Θ〉 satisfies condition 1 of Definition 5.20.

Consider a cardinal λ and equations Φ ∪ {ε ≈ δ} ⊆ Eq(LX, λ) such that
Φ �X ε ≈ δ. Define µ := |Φ|. For the sake of simplicity we identify µ
with the set Φ. Then consider the map τ∗ : Fm(LX, λ) → Fm(LY, κ × λ)κ.
Consider also the free algebras FmX(µ) and FmY(κ× µ) with free generators
{xα≈β : α ≈ β ∈ Φ} and {xi

α≈β : i < κ, α ≈ β ∈ Φ} respectively. Then let

pl : FmX(µ)→ FmX(λ) and ql : FmY(κ × µ)→ FmY(κ × λ)

be the homomorphisms defined respectively by the following rules:

xα≈β 7−→ α and xi
α≈β 7−→ τ∗(α)(i).
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5. Canonical decomposition

Observe that the following diagram commutes.

FmY(κ × µ)
ql //

πµ

��

FmY(κ × λ)

πλ

��
F (FmX(µ)) F (pl)

// F (FmX(λ))

(5.8)

To prove this, it will be enough to show that πλ ◦ ql(xi
α≈β) = F (pl) ◦πµ(xi

α≈β)

for every i < κ and α ≈ β ∈ Φ. Consider the maps

τ∗(xα≈β) : FmY(κ)→ FmY(κ × µ)

τ∗(α) : FmY(κ)→ FmY(κ × λ)

xα≈β : FmX(1)→ FmX(µ)

α : FmX(1)→ FmX(λ).

Applying Claim 5.27.1 in the 2nd and 5th equalities below, we obtain that

F (pl) ◦ πµ(xi
α≈β) = F (pl) ◦ (πµ ◦ τ∗(xα≈β))(xi)

= F (pl) ◦ (F (xα≈β) ◦ π1)(xi)

= F (pl ◦ xα≈β) ◦ π1(xi)

= F (α) ◦ π1(xi)

= πλ ◦ τ∗(α)(xi)

= πλ ◦ ql(xi
α≈β).

Thus we conclude that diagram (5.8) commutes.
Now, observe that we can define two maps pr and qr (dual to pl and qr)

respectively by the rules:

xα≈β 7−→ β and xi
α≈β 7−→ τ∗(β)(i).

An argument analogous to the one described above yields that πλ ◦ qr =
F (pr) ◦ πµ. Hence we showed that

πλ ◦ ql = F (pl) ◦ πµ and πλ ◦ qr = F (pr) ◦ πµ. (5.9)

Now, let φ be the X-congruence of FmX(λ) generated by Φ. It is clear
that πφ is a coequalizer of pl and pr. Since F preserves colimits, this implies
that F (πφ) is a coequalizer of F (pl) and F (pr). Keeping in mind that πµ

is surjective, this means that F (πφ) is also a coequalizer of F (pl) ◦ πµ and
F (pr) ◦ πµ. Finally, with an application of (5.9), we conclude that F (πφ) is a
coequalizer of πλ ◦ ql and πλ ◦ qr. In particular, this implies that the kernel
of F (πφ) ◦ πλ is the Y-congruence of FmY(κ × λ) generated by

τ∗(Φ) ∪
⋃
j<λ

Θ(~xj) where ~xj = 〈xi
j : i < κ〉. (5.10)
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5.4. From right adjoints to translations

Now observe that πφ ◦ ε = πφ ◦ δ, where ε, δ : FmX(1) ⇒ FmX(λ) since
〈ε, δ〉 ∈ φ. By Claim 5.27.1 this implies that

F (πφ) ◦ πλ ◦ τ∗(ε) = F (πφ) ◦ F (ε) ◦ π1

= F (πφ) ◦ F (δ) ◦ π1

= F (πφ) ◦ πλ ◦ τ∗(δ).

Together with the description of the kernel of F (πφ) ◦ πλ given in (5.10), this
implies that

τ∗(Φ) ∪
⋃
j<λ

Θ(~xj) �Y τ∗(ε ≈ δ).

This establishes Claim 5.27.2.

Claim 5.27.3. 〈τ, Θ〉 satisfies condition 2 of Definition 5.20.

Consider an n-ary operation symbol ψ ∈ LX and ε ≈ δ ∈ Θ. Claim 5.27.1
and the fact that the kernel of π1 is the Y-congruence of FmY(κ) generated
by Θ imply that

πn(ε(τ∗(ψ)/~x)) = πn ◦ τ∗(ψ)(ε) = F (ψ) ◦ π1(ε) = F (ψ) ◦ π1(δ)

= πn ◦ τ∗(ψ)(δ) = πn(δ(τ∗(ψ)/~x)).

Since πn is the kernel of the Y-congruence of FmY(κ × n) generated by
Θ(~x1) ∪ · · · ∪Θ(~xn), we conclude that

Θ(~x1) ∪ · · · ∪Θ(~xn) �Y ε(τ∗(ψ)/~x) ≈ δ(τ∗(ψ)/~x).

This establishes Claim 5.27.3.

Claim 5.27.4. 〈τ, Θ〉 is a non-trivial translation.

From Claims 5.27.2 and 5.27.3 it follows that 〈τ, Θ〉 is a translation of �X
into �Y. It only remains to prove that 〈τ, Θ〉 is non-trivial. Suppose that there
is a tuple ~ϕ ∈ Fm(LY, 0)κ such that Y � Θ(~ϕ). Then let G be the functor
right adjoint to F . Since F is non-trivial, there is A ∈ Y such that G(A) is
non-trivial. Now observe that the solutions-set of Θ in A is in bijection with
hom(F (FmX(1)), A), since F (FmX(1)) is the quotient of FmY(κ) under the
Y-congruence generated by Θ. It is easy to see that ~ϕA a solution of Θ in A.
Thus hom(F (FmX(1)), A) 6= ∅. By the hom-set adjunction associated with
F a G and the universal property of the free 1-generated algebra we have
that

0 6= | hom(F (FmX(1)), A)| = | hom(FmX(1),G(A))| = |G(A)|.

Since G(A) is non-trivial, we conclude that it has at least two elements. Again,
this implies that there are two different solutions~a,~c ∈ Aκ to the equations
Θ. In particular, this shows that there is i < κ such that

Θ(~x) ∪Θ(~y) 2Y xi ≈ yi.

This establishes Claim 5.27.4. �
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5. Canonical decomposition

As an exemplification of the above construction, we will describe the
translation associated with the adjunction between Kleene algebras and
bounded distributive lattices.

Example 5.28 (Kleene Algebras). Let G : DL01 → KA be the functor described
in Example 5.14. In [25] a functor F left adjoint to G is described. Let us
recall briefly recall its behaviour. Given A ∈ KA, we let Pr(A) be the Priestley
space dual to the bounded lattice reduct of A [33]. Moreover, we equip it
with a map g : Pr(A)→ Pr(A) defined by the rule

g(F) 7−→ A r {¬a : a ∈ F}, with F ∈ Pr(A).

Now observe that

Pr(A)+ := {F ∈ Pr(A) : F ⊆ g(F)}

is the universe of a Priestley subspace of Pr(A). Keeping this in mind, we let
F (A) be the bounded distributive lattice dual to Pr(A)+. Moreover, given a
homomorphism f : A → B in KA, we let F ( f ) : F (A) → F (B) be the map
defined by the rule

U 7−→ {F ∈ Pr(B)+ : f−1(F) ∈ U}, with U ∈ F (A).

The map F : KA→ DL01 is the functor left adjoint to G.
Now we turn to describe the translation associated with the adjunction

F a G. To this end, observe that the free Kleene algebra FmKA(1), its image
F (FmKA(1)) in DL01 and the free bounded distributive lattice FmDL01(2) are
respectively the algebras depicted below.

1 • 1 • 1•

x ∨ ¬x • c • x ∨ y•

x • ¬x• a • b• x • y•

x ∧ ¬x • 0 • x ∧ y•

0 • 0•
Then let π : FmDL01(2)→ F (FmKA(1)) be the unique (surjective) homomor-
phism determined by the assignment π(x) = a and π(y) = b. Following the
general construction described above, we should identify Θ with the kernel
of π viewed as a set of equations in 2 variables. But the only equation of this
kind that is not vacuously satisfied is x ∧ y ≈ 0. Hence we can set w.l.o.g.
Θ := {x∧ y ≈ 0}. The description of τ is more complicated and we will detail
it only for the case of negation. First observe that ¬ : FmKA(1)→ FmKA(1) is
the unique endomorphism that sends x to ¬x. Then, applying the definition
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5.5. Decomposition of right adjoints

of F , it is easy to see that F (¬) is the endomorphism of F (FmKA(1)) that
behaves as the identity except that it interchanges a and b. Now we have to
choose an endomorphism τ(¬) of FmDL01(2) such that π ◦ τ(¬) = F (¬) ◦ π.
It is easy to see that the unique homomorphism τ(¬) determined by the
assignment τ(¬)(x) = y and τ(¬)(y) = x fulfils this condition. Hence the
translation of ¬ consists in the pair 〈y, x〉. The same idea allows to extend τ
to the other constant and binary basic symbols of KA as follows:¶

x ∧ y 7−→ 〈x1, x2〉 u 〈y1, y2〉:=〈x1 ∧ y1, x2 ∨ y2〉
x ∨ y 7−→ 〈x1, x2〉 t 〈y1, y2〉:=〈x1 ∨ y1, x2 ∧ y2〉

and

¬x 7→ ¬〈x1, x2〉 := 〈x2, x1〉 1 7→ 1 := 〈1, 0〉 0 7→ 0 := 〈0, 1〉.

By Theorem 5.27 the pair 〈τ, Θ〉 is a translation of �KA into �DL01 .
For the reader familiar with the theory of algebraizable logics [19] it may

be interesting to observe that this translation is not induced by a translation
between two propositional logics (as was the case in Examples 5.21 and 5.22).
This is due to the fact that DL01 and KA are not the equivalent algebraic se-
mantics of any algebraizable logics. For what concerns (possibly unbounded)
distributive lattices this was proved in [45, Theorem 2.1], however it is easy to
adapt this result to the bounded case. For the sake of completeness we will
sketch a proof of the fact that KA is not the equivalent algebraic semantics of
any algebraizable logic, since we don’t know any reference to this in the liter-
ature. Suppose towards a contradiction that there is an algebraizable logic
L with equivalent algebraic semantics KA. Then let 2 be the two-element
Boolean algebra. Since 2 is a Kleene algebra, either 〈2, {1}〉 or 〈2, {0}〉 is a
reduced model of L. Assume w.l.o.g. that this happens for 〈2, {1}〉. Then
consider the unique surjective homomorphism f : A → 2, where A is the
four-element Kleene chain. The set f−1{1} is a deductive filter of L. Clearly
〈A, f−1{1}〉 is not a reduced matrix. Then there must be a deductive filter
G ( f−1{1} such that 〈A, G〉 is a reduced matrix. This easily implies that L
has no theorems. This contradicts the fact that algebraizable logics always
have theorems. �

5.5 Decomposition of right adjoints

In the preceding sections we drew a correspondence between adjunctions
and translations, by showing how we can convert one into the other and
vice-versa. Now we are ready to present the main outcome of this correspon-
dence, namely the discovery that every every right adjoint functor between

¶At this stage the reader may find useful to compare the translation displayed here with
the sublanguage L of the matrix power DL01 that we considered in Example 5.14.
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5. Canonical decomposition

generalized quasi-varieties can be decomposed into a combination of two
canonical deformations, i.e., matrix powers with (possibly) infinite exponents
and the θL construction. More precisely, we have the following:

Theorem 5.29.
1. Every non-trivial right adjoint between generalized quasi-varieties is naturally

isomorphic to a functor of the form θL ◦ [κ].
2. Every functor of the form θL ◦ [κ] between generalized quasi-varieties is a right

adjoint.

Proof. 1. Consider a non-trivial right adjoint functor G : Y → X between
generalized quasi-varieties. Let F be the functor left adjoint to G and let η, ε
be the unit and counit of the adjuntion respectively. In Theorem 5.27 we show
that F gives rise to a translation 〈τ, Θ〉 of �X into �Y. Then consider the
right adjoint functor θL ◦ [κ] : Y → X associated with 〈τ, Θ〉 as in Theorem
5.23. We will prove that G and θL ◦ [κ] are naturally isomorphic.

To this end, it will be convenient to work with some substitutes of G and
θL ◦ [κ]. Let ALGX be the category of algebras of the type of X. Then let
G∗ : Y → ALGX be the functor defined by the following rule:

A 7−→ hom(FmX(1),G(A))

f 7−→ G( f ) ◦ (·)

for every algebra A and homomorphism f in Y. The operations of the
algebra G∗(A) are defined as follows. Given an n-ary operation ψ ∈ LX with
corresponding arrow ψ : FmX(1)→ FmX(n), we set

ψG
∗(A)( f1, . . . , fn) := 〈 f1, . . . , fn〉 ◦ ψ

for every f1, . . . , fn ∈ G∗(A). Now observe that the map ζA : G(A)→ G∗(A)
that takes an element a ∈ G(A) to the unique arrow f ∈ G∗(A) such that
f (x) = a is an isomorphism for every A ∈ Y. It is easy to see that the global
application ζ : G → G∗ is a natural isomorphism between G,G∗ : Y → ALGX.
As a consequence, we obtain the following:

Fact 5.29.1. The map G∗ can be viewed as a functor from Y to X naturally isomor-
phic to G.

Then we turn to construct our substitute for θL ◦ [κ]. To do this, consider
the functor

hom(F (FmX(1)), ·) : Y → ALGX.

In particular, given A ∈ Y, the operations on hom(F (FmX(1)), A), for short
hom(A), are defined as follows:

ψhom(A)( f1, . . . , fn) := 〈 f1, . . . , fn〉 ◦ F (ψ)
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5.5. Decomposition of right adjoints

for every f1, . . . , fn ∈ hom(A). Now, given A ∈ Y, we consider the map
σA : hom(A)→ A[κ](θ, L ) defined by the following rule:

f 7−→ 〈 f ◦ π1(xi) : i < κ〉

where π1 : FmY(κ)→ F (FmX(1)) is the map defined right before Definition
5.26. Keeping in mind that the kernel of π1 is the Y-congruence of FmY(κ)
generated by Θ, it is easy to see that σA is a well-defined bijection. It turns
out that it is an isomorphism too: let f1, . . . , fn ∈ hom(A), we have that

σAψhom(A)( f1, . . . , fn) = σA(〈 f1, . . . , fn〉 ◦ F (ψ))
= 〈〈 f1, . . . , fn〉 ◦ F (ψ) ◦ π1(xi) : i < κ〉
= 〈〈 f1, . . . , fn〉 ◦ πn ◦ τ(ψ)(xi) : i < κ〉
= ψA[κ](θ,L )

(〈〈 f1, . . . , fn〉 ◦ πn(xi
j) : i < κ〉 : j < n)

= ψA[κ](θ,L )
(〈 f j ◦ π1(xi) : i < κ〉 : j < n)

= ψA[κ](θ,L )
(σA( f1), . . . , σA( fn)).

The third equality above follows from the commutation of diagram (5.6).
This shows that the global map σ : hom(F (FmX(1)), ·) → θL ◦ [κ] is a
natural isomorphism between hom(F (FmX(1)), ·), θL ◦ [κ] : Y → ALGX. As
a consequence we obtain the following:

Fact 5.29.2. The map hom(F (FmX(1)), ·) can be viewed as a functor from Y to X
naturally isomorphic to θL ◦ [κ].

Thanks to Facts 5.29.1 and 5.29.2, to complete the proof it will be enough
to construct a natural isomorphism

µ : G∗ → hom(F (FmX(1)), ·).

This is what we do now. For every A ∈ Y, the component µA of the natural
transformation µ is the following map:

εA ◦ F (·) : hom(FmX(1),G(A))→ hom(F (FmX(1)), A).

From the hom-set adjunction associated with 〈F ,G, ε, η〉 it follows that µA
is a bijection. Then consider f1, . . . , fn ∈ hom(FmX(1),G(A)). Applying the
fact that F preserves coproducts, we have that:

µA ψG
∗(A)( f1, . . . , fn) = µA(〈 f1, . . . , fn〉 ◦ ψ)

= εA ◦ F (〈 f1, . . . , fn〉 ◦ ψ)

= εA ◦ 〈F ( f1), . . . ,F ( fn)〉 ◦ F (ψ)
= 〈εA ◦ F ( f1), . . . , εA ◦ F ( fn)〉 ◦ F (ψ)
= 〈µA( f1), . . . , µA( fn)〉 ◦ F (ψ)
= ψhom(A)(µA( f1), . . . , µA( fn))
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5. Canonical decomposition

Therefore we conclude that µA is an isomorphism.
It only remains to prove that the global map µ satisfies the commutative

condition typical of natural transformations. In order to do this, consider
any homomorphism g : A → B in Y and an element f ∈ G∗(A). From the
hom-set adjuntion associated with 〈F ,G, ε, η〉 it follows that

hom(F (FmX(1)), g) ◦ µA( f ) = g ◦ µA( f )
= µB(G(g) ◦ f )
= (µB ◦ G∗(g))( f ).

Hence µ is a natural isomorphism as desired.
2. Suppose that θL ◦ [κ] : Y → X is a functor between generalized quasi-

varieties. Then consider an infinite cardinal λ > κ such that Uλ(X) = X
and define K := GQλ(Y

[κ]). It is not difficult to see that the application
θL : K→ X is well-defined. By Theorems 5.9 and 5.12 we know that the maps
[κ] : Y → K and θL : K → X are right adjoint functors. As a consequence
their composition θL ◦ [κ] : Y → X is also a right adjoint. �

Corollary 5.30. Let F : X → Y be a non-trivial left adjoint functor between gen-
eralized quasi-varieties and φ ∈ ConXFmX(λ). Assume that the right adjoint of F
decomposes as θL ◦ [κ]. Then

F (FmX(λ)/φ) ∼= FmY(κ × λ)/CgY(τ
∗(φ) ∪

⋃
j<λ

Θ(~xj)).

The above theorem poses the following open question:

Problem 5. It would be nice to develop a kind of duality (see for example [3])
between right adjoints between generalized quasi-varieties and translations
between relative equational consequences. The first step in this direction
should be the following: define a notion of equivalence between translations
and prove that the operation

translation > right adjoint > translation

respects this notion of equivalence. Observe that the same statement for the
operation

right adjoint > translation > right adjoint

is exactly the contents of Theorem 5.29, where the notion of equivalence is
that of natural isomorphism.
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CHAPTER 6

Applications

At this stage of the work we know that every right adjoint functor between
generalized quasi-varieties can be decomposed into a combination of two
basic kinds of deformations, namely matrix powers with (possibly) infinite
exponents and the θL construction. With this machinery at hand, we will
develop some applications related to the preservation of logico-algebraic
properties in the presence of an adjunction. In particular, we find sufficient
and necessary conditions under which a left adjoint functor F : X → Y
between generalized quasi-varieties induces a complete lattice embedding
γA : ConXA → ConYF (A) for every A ∈ X (Theorem 6.5). Moreover, we
study the preservation of EDPRC and its generalization known as ESPRC
(resp. Theorems 6.11 and 6.17). In this context we also show that congruence
regularity is not preserved by category equivalence in general (Lemma 6.19).

We provide a logical interpretation of these results within the framework
of algebraizable logics. In particular, under the assumption that X and Y are
respectively the equivalent algebraic semantics of two algebraizable logics
X and Y , we will find conditions under which the left adjoint F : X → Y
induces the preservation from Y to X of the (contextual) deduction theorem,
of the existence of a generalized disjunctions and of the inconsistency lemma
(Theorems 6.22, 6.21 and 6.23). Moreover, we will show how the matrix
power construction can be applied to obtain an elementary proof of the fact
that every prevariety of algebras is categorically equivalent to the equivalent
algebraic semantics of an algebraizable logic expressed in enough variables
(Theorem 6.26). The last section contains some remarks that relate the work
done until now to the general theory of equivalence between structural
closure operators [16].
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6. Applications

6.1 Representation of congruence lattices

Consider a left adjoint functor F : X→ Y between generalized quasi-varieties.
For every algebra A ∈ X we define a map

γA : ConXA→ ConYF (A)

by means of the following rule:

θ 7−→ KerF (πθ), for θ ∈ ConXA.

Our goal is to find sufficient and necessary conditions under which the map
γA becomes a complete lattice embedding (Theorem 6.5). The first fact that it
is worth to remark about γA is the following:

Lemma 6.1. Let F : X → Y be a left adjoint between generalized quasi-varieties.
The map γA is residuated (or, equivalently, a left adjoint between poset categories)
for every A ∈ X.

Proof. Since ConXA is a complete lattice, to prove that γA is residuated it
will be enough to show that it preserves arbitrary joins. First observe that
π0A : A → A/0A is an isomorphism. Since isomorphism are preserved by
functors, we conclude that F (π0A) is an isomorphism too and, therefore,
that γA(0A) = 0F (A). Then γA preserves joins of empty families. Consider a
non-empty family V ⊆ ConXA and denote by φ its join in ConXA. For every
θ ∈ V we let lθ , rθ : FmX(θ)→ A be the unique homomorphisms that send a
pair 〈a, b〉 ∈ θ respectively to its left and right components. It is clear that πθ

is the coequalizer of lθ and rθ . Now let
⊎

θ∈V θ be the disjoint union of the
congruences in V. We consider the coproduct maps

〈lθ : θ ∈ V〉, 〈rθ : θ ∈ V〉 : FmX(
⊎

θ∈V

θ)→ A.

It is easy to see that πφ is the coequalizer of 〈lθ : θ ∈ V〉 and 〈rθ : θ ∈ V〉. This
implies that F (πφ) is a coequalizer of F (〈lθ : θ ∈ V〉) and F (〈rθ : θ ∈ V〉).
Keeping in mind that F preserves coproducts we obtain that:

γA(φ) = CgF (A)
Y

⋃
θ∈V

{〈F (lθ)(a),F (rθ)(a)〉 : a ∈ F (FmX(θ))}

= CgF (A)
Y

⋃
θ∈V

γA(θ)

=
∨

θ∈V

γA(θ).

This concludes the proof that γA is residuated. Finally, observe that the
complete lattices ConXA and ConYF (A) can be seen as categories whose
objects are congruences and whose arrows mimic the inclusion relation. It is
easy to see that the notion of a left adjoint functor from ConXA to ConYF (A)
coincides with that of a residuated map. �

118



6.1. Representation of congruence lattices

Until now we proved that γA preserves always joins. It is therefore
natural to wonder under which conditions it preserves meets too. To this
end, consider a subdirect representation

f : A→∏
i∈I

Bi in X.

Then consider the homomorphism

ν : F (∏
i∈I

Bi)→∏
i∈I
F (Bi)

defined by the rule

ν(b)(i) 7−→ F (πi)(b), for every b ∈ F (∏
i∈I

Bi).

It may happen that the composition ν ◦ F ( f ) is a subdirect representation.
If this happens for every subdirect embedding f in X, then we say that
F preserves subdirect representations. Therefore, considering subdirect prod-
ucts of finite families, we can speak of the preservation of finite subdirect
representations.

Lemma 6.2. Let F : X → Y be a left adjoint between generalized quasi-varieties.
The map γA preserves (finite) meets for every A ∈ X if and only if F preserves
(finite) subdirect representations.

Proof. We begin by the “only if” part. Consider a subdirect representation
f : A→ ∏i∈I Bi in X. We have that

0F (A) = γA(0A) = γA
⋂
i∈I

Ker(πi ◦ f ) =
⋂
i∈I

γA(Ker(πi ◦ f )).

Now consider a, b ∈ F (A). We have that

a = b ⇐⇒ 〈a, b〉 ∈ γA(Ker(πi ◦ f )) for every i ∈ I
⇐⇒ F (πi ◦ f )(a) = F (πi ◦ f )(b) for every i ∈ I
⇐⇒ πi ◦ ν ◦ F ( f )(a) = πi ◦ ν ◦ F ( f )(b) for every i ∈ I
⇐⇒ ν ◦ F ( f )(a) = ν ◦ F ( f )(b).

Hence we conclude that ν ◦ F ( f ) is injective. Consider i ∈ I and observe that
πi ◦ f is surjective. Since F preserves surjectivity, we obtain that F (πi ◦ f ) is
surjective too. But clearly the last map is equal to πi ◦ (ν ◦ F ( f )). Therefore
we conclude that ν ◦ F ( f ) is a subdirect embedding.

Now we turn to prove the “if” part. Consider an algebra A ∈ X. First
observe that A/1A is a subdirect product of the empty family. From the
assumption, we conclude that the trivial algebra F (A/1A) is a subdirect
product of the empty family too and, therefore, that F (A/1A) is trivial. This
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implies that γA(1A) = 1F (A). In other words, γA preserves empty meets.
Now consider a non-empty family {θi : i ∈ I} ⊆ ConXA and let φ be its meet.
We have that the map f : A/φ→ ∏i∈I A/θi defined as

f (a)(i) := a/θi, for i ∈ I and a ∈ A

is a subdirect embedding. Therefore we can apply the assumptions yielding
that ν ◦ F ( f ) is a subdirect embedding too. Keeping this in mind, we obtain
that for every a, b ∈ F (A),

〈a, b〉 ∈ γA(φ) ⇐⇒ F (πφ)(a) = F (πφ)(b)
⇐⇒ πi ◦ ν ◦ F ( f ) ◦ F (πφ)(a) = πi ◦ ν ◦ F ( f ) ◦ F (πφ)(b)

for every i ∈ I
⇐⇒ F (πi ◦ f ) ◦ F (πφ)(a) = F (πi ◦ f ) ◦ F (πφ)(b)

for every i ∈ I
⇐⇒ F (πθi)(a) = F (πθi)(b) for every i ∈ I
⇐⇒ 〈a, b〉 ∈ γA(θi) for every i ∈ I.

Hence we conclude that γA preserves meets. �

Remarkably, the fact that γA preserves meets implies that it preserves
also the generation of varieties:

Corollary 6.3. Let F : X→ Y be a left adjoint between generalized quasi-varieties.
Assume that γA preserves meets for every A ∈ X. If B ∈ V(K), then F (B) ∈
V(F (K)), for every K∪ {B} ⊆ X.

Proof. Suppose that B ∈ V(K). Recall that V(K) = HP
sd
(K) and, therefore,

that V = HP
sd

(see for example [64]). This means that there is a subdirect
embedding f : D → ∏i∈I Ci with {Ci : i ∈ I} ⊆ K and a surjective homomor-
phism g : D → B. Now, observe that F (D) ∈ P

sd
({F (Ci) : i ∈ I}) by Lemma

6.2. Finally F (B) ∈ H(F (D)), since F preserves surjectivity. �

Sometimes, in order to move properties of congruence lattices such as
distributivity or modularity from Y to X, we need to assume that γA is an
injective map. The next result provides a characterization of this condition,
not only in terms of the behaviour of the left adjoint F , but also in terms of
the translation induced by F (compare with condition 1 of Definition 5.20).

Lemma 6.4. Let F : X → Y be a left adjoint between generalized quasi-varieties.
The following conditions are equivalent:

(i) The map γA is injective for every A ∈ X.

(ii) The functor F is faithful.
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6.1. Representation of congruence lattices

(iii) For every cardinal λ and Φ ∪ {ε ≈ δ} ⊆ Eq(LX, λ),

Φ �X ε ≈ δ⇐⇒ τ∗(Φ) ∪
⋃
j<λ

Θ(~xj) �Y τ∗(ε ≈ δ),

where 〈τ, Θ〉 is the translation of �X into �Y induced by F .

Proof. (i)⇒(ii): We reason by contrapositive. Suppose that F is not faithful.
Then there are two different arrows f , g : A⇒ B in X such that F ( f ) = F (g).
Let πθ : B → B/θ be their coequalizer and observe that θ 6= 0B, since
f 6= g. Now observe that F (πθ) is a coequalizer of F ( f ) and F (g) and,
therefore, it is an isomorphism, since F ( f ) = F (g). In particular, this means
that γB(θ) = Ker(F (πθ)) = 0F (B). From Lemma 6.1 it follows that also
γB(0B) = 0F (B). Hence we conclude that γB : ConXB → ConYF (B) is not
injective.

(ii)⇒(i): Consider A ∈ X and two different congruences θ, φ ∈ ConXA.
We can assume w.l.o.g. that there is a pair 〈a, c〉 ∈ θ r φ. Then consider the
arrows â, ĉ : FmX(1)⇒ A that send x respectively to a and c. Clearly we have
that

πθ ◦ â = πθ ◦ ĉ and πφ ◦ â 6= πφ ◦ ĉ.

Since F is faithful, this means that F (πθ ◦ â) = F (πθ ◦ ĉ) and F (πφ ◦ â) 6=
F (πφ ◦ ĉ). Then consider b ∈ F (FmX(1)) such that F (πφ ◦ â)(b) 6= F (πφ ◦
ĉ)(b). We have that:

〈F (â)(b),F (ĉ)(b)〉 ∈ Ker(F (πθ))r Ker(F (πφ)) = γA(θ)r γA(φ).

Hence we conclude that γA is injective as desired.
(i)⇔(iii): Consider a cardinal λ. By Corollary 5.30 we can assume that

the functor F sends FmX(λ) to the quotient of FmY(κ × λ) under the Y-
congruence generated by the pairs

⋃
j<λ Θ(~xj). By the Correspondence Theo-

rem we can can lift the map γFmX(λ) as follows:

γFmX(λ) : ConXFmX(λ)→ ConYFmY(κ × λ).

From Corollary 5.30 it follows that

γFmX(λ)CgX(Φ) = CgY(τ
∗(Φ) ∪

⋃
j<λ

Θ(~xj))

for every Φ∪ {ε ≈ δ} ⊆ Eq(LX, λ). Now if (i) holds, then γFmX(λ) is injective
and, therefore, condition (iii) holds. Conversely, suppose that (i) fails. It
is easy to show that there is a cardinal λ such that also γFmX(λ) is not
injective. Applying the above characterization of γFmX(λ) we conclude that
also condition (iii) fails. �

Recall that a prevariety K is relatively congruence distributive (resp. modular)
if ConKA is a distributive (resp. modular) lattice for every A ∈ K. The
following observation is a consequence of the work done until now:
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Theorem 6.5. Let F : X→ Y be a left adjoint between generalized quasi-varieties.
The map γA is a complete lattice embedding for every A ∈ X if and only if F is
faithful and preserves subdirect representations. Assuming that these conditions
hold, if Y is relatively congruence distributive (modular), then so is X.

Example 6.6 (Kleene Algebras). Let F : KA→ DL01 be the left adjoint described
in Example 5.28. For every A ∈ KA the lattices ConA and ConF (A) are
isomorphic [25, Corollary 1.10]. In particular, we will show that γA : ConA→
ConF (A) is an isomorphism.

To prove this, recall from Example 5.28 that A can be associated with
an expanded Priestley space 〈Pr(A), g〉. It turns out that ConA is dually
isomorphic to the lattice P of closed subsets X ⊆ Pr(A) such that g(X) = X
via the map defined by the rule

θ 7−→ {F ∈ Pr(A) : F is a union of blocks of θ}, for every θ ∈ ConA

see for example [26, pag. 215-216]. Let V be the lattice of closed subsets of
Pr(A)+. The map Pr(A)+ ∩ (·) : P → V is a lattice isomorphism. This is a
consequence of the fact that g : Pr(A) → Pr(A) is a homeomorphism that
is also a dual order isomorphism such that g ◦ g is the identity. Finally it is
well known that the lattices V and ConF (A) are dually isomorphic under
the map defined by the rule

X 7−→ {〈U, W〉 ∈ F (A)2 : U ∩ X = W ∩ X}, for every X ∈ V.

Now, let ζ : ConA → ConF (A) be the composition of the three isomor-
phisms described above. For every U, W ∈ F (A) we have that:

〈U, W〉 ∈ γA(θ) ⇐⇒ (π−1
θ )−1(U) = (π−1

θ )−1(W)

⇐⇒ {F ∈ Pr(A/θ)+ : π−1
θ (F) ∈ U} =

{F ∈ Pr(A/θ)+ : π−1
θ (F) ∈W}

⇐⇒ {F ∈ Pr(A)+ : F is a union of blocks of θ} ∩U =

{F ∈ Pr(A)+ : F is a union of blocks of θ} ∩W
⇐⇒ 〈U, W〉 ∈ ζ(θ).

Hence we conclude that γA = ζ and, therefore, that γA is a lattice iso-
morphism as desired. Moreover F is faithful by Lemma 6.4 and preserves
subdirect representations by Lemma 6.2. �

6.2 Equationally (semi)-definable principal
congruences

A quasi-variety K has equationally definable principal relative congruences (ED-
PRC) when there is a finite set of equations Φ(x1, x2, y1, y2) in four variables
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6.2. Equationally (semi)-definable principal congruences

such that for all A ∈ K and a, b, c, d ∈ A:

〈a, b〉 ∈ CgA
K(c, d)⇐⇒ A � Φ(a, b, c, d).

In [84] this concept has been generalized as follows. A quasi-variety K has
equationally semi-definable principal relative congruences (ESPRC) if, for each
n ∈ ω, there exists a finite set of equations Φn(x1, x2, y1, y2,~z) in 4 + n
variables such that, whenever ~e = e1, . . . , en generates an algebra A ∈ K and
a, b, c, d ∈ A, then

〈a, b〉 ∈ CgA
K(c, d)⇐⇒ A � Φn(a, b, c, d,~e).

It is clear that EDPRC implies ESPRC, while the converse does not hold in
general.

Example 6.7. The variety DL01 has EDPC witnessed by the equations

x1 ∧ (y1 ∧ y2) ≈ x2 ∧ (y1 ∧ y2) x1 ∨ (y1 ∨ y2) ≈ x2 ∨ (y1 ∨ y2). (6.1)

See for example [17, Example 7, pag. 201].
An example of a variety with ESPRC and without EDPRC comes from the

study of relevance logic [7]. An algebra A = 〈A,∧,∨, ·,¬〉 of type 〈2, 2, 2, 1〉
is a relevant algebra if 〈A,∧,∨〉 is a distributive lattice, 〈A, ·〉 is a commutative
semigroup and

¬¬a = a 6 a · a
a 6 b⇐⇒ ¬b 6 ¬a

a · b 6 c⇐⇒ a · ¬c 6 ¬b
a 6 a · (¬(b · ¬b) ∧ ¬(c · ¬c))

for every a, b, c ∈ A. Relevant algebras form a variety that we denote by RA.
In relevant algebras one can define an implication setting x → y := ¬(x · ¬y).
The variety RA has ESPC witnessed by the following sets of equations [84,
Example 9.5]:

Φn := {(z1 → z1) ∧ · · · ∧ (zn → zn) ∧ (y1 ↔ y2) 6 (x1 ↔ x2)}

for every n ∈ ω. Moreover, RA lacks EDPC since it has not the congruence
extension property [29, pag. 289]. �

Remarkably EDPRC and ESPRC can be equivalently expressed as prop-
erties of congruence lattices. More precisely, we say that a join-semilattice
〈A,∨〉 is dually Brouwerian when for every a, b ∈ A there exists min{c ∈ A :
b 6 a ∨ c}. The following result is a combination of [65, Theorems 5 and 8]
and [84, Theorem 8.6].
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Theorem 6.8 (Köhler, Pigozzi and Raftery). A quasi-variety K has EDPRC
(ESPRC) if and only if 〈CompKA,∨〉 is a dually Brouwerian join-semilattice for
every (finitely generated) A ∈ K.

The goal of this section is to identify some conditions under which EDPRC
(and ESPRC) transfers in presence of an adjunction (Theorems 6.11 and 6.17).
Given a left adjoint F : X→ Y, we say that γ preserves compact congruences if
the restriction

γA : CompXA→ CompYF (A)

is well defined for every A ∈ X.

Lemma 6.9. Let F : X→ Y be a left adjoint between quasi-varieties. The following
conditions are equivalent:

(i) The map γ preserves compact congruences.

(ii) The map γ : CompXFmX(2)→ CompYF (FmX(2)) is well defined.

(iii) There is a finite set J ⊆ κ such that for every A ∈ Y and~a,~c ∈ A[κ](θ, L )

~a = ~c if and only if (~a(j) = ~c(j) for every j ∈ J)

where θL ◦ [κ] is the functor that is right adjoint to F .

Proof. Part (i)⇒(ii) is straightforward. (ii)⇒(iii): Let θL ◦ [κ] be the decompo-
sition of the right adjoint to F . Moreover, let x and y be the free generators of
FmX(2). From Corollary 5.30 it follows that the algebra F (FmX(2)) can be
identified with the quotient of FmY(κ× 2) under the Y-congruence generated
by Θ(~x) ∪Θ(~y).

Clearly φ := CgX(x, y) is compact. Thus by assumption also γ(φ) is com-
pact. Now observe that the canonical projection πφ : FmX(2) → FmX(2)/φ
is the coequalizer of the arrows x, y : FmX(1)⇒ FmX(2). In particular, this
means that F (πφ) is the coequalizer of F (x) and F (y). By Corollary 5.30 we
can identify F (FmX(1)) with the algebra FmY(κ)/CgY(Θ). Then we have

F (x),F (y) : FmY(κ)/CgY(Θ)→ FmY(κ × 2)/CgY(Θ(~x) ∪Θ(~y)).

Moreover, F (x) and F (y) are the unique maps that send the represen-
tatives of the κ variables ~x/CgY(Θ) of FmY(κ)/CgY(Θ) respectively to
~x/CgY(Θ(~x) ∪Θ(~y)) and to ~y/CgY(Θ(~x) ∪Θ(~y)). This last fact was shown
in the Claim 5.27.1. Finally, since γ(φ) is compact, there is a finite set of
equations Φ ⊆ Eq(LY, κ) such that

Θ(~x) ∪Θ(~y) ∪Φ �Y xi ≈ yi for every i < κ (6.2)

Θ(~x) ∪Θ(~y) ∪ {xi ≈ yi : i < κ} �Y Φ. (6.3)
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Since Φ is finite, there is a finite set J ⊆ κ such that the variables occurring
in Φ are among {xj : j ∈ J} ∪ {yj : j ∈ J}. For sake of simplicity, we will
assume that J = {1, . . . , n}. Accordingly we will write

Φ(x1, . . . , xn, y1, . . . , yn)

to underline which are the variables occurring in Φ. Then consider A ∈ Y
and two elements ~a,~c ∈ A[κ](θ, L ) such that ~a(j) = ~c(j) for every j ∈ J.
Observe that A � Θ(~a), since ~a ∈ A[κ](θ, L ). From (6.3) it follows that
A � Φ(~a(1), . . . ,~a(n),~a(1), . . . ,~a(n)). In particular, this implies that

A � Φ(~a(1), . . . ,~a(n),~c(1),~c(n)) (6.4)

since~a(j) = ~c(j). But observe that also A � Θ(~c), since~c ∈ A[κ](θ, L ). Hence,
with an application of (6.2) and (6.4), we conclude that~a = ~c as desired.

(iii)⇒(i): Consider A ∈ X and φ ∈ CompXA. We know that φ is generated
by a finite set {〈ai, bi〉 : i < n} ⊆ A2. The canonical projection πφ is the
coequalizer of the homomorphisms f , g : FmX(n)⇒ A defined respectively
as f (xi) = ai and g(xi) = bi for every i < n. Then F (πφ) is the coequalizer
of F ( f ) and F (g). Now by Corollary 5.30 we can identify F (FmX(n)) with
the quotient of FmY(κ × n) under

η := CgY(Θ(~x1) ∪ · · · ∪Θ(~xn)).

Observe that F (πφ) is also a coequalizer for F ( f ) ◦ πη and F (g) ◦ πη , since
πη is onto. In particular, this means that

γ(φ) = CgF (A)
Y {〈F ( f ) ◦ πη(xi

m),F (g) ◦ πη(xi
m)〉 : i < κ, m < n}. (6.5)

Now define

ζ := CgF (A)
Y {〈F ( f ) ◦ πη(xi

m),F (g) ◦ πη(xi
m)〉 : i ∈ J, m < n}.

Observe that ζ is compact, since J is finite. Thus in order to prove that γ(φ)
is compact too, it will be enough to show that γ(φ) = ζ. By (6.5) we know
that ζ ⊆ γ(φ). Then we move to the other inclusion. Let {xi : i < κ} ∪ {yi :
i < κ} be the free generators of FmY(κ × 2). Consider m < n. We define a
homomorphism h : FmY(κ × 2)→ F (A) by the following rule:

h(xi) := F ( f ) ◦ πη(xi
m) and h(yi) := F (g) ◦ πη(xi

m)

for every i < κ. It is easy to see that F (A) � Θ(h~x) ∪Θ(h~y). In particular,
this implies that

πζ ◦ h(~x), πζ ◦ h(~y) ∈ (F (A)/ζ)[κ](θ, L ).
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From the definition of ζ it follows that the κ-sequences πζ ◦ h(~x) and πζ ◦ h(~y)
agree on the indexes in J. Together with the assumptions, this implies that
πζ ◦ h(~x) = πζ ◦ h(~y). Thus we obtain that:

{〈F ( f ) ◦ πη(xi
m),F (g) ◦ πη(xi

m)〉 : i < κ} ⊆ ζ.

Applying (6.5), we conclude that γ(φ) ⊆ ζ. �

The next example shows that in general the map γ need not to preserve
compact congruences.

Example 6.10 (Modules). Let R be a commutative ring with unit and R−Mod
be the class of R-modules, seen as a variety of algebras. In other words,
we assume that the language of R−Mod includes a unary symbol r(x) for
every r ∈ R in order to recover scalar multiplication as an internal opera-
tion. The forgetful functor U : R−Mod → AG into the variety of Abelian
groups has a right adjoint G defined as follows. Recall that, given an
Abelian group A ∈ AG, the set of homomorphisms hom(R, A) equipped
with addition and inverse defined component-wise is still an Abelian group.
Then G(A) is the expansion of the Abelian group hom(R, A) with an op-
eration r : hom(R, A) → hom(R, A) for every r ∈ R, defined for every
f ∈ hom(R, A) as:

r( f )(q) := f (r · q), for every q ∈ R.

We will briefly describe how to decompose the functor G into a combi-
nation of our two basic deformations. For the sake of simplicity, we will
identify the universe of R with its cardinality. First consider the following
sublanguage L of the matrix power AG[R]:

x + y := 〈xi + yi : i ∈ R〉 − x := 〈−xi : i ∈ R〉 0 := 〈0i : i ∈ R〉

r(x) := 〈xr·i : i ∈ R〉, for every r ∈ R.

Then consider the following set of equations:

θ := {
−−−→
xi + xj ≈

−→
xi+j : i, j ∈ R}.

In the definition of θ we are assuming that ~ϕ denotes the R-sequence constant
on ϕ. It is easy to see that G arises as the composition θL ◦ [R].

Now, consider the free commutative ring with unit Z[x1, x2, . . . ] with
countably many free generators {xn : n ∈ ω}. Let γ be the map between con-
gruence lattices induced by the forgetful functor U : Z[x1, x2, . . . ]−Mod→ AG.
We want to prove that γ does not preserve compact congruences. Suppose
the contrary towards a contradiction. Let θL ◦ [Z[x1, x2, . . . ]] be the decom-
position of the right adjoint to U described above. By Lemma 6.9 there is a
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finite set J ⊆ {xn : n ∈ ω} ⊆ [Z[x1, x2, . . . ]] such that for every A ∈ AG and
~a,~c ∈ A[Z[x1,x2,... ]](θ, L ):

~a = ~c if and only if (~a(n) = ~c(n) for every xn ∈ J). (6.6)

Then consider any non-trivial commutative ring with unit A. There are
two different element a, b ∈ A. We consider the group homomorphisms
f , g : Z[x1, x2, . . . ]⇒ A defined by the following rule:

f (xn) := a and g(xn) :=
{

a if xn ∈ J
b otherwise

for every n ∈ ω. The sequences 〈 f (c) : c ∈ Z[x1, x2, . . . ]〉 and 〈g(c) : c ∈
Z[x1, x2, . . . ]〉 belong to A[Z[x1,x2,... ]](θ, L ). Moreover, they are different but
agree on the components in J. But this contradicts condition (6.6). Hence we
conclude that γ does not preserve compact congruences. �

As expected, the preservation of compact congruences plays a fundamen-
tal role in the preservation of EDPRC:

Theorem 6.11. Let F : X → Y be a faithful left adjoint between quasi-varieties
that preserves subdirect representations and let γ preserve compact congruences. If
Y has EDPRC, then also X has it.

Proof. By Theorem 6.8 it will be enough to show that CompXA forms a dually
Brouwerian join-semilattice for every A ∈ K. Consider an algebra A ∈ X. It is
clear that CompXA forms a join-semilattice. Pick θ, φ ∈ CompXA. Our goal
will be to prove that the set

W := {η ∈ CompXA : θ 6 η ∨ φ}

has a minimum in CompXA. By assumption we have γA(θ), γA(φ) ∈
CompYF (A). Then consider the following set

Z := {η ∈ CompYF (A) : γA(θ) 6 η ∨ γA(φ)}

and observe that by Theorem 6.5

W = {η ∈ CompXA : γA(η) ∈ Z}.

By assumption (and Theorem 6.8) Z has a minimum α ∈ CompYF (A).
Together with Theorem 6.5, this implies that

γA(θ) 6 γA(φ) ∨ α 6 γA(φ) ∨
⋂

η∈W

γA(η) = γA(φ) ∨ γA(
⋂

W)

and, therefore, that
θ 6 φ ∨

⋂
W.
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To complete the proof it will be enough to show that
⋂

W ∈ CompXA.
Recall that θ is finitely generated and that θ 6 φ∨⋂W. Together with the fact
that CgA

X is a finitary closure operator, this implies that there is a congruence
η ∈ CompXA such that η 6

⋂
W and θ 6 φ ∨ η. But this implies that η ∈W

and, therefore, that
⋂

W = η ∈ CompXA as desired. �

Example 6.12 (Kleene Algebras). Let F : KA → DL01 the left adjoint functor
described in Example 5.28. Recall that DL01 has EDPC (Example 6.7). This
means that CompF (A) is a dually Brouwerian join-semilattice for every
A ∈ KA by Theorem 6.8. Moreover, recall from Example 6.6 that γA is a
lattice isomorphism for every A ∈ KA (and, therefore, preserves compcat
congruences). Thus also ConF (A) is a dually Brouwerian join-semilattice for
every A ∈ KA. This is to say that also KA has EDPC [93, Theorem 2.2]. �

Now we move our attention to the study of the preservation of ESPRC.
Since this notion can be characterized in terms of the behaviour of compact
congruences of finitely generated algebras (Theorem 6.8), it will be useful to
spend a few words on these concepts. We begin by observing that they are
related as follows:

Lemma 6.13. Let F : X → Y be a left adjoint between quasi-varieties. If F pre-
serves finitely generated algebras, then γ preserves compact congruences. When
epimorphims in Y are surjective, the converse holds too.

Proof. Suppose that F preserves finitely generated algebras. In particular, this
means that F (FmX(1)) is finitely generated. This implies that the exponent
κ of the matrix power in the decomposition of the right adjoint to F can be
chosen finite. Thus, with an application of part (iii)⇒(i) of Lemma 6.9, we
conclude that γ preserves compact congruences.

Now suppose that epimorphisms in Y are surjective and that γ preserves
compact congruences. Let also θL ◦ [κ] be the decomposition of the right ad-
joint to F . By the assumptions we can find a finite J ⊆ κ that fulfils condition
(iii) of Lemma 6.9. Now by Corollary 5.30 we can identify F (FmX(1)) with
FmY(κ)/CgY(Θ). Then let A be the subalgebra of F (FmX(1)) generated by
{xi/CgY(Θ) : i ∈ J}. Clearly A is finitely generated.

We claim that the inclusion map of A into F (FmX(1)) is an epimorphism.
To this end, consider two homomorphisms f , g : F (FmX(1))→ B that agree
on A. First observe that

B � Θ〈 f (xi/CgY(Θ)) : i < κ〉 ∪Θ〈g(xi/CgY(Θ)) : i < κ〉

and, therefore, that the sequences

〈 f (xi/CgY(Θ)) : i < κ〉 and 〈g(xi/CgY(Θ)) : i < κ〉

belong to B[κ](θ, L ). Since f and g agree on A, we can apply condition (iii) of
Lemma 6.9 obtaining f (xi/CgY(Θ)) = g(xi/CgY(Θ)) for every i < κ. Since
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the set {xi/CgY(Θ) : i < κ} generates F (FmX(1)), we conclude that f = g.
This establishes our claim.

Together with the fact that epimorphisms in Y are surjective, our claim
implies that FmY(κ)/Θ is finitely generated. This means that F (FmX(1)) is
finitely generated and, therefore, that the exponent κ of the matrix power
in the decomposition of the right adjoint to F can be chosen finite. Then
consider a new decomposition θ′L ′ ◦ [n] with n ∈ ω of the right adjoint to F .
By Corollary 5.30 F preserves finitely generated algebras. �

From our point of view, the reference to epimorphism surjectivity in
Lemma 6.13 is very interesting since this condition is the algebraic equivalent
of the Beth definability property in propositional logics [14, 15, 59, 60]. The
next example shows that, without the assumption of epimorphism surjectivity,
the preservation of compact congruences does not imply the preservation of
finitely generated algebras.

Example 6.14 (Ring Hom-Functor). Consider a generalized quasi-variety X
and an algebra A ∈ X. Then let hom(A, ·) : X→ Set be the functor defined
by the following rule:

B 7−→ hom(A, B)
f : B→ C 7−→ f ◦ (·) : hom(A, B)→ hom(A, C).

The functor hom(A, ·) has a left adjoint F : Set → X defined as follows.
Given a set I, the algebra F (I) is the copower of A indexed by I. Moreover,
given a function f : I → J between sets, we let F ( f ) : F (I) → F (J) be the
map 〈p f (i) : i ∈ I〉 induced by the universal propery of the coproduct F (I),
where {pj : A → F (J) : j ∈ J} are the maps associated with the copower
F (J).

Now consider the special case where X is the variety R of commuta-
tive rings with unit. Then consider the functor F that is left adjoint to
hom(Q, ·) : R→ Set, where Q is the ring of rational numbers. First observe
that F does not preserve finitely generated algebras. This is a consequence
of the fact that the singletons are finitely generated in Set, while their image
Q is not. It only remains to prove that γ preserves compact congruences. In
order to do this, it will be convenient to decompose canonically the right
adjoint hom(Q, ·). For the sake of simplicity, let us identify the universe of Q
with its cardinality. Then define a set of equations in Q variables as follows:

θ :={
−−−→
xi + xj ≈

−→
xi+j : i, j ∈ Q} ∪ {

−−−→
xi · xj ≈

−→
xi·j : i, j ∈ Q} ∪ {

−→
x1 ≈ −→1 }.

In the definition of θ we are assuming that ~ϕ denotes the Q-sequence constant
on ϕ. Finally, let L := ∅. It is easy to see that A[Q](θ, L ) = hom(Q, A)
for every A ∈ R. Thus θL ◦ [Q] = hom(Q, ·). Now consider a pair ~a,~c ∈
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A[Q](θ, L ). Since the inclusion of the integers Z into the rationals Q is an
epimorphism in R, we have that

~a = ~c if and only if~a and ~c agree on Z
if and only if~a(1) = ~c(1).

Therefore we can apply part (iii)⇒(i) of Lemma 6.9, obtaining that γ preserves
compact congruences. �

It is therefore natural to ask under which condition a left adjoint preserves
finitely generated algebras in general. We have the following:

Lemma 6.15. Let F : X ←→ Y : G be an adjunction F a G between quasi-
varieties. The following conditions are equivalent:

(i) F preserves finitely generated algebras.

(ii) F preserves finitely presentable algebras.

(iii) F (FmX(1)) is finitely generated.

(iv) G preserves directed colimits.

(v) G can be decomposed as θL ◦ [κ] with κ finite.

(vi) G can be decomposed as θL ◦ [κ] with κ and θ finite.

Proof. Parts (i)⇒(iii), (iii)⇒(v), (vi)⇒(v) are straightforward. Part (v)⇒(i)
has been already proved in the last paragraph of the proof of Lemma 6.13.
(i)⇒(ii): Recall that finitely presentable algebras are exactly the quotients of
finitely generated algebras under compact congruences. From the assumption
and Lemma 6.13 it follows that F preserves finitely generated algebras and
that γ preserves compact congruences. It is easy to infer that F preserves
finitely presentable algebras too.

(ii)⇒(vi): From the assumption it follows that F (FmX(1)) is finitely
presentable. Then there is n ∈ ω and a compact Y-congruence Θ such that
F (FmX(1)) = FmY(n)/Θ. Now, Θ is generated by a finite set Φ ⊆ Θ. This
means that the right adjoint to F can be decomposed as θL ◦ [n], where
θ := {~ε ≈ ~δ : 〈ε, δ〉 ∈ Φ} and~ε, ~δ are sequences of length n.

(vi)⇒(iv): According to Theorem 5.29, the functor G can be written as
the composition of two functors [κ] : Y → K and θL : K → X, where K is a
generalized quasi-variety. Moreover, by assumption θ and κ are finite. The
fact that θ is finite, together with the fact that X and Y are quasi-varieties,
implies that the map θL : Q(Y[κ])→ X is a well-defined right adjoint functor
(this was explained in the paragraph right before Theorem 5.23). Now, recall
from Example 5.10 that Q(Y[κ]) = Y[κ], since Y is a quasi-variety and κ is
finite. In particular, we have that [κ] : Y → Y[κ] is a category equivalence and,
therefore, preserves directed colimits. Therefore it only remains to show that
θL : Y[κ] → X preserves directed colimits too. Taking a look at the proof of
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Theorem 5.12, we see that θL preserves λ-directed colimits for every regular
cardinal larger than the number of variables that occur in the generalized
quasi-equations axiomatizing Y[κ]. Since Y[κ] is a quasi-variety, we can take
λ = ℵ0, yielding that θL preserves directed colimits.

(iv)⇒(ii): In Lemma 5.2 we showed that finitely X-presentable algebras
admit a categorical description, i.e., they are the algebras A ∈ X for which
the functor hom(A, ·) : A → Set preserves directed colimits. Then let A ∈
X be finitely presentable. From the fact that F a G it follows that the
functors hom(F (A), ·) and hom(A,G(·)) are naturally isomorphic. Observe
that hom(A,G(·)) = hom(A, ·) ◦ G. From the assumption we know that
both hom(A, ·) and G preserve directed colimits. Thus we conclude that
hom(F (A), ·) preserves colimits too, i.e., that F (A) is finitely presentable.∗

�

The next result can be compared with Corollary 6.3.

Corollary 6.16. Let G : Y → X be a right adjoint functor between quasi-varieties
that preserves directed colimits. If A ∈ Q(K), then G(A) ∈ Q(G(K)), for every
K∪ {A} ⊆ Y.

Proof. Suppose that A ∈ Q(K). A characterization of the operator Q(·) says
that A is a directed union of subalgebras of direct products of K. Since
direct products are limits, they are preserved by G. Moreover, right adjoints
preserve embeddings. This can be proven in different ways: one of them is
to think that G can be decomposed as θL ◦ [κ] and that the deformations θL

and [κ] preserve embeddings. Thus it only remains to prove that G preserves
directed unions.

To this end, consider the directed union A of a directed diagram {Bj : j ∈
J} in Y. Since Y is a quasi-variety, we know that A ∈ Y. Moreover A is the
colimit of the diagram. By the assumption we know that G(A) is the colimit
of the diagram {G(Bj) : j ∈ J}. Since G preserves embeddings, we conclude
that G(A) is also the directed union of this diagram. �

The preservation of finitely generated algebras is related to the preserva-
tion of ESPRC as follows:

Theorem 6.17. Let F : X → Y be a faithful left adjoint between quasi-varieties
that preserves subdirect representations and finitely generated algebras. If Y has
ESPRC, then also X has it.

Proof. From Lemma 6.13 we know that γ preserves compact congruences.
Then we can carry on a proof analogous to the one of Theorem 6.11, obtaining
that if the compact congruences of finitely generated algebras of Y form a

∗The proof of part (iv)⇒(ii) given here was suggested to me by Matĕj Dostál in a private
communication.
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dually Brouwerian join-semilattices, then the same holds in X. Thus with an
application of Theorem 6.8 we are done. �

6.3 The case of category equivalence

The properties considered in the two previous sections are preserved by
category equivalence. In particular, if F : X → Y is a category equivalence
between generalized quasi-varieties, then γA : ConXA → ConYF (A) is an
isomorphism for every A ∈ X. Thus all lattice theoretic properties of con-
gruence lattices transfer from Y to X (and vice-versa), e.g., this happens
for congruence distributivity (modularity) and EDPRC. The same holds for
ESPRC, since category equivalences preserve finitely generated algebras [73,
Theorem 3.1.(5)]. For general information about categorical properties in
prevarieties we refer the reader to the survey [63].

In the rest of this section we will assume that empty algebras do not exist.
Given two varieties X and Y, we write X 6 Y to denote the fact that X can be
interpreted in Y in the sense of Definition 5.16. If 〈Xn : n ∈ ω〉 is a decreasing
sequence w.r.t. 6 of finitely axiomatized varieties of finite type, then the class
of varieties

{Y : Xn 6 Y for some n ∈ ω}

is called the Maltsev class defined by this sequence, and the associated condi-
tion on varieties Y is called a Maltsev condition. A Maltsev condition is linear
if the axioms t1 ≈ t2 of each Xn can be chosen in a way that each ti contains
at most one occurrence of a basic operation symbol. Examples of properties
characterized by linear Maltsev conditions in varieties are congruence dis-
tributivity, modularity, permutability and near unanimity. McKenzie applied
his combinatorial decomposition of category equivalences to obtain a new
and direct proof of the following result [73, Theorem 6.10], that first appeared
in [34].

Theorem 6.18 (Davey and Werner). Categorically equivalent varieties satisfy the
same linear Maltsev conditions.

Remarkably, the combinatorial description of category equivalence can
be applied also to disprove that some property is a linear Maltsev condition.
We will provide an example of this application. Recall that a variety K is
congruence regular if for every A ∈ K, a ∈ A and θ, φ ∈ ConA, if a/θ = a/φ,
then θ = φ.

Lemma 6.19. Congruence regularity is not categorical in varieties.

Proof. Let Z4 be the additive group of integers modulo 4 (with universe
{0, 1, 2, 3}). Then let σ, π and µ be the operations defined by the following
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tables:
σ π

0 0 0
1 1 0
2 2 2
3 1 2

µ 0 1 2 3
0 0 1 0 1
1 0 0 0 0
2 0 3 2 1
3 0 0 0 0

Let A be the expansion of Z4 with σ, π and µ. The following equations
hold in A:

σσ(x) ≈ σx and µ(σπ(x), σ(x)) ≈ x.

Hence σ is idempotent and invertible in V(A), and its invertibility is wit-
nessed by the unary terms π(x) and x and the binary term µ(x, y). As a
consequence V(A) is categorically equivalent to V(A)(σ) (see Example 5.15).

We know that V(A) is congruence regular, since A has a group reduct and
congruence regularity is a Maltsev condition that holds in groups. Therefore
it will be enough to show that V(A)(σ) is not congruence regular. To this
end observe that the partition θ = {{0, 2}, {1, 3}} is a congruence of A. To
see this, observe that clearly θ is a congruence of Z4. Moreover, θ clearly
preserves σ. Since θ identifies elements according to whether they are odd
or even, it is compatible with π. Therefore it only remains to prove that θ is
compatible with µ. Consider the following sets:

X1 := {〈0, 0〉, 〈0, 2〉, 〈2, 0〉, 〈2, 2〉}
X2 := {〈1, 1〉, 〈1, 3〉, 〈3, 1〉, 〈3, 3〉}
X3 := {〈0, 1〉, 〈0, 3〉, 〈2, 1〉, 〈2, 3〉}
X4 := {〈1, 0〉, 〈1, 2〉, 〈3, 0〉, 〈3, 2〉}.

It will be enough to check that if two pairs belong to the same Xi, then their
values under µ are identified by θ. But this can be easily checked taking a
look at the table defining µ. Hence θ ∈ ConA.

Then we consider the canonical projection pθ : A→ A/θ. Applying our
category equivalence, we obtain a surjective homomorphism pθ : A(σ) →
(A/θ)(σ). Now, its kernel θ(σ) can be identified with the partition {{0, 2}, {1}}
(observe that the universe of A(σ) is {0, 1, 2}). Therefore the congruence
classes of 1 relative to θ(µ) and to the identity relation of A(σ) coincide. In
particular, this shows that A(σ) is not congruence regular. As a consequence
V(A)(σ) is not congruence regular too. �

Corollary 6.20. Congruence regularity is not a linear Maltsev condition.

Proof. This is a direct consequence of Theorem 6.18 and Lemma 6.19. �
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6.4 Algebraizable logics

Until now we focused on the preservation of properties (especially of con-
gruences lattices) in the presence of an adjunction between two generalized
quasi-varieties X and Y. It may happen that X and Y are the equivalent
algebraic semantics of two algebraizable logics. In this case it is possible
to give a logical interpretation to these preservation results, by means of
some transfer theorems that typically relate a metalogical property with an
algebraic one. In order to explain how, let us recall some definitions. A logic
L has a generalized disjunction if there is a set of formulas ∆(x, y,~z) such that
for every Γ ∪ {ϕ, ψ, γ} ⊆ Fm:

(Γ, ϕ `L γ and Γ, ψ `L γ)⇐⇒ Γ, ∆(ϕ, ψ,~α) `L γ for every~α ∈ Fm.

We have the following [27, Theorem 2.5.17]:

Theorem 6.21 (Czelakowski). A finitary algebraizable logic has a generalized
disjunction if and only if its equivalent algebraic semantics is relatively congruence
distributive.†

An algebraizable logic is elementary algebraizable if its equivalent algebraic
semantics is a quasi-variety. A logic L has a deduction-detachment theorem
(DDT) if there is a finite set of formulas Φ(x, y) in two variables such that for
every Γ ∪ {ψ, ϕ} ⊆ Fm:

Γ, ψ `L ϕ⇐⇒ Γ `L Φ(ψ, ϕ).

A logic L has a contextual deduction-detachment theorem (CDDT) if for each
n ∈ ω there is a finite set of formulas Φ(x, y,~z) in n + 2 variables such that
for every Γ ∪ {ϕ, ψ} ⊆ Fm(~z):

Γ, ψ `L ϕ⇐⇒ Γ ` Φn(ψ, ϕ,~z).

The following transfer result is a combination of [20, Theorem 5.5] and [84,
Theorem 9.2].

Theorem 6.22 (Blok, Pigozzi and Raftery). A finitary elementary algebraizable
logic has the DDT (CDDT) if and only if its equivalent algebraic semantics has
EDPRC (ESPRC).

A logic L has an inconsistency lemma if for each n ∈ ω there is a set of
formulas Φ(x1, . . . , xn) in n variables such that for every Γ ∪ {ϕ1, . . . , ϕn} ⊆
Fm:

Γ ∪ {ϕ1, . . . , ϕn} is inconsistent in L ⇐⇒ Γ `L Φn(ϕ1, . . . , ϕn).

†Metalogical properties that correspond to relative congruence modularity have been
obtained in [27, 84]. Even if for sake of simplicity we chose not to discuss them here, they can
be easily integrated in the following discussion.
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The inconsistency lemma can be characterized by means of the behaviour of
compact congruences. To explain how, recall that a join-semilattice 〈A,∨〉 is
dually pseudo-complemented if it has a greatest element 1 and for every a ∈ A
there exists min{c ∈ A : b ∨ a = 1}. We have the following:

Theorem 6.23 (Raftery). A finitary logic algebraized by a quasi-variety K has the
inconsistency lemma if and only if the compact K-congruences of A form a dually
pseudo-complemented join-semilattice for every A ∈ K.

The above result was proved in [86, Theorem 3.10], but cfr. also [87].
Drawing consequences from the work done until now, we can obtain the

following informations on preservation of metalogical properties:

Theorem 6.24. Let X and Y be two finitary logics algebraized respectively by the
generalized quasi-varieties X and Y, which moreover are related by a faithful left
adjoint F : X→ Y that preserves subdirect representations.
1. If Y has a generalized disjunction, then the same holds for X .
Moreover, if X and Y are quasi-varieties:
2. If γ preserves compact congruences and Y has the inconsistency lemma, then the

same holds for X .

3. If γ preserves compact congruences and Y has the DDT, then the same holds for
X .

4. If F preserves finitely generated algebras and Y has the CDDT, then the same
holds for X .

Proof. 1 follows from Theorems 6.5 and 6.21. 3 follows from Theorems
6.11 and 6.22. 4 follows from Theorems 6.17 and 6.22. It only remains to
prove 2. Suppose that γ preserves compact congruences and that Y has the
inconsistency lemma. From Theorem 6.23 it follows that CompYF (A) is a
dually pseudo-complemented join-semilattice for every A ∈ X. It will be
enough to prove that the same holds for CompXA.

We claim that the total congruence 1A is compact. To see this, recall that
the total congruence 1F (A) is a join of compact congruences, since ConYF (A)
is an algebraic lattice. Together with the fact that there is a greatest Y-compact
congruence of F (A), this implies that 1F (A) is compact. Applying the fact
that γA preserves joins, we obtain that:∨

{γA(θ) : θ ∈ CompXA} = γA
∨

CompXA = γA(1A) = 1F (A).

Since 1F (A) is compact there are θ1, . . . , θn ∈ V such that

γA(θ1) ∨ · · · ∨ γA(θn) = 1F (A) = γ(1A).

Since γA is a lattice embedding, this means that θ1 ∨ · · · ∨ θn = 1A. Hence
1A is a finite join of compact elements and, therefore, it is compact too. This
establishes our claim.
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As a consequence A has a greatest compact X-congruence, i.e., the total
congruence 1A. Keeping this in mind, it is almost straightforward to adapt
the argument used in the proof of Theorem 6.11 and conclude that CompXA
is dually pseudo-complemented. �

An algebraizable logic L has the strong finite model property (SFMP) when
for every finite set of formulas Γ ∪ {ϕ}:

Γ 0L ϕ ⇐⇒ there is a finite model 〈A, F〉 of L
and a homomorphism f : Fm→ A s.t.
f [Γ] ⊆ F and f (ϕ) /∈ F.

Theorem 6.25. Let X and Y be two finitary logics algebraized respectively by
the quasi-varieties X and Y, which moreover are related by a faithful left adjoint
F : X → Y that preserves finitely generated algebras. If Y has the SFMP, then the
same holds for X .

Proof. From the general theory of algebraizable logics it follows that the
structural transformers that witness the algebraizability of X and Y can be
chosen finite. Under this condition the fact that Y (resp. X ) has the SFMP
is equivalent to the fact that Y (resp. X) is generated as a quasi-variety by
its finite members. By the assumption we know that Y is generated as a
quasi-variety by its finite members. It will be enough to prove that the same
holds for X.

To this end, consider the translation 〈τ, Θ〉 associated with F . By Lemma
6.15 we can assume that τ is an n-translation for some n ∈ ω and that Θ is
finite. Then suppose that

ϕ1 ≈ ψ1, . . . , ϕn ≈ ψn 2X ε ≈ δ. (6.7)

Let x1, . . . , xm be the variables occurring in the deduction above. By Lemma
6.4 we know that⋃

16i6n

τ∗(ϕi ≈ ψi) ∪
⋃

16j6m

Θ(~xj) 2Y τ∗(ε ≈ δ).

Since this is a quasi-equation, it fails in a finite algebra A ∈ Y. Now, the
right adjoint to F has the form θL ◦ [n]. Since A and the exponent of the
matrix power are finite, also A[n](θ, L ) ∈ X is finite. It is easy to see that the
deduction (6.7) fails in A. We conclude that X is generated as a quasi-variety
by its finite members. �

To describe another kind of application to the theory of algebraizable
logics, let us recall that there are varieties of algebras that are not the equiva-
lent algebraic semantics of any algebraizable logic, e.g., the variety of Kleene
algebras (see Example 5.28). This problem is easily overcome if we consider
varieties up to category equivalence.
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Theorem 6.26. Every prevariety is categorically equivalent to the equivalent alge-
braic semantics of a finitely algebraizable logic formulated in enough variables. In
particular, every quasi-variety is categorically equivalent to the equivalent algebraic
semantics of a finitary and finitely algebraizable logic.

Proof. Let K be a prevariety and consider the matrix power K[2]. We consider
the following basic operations of the matrix power K[2]:

〈x1, x2〉 → 〈y1, y2〉 := 〈x1, y1〉
〈x1, x2〉 ← 〈y1, y2〉 := 〈x2, y2〉

�〈x1, x2〉 := 〈x2, x1〉.

Let L be the logic expressed with a proper class of variables‡ determined
by the class of matrices

{〈A[2], {〈a, a〉 : a ∈ A}〉 : A ∈ K}.

We will show that L is algebraizable with equivalent algebraic semantics the
prevariety K[2]. First observe that for every A[2] ∈ K[2] and 〈b, c〉 ∈ A2 we
have that:

b = c ⇐⇒ 〈b, c〉 = 〈c, b〉
⇐⇒ 〈b, c〉 = �〈b, c〉.

This implies that for every set of formulas Γ ∪ {ϕ},

Γ `L ϕ⇐⇒ {�γ ≈ γ : γ ∈ Γ} �K[2] �ϕ ≈ ϕ.

Moreover for every A[2] ∈ K[2] and 〈a, b〉, 〈c, d〉 ∈ A2 we have that:

〈a, b〉 = 〈c, d〉 ⇐⇒ a = c and b = d
⇐⇒ 〈a, c〉 = 〈c, a〉 and 〈b, d〉 = 〈d, b〉
⇐⇒ 〈a, b〉 → 〈c, d〉 = �(〈a, b〉 → 〈c, d〉) and

〈a, b〉 ← 〈c, d〉 = �(〈a, b〉 ← 〈c, d〉).

This means that the following condition holds:

x ≈ y =||=K[2] {x → y ≈ �(x → y), x ← y ≈ �(x ← y)}.

We conclude that L is algebraizable through the following structural trans-
formers

τ(x) := {�x ≈ x} and ρ(x, y) := {x → y, x ← y}.
Moreover, the equivalent algebraic semantics of L is the prevariety generated
by K[2]. By Example 5.10 we know that this prevariety is K[2] itself and that

‡For the precise definition of a logic expressed in a proper class of variables see [15].
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K[2] is categorically equivalent to K. Thus we conclude that K is categorically
equivalent to the equivalent algebraic semantics of a finitely algebraizable
algebraizable logic.

It only remains to prove that every quasi-variety K is categorically equiv-
alent to the equivalent algebraic semantics of a finitary and finitely algebraiz-
able logic. To this end consider a quasi-variety K. Recall from Example 5.10

that the matrix power K[2] is a quasi-variety categorically equivalent to K.
The above construction shows that K[2] is the equivalent algebraic semantics
of a finitely algebraizable logic L that is algebraizable through two finite
structural transformers τ and ρ. The fact that τ is finite, together with the
fact that K[2] is a quasi-variety, implies that L is finitary.§ �

Corollary 6.27. The property of being the equivalent algebraic semantics of an
algebraizable logic is not categorical in prevarieties.

Proof. This is a consequence of Theorem 6.26, together with the fact that there
are a lot of prevarieties that are not the equivalent algebraic semantics of any
algebraizable logic. �

Drawing consequences from Theorem 6.26 one can obtain an elementary
proof of the following fact, which was discovered in [21].

Corollary 6.28 (Blok-Raftery). There is a variety K such that:
1. K is the equivalent algebraic semantics of a finitary finitely algebraizable logic.

2. If a lattice equation fails in the variety of lattices, then it fails in the congruence
lattice of some algebra in K.

Proof. Observe that sets form a variety X of algebras (with empty language).
In the proof of Theorem 6.26 we showed that X[2] is the equivalent algebraic
semantics of a finitary finitely algebraizable logic. Moreover, X[2] is a variety
categorically equivalent to X (see Example 5.10). Thus X[2] satisfies condition
1. To prove condition 2 we reason as follows. Whitman proved in [95] that
every lattice can be embedded into the lattice of equivalence relations of
some set. Thus Whitman’s theorem implies that if a lattice equation fails in
the variety of lattices, then it fails in the congruence lattice of some algebra
in X. Since X and X[2] are categorically equivalent, the congruence lattices
of algebras in X[2] are isomorphic to the congruence lattices of algebras in X.
Therefore we conclude that if a lattice equation fails in the variety of lattices,
then it fails in the congruence lattice of some algebra in the variety X[2]. �

We conclude this section remarking that the property of being axiomatized
by generalized quasi-equations of a certain kind is preserved by category
equivalence between prevarieties. More precisely, we have the following:

§I want to thank James G. Raftery for attracting my attention to the fact that the logic L
arising from this construction is finitary.
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Theorem 6.29. In prevarieties the fact of being a generalized quasi-variety, a quasi-
variety or a variety is categorical.

Proof. For varieties and quasi-varieties this was proved respectively in [10]
and [11]. Then it will be enough to prove that the property of being a
generalized quasi-variety is categorical. We only provide a sketch of the
proof. Let X and Y be two categorically equivalent prevarieties and suppose
that X is closed under Uκ for some regular cardinal κ. It is easy to show
that X is closed under the formation of κ-directed unions. This property is
preserved by category equivalence, thus we conclude that the same holds for
Y. But this means that Y is closed under the operator Uκ, showing that Y is a
generalized quasi-variety too. �

6.5 A digression on structurality

In the previous sections we saw that every right adjoint G : Y → X between
generalized quasi-varieties arises from a translation 〈τ, Θ〉 between relative
equational consequences. In particular it arises from a map

τ∗ : P(Eq(LX, λ))→ P(Eq(LY, κ × λ)) for every λ

that commutes with joins and, therefore, is residuated. Moreover τ∗ com-
mutes with substitutions in a sense that we will make clear later on (Theorem
6.32). This observation sets translations such as τ∗ inside the general theory
of equivalence between structural closure operators onM-sets, as developed
in [16], [44] and [52], where residuated maps that commute with substitutions
are called structural transformers.¶ Accordingly, the goal of this section will
be to review (for the expert reader) the work done until now from the point
of view of this general theory. All the relevant definitions can be found in
the references given above.

Consider the map

ζ : End(LX, λ)→ End(LY, κ × λ)

defined as follows: given a substitution σ ∈ End(LX, λ), we let ζ(σ) ∈
End(LY, κ × λ) be the substitution defined by

ζ(σ)(xi
j) := τ∗(σxj)(i)

for every j < λ and i < κ.

Lemma 6.30. The map ζ is a monoid homomorphism.

¶The theory of equivalence between structural closure operators has been generalized
beyond the framework ofM-sets in different ways in [47, 49, 50, 51, 77, 91, 92].
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Proof. It is clear that ζ preserves the neutral element. Therefore we turn to
prove the same for composition. First observe that for every σ ∈ End(LX, λ)
and ϕ ∈ Fm(LX, λ) we have that

ζ(σ)(τ∗(ϕ)(i)) = τ∗(σϕ)(i) for i < κ.

This can be proved easily by induction on the formula ϕ. Then consider
σ, σ′ ∈ End(LX, λ). Let ϕ := σ′(xj). We have that:

ζ(σ ◦ σ′)(xi
j) = τ∗(σ(σ

′(xj)))(i) = τ∗(σϕ)(i) = ζ(σ)(τ∗(ϕ)(i))

= ζ(σ)(τ∗(σ
′xj)(i)) = ζ(σ)(ζ(σ′)(xi

j)).

Since ζ(σ ◦ σ′) and ζ(σ) ◦ ζ(σ′) are substitutions, we conclude that they
coincide. Hence σ is a monoid homomorphism. �

Now observe that the monoid End(LX, λ) induces two maps

∗X : End(LX, λ)× Eq(LX, λ)→ Eq(LX, λ)

∗Y : End(LX, λ)× Eq(LY, κ × λ)→ Eq(LY, κ × λ)

defined respectively as:

σ ∗X (ε ≈ δ) := σ(ε) ≈ σ(δ) and σ ∗Y (ϕ ≈ ψ) := ζ(σ)(ϕ) ≈ ζ(σ)(ψ)

for every σ ∈ End(LX, λ), ε ≈ δ ∈ Eq(LX, λ) and Fm(LY, κ × λ). The first
fact it is worth to remark is that the maps ∗X and ∗Y define actions of the
same monoid on both sets of equations:

Lemma 6.31. 〈Eq(LX, λ), ∗X〉 and 〈Eq(LY, κ × λ), ∗Y〉 are End(LX, λ)-sets.

Proof. It is clear that ∗X is an action. The same fact for ∗Y follows from
Lemma 6.30. �

Keeping this in mind, we are now ready to prove that τ∗ commutes with
substitutions.

Theorem 6.32. The map τ∗ : P(Eq(LX, λ))→ P(Eq(LY, κ×λ)) is a structural
transformer.

Proof. First observe that τ∗ is a residuated map by definition. Then consider
a substitution σ ∈ End(LX, λ) and an equation ε ≈ δ ∈ Eq(LX, λ). Recall
from the proof of Lemma 6.30 that

ζ(σ)(τ∗(ε)(i)) = τ∗(σε)(i) and ζ(σ)(τ∗(δ)(i)) = τ∗(σδ)(i)
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for every i < κ. Keeping this in mind, we have that:

τ∗(σ ∗X (ε ≈ δ)) = τ∗(σε ≈ νδ)

= {τ∗(σε)(i) ≈ τ∗(σδ)(i) : i < κ}
= {ζ(σ)(τ∗(ε)(i)) ≈ ζ(σ)(τ∗(δ)(i)) : i < κ}
= {σ ∗Y τ∗(ε)(i) ≈ σ ∗Y τ∗(δ)(i) : i < κ}
= σ ∗Y τ∗(ε ≈ δ).

This concludes the proof. �

In the general theory of equivalence between closure operators special at-
tention has been devoted to structural representation, i.e., residuated injections
between the closed sets of two structural closure operators that, moreover,
commute with substitutions. Our goal will be to prove that, when the left
adjoint F is faithful, the map γ induces a special structural representation
(Theorem 6.34). In order to do this, we will need to go through some more
observations. First consider the consequence relation

�Θ
Y on Eq(LY, κ × λ)

determined by the closure system of all theories of �Y that contain⋃
j<λ

Θ{xi
j : i < κ}.

Let also CgΘ
Y be the associated closure operator. In general �Θ

Y need not to be
structural with respect to the original substitution monoid end(LY, κ × λ).
Nevertheless we have the following:

Lemma 6.33. The consequence �Θ
Y is structural on 〈Eq(LY, κ × λ), ∗Y〉.

Proof. From condition 2 of Definition 5.20 it follows that⋃
j<λ

Θ(~xj) �Y ζ(σ)(Θ)

for every σ ∈ end(LX, λ). This means that the theory generated by
⋃

j<λ Θ{xi
j :

i < κ} is invariant under the substitutions of the form ζ(σ). It is well known
that this implies that the structurality condition holds for �Θ

Y , when restricted
to the substitutions ζ(σ). �

Consider a cardinal λ. As in the proof of Lemma 6.4, we can consider the
lifting

γ : T h(�X)→ T h(�Θ
Y)

defined for every Φ ⊆ Eq(LY, κ × λ) as γCgX(Φ) := CgΘ
Yτ∗(Φ). In particu-

lar, we have the following:
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Theorem 6.34. If F is faithful, then the map γ : T h(�X) → T h(�Θ
Y) is a struc-

tural representation which, moreover, is induced by the structural transformer τ∗.

Proof. From condition 1 of Definition 5.20 it follows that γ is induced by τ∗.
Then we turn to prove that γ is a structural representation. From Lemma
6.1 and 6.4 it follows that γ is residuated and injective. Therefore it only
remains to check that γ commutes with substitutions. To this end, consider
σ ∈ end(LX, λ) and Φ ∈ T h(�X). We have that:

γCgXσ(Φ) = CgΘ
Yτ∗CgXσ(Φ) = CgΘ

Yτ∗σ(Φ) = CgΘ
Yζ(σ)τ∗(Φ)

= CgΘ
Yζ(σ)CgΘ

Yτ∗(Φ) = γζ(σ)CgΘ
Yτ∗(Φ).

In the above series of equalities the second one follows from the fact that γ is
induced by τ∗, the third one from the fact that τ∗ is structural and the fourth
one from the fact that CgΘ

Y is structural with respect to ζ(σ). �
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undecidability
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unit, 13

Universal Algebra Calculator, 68
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