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Elena es, probablemente, la persona que menos se parece a mí en este mundo. En verdad 

que su sonrisa es perenne y sus gestiones eléctricas. Parece inmune al desaliento. Es tan 

vital y corajuda (en sus dos acepciones) que enrojece el rostro abandonar cuando te 

escruta con sus ojos rasgados de oriente. Cualquiera la querría sólo por eso. Sin 

embargo, yo también la adoro por una razón más anodina y vanidosa: Elena no me 

comprende. Casi nunca. A veces, puedo provocarle una divertida extrañeza. Otras, un 

colorido rechazo. Las que más, una triste desespero. Es un hecho que no nos parecemos. 

Pero persevera. Persevera en mí con una fe que me sobrecoge, pues tampoco puedo 

comprenderla. Todo ese galimatías que soy quiere convertirlo en algo hermoso. Piensa 

que valgo la pena. Ni siquiera sé si lo merezco, pero de algún modo, ella lo sabe. Por 

todo esto, Elena es la primera. No puedo negociar este punto. Ella es la primera.  Es la 

mujer que quiero y le dedico mi más profundo y sentido agradecimiento. Y en estas líneas 

queda escrito. 
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ABSTRACT 

 

Electronic noses (e-noses) have been utilized during the past three decades as general 

purpose instruments for chemical sensing. These instruments are inspired by natural 

olfactory systems, where fine odour discrimination is performed without the necessity for 

highly specialized receptors. The key advantage provided by this approach is that odour 

representation is more efficient and robust when the encoding is performed by the 

population of receptors than by any of its individual elements. A population of receptors 

obtains its maximum performance in encoding odour stimulus features when it balances 

the benefits of sensory diversity and redundancy. Though, traditional electronic noses 

tend to exhibit a limited number of sensor units with very much correlated responses to 

odour stimuli. However, it has not been until recently that large arrays of cross-selective 

have become technologically available.  

The objective of this dissertation is to develop one of these new generation arrays to 

investigate the advantages odour stimuli representation through population coding 

supported by sensor diversity and redundancy. In particular, we have built a chemical 

sensing system based on an array of metal oxide (MOX) gas sensors, and endowed with a 

high a degree of sensor diversity and redundancy. 
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We have used this bio-inspired sensing architecture alongside statistical pattern 

recognition techniques to cope with some of the unsolved problems in machine olfaction, 

namely, robustness to sensor failure, feature selection, and calibration transfer between e-

nose instruments. 
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CHAPTER I 

 INTRODUCTION 

 
Electronic noses (e-noses) have been utilized during the past three decades as general 

purpose instruments for chemical sensing. These instruments are inspired by natural 

olfactory systems, where fine odour discrimination is performed without the necessity for 

highly specialized receptors. Instead, odour information is extracted in these systems 

using arrays of broadly tuned receptors organized in a convergent pathway. Such a 

sensing architecture allows combining the responses of the array of receptors, giving rise 

to particular representations of the different odour stimuli. The key advantage provided 

by this approach is that odour representation is more efficient and robust when the 

encoding is performed by the population of receptors than by any of its individual 

elements (hyper-acuity). 

 

A population of receptors obtains its maximum performance in encoding odour stimulus 

features when it balances the benefits of sensory diversity and redundancy. By sensor 

diversity we understand the number of different receptor types responsible for enhancing 

the variability of the array response to a collection of odours. Likewise, by sensor 

redundancy we refer to the average number of receptor replicates on a population. The 

role of sensory redundancy accounts for the robustness to receptor damage and noise 

exhibited by the odour stimuli representation. This variety of odour receptor types along 
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with its outstanding number of receptors is characteristic of natural olfactory systems. 

Though, traditional electronic noses tend to exhibit a limited number of sensor units with 

very much correlated responses to odour stimuli. Several strategies to enhance odour 

representation in gas sensor arrays are based on boosting sensor diversity and 

redundancy. However, it has not been until recently that large arrays of cross-selective 

have become technologically available. 

 

The aim of this work is to develop one of these new generation arrays to investigate the 

advantages odour stimuli representation through population coding in artificial olfaction 

(i). In particular, we propose to build a chemical sensing system based on an array of 

metal oxide (MOX) gas sensors, and endowed with a high a degree of sensor diversity 

and redundancy (ii). We propose the use this bio-inspired sensing architecture alongside 

statistical pattern recognition techniques to cope with some of the unsolved problems in 

machine olfaction. Among others, this dissertation addresses the following issues: (iii) 

Robustness to sensor failure of highly redundant arrays, (iv) Feature selection in 

temperature modulated sensor arrays and, (v) Calibration transfer between replicate e-

nose instruments. 

I.1. CONTRIBUTIONS OF THIS WORK 

As abovementioned, only a few large arrays of sensors have been developed for chemical 

sensing. This fact definitely limits the number of contributions that study odour stimuli 

representation using population coding with real data. We propose to enhance the 
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performance of our gas sensor array taking advantage of the population coding properties 

of sensor diversity and redundancy. The main contributions of this work research are 

summarized as follows: 

 

(1) We propose a functional definition of sensor diversity and redundancy based on 

the clustering of the array features. 

 

(2) We compare with a simple model the different way how natural and artificial 

olfactory systems encode for odour information. We model the encoding power of 

an array of sensors as a function of their molecular receptive range. 

 
 

(3) We study the effect of sensor noise on odour concentration encoding. We propose 

to decrease the contribution of the independent sensor noise by means of sensor 

feature averaging and sensor array optimization. 

 

 
(4) We perform a comprehensive to study the role of sensor redundancy in the 

robustness to sensor failure of an array of sensors. In particular, we investigate the 

effect of sensor failure dependency on the array’s odour discrimination 

capabilities.  
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(5) We propose an update of feature selection technique based on maximizing the 

variability of the array response to a collection of odours. We use this technique 

to optimize the heater profile of an array of MOX sensors in terms of odour 

discrimination. 

 
 

(6) We perform instrument standardization between temperature modulated gas 

sensor arrays to correct global shifts of temperature. A method to categorize the 

quality of the calibration transfer based on the bias-variance trade-off is presented. 

I.2. ORGANIZATION OF THIS DISSERTATION 

Chapter II introduces the e-nose instrument: definition, origin and evolution of the 

device. We present a review of the sensor technologies, pattern recognition techniques 

and odour delivery system mostly employed in artificial olfaction. We present the 

different large arrays of cross-reactive gas sensors arrays found in the literature. Also we 

include the description of the e-nose prototype developed and the datasets acquired using 

this instrument to address the experimental requirements of this dissertation. In Chapter 

III we revise the role of sensor diversity and redundancy, respectively, in enhancing 

odour discrimination and maintaining stable odour representations in spite of sensor 

noise. Also we propose a functional definition for sensor diversity and redundancy in an 

array of sensors. Chapter IV studies the role of sensor redundancy to assist the robustness 

to sensor damage in gas sensor arrays. In Chapter V we update a feature selection method 

to include the benefit of sensor redundancy in reducing sensor noise. Chapter VI is 
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practical case of study of instrument correction assisted by sensory redundancy. More 

specifically, this chapter devoted to instrument standardization between e-noses by means 

of calibration techniques.  Chapter VII draws conclusions from this dissertation. Finally, 

we present in Chapter VIII a brief a summary of this work translated to Spanish. 
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CHAPTER II  

 THE ELECTRONIC NOSE 

 
The breadth and discriminatory power exhibited by biological olfaction in chemical 

sensing was the source of inspiration for the field of machine olfaction (Persaud and 

Dodd, 2000). Machine olfaction- an automated simulation of the sense of smell- is an 

emerging application of engineering that aims to detect, identify and/or quantify odours. 

The iconic instrument for odour sensing is called the electronic nose or e-nose. This 

instrument comprises an array of partially selective sensors, combined with a pattern 

recognition system capable of determining certain odour properties, such as identity, 

composition and concentration (Gardner and Bartlett, 1994a).  

 

The electronic nose has been successfully employed in many industrial production 

processes, for such a diverse product classes/areas as food industry (Mandenius et al., 

1984; Barlett et al., 1997; Connell et al., 2001), quality control (Van Deventer et al., 

2002; Hansen et al., 2005), cosmetics (Branca et al., 2007), security (Scorsone et al., 

2003; Moore, 2004; Yinon, 2006, Haddi et al., 2011), environmental monitoring (Baby et 

al., 2000), and biomedical research (Di Natale et al., 2000; Di Natale et al. ,2003; Phillips 

et al., 2003; Hasegawa et al., 2004; Dragonieri et al. 2007, Bailey et al., 2008; Tran et al., 

2010; Shih et al., 2010). 
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This chapter is devoted to study the electronic nose as a general purpose instrument for 

chemical sensing, and it is divided in five sections:  Section II.1, where we present the 

biological olfactory system; Section II.2, where we revise the state of the art in electronic 

noses; Section II.3, where we propose a design for a chemical sensing system based on an 

array of MOX sensors, and inspired by the architecture of the olfactory epithelium; 

Section II.4, where we explain in detail the different datasets acquired using our e-nose 

prototype; and finally, Section II.5 where we summarize the previous sections and 

conclude this chapter. 

II.1. THE OLFACTORY SYSTEM 

The sense of smell detects chemical information from odorants present in the 

environment. This capacity is shared by a vast number of species regardless its 

phylogenetic level, from simple bacteria to complex animals, being the most ancient of 

the senses of life. Among its many functions, the sense of smell assists life organisms in 

feeding, mating and warning against external dangers such as predators, toxics, food 

poisoning. The set of brain regions involved in smell perception are known as olfactory 

system. Throughout the history of life, evolution developed the olfactory system as a 

general tool responsible for the detection of the larger possible number of substances 

without any prior knowledge about the properties of those substances, preserving its 

fundamental organization (Hildebrand and Shepherd, 1997). As a result, the olfactory 

system is featured with large arrays of partially specific sensors in its sensory stage, 

followed by an extremely converging second layer architecture dedicated to integrate and 
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coding odorant information. In mammals, odour perception starts when airborne 

molecules enter through the nostrils and reach a small region of epithelial tissue on the 

roof of the nasal cavity covered with mucus, called the Olfactory Epithelium (OE). That 

tissue is populated by millions of Olfactory Receptor Neurons (ORNs), a type of cell 

endowed with Olfactory Receptor (ORs) proteins where odorants can bind to, which 

transduces the chemical information into electrical signals. ORNs expressing the same 

OR project their axons towards the olfactory bulb (OB) and merge in pseudo-spherical 

50-100 µm structures (in diameter) known as glomeruli (Shepherd, 1998), in one the 

most severe cases of synapse convergence in nervous system (several thousands of ORNs 

per glomerulus). Axons leaving the OB glomeruli synapse to specialized regions of the 

brain such as the anterior olfactory nucleus, pyriform cortex, the medial amygdala and 

the entorhinal cortex, where odour olfactory patterns are intensively processed (Morris 

and Schaeffer, 1953) 

 
Odour quality (identity) and quantity (concentration) encoding is achieved in the 

olfactory epithelium through the high ORN variety and their outstanding number of 

replicates. The kind of variety responsible for odour quality encoding is provided by the 

large amount of ORNs types (Buck and Axel, 1991): There are as many as 1000 genes 

for expressing ORs in mammals, being one of the largest gene families of their genome. 

These ORs have a broad sensitivity to odorants, displaying overlapping selectivities with 

different affinities for the different compounds. Since one particular OR protein 

characterizes the ORN type and this determines, through chemotropic convergence, its 
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corresponding glomerulus, odour quality is encoded as a spatiotemporal patterns of 

glomerular activity in the OB. Regarding odour quantity, the variety responsible of its 

encoding is the diversity within ORN types: Cells expressing identical ORs present 

significant discrepancies in parameters that play a key role in concentration-conductance 

transduction, such as shape, size and number of receptors (Vermeulen et al., 1997). 

Consequently, ORNs belonging to the same type exhibit a variety of dose-response 

curves. As each cell replicate is tuned for a given range of odour intensities, odour 

quantity encoding is performed by the entire population of neurons showing olfactory 

thresholds usually lower than those obtained from single cell measurements (Grosmaitre 

et al., 2006). 

 

 

Fig. 1. Brain human sagittal section. The enlarged region on the picture corresponds to the 

Olfactory Epithelium and the Olfactory Bulb (adapted from ‘Head lateral mouth anatomy.jpg’ by 

Patrick J. Lynch, medical illustrator). 
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II.2. STATE OF THE ART IN ELECTRONIC NOSES 

In this section, we review the state of the art of the electronic nose technology. We 

present the architecture of the classic e-nose instrument (including the most employed 

sensor technologies, odour delivery systems and pattern recognition techniques), in 

Section II.2.1. Next, we show the most advanced prototypes of e-nose found in the 

literature, in Section II.2.2. 

II.2.1. Sensor technologies 

Different sensor technologies, such as Metal Oxide Sensors (MOX), Metal Oxide Field 

Effect Transistors (MOSFET), Conducting Polymers (CP), Quartz Microbalance Sensors 

(QCM) and Surface Acoustic Wave Sensors (SAW), Optical sensors are broadly used is 

in gas detection (Arshak et al., 2004). We review these technologies, emphasizing their 

strengths and weaknesses. 

II.2.1.1. Metal Oxide Sensors (MOX) 

The principle of operation of the MOX sensor is based on their change of conductivity in 

response to a gas.  There exist two types of MOX sensors: the n-type and p-type sensors, 

which are sensitive respectively, to reducing and oxidizing gases. N-type MOS sensors 

work as follows: The oxygen present in the atmosphere reacts with the semiconductor 

trapping free electrons present in the surface, or between the grain boundaries of the 

oxide. Due to the lack of carriers, the potential barrier between grains increases. As a 

result, the resistance of the semiconductor is increased in these areas (Barsan et al., 
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2007). When a n-type MOS sensor is exposed to a reducing gas (H2, CH4, CO, H2S or 

C2H4) in presence of oxygen, the gas reacts with the chemically adsorbed oxygen species 

and releases an electron to the material. This reduces the potential barrier between grains, 

allowing the electrons to circulate and decreasing the resistance of the material. On the 

other hand, p-type sensors respond to oxidizing gases (O2, NO2, and Cl2), which extract 

electrons of the semiconductor, also reducing the resistance of the semiconductor (Albert 

and Lewis, 2000).  

 

The main advantages of MOX sensors are their fast responses and recovery times, and 

their high sensitivities (Pearce et al., 2003). However, they exhibit poor selectivities, tend 

to have high power consumption and suffer from irreversible poisoning when exposed to 

volatile sulphur compounds (Dickinson et al., 1998). 

 

MOX sensor’s selectivity is markedly affected by its operating temperature since this 

parameter governs the kinetics of the oxido-reduction reactions that take place on the 

semiconductor surface (Clifford and Tuma, 1983a; Clifford and Tuma, 1983b). As a 

result, different oxido-reduction reactions tend to occur at different temperatures so the 

selectivity of the sensor also varies with temperature.  In other words, that is to tune the 

individual gas influence to the total response. This temperature-selectivity dependence 

can be exploited to increase the discriminatory information provided by the sensor 

(Benkstein et al., 2009; Rogers et al., 2011; Rogers et al., 2012). Using this technique, the 
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sensor’s operating temperature is modulated by applying a variable heater voltage during 

the gas exposure. The resulting sensor reading is a waveform characteristic of the given 

gas mixture (Lee and Reedy, 1999). 

 

There are two approaches to perform temperature modulation with MOX sensors: 

thermal transients and temperature cycling (Gutierrez-Osuna et al., 2003). In thermal 

transients, sensor temperature is changed abruptly by means of step or pulsed heater 

voltage functions, and the discriminatory information is contained in the induced 

thermochemical transient. Conversely, in temperature cycling, sensor temperature is 

modified by the use of periodic, slowly varying heater voltage functions (sinusoidal, 

ramp profile, etc.), and the discriminatory information is found in the collection of 

pseudo-sensors corresponding to the set sensitivities obtained at different temperature.  

 

 

 

Fig. 2.  Structure of a MOX gas sensor. A MOX sensor comprises a metal oxide and a resistive 

heater (adapted from Arshak et al., 2004). 
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II.2.1.2. Metal Oxide Field Effect Transistors (MOSFET) 

MOSFET gas sensors working principle relies on the variation of the electrical 

conductivity experienced by a MOSFET transistor when exposed to a volatile compound. 

This type of sensors consists of a catalytic metal gate (iridium, palladium or platinum) on 

top of an oxide layer (typically SiO2), and a p-type silicon with n-doped regions under the 

source and drain terminals, working in common source configuration (Gardner and 

Barlett, 1999; Pearce et al., 2003). Under such conditions, the voltage applied at the metal 

gate determines the current through the sensor. Above a threshold value of the gate 

voltage, an inversion layer (a channel) is created at the semiconductor-insulator 

boundary, allowing a current flow from source to drain terminals. The products of 

reaction between the catalytic metal of the gate and the gas species molecules through the 

gate create a dipole layer at the metal-semiconductor interface. As a result, the I-V 

characteristic of transistor is modified (the current through the device is different for the 

same value of gate voltage). The sensor response is measured by the change of gate 

voltage needed to maintain the source to drain current constant, usually the sensor 

response to a reference gas.  

 

MOSFETs gas sensors can be fabricated using standard microelectronic techniques, fact 

that increases their repeatability. In addition to this, they can be operated at room 

temperature, reducing the power consumption. On a negative note, they present poor 

response variability to different gases due to a lack of sensitive materials, suffer from 
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baseline drift and instability, and need of accurate control of their surrounding 

environment because temperature dramatically affects their selectivity and sensitivity 

characteristics. 

 

 

 

Fig. 3. Structure of a MOSFET gas sensor. The interaction between the gas molecules and the 

sensitive material on the gate allows the formation of the channel between gate and source 

terminals (adapted from Arshak et al., 2004). 

II.2.1.3. Conducting Polymers (CP) 

CP sensors measure the change of conductivity experienced by a polymer when 

interacting with organic vapours (Albert and Lewis, 2000). The polymer itself is 

composed by a chain of organic molecules (monomers) that generate orbital along the 

chain, allowing the circulation of charges through the material. The most commonly used 

polymers in CP sensors are polypyrrole, polyaniline, the politiofen and poyacetylene, 

which are formed respectively, by monomers of pyrrole, aniline and tiofen (Pearce et al., 

2003). CP sensors can be doped so as to behave as semiconductors or conductors 
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(Heeger, 2001; Yasufuku 2001).  When doped, CP sensors alter their band structure, 

inducing also an increase in the mobility of electrons (n doping) or holes (p doping). The 

conductive polymers are generally deposited on a substrate with interdigitate electrodes 

using electrochemical techniques or by chemical polymerization (Freund and Lewis, 

1995; Yasufuku, 2001).  

 

CP sensors have a number of advantages: First, a large variety of conducting polymers is 

commercially available (Albert and Lewis, 2000). Also, they operate at room temperature 

(Shurmer and Gardner, 1992), fact that simplifies the electronics of the measurement 

system and decreases their power consumption. Finally, CP sensors present fast 

responses and short recovery times for a wide range of analytes. Unfortunately, this type 

of sensors presents some drawbacks, such as a high sensitivity to moisture and 

temperature changes, and a tendency to drift over time. In addition to this, CP sensors 

manufacturing is complex and costly, with strong variations in sensor’s characteristics 

between units of different batches (Nagle et al., 1998). Another drawback of CP sensors 

is its limited lifetime, typically from 9 to 18 months, due to the oxidation of the polymer 

sensing layer (Schaller el al., 1998). 
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Fig. 4.  Structure of a CP gas sensor. The polymer material deposited on the Silicon substrate 

allows electrical conduction between electrodes (adapted from Arshak et al., 2004). 

II.2.1.4. Quartz Crystal Microbalances (QCM) 

QMC gas sensors operate by virtue of the piezoelectric effect: When an AC voltage is 

applied to a piezoelectric quartz crystal; it begins to oscillate at its resonant frequency 

(Schaller et al., 1998). QMC sensors consist of a quartz disc coated with a polymeric 

coating layer and two gold electrodes deposited on either side of the disc. The electrodes 

apply an excitation voltage to the disc, while the sensitive membrane adsorbs gas 

molecules when exposed to an odour microbalance. As a result of this process, the 

membrane increases its mass, altering the resonant frequency of the quartz crystal (Albert 

and Lewis, 2000).  

 

The sensors are typically micro machined QCM, which helps its miniaturization. 

Moreover, the sensitive coatings can be deposited them using techniques as diverse as: 

spin coating, airbrushing, inject printing or dip coating (Schaller et al., 1998). The 

strength of QCM sensors lies in their high selectivity (Pearce et al., 2003) and speed of 
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response (Haug et al., 1993). Regarding their disadvantages, QCM sensors typically show 

low sensitivity values, suffer from a lack of reproducibility (Dickinson et al., 1998) and 

are prone to drift. Besides, the manufacture process of the quartz resonators is costly and 

complex, so is its measurement circuity (Nagle et al., 1998). 

 

 

 

Fig. 5.  Structure of a QCM gas sensor. The polymer material deposited on the Quartz disc acts as 

a sensing element in this sensor technology (adapted from Arshak et al., 2004). 

II.2.1.5. Surface Acoustic Wave Sensors (SAW) 

Similarly to QCM sensors, SAW sensors are also based on piezoelectric materials, 

although they work with a different principle of transduction. SAW sensors consists of a 

piezoelectric substrate with two interdigitated electrodes (transmitter and receiver), and a 

sensitive membrane placed between them (Khlebarov et al., 1992). To operate the 

sensors, an AC signal is applied to the transmitter electrode, generating a two-

dimensional acoustic wave that propagates along the surface. When the signal reaches the 
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receiver electrode is transformed into an electrical output signal. The sensitive coating of 

the SAW sensor modifies its mass when loaded with molecules of analyte, fact that also 

modifies the frequency of the mechanic wave (Pearce et al., 2003; Nagle et al., 1998; 

Albert and Lewis, 2000).  The piezoelectric substrates for SAW sensors are usually made 

with ZnO and quartz, while the sensitive coatings with liquid crystal or polymer.  

 

SAW sensors can detect a variety of odours due to the wide range of sensitive coatings 

available (Carey et al., 1987a; Carey et al., 1987b; Grate and Abraham, 1991). In addition 

to this, they offer high sensitivities and fast response times (Nagle et al., 1998). 

Nevertheless, SAW sensors experience low signal noise ratios and require a complex 

circuitry to operate (Pearce et al., 2003). Finally, their main disadvantage lies in their low 

reproducibilities (Schaller et al., 1998). 

 

 
 

Fig. 6.  Structure of a SAW gas sensor. A SAW sensor comprises a piezoelectric substrate, two 

transducer electrodes, and a sensitive material coating (adapted from Arshak et al., 2004). 
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II.2.1.6. Optical Sensors  

Optical sensors utilize chemical indicators for detecting different gas species. Optical 

sensing allows identifying analytes through a variety of transduction mechanisms, 

including fluorescence intensity, lifetime spectral shape, polarization, absorbance, 

reflectance, refractive index, wavelength, colorimetry, etc. Typically, an Optical gas 

sensor is an optical fibre with an indicator immobilized on its distal tip. The sensitive end 

is illuminated through the optical fibre while exposed to the gas, and the resultant light is 

conveyed to a detection system (usually comprised of a CCD camera, a source of light 

and mirror) attached to the proximal end of the fibre.  By immobilization of different 

polymers, the sensors can be tuned to detect different analytes. 

 

Optical gas sensors can be combined very easily to create and array of sensors sensitive 

to a variety of compounds (multiple fibres of different indicators) and present very fast 

response times, around 10 seconds. However, there are several disadvantages associated 

to this sensor technology. On the one hand, the electronics required to conduct a 

measurement is complex, and thus, the process is costly. On the other, the indicators 

placed on the fibre tips have a quite short lifetime due photo-bleaching. 
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Fig. 7. Structure of an optical gas sensor. This sensor comprises a glass fibre coated with a 

sensitive dye (adapted from Arshak et al., 2004). 

II.2.2. Generators of volatile compounds 

We present a variety of odour generation techniques, including headspace sweeping, 

permeation tubes, bubblers, static systems, and dilution of volatiles into a carrier gas 

stream (Pearce et.al, 2003). Also, we discuss their virtues and limitations. 

II.2.2.1. Headspace Sweeping 

The head space is the space above a liquid sample in a bottle or vial. In the technique of 

headspace sweeping, a carrier gas (eg. dry air) pushes the molecules evaporated on the 

free surface of a liquid odorant conveys them to a measurement chamber (Nakamoto et 

al., 1991; Ide et al., 1993). This type of system is generally endowed with a pressurized 

source of carrier gas, which is connected to the sample vial through a Mass Flow 

Controller (MFC). The MFC is used to control the flow of carrier gas that sweeps the 

headspace (Gardner et al., 1994b). The vials are kept in sand or water baths at a 

controlled temperature so as to avoid variations in the odorant’s vapour pressure.  
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The headspace sweeping is a simple method for odour sample generation. However, the 

method suffers from a drawback that limits its use in situations where odorant 

concentration is an important parameter of the experimental design: the concentration in 

the head space varies during the sweeping. 

 

 

 

Fig. 8. VOC generator system based on the headspace sweeping (adapted from Pearce et al., 

2003). 

II.2.2.2. Permeation Tubes 

Permeation tubes are cylinders of polymer (typically PTFE) sealed at the ends that 

contain a liquid volatile. That volatile diffuses through the walls of tube at a constant 

speed. The diffusion process is due to a gradient of analyte concentration experienced 

between the inner and outer surface of the tube. This gradient is proportional to the tube 

length and varies logarithmically with the inverse of temperature, so that this parameter 

must remain constant throughout the experiment. The odorant concentration can be 

controlled using a carrier gas flow to dilute the original concentration generated by the 
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permeation tube (Nakamoto et al., 1991). A volatile generation system based on this 

method comprises then: a source of pressurized carrier gas, permeation tubes, and a 

control system for temperature and flow of the carrier gas. Permeation tubes are 

commercially available for a variety of chemicals. Besides, the method allows generating 

concentrations below the ppb level. On a negative side, they present a limited lifetime 

and must be calibrated before used. 

 

 

 

Fig. 9. Scheme of a PTFE permeation tube (adapted from Pearce et al., 2003). 

II.2.2.3. Bubblers 

A bubbler is a bottle partially filled with a liquid odorant, which is volatilized by means 

of a carrier gas flow forming bubbles. Consequently, a VOC generator based on this 

method only needs a source of pressurized carrier gas, a mass flow controller and, of 

course, a bubbler (Ohnishi et al., 1992). 
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Although the use of bubblers for generating VOCs is widespread in the e-nose 

community, the method is subjected to a severe limitation: As the bubbler’s headspace 

may not be saturated with the analyte’s vapour, it is not possible to know accurately its 

concentration.  Moreover, the use of bubblers is not recommended for high carrier gas 

flows, since beads of analyte in liquid phase can be conveyed to the sensor chamber. 

 

 

 

 
Fig. 10. Scheme of a bubbler (adapted from Pearce et al., 2003).  

II.2.2.4. Static Systems 

The aim of a static system is to generate a stable odorant concentration at constant 

temperature. The system usually consists of an insulated evaporation chamber (typically 

made with Teflon) surrounded by a temperature-controlled bath. An odorant sample 

generated with such type of systems is measured as follows: A certain amount of liquid 

odorant is injected into the evaporation chamber, where the sensors are placed. 
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Eventually, the liquid sample evaporates. Once the equilibrium is reached within the 

chamber, the response of the sensors is acquired (Grate and Abraham, 1987; Hatfield et 

al., 1994).  

 

This method ensures stable concentrations as long as the temperature remains constant 

throughout the process. Unfortunately, the time required to achieve the steady state of 

concentration in the chamber substantially slows down the measurement process. 

 

 

Fig. 11. Principle of static measurement circuit (adapted from Pearce et al., 2003). 

II.2.2.5. Dilution of Volatiles into a carrier gas stream 

This technique consists in diluting an odorant flow of known concentration into a carrier 

gas stream. The system comprises at least to gas cylinders, corresponding to the carrier 

gas and odorant and a pair of mass flow controllers. Once the fluidic steady state is 
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reached within the measurement chamber, the odorant concentration equals to the reason 

between the odorant flow and the total flow of the stream (Mandayo et al., 2003).  

 

This method provides stable concentrations, but requires a conscious design of the fluidic 

circuit to avoid excessive transient times until reaching the steady state of concentration. 

It is recommended to include 2 additional mass flow meters (one per fluidic branch) so as 

to ensure an adequate estimation of the odorant concentration. 

 

 

 

Fig.12. VOC generator system based on diluting gases into a carrier gas stream. 

II.2.3. Signal processing  

Pattern recognition techniques allow characterizing the multivariate response of an array 

of sensors so as to detect, identify or quantify odours. Data processing of the raw array 

response is mandatory to achieve reliable odour descriptors and predictions. Classically, 
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data processing follows a number of ordered steps (Gutierrez-Osuna, 2002): signal 

preprocessing, dimensionality reduction, prediction and validation (see Fig. 13). Signal 

preprocessing prepares the sensor signals for later analyses minimizing the spurious 

sources of variance (e.g. noise, drift, etc.) of the array response.  Dimensionality 

reduction reduces the number of dimensions of the feature vector, preventing problems 

associated with high-dimensional data, the so-called ‘curse of dimensionality’. The 

subsequent array response after dimensionality deflation is utilized in the prediction stage 

as an input feature vector to solve problems of diverse kind (class membership, odour 

concentration, related odour samples, etc.).  The validation step, at last, aims to select 

which model and parameter  settings are the most suitable to solve the given prediction 

problem. To do it, an optimization of a certain criterion function must be performed (e.g. 

classification rate, Fisher score, mean-squared error, etc.). 

 

 

 

Fig. 13. Signal processing steps for pattern analysis in a gas sensor array (adapted from Gutierrez-

Osuna, 2002). 
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II.2.3.1. Preprocessing 

Sensor arrays of different technologies suffer from their own problems related to signal 

quality (Gardner et al, 1998). Although these problems need to be corrected through 

specific preprocessing stages, some general tasks involved in signal correction are 

identified (Gutierrez-Osuna and Nagle, 1999b; Gutierrez-Osuna et al., 2002). The most 

usual are: digital smoothing, decimation (or binning), baseline manipulation, 

compression, and normalization. Digital smoothing refers to the use of digital filters for 

supressing some unwanted aspect of the signal (e.g. background and impulsive noise. 

Examples of digital filters widely used by the electronic nose community are moving 

average and moving median filters (Pan et al., 2009) and Savitzky-Golay filters (Perera et 

al., 2002; Cheng et al., 2009). Decimation consist in averaging of consecutive signal 

features, which is  a very effective manner to both reduce noise and the number of 

features of highly correlated high dimensionality data (Gutierrez-Osuna and Nagle, 

1999b). Baseline manipulation aims to standardize the sensor’s baseline in order to 

counteract the effect of drift. Baseline manipulation can be differential (Hielermann et al. 

1995), relative (Ikohura and Watson, 1994) and fractional (Gardner, 1991). Data 

compression seeks to extract descriptive information of the sensor’s transient response, 

reducing the acquisition time and decreasing the dimensionality of the input feature 

vector. Usual strategies of compression comprise parameter extraction (Eklov et al., 

1997) and model fitting (Gutierrez-Osuna and Nagle, 1999a). Finally, normalization is 

used to down weight the contribution of factors that influence the sensor responses but 
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are not relevant (or even detrimental) for the given pattern recognition problem 

(Gutierrez-Osuna and Nagle, 1999b; Pearce and Gardner, 1998). There are several ways 

to perform a normalization of the feature vector. The most popular are, normalization to 

unit area, unit module and unit variance.    

II.2.3.2. Dimensionality Reduction  

There are two ways to perform dimensionality reduction: Feature extraction and feature 

selection (Marco and Gutierrez-Galvez, 2012).  

 

Feature extraction consists in finding data projections to lower dimensionality subspaces 

preserving most of its information content (Fukunaga, 1991). The choice for a particular 

projection depends on which facet of the data information needs to be stressed. Signal 

representation techniques are focused on the structure of data, while signal classification 

techniques on data categorization (Gutierrez-Osuna, 1998).The most archetypal technique 

employed in signal representation is Principal Component Analysis (PCA), which 

projects the data along their directions of maximum variance. Regarding to signal 

classification, the most representative used technique is Fisher’s Linear Discriminant 

Analysis (LDA). That technique optimizes the separability among classes, finding the 

projection that maximizes the distance among the different class clusters and minimizes 

spread within groups.  
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On the other hand, feature selection aims to create subsets of features that are relevant in 

terms of their informative content or predictive power (Fukunaga, 1991). Most of the 

methods that explore the feature space are based on the following search strategies: 

exponential (Narendra and Fukunaga, 1977), sequential (Pudil et al., 1994) and 

randomized techniques (Kirkpatrick et al. 1983; Michalewicz, 1996). Exponential 

algorithms, such as Exhaustive Search (ES), Branch and Bound (BB), and Beam Search 

(BS), built subsets of features whose search complexity increases exponentially with the 

number of features.  Sequential search algorithms create the subsets of features adding or 

removing features sequentially, although they tend to become trapped in local minima. 

The most popular in e-nose literature are Sequential Forward Selection (SFS), Sequential 

Backward Selection (SBS), Plus-l Minus-r Selection (PMS), Bidirectional Search (BiS) 

and  Sequential Floating (SF). Lastly, randomized algorithms attempt to overcome the 

complexity of exponential methods and the overfitting problems of sequential algorithms. 

Among others, the most widely used are Genetic Algorithms (GA) and Simulated 

Annealing (SA). 

II.2.3.3. Prediction  

Depending on the nature of the prediction problem, a pattern recognition system must 

perform classification, regression or clustering tasks (Gutierrez-Osuna, 2003).  

 

Classification tasks aim to associate labels to unknown odorant samples from a set of 

discrete and previously learned examples.  To do it, the classifier partitions the feature 
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space (usually after dimensionality reduction stage) into a number of decision regions 

according to the learned odorant classes (Duda, 2000). The boundaries between classes 

are defined by the intersection of equiprobable likehood contours (a sample with such 

feature vector has the same probability of belonging to more than one class). 

Consequently, different methods for mapping the feature space give rise to different types 

of classifiers (Friedman, 1989; Bishop, 1985; Rumelhart et al., 1986), namely: Quadratic 

(QUAD), Radial Basis Function (RBF), K- Nearest Neighbour (KNN), and Multilayer 

Perceptron (MLP) classifiers. In QUAD classifiers, the distribution of probability for 

each example class is assumed to be unimodal and the corresponding decision boundaries 

become quadratic surfaces.  RBF classifiers allow modelling the different example 

distributions as a Gaussian mixture so the decision regions may be multimodal (with 

unconnected regions belonging to the same class). The K-NN classifier creates highly 

nonlinear decision boundaries around the example samples, known as Voronoi 

tessellation. Finally, the boundaries for the MLP classifiers consist of hyperplanes in the 

feature space.  

 

The goal of regression is to build models of prediction that relate a set of independent 

continuous variables (the array features) to another set of dependent variables, which can 

be either discrete or continuous (Bishop, 1995; Duda, 2000). In first case, the regression 

model is equivalent to a classifier. Examples of regression based classifiers are Support 

Vector Machines (SVM), Logistic Regression (LG) and Partial Least Squares 



 
 
 
 
32 
 

 
 

Discriminant Analysis (PLSDA). For the case of continuous dependent variables, the 

prediction model must extrapolate to some extent the properties of unknown samples 

from a finite set of examples (i.e. extrapolate the concentration of the elements of a 

mixture from the array response to its pure compounds). Traditionally, a number of linear 

regression techniques based on the Ordinary Least Squares (OLS) regression models 

have been used in artificial olfaction (Geladi and Kowalski, 1986; Friedman, 1989; Frank 

and Friedman, 1993): Ridge Regression (RR), Principal Components Regression (PCR) 

and Partial Least Squares (PLS). These techniques overcome the OLS problems 

associated to collinearity in different manner. While RR is a regularization method 

designed to stabilize the OLS solution, PCR and PLS create new sets of decorrelated 

regressors (Principal Components and Latent Variables). Other non-linear techniques 

employed in regression problems are Artificial Neural Networks (ANN) and Support 

Vector Regression (SVR).  

 

Finally, the purpose of clustering is to study the degree of similarity of set of objects 

(odour samples, features), arranging them in different groups or clusters (Duda, 2000). To 

perform a clustering task, three basic steps must be followed: First, to define a measure of 

dissimilarity between objects. Second, to define some clustering criterion to be 

optimized. And third, to define a search algorithm to assign example samples to clusters.  

However, since clustering is an unsupervised process and given that the notion of a 

‘cluster’ cannot be precisely defined, a unique set of objects can generate multitude of 
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cluster arrangements. The basic clustering techniques employed in artificial olfaction are 

(Kohonen, 1982; Therrien, 1989; Ripley, 1996): Hierarchical Clustering, C-Means and 

Self-Organizing Maps (SOM). Hierarchical Clustering creates multi-level structures 

(dendograms) to group objects in a agglomerative or divisive fashion. C-means clustering 

generates a single-level partition of the examples into C independent clusters. To finish, 

SOM produce low-dimensionality discretized representations of the feature space of the 

examples (a map) that preserves the topology of the clusters. 

II.2.3.4. Validation 

Validation is necessary step in pattern analysis because warrants reliable predictions to 

unseen samples. The basic use of validation is to limit the complexity of the prediction 

model (i.e. number of latent variables in a PLS regression), preventing over-fitting to the 

example samples. To avoid over-fitting, the example data is divided in two sets: training 

and validation sets. The training set is used to create a collection of models of increasing 

complexity. That model that exhibits the best performance when applied to the validation 

set is selected due its ability to generalize predictions to new data. There are several ways 

to partition the data to perform validation (Ripley, 1996; Efron and Tibshirani, 1993). 

The most commonly used in machine olfaction are: the holdout method, K-fold and its 

variations leave-one-out (LOO) and leave-one-block-out (LOBO), and bootstrap 

methods. The holdout method consists in splitting the example data into a single train-

and-validate trial. Although simple, the holdout method the can easily led to overfitting in 

case of limited data available. This problem can be partially overcome by partition the 
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dataset multiple times and averaging the performance of the models across the partitions. 

K-fold creates K partitions of a set of N examples, leaving N(K-1)/K subsets for training 

and N/K for validation. If the number of folds equals the number of examples the method 

is known as LOO, while if the number of folds equals to the number of blocks of repeated 

examples it is called LOBO. Regarding bootstrap, the method generates multiple 

training-validation partitions, with the particularity that sample repetition is allowed for 

the different training sets. 

II.2.2.4. Large sensor arrays 

Biological and artificial olfaction systems acquire information from odours generic 

chemosensory arrays. Despite this similarity, biological olfaction outperforms machine 

olfaction in terms of sensitivity, robustness to noise and tolerance to sensor damage 

(Pearce, 1996). This is because (i) biological olfactory systems are endowed with 

millions of sensory units, whereas ‘traditional’ e-nose instruments only present a few 

sensor units (thus e-nose arrays are less redundant); and (ii) olfactory receptors exhibit a 

narrower molecular receptive range than any of sensor technologies employed in e-nose 

instruments. Consequently sensor array responses to odours in e-noses are much more 

correlated than biological olfactory systems (or in other words, they present a lower 

degree of sensor diversity).  

 

Two basic approaches have been proposed to increase the variability of the array 

response to odours in gas sensor arrays with a limited number of sensor units 
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(Hierlemann, Gutierrez-Osuna, 2008). First approach consists in modifying some 

intrinsic or operational parameters of the sensor units present in the array (presence of 

catalysts, thickness of the sensing layer, working temperature). This strategy is usually 

employed in homogeneous sensor arrays.  The second approach is based on building 

heterogeneous sensor arrays combining a number of sensors technologies.  The rationale 

behind this strategy for sensor diversity enhancement is that different sensing principles 

provide additional sources of chemical information to differentiate odours. On the other 

hand, the redundancy of a sensor array can be simply incremented replicating in large 

numbers the different sensor type units that constitute the sensor array (Hierlemann, 

Gutierrez-Osuna, 2008). However, it has not been until recently that large sensor arrays 

have become technologically available. 

 

To the best of our knowledge, the first of these large arrays was presented in 1999 

(Dickinson et al, 1999). The authors built a sensing system based on a high-density 

optical array, with thousands of bead sensors of three discrete classes (Nile Red/poly, 

Nile Red/silica and Sensidye) dispersed across the face of an etched optical fibre.  To 

characterize their system, they exposed the sensors to a saturated pulse of methanol while 

collecting the sensor readings with a CCD camera. Then they assigned each bead to one 

of the discrete sensor classes by means of an imaging-software program. Sensors 

readings belonging to the same type of sensor beads were averaged. A signal to noise 

improvement of n1/2 (where n was the number of beads) was achieved using this method. 
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Another large array of optical gas sensor is found on the work (Di Natale et al., 2009). 

The authors created a sensor array from a continuous sensitive layer of colour indicators 

(ZnTTP, MnTTP,CoTPP and PtTTP) dissolved into a PVC matrix. The system was 

exposed to vapours of ethanol, triethylamine, toluene and butyamine. During the odour 

exposition, the sensing material was illuminated with a three pure colour RGB sequence 

(red-green-blue) and their response was captured by the three channels (RGB) of a web 

camera. The authors focused this study on a 7845-pixel region where the illumination 

was uniform, considering each of these pixels as a sensory element.  Pixels with similar 

odorant fingerprints were clustered (and added) into 8 artificial glomeruli by performing 

a k-means classification on the feature space. 

 

Polymeric sensors have also been used for developing large arrays of gas sensors 

(Gardner et al., 2009).  The investigators designed an artificial olfaction system that 

combined 3 replicated arrays of 300 composite conducting polymer sensors (24 polymer 

types) with two retentive columns coated with polar and non-polar compounds. The first 

array provided spatial information representing different essential oils presented to the 

system (Cinnamon, Lemon Grass, Lavender and Ylang Ylang). The second and third 

array replicates were connected to the first one through the retentive columns, obtaining 

each array the spatial and temporal information from its own separation profile. The joint 

response of the three arrays was obtained performing a convolution between 
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corresponding sensor pairs in each array. The area of the convolution integral was 

computed and used as a sensor feature.  

 

In a different work (Bernabei et al., 2012); the authors also built a sensing system 

composed of a large-scale array of 16384 conducting polymers of 24 different classes. 

The array was tested with six concentration expositions to ethanol, seven of 2-butanone 

and three mixtures of the pure compounds (75% ethanol-25% 2-butanone, 50% ethanol-

50% 2-butanone and 25% ethanol-75% 2-butanone, being 100% the maximum 

concentration presented for each substance). The relative resistance ratio obtained from 

the sensors in the steady state was used as a feature for the subsequent data analysis. 

Results for classical multivariate techniques applied to the data demonstrated that, the 

system was able to predict the concentration of the pure vapours (realizing Partial Least 

Squares regression), but also segmenting their binary mixtures depending on their pure 

substance ratio (performing Principal Component Analysis). In all these systems, the 

pooled response of the individual sensor elements was obtained through a dimensionality 

reduction stage that was analogous to the sensory convergence exhibited by the olfactory 

system. 

II.3. OUR SENSOR ARRAY 

The objective of this section is to design a large array of MOX sensors that mimics the 

high degree of sensor diversity and redundancy exhibited by the olfactory system. 

Section II.3.1 describes the architecture of our sensing system, which consists in a 
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measuring platform plus an odour delivery system. Special care is put in the description 

of the odour delivery system and the generator of volatile compounds, which is based on 

the direct evaporation method. To the best of our knowledge, this is the first time that the 

direct evaporation method is used to generate mixtures of volatile compounds.  

II.3.1. Block diagram 

Our chemical sensing system comprises two blocks: the measurement block, the odour 

delivery system. Fig. 14 shows a scheme of the system.  

 

 

 

Fig. 14. Building blocks of our e-nose prototype. The components corresponding to the data 

acquisition platform, the power and control block, and the odour delivery system are enclosed, 

respectively, in green, orange and blue dashed lines. 
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The measurement block is presented in Section II.3.1.1. That includes the selection of the 

commercial MOX sensor types and their distribution on the sensor array, the 

multiplexing system to generate the variety of measuring circuits and the basic circuit for 

power distribution. Section II.3.1.2 is devoted to describe the odour delivery system. 

There, the generator of volatile compounds based on the ‘direct evaporation’ method and 

the fluidic circuit to convey the odour mixtures to the sensor chamber are presented. The 

‘direct evaporation’ method is explained and an estimation of the obtained odorant 

concentration using this method is calculated.  

II.3.1.1. Measuring system 

This block is responsible for acquiring and storing the chemical information of the 

volatile compounds obtained from MOX sensors. The block includes the sensor array, 

and the electronics to control the sensor’s power supply and to polarize the measuring 

circuits (voltage dividers). The sensor array diversity array is boosted by combining 

different sensor types units along with a modulation of the sensor’s temperatures; and its 

redundancy, by using a number of replicates per sensor type, and modifying sensor’s 

measuring circuit by means of a collection of load resistors. 

 

The data acquisition system is formed by the gas sensors, a handmade measurement 

board, two multiplexors and a data acquisition board. We use 8 different types of MOX 

sensors provided by FIGARO (TGS-2600, TGS-2602, TGS-2610, TGS-2620) and FIS 

(SB-11B-00, SB-1500, SB-41-00, SB-AQ1-04) commercial houses with 12 replicates for 
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each type. These 96 sensors are placed on measurement board of 8 columns and 12 rows. 

Each column is independent from the others and corresponds to the powering of one 

sensor type. So, the 12 replicates sensors per sensor type are placed on the same column. 

A picture of the sensor array can be seen in Fig. 15. 

 

 

 

Fig. 15.  Close-up view of the sensor array. Each of the 8 array columns corresponds to a 

different MOX sensor type (TGS-2600, TGS-2602, TGS-2610, TGS-2620, SB-11B-00, SB-1500, 

SB-41-00, SB-AQ1-04), with 12 sensor replicates per column.  

 

The sensors are measured by a collection voltage dividers, so a battery of 16 load 

resistors (0.10K, 0.25K, 0.40K, 0.87K, 1.30K, 3.01K, 6.19K, 9.09K, 21.00K, 30.01K, 

40.20K, 51.10K, 68.10K, 82.5K, 90.90K, 105.K) is included in the measurement board. 

The voltage dividers are built by means of a module with two high-speed multiplexors 

(PXI 2530, National Instruments). These multiplexors allow switching the connection of 
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the sensors to the load resistors. The connection point between multiplexors is taken to 

measure the sensor output, using a data acquisition board (PXI 4461, National 

Instruments). A sketch for this type of connection is found in Fig. 16.  

 

 

Fig. 16. Scheme of the large scale mutiplexing system. This aproach allows connecting each of 

the m sensors to a collection of n load resistors (m=96, n=16). The sensor readings (Vout) are 

taken in the connection point between multiplexors.   

 

The power and control block comprises two independent power sources and a handmade 

control board. The basic circuit for power distribution of the control board consists of an 

operational amplifier (AD648, Analog Devices) connected to the gate terminal of a 
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PMOS power transistor (SUP900P06-09L, Vishay). The control is performed by 

comparing the digital signal provided by a DAQ (USB 3103, Measurement Computing) 

in the negative input terminal of the O.A. with a constant reference signal of 2.5V in the 

positive one. When the digital signal is at high level, the output of the operational is 

negative and the PMOS drives current. Otherwise the transistor is in cut-off. This circuit 

is presented in Fig. 17. We place 16 of these power basic circuits on the power board in 

order to select the sensor channels, both electrical and fluidic. MOX sensor are 

modulated in temperature following a 100 step ramp profile over a period of 90 seconds 

(from 0 to 5 V for Figaro sensors and from 0 to 0.9V for FIS) using a programmable a 

DC source (N6705A DC Power Analyzer, National Instruments), whereas the different 

voltage dividers are biased to 10 V using another DC power supply (PXI 4410, National 

Instruments). 

 

 

 

Fig. 17. Basic circuit for power distribution. V+=12,V-=-12, Vref=2.5 and C=100pF. The 

operational amplifier used is a AD648; and the MOSFET transistor is a SUP900P06-09L. 
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II.3.1.2 Odour delivery system  

The function of this block is to generate odour mixtures at different concentrations and 

convey them to the sensor chamber. In this section, the layout of the odour delivery 

system is shown. In addition to this, the main characteristics of the generator of volatile 

mixtures and the calculus of the estimated analyte concentration are included.  

The odour delivery system includes a generator of volatile compounds, a couple of 

handmade gas manifolds, a battery of 8 electro-valves, and a handmade measurement 

chamber. The generator of volatile compounds is based on the controlled evaporation of 

liquid compounds on a carrier gas flow (Fonollosa et al., 2013b) and presents two fluidic 

lines: On the one hand, the line for carrier gas delivery, constituted by a cylinder of 

synthetic dry air (CarburosMetalicos, Air Products Group) connected in series to a Mass 

Flow Controller (EL-FLOW F-201CV, Bronkhorst High-Tech B.V.), set to provide a 

constant flow of 1 l/min. And, on the other hand, the line for odorant supply, which 

consists of a programmable infusion pump (KDS200, KDScientific) and a precision 

syringe (1702 TLLX 25µl, Hamilton) that pushes the odorant in liquid form into a 150 

µm fused silica capillary tubing (FS-115, Upchurch Scientific) though a Luer-to-

Microtight Adapter (UP-P-662, Upchurch Scientific) until reaching a septum in the 

injection port, where both fluidic lines meet and odorant evaporation is performed. After 

the generator of volatile compounds, 1 to 8 manifold splits up the mixture in 8 streams 

symmetrically to introduce them to the 8 independent channels of the sensor chamber (28 

cm3/channel). Different operating configurations can be achieved by means of 8 electro-
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valves (E210C, Clippard) that control the pass of flow through the chamber channels. At 

the output of the chamber the 8 streams are brought together with an 8 to 1 manifold, 

recovering the original flow. An scheme of the odour delivery system is included in Fig. 

18. 

 

Fig. 18.  Scheme of the odour delivery system. 

 

The volatile generator subsystem is based on the ‘direct evaporation’, in which the liquid 

odorant is diluted into a stream of solvent gas. Basically, the volatile generator consists of 

two fluidic branches. On the one hand the solvent branch to which the air cylinder is 

connected. This branch includes a Mass Flow Controller (EL-FLOW F-201 C, 

Bronkhorst High-Tech B.V) to keep the flow constant throughout the experiments. On 

the other hand, the solute branch comprises two programmable infusion pumps (KDS200, 

KDScientific). Each of these pumps is equipped with high precision syringes containing 
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the solute in liquid form (1702 TTLX 25 µl, Hamilton). By means of a Luer-to-

Microtight Adapter (UP-P-662, Upchurch Scientific) the solute is pushed into a 150 µm 

inner diameter fused silica capillary tubing at a controlled flow rate. Both branches meet 

at the injection port, a fluidic Tee connector where the inlets reserved for the solute lines 

are sealed with a septum to assure tight conditions. The injection port is presented in Fig. 

19. The solute is evaporated at the injection port, and the resulting mixture is sent to the 

sensor chamber by the fluidic circuit. 

 

 
 

 

Fig. 19.  Picture of the injection port. The odorant in liquid phase is conveyed by a capillary and 

introduced through a septum in the tee connector.  

II.3.1.2.1. Computation of the analyte concentration 

The odorant concentration is calculated from the odorant mole fraction in the mixture. 

Assuming a mass balance between the liquid flow supplied by the syringe and the gas 

flow evaporated at the end of the capillary, and that the resulting volatile is approximated 

as an ideal gas, the odorant concentration in the chamber can be estimated (2.1): 

capillary septum

syringe

capillary septum 

syringe 



 
 
 
 
46 
 

 
 

 

𝐶𝐶 =
Φ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜|𝑔𝑔𝑜𝑜𝑔𝑔

Φ𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜|𝑔𝑔𝑜𝑜𝑔𝑔 + Φ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜|𝑔𝑔𝑜𝑜𝑔𝑔
=

�Φ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜|𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑐𝑐𝑜𝑜 ∙ 𝜌𝜌𝑜𝑜 ∙ 𝑅𝑅 ∙ 𝑇𝑇�
𝑀𝑀𝑜𝑜

Φ𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜|𝑔𝑔𝑜𝑜𝑔𝑔 +
�Φ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜|𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑐𝑐𝑜𝑜 ∙ 𝜌𝜌𝑜𝑜 ∙ 𝑅𝑅 ∙ 𝑇𝑇�

𝑀𝑀𝑜𝑜

 

(2.1) 

 

where C is the gas concentration of the sample diluted in synthetic air, Φ is the flow,  Md 

the molar mass of the odorant, ρd its density in liquid phase and T and P, the temperature 

and pressure at the injection port, respectively. Further details about the selected 

evaporation method can be found in next section. 

II.4. DATASETS 

To fulfil the objectives of this dissertation, three datasets were collected using this 

system: (i) the large concentration range dataset; (ii) the pure substance dataset; and (iii) 

the odour mixture dataset. In the following section, we present a brief description of these 

datasets. 

II.4.1 Description of the datasets 

The large concentration range dataset (i) contains the sensor array responses to 7 different 

concentrations of acetone distributed along 3 decades of concentration (10, 50 100,500, 

1000, 5000 and 10000 ppm). For its part, the pure substance dataset (ii) comprises the 

sensor array readings to 6 different concentrations (0, 20, 40, 60, 80, 100 and 120 ppm) 

of 3 pure substances (Ethanol, Acetone and Butanone.). Finally, the odour mixture 
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dataset (iii) consists in the set of sensor response to the binary mixtures of ethanol, 

acetone and butanone. The experiments were designed to have a transition from a first 

analyte to second analyte in six steps, for each of 3 binary combinations of the 3 analytes.  

 

In all these the datasets, additional measurements of synthetic dry air were acquired as a 

reference values before each of the experiments. The complete set of experiments was 

repeated 10 times, where the order of odour exposition was randomized. Figures Fig. 20, 

Fig. 21 and  Fig. 22 show respectively, the sensor response to the three different datasets 

for a sensor taken as a representative of the array (TGS-2602, RL=21KΩ). To show the 

repeatability of the sensor measurements, the sensor response is computed as the mean 

measure obtained from 10 repetitions, and includes error bars corresponding to its 

standard deviation. 
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Fig. 20.  Readings of a TGS-2602 sensor responding to dataset I. We show the sensor waveforms  

corresponding to different acetone samples for a large concetration range (RL=21 KΩ).   

 

 

 

Fig. 21 Readings of a TGS-2602 sensor responding to dataset II. Blue, orange and green 

waveforms represent, respectively, ethanol, acetone and butanone samples (RL=21 KΩ) . 
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Figure. 22 Readings of a TGS-2602 sensor responding to dataset III. Blye , orange and green 

waveforms represent, respectively,  the  transition from ethanol to acetone, acetone to butanone, 

and butanone to ethanol (RL=21 KΩ) . 

II.5. CONCLUSIONS 

In the first part of this chapter, we presented the electronic nose as a general purpose 

instrument for chemical sensing. We started showing the architecture of the natural 

olfactory system, which is the inspiration for such a kind of instrument. We reviewed the 

most commonly employed sensor technologies, sample generation methods, and signal 

processing techniques in machine olfaction. We detected two important differences 

between natural and artificial olfaction systems. (i) First difference was related to the 

number of sensors on the array (sensory redundancy); whereas (ii) to the degree of 

correlation of the array response to a set of odours (sensory diversity). In both cases, 

natural olfactory systems outperformed ‘traditional’ e-nose arrays. We revised different 
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methods to boost the levels of sensory diversity and redundancy of artificial sensor 

arrays. Novel e-nose prototypes that take advantage of these methods were also revised. 

In the second part of this chapter, we designed and built a new prototype of bio-inspired 

e-nose instrument based on the MOX sensor technology.  We endowed our system with 

large levels of structural sensory diversity and redundancy, in the sense that they were 

considered intrinsic properties of our sensor array. In our approach, sensory diversity was 

achieved through the use of 8 different types of MOX sensor modulated in temperature 

(100 temperature conditions); and sensory redundancy including 12 MOX sensor 

replicates for each type along with a multiplexing system  to read the response of the 

sensor through a collection of voltage dividers (16 load resistors). The grand total of 

readouts per sample obtained with this sensor array was 153600 (8 sensor types x 100 

temperatures x 12 sensor replicates x 16 load resistors= 153600 readouts). Finally, we 

used this system to acquire three different datasets. 
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CHAPTER III  

SENSOR DIVERSITY AND REDUNDANCY 

 
The olfactory system is the archetypal example of a sensory array that encodes the 

information of chemical stimuli using a vast population of sensory inputs, the ORNs 

(Friedrich and Stopfer, 2001; Korsching, 2002; Miura et al., 2012; Buck and Axel, 1991).  

Population coding is also present in the other sensory systems: gustatory (Schiffman et 

al., 1971) somatosensory (Johansson and Birznieks, 2004), auditory (Covey, 2000), and 

visual (Vinje and Gallant, 2000). The reason why evolution has selected population 

coding to acquire real-world information is linked to the robust noise-resistant properties 

that this strategy exhibits. The combination of large arrays of receptors with a highly 

convergent sensing architecture gives rise to the emergent phenomenon of sensory hyper-

acuity (Bialek, 1987). Basically, the concept of hyper-acuity stands for that the sensory 

performance of a population of receptors is finer than any of the performances showed by 

the individual receptors. Two forms of hyper-acuity are present within the olfactory 

receptors (Pearce et al., 2001). First of these is related to the variability on the responses 

of a population receptors and it is responsible for the enhancement on odour quality 

estimation. Combining the signal of the different ORN types, complex mixtures not 

achievable by any single receptor type can be distinguished. In mammals, between 300-

1000 of ORNs expressing different receptor proteins are responsible for odour quality 

encoding (Buck and Axel, 1991). The inherent cross-sensitivity of ORNs broadens the 



 
 
 
 
52 
 

 
 

detection range and increases the tolerance to interferences of the olfactory system. 

Although intuition suggests that arrays of specific odour receptors should provide more 

accurate odour discriminations, several theoretical works in neuroscience indicate that 

arrays of cross-sensitive sensors outperform selective arrays (Sánchez-Montañés, and 

Pearce, 2002; Wilke and Eurich, 2002; Brown and Bäcker, 2006). The second type of 

hyper-acuity is related to the replication in large numbers of different receptor types, and 

causes the enhancement on odour quantity estimation in natural olfactory systems.  

Giving some numbers, the olfactory epithelium in humans is endowed with 12 million of 

ORNs, while for bloodhound this quantity increases until 4 billion of receptors (Shier, 

2004). In particular, the limit of concentration detection for an array of ORNs is 

substantially lower than the one corresponding to any of their single receptors. This fact 

has been observed in such different species as frogs (Duchamp-Viret et al., 1989; 

Drongelen, 1978), and cockroaches (Boeckh and Ernst, 1987).  

 

We can find a number studies in the literature concerning these two types of sensor 

hyper-acuity in machine olfaction (hitherto, sensor diversity and redundancy 

respectively). Regarding sensor diversity, the researchers were mainly interested in 

quantifying the discriminative power of non-selective sensor arrays and describing the 

mathematical relations between the space of odour representation and sensor array space. 

One of the investigations that dealt with the problem of discriminating mixtures with an 

array of non-specific sensors was performed by (Zaromb and Stetter, 1984). In their 
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work, the authors performed a theoretical study to estimate the minimum size of an array 

of noiseless binary sensors to discriminate a mixture of A components. (Niebling and 

Mu, 1995) proposed the inverse feature space to design sensor arrays. This inverse sensor 

space corresponded to a subspace of the odour space. Projecting the sensor features in the 

odour space, the investigators showed which of the array features were more suitable to 

solve potential discrimination problems. The concept of sensor space was revised in a 

paper of (Gardner and Barlett, 1996). An upper limit for odour resolution (the maximum 

number of analytes distinguishable by a sensory array) was calculated for non-specific 

noisy sensors. That limit consisted in the ratio between the volume of the sensor space 

and the volume of the sensor errors. Pearce studied the problems of collinearity on the 

sensor space for an array of cross-reactive sensors (Pearce, 2000). He defined the concept 

of hyper-volume of accessible sensor space (VS) as the volume on the sensor space 

containing the array responses to a set of odours. They found that very much correlated 

sensor responses caused low VS values, and hence, a poor odour discriminability. This 

time, the upper bound of odour mixtures to be discriminated by the array was limited by 

the ratio between VS and VN, the hyper-volume spanned by the sensors’ noise. Other 

estimations of the discriminative power of sensor arrays were based on Information 

Theory measurements. (Alkasab et al., 2002) calculated the Mutual Information (MI) for 

several synthetic arrays of noiseless binary sensors that coded a set of odour mixtures.  

Each of the populations was endowed with a different number of sensors featured with 

the same receptive range (the same percentage detectable odours of the odour space). The 
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authors found that MI increased with number of sensors of the population, obtaining the 

highest MI values for sensors with receptive ranges between 25%-35% of target 

compounds. In a more recent paper, (Fonollosa et al., 2013b) also employed the MI to 

evaluate the discriminatory power of an array of 4 MOX sensors modulated in 

temperature as a method of feature selection). They computed the MI between the 

presented stimuli (ethanol, acetic acid, 2-butanone and acetone) in the range of 0.1-1000 

ppm and the response of the four-sensor array operating at different temperatures. The 

highest values of MI corresponded to the most discriminative features on the array. 

Sensor redundancy has also been studied by the e-nose community. To the best of our 

knowledge, the theoretical work presented by (Di Natale et al., 1993) was the first paper 

addressing the role of sensor redundancy in gas sensor arrays. They tried to reduce sensor 

noise of a simulated sensor array, for different types of noise. They showed that sensor 

redundancy was a key factor for signal denoising only in case of independent sensor 

noise. The effect of sensor aggregation in noise reduction was addressed in two works by 

(Wilson et al., 2000; Wilson, 2002). The authors calculated the theoretical computation 

for variance of the aggregate of sensors in case of identical independent and sensors. 

They found that for independent sensor noise, the variance of the sensor aggregate 

decreased a factor n-1 (where n was the number of sensors of the array). They compared 

the theoretical estimate of the variance with its measured value for an array of 40 

nominally identical Tin-oxide gas sensors. Both computations of the variance were in 

agreement. Another approach to reduce sensor noise taking advantage of sensor 
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redundancy consists in selecting the subset of sensor units that contribute to noise in a 

population (Sánchez-Montañés and Pearce, 2001). In their work, the researchers 

performed this selection optimizing the Fisher Information of simulated arrays according 

to some parameter typical of the sensor’s response characteristics. They presented two 

cases of study:  Linear sensors subjected to independent Gaussian noise and sigmoidal 

sensors subjected to Poisson noise. 

 

This chapter is focused on the study of sensor diversity and redundancy in our gas sensor 

array, and it is structured as follows. First, we show sources of structural sensor diversity 

and redundancy present in our array, in Section III.1. Section III.2 is devoted to illustrate 

that sensor diversity and redundancy support odour information encoding in sensor 

arrays. Taking into account the results of Section III.1 and Section III.2, we propose a 

more general definition of sensor diversity and redundancy for arrays of gas sensors, in 

Section III.3. Finally, in Section III.4 we discuss the different issues showed on this 

chapter and we present its main conclusions. 

III.1. SENSOR DIVERSITY AND REDUNDANCY IN OUR SENSOR ARRAY 

In Chapter II, we presented our bio-inspired prototype of electronic nose. We followed 

the strategy of combining sensor diversity and redundancy to build a chemical sensor 

array based on MOX sensors. On the one hand, sensor diversity was achieved using 8 

different types of MOX sensors and modulating their temperature, which provided 

additional pseudo-sensors for different temperatures. On the other hand, sensor 
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redundancy was obtained by two means: first, including 12 sensors for each type for a 

total 96 and; second, using 16 different load resistors with a high-speed multiplexing 

system to read the response of the sensors through a voltage divider.  

 

In the following subsections, we show a variety of examples of how sensor diversity and 

redundancy enhance to some extent the quality of the predictions obtained from an array 

of gas sensors. In particular, we check this issue for the different sources of structural 

sensor diversity and redundancy of our sensor array.  This way, sensor diversity provided 

with different sensor types is studied in Section III.1.1, whereas sensor diversity obtained 

from different sensor temperatures is shown in Section III.1.2. In regard to sensor 

redundancy, Section III.1.3 presents sensor redundancy attained from a collection of 

sensor copies, and Section III.1.4 sensor redundancy acquired from the assortment of 

load resistors. 

III.1.1. Diversity with different sensors 

The combination of sensor readings belonging to different sensor units usually 

outperforms the predictive performance of the individual sensors in odour discrimination 

tasks. To exemplify this situation we present the following toy problem where we employ 

the readouts of two sensor types (SB-11 and SB-Q1) by separate and their combined 

response to odour samples with quadratic classifiers. Each of the sensors was set to 

operate at the same temperature (T=350 ºC). The experimental data consist of a subset 30 

samples extracted from Dataset II. We expose the sensors to three pure odours (ethanol, 
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acetone and butanone) dosed at 20 ppm, for 10 times. This data is pre-processed 

converting the sensor’s voltage readings into resistance values and posteriorly, 

performing the decimal logarithm of the result. We split up this dataset into training (60% 

of the samples) and test (the remaining 40% of the samples) subsets.  To perform the 

odour identification, we build 3 quadratic classifiers. Two of them correspond to the 

individual sensor readings, whereas the third one is created from the combined response 

of the two sensor units. The predictive performance of the classifiers is checked using the 

test set samples.  

 

Some data visualization is required for a better understanding of the problem that the 

classifiers are facing. Fig. 23(a) shows the combined response of the sensors to the 3 

different odours, where blue, red and green markers represent respectively ethanol, 

acetone and butanone samples, and training and test samples are depicted using white-

faced and solid triangles. From the figure, it is evident that the pooled response of the two 

sensors provides enough information to differentiate each of the odour classes from the 

others. However, none of the sensors can separately distinguish the three odours (note 

that the projection of the combined response on the X and Y axes corresponds, 

respectively, to the response of the sensors SB-11 and SB-Q1). We can see how sensor 

SB-1l differentiates acetone from ethanol and butanone, while sensor SB-Q1 

discriminates butanone from the other two substances. The confusion matrices obtained 

using the different classifiers are found in figures Fig. 23(b) (sensor SB-11), Fig. 23(b) 
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(sensor SB-Q1), and, Fig. 23(d) (the combined response). As expected, Sensor SB-11 

tends to confuse ethanol with acetone, whereas sensor SB-Q1 ethanol with acetone. Also 

in agreement with the data visualization, the classifier built employing the combined 

sensor response exhibits a perfect performance identifying the odour quality of the test 

set samples.  

 
 

Fig. 23. Diversity with different sensors. (a) Scatter plot of the combined sensor response of an 

array of 2 sensors working at 350 ºC to 20 ppm of ethanol, acetone and butanone. On the figure 

RS1 refers to SB-11 sensor unit, whereas RS2 to the sensor SB-Q1; Confusion matrices of a 

quadratic classifier obtained from (b) the sensor SB-Q1, (c) the sensor SB-11, and (d) from 

combined response of both sensors. 
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III.1.2. Diversity with different temperatures 

Temperature modulation increases the diversity of response of MOX sensors because 

modifies sensor sensitivity to odours. Thus, different odours cause a variety of response 

waveforms when exposed to the same sensor unit. We propose a binary classification task 

to show the advantages of temperature modulation for odour discrimination. The problem 

to solve is the following: we want to identify if a gas mixture contains more ethanol than 

acetone extrapolating from the sensor response to the pure components.  That is to train a 

classifier (i.e. a linear classifier) from the sensor response to ethanol (Class A) and 

acetone (Class B) and check its performance when applied to samples were both 

compounds are present. We approach this task from two different points of view. First 

approach consists in a feature extraction problem, where we perform a dimensionality 

reduction of the set of sensor waveforms corresponding to different odour samples 

(Section III.1.2.1). This dimensionality reduction stage is realized by means of PCA 

decomposition. After that, we train and test the classifier with the projection of the 

samples on the PCA model (sample scores).  PCA scores and loadings are analysed in 

order to obtain deeper comprehension about the role of sensory diversity in odour 

discrimination. The second approach is a feature selection problem, where only the 

pairwise combinations of sensor temperatures are considered input variables for the 

classifier (Section III.1.2.2).  The figure of merit that allows us to select the best 

combinations of sensor temperatures is the area under the curve (AUC) of the Receiver 

Operating Characteristic (ROC) obtained from the classifier. Comparing the results of 
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sections III.1.3.1 and III.1.3.2 an intuitive inverse relationship between sensor feature 

correlation and sensory diversity is found.  This toy problem is very interesting since 

illustrates that for an array of cross-sensitive sensory diversity depends on the complexity 

of the odour dataset.   

 

We perform this binary classification problem using the readings of a TGS-2610 sensor 

unit (RL=9.1 KΩ). We modulate the sensor temperature with a ramp profile with 90 

temperature steps, from 25 to 475 ºC (ΔTSTEP =5ºC). Data samples from the training set 

are extracted from Dataset II and correspond to the sensor responses to pure ethanol and 

acetone at 20, 40, 60, 80, 100 and 120 ppm. On the other hand, test set samples belong to 

Dataset III and consist of the binary mixtures of ethanol and acetone with the following 

concentrations (in ppm): 100-20, 80-40, 40-80, and finally, 20-100. Each of data samples 

is acquired 10 times giving rise to a total of 120 samples on the train set (6 concentrations 

x 2 substances x 10 repetitions) and  40 samples on the test set (4 mixtures x 10 

repetitions).  

III.1.2.1. Feature extraction approach 

We project the collection sensor waveforms corresponding to the set of odour samples 

onto a lower dimensionality space (2 dimensions) performing a PCA decomposition. By 

doing this, we can explore structure of the data and obtain some information about the 

effect of temperature modulation on the sensor’s features. The scores plot of the data 

after dimensionality reduction can be seen in Fig. 24(a), where the white-faced black-
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edged squares and the white-faced red-edged triangles represent respectively, samples 

from the training and test set. On the figure, we can see how the first Principal 

Component provides information related to sample concentration (concentration 

increases from positive to negative values on the PC 1 axis); whereas the second 

Component seems to be related to its chemical composition (positive values of PC 2 axis 

denote mixing proportions biased towards pure ethanol and vice-versa). Using this 

projected data, the linear classifier obtains a perfect performance.  It is possible to find 

out which sensor features cause the chemical separability on the second Principal 

Component analysing the second loading vector, as can be seen on Fig. 24 (b). There, we 

observe that sensor temperatures with negative values on this loading tend to be sensitive 

to acetone, whereas positive ones to ethanol. Thus, we can roughly cluster the sensor 

features in two groups according to their ability to discriminate ethanol from acetone. The 

cluster temperature centres correspond to most extreme values of the loading vector. That 

is around 295 ºC, for the first cluster, and 390 ºC, for the second one. 



 
 
 
 
62 
 

 
 

 

 

Fig. 24. Diversity with different temperatures plus feature extraction. (a) Scores plot of the PCA 

decomposition (2 Principal Components) obtained from the mean-centered waveform output 

voltage of the sensor TGS-2610 (RL=9.1 KΩ). The training set (pure odour samples) was 

represented by white-faced black-edged squares, and the test set (odour mixture samples) using 

white-faced red-edged triangles. We observe that the second Principal Component discriminates 

test set samples according to the pure major component on the mixture, (b) plot of the loading 

vector corresponding to the second Principal Component. We identify on this loading two clusters 

of sensor temperatures related to odour separation.    
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III.1.2.2 Feature selection approach 

In order to identify the major pure compound present at the different samples belonging 

to the test set, we realize a feature selection problem consisting in optimizing the sensor 

response at two different temperature conditions. To do so, we evaluate the performance 

of the binary classifier for each pairwise combination of non-repeated sensor waveform 

features (9900 non-repeated temperature combinations = 100 x 100 temperature 

combinations -100 repeated temperature combinations). Since our classification problem 

is binary this can be done using the Receiver Operating Characteristic (ROC) curve. 

Basically, a ROC curve is a plot of the fraction of false positives (FPR) against the 

fraction the true positives (TPR), obtained from a classifier at a various threshold 

settings. For balanced class datasets (those that have a similar number of samples for the 

two sample classes), the area under the ROC curve (AUC) ranges from 0.5 to 1. An AUC 

equal to 1 indicates a perfect performance of the classifier, whereas if its value is close to 

0.5 denotes a random classification. 

 

So for each of the pairwise combination of sensor response features a ROC curve is 

generated. The process consists in calculating the FPR and the TPR for the collection of 

thresholds values from 0 to 1 in steps of 0.1. The FPR and the TPR are obtained as 

follows: First, the threshold to assign the class to new samples is selected. Then, the 

classifier is applied to the unlabelled samples. As a result, the classifier provides a 

posterior probability value of belonging to class A or B, for each sample. If the posterior 
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probability of a sample is greater than the threshold value, the sample is labelled as ‘Class 

A’, otherwise as ‘Class B’. Finally, a confusion matrix is created and the FPR and the 

TPR are calculated.  For each of the ROC curves, the AUC is computed using the trapeze 

method of integration. The results of these calculations are shown in Fig. 25 where each 

binary combination of sensor temperatures is coloured in different warm tonalities 

according to their AUC value: lighter towards 1 and in dark tones towards 0.5. Besides 

this, we include contour lines on the figure to separate regions with different AUC level. 

Since the AUC value obtained from two features is the same independently of their 

sorting, the plot presents symmetry. The blue line that connects the lower left and the 

upper right corners of the colour map is its axis of symmetry.  

 

These results are in agreement with those showed in Fig. 24(b). That means that feature 

combinations that perform a perfect classification (AUC=1) are found loading in opposite 

directions on the loading vector of the second Principal Component. On the contrary, the 

performance of the classifier tends to be lower when they are found on the same direction 

of the loading vector. The reason for that behaviour is that sensor sensitivity to odours 

varies gracefully with temperature. Consequently, sensor readings acquired at different 

enough temperatures tend to increase the variety of the sensor response (i). On the other 

hand, similar temperatures tend to provide very much correlated sensor responses (ii). 

From this point of view, we can consider the sensor features in (i) belonging to a different 

type of sensory unit, whereas in (ii) to the same type. Interestingly, the degree of 
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similitude between sensor features depends on the complexity of the set of odour stimuli. 

This is because we are estimating feature similitude using a limited set of odour 

conditions (both, quality and quantity). If a new analyte (i.e. butanone) was included to 

the current dataset, sensor features that exhibited similar responses to ethanol and acetone 

might show very different readings to the latter. Thus, sensory diversity of the response 

would increase. This effect would also be reflected in the loadings of a PCA 

decomposition performed on the new expanded dataset. 

 

 

Fig. 25. Diversity with different temperatures plus feature selection. Contour map of the area 

under the ROC curve for the collection of linear classifiers built from the pairwise combinations 

of sensor output voltages (TGS-2610, RL=9.1 KΩ) at different sensor temperatures.  The 

performance of the classifier is coded by colour. Dark tones indicate poor odour discriminability, 

whereas light ones a good performance in odour separation. The blue line on the figure is drawn 

to point out the symmetry of the plot. 
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III.1.3. Redundancy with different sensor copies 

The aggregation of different sensor copies in an array of sensors enhances its tolerance to 

independent sensor noise. The reason for that is that, under such a condition, each sensor 

reading can be considered the sum of two addends: first addend is the sensor response 

due odorant detection, whereas second one the independent sensor noise. Sensor 

aggregation of nominally equal sensors tends to reinforce the first addend (which is 

common to all the sensors), while reduces the contribution of the second (different for 

each of the sensors). Consequently, we expect to obtain a better predictive performance 

from the aggregate of sensors than from any of the sensor copies.  

 

To illustrate this idea, we propose an odour quantification task where we compare the 

error of prediction achieved by an aggregate of 12 sensors (TGS-2610, T= 350ºC, RL=9.1 

KΩ) with the one obtained in average from the individual copies. These sensors were 

exposed to 7 different concentration of acetone (10, 50, 100, 500, 1000, 5000 and 10000 

ppm) plus an additional measurement of synthetic dry air (dataset I).  The complete set of 

experiments was repeated 10 times, where the order of concentration exposition was 

randomized. We divided this dataset into training (all the samples belonging to 10, 100, 

1000 and 10000 ppm classes) and test subsets (the samples corresponding to the 

interleaved concentrations), to whom the Gaussian noise is added (µ=0, σ2 increasing 

from 10-8 V2 to 10-2 V2, in steps of 10-8 V2).  
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We used the training set to build the different sensor models based on the Clifford-Tuma 

dose-response curve, whereas the test set was employed to check their predictive 

performance. For each noise condition, 13 models were created: one per each of the 

individual sensor copies (12 models) plus one for aggregate of the sensors (1 model). 

Therefore, the number of models generated and tested amounts to 13000 (13 models x 

1000 noise conditions). 

 

The results of this study are shown in Fig. 26,  where the mean RMSEP obtained from 

the individual errors of the sensor copies (left-sided boxplot) is compared with the 

RMSEP of the aggregate of sensors (right-sided boxplot). As can be seen, the individual 

sensors, in average, exhibit a worse tolerance against noise than the aggregate, since their 

RMSEP values are more spread and tend to higher values. Although some of the 

individual sensor copies may outperform the aggregate on quantifying acetone 

concentration for each noise condition, this information is not available a priori (before 

the calibration stage). So the most general option to enhance the concentration estimation 

while keeping robust predictions still is the aggregation sensor responses (for 

independent sensor noise and homogeneous arrays). 



 
 
 
 
68 
 

 
 

 

Fig. 26.  Redundancy with different sensor copies. Boxplot corresponding to (1) the mean 

RMSEP of the individual sensor replicates and, (2) the RMSEP of the mean individual of the 

population, for a variety of Gaussian noise conditions. The sensor array was exposed to 10, 50, 

100, 500, 1000, 5000 and 10000 ppm. We trained a Clifford-Tuma model employing the sensor 

readings at 10, 100, 1000 and 10000 ppm. The RMEP was calculated from the model predictions 

at 50, 500 and 5000 ppm. 

III.1.4. Redundancy with different load resistors 

Often, sensor copies are not perfect in the sense that they present a certain degree of 

variability in their dose-response characteristics to odour stimulus. In such a case, sensor 

optimization is another possible approach to reduce sensor noise in homogeneous arrays. 

This strategy consists in selecting the suitable subset of sensors that optimizes a given 

condition.  
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We propose an odour quantitation task where we use sensor array optimization to down-

weight the contribution of independent sensor noise, and thus, to enhance the predictive 

performance of a sensor array. To this end, we built a homogeneous sensor array from 

combining a single sensor unit with collection of load resistors (our sensor array 

comprises a set of voltage dividers). We propose to find out the set of voltage dividers 

that optimizes data collection for a set of odour concentrations. Moreover, we propose to 

compare the predictive performance in concentration estimation achieved by this feature 

selection approach to the one obtained from the individual voltage dividers. Intuition 

suggests that the best sensing condition for encoding a particular odour concentration 

occurs when a sensor unit exhibits the maximum sensitivity to that concentration. The 

condition for maximum sensitivity in our measuring circuit is achieved when the 

resistance of the MOX sensor equals the resistance of the load resistor (RL=RS). When 

this condition is fulfilled, the response of the voltage divider is VO=VDD/2, where VDD is 

the bias voltage (VDD=10 V in our sensor array). 

 

Our sensor array is composed of 16 sensor units corresponding to voltage readings from 

connecting one TGS-2610 gas sensor (T=350ºC) to a set of 16 load resistors (0.10K, 

0.25K, 0.40K, 0.87K, 1.30K, 3.01K, 6.19K, 9.09K, 21.00K, 30.01K, 40.20K, 51.10K, 

68.10K, 82.5K, 90.90K, 105.K). We exposed this sensor array to 7 different 

concentrations of acetone, according to dataset I ( 10, 50, 100, 500, 1000, 5000, and 1000 

pmm). We splited up this dataset into training and test subsets, as in Section III.1.3. And 
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we added independent Gaussian noise to these subsets (µ=0, σ2 increasing from 0.33·10-5 

V2 to 3.0·10-5 V2, in steps of 0.33·10-5 V2).  Then, we transformed the sensor readings 

from voltage (VS) to resistance (RS) values. We performed this transformation in two 

different manners: First manner consisted in using the value of load resistor 

corresponding to the current voltage divider to convert voltage to resistance, for each 

voltage divider. Therefore, we obtained an array of 16 sensor units. The second way 

consisted in calculating the value of the sensor resistance for each concentration, using 

the load resistor that was closer to satisfy the condition of maximum sensitivity of the 

voltage divider. Note that following this strategy of sensor array optimization we only 

obtain a single sensor unit. Employing these set of sensor readings expressed in 

resistance, we created 17 Clifford-Tuma models from the training set samples (16 from 

the individual sensor readings plus one 1 the feature selection approach), for each noise 

condition.  Next, we calculated the error of calibration (RMSEP) for all these models 

using the test set samples. In order to perform a statistical analysis of the results, this 

process was repeated 1000 times for different noise initializations. Thus, the total number 

of prediction models generated for this task was 15300 (17 sensor units x 9 values of the 

noise variance x 1000 initializations).  

 

Fig. 27 shows the RMSEP along the noise variance for the voltage divider that minimizes 

the RMSEC (RL=6.19KΩ), and for the set of sensor resistances acquired in conditions of 

maximum sensitivity. We can observe that the mean RMSEP of the two sensors keeps 
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constant around a similar value for increasing levels of noise variance. This is a direct 

consequence of our selection of the sensor noise, since it was Gaussian with zero mean. 

The main difference between sensor lied is their ability to reject the variance of the 

sensor noise. Clearly, our sensor array optimization approach is the most robust since we 

obtain a narrower range of RMSEP values (at least 3 orders of magnitude for the worst 

case of noise variance).  

 

 

 

Fig. 27.  Redundancy with different load resistors.  Root Mean Square Error along noise variance 

(Gaussian noise, µ=0) for the test set. Black squares represent the error values obtained at the best 

sensitivity conditions for data acquisition, whereas blue triangles those ones acquired for the 

combination of sensor and load resistor that minimizes the error of the training set.    
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III.2. ENCODING ODORANT INFORMATION 

Along Section III.1, we have seen in an intuitive manner how sensor diversity and 

redundancy support the coding of the odorant information in our sensor array. Now, we 

present a more formal approach to address this issue based on statistics and Information 

Theory measures. This section is divided in two parts: Section III.2.1, where we evaluate 

the coding capacity for arrays of virtual sensors endowed with different degrees of sensor 

diversity; and Section III.2.2, where we study in deep the role of sensor redundancy in 

noise reduction. 

 

III.2.1. Sensor diversity and coding capacity 

The performance of a sensor array in encoding odour stimuli can be estimated from an 

Information Theory (IT) point of view. This task can be done by using two different 

measures of information content:  Entropy and Mutual Information.   

 

Entropy measures the uncertainty of guessing by chance the state of the random variable 

X from the probability of occurrence of each of the possible states of X, p(xi) : 

 

𝐻𝐻(𝑋𝑋) = −�𝑝𝑝(𝑥𝑥𝑐𝑐)
𝑐𝑐

𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝(𝑥𝑥𝑐𝑐) (3.1) 

According to the previous equation, the greater is the entropy of a set of states (message) 

the more complex is to guess the current state of X.  
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Similarly, Mutual Information (MI) is a measure of the information that two random 

variables X,Y share. Mutual Information is calculated from the marginal probability 

distributions px (i) and py (j), and the joint probability distribution function pxy(i,j): 

 

𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌) = −�𝑝𝑝𝑥𝑥𝑥𝑥(𝑥𝑥𝑐𝑐)
𝑐𝑐.𝑗𝑗

𝑙𝑙𝑙𝑙𝑙𝑙2
𝑝𝑝𝑥𝑥𝑥𝑥(𝑖𝑖, 𝑗𝑗)
𝑝𝑝𝑥𝑥(𝑖𝑖)𝑝𝑝𝑥𝑥(𝑗𝑗)

 
(3.2) 

Note that for independent random variables pxy=px py and MI=0. We can employ mutual 

information to measure how much information from a set of odour stimuli can be 

explained from a set of sensor responses. 

 

 

 

Fig. 28. Venn diagram for various information measures: Individual entropies (H(X), H(Y); 

Conditional entropies (H(X|Y), H(Y|X)); Joint entropy (H (X,Y); and Mutual Information 

(MI(X,Y)). Note that X and Y are correlated variables. 
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III.2.1.1. Measure of the quality of the odour encoding  

We conducted a synthetic experiment to compare the quality of the odour encoding 

achieved by arrays of sensors endowed with different levels of sensor diversity.  To this 

purpose, we measured a set of odours (L=1024) consisting of mixtures of pure substances 

(M=10) dosed at different concentrations using two arrays of virtual sensors. In first of 

these arrays, the sensors worked as partial selective detectors with zero concentration 

thresholds. That means that a sensor unit responded with a logical ‘1’only to the pure 

components to which was sensitive (its molecular receptive range, RR) and ‘0’ otherwise 

(see Fig. 29). In the second array, the sensors were identical to the above-mentioned, but 

included an additional source of sensor diversity. This sensor population was endowed 

with a variety of dose-response characteristics. In particular, each of the sensors 

responded only to a subset of pure compounds beyond a limit of detection (different for 

each pure compound). In both arrays, the number of sensors (N) and their molecular 

receptive range (RR) were tuneable parameters. We computed H for the given set of 

odours, and MI for a number of sensor arrays with different size (N=1, 2, 4, 8, 16, 32, and 

64 sensors) and receptive range (RR= 5, 10, 15, 25, 30 35, 40, 45, 50, 55, 60, 65, 70, 75, 

80, 85, 90 and 95%). This process was repeated 100 times. As a result, the values for the 

average MI and its standard deviation were computed, for each N-RR combination.  

Section III.2.2.1, explains in detail explain how to build the sets of odours and sensor 

responses, and how to obtain the MI between both groups. 
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Fig. 29. Scheme of the generation of the array response. We obtain a set of virtual binary sensors 

(S1 to SN) from a mixture of pure compounds (O1 to OM). Note that this scheme is simplified since 

no information about odour concentration is provided.   

III.2.1.2. Methods  

To conduct this experiment we had to realize three different subtasks. First task was the 

creation of the set of odour samples. Second tasks consisted in building the set of sensor 

responses. Finally, the first tasks the computation of the MI information between the 

odour and sensor sets.  
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Fig. 30 Block diagram of the computation of the H and MI. These measures are computed, 

respectively, from the odour stimuli set and odour stimuli and the array response sets. 

 

We generated a synthetic combination of pure odours by concatenation of the M bits that 

represented the pure compounds. A logical ‘1’ stood for the presence of the pure odour 

on the mixture and, ‘0’ its absence.  Each of the 2M possible combinations had an equal 

probability of occurring.  We assigned a concentration value to the pure odours of the 

mixture from a uniform distribution of values ranging from C1 to C2 arbitrary units of 

concentration. The final dimension of the set of odour mixtures (L x M) was achieved 

repeating the previous process L times. The entropy of the set was then obtained through 

the calculus of the frequency of occurrence of each mixture, according to equation (3.1). 

Regarding the set of set of sensor responses, we created an array of N sensors sensitive to 

some of the pure odour compounds and blind to the rest in a process of three stages. In 

first stage, we built a correspondence map (CM) between pure odours and sensors. The 

map was generated comparing the elements of an N x M matrix of uniformly distributed 

numbers ranging 0 to 1 with a threshold value. If the element matrix was higher than the 

ODOUR 
STIMULI
(L x M)

ARRAY 
RESPONSE

(L x N)
MI

H
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threshold, then the sensor is sensitive to this pure compound (‘1’). If not, the sensor was 

not able to detect it (‘0’). The value for threshold was set to 1-RR, where RR was the 

receptive range of the sensor. Note that, at this point, the CM did not provide any 

information about concentration. In the second stage, we set the thresholds of detection of 

each sensor to its respective detectable pure compounds. To do it, we took two different 

approaches: a) the thresholds of detection were always placed at a zero concentration 

level and b) the thresholds of detection followed the same uniform distribution that 

generates the concentration of the pure odours. Thus, if a sensor was sensitive to a pure 

compound its response was ‘1’:  a) regardless of their concentration and b) only if the 

concentration is higher than the threshold of detection. At the end of this stage, the 

original CM was kept in a), but a new CM’ providing information about the mixing 

proportion of the odour combination was obtained from b). We calculated the combined 

response of the set of sensors to an odour mixture on the third stage. The individual 

sensor response to a combination of pure odours was computed as the logical OR of the 

different sensor responses to the pure compounds. Therefore, if a sensor was sensitive at 

least to one of the pure components of the mixture, its response is ‘1’. Finally, the 

individual sensor outcomes to the mixture were linked and the pattern of response was 

obtained. As the set of odour mixtures was composed of L samples, the set of sensor 

responses has a dimensionality L x N. Once we generated the set of odour mixtures and 

their corresponding array responses, we calculated its mutual information following 

equation (3.2). The marginal distributions of probability of the set of mixtures and the set 
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of responses were obtained computing the frequency of occurrence of each odour mixture 

and array responses in their respective sets. To obtain the joint probability distribution, a 

mapping between the odour mixtures and the different non-repeated array responses was 

created. Then, the probability of having a certain odour stimulus knowing the state of the 

response was calculated, for each of the responses.   

III.2.1.3. Results  

The outcomes of this experiment are shown in Fig. 31 (for the first array) and Fig. 32 (for 

the second one). On both figures, each curve represents the MI of a different-sized (N) 

array of sensors along the sensor’s RR.  Also, the value for the entropy (H) of the odour 

stimuli set is included on the plots using an orange dashed line.  We note that this value 

corresponds to the maximum value of MI that can be obtained from a sensor array that 

encodes the set of odour stimuli (basically, the complexity of the odour set can be totally 

explained by the set of array responses).  In our simulated odour datasets, entropy takes 

the value of 10 bits. 

 

Regarding MI, we first comment on the results of the first sensor array. Noteworthy,  MI 

is more affected from changes on the sensor’s RRs than from the particular pure odour 

subset to which the sensors are sensitive, since it is different for each MI calculation.  As 

a general result (that is with independence of the size of population, N), MI is an non-

symmetric unimodal curve, whose maximum value is found  around the 15-25% of the 

RR, and that decreases to zero when the RR tends to 100%. This behaviour can be 
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explained considering the variability on the array response according to the sensor’s RR: 

For lower RRs the sensors tend to respond only to one pure odour, so many of the array 

responses to the set of stimuli may be identical.  When the sensor RR increases, the 

number of different array responses also does, and a lesser number of odour stimuli are 

confounded. The maximum variability on the array response corresponds to the 

maximum MI. Beyond this point, an increase on the sensor’s RR decreases the MI 

because the sensors can detect enough pure compounds such that different combinations 

of them cause the same array response. On the other hand, an increment on the array size 

enhances the performance of the MI. Concerning the evolution of the MI maxima; it can 

be observed that beyond an array size the contribution to MI of new added sensors is 

lesser. This occurs when the set of array responses is complex enough to explain most of 

the variability of the odour stimuli, so adding new sensors mostly provides redundant 

information.  If we turn our attention to the results of second array, we can observe a 

manifest improvement on the odour information encoding. First, the maximum MI value 

(which is placed near the 25% of the RR) is always higher for population size of sensors 

in this array.  And, second, the MI is more robust to the deterioration of sensor selectivity 

occurred at high RR values. This is because each sensor on the array contributes both in 

decreasing the state uncertainty of odour quantity and quality of the set of stimuli.   

 

These results are quite interesting; in the sense that they provide some intuition to how 

different olfaction systems (natural or artificial) encode for odour information. In natural 
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olfaction systems, the olfactory receptors have been tuned by evolution to optimally 

extract the information from the set of odours that maximize the probability of survival.  

This set of odour stimuli may be considerably different for each animal species (i.e. in 

size and complexity).  Consequently, large differences in terms of receptor characteristics 

are expected between very distinct species. This optimization process performed by 

nature on the olfactory receptor is analogous to our problem of maximizing the MI in our 

sensor arrays. Comparing the set of maxima values of MI of the two arrays, we realize 

the major contribution to odour encoding depends on the ability of the population of 

receptors to estimate the identity of an odour stimulus, not its intensity. 

 

On the contrary, in artificial olfaction systems, no optimization of the population of 

sensor elements is performed a priori. Moreover, typical gas sensor technologies (MOX, 

CP, QCM, etc.) employed in artificial olfaction are poor selective to odours (they present 

large RR values). Again, if we contrast the results of MI of both arrays, we observe that 

set of odour stimuli can be efficiently encoded by a (large) population of poor selective 

receptors only if they provide differential information odour intensity. So, we may say 

that in artificial olfaction systems odour encoding is mainly concentration-based. 
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Fig. 31.  Computation of the coding power for the first array of sensors. Mutual Information (MI) 

along the molecular receptive range of the population of receptors (RR). These sensors exhibit a 

binary response to odours (‘1’ when a sensor is sensitive to a pure compound, and ‘0’ if not), 

independently of the pure compound concentration.  The corves on the figure correspond to 

different sizes of the population of receptors (N). The orange dashed line is the value for the 

entropy of the odour stimuli set. 
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Fig. 32. Computation of the coding power for the second array of sensors. Mutual Information 

(MI) along the molecular receptive range of the population of receptors (RR). These sensors 

exhibit a binary response to odours (‘1’ when a sensor is sensitive to a pure compound, and ‘0’ if 

not), beyond a threshold level of concentration.  The corves on the figure correspond to different 

sizes of the population of receptors (N). The orange dashed line is the value for the entropy of the 

odour stimuli set. 
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III.2.2. Sensor redundancy and noise reduction 

This section explores formally the role of sensor redundancy for noise reduction in gas 

sensor arrays. We perform this study following two types of noise reduction strategies: 

sensor aggregation (Section III.2.2.1) and sensor array optimization (Section III.2.2.2).   

III.2.2.1. Noise reduction by sensor averaging 

In order to compact the redundant information of an array of homogenous MOX sensors, 

we can average their response performing the mean of their output voltage:   

 

𝑉𝑉�𝑂𝑂 = �
𝑉𝑉𝑂𝑂𝑐𝑐
𝑁𝑁

𝑐𝑐=𝑁𝑁

𝑐𝑐=1

 
(3.3) 

where N  is the number of sensors of the array, oiV  is the individual sensor output and OV  

their mean value. Assuming that the output voltage of each sensor is independent from 

the others, the variance of the aggregate of sensors becomes: 

 

𝜎𝜎𝑉𝑉�𝑂𝑂
2 = �𝜎𝜎𝑉𝑉�𝑂𝑂𝑂𝑂

2
𝑐𝑐=𝑁𝑁

𝑐𝑐=1

�
𝜕𝜕𝑉𝑉�𝑂𝑂
𝜕𝜕𝑉𝑉�𝑂𝑂𝑐𝑐

�
2

 
(3.4) 

But the variance of 2
oiVσ the individual sensor is equal to the variance of the population of 

sensors: 

𝜎𝜎𝑉𝑉𝑂𝑂𝑂𝑂
2 = 𝜎𝜎𝑉𝑉𝑂𝑂

2  (3.5) 
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Performing the derivative respect Voi in equation (3.3), we find that: 

 

𝜕𝜕𝑉𝑉�𝑂𝑂
𝜕𝜕𝑉𝑉�𝑂𝑂𝑐𝑐

=
1
𝑁𝑁

 
(3.6) 

 

And therefore, the variance of the output voltage for the aggregate of sensors is: 

 

𝜎𝜎𝑉𝑉�𝑂𝑂
2 =

𝜎𝜎𝑉𝑉𝑂𝑂
2

𝑁𝑁
 

(3.7) 

 

That means that increasing the number of sensors of the array the independent 

contributions to sensor noise are down-weighted. So the dispersion on the output voltage 

values (for a given stimulus) decreases as 1/N. However this is not the general case of 

sensor noise in chemical sensing. There are common mode contributions to sensor noise 

due to the inherent sensing architecture of the instrument. For instance, in our array, the 

sensors are heated up simultaneously through the same heater waveform VH, and all the 

measuring circuits are polarized using a unique voltage VDD. Similarly, the errors due to 

instabilities on the odorant concentration are also common to all the sensors of the array 

since the measurements are performed approximately at the same time.  In this case, the 

variance of the aggregate of sensors is: 
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𝜎𝜎𝑉𝑉�𝑂𝑂
2 = �𝜎𝜎𝑉𝑉�𝑂𝑂𝑂𝑂

2
𝑐𝑐=𝑁𝑁

𝑐𝑐=1

�
𝜕𝜕𝑉𝑉�𝑂𝑂
𝜕𝜕𝑉𝑉�𝑂𝑂𝑐𝑐

�
2

+ 2��𝑐𝑐𝑙𝑙𝑐𝑐�𝑉𝑉𝑂𝑂𝑐𝑐,𝑉𝑉𝑂𝑂𝑗𝑗�
𝑐𝑐<𝑗𝑗

𝑗𝑗=𝑁𝑁

𝑗𝑗=1

�
𝜕𝜕𝑉𝑉�𝑂𝑂
𝜕𝜕𝑉𝑉�𝑂𝑂𝑐𝑐

� �
𝜕𝜕𝑉𝑉�𝑂𝑂
𝜕𝜕𝑉𝑉�𝑂𝑂𝑗𝑗

� 
(3.8) 

 

where ),(cov ojoi VV  is the covariance between the output voltage of the sensors i and j. 

Substituting (3.7) in (3.8), we find that: 

 

𝜎𝜎𝑉𝑉�𝑂𝑂
2 =

1
𝑁𝑁2 ��𝜎𝜎𝑉𝑉𝑂𝑂𝑂𝑂

2
𝑐𝑐=𝑁𝑁

𝑐𝑐=1

+ 2��𝑐𝑐𝑙𝑙𝑐𝑐�𝑉𝑉𝑂𝑂𝑐𝑐,𝑉𝑉𝑂𝑂𝑗𝑗�
𝑐𝑐<𝑗𝑗

𝑗𝑗=𝑁𝑁

𝑗𝑗=1

� 
(3.9) 

 

The two addends on the right side of (eq.3.9) can be rearranged in a unique term. Thus: 

 

𝜎𝜎𝑉𝑉�𝑂𝑂
2 =

1
𝑁𝑁2 ���𝑐𝑐𝑙𝑙𝑐𝑐�𝑉𝑉𝑂𝑂𝑐𝑐,𝑉𝑉𝑂𝑂𝑗𝑗�

𝑐𝑐=𝑁𝑁

𝑐𝑐=1

𝑗𝑗=𝑁𝑁

𝑗𝑗=1

� 
(3.10) 

 

Example:  

To show the limitations of noise reduction using sensor aggregation due to the common 

mode sensor noise, we compute the output voltage variance of an aggregate of MOX 

sensor copies, for an increasing number of sensors. This result is compared with the 

theoretical value of variance that would be obtained from the aggregate, assuming that 

the sensor noise is independent. Our study is performed using 12 sensor copies of a TGS-
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2610 sensor model, set to work at 350ºC and connected to load resistor of 9.1 KΩ.  The 

sensors were exposed to 500 ppm of acetone. The concentration of acetone was generated 

independently for each of the 10 repetitions of the experiment (Dataset I).  

 

We analyse the covariance matrix of the output voltage obtained from the 12 voltage 

dividers for a better understanding of the nature of noise (Fig. 33). The diagonal elements 

of the matrix are the variances corresponding to each of the individual sensor responses, 

so they are always greater than zero. For the non-diagonal elements, the covariance value 

can be either positive or negative. If noise tends to increase or decrease the value of both 

sensor responses, the relationship is positive, otherwise is negative. If only independent 

sensor noise is present in the array, the addition of the non-diagonals elements should 

approach to zero because the random errors in sensor’s output voltages would tend to 

compensate. That summation for the current case is 3.9 10-3 V2, which is higher than the 

value for the addition of the diagonal elements of the covariance matrix, 1.8 10-3 V2, so 

sensor noise is dependent. From (3.10) the variance on the output voltage for the 

aggregate of N sensors, ,2
OVσ is the sum of the elements of the covariance matrix divided 

by N2. For N=12, the result is 3.96 10-5 V2. 
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Fig. 33. Covariance matrix of a redundant sensor array. This array includes 12 sensor copies 

exposed to 500 ppm of acetone. Sensor readings were expressed in terms of the sensor output 

voltage. 

  

Alternatively, the variance of the aggregate can be calculated directly from the value of 

the averaged output voltage of the N sensors. This result is shown in Fig. 34. There we 

can see the variance of the aggregate for an increasing number of sensors (from N=1 to 

N=12) in a black curve with red square markers. We note that the variance calculated 

from the aggregate of 12 sensors agrees with the value of variance obtained from (3.10). 

The plot also includes the expected value of value of the variance in case of uncorrelated 

noise (blue dashed line). It is verified that its value decreases faster with the number of 

for the ideal case than in the real measurement. 
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Fig. 34. Variance of the aggregate of sensors along the number of copies. This array was exposed 

to 500 ppm of acetone. The black curve with red squares markers corresponds to the measured 

value of the sensor array variance, whereas the blue dashed one to its theoretical value in case of 

uncorrelated noise.  Sensor readings were expressed in terms of the sensor output voltage. 

 

III.2.2.2. Noise reduction by sensor array optimization 

Sensor noise can be decreased optimizing the set experimental data acquired by the 

sensor array. In section III.1.3, this optimization was performed for a collection of 

voltage dividers built from a single MOX sensor and a collection of 16 load resistors with 

different values. Our optimization criterion was to select those load resistors that 

maximized the sensitivity of the voltage divider, for each concentration condition. In this 

section we justify theoretically our choice. We propose to optimize a synthetic sensor 
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array of voltage dividers subjected to independent Gaussian noise, using the Fisher 

Information. In order to model the response to odorant concentration of the sensor, we 

employ a Clifford-Tuma dose-response curve. First we revise the formalism behind the 

computation of the Fisher Information, and after that we compute its value for our 

particular synthetic sensor array. 

  

When we expose an array of sensor elements (k=1,..,N) to a quantity of stimulus s, it 

provides a collection noisy responses rk according to some probability distributions 

p(rk|s). Then, the Fisher Information Jk(s) for k-th element of the array comes given by: 

 

𝐽𝐽𝑘𝑘(𝑠𝑠) = �𝑑𝑑𝑑𝑑 𝑝𝑝(𝑑𝑑𝑘𝑘|𝑠𝑠)�
𝑑𝑑
𝑑𝑑𝑠𝑠
𝑙𝑙𝑙𝑙 𝑝𝑝(𝑑𝑑𝑘𝑘|𝑠𝑠)�

2

 
(3.11) 

 

The Cramér-Rao bound estates that the inverse of the Fisher Information is the lower 

limit on the variance of any unbiased estimator ŝ that uses rk to estimate the intensity of 

stimulus s: 

 

𝑐𝑐𝑣𝑣𝑑𝑑(�̂�𝑠) = 𝐽𝐽𝑘𝑘−1(𝑠𝑠) (3.12) 

 

Additionally, it can be demonstrated that the expected error in quantifying s from rk of 

any unbiased estimator ŝ satisfies: 
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𝐸𝐸[(�̂�𝑠 − 𝑠𝑠)2]|𝑘𝑘 ≥ �𝑑𝑑𝑠𝑠 𝑝𝑝(𝑠𝑠) 𝐽𝐽𝑘𝑘−1(𝑠𝑠) (3.13) 

     

where p(s) is the a priori density of probability of  the intensity of stimulus. From the 

above equation, it can be seen that maximizing Fisher Information corresponds to 

minimizing the expected error. 

 

Let’s suppose that the k-th sensor of our array suffers from a Gaussian noise pG(rk|s), 

whose variance σk is independent from the intensity of the stimulus: 

 

𝑃𝑃𝐺𝐺(𝑑𝑑𝑘𝑘|𝑠𝑠) =
1

𝜎𝜎𝑘𝑘√2𝜋𝜋
𝑒𝑒𝑥𝑥𝑝𝑝 �−

�𝑑𝑑𝑘𝑘(𝑠𝑠) − �̅�𝑑𝑘𝑘(𝑠𝑠)�
2

2𝜎𝜎𝑘𝑘2
� 

(3.14) 

where )(srk  is the mean response of the k-th sensory element obtained from its stimulus-

response curve.  Replacing this probability density in equation (3.11) and arranging 

terms, it is found: 

 

𝐽𝐽𝑘𝑘(𝑠𝑠) =
1
𝜎𝜎𝑘𝑘4

�
𝜕𝜕�̅�𝑑𝑘𝑘
𝜕𝜕𝑠𝑠
�
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�𝑑𝑑𝑑𝑑 𝑝𝑝𝐺𝐺(𝑑𝑑𝑘𝑘|𝑠𝑠) �𝑑𝑑𝑘𝑘(𝑠𝑠) − �̅�𝑑𝑘𝑘(𝑠𝑠)�
2
 

(3.15) 

 

But the integral in equation (eq.3.15) is the calculation of the variance:      
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2

=𝐸𝐸[(�̂�𝑠 − 𝑠𝑠)2]|𝑘𝑘 = 𝜎𝜎𝑘𝑘2(𝑠𝑠) = 𝜎𝜎𝑘𝑘2 (3.16) 

 

Thus, the Fisher Information of the k-th sensory element can be written as: 

 

𝐽𝐽𝑘𝑘(𝑠𝑠) =
1
𝜎𝜎𝑘𝑘2

�
𝜕𝜕�̅�𝑑𝑘𝑘
𝜕𝜕𝑠𝑠
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(3.17) 

 

At this point, we only need to know )(srk  to compute Fisher Information. The Clifford-

Tuma approach is usually employed to model the stimulus-response curves of MOX gas 

sensors. This model relates the sensor resistance Rsensor to the concentration odorant c 

through the following almost power law: 

 

𝑅𝑅𝑔𝑔𝑐𝑐𝑜𝑜𝑔𝑔𝑜𝑜𝑜𝑜(𝑐𝑐) = 𝑅𝑅𝑜𝑜�1 + 𝑘𝑘𝑔𝑔𝑜𝑜𝑔𝑔𝑐𝑐�
−𝛽𝛽𝑔𝑔𝑔𝑔𝑔𝑔 (3.18) 

 

where βgas , kgas are gas dependent constants that correspond, respectively, to the 

sensitivity and threshold of detection to the given gas and R0 is the initial sensor 

resistance value in synthetic air or any other carrier gas. As the measuring circuit used to 

acquire sensor resistance is a voltage divider, the sensor response (for the given the 

sensor model) is obtained substituting Rsensor(c) from equation (3.18) into the formula of 

the voltage divided formed between Rsensor(c) and RL: 
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𝛽𝛽𝑔𝑔𝑔𝑔𝑔𝑔
 

(3.19) 

 

We can optimize the sensor response acquisition under Gaussian noise conditions 

through the selection of the best tuning curve V(c,RL), for a given range of 

concentrations. That is to select the best RL from a load resistor in that range. Computing 

the Fisher Information according to (3.17), and assuming that the variance of the noise σ2 

is identical for each of the voltage dividers then: 

 

𝐽𝐽𝑅𝑅𝐿𝐿(𝑐𝑐) =
1
𝜎𝜎2

�
𝜕𝜕𝑉𝑉(𝑐𝑐,𝑅𝑅𝐿𝐿)
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�
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(3.20) 

 

Therefore, the Cramér-Rao bound is: 
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(3.21) 

 

The right term of the inequality can be rewritten as a product of two factors replacing the 

explicit dependence of the sensor resistance to concentration in (3.18) by Rsensor: 
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(3.22) 

 

The first factor depends on VDD, the sensor (βgas , kgas) and noise (σ) characteristics,  and 

concentration (c);  whereas the second one only depends on the ratio of the resistances 

Rsensor and RL. Note that the minimum value for the second factor is achieved for 

RL=Rsensor, and that far beyond this point (RL<<Rsensor or RL>>Rsensor) its contribution to 

the variance of the unbiased estimator of c increases dramatically.  Consequently, to 

optimize the response of the sensory element is equivalent to maximize the sensitivity of 

the voltage divider, for a given odour concentration. So, for the best noise rejection 

conditions, the Cramér-Rao bound becomes:  

 

𝑐𝑐𝑣𝑣𝑑𝑑(�̂�𝑐)|𝑆𝑆𝑚𝑚𝑔𝑔𝑚𝑚 ≥
16 𝜎𝜎2

𝑉𝑉𝐷𝐷𝐷𝐷2 𝛽𝛽𝑔𝑔𝑜𝑜𝑔𝑔2 𝑘𝑘𝑔𝑔𝑜𝑜𝑔𝑔2 �1 + 𝑘𝑘𝑔𝑔𝑜𝑜𝑔𝑔𝑐𝑐�
2
 

(3.23) 
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Example: 

We study the effect modifying the parameter RL (RL= 0.05, 0.2, 0.8, 3, 13, 52, 205 and 

820 KΩ) on the quality of a signal acquired by a simulated MOX sensor exposed to a gas 

X (βX=0.9, kX=10-3) with noisy conditions (Gaussian noise, µ=0, σ2=10-4).  Our figure of 

merit is to evaluate the tolerance to noise is the Fisher Information. Fig. 35 shows the 

tuning curves along concentration for the different voltage dividers, the optimum signal 

acquisition (Rsensor always equals RL for any concentration) and the average response of 

the voltage dividers. As expected, each load resistor presents its own tuning curve with 

the 1−
LRJ  minimum located at a different concentration, so that the high resistive loads 

perform better in measuring the lower concentration range and vice versa. The optimum 

signal acquisition 1
max

−
SJ  tends to the envelope of the different 1−

LRJ  minima for 1>ckx , 

and is not significantly lower below this concentration value. Therefore, we could 

approach 1
max

−
SJ  from the 1−

LRJ  minima, as long as that they were numerous enough and 

well distributed along the concentration axis. Given that the relationship between 

concentration and MOX sensor resistance power law for a wide range of concentrations, 

load resistor values should be distributed logarithmically, as in the present example. 

Obviously, the dynamic range obtained from reconstructing the optimum signal 

acquisition curve enhances any of the dynamic ranges obtained from the individuals. This 

is also true for the averaged response of the voltage dividers, although the degree of 

improvement on the dynamic range is lesser. 
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Fig. 35. Inverse of the sensor’s FI to odour concentration. The plot shows a number of tuning 

curves corresponding to the different voltage dividers in solid coloured lines, the optimum signal 

acquisition condition in a dashed green line, and the average response of the voltage dividers in a 

dashed red line. 

III.3. FUNCTIONAL DEFINITION OF SENSOR DIVERSITY AND REDUNDANCY 

In Section I.1, we defined sensor diversity as the number of different receptor types 

responsible for supporting the array response variability to a collection of odours; and 

sensor redundancy, as the average number of receptor replicates on a population. We note 

that the previous definitions imply a clustering of the array receptors according to a 

criterion of similitude. This way, groups of similar receptors are considered of the same 

type. The number of sensors clusters corresponds then to the sensor diversity of the array, 

and the average number of receptors along clusters to its sensor redundancy.   
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A perfect example for sensor clustering can be found on early stages of the olfactory 

pathway. There, Olfactory Receptor Neurons (ORNs) expressing the same receptor 

protein converge to the same semi-spherical structure, called glomerulus. Thus, the 

sensor diversity of this array of ORNs equals the number of glomeruli. According to the 

results of Section III.2.1, the previous sensing architecture allows to optimally encode for 

odour information for the suitable tuned population of receptors. The discrimination of 

complex odour stimuli in such a case mostly depends on the codification of odour 

identity, but also on the quantification of its intensity. However, in arrays of poorly 

selective sensors, where sensor responses to different odours are much correlated, the 

discrimination of odours seems to be more related to the ability of the sensor array to 

encode for odour concentration. The strategy we propose for clustering sensor units of 

these poor selective arrays consist in grouping them according to how they co-vary. As 

we saw in Section III.1.2, sensor units exhibiting very much correlated sensor responses 

to a set of odours contribute similarly to the loadings of a PCA decomposition of this 

data. Different clusters of sensor units tend to present different sensitivities to the same 

set of odour stimuli, so effectively, they can be considered a source of sensor diversity. 

Again, sensor redundancy can be evaluated as the averaging number of sensors along the 

clusters. This sensor redundancy can be employed to reduce independent sensor noise by 

sensor averaging and sensor array optimization, as can be found in Sections III.1.3, 

III.1.4 and III.2.2. However, this noise removal stage can be performed after and with 

independence of the clustering of the sensor units.  
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In section III.3.1, we develop our method of sensor clustering to obtain the sensor 

diversity and redundancy of an array of cross-reactive sensors. 

III.3.1 Characterization of diversity and redundancy  

To characterize diversity and redundancy, we propose a method to estimate the degree of 

sensor diversity and redundancy of an array of sensors based on clustering of their 

sensory units. More specifically, we perform a clustering by angle on the loadings of a 

PCA of the sensor response data. Our rationale behind these definitions is the following. 

We take into account that a PCA model of the data is a projection of the original data 

onto a set of new axis corresponding to the eigenvectors of the covariance matrix of the 

data (the directions on the feature space where the data varies the most). This 

eigenvectors expressed on the original axis are usually referred to as the loadings of the 

PCA model. Array sensor units that explain the variance of the similar data contributes 

similarly to the loadings. Thus, those sensor features that are redundant tend to span the 

same solid angle on the loadings space and become grouped on the same cluster. 

Likewise, the number “effective” directions to cluster the array features account for their 

sensor diversity. In Section III.3.2, we present an experiment to evaluate the sensor 

diversity and redundancy for and array of synthetic sensors.  

III.3.2 Sensor clustering experiment 

We build a toy problem to illustrate our method for estimating the sensor diversity and 

redundancy of an array of sensors. Our basic idea consists in generating a population of 
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similar sensors and after that cluster them in order to now the sensor diversity and 

redundancy of the array. 

 

We create an array of 3 virtual sensors. These sensors provide the following set of 

responses to 3 odours (A, B and C): xA=(1,5,-2), xB=(-2,3,1), and xC=(1,-4,3). To 

simulate the process of data acquisition, we corrupt the array readings using independent 

Gaussian noise (µ=0, σ2=1). This process is repeated 10 times. Thus, the original dataset 

XO is a matrix with dimensions 10 rows x 3 columns. We can expand our original array 

using sensors that are similar to the original ones. We consider that a new sensor is 

similar to its corresponding homonymous in the original array when they respond 

proportionally to the set of odours. So to expand our sensor array, we propose to add 

copies of the 3 sensors multiplying the value of their responses by a factor n. This array 

expansion is performed from n=2 to n=20. Next, we simulate again the data acquisition 

process. Notice that sensor noise is added after the sensor scaling in order to warrant the 

same noise conditions along the expanded dataset, XE. And the end of this stage, XE is a 

matrix of dimensions 10 rows x 60 columns. To perform sensor clustering, we first 

reduce the dimensionality of XE by means of PCA data decomposition (2 Principal 

Components), and after we analyse its loadings vectors.  
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We present the results of this section in Fig. 36 and Fig. 37.  Fig. 37 shows the scores 

plots of the PCA decomposition for XE, where the data is mean-centered. We can see that 

our virtual expanded array discriminates the 3 odours. Fig. 38 is the loadings plot of the 

PCA decomposition. Observe that the array sensors are distributed in 3 different 

directions on the PC-plane. Each of these directions corresponds to a sensor type, so 

sensor diversity for the given problem is 3. Since each of the sensor types contains 10 

sensor units, sensor redundancy in our expanded array takes the value of 10. 

 

 

 
Fig. 36. Scores plot for our simulated data (2 PCs). The 3 odours (A, B, C) are perfectly 

discriminated by our expanded sensor array of virtual sensors. 
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Fig. 37. Loadings plot for our simulated data (2 PCs). We can see how the sensors are clustered 

following 3 different directions on the plane defined by the loadings. Sensor diversity and 

redundancy of this sensor array and for this particular problem are, respectively, 3 sensor types 

and 10 sensors per sensor type. 

 

Due to simplicity of this toy problem, we performed the clustering process by simple 

visual inspection. However, for more complex datasets it is needed an additional 

condition for defining the tolerance of the hyper-angle of each sensor cluster. This 

condition should be based on the optimization of the array performance when solving a 

given problem (i.e. finding the clustering that minimizes the prediction error of the model 

built using the cluster representatives). This issue will be revised in Chapter IV (Section 

IV.1.2.2).  

  

-0.1 0 0.1 0.2 0.3
-0.2

-0.1

0

0.1

0.2

0.3

0.4

Loadings on PC 1

Lo
ad

in
ds

 o
n 

P
C

 2

Sensor Type 3

Sensor Type 1

Sensor Type 2



 
 
 
 

101 
 

 
 

III.4. CONCLUSIONS 

In this chapter, we investigated the role of sensor diversity and redundancy in chemical 

sensing systems. In a first qualitative approach, we checked that our sensor array 

enhanced its ability to discriminate odours as long we incremented the variability of the 

sensor responses (with different sensor types and sensor temperatures). Also we found an 

intuitive inverse relationship between sensor correlation and sensor diversity. Regarding 

sensor redundancy, we showed that this property was a key factor to minimize 

independent sensor noise. This task was performed employing two different 

methodologies: sensor aggregation (with different sensor copies) and array optimization 

(using a collection of load resistors). The previous results suggested that sensor diversity 

and redundancy were intimately related to the ability of a sensor array to encode for 

odour information.  

 

Next, we presented a more formal to odour information encoding supported by sensor 

diversity and redundancy. First, we studied quantitatively the relationship between sensor 

diversity and the coding power in sensor arrays. To do so, we evaluated the MI of an 

array of synthetic sensors exposed to a variety of simulated odour stimuli. We roughly 

detected two types of sensory diversity. (i) First type is responsible to encode for the 

identity of the odour stimuli. (ii) Second type accounts for the codification of the odour 

stimuli intensity. We used the results of this experiment as analogy to compare the 

manner how natural and artificial olfaction systems encode for odour information.  
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According to our analogy, the major source of response variability to odours in natural 

olfaction comes from (i), whereas in artificial olfaction systems it is mainly due to (ii). 

The principal difference between both scenarios of odour encoding was referred to degree 

of response overlapping of their sensor units (artificial olfaction systems are much less 

selective). Second, we studied why sensor redundancy reduced noise contributions to 

sensor array responses. Sensor aggregation was very useful to minimize independent 

sensor noise in homogeneous sensor arrays (with nominally identical sensor copies) 

because the variance of the sensor aggregate decreases as 1/N, where N is the number of 

sensor. However, we demonstrated that when a sensor array presented a common 

component of sensor noise the variance of the aggregate decreased more slowly. On the 

other hand, array optimization was very effective to decrease independent sensor noise in 

homogeneous arrays with sensor units exhibiting different sensitivities to odour 

concentration. We showed that the optimum condition to encode for a given odour 

concentration was to maximize the sensitivity of the measuring circuit to this 

concentration. This optimization was performed using the Fisher Information as a figure 

of merit.  

 

Finally, in order to estimate quantitatively the level of sensor diversity and redundancy of 

an array of cross-selective sensors, we proposed a method based on sensor clustering of 

its sensory units. Our criterion for sensor similarity was to consider as same type of 

sensor units those array features that exhibited much correlated responses to a set of 
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odour stimuli. Thus, they contributed similarly to the loadings of PCA decomposition. 

The resulting number of clusters containing similar sensor units is the sensor diversity of 

the array, and the average number of sensor units along the clusters, its sensor 

redundancy. This clustering of array features depends on the particular dataset to which 

we performed the PCA decomposition. In other words, sensor diversity and redundancy 

are not absolute magnitudes.   
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CHAPTER IV 

 ROBUSTNESS TO SENSOR DAMAGE 

 

Sensor ageing, poisoning and electrical failure, are the principal causes for sensor damage 

in an array of gas sensors. Sensor damage constitutes a handicap in chemical sensing 

because degrades the performance of the prediction models trained in absence of faults. 

To ensure reliable predictions damaged sensors must be replaced by fault-free sensors 

and the array has to be recalibrated, which is an expensive and time-consuming process. 

Several alternatives have been proposed to overcome the drawbacks of sensor 

replacement, including fault detection (Pardo et al., 2000), fault correction (Tomic et al., 

2004; Padilla et al., 2007; Padilla et al., 2010) and algorithmic mitigation (Fonollosa et 

al., 2013a). A different approach to prevent the effect of sensor damage consists in 

exploiting the redundant information obtained from large arrays of sensors. This 

approach is inspired by the massive sensory redundancy at the early stages of the 

olfactory system: the olfactory epithelium and the olfactory bulb. The olfactory 

epithelium is endorsed with a large number (around 10000 in rodents) of olfactory 

receptor neurons of the same type providing a large amount of sensory redundancy 

(Firesten, 2001). Olfactory receptor neurons expressing the same type of receptors 

converge to the same pseudo-spherical structures (the glomeruli) on the olfactory bulb, 

where electrical signals are integrated obtaining a single response per receptor type 
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(Bozza and Kauer, 1998). This allows the olfactory system to generate stable odour 

representations despite the faulty readings of damaged olfactory receptor neurons.  

The important role of redundancy in chemical sensor systems has been studied 

experimentally for arrays with a limited number of sensors (Di Natale, 1993). Several 

studies have proposed to aggregate the inputs of redundant sensors to decrease the 

variance of the aggregate output, increase the array sensitivity to chemical compounds 

and expand its dynamic range, for relatively small array sizes (Wilson et al., 2000; Pearce 

et al. 2001; Wilson et al. 2002). It has not been until recently that large sensor arrays have 

become technologically available (Dickinson et al, 1999; Di Natale et al., 2009; Gardner 

et al., 2009; Bernabei et al., 2012). In all these systems, the pooled response of the 

individual sensor elements was obtained through a dimensionality reduction stage that 

was analogous to the sensory convergence exhibited by the olfactory system. 

Despite these common points, there is a significant difference between the large arrays of 

sensors and the olfactory system in terms of tolerance to sensor damage. Our hypothesis 

is that the distribution of damaged sensors across sensor types and not only the 

redundancy level is key to make the system robust to sensor failure. While different 

olfactory receptor neuron types are spread across the entire sensory epithelium, the 

sensory units of these large arrays that belong to the same sensor type tend to be clustered 

together. This results in a very different distribution of damaged sensors across sensor 

types, when the sensory area suffers any sort of damage that affects a number of 
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contiguous sensory units. In the olfactory epithelium damaged neurons will then be 

distributed among neuron types, whereas in the chemical sensor arrays, damaged units 

will belong to one or a few sensor types.   

The goal of this work is to study the effect of the distribution of damaged sensors in the 

performance degradation of a sensor array system. To this end, we used experimental 

data from a highly redundant large sensor array of MOX sensors modulated in 

temperature with two redundancy levels: 1) 12 replicates of each sensor type for a total of 

96 sensors, and 2) measurements using 16 load resistors per sensors for a total of 1536 

redundant measures per second. To determine the performance degradation of the system 

we carried out two experiments where sensory units were forced to fail considering two 

different scenarios of sensor fault distribution. In the first experiment, we characterized 

the evolution of the system diversity and redundancy during the progressive failure of 

sensory units. To do so, we propose a functional definition of diversity and redundancy 

based on clustering of sensory units. A second experiment was designed to determine 

specifically the performance degradation. The system is trained to separate ethanol, 

acetone and butanone at different concentrations using a model that combines PCA and 

LDA. Test set samples were synthetically corrupted by means of three different simulated 

types of faults (electrical failure, poisoning and variation of the sensor sensitivity). To 

evaluate the tolerance of the array against sensor failure, we used a measure of the 

separation of the odour classes such as the Fisher score, since it provides a much more 

sensitive measure than classification. 
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IV.1. MATERIALS AND METHODS 
 
We introduce first the highly redundant sensor array that we used in this study and then 

the sensor damage experiments that we performed with the data obtained from the array. 

IV.1.1. Highly redundant MOX sensor array  

We built a chemical sensing system based on an array of gas sensors composed of 8 

different types of commercial MOX sensors  (TGS-2600, TGS-2602, TGS-2610 and 

TGS-2620 from Figaro Inc. and SB-11B-00, SB-1500, SB-41-00, SB-AQ1-04 from FIS 

Inc.), where each sensor type is replicated 12 times and the sensors are modulated in 

temperature. The system consists of a data acquisition platform, a power control module, 

and an odour delivery system. The data acquisition platform is based on a PXI 4461 

acquisition card (National Instruments), on a customized, eight-channel measuring board 

(one channel per sensor type), and on a high-speed multiplexing system (two PXI-2530/ 

TBS-2630 modules, from National Instruments) that connects sequentially each of the 

sensors to a set of 16 load resistors (RL= [0.1, 0.25, 0.4, 0.87, 1.30, 3.01, 6.19. 9.1, 21.0, 

30.0, 40.20, 51.1, 68.1, 82.5, 105.0] KΩ) in a half bridge configuration (voltage divider). 

Thus, our sensor array is endowed with two redundancy levels due to: 1) sensor 

replication and 2) load resistor multiplexing. The power control module comprises two 

programmable DC sources (PXI-4110 from National Instruments, and N6705A DC 

Power Analyzer from Agilent Technologies) which are utilized, respectively, to polarize 

the voltage dividers at 10 V and to modulate the operating temperature of the sensors 

applying a periodic ramp profile on their heater resistance (from 0 to 5 V for Figaro 
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sensors and from 0 to 0.9 V for FIS sensors during 90 seconds, with 100 temperature 

conditions each). Therefore, the grand total of measurements per analyte is 153,600 (8 

sensor types x 12 sensor replicates x 100 temperatures x 16 load resistors) shown in Fig. 

38. 

 

 

Fig. 38. Gas sensor array. Total amount of measurements that the sensor array acquires per 

analyte.  
 

Hitherto, we will refer to every combination of physical sensor, temperature, and load 

resistor as a sensory unit. Finally, the odour delivery system consists of two fluidic 

branches: first, a high-pressure cylinder containing the carrier gas (synthetic air) 

connected to a mass flow controller (FLOW F-201CV, Bronkhorst) that keeps constant 

the carrier gas flow at 1 l/min; and second, a programmable two-syringe infusion pump 

(KDS200, KDScientific) containing the odorant in liquid form. Both branches meet at the 

injection port, where the odorant is vaporized and the resulting mixture is sent to the 

sensor chamber.  
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In our experiments, we acquired a dataset of 3 analytes (ethanol, acetone and butanone) 

dosed at a 6 different concentrations (20, 40, 60, 80, 100 and 120 ppm).This 

measurements corresponded to the dataset I. Fig. 39 summarizes the set of experiments 

used in this chapter. Sensor readings along a heater period were taken after 900 seconds 

of odorant exposition to ensure a steady state concentration level on the sensor chamber. 

After each measurement block, the sensor chamber was cleaned in synthetic air over a 

period of 1800 seconds. Each of these experiments was repeated 10 times, where the 

collection of experiments was randomized. After data acquisition, sensor voltage readings 

were converted to resistance values.  

 

 

Fig. 39. Set of experiments used in Chapter IV. 
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IV.1.2. Sensor damage experiments  

In this subsection, we present the experiments carried out to study the degradation of the 

array performance and to characterize the reduction of diversity and redundancy as 

sensory units are progressively damaged. The performance degradation experiment is 

presented first since part of the methodology will be used in the diversity redundancy 

measuring procedure.   

IV.1.2.1. Performance degradation experiment  

To evaluate the degradation of the array performance with increasing number of faulty 

sensors, we build a dimensionality reduction model based on two consecutive stages: 

PCA and LDA, where we measure the reduction of odour separation with the Fisher 

score (Duda et al; 2001). The study is performed using three different types of simulated 

sensor failures and taking into account two different scenarios for the distribution of 

damaged sensors. In the dimensionality reduction model, PCA is applied first to reduce in 

an unsupervised manner the high dimensionality of the sensory units from 153,600 to 9.  

To determine this optimum number of final principal components (PC), our criterion was 

to keep the minimum number of PCs to maintain the same odour separation (FS) after the 

PCA projection. This computation revealed that the FS for increasing number of PCs 

saturated at a value of 9 PC.  

In a second dimensionality reduction stage, supervised this time, we applied LDA to 

obtain a better clustering of odours at different concentrations. This is obtained by 



 
 
 
 
112 
 

 
 

considering 3 LDA classes corresponding to the 3 different odours regardless of the 

concentration. The selection of training and test from the dataset was as follows. Samples 

corresponding to odorant concentrations of 40, 80 and 120 ppm were used as a training 

set (90 samples), while the experiments with concentrations of 60 and 100 ppm were 

used for testing (60 samples).  

Fig. 40a shows the PCA and Fig. 40b the PCA-LDA model scores, where the ethanol, 

acetone and butanone samples are represented in blue, orange and green ellipses, 

respectively. Note that the projections of the test samples in the PCA model (red 

triangles) are interleaved with respect to the projection of the train samples (black 

squares). Comparing both figures, we can see that the LDA projection of the PCA scores 

achieves the desired clustering according to odour class and ignoring concentration. 

Noteworthy, the projected test samples on the LDA space fall on top of the training 

samples of the same class, denoting that the LDA stage does not over train. The 

separation of odours in this LDA-PCA space will be reduced as the number of sensory 

units becomes damaged. We consider this odour separability our figure of merit to 

determine the performance degradation of the array. To measure this separability, we use 

the Fisher Score (FS) that considers the distance between classes centroids taking into 

account also the different class spreads (see Appendix A). The FS increases with the 

separability of the classes. 
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Fig.40. PCA and PCA-LDA models.  This figure shows the projections of train (black squares) 

and test set samples (red triangles) on (a) a 2 component PCA model, and (b) the PCA-LDA. 

Samples corresponding to ethanol, acetone and butane are enclosed respectively in blue, green 

and orange ellipses. Notice that the LDA projection minimizes the variance of the data samples 

due to changes in concentration. 

 

The performance of the array is tested introducing sensory unit faults in the test set 

samples. We have simulated three kinds of sensor faults. The first type is an electrical 

failure that emulates a faulty connection on the measurement circuit. This fault is 

implemented substituting the original response by zero on the damaged sensor unit.  The 

second fault type mimics the behaviour of sensor unit that has been poisoned, so that its 

response becomes saturated to a fixed level. In this case, the fault is simulated by 

exchanging the sensor response to any analyte and concentration with its response to 20 

ppm’s of ethanol. Finally, the last fault type corresponds to a variation on the sensor’s 
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sensitivity due to sensor ageing. This means that the damaged sensor provides two 

considerably different patterns in response to two identical and independent odorant 

expositions. In practice, this failure is simulated substituting the readings of the original 

sensor by the readings of another one. We show a scheme that explains the different 

nature of these sensor fault types and their corresponding effect on the sensor’s response 

in Fig. 41. 

 

To study the difference in performance of the array for different distributions of damaged 

sensors across sensor types, we studied two scenarios. In the first scenario, each of the 

combinations of physical sensor, temperature, and load resistor obtained from the array is 

considered as an independent sensory unit (153600 = 96 physical sensors x 100 

temperature conditions x 16 load resistors), in the sense that the failure on a particular 

sensory unit does not affect any other one in the array. As opposed, the second scenario 

takes into account that one physical sensor propagates its fault along all its derived 

sensory units (1600 = 100 temperature conditions x 16 load resistors).  Hitherto, we will 

refer to these scenarios as the dependent and the independent scenario respectively. Fig. 

42 depicts in detail the dependent and the independent scenario in terms of sensor failure 

propagation across our sensor array. We corrupt the selected faulty units on the test set 

samples with three different sensor faults types. The Fisher Score is then computed as a 

figure of merit of the array tolerance against sensor failure. 
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Fig. 41. Sketch of the three types of sensor failures.  
 

IV.1.2.2. Characterization of diversity and redundancy  

We used the methodology defined in Chapter III to characterize the level of sensor 

diversity and redundancy of our sensor array. Our method was based on the clustering of 

sensor array features according to the angle that they spanned on the loadings of PCA 

data decomposition (see Fig. 43). We used k-means as a clustering algorithm and the 

following strategy to determine a suitable number of clusters (k). Our criterion to 

determine k was to obtain a similar Fisher score on the clustered data (train and test) than 

that obtained on the complete data set. This criterion ensures that the clustering properly 

captures the class distributions since it does not change significantly their separability.  

• A) Lack of sensitivity
– Total lack of sensitivity to any analyte

and concentration 
– Response: Air

• B) Poisoning
– The corrupted sensor becomes 

saturated at a fixed level
– Response: 120 ppm of ethanol

• C) Sensor sensitivity change
– The corrupted sensor exhibits a 

variation of sensitivity 
– Response: Different sensor (random) x
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Fig. 42. Propagation of error faults across of our sensor array. Basically, in the independent 

scenario we corrupt sensor features distributing the faults across the different physical sensor 

units. On the contrary, in the dependent scenario the sensor faults occur in blocks, where each of 

these blocks corresponds to a physical sensor.   
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The Fisher score on the clustered data is computed using cluster representatives and 

repeated for increasing number of clusters logarithmically distributed in base 2 from 2 to 

1024. To avoid spurious results due to unfortunate random initializations of the k-means 

algorithm, the process of clustering is repeated 100 times. 

 

 

 

Fig. 43. Loadings for a PCA model built from our data set (2 PCs). The figure represent array 

features belonging to cluster number 120 as red asterisks along with three MOX sensor replicates 

corresponding to sensor families TGS-2600 (sensor A), TGS-2610 (Sensor B) and TGS-2620 

(sensor C) as magenta, green, and blue circles respectively.  Notice that each one of the sensors 

spans a range of directions on the PCA space due to the effect of temperature modulation. As a 

consequence each sensor overlaps cluster 120 in a number of contiguous features.  
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Fig. 44a and 44b show, the boxplots of the Fisher scores for the reduced PCA-LDA 

models in terms of the number of clusters (k) used in training and test, respectively. Both 

figures include a grey-dashed line corresponding to the Fisher score of the complete 

PCA-LDA model. The figures show that for 128 clusters the Fisher score for clustered 

data in training and test is the closest to that of the complete dataset. Once the sensory 

diversity of the complete dataset is known 128, its sensory redundancy can be computed 

as well. In this case, the average number of features per cluster (redundancy) is 1200.  

  

 

 
Fig. 44. Boxplots of the FS for the reduced PCA-LDA models. We compute this parameter in 

terms of the number of clusters used for (a) training and (b) test sets.  The FS values of the 

complete PCA-LDA model for the training and test sets are included on the Figure in grey dashed 

lines. 
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IV.2. RESULTS 
 
First we use the definitions in the materials and methods section to quantify the rate at 

which diversity and redundancy in our gas sensor array drops as the number of sensory 

units damaged increases. This characterization will help us understand the role played by 

diversity and redundancy in the performance degradation of the array. Second, we present 

the results of the performance degradation experiment. 

IV.2.1.Characterization of diversity and redundancy 

To characterize our sensor array in terms of diversity and redundancy, we performed an 

experiment where we randomly eliminate sensory units while monitoring the number of 

active clusters remaining (diversity) and the mean number of sensory units per active 

cluster (redundancy). We consider active clusters those that convey discriminatory 

information. Since clusters become depopulated as we eliminate sensory units, for a 

certain level of sensory decease the clusters will no longer contribute to discriminate 

odours. To determine which clusters are still active, a naive option would be to consider 

that a cluster is active as long as it has sensory units alive. However, since in this study 

we are considering that the response of faulty sensors is included in the global response 

of the system, we have to consider somehow its negative effect. This leads us to define a 

threshold in the percentage of sensory units alive within a cluster below which the cluster 

is no longer active. We have characterized redundancy and diversity in our system in 

terms of the value of this threshold. 
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Fig. 45. Sensor diversity and redundancy obtained in both scenarios. Contour maps corresponding 

to the array mean sensory diversity for (a) independent and (b) dependent scenarios and, mean 

sensory redundancy for (c) independent and (d) dependent scenarios.  The mean redundancy and 

diversity values are represented as a function of the number of damaged sensors and for 

increasing values of the threshold from 0% to 100% in steps of 2% of the sensory units damaged 

per cluster. 

 

Fig. 45 shows the diversity and redundancy results for the scenario where removal of 

sensory units is done considering them independent. These results are represented as 
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contour plots of the mean of diversity and redundancy for increasing values of damaged 

sensors and all possible threshold values. Experiments are repeated 1000 times randomly 

changing the order of selection of removed sensory units. The clustering is done once and 

the clusters are kept fixed during all repetitions. Fig 45a show the mean value of the 

computed diversity, which has maximum value (128) for any threshold until the 

percentage of removed sensors reaches the threshold value (diagonal). Then diversity 

drops abruptly to 0. These results indicate that all clusters become inactive all together, 

making diversity (number of active clusters) go from 128 to 0. This is due to the random 

distribution of removed sensory units across clusters that make them, in average, keep the 

same percentage of sensory units during all the experiment. Thus, all clusters become 

inactive almost at the same time when they reach the threshold value. 

 

As opposed to this behaviour, in the dependent scenario diversity is decreasing smoothly 

for a certain range (Fig. 45b). For instance, focusing on the threshold value of 60, we can 

see that diversity starts decreasing for 16 damaged sensors and it reaches 0 for 64 

damaged sensors. This behaviour is consistent with the different way in which sensory 

units are removed when we consider them dependent. Each physical sensor corresponds 

to 1600 sensory units that are contiguous in the PCA space. In consequence, the decease 

of each physical sensor will remove sensory units of a reduce number of clusters instead 

of getting randomly distributed among all of them (independent scenario). This explains 
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the asymmetrical distribution of faulty sensory units among clusters and thus the 

progressive inactivation of clusters.  

 

If we now turn our attention to the redundancy results of Fig. 45c and 45d, we can see 

that redundancy decreases progressively in both scenarios. For a threshold value of 0, the 

redundancy level decreases linearly with the number of damaged sensors in the 

independent scenario Fig 45c. Almost the same behaviour can be observed for the 

dependent scenario (Fig. 45d) except for a slight deviation from linearity for a high 

number of damaged sensors. This linear behaviour is maintained for higher values of the 

threshold in both scenarios, where the redundancy profile gets shifted to the left as much 

as the value of the threshold. The upper right part of the dependent scenario (Fig. 45d) 

differs to that of the dependent scenario. This area corresponds to low values of 

redundancy and the different distributions in this area seem to be due to the different 

termination of the clusters in the two different scenarios. 

 

IV.2.2. Performance degradation 

The results of the performance degradation experiment are shown in Fig. 46. This figure 

shows the evolution of the Fisher score in terms of the number of damaged sensors for the 

3 fault types and the 2 damaged sensory unit scenarios. For visualization purposes, we 

represented the results of the independent scenario to match with the x-axis of the 

dependent scenario by grouping sensory units every 1600, which corresponds to the 
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number of sensory units in one physical sensor. The first thing we can observe from the 

result curves is that for any type of sensor failure, the performance is much more robust in 

the independent scenario that in the dependent. In the independent scenario curves, the FS 

is maintained without nearly any loss until a 60-80% of the sensors damaged and drops 

abruptly after that. This shows a high robust behaviour to this distribution of faults. The 

curves of the dependent scenario degrade more gracefully, however they do it from the 

very beginning and up until the end of the progressive failure of sensory units. This 

makes the system much less robust to the same amount of sensor failure.  

 

In terms of fault types, the electrical failure is the mildest of the faults since the system is 

able to cope better with it than with the other two faults for both scenarios (Fig. 46). On 

the contrary, ageing is the more severe fault type for the sensor array. That is clearly 

shown in the results of the dependent scenario where the ageing curve is dropping faster 

than and remains below the rest. In the independent scenario ageing and poisoning have a 

comparable behaviour crossing at a level around 80 sensors damaged. This results show 

that a change of sensitivity of the sensors has a stronger negative impact on the ability of 

the system to differentiate odours than an insensitive sensor that always provides the 

same value.  
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Fig. 46. Mean FS values in test along the number of faulty sensors. Curves corresponding to the 

independent sensor failure scenario were plotted in dashed lines (orange, light blue and light 

green line colours for, respectively, electrical, sensor poisoning and sensor ageing fault types), 

whereas those corresponding to the dependent sensor failure scenario is represented in solid lines 

(with red, dark blue, and dark green curves for the same sort of fault type cases as in the 

independent scenario). The standard deviation of the mean FS was included in all these curves as 

error bars. Notice that the FS performance for the independent sensor failure scenario is markedly 

better than that on the dependent scenario, regardless the type of sensor fault.     

IV.3. DISCUSSION 

In this chapter we have presented an experimental study on the impact of the distribution 

of faults across different sensor types on the odour separation performance of a highly 

redundant chemical sensor array. We carried out a first experiment where we 

characterized the diversity and redundancy of our sensor array for an increasing number 
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of damaged sensory units. To do this characterization, we proposed a definition of 

redundancy and diversity based on a clustering of sensory units where the number of 

active clusters represents diversity and the number of sensory units per cluster represents 

redundancy.  In a second experiment, we computed the performance drop of the system in 

a 3 odours / 6 concentrations problem again as the number of damaged sensors were 

increased. The system performance was computed as the separability of the different 

odour patterns using the Fisher score. Both experiments were carried out considering two 

different scenarios of sensors faults distributions across the sensor array. Our results show 

that the performance is radically different depending on the distribution of the sensory 

faults. The best performance is obtained when the faulty sensory units are distributed 

uniformly across the different sensor types. And the array performance decreases when 

faulty sensory units concentrate in some sensor types.  

 

This different degradation of the performance can be explained by looking at the results 

of the experiment on redundancy and diversity characterization. Fig. 45c and 45d show 

that the redundancy level of the array is practically equal for both scenarios at any level of 

the sensor damage process. We can disregard here the effect for small values of 

redundancy. This means that, surprisingly enough, the difference in performance in both 

scenarios is not directly due to the redundancy level of the array. On the other hand, Fig. 

5a and 5b show a remarkable difference between the diversity level of the system in both 

scenarios. This clearly shows that the difference in performance of the system under both 
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scenarios is due to the level of diversity that the system is able to maintain at each level of 

the sensor damage process. For any fixed threshold value if we go along Fig. 45a as the 

number of damaged sensors increase, we can see that the diversity level is kept constant 

until it drops abruptly when it reaches the threshold value. This is the cause of the robust 

behaviour of the system performance Fig. 46 for the independent scenario, where the 

dashed curves keep the original FS value as long as the system has maximum diversity 

and falls abruptly when diversity is lost. If we do the same exercise in the dependent 

scenario (Fig. 45b), we observe that diversity is decreasing progressively, which causes 

the graceful decrease of the array performance in Fig. 46 for the dependent scenario, solid 

line curves. 

 

The comparison of the results of both experiments allowed us also to realize that the 

effect of different fault types of the performance degradation experiment correspond 

somehow to different threshold values on the diversity and redundancy characterization 

experiment. The threshold can be interpreted as the number of free-fault sensors in a 

cluster needed to maintain the discriminatory information of that cluster. Therefore, 

different sensor fault types will have different effects on the cluster and correspond to 

different threshold values. The performance degradation curves of the independent 

scenario (Fig. 46) correspond to values of the threshold around 20 (Fig. 45a) since the 

falling starts around 80. In the case of the dependent scenario, it is more difficult to 

determine but seems to be in values around 50 since the sensor degradation curve is quiet 
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symmetric. In any case, the decrease of diversity does not exactly match the performance 

degradation. This is because in the characterization we are assuming that faulty sensory 

units affect only the cluster they belong to and this is not the case for the simulated sensor 

fault types. 

 

Further insight on the differential effects of the three sensor-fault types on the array 

performance degradation can be gained in the PCA-LDA scores projection. As a general 

result, all fault types modified the triangle formed by three pure odour classes for an 

increasing number of damaged sensory units. However, the way in which this triangle 

was altered depended on the fault type. The lower degradation was produced by the 

electrical failure, followed by sensor poisoning and ageing. A common effect of this three 

fault types was a shift of the triangle along with a reduction of the triangle area. 

Noteworthy, the FS is not sensitive to pattern shifting. Alternative approaches to evaluate 

the robustness to sensor failure can be focused on this issue (i.e. using classifiers). The 

most similar fault types were electrical failure and poisoning, in the sense that they tended 

to bring the array response to a fixed level. Their main difference was that sensor 

poisoning also included random variations of response around that level. The fact of 

adding this random error increased the spread on the triangle vertices. As a consequence, 

poisoned sensory units showed lower performances on the FS. Sensor ageing produced 

the same effects than sensor poisoning and electrical failure along with new one: the 

distortion of triangle’s aspect ratio. This is due to the accumulative effect of interchanging 
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sensory responses dramatically misled the PCA-LDA projection.  Accordingly, sensor 

ageing was the worst-case fault in terms of FS degradation. 

 

We believe that the results of this study are general and not confined to our particular 

chemical sensor array and neither confined to the limited number of odours of our 

experiments. The measure of diversity and redundancy proposed in this study uses 

clustering of sensory units to extract an intrinsic dimensionality of the array based on 

odour separability. This abstraction step makes our results array independent. With 

respect to the limited number of odours of the study, the results obtained can be 

considered more general since we use a sensitive measure such as the FS. Nonetheless, 

the FS as well as the FDR have the underlying assumptions of Gaussianity of the class 

distributions.  Thus, our results are limited to problems with this type of class 

distributions. 

 

In conclusion, this study shows that not only the level of sensor redundancy is important 

to have a robust system against sensor damage, but also the distribution of faults across 

sensor types plays a crucial role. Spreading faults among different sensor types is 

important to maintain as many different sensor types as possible, which is what at the end 

of the day provides the discrimination capacity of the system. 
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CHAPTER V 

 FEATURE SELECTION 

 
Metal Oxide sensor (MOX) technology is widely employed in artificial olfaction because 

it provides low-cost, commercially available sensors endowed with high sensitivities to a 

broad variety of gas species (Arshak et al., 2004; Figaro, 2014). However, MOX sensors 

suffer from an inherent lack of selectivity that hinders its application in precise odour 

discrimination tasks. One possible strategy to increase the selectivity of MOX sensors 

consists in modifying their operational temperature. This parameter modifies the sensor 

sensitivity across odours, and thus, the degree of selectivity of a MOX gas sensor when 

exposed to an odour mixture (Clifford and Tuma, 1983a; Clifford and Tuma, 1983b). 

This temperature-selectivity dependence is usually exploited in temperature modulation 

techniques, where a voltage profile is applied on the sensor’s heater (Lee and Reedy, 

1999). 

 

A number of works have been published focusing on the optimization of these 

temperature profiles according to some condition, for different odour discrimination 

tasks. Some researchers faced this optimization problem from a heuristic point of view. 

Ortega et al. modulated the temperature of a commercial tin-oxide sensor with a variety 

of cycling profiles (Ortega et al., 2001). The authors combined spectral and transient 

analysis of the sensor features to increase the separation between two odour patterns. 
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Temperature optimization was performed taken into account measures of intra-cluster 

distance, between cluster dispersion and cluster similarity. In a different work, Huang et 

al. studied qualitatively the effect of different periodic temperature profiles on the 

response of a thick film SnO2 sensor (Huang et al., 1999). They concluded that frequency 

was the key factor to enhance odour discrimination, regardless the specific shape of the 

profile. Best results were obtained for lower frequencies. Raman et al. used a variation of 

the Fisher Score to optimize temperature modulated micro-hotplates aimed for detecting 

hazardous gases (Raman et al., 2009a; Raman et al., 2009b). Similarly, Muezzinoglu et 

al. selected the set of best operating temperatures of two commercial metal-oxide sensors 

employing the Mahalanobis distance (Muezzinoglu et al., 2010). Other authors preferred 

a more systematic approach to optimize temperature profiling. The standard procedure 

consists in acquiring the sensor readings at diverse temperature conditions in order to 

model the sensor dynamics. Thus, temperature optimization is performed using these 

models. Kunt et al. employed wavelet networks to optimize the operation of micro-

hotplate gas sensors (Kunt et al, 1998). Vergara et al. used multilevel random sequences 

to select the optimal set of frequencies for multi-sinusoidal voltage profiles (Vergara et 

al., 2005 ; Vergara et al., 2007 ; Vergara et al., 2010). A more challenging tentative for 

temperature optimization was presented by Gosangi and Gutierrez-Osuna (Gosangi and 

Gutierrez-Osuna, 2010; Gosangi and Gutierrez-Osuna, 2013). They proposed an active 

sensing strategy based on Partial Observable Markov Decision Processes for real time 

temperature optimization. More recently, Vergara et al. utilized the Kullback-Leiber 
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divergence to find the individual sensor temperatures for maximizing multi-odour 

classification (Vergara et al., 2010). Finally, Fonollosa et al. presented a methodology for 

temperature selection in multi-sensor arrays based on maximizing the Mutual Information 

(Fonollosa, 2013b). 

 

In this chapter, we present an offline approach to enhance odour discrimination in 

temperature modulated MOX arrays. Our method is based on the theoretical framework 

stablished by Pearce and Sanchez-Montañes (Pearce 2000, Pearce and Sanchez-

Montanes, 2003) to optimize the detection performance of chemical sensing systems. 

Basically, the authors proposed to maximize the projection of the odour stimuli volume 

onto the set of sensor responses, considering noise effects to constrain feature selection. 

To do it, they defined the concept of Number of Discriminable Odour Features (NO). This 

parameter accounted for the quantity of odour conditions that can be discerned by an 

array of noisy sensors. Through the years, their work has become very popular in the e-

nose community since illustrates very kindly the problem of sensor collinearity (Snopok 

and Kruglenko, 2002; Hierlemann and Gutierrez-Osuna, 2008; Vergara and Llobet, 

2012). Still, no practical applications of the method have been found in literature. We 

believe that this peculiar situation is caused mainly for two reasons: First, their method 

experiences a notable increment of complexity when is applied to arrays of non-linear 

sensors. Note that this is the usual scenario in artificial olfaction (Albert et al., 2000). 

Second, the application of the technique is limited to odour discrimination tasks where 
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the amount of sensor features equals, as much, the number pure odours on a dataset. This 

fact constitutes a severe drawback, since current sensor arrays tend to provide large 

amounts of data per odour sample (Dickinson et al, 1999; Di Natale et al., 2009; Gardner et 

al., 2009; Bernabei et al., 2012). The main contribution of our work consists in using an 

upgraded version of their method for dealing with large datasets of non-linear sensors by 

means of multivariate regression techniques. In particular, we propose the use of Partial 

Least Squares Regression (PLSR) to both linearize the odour to sensor space 

transformation and reduce the dimensionality of the sensor space. 

 

To test the feasibility of our approach, we optimize the operational temperatures of an 

array of two commercial MOX gas sensors (TGS-2610 and TGS-2620, from Figaro Inc.) 

to discriminate ethanol, acetone and their linear mixtures in the range from 0 to 120 ppm. 

In our study, we employ the Number of Discriminable Odour Features (NO) as a figure of 

merit for feature selection. A regularization of this parameter is also proposed so as to 

prevent the effect of sensor collinearity. In order to prevent the acquisition of new data 

samples for unseen odour conditions, we propose to model the sensor response across 

temperature to simulate sensor readings. Then, we optimize sensor temperature of a 

simulated array of three sensors (TGS-2602, TGS-2610 and TGS-2620 from Figaro Inc.) 

for mixtures around 60 ppm of ethanol and 60 ppm of acetone. 
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V.1. THEORY 

V.1.1. Hyper-volume of accessible sensor space (VS)  

According to Pearce and Sanchez-Montanes, the Odour Space (YT) is defined by the set 

of pure compounds that generate an odour mixture. Analogously, the Sensor Space (XT) 

comprises the set of sensor units of a sensor array. Both spaces are related by means of 

the sensor’s sensitivity matrix (S). Note that this transformation is local due to the 

sensor’s response-concentration profile. For the particular case of linear sensors, S is a 

matrix of constant coefficients and the transformation becomes global: 

 

𝑋𝑋𝑇𝑇 = 𝑆𝑆𝑌𝑌𝑇𝑇 (5.1) 

The hyper-volume spanned by the samples of the Odour Space (VO) can be projected 

onto the sensor space, giving rise to the hyper-volume of accessible Sensor Space (VS). 

The computation of VS is straightforward for linear sensors. If S is a square matrix, 

namely if the number of pure compounds equals the numbers of sensors, VS is computed 

as: 

 

𝑉𝑉𝑆𝑆 = 𝑉𝑉𝑂𝑂 ∙ |𝑑𝑑𝑒𝑒𝑑𝑑(𝑆𝑆)| (5.2) 

 

For calculations of VS involving non-square marices, please refer to (Pearce and Sanchez-

Montanes, 2003). 
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V.1.2. Hyper-volume of noise in the sensor space (VN)   

The hyper-volume of noise on the sensor space (VN) limits the odour resolution (both in 

quality and quantity) of the sensor array. In the original implementation of the method, 

sensor noise is considered Gaussian and independent of the odour stimulus. Thus, VN is 

enclosed by a hyper-rectangle with sides σi (the standard deviation of noise for each 

sensor i). Instead, we propose to take into account noise correlation among different 

sensor units. To calculate VN, first it is necessary to estimate the noise matrix (N). This 

can be done by subtracting the different odour class centres to its corresponding odour 

class samples on the sensor space. Then, VN is obtained from the generalized variance 

(GV) of noise: 

𝑉𝑉𝑁𝑁 = (2𝑘𝑘)𝑚𝑚�𝐺𝐺𝑉𝑉(𝑁𝑁) (5.3) 

where m is the number of sensors, and k the number of standard deviations from the 

mean. The correcting factor (2k)m comes from considering the Chebishev’s inequality. To 

estimate the odour discriminability we use the ratio NO=VS /VN, where No is termed the 

Number of Discriminable Odour Features. Fig.47 shows an example of Odour to sensor 

Space transformation that provides in order to help the reader in understanding the 

concepts of VS, VN, and NO.  

V.1.3. Linearized sensitivity matrix, Ŝ 

We can linearize the sensitivity matrix S to take advantage of the simplicity exhibited by 

linear transformations between Odour and Sensor Spaces. This task can be done by 



 
 
 
 

135 
 

 
 

means of multivariate regressions methods, and in particular using Partial Least Squares 

Regression (PLSR). Note that this stage involves a dimensionality deflation of S that 

depends on sensor correlation (Fig. 48).  It can be demonstrated that the linearized 

sensitivity matrix (Ŝ) and the regression matrix on the latent variable space (Q) are 

related through the following matrix relationship:  

 

�̂�𝑆 = (𝑄𝑄𝑇𝑇)+ (5.4) 

This demonstration is found in Appendix B. 
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Fig. 47. Example of an Odour to Sensor space transformation (n=m=2). We include on 

this figure of the formulas for the computations of VS, VN, and NO. 

 

 

 

Fig. 48. Scheme of the dimensionality reduction stage. This stage allows compacting the 

redundant sensor information to obtain the linearized sensitivity matrix. 
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V.2. METHODS 

V.2.1. Experimental 

We built a chemical sensing system based on an array of two temperature modulated 

commercial MOX sensors (TGS-2602 and TGS-2610, y TGS-2620, from Figaro Inc.)   

The system consists of a data acquisition platform, a power control module, and an odour 

delivery system. The data acquisition platform is based on a PXI 4461 acquisition card 

(National Instruments), and on a 3 channel customized measuring board. The power 

control module comprises two programmable DC sources (PXI-4110 from National 

Instruments, and N6705A DC Power Analyzer from Agilent Technologies) which are 

utilized, respectively, to polarize the voltage dividers at 10 V and to modulate the 

operating temperature of the sensors applying a periodic ramp profile on their heater 

resistance (from 0 to 5 V during 90 seconds, with 100 temperature conditions each). 

Finally, the odour delivery system consists of two fluidic branches: first, a high-pressure 

cylinder containing the carrier gas (synthetic air) connected to a mass flow controller 

(FLOW F-201CV, Bronkhorst) that keeps constant the carrier gas flow at 1 l/min; and 

second, a programmable two-syringe infusion pump (KDS200, KDScientific) containing 

the odorant in liquid form. Both branches meet at the injection port, where the odorant is 

vaporized and the resulting mixture is sent to the sensor chamber.  

 

We measured the output voltage of the two commercial sensors when exposed to 6 

different concentrations of ethanol and acetone (0, 20, 40, 60, 80,100 and 120 ppm) and 
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their linear mixtures (20-100, 40-80, 60-60, 80-40, 100-20 ppm). To acquire sensor 

voltage we connected the sensors to a load resistor of 6.1 KΩ in a half bridge 

configuration (a voltage divider). Therefore, total of measurements per odour sample is 

200 (2 sensor types x 100 temperatures). Sensor readings along a heater period were 

taken after 900 seconds of odorant exposition to ensure a steady state concentration level 

on the sensor chamber. After each measurement block, the sensor chamber was cleaned in 

synthetic air over a period of 1800 seconds. Each of these experiments was repeated 10 

times, where the collection of experiments was randomized. This information is 

summarized in Fig. 49. The temperature of the sensors was calculated according to (Lee 

and Reedy, 2000). 

 

 

 

Fig. 49.  Experimental dataset used in Chapter V. 
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Using this dataset we have performed three experiments (Table 1). First experiment (I) 

illustrates the method presented in Section 2, for two MOX sensor units. The concepts of 

hyper-volume of accessible Sensor space (VS), hyper-volume of noise on the Sensor 

Space (VN), and Number of discriminable odour features (NO), are revised to enhance the 

reader’s comprehension of the odour to sensor transformation and the effect noise on it. 

No feature selection is realized in this experiment. In a second experiment (II) we 

perform a temperature optimization to maximize odour discrimination. In particular, we 

search the best binary combination of temperatures from two MOX units. In order to 

prevent spurious results caused by feature collinearity, we introduce here a regularization 

of the fitness parameter NO. We emphasize that temperature optimization is directly 

performed using the sensor readings.  And that the array response was expressed in 

sensor voltage (V). However, sometimes it is desirable to realize a more systematic 

approach modelling the sensor response (i.e. for avoiding the data acquisition of new 

odour samples).  For this reason, a third experiment is proposed (III). There, we model 

the sensor response of three MOX sensors to binary gas mixtures at different 

temperatures. Though, this time the array response was calculated in terms of sensor 

resistance (Ω). In addition to this, we generate reliable models of sensor noise studying 

how it co-varies along temperature. Then, the optimum set of temperatures is found 

employing our methodology, for a given simulated Odour Space. 
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Table 1. Depiction of the three experiments performed in Chapter VI. Sensors*: S1=TGS-2602 

S2=TGS-2610, S3=TGS-2620 

Experiment I II III 
Sensors* S2, S3 S2, S3 S1, S2, S3 

Data Real Real Real 
Magnitude Voltage Voltage Resistance 
# Features 200 2 237 

#Latent Variables 2 2 2 
Parameters VS, VN, NO VS, VN, NO, NO VS, VN, NO,NO 

 

V.2.2. Illustration of the method 

In this experiment we project the acquired Odour Space onto a reduced Sensor Space 

built from the sensor features of two commercial sensor units (TGS-2610 and TGS-

2620). This new Sensor Space corresponds to the latent variable scores obtained from a 

PLSR regression between the array of sensor features (200 features) and the training 

samples of the odour dataset. The number of latent variables is selected to be 2 in order to 

capture the intrinsic dimensionality of the Odour Space. This criterion is also followed on 

the rest of experiments of this chapter. Nevertheless, it is possible to perform cross-

validation stage to select a suitable number of latent variables for the PLSR model. This 

is recommendable for datasets composed of a large number of pure compounds. The 

hyper-volume of the Odour Space is simply calculated as the area of the triangle spanned 

by the odour mixtures of the odour set.  The parameters VS, VN and Ŝ are computed from 
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the latent variable scores of the training samples according to equations (2), (3) and (4), 

respectively. Since the number of latent variables is 2, m takes this value in (2). Also in 

(2), k is selected to be 3 in order to ensure that around the 89.0% of the samples of the 

noise matrix are confined within the estimated VN.  

V.2.3. Regularization of the parameter NO  

Employing the same set of odour samples and sensor features as in Experiment I, we 

perform an exhaustive search of the best 2 temperatures (one per sensor type) in terms of 

odour separation. To do it we create 1000 PLSR models. That is one model per binary 

combination of sensor temperatures. Then we compute VS, VN NO for each of these 

models. Temperature selection is firstly performed using NO as a figure of merit of odour 

discrimination. In parallel, the condition number of the linearized sensitivity matrix 

(Cond(Ŝ)) is calculated for the 1000 data models. The condition number of a matrix 

provides information about is closeness to singularity. That information is related to the 

degree of ‘orthogonality’ presented in its row vectors (Turing, 1948). Noteworthy, these 

row vectors correspond to the set of array responses to different mixtures in our particular 

case. Low values of the condition number (close to 1) denote linear different arrays 

responses to a variety of odour mixtures. On the other hand, large condition numbers 

indicate sensor response collinearity on the linearized sensitivity matrix. This situation 

eventually leads to poor odour discriminability. To prevent from selecting very much 

correlated features we realize the optimization of the sensor array temperatures again, but 

this this time using the ratio No/Cond(Ŝ) as a figure of merit of odour separability. 
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V.2.4. Optimization through sensor modelling  

In the last experiment, we optimize the temperatures of three sensor units (TGS-2602, 

TGS-2610 and TGS-2620) so as to maximize the discrimination of samples from the 

following simulated Odour Space: [80-40; 80-60; 80-80; 60-40; 60-60; 60-80; 40-40; 40-

60; 40-80]. Where first component represents ethanol, second one acetone, and pure 

odour concentrations are expressed in ppm. This task is divided in three different sub-

tasks: sensor response modelling, sensor noise modelling, and temperature selection.  

V.2.4.1. Sensor model for mixtures with two pure compounds 

We present a model of sensor response for 2-compound gas mixtures inspired by the 

Clifford-Tuma model of sensor conductance (Clifford and Tuma, 1983a). This model 

states that the sensor conductance is modified in presence of a gas species following an 

almost potential relationship with the gas concentration:   

 

𝜎𝜎�𝑔𝑔 =
𝜎𝜎𝑔𝑔
𝜎𝜎0

~�𝐾𝐾𝑔𝑔𝐶𝐶𝑔𝑔�
𝛽𝛽𝑔𝑔 , 𝐾𝐾𝑔𝑔𝐶𝐶𝑔𝑔 ≫ 1 (5.5) 

 

where σ0 is the conductance of the sensor exposed to air, Cg is the gas concentration, and 

Kg and βg, gas-dependent parameters. In our model, we propose that the sensor 

conductance corresponding to a 2-compound gas mixture is: 
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𝜎𝜎�𝑚𝑚 = 1 + 𝜎𝜎�𝑔𝑔1 + 𝜎𝜎�𝑔𝑔2 + 𝜖𝜖�𝐶𝐶𝑔𝑔1,𝐶𝐶𝑔𝑔2� (5.6) 

 

being σm the normalized conductance to the gas mixture, σi the normalized conductance 

to the pure gas compounds and ε a correcting term that depends on the concentration of 

both odours. In particular, we assume that ε explicitly takes the form: 

 

𝜖𝜖�𝐶𝐶𝑔𝑔1,𝐶𝐶𝑔𝑔2� = 𝐾𝐾𝑔𝑔1,𝑔𝑔2𝐶𝐶𝑔𝑔1
𝛼𝛼𝑔𝑔1𝐶𝐶𝑔𝑔2

𝛼𝛼𝑔𝑔2 (5.7) 

 

where αg1, αg2 and Kg1,g2 are constants characteristic of the specific gas mixture. Notice 

that the sensor response to a binary mixture equals the response of the pure compounds if 

no mixture is produced (Cg1= 0 and Cg2 > 0 or vice-versa). In addition to this, mixtures 

generated at low concentrations tend to produce sensor responses similar to those 

obtained exposing the sensor to air. Finally, the sensor resistance to a mixture can be 

obtained just inverting the normalized sensor conductivity and multiplying this value by 

the sensor conductivity to air: 

 

𝑅𝑅𝑚𝑚 =
𝜎𝜎0
𝜎𝜎�𝑚𝑚

 (5.8) 
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V.2.4.2. Model of sensor noise 

In order to build realistic models of sensor noise we need to know how the different 

sensor features co-vary with the experimental noise, N (see section V.1.2). To do it, we 

proceed to compute the covariance matrix of NT. This can be done by means of the 

Singular Value Decomposition (SVD) of NT: 

 

𝑁𝑁𝑇𝑇 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇 (5.9) 

where NT is an m x n matrix, U is an m x m unitary matrix, D an m x n rectangular 

diagonal matrix of singular values, and VT and n x n unitary matrix. Simple algebraic 

manipulations allow obtaining the covariance matrix of NT from (5.9): 

 

𝐶𝐶𝑙𝑙𝑐𝑐(𝑁𝑁𝑇𝑇) =
1

𝑚𝑚 − 1
(𝑈𝑈𝑈𝑈2𝑈𝑈𝑇𝑇) 

(5.10) 

 

This approach has the advantage of preventing instable calculations of the covariance 

matrix by setting to zero the singular values of D that lesser contribute to the 

decomposition of NT. Once the covariance of noise is obtained, we can generate the 

simulated noise employing a generator of multivariate normal random numbers. 

V.2.4.3. Temperature selection 

The optimization of sensor array temperatures is performed using Genetic Algorithms 

(GA). In particular, we employ the regularized number of discriminant odour features as 
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fitness function to maximize with the selected features. The process is performed as 

follows: (i) We generate an initial population of p=100 samples, allowing only 3 possible 

features activated per individual. The position of these features follows a uniform random 

distribution between the first and the last array feature indexes. We do this way for two 

reasons. First, we prevent the selection of spurious features limiting their number in the 

initialization step, and second, we ensure that (in average) features of the three sensors 

are present in each individual of the population. (ii) This population is tested against the 

fitness function and its median value is computed. (iii) The individuals below this value 

are removed from the population. On the other hand, the individuals above the median 

are randomly grouped in pairs for breeding. (iv) We perform single point breeding. That 

means that each pair of parents is divided in two sections at a random position. The 

position of the cut also follows a uniform distribution. Next, a pair of children individuals 

is created interchanging analogous sections between parents. Note that once the breeding 

stage is performed for each couple of parents we retrieve the original size of the 

population. (v) Additionally, each individual of the population is allowed to mutate one 

of their features with randomly selected. The probability of mutation of an individual is 

0.001. After that, we return to the step (ii) and repeat the sequence until some 

convergence criterion is achieved. Our criterion consists in stopping the iterations of GA 

when the current average fitness of the population does not increase more than a 1% with 

respect the previous iteration. Then, we obtain the best individual of the population. In 

order to avoid a solutions corresponding to local minima, the entire procedure is repeated 
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from (i) to (v) 5000 times. Finally, the set of selected features is obtained looking for the 

most repeated features present on the pool of the best individuals from different 

populations.  

Table 2. Parameters for the Genetic Algorithms feature subset selection  

Population 
Size 

# Populations Breeding Probability  
of Mutation 

Fitness 
Parameter 

100 5000 Single Point 0.001 NO 
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V.3. RESULTS 

The results of first experiment are presented in Fig.50, and Fig.51. Fig.50 shows a scatter 

plot of the Odour Space, where each of the figure axes corresponds to a pure odour 

compound (x-axis for ethanol and y-axis for acetone). 

 

 

 

 
 

Fig. 50. Representation of the Odour Space. On the figure, each of the axes defines the amount of 

pure substance present on an odour mixture (x-ethanol, y-acetone).  Note that black squares and 

red triangles represent, respectively, the training and test samples for the subsequent PLSR 

model. The hyper-volume on the Odour Space is 7200 ppm2. 
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Black squares and red triangles represent, respectively, samples of the training and test 

set. Note that the Odour Space is an isosceles right triangle with a leg length of 120 ppm.  

Thus, VO is the area of this triangle, which is 7200 ppm2. If we turn our attention to Fig. 

51, we can see the projection Odour Space onto the reduced Sensor Space (that is the 

latent variable scores of the PLSR model).   

 

 

 

Fig. 51. Projection of the Odour Space onto the Reduced Sensor Space. This space corresponds to 

the latent variable scores of PLS regression, where sensor response is expressed in voltage. The 

notation of fig1.a is preserved on this figure. The Hyper-volume on the Sensor Space is around 

495. This plot also includes the scores for the noise matrix in green circles. The corresponding 

Hyper-volume of Noise on the Sensor Space is 2.  

 

-20 -10 0 10 20 30 40
-10

-5

0

5

10

Scores on LV 1

S
co

re
s 

on
 L

V
 2

Sensor Space

 

 
Train
Test
Noise

Vn=2

Vs=495



 
 
 
 

149 
 

 
 

The mean of each sample class is showed on a score plot. The marker notation for 

training and test samples of the previous figure is preserved. Additionally, the noise 

matrix N after dimensionality reduction is plotted in green circles.  The values for VS and 

VN are also displayed on the figure. The estimated Number of Discriminant Odour 

Features NO is around 248, for a condition number of Ŝ of 4.6. Comparing the areas 

spanned by the odour dataset and the noise on the scores plot, the value obtained for NO 

seems a reasonable approximation.  

 

Regarding the second experiment, we present the computations of NO, Cond(Ŝ), and 

NO/Cond(Ŝ),  for the pair-wise combinations of sensor temperatures in the contour plots 

of Fig.52(a-b) and in Fig.53. These parameters are represented in logarithmic scale on the 

figures so as to enhance the visualization of the most relevant sensor temperatures. 

Colours biased towards red tones denote high parameter values. On the contrary, blue 

tones indicate low ones. According to Fig. 52a, where the temperature selection is 

performed using NO, the best region for odour for separation seems close to the upper-

right corner of the plot (that is beyond the 250 ºC for both sensors). Though, there are two 

additional narrow areas which are apparently significant for odour discrimination. First 

area is around 250ºC of the TGS-2620 unit and follows the low-temperature range of the 

TGS-2610 sensor (between 25 ºC and 160ºC). Similarly, the second area is situated 

around the 300ºC of the TGS-2610 unit and follows the temperature axis of the TGS-

2620 sensor from 25ºC to 250ºC.  The situation is quite different if we consider the 
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results shown in Fig. 52b. We can see that the system of equations that defines the odour 

to sensor space transformation is ill-defined for some pairs of temperature combinations. 

In particular, the largest values of Cond(Ŝ) virtually overlap to the largest values of NO, 

so must be down-weighted. This is done in Fig. 53, where we show the ratio NO/Cond(Ŝ). 

On the figure, we observe that the most discriminant temperature pairs are placed around 

250ºC for the TGS-2610 unit and 340ºC for the TGS-2620.  The value of NO at this point 

is 384. Furthermore, the contrast between good and bad temperatures for odour 

discrimination is enhanced.  

 

 

 

Fig. 52. Example of wrong feature selection. Contour maps for the (a) Number of Odour 

Discriminant Features (b) the Condition Number of Ŝ, obtained from all binary combination of 

temperatures from the sensors TGS-2610 and TGS-2620.  
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Fig. 53. Regularized Number of Odour Discriminant Features. We obtained this parameter from 

all binary combination of temperatures from the sensors TGS-2610 and TGS-2620.  

 

Finally, in experiment 3 we perform temperature optimization to enhance the 

discrimination of ethanol and acetone mixtures. Though, this time temperature 

optimization is realized employing the simulated sensor responses of the TGS-2602, 

TGS-2610, and TGS-2620 units. In particular, we generate a Sensor Space that 

corresponds to an Odour Space of 9 samples: [80-40; 80-60; 80-80; 60-40; 60-60; 60-80; 

40-40; 40-60; 40-80]. Thus our current Odour Space is a square with an area of VO=1600 

ppm2. Sensor models are built according to section V.2.3.1. Note that in the previous 

Sensor Space the contribution of noise is not included. To obtain a more realistic set of 
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sensor responses, we add to these signals the sensor noise calculated as in section 

V.2.3.2. This process is repeated 10 times in order to obtain a set 90 noise-affected sensor 

responses. To estimate the goodness of our approach, we compare the real sensor 

readings with the simulated ones. This is done on the on the PLSR latent variables scores 

plot shown in Fig.54. There we can see the samples used to create and test the sensor 

models in, respectively, black squares and red triangles. Blue asterisks correspond to the 

modelled sensor responses to our simulated Sensor Space.  We only consider the mean of 

each sample class odour sample to help visualization. Interestingly, sensor readings 

corresponding to the mixtures of 80-40, 60-60 and 40-80, almost overlap with the 

simulated sensor responses. The plot also includes the noise matrix N of the simulated 

samples represented by green circles. Comparing the sizes of the simulated Sensor Space 

(VS=2.6·1010) and the sensor noise (VN=8.0·108), it is evident that an optimization of the 

sensor temperatures is needed to increase the signal to noise ratio (NO=32). 

 

Temperature optimization is performed using Genetic Algorithms (GA) for feature 

selection, where the fitness function is the regularized number of discriminable odour 

features.  The frequency of selection of sensor temperatures obtained from 5000 

randomly initialized GA populations is found on Fig.56. The results on this figure 

suggest that the most discriminant temperatures tend to be clustered around T=225ºC for 

the TGS-2610 and TGS-2620 units, whereas that for the TGS-2602 sensor several 

discriminant regions appear superimposed between 80ºC o 150 ºC. In order to limit the 
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number of selected temperatures, we compare the distribution of frequencies obtained 

with our method with that one corresponding to a random selection of features (3 

temperatures per individual, uniformly distributed along the feature vector). By virtue of 

the Central Limit Theorem (CTL) the latter distribution of frequencies tends to be 

Gaussian (see the histogram on Fig.55).  

 

 

 

Fig. 54. Reduced Sensor Space for real and simulated samples. Data features were expressed in 

terms of sensor resistance. Black squares represent the training samples utilized to generate the 

sensors models, whereas the red triangles are used as a test samples. Blue asterisks correspond to 

the class centres of the simulated odour mixtures. Finally, the simulated noise matrix is included 

on the plot in green circle markers. 
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Fig. 55. Histogram corresponding to a random selection of sensor temperatures.  By virtue of the 

Central Limit Theorem, the distribution of counts tends to be Gaussian. The orange dashedline 

indicates the number of counts where the 99% of the features have been selected by chance 

 

That fact allows us performing a test of hypothesis to either accept or reject sensor array 

features. The null hypothesis is that the selection of temperature is performed by chance 

(that is that the frequencies of selection are within this normal distribution). We accept 

this hypothesis with a confidence of 99%.This calculation provides the threshold value 

plotted on the figure in a blue dashed line (53 counts). After variable selection, the 

regularized number of sensor features is NO=236. 
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Fig. 56. Bar plot representing the counts for the selected features. Again, the orange dashed line is 

the threshold that discriminates a random from systematic feature selection.  

V.4. DISCUSSION 

In this work we have presented a methodology to optimize arrays of temperature 

modulated MOX sensors for odour discrimination. This methodology was inspired by the 

feature selection method created by Pearce and Sanchez-Montañes, and consists in 

maximizing the Odour to Sensor Space volume transformation, considering the effect of 

noise.  

 

In our opinion, the main limitation of the original method consisted in the Sensor Space 

dimension couldn’t exceed the dimension of the Odour Space in order to apply the 

technique. Thus, part of the discriminant of information provided by the array of sensors 
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was merely neglected. The reason for that limitation was that the Odour Space preserved 

its intrinsic dimensionality (the number of pure compounds) when projected onto a 

Sensor Space of higher dimension. This issue can be understood with a simple example: 

Imagine an Odour Space of dimension 2. In such as Odour Space, the odour samples are 

confined on a plane, and VO is an area. Now, try to represent our 2-dimensional Odour 

Space on a 3-dimensional Sensor Space. The odour samples on the Sensor Space will be 

confined on surface defined by the readings of three sensors. Consequently, VS, which is 

a volume, will be 0. To overcome this problem we proposed the use of multivariate 

regression methods (such as PLSR) before to perform the Odour to Sensor Space volume 

transformation. Firstly, we took advantage of a dimensionality reduction stage by using 

the latent variable scores of the PLSR model as a new sensor space. In other words, we 

combined those sensor features that exhibited very much correlated responses enhancing 

the signal to noise ratio. Note that, the dimension of the Odour Space limited the number 

of latent variables of the PLSR model. Furthermore, the array linearization performed 

though the PLSR regression simplified considerably the application of the method. Since 

the odour to sensor transformation became a constant matrix after dimensionality 

reduction, the calculus of the hyper-volume on the sensor space was not dependent of the 

specific operational point of the odour space.  

Though, the original method presented an additional drawback: an inaccurate calculation 

of the hyper-volume of noise, VN. Basically, the authors didn’t consider any noise 

contribution from the Odour Space. Besides that, noise on the Sensor Space was 
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supposed to be independent and Gaussian. That is to approximate the hyper-volume of 

noise to the area of a hyper-rectangle with sides of length σi, where σ is the sensor 

standard deviation and i denotes the sensor index.  To correct this issue, we took into 

account the common sources of noise present on the Sensor Space (for instance sensor 

drift) computing VN as the generalized variance of sensor noise. In such a case, the VN 

corresponded to area rectangle built from the principal axis of the covariance matrix of 

noise. It is follow that the more the sensor noise co-varies; the worse is the estimation of 

VN considering this noise independent. 

 

Another key improvement of our version consisted in regularizing NO. We performed this 

regularization simply dividing NO by cond(Ŝ). The condition number was a powerful tool 

to rank the ‘quality’ of Odour to Sensor transformation. Large condition numbers 

involved ill-defined transformations. That meant that even slight tolerances on the Odour 

Space samples caused large differences of response on the Sensor Space. As a result, the 

different odour classes (odour quality and quantity) became mixed when represented on 

the Sensor Space. As we mentioned somewhere, Cond(Ŝ) was related with the degree of 

orthogonality of the row vectors of Ŝ. Matrices (not necessary square) with almost 

orthogonal row vectors tend to have conditions numbers close to 1. Noteworthy, NO and 

NO/Cond(Ŝ) converged to the same value in such a case. So the most discriminative 

sensor temperatures (that is those that provided the most ‘orthogonal’ response to odours) 

weren’t down-weighted. Curiously, one might think that we had already checked the 
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degree of collinearity of the row vectors of Ŝ when we computed VS (we remember the 

reader that VS is proportional to the determinant of Ŝ). This is because it is usually stated 

that ill-conditioned matrices must exhibit determinant values close to zero, and vice-

versa. Nonetheless, although both concepts are closely related they are not equivalent. In 

fact, we can always build matrices corresponding to equivalent systems of equations with 

arbitrary large values of their determinant, but the same condition number. This can be 

done as follows: Imagine a matrix A associated to system of equations whose 

determinant is det(A), and its condition number, Cond(A). It is known from linear algebra 

theory that det(cA)=cndet(A), where c is a constant and n is the number of rows (or 

columns) of A. Thus, the value of the determinant can be trivially increased selecting 

c>>1. However, this operation doesn’t alter the value of Cond(A).  

 

This methodology has been utilized to select the most relevant sensor temperatures in two 

different scenarios of odour discrimination. First scenario consisted in obtaining the 

maximum separability of ethanol, acetone and their linear mixtures within a given range 

of pure substance concentration. There, sensor responses corresponded to the output 

voltages of the sensors at different temperatures. We wondered if these sensor readings 

could be used to optimize temperature selection for unseen ethanol-acetone mixtures. 

That led us to build a model of sensor response to binary mixtures across temperature. 

Notice that this time, sensor responses were expressed in terms of sensor resistance. Then 

the second scenario was defined. We tried to enhance odour discrimination of ethanol-
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acetone mixtures around a particular operational point of the Odour Space. As we saw in 

fig.54, sensor models were in agreement with the real measurements. Tough, we want to 

emphasize that those sensor models were mere interpolations built from a limited 

collection of experiments. Therefore, large discrepancies between real and modelled 

responses should be expected for odour samples far from the initial Odour Space. Still, 

only two additional models of odour mixtures for MOX sensors were found in the 

literature (Clifford and Tuma, 1983a; Chaiyboun et al., 2006) so we considered 

appropriate to include our interpolation-based model in this study. Regarding the 

modelling of noise, we followed the rationale that sensor noise was correlated across 

temperature. We believe that this point was crucial, because we approximate to the true 

nature of noise. A naïve approach would have been, for instance, considering an 

independent Gaussian noise for each sensor temperature.  Comparing the results obtained 

from the experiments, we find two issues to be discussed. First, the collection of sensor 

temperatures selected in each experiment was very different.  That may seem shocking at 

first sight, but it can be simply explained. The point is considering that sensor readings 

were expressed in voltage or resistance depending on the experiment. Since the 

functional relationship that converts sensor voltage to sensor resistance values is non-

linear, the shape of the corves as a function of one and another magnitude is quite 

different.  Consequently, the most discriminative temperature combinations didn’t match 

in different scenarios. This distortion on the sensor’s response waveform was reflected on 

the PLSR score plots of Fig.51 and Fig.54. There we can see that, although both plots 
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showed a projection on the initial Odour Space onto a reduced Sensor Space, the 

arrangement of the odour samples on their respective latent variable planes was totally 

different. The second matter to discuss is the tendency of adjacent sensor temperature 

combinations to be clustered in accordance to the value of NO.  That happened because 

the sensor responses at nearer temperatures were very much correlated. Thus, best VS 

values were found around specific combinations of sensor temperatures whose averaged 

response reduced the parameter VN. As a final comment, we feel interesting to have 

found a solution for combining a variety of sensors responses in an optimum manner that 

is analogous to the architecture of the olfactory epithelium. Were the olfactory receptor 

neurons (ORN) expressing the same receptor type converge to pseudo-spherical 

structures called glomeruli. Following the analogy, the different glomeruli (cluster 

centres of sensor temperatures) encode for the odour quality, whereas the population of 

redundant ORN receptors within each cluster (sensor responses at adjacent temperatures) 

reduces independent sensor noise.  

 

In conclusion, the power of our updated feature selection method lies in exploiting the 

benefits of sensor diversity and redundancy, factors that at the end of the day a 

responsible for odour discrimination. The method seems to capture efficiently the most 

relevant temperatures for odour separation using MOX sensors. Future work includes 

comparing the performance of our method with other feature selection techniques.  
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CHAPTER VI 

CALIBRATION TRANSFER 

 

Shifts in working temperature prevent direct calibration transfer between instruments 

(Lin, 1998). That is to say that calibration models built for instrument I1 working at a 

temperature T1 experience an important degradation on prediction when applied to data 

samples of instrument I2 at T2 (T2≠T1). This is a matter of the utmost importance for 

temperature modulated metal oxide gas sensor arrays (Lee and Reedy, 1999) where 

tolerances in heater resistances values, variations on the working flow conditions, and 

environmental fluctuations can give rise to a global shift ΔT of the sensor nominal 

temperature profile, and therefore of the sensor response waveform. A naïve approach to 

overcome invalid calibration transfer is to create independent calibration models for each 

of the arrays. However this is an impractical solution, since implies costly, labour-

intensive measurement campaigns. A preferable methodology is the use of instrument 

standardization techniques (Wang and Veltkamp, 1991), to correct the temperature shift 

in sensor arrays as compared to a reference array (from now on slave and master arrays 

respectively) calibrated for a complete set of experimental conditions and a proper 

temperature profile. The calibration transfer relies then on the measurement of only a 

small subset of experimental points in the slave array (herein called transfer samples). 
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According to (Marco and Gutierrez-Galvez, 2012) calibration transfer can be realized in 

three different ways: (i) by transforming the slave instrument readings to keep the 

calibration model of the master instrument still valid on the slave instrument, (ii) by 

modifying the target labels of the samples from the slave instrument so as to match with 

those obtained from the master instrument, and (iii) by forcing master and slave readings 

to become more similar to create the calibration model. Direct Standardization (DS) and 

Piecewise Direct Standardization (PDS) are the most used approaches to standardize 

slave instrument response (Bouveresse and Massart, 1996; Walczak1 et al., 1997). With 

respect to the slave instrument target values correction, the most frequent method is 

univariate Multiplicative Signal Correction (MSC) (Feudale et al., 2002). Finally, 

Component Correction (CC), Orthogonal Signal Correction (OSC) and Generalized Least 

Squares Weighting (GLSW) are the usual techniques used to remove instrument-to-

instrument variability (Sjöblom et al., 1998; Padilla et al., 2010; Fu et al., 2012). 

 

Although many different investigations on instrument standardization have been 

dedicated to Near Infrared Spectroscopy (NIRS), there is a noticeable lack of 

contributions to standardize gas sensor arrays. Still, three essential references addressing 

the issue can be found in chemical sensing literature. (Balaban et al., 2000) attempted to 

transfer a model trained to identify milk samples by age from a 12 conducting polymer to 

a slave sensor array endowed with the same set of sensors. In their work, they 

transformed the slave array response into master array readings by applying three 

http://www.sciencedirect.com/science/article/pii/S0169743996000755
http://www.sciencedirect.com/science/article/pii/S0169743996000755
http://www.sciencedirect.com/science/article/pii/S0169743996000755
http://www.sciencedirect.com/science/article/pii/S0169743998001129
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different types of corrections: Univariate Regression, Multivariate Regression (MLR) and 

Multilayer Perceptrons (MLP). This calibration transfer methods were evaluated 

comparing the classification rates of master and the transformed master arrays. 

Multivariate regression showed the best performance in standardizing the instruments. In 

a similar study, (Tomic et al., 2004)  tried to compensate the effect of sensor replacement 

in a hybrid sensor array composed of 12 MOX (metal-oxide semiconductor) sensors and 

5 MOSFET (metal-oxide semiconductor field-effect transistor) so as to distinguish 

between off-flavor and suitable for feeding milk samples. They acquired twice the 

complete dataset, prior to and after the sensor replacement, and modelled the data of the 

old sensor array, which was selected as the master instrument. Measurements obtained 

from the new array were adapted to be used in the master classification model with two 

different techniques: Component Correction (CC) and Multiplicative Drift Correction 

(MDC), being the latter slightly more efficient in rectifying the slave instrument 

response. The comparison between master and corrected slave instruments was referred 

to the classification rate obtained for the test set samples.  In a more recent paper, 

(Shaham et al.,  2005) showed the possibility of constructing mappings between two 

different sensor technology arrays, a 32 conducting polymer array (CP) and an 8 sensor 

quartz microbalance module (QMB), which were exposed to a set of 23 pure chemicals. 

The authors built a PCA model for each instrument and tried to classify test samples 

according to the distance to the centroid of the nearest class. After that, they converted 

the projected data from one sensor array to the other in both directions. To perform the 
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task, they investigated three different approaches: Multivariate Regression (MLR, PCR, 

PLS), Neural Networks (NN) and Tesselation-based Linear Interpolation (TLI). Again, 

the classification rate was the figure of merit used to compare master and the 

standardized slave instruments. Their results showed that the performance of the different 

standardization methods was dependent on the mapping direction, obtaining the best 

results for the conversion from CP to QMB using NN, and applying TLI in the reverse 

mapping.  In all these previous works the complete set of calibration samples used to 

create the data models was transferred from the master to the slave instrument. 

 

Beyond these valuable contributions, we have identified four important open questions 

for calibration transfer in e-noses. (i) E-nose arrays can tune their operational parameters 

so as to enhance their sensitivity to different compounds (Hierlemann and Gutierrez-

Osuna, 2008). Therefore, instrument dissimilarities due to tolerances on the operational 

parameters must be corrected accordingly. (ii) In order to make an efficient calibration 

transfer, a limited subset of experiments should be run in the slave instruments. To the 

best of our knowledge, no systematic study comparing the performance of different 

calibration transfer techniques with respect to the number of transfer samples is found in 

the literature for e-noses. (iii) Continuous calibration models (regressors) provide a more 

sensitive measure of the calibration transfer performance than discrete calibration models 

(classifiers). However, in the literature you can only find classification models transferred 

from one instrument to another. (iv) It is necessary to define a clear criterion, lacking in 
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the literature, to either accept or reject a calibration transfer based on its performance. 

 

In this chapter, we address these four open questions with the following study. We have 

explored the calibration transfer problem for temperature modulated metal oxide sensor 

arrays when a global shift of temperature occurs (i). In an exhaustive study that includes 

132 master-slave instrument combinations, we will evaluate the quality of the calibration 

transfer obtained from several instrument standardization techniques. We will compare 

master and slave errors (RMSEP) for different temperature shifts and sizes of the transfer 

sample set (ii) on concentration prediction (iii). We propose a new statistical method to 

evaluate the quality of the calibration transfer based on the bias variance trade-off (iv).  
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VI.1.THEORY 

In this chapter we follow two of the three different strategies proposed in the literature for 

calibration transfer (Marco and Gutierrez-Galvez, 2012). The first one is to transform the 

sensor responses of the slave instrument so it resembles those of the master instrument. In 

this way, we can directly use the calibration model built on the sensor responses of the 

master instrument with the transformed slave sensor responses. In this strategy, we work 

on the space of responses of the master instrument. To transform the sensor responses of 

the slave instrument, we used Direct Standardization (DS) and Piece-wise Direct 

Standardization (PDS). The second strategy consists of transforming not only the sensor 

responses of the slave instrument but also those of the master instrument to a joint 

master-slave space. Thus, the calibration model is built in this joint space. The sensors 

response transformation methods used in this strategy are Generalized Least Squares 

Weighting (GLSW) and Orthogonal Signal Correction (OSC). Fig. 57 illustrates both 

strategies. In addition to this, we realized a sample subset selection to sort out the 

samples used to study the performance of the calibration transfer in terms of the number 

of samples considered from the slave instrument. We test two different approaches: select 

samples before or after creating the calibration model of the master instrument. In the 

following subsections we describe the main features of the different calibration transfer 

techniques used in this paper, as well as the two methodologies used to perform sample 

subset selection. 
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Fig. 57. Block diagram of the calibration transfer process: (a) to transform the responses of the 

slave instrument so as to work on the space of responses of the master instrument (DS and PDS), 

and  (b) to transform the responses of the master and slave instrument in order to work on a joint 

master-slave space (OSC, GLSW). 

VI.1.1. Calibration transfer techniques 

VI.1.1.1. Direct Standardization (DS) 

Direct Standardization (Tauler et al., 2009) is a calibration transfer technique that relates 

the readings of the slave instrument to those of the master according to the following 

linear transformation: 
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𝑆𝑆𝑀𝑀 = 𝑆𝑆𝑆𝑆 ∙ 𝐹𝐹 (6.1) 

 

whereSM andSS  are the mean-centered response matrices of master and slave 

instruments and F the slave-to-master transformation matrix, which is estimated as the 

productSM and the pseudo-inverse ofSS: 

 

𝐹𝐹 = 𝑆𝑆𝑆𝑆
+
∙ 𝑆𝑆𝑀𝑀 (6.2) 

     

In this way, samples from the slave instrument can be projected onto the master 

instrument response space: 

 

𝑥𝑥𝑀𝑀𝑇𝑇 = 𝑥𝑥𝑆𝑆𝑇𝑇 ∙ 𝐹𝐹 (6.3) 

VI.1.1.2. Piece-wise Direct Standardization (PDS) 

The DS method has the limitation of not properly transform the responses from slave to 

master instruments when the number of variables per sample is greater than the number 

of samples. Thus, the transformation matrix F (6.2) becomes underdetermined (Feudale 

et al., 2002). Piece-wise Direct Standardization (Wang et al., 1992) avoids this problem 

using local PLS models. It creates local linear models fj that relate the response of the 

master instrument variables within a window of size w centered at the jth variable to the 
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jth variable on the slave array. The resulting transformation matrix for the method F has a 

diagonal structure:  

 

𝐹𝐹 = 𝑑𝑑𝑖𝑖𝑣𝑣𝑙𝑙(𝑓𝑓1𝑇𝑇 … 𝑓𝑓2𝑇𝑇 … 𝑓𝑓𝑘𝑘𝑇𝑇) (6.4) 

 

where k is the number of variables on both instruments. The projection of data from the 

master onto the slave instrument is performed following (6.3). 

VI.1.1.3. Ortohgonal Signal Correction (OSC) 

Orthogonal Signal Correction (Fearn, 2000) aims to remove the sources of variance of the 

slave instrument that are orthogonal to the master array. The OSC algorithm starts 

calculating the scores vector t1 of the first Principal component of the slave array data 

matrix, SS. That vector is then orthogonalized against the master instrument response 

matrix SM, giving raise to t1’: 

𝑑𝑑1′ = (1 − 𝑆𝑆𝑀𝑀 ∙ (𝑆𝑆𝑀𝑀𝑇𝑇 ∙ 𝑆𝑆𝑀𝑀)−1 ∙ 𝑆𝑆𝑀𝑀𝑇𝑇 ) ∙ 𝑑𝑑1 (6.5) 

 

After that, the weights w1 of the product SS·w1 are calculated for the maximum projection 

onto the orthogonal scores vector t1’: 

 

𝑤𝑤1 = 𝑆𝑆𝑆𝑆
+
∙ 𝑑𝑑1′  (6.6) 
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Being SS + the pseudo-inverse of X. The scores vector t1 is then updated: 

 

𝑑𝑑1 = 𝑆𝑆𝑆𝑆 ∙ 𝑤𝑤1 (6.7) 

 

Next, the algorithm returns to (6.5), where the determination of the orthogonal score 

vector is repeated until convergence. At this point, the loading vector corresponding to 

the first orthogonal score is computed as: 

 

𝑝𝑝1 = 𝑆𝑆𝑆𝑆𝑇𝑇 ∙ 𝑑𝑑1(𝑑𝑑1𝑇𝑇𝑑𝑑1)−1 (6.8) 

 

and the first OSC component can be removed from the original X matrix obtaining the 

deflated data matrix X1:  

𝑆𝑆𝑆𝑆,1 = 𝑆𝑆𝑆𝑆,1 − 𝑑𝑑1𝑝𝑝1𝑇𝑇 (6.9) 

 

Finally, the complete process can be repeated until the N-th Orthogonal Signal 

Component as follows: 

 

𝑆𝑆𝑆𝑆,𝑁𝑁 = 𝑆𝑆𝑆𝑆 −�𝑑𝑑𝑐𝑐𝑝𝑝1𝑇𝑇
𝑐𝑐=𝑁𝑁

𝑐𝑐=1

 
(6.10) 
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VI.1.1.4. Generalized Least Squares Weighting (GLSW) 

Generalized Least Squares Weighting (Martens et al., 2003) method identifies and down-

weights the instrument channels (variables, features) responsible for the major sources of 

variance between master and slave instruments. To build the filter, the covariance matrix 

C from the difference between the mean-centered master and slave responses is 

computed: 

𝐶𝐶 = �𝑆𝑆𝑀𝑀 − 𝑆𝑆𝑆𝑆�
𝑇𝑇
�𝑆𝑆𝑀𝑀 − 𝑆𝑆𝑆𝑆� (6.11) 

 

Next, C is factorized as the product of three matrices through singular value 

decomposition (SVD): 

 

𝐶𝐶 = 𝑉𝑉𝑆𝑆2𝑉𝑉𝑇𝑇 (6.12) 

where V and S are, respectively, the eigenvector and the singular value matrices. After 

that, the S matrix is weighted in the following way: 

 

𝑈𝑈 = �𝑆𝑆
2

𝛼𝛼
+ 𝑀𝑀 

(6.13) 

 

Being D the matrix of the weighted eigenvalues, α the weighting parameter and I the 

identity matrix. The parameter α controls the degree of dissimilarity allowed to the 
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instruments. While high values of α increase the down weighting, lower values of α 

reduce its effect. The filtering matrix G is then calculated using the inverse of the 

weighted eigenvalues: 

 

𝐺𝐺 = 𝑉𝑉𝑈𝑈−1𝑉𝑉𝑇𝑇 (6.14) 

VI.1.2. Sample subset selection 

Sample subset selection can be conducted in two manners: a) by looking for the non-

characteristic samples (with respect the multivariate mean) on the master instrument 

matrixRM through the calculus of the leverage matrix H (Sharaf et al., 1986): 

 

𝐻𝐻 = 𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀
𝑇𝑇

 (6.15) 

 

And b) by seeking for the most influent samples of the master’s instrument calibration 

model, approaching H as the leverage matrix for the inverse calibration modelRM
+, also 

mean-centered: 

𝐻𝐻 = 𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀
+

 (6.16) 

 

In both cases, the maximum diagonal element of H corresponds to the most relevant 

sample in the dataset. Once the first sample is obtained, the rest of the dataset is 



 
 
 
 

173 
 

 
 

orthogonalized against it, a new leverage matrix H is created, and the next most influent 

sample can be selected. Table 3 shows the first 12 samples selected using both methods. 

VI.2.METHODS 

VI.2.1. Experimental 

To perform this study, we used a set of three different types of Figaro metal oxide 

semiconductor sensors (TGS2600, TGS2610, TGS2620) replicated 12 times. In all 

experiments, one of the sets of three sensors was used as a master instrument to find a 

calibration model and the rest treated as slave arrays to study the calibration transfer. The 

read out of the sensors is performed through a load resistor (RL=6.1 KΩ) in a half bridge 

configuration. We modulated the sensor temperatures with a ramp profile ranging from 

ambient temperature to 495°C ± 5°C (Lee and Reedy, 2000) in a period of 90 seconds. 

The 36 sensors were exposed during 900 seconds to three analytes (ethanol, acetone, 2-

butanone) at six different concentrations (20, 40, 60, 80, 100, 120) ppm plus synthetic air. 

After each measurement block, the sensor chamber was cleaned in synthetic air over a 

period of 1800 seconds. The experiments with concentration levels of 0, 40, 80 and 120 

ppm were acquired 7 times (84 samples) as a calibration (training) set, while the ones 

with concentration levels of 20, 60, 100 ppm were acquired 3 times (27 samples) and 

used for testing the calibration models. This information is summarized in Fig.58. The 

selected temperature window used for the calibration of the master instruments was [200-

300] ºC.   
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Fig. 58. Set of experiments used in Chapter VI. 

VI.2.2. Calibration model 

We have approached the calibration of our instruments as a regression problem to 

provide more sensitivity when transferring the calibration model to another instrument. In 

particular, we have used partial least squares regression (PLSR). The level of complexity 

of the PLSR master instrument calibration model (i.e. the number of latent variables) was 

set through a cross-validation stage based on the Leave One Block Out (LOBO) 

approach. This method calculates the RMSECVM as the average of the RMSE obtained 

from predicting each of the different blocks of calibration conditions using the 

complementary blocks of samples to generate the PLSR model: 
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𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝐶𝐶𝑉𝑉𝑀𝑀 =
1
𝐶𝐶
��∑ ∑ �𝑦𝑦�𝑐𝑐,𝑗𝑗,𝑘𝑘 − 𝑦𝑦𝑐𝑐,𝑗𝑗,𝑘𝑘�𝑀𝑀

𝑗𝑗=1
𝑁𝑁𝑉𝑉
𝑐𝑐=1

2

𝑁𝑁𝑉𝑉 ∙ 𝑀𝑀

𝐶𝐶

𝑘𝑘=1

 
(6.17) 

 

 

where ỹi,j,k and vi,j,k are, respectively, the observed and the predicted concentration values 

for the sample i-th sample the j-th pure substance and the k-th data partition, NV is the 

number of samples for each partition of the validation set (7), M  the number of 

substances present in the dataset (3) and C the number of  blocks of calibration conditions 

(12). The number of latent variables of the calibration model was determined calculating 

the RMSECVM (lv) for an increasing number of latent variables (lv from 1 to 10). When 

the current RMSECVM (lv=r) did not reduce the previous RMSECVM (lv=r-1) value 

more than a 1%, the selected number of latent variables was determined lv=r-1. 

The measure of the model’s performance fitting the test data for the master array was the 

Root Mean Squared Error of Prediction (RMSEPM): 

 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑃𝑃𝑀𝑀 = �∑ ∑ �𝑦𝑦�𝑐𝑐,𝑗𝑗 − 𝑦𝑦𝑐𝑐,𝑗𝑗�𝑀𝑀
𝑗𝑗=1

𝑁𝑁𝑇𝑇
𝑐𝑐=1

2

𝑁𝑁𝑇𝑇 ∙ 𝑀𝑀
 

(6.18) 

 

 

where ỹi,j and yi,jwere, respectively, the observed and the predicted concentration values 

for the sample i-th sample the j-th pure substance, NT  is the number of samples of test set 

(27), M  the number of substances present in the dataset (3). The RMSEP was also used 

as a measure of goodness of fit for the transformed slave readings (RMSEPS).  
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VI.2.3. Calibration transfer 

In this study, we have evaluated the ability of four techniques (DS, PDS, OSC, GLSW) to 

counteract the effect of temperature shift on calibration transfer. A series of experiments 

were conducted where the temperature of the slaves was shifted according to the 

following temperature values:  ΔT = 0°C, ±10°C, ±20°C, ±30°C, ±40°C, ±50 °C. Fig. 60 

shows the dramatic change on MOX sensor waveforms due to temperature shifting (ΔT 

=-50 °C), for a temperature modulated TGS 2620 sensor exposed to the 3 test set ethanol 

concentrations.  

 

 

 

Fig. 59. Global temperature shift on the sensor waveform. Response of a TGS 2620 sensor unit to 

20, 60, 100 ppm of ethanol within a nominal temperature window of 200-300 °C for a) no 

temperature shift (gray-dashed corves) and b) for a temperature shift of ΔT =-50°C (red corves). 
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Transfer sample subset was selected using methods 1 and 2 (see Table 3). The effect of 

the number of transfer samples (from 1 up to 12) on the calibration transfer quality was 

studied, giving rise to a total of 17424 different calibration models transferred (12 

masters x 11 slaves x 11 temperature shifts x 12 calibration samples) per instrument 

standardization technique. An example of the calibration transfer process is shown in 

figures (60a-c) using Direct Standardization, for a temperature shifting of ΔT =-50 °C and 

12 transfer samples. 

 

Table 3. Selection of the transfer samples of the calibration dataset. These samples were selected 

using methods 1 and 2.  

 

 Method 1 Method 2 
Transfer 
Samples 

Sample 
Replicate 

Concentration 
(ppm) 

Sample 
Replicate 

Concentration 
(ppm) 

Eth Acet But Eth Acet But 
1 9 0 120 0 10 120 0 0 
2 10 0 0 0 2 0 120 0 
3 6 120 0 0 5 0 0 120 
4 1 0 0 120 7 0 0 40 
5 8 40 0 0 10 80 0 0 
6 10 80 0 0 10 0 40 0 
7 6 0 0 40 3 0 0 80 
8 9 0 0 120 2 40 0 0 
9 2 0 120 0 7 0 80 0 

10 7 40 0 0 7 0 0 120 
11 5 0 0 120 4 120 0 0 
12 5 0 0 40 8 0 80 0 
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These figures show the scores plot of a PCA model for the master array (60a), the 

uncorrected slave array (60b) and corrected slave array (60c). Calibration transfer allows 

placing test samples back to its original position or nearby. Finally, predictions from 

master and corrected slave instruments were compared through a statistical test based on 

the bias-variance trade-off, where the null hypothesis was that master and slave 

instruments presented the same error (RMSEP) and the alternative hypothesis that the 

slave instrument showed a higher error level than the master. 
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Fig. 60. Example of calibration transfer. PCA plot of the sensor response for the training (black 

circles) and test sets with interleaved concentrations for: (a) the master experiments (blue 

squares), (b) the uncorrected slaves (red diamonds) and (c) the corrected slaves after performing a 

Direct Standardization (green triangles), (ΔT=-50ºC). 
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VI.2.3.1. Parameter optimization 

We optimized the 4 calibration transfer methods minimizing the difference between the 

master and the corrected slave array readings. This procedure optimized the parameters 

of the different calibration transfer algorithms selecting them among a set of possible 

values. Thus, the window size w was selected from a list of 1 to 31 channels for PDS; the 

weighting parameter α within the collection of values 1, 0.5, 0.1, 0.05, 0.01, 0.05, 0.001 

for GLSW; and finally, the number of iterations, the tolerance and the number of 

orthogonal components respectively, from 1 to 10, within the set 90, 95, 98, 99, 99.9, and 

in the range of 1 to 12, for OSC. The validation started performing data correction for 

each technique and set of parameter values. The calibration model of the master 

instrument was then applied on the transformed calibration set of the slave instrument 

and the concentration predictions of both instruments were compared.  The comparison 

was performed through the calculation of the Root Mean Squared Error of Calibration 

(RMSECM-S):   

 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝐶𝐶𝑀𝑀−𝑆𝑆 = �∑ ∑ �𝑦𝑦𝑐𝑐,𝑗𝑗𝑀𝑀 − 𝑦𝑦𝑐𝑐,𝑗𝑗𝑆𝑆 �𝑀𝑀
𝑗𝑗=1

𝑁𝑁𝐶𝐶
𝑐𝑐=1

2

𝑁𝑁𝑇𝑇𝐶𝐶 ∙ 𝑀𝑀
 

(6.19) 

 

 

where yM
i,j and yS

i,j are the predicted concentration values of the master and slave 

instruments for the sample i-th sample and the j-th pure substances, NC (84) is the number 

of calibration samples and M  the number of substances present in the dataset (3). The set 
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of parameter values whose RMSECM-S was not able to be reduced in more than 1% by 

any other set was selected to build the calibration transfer model, for each calibration 

transfer algorithm. 

VI.2.3.2. Evaluation criterion 

A method to either accept or reject a calibration transfer between instruments based on 

the bias-variance trade-off is proposed. According to this result, the RMSE is 

decomposed in the sum of two terms: 

 

𝐸𝐸[(𝑦𝑦 − 𝑦𝑦�)2] = (𝐸𝐸[𝑦𝑦] − 𝑦𝑦�)2 + 𝐸𝐸[(𝑦𝑦 − 𝐸𝐸[𝑦𝑦])2] (6.20) 

 

where y and ỹ are, respectively, the vectors for the measured and theoretical predictions, 

given a set of samples.  First addend on (6.20) explains how biased the calibration model 

prediction is with respect its theoretical value, whereas the second term describes the 

dispersion on the measured prediction. That means that two instruments IA and IB with 

the same expected value and variance for the prediction (mean(yA) = mean (yB), var(yA)= 

var(yB) ) show equals error in prediction. We can easily expand this concept to matrices 

in the following way: 

 

              𝑇𝑇𝑑𝑑 �𝐸𝐸 ��𝑌𝑌 − 𝑌𝑌��
𝑇𝑇
�𝑌𝑌 − 𝑌𝑌���� = 

𝑇𝑇𝑑𝑑 ��𝐸𝐸[𝑌𝑌] − 𝑌𝑌��
𝑇𝑇
�𝐸𝐸[𝑌𝑌] − 𝑌𝑌��� + 𝑇𝑇𝑑𝑑(𝐸𝐸[(𝑌𝑌 − 𝐸𝐸[𝑌𝑌])𝑇𝑇(𝑌𝑌 − 𝐸𝐸[𝑌𝑌])]) 

(6.21) 
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 So now we use the multivariate mean and the covariance matrix of the prediction matrix.   

We compare the multivariate means through the Hotteling’s T2 test, and the covariance 

matrices using the Box’s M test, for a significance level of 95%. The Null Hypotheses 

were a) both instruments present the predictions matrices with the same multivariate 

mean and b) both instruments present prediction matrices with the same covariance. If 

none of the independent tests rejects its null hypothesis, we accept the calibration transfer 

between two instruments as success.  Conversely, if any of the independent tests rejects 

its Null hypothesis, we assume that the calibration transfer fails. 

VI.3. RESULTS  

To gain some insight on the effect of temperature shift on calibration model transfer, we 

will show first results of the master calibration model applied directly on the slave 

without correction. This will provide a baseline performance from where to improve. 

Then, we will present the results of the slave RMESP for an increasing number of 

transfer samples and also as temperature shifts varies in the range of [-50,50] °C. Finally, 

the results of the exhaustive statistical analysis will provide a comprehensive picture of 

the performance of the different calibration transfer techniques.   

 

In this study, each of the array replicates was used both as master instrument for the other 

replicates or as slave array to be corrected by other master array. When acting as master 

instruments, the array replicates produced similar calibration models in terms of 

complexity and model performance. Most of the array replicates built a 4 latent variable 
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PLSR model (9 out of 12) whereas the remaining (4) needed 5 latent variables to achieve 

the specifications set for cross-validation. The average RMSEPM for the set of master 

instruments was (4.7±1.1) ppm.  The direct application of the master calibration model in 

the slave arrays leaded, as anticipated, to high RMSEPS. Fig. 61 shows the average 

prediction error of uncorrected slave arrays (RMSEPS) along temperature shift, for all 

possible master-slave combinations. The RMSEPS was substantially higher than the 

RMSEPM. The minimum difference between instruments was found when no temperature 

shift was produced (RMSEPS|ΔT=0=29.1 ±18.9 ppm). As can be expected, the RMSEPS 

increased as the temperature shift between instruments increased. Though, this effect was 

not symmetric: shifts towards higher temperatures exhibited a greater penalty on the 

RMSEPS than shifts in the opposite direction. Comparing the most extreme temperature 

shifts in both directions we found that the error of prediction at ΔT=+50ºC was 

RMSEPS|ΔT=+50ºC=128.2 ±41.4 ppm, whereas at ΔT=--50ºC was RMSEPS|ΔT=-50ºC=40.6 

±6.1 ppm.  
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Fig. 61. Average RMSEPS as function of the temperature shift. Note that the worst predictions are 

biased towards positive temperature shifts. 

 

After data correction, the RMSEPS of the slave arrays was considerably reduced. The 

degree of error reduction depended on the amount of transfer samples and the shift of 

temperature. As a general trend, the RMSEPS decreased gradually until saturation as the 

number of transfer samples increased, for any temperature shift and calibration transfer 

technique. The influence of the transfer sample subset size on the quality of the 

calibration transfer is illustrated in figure 62(a-d).  The figure shows the average 

RMSEPS of the corrected slave instruments of the different calibration transfer 

techniques, for an increasing number of transfer samples and a fixed temperature shift of 

ΔT=-20ºC. DS and PDS obtained the lowest RMSEPS levels (6.3 ±2.1 ppm, and 6.1 ±1.4 
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ppm, respectively) although PDS needed a fewer number of samples to reach error 

saturation (five instead of eleven). OSC and GLSW showed higher RMSEPS values 

(around 8 ppm, for both techniques) and slower transitions to saturation. 

 

 

 

Fig. 62. Effect of the number of transfer samples. Average RMSEPS of the corrected slave 

instruments as function of the number of transfer samples, for a fixed temperature shift of ΔT=-

20ºC.  Data correction was performed using a) Direct Standardization (blue-dotted line), b) Piece-

wise Direct Standardization red-dotted line), c) Orthogonal Signal Correction (green-dotted line), 

and d) Generalized Least Squares Weighting (black-dotted line).  The averaged RMSEPM is 

included in each of the plots with comparative purposes. 
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Table 4. Parameter optimization of the CT models 1. Median, first quartile and third quartile of 

the optimized set of parameters used compensate for a temperature shift of -20ºC in the slave 

arrays, for a different number of transfer sample and calibration transfer technique. Note that for 

OSC only the number of orthogonal components (ncomp) was shown.  

 

Transfer 
Samples 

PDS (w ) OSC (ncomp) GLSW (α ) 
Q1 Median Q3 Q1 Median Q3 Q1 Median Q3 

2 1 9 11 2 2 2 0.1 0.1 0.1 
3 3 9 12 3 3 3 0.1 0.1 0.1 
4 5 9 17 2 4 4 0.01 0.1 0.1 
5 8 12 19 2 5 5 0.01 0.05 0.1 
6 7 13 21 2 6 6 0.01 0.05 0.05 
7 7 15 23 3 5 7 0.01 0.01 0.05 
8 9 15 23 3 5 8 0.005 0.01 0.05 
9 9 15 27 3 6 9 0.005 0.01 0.01 

10 11 17 27 3 6 8 0.005 0.01 0.01 
11 13 21 27 3 6 8 0.005 0.01 0.01 
12 13 21 27 3 6 8 0.003 0.01 0.01 

 

Concerning the influence of temperature shift, we found that the lowest RMSEPS were 

biased towards negative shifts, for any number of transfer samples and calibration 

transfer technique. However, PDS demonstrated to be the most robust technique against 

this direction-dependent effect. An example of this behaviour can be seen on Fig. 63(a-d), 

where we show the average RMSEPS of the corrected slave arrays using the four 

instrument standardization methods, for the complete set of the temperature shifts, fixing 

to 5 the number of transfer samples.  The minimum RMSEPS value for DS and PDS is 

obtained for a temperature shift of ΔT=-30ºC (9.4±4.0 ppm, and 6.2 ±1.6 ppm, 
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respectively). On the other hand, OSC and GLSW presented their minimum RMSEPS 

value for ΔT=0ºC (8.7±2.8 ppm for OSC and 9.1±3.3 ppm for GLSW). 

 

 

 

Fig. 63. Effect of the global temperature shift. Average RMSEPS of the corrected slave 

instruments as function of the temperature shift, for a number of 5 transfer samples. Data 

correction was performed using a) Direct Standardization (blue-dotted line), b) Piece-wise Direct 

Standardization red-dotted line), c) Orthogonal Signal Correction (green-dotted line), and d) 

Generalized Least Squares Weighting (black-dotted line). The average RMSEPM is included in 

each of the plots with comparative purposes. 
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Table 5. Parameter optimization of the CT models 2. Median, first quartile and third quartile of 

the optimized set of parameters used to correct the readings slave arrays, for the different 

temperature shifts and calibration transfer technique and fixing to 5 the number of transfer 

samples.  

 

Temp. 
Shift 
(ºC) 

PDS (w ) OSC (ncomp) GLSW (α ) 
Q1 Median Q3 Q1 Median Q3 Q1 Median Q3 

-50 17 19 29 5 5 5 0.01 0.05 0.1 
-40 13 21 31 5 5 5 0.01 0.05 0.1 
-30 9 21 27 5 5 5 0.01 0.05 0.1 
-20 8 13 22 3 5 5 0.01 0.05 0.1 
-10 7 11 20 2 4 5 0.01 0.05 0.1 

0 5 9 13 2 3 5 0.01 0.01 0.05 
10 5 7 13 3 5 5 0.01 0.05 0.1 
20 7 9 11 2.5 5 5 0.01 0.1 0.1 
30 11 13 15 3 5 5 0.01 0.1 0.1 
40 11 13 16 5 5 5 0.01 0.1 0.1 
50 15 13 19 5 5 5 0.01 0.1 0.1 

 

The outcome of the contrast of hypothesis test is in agreement with the previous results. 

Applying the master calibration directly into the slave arrays, none of them satisfied the 

null hypothesis (the slave and its corresponding master had the same RMSEP level). 

After calibration transfer, a number of them fall within the strict criteria of the test 

varying with the number of transfer samples, the temperature shift and the calibration 

transfer technique applied. Figure 64(a-d) shows the number of transformed slaves within 

the null hypothesis normalized to the total number of slaves (132) arrays, for each 

number of transfer samples, temperature shift and calibration transfer technique.  
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Fig. 64. Evaluation criterion. Plot of the normalized number of corrected slave arrays showing the 

same predictive performance as their corresponding master instrument, for each temperature shift 

and number of transfer samples. Data correction was performed using a) Direct Standardization, 

b) Piece-wise Direct Standardization, c) Orthogonal Signal Correction, and d) Generalized Least 

Squares Weighting. 
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of the slaves arrays properly corrected (that occurs at ΔT=-20ºC). Regarding OSC and 

GLSW, they exhibited a similar behaviour in the sense they experienced difficulties to 

correct the shifts of temperature. Note that both techniques needed 4 transfer samples to 

have any slave instrument correction accepted, for the closest temperature shift 

(ΔT=±10ºC). In any case, none of these techniques reached the 70% of accepted 

calibration transfers, even for no temperature shifting. Again, PDS presented the best 

performance, since the technique provided the highest number of acceptable slave 

corrections, using the lesser number transfer samples to build the calibration model and 

minimizing the RMSEP error contribution due to the temperature shift direction.  For 

instance, PDS only needed 5 transfer samples to obtain more than 70% of the corrected 

slave arrays accepted in the range of temperature shifts that goes from ΔT=-20ºC to 

ΔT=20ºC. 

VI.4. DISCUSSION  

The reason why PDS performed better corrections than DS is that PDS creates local 

corrective models for each of the channels of the slave array, whereas DS generates a 

single global model, lesser flexible and complex.  This seems to be so also for OSC and 

GLSW. In addition to this, PDS detected which channels of the master array (within a 

window) were more correlated to the particular channel on the slave array, down-

weighting the contribution to the correction of the non-important channels. As a 

consequence, the number of transfer samples between master and slave arrays needed to 

achieve the same error level tended to be lower for PDS. That suggests that the piece-
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wised extensions of OSC and GLSW may outperform the results obtained from the 

global versions of the algorithms, although this discussion is beyond the scope of this 

paper.  

 

The performance of a calibration model with a high degree of complexity is directly 

related with the availability of a large number of samples. Effectively, as we know from 

figure 62(a-d), an increment on the number of transfer samples provides, up to a point, an 

enhancement of the corrected RMSEP. This improvement is reflected on the structure of 

the calibration transfer models (Table 4), where the parameters that govern the sample 

transformations are gradually modified until reaching saturation. The reason for error 

saturation on the corrected slave arrays can be deduced from the selection of the 

calibration transfer sample subset, shown in Table 3. Basically, for a certain number of 

selected samples we start to find samples that belong to a previously acquired category 

(substance and concentration). In consequence, no new information is added to the 

transfer models and the error of prediction for the corrected slave arrays cannot decrease 

significantly.  The transition to error saturation is faster when the option for selecting the 

transfer samples is Method 2.  That occurs because it includes a representative of each of 

the categories present on the calibration set (with the exception of the air samples) before 

adding sample replicates, while Method 1 discards three sample categories. In reference 

to the calibration transfer models, those methods that performed data correction before to 

build the calibration model (GLSW and OSC) exhibited their best results employing the 
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sample subset method 1, whereas those methods that applied data correction after the 

creation of the calibration model (DS and PDS) showed their best performance for the 

sampling subset method 2. 

 

A special comment deserves the asymmetry in sensor response with respect to 

temperature shift. Revisiting the results of figure 63 (a-d) we observe that an increase on 

the temperature shift forces an increment on the model’s specifications (see Table 5). 

Interestingly, the asymmetry showed by the RMSPS for opposite temperature shift 

positions is also present on the parameter values of all the calibration transfer techniques. 

This is in agreement with the results obtained in Fig. 61 for a direct calibration transfer 

between instruments shifted in temperature, where the higher prediction errors were 

found towards positive temperature shifts. The asymmetry on the error due to 

temperature shifting was produced because the uncorrected slave array response tends to 

saturate to the highest voltage level (10 V) for any substance and concentration, as review 

in Fig. 59. Projecting the response of test set samples of a slave array shifted towards 

negatives increments of temperature (ΔT=-50ºC) on a PCA model built from the 

calibration set of a master array (Fig.60b) we see that these samples approximate to the 

master array response to air. Taking that result as a reference we can estimate the lower 

bound for the uncorrected slave array substituting the slave array samples by air 

measurements of the master array. That gives rise to a lower error bound around the 68 

ppm. Towards positive temperature shifts, no saturation on the uncorrected slave array 
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response is produced, so the test samples tend to spread on the PCA space and the error is 

continuously increasing. 

VI.5. CONCLUSIONS 

In the present study, it was demonstrated that the effect of temperature shifts between 

homologous MOX sensor arrays leads to invalid calibration transfers featured with low 

predictive performance and direction-dependent error magnitudes. To overcome 

instrument dissimilarities, the use calibration transfer is required. Among the four 

different calibration techniques used in this chapter, the Piece-wise Direct 

Standardization procedure showed the best performance in reducing the slave array 

prediction error for any temperature shift direction and using fewer transfer samples.  

This result was first explored inspecting the corrected RMSEPS and confirmed using 

statistical method based on the error’s bias-variance trade-off. The main advantage of the 

PDS method lied in its ability to correct individually each of the slave instruments 

channels through the use of multivariate local models, fact that provided less complexity 

and more flexibility to whole calibration transfer model. 
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CHAPTER VII 

 CONCLUSIONS OF THIS THESIS  

 
In this dissertation we have studied the role of sensor diversity and redundancy in odour 

information encoding.  Also, we have used these properties of the sensor arrays to 

address some of the open problems in artificial olfaction, namely sensor failure, feature 

selection, and calibration transfer. 

 

To this end, we designed and built an advanced prototype of electronic nose based on an 

array of MOX gas sensors, and inspired by the architecture of the olfactory epithelium. 

We considered sensor diversity as the number of distinct sensor types present in a sensor 

array, and sensor redundancy the average number of sensor copies along the different 

sensor types. We proposed to increase the diversity of our sensor array combining 

different types of MOX sensors along with a modulation of their operating temperatures, 

and its sensor redundancy by using multiple copies for each sensor type and modifying 

the sensor’s measurement circuits (voltage dividers) with different load resistances. 

Noteworthy, we implicitly linked sensor diversity to sensor features that caused 

variations on the array response due to chemical interaction. Similarly, sensor 

redundancy was related to sensor features that not provided any new chemical 

information to the array response but decreased the contribution of sensor. We considered 

these types of sensor diversity and redundancy as structural, in the sense that they were 
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present in the array by construction. We showed that structural sensor diversity and 

redundancy tended to increase, respectively, the ability of our sensor array to discriminate 

odours, and to estimate odour concentration. Tough, these claims deserve some 

comments. Sensor diversity couldn’t increase indefinitely the performance of the sensor 

array. A progressive increment of the array size (for a given size of the calibration set of 

samples) eventually leads to bad estimations of the prediction model parameters, and 

thus, to overfitting. On the other hand, the capacity of sensor redundancy to enhance 

odour concentration estimation depended on the nature of sensor noise. Independent 

sensor noise was efficiently rejected from the sensor array, whereas common sources of 

sensor noise fixed the limit for noise reduction. 

 

At a higher level of abstraction, the separation between diverse and redundant features in 

our sensor array was actually more diffuse. The reason for that was a product of three 

factors. First factor was sensor response correlation. Different commercial sensor types 

exhibited very similar responses to a set of odours. The same happened for adjacent 

sensor responses along the temperature modulation profile on a single sensor unit. In 

these cases, sensor features that we first considered as diverse were, in fact, redundant. 

Second factor was related to sensor response variability within the same sensor type. A 

modification of the sensor’s measuring circuit using different load resistors altered the 

dose-response curve of the sensor. As we showed elsewhere, an increment on the array 

response variability caused by a better odour quantity mapping tended to increase the 



 
 
 
 

197 
 

 
 

coding power of the sensor array. From this point of view, different load resistors should 

be considered diverse features, instead of redundant. We believe that only equivalent 

sensor features belonging to different sensor copies can be considered strictly redundant. 

Third, sensor diversity and redundancy were not absolute array magnitudes. Simple 

datasets, composed of few and very distinct odour samples, doesn’t take advantage of the 

potential sensor diversity of the array, so the major part of sensor features can be 

regarded as redundant. On the contrary, as the complexity of the dataset increases, sensor 

diversity becomes highlighted, and the level of sensor redundancy decreases. Therefore, 

data characteristics determine the degree of similarity between sensor features. At this 

point, we were in conditions to suggest functional definitions for sensor diversity and 

redundancy based on sensor feature clustering. Our proposal was to group sensor features 

according to their contribution to the variance of a dataset. In particular, we considered as 

similar sensor features those than spanned the same angle in the loading space of PCA 

decomposition. Thus, sensor diversity was defined as the number of clusters, and sensor 

redundancy as the average number of sensor features along the clusters. We believe that 

these definitions actually captured the essence of sensor diversity and redundancy, since 

sensor features that exhibit a similar behaviour are clustered regardless the physical 

sensor units they stemmed from.    

The second half of the thesis treated the applications of sensor diversity and redundancy 

in machine olfaction. First application was robustness to sensor damage. We asked 

ourselves under which conditions sensor redundancy could bear a massive turn-off of 
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sensors units in terms of data model performance. We found that not only the level of 

sensor redundancy, but the distribution of sensor faults across the different sensor types 

was crucial to prevent the degradation of data models. Such a fault distribution had to 

maintain the level of sensor diversity of the sensor array so as to bear the performance of 

data models. In other words, sensor fault distribution had to be independent of the sensor 

type so has to prevent the accumulation of damaged sensors in only a few sensor types.  

This result has an important implication for the design of large arrays of highly redundant 

sensors. It is recommendable to spread the different sensor types across the sensor array 

rather than distribute the sensors by areas of the same sensor type. Second application 

was feature selection in gas sensor arrays. We detected that this dimensionality reduction 

approach tended to optimize the sensor diversity of the array subset, disregarding sources 

of sensor redundancy. We identified this issue as a potential weak point of the approach, 

since sensor redundancy counteracts to some degree the effect of noise, and should be 

considered somehow in sensor array optimization. We proposed to include a feature 

extraction stage based on PLSR multivariate regression within the feature selection 

process to both compress the redundant sensor information and minimize the curse of 

dimensionality. This strategy was employed to enhance a feature selection search 

performed with Genetic Algorithms. In particular, we wanted to optimize operational 

sensor temperatures of an array of MOX gas sensors modulated in temperature for odour 

mixture discrimination. The optimal solution consisted in a set of temperature clusters 

spread along the different sensor types. These clusters were defined by a central sensor 
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temperature, which we took as a cluster representative, and its adjacent sensor 

temperatures. Sensor array optimization conducted only using the cluster representatives 

produced substantially worse results that employing all the cluster elements. This fact 

reinforced our idea that sensor response correlation was just another facet of sensor 

redundancy. Finally, we explored the application of instrument standardization 

techniques (DS, PDS, OSC, and GLSW) to transfer calibration models between e-noses. 

More specifically, we corrected global temperature shifts between instruments in 

temperature modulated sensor arrays.  This task was realized exploiting the high degree 

of sensor redundancy exhibited by our sensor array, at two different levels. First level of 

redundancy was achieved by simple instrument replication (we employed 12 copies of an 

array of 3 different MOX gas sensors). We took advantage of this type of sensor 

redundancy to perform multiple instrument standardizations, warranting the generality of 

the results. Second level of redundancy was obtained from correlations on the sensor’s 

waveform responses between master and shifted instruments. Our results showed that 

PDS was the best technique for rectifying instrumental differences. The reason for that 

was that PDS sought the most correlated sensor features between instruments within a 

region, and related them by means of local transformations. That gave rise to simple and 

flexible calibration transfer models, with a high capacity to generalize sample transfer 

beyond the transfer sample set. In contrast, the other techniques provided global and 

complex instrument transformations that usually leaded to invalid calibration transfer 

models.  
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CHAPTER VIII 

RESUMEN DE LA TESIS 

 

VIII.1. INTRODUCCIÓN 

La nariz electrónica (e-nose) es un instrumento de propósito general para la detección 

química de olores. Este instrumento está inspirado en los sistemas olfativos naturales, 

donde la discriminación de los olores se realiza sin necesidad de receptores altamente 

especializados. En lugar de esto, los sistemas olfativos naturales extraen la información 

de los olores a través de un conjunto de receptores pobremente selectivos, organizados de 

manera convergente. Tal arquitectura de detección permite combinar de las respuestas de 

las diferentes unidades de la matriz de receptores, dando lugar a representaciones 

particulares para diferentes estímulos olfativos. Este enfoque de la detección química, 

basada en la codificación de olores por parte de una población de receptores en conjunto, 

tiene como principal ventaja que es más robusta y eficiente que la codificación de olores 

llevada a cabo por cualquiera de sus elementos individuales.   

 

Una población de receptores obtiene su máximo rendimiento en la codificación olores al 

combinar los beneficios de la diversidad y la redundancia sensorial. Por diversidad 

sensorial entendemos los diferentes tipos de sensores que son responsables de 

incrementar la variabilidad de la población a un conjunto de olores. Del mismo modo, por 

la redundancia sensorial nos referimos al promedio de sensores replicados en una 
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población. El papel de la redundancia sensorial es proveer robustez a la codificación del 

olor contra el daño sensorial y el ruido.  Esta gran variedad de tipos de receptores  junto 

con su destacado su número son características fundamentales de los sistemas olfativas.  

Lamentablemente,  la nariz electrónica tradicional suele contar con un número limitado 

de sensores, con respuestas muy correlacionadas con los estímulos olfativos. Varias 

estrategias para mejorar la representación del olor usando matrices de sensores de gas se 

basan incrementar la diversidad y la redundancia sensorial. Sin embargo, sólo muy 

recientemente la implementación de estas estrategias en plataformas de detección 

química  ha sido tecnológicamente viable. 

 

El objetivo de este trabajo consiste en desarrollar  una de estas matrices de nueva 

generación para investigar las ventajas de representar estímulos olfativos mediante  

codificación poblacional. En particular, proponemos construir un sistema de detección 

química basado en una matriz de óxido metálico (MOX) sensores de gas, y dotados de un 

alto grado de diversidad sensorial y redundancia. Proponemos usar esta arquitectura de 

detección de bio-inspirada junto técnicas de reconocimiento de patrones estadísticos para 

hacer frente a algunos de los problemas sin resolver en olfacción artificial. Entre otros, 

esta tesis aborda los siguientes temas: optimización de la temperatura en matrices de 

sensores modulados por éste parámetro, robustez al daño sensorial para matrices 

altamente redundantes, y, de transferencia de calibración entre narices electrónicas. 
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VIII.2. LA NARIZ ELECTRÓNICA 

El amplio poder discriminatorio demostrado por el olfato biológico para la detección 

química de olores es la fuente de inspiración de la olfacción artificial  (Persaud and Dodd, 

2000). La olfacción artificial (una simulación automatizada del sentido del olfato) es una 

aplicación emergente de la ingeniería que tiene como objetivo detectar, identificar o 

cuantificar los olores. El instrumento icónico de la olfacción artificial tiene como nombre 

llama nariz electrónica. La nariz electrónica está formada por un conjunto de sensores 

parcialmente selectivos, combinado con un sistema de reconocimiento de patrones capaz 

de determinar ciertas propiedades de olor, tales como la identidad, la composición y la 

concentración (Gardner and Bartlett, 1994a). 

VIII.2.1. Tecnologías de sensores 

En olfacción artificial se utilizan diferentes tecnologías de sensores para la detección de 

gases. Entre ellas figuran los sensores óxido metálico (MOX), los polímeros conductores,  

(CP), los transistores de óxido metálico (MOSFET), las microbalanzas de cuarzo (QCM), 

los sensores de onda acústica superficial (SAW)  y los sensores ópticos (Arshak et al, 

2004). A pesar de las diferencias tecnológicas, todos estos tipos de sensores tienden a ser 

poco selectivos, sufrir derivas y envenenamientos, y ser sensibles a gases interferentes o a 

modificaciones ambientales (cambios de humedad y la temperatura). 

 

En este resumen incluimos información más detallada sobre los sensores MOX, pues son 

la base de nuestro sistema de detección químico. El principio de funcionamiento del 
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sensor MOX se basa en su cambio de la conductividad en respuesta a un gas (Albert and 

Lewis, 2000, Barsan et al., 2007). Las principales ventajas de los sensores MOX son sus 

respuesta rápida y sus pequeños tiempos de recuperación, así como su alta sensibilidad 

(Pearce et al., 2003). Sin embargo, exhiben selectividades pobres, tienden a tener un alto 

consumo de energía y sufren de envenenamiento irreversible cuando se exponen a 

compuestos sulforosos (Dickinson et al., 1998). 

 

La selectividad del sensor MOX depende de su temperatura de funcionamiento, ya que 

este parámetro gobierna la cinética de las reacciones de redox que tienen lugar en su 

superficie (Clifford and Tuma, 1983a; Clifford and Tuma, 1983b). La relación existente 

entre temperatura y selectividad puede explotarse mediante técnicas de modulación de 

temperatura que permiten aumentar la información discriminatoria proporcionada por el 

sensor (Lee and Reedy, 1999; Benkstein et al., 2009; Rogers et al., 2011; Rogers et al., 

2012). Existen dos estrategias para la modulación en temperatura: los transitorios 

térmicos y los ciclos de temperatura (Gutierrez-Osuna et al., 2003). 

VIII.2.2. Generación de volátiles 

Las técnicas de generación de volátiles más empleadas en olfacción artificial son el 

barrido del espacio de cabeza, los tubos de permeación, los burbujadores, los sistemas 

estáticos y la dilución de sustancias volátiles en un flujo de gas portador (Pearce et.al, 

2003). Estás técnicas son más o menos efectivas en su función dependiendo de las 

especificaciones requeridas a nuestro sistema. Por ejemplo, el espacio de barrido de 
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cabeza no es recomendable cuando se desea controlar de manera fina la concentración de 

muestra de volátil, como tampoco lo son los sistemas estáticos sin esperamos conseguir 

muestras de olores de forma continuada. 

 

En este apartado, explicamos el método de dilución de un volátil en un flujo de gas 

portador, pues nuestro sistema de generación de volátiles está inspirado en él. Esta 

técnica consiste en diluir un flujo odorante de concentración conocida en una corriente de 

gas portador  (Mandayo et al., 2003). Una vez que se alcanza el estado de equilibrio de 

fluidos dentro de la cámara de medición, la concentración de odorante es igual a la razón 

entre el flujo odorante y el caudal total de la corriente. Este método proporciona 

concentraciones estables, pero requiere un diseño consciente del circuito de fluido para 

evitar tiempos transitorios excesivos hasta alcanzar el estado estacionario de la 

concentración. 

VIII.2.3. Procesado del señal 

Las técnicas de reconocimiento de patrones permiten caracterizar la respuesta 

multivariante de un conjunto de sensores con el fin de detectar, identificar y cuantificar 

los olores. Procesar la señal de estos sensores es necesario para obtener tanto buenos 

descriptores olfativos como predicciones fiables para tales descriptores. El  procesado de 

datos suele concebirse como en serie de etapas ordenadas en el tiempo (Gutierrez-Osuna, 

2002): pre-procesado (Gardner et al, 1998), reducción de dimensionalidad (Marco and 
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Gutierrez-Galvez, 2012). Predicción (Gutierrez-Osuna, 2003)  y validación (Ripley, 

1996; Efron and Tibshirani, 1993)..  

VIII.2.4. Grandes matrices de sensores 

La redundancia de un conjunto de sensores puede ser incrementada replicando los 

diferentes tipos de sensor de la matriz de sensores en grandes cantidades. Sin embargo, 

no ha sido hasta hace poco que la construcción de estas grandes matrices de sensores ha 

sido tecnológicamente posible. En la siguiente sección, se presentan cuatro prototipos de 

nariz electrónica basados en grandes conjuntos de sensores homogéneos.  

 
Estas narices electrónicas de nueva generación utilizan las tecnologías de sensores 

ópticos o poliméricos. La primera de estas grandes matrices de sensores, es un sistema de 

detección basado en un conjunto óptico de alta densidad (Dickinson et al, 1999), con 

miles de sensores en forma de pequeñas perlas de tres clases discretas (Nilo Rojo / poli, 

Rojo Nilo / sílice y Sensidye) dispersos en toda la cara de una fibra óptica grabada. Otra 

gran matriz basada en sensores de gas ópticos consiste en un conjunto de sensores cuya 

capa sensible es continua y está formada  por indicadores de color (ZnTTP, MnTTP, 

CoTPP y PtTTP) disueltos en una matriz de PVC (Di Natale et al., 2009). Los sensores 

poliméricos también se han utilizado para el desarrollo de grandes matrices de sensores 

de gas (Gardner et al., 2009). Un ejemplo es de esto es un sistema de olfacción artificial 

que combina 3 matrices replicadas de 300 sensores compuestos por material polimérico 

conductor polímero de material compuesto conductor (24 tipos de polímeros) con dos 
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columnas remanentes recubiertas con compuestos polares y no polares. Finalmente, el 

último sistema de medida que vamos a  presentar está compuesto por una matriz a gran 

escala de 16.384 polímeros conductores de 24 clases diferentes (Bernabei et al., 2012).  

VIII.2.5. Nuestra matriz de sensores 

Nuestro sistema de detección química comprende dos bloques: el bloque de medida y, el 

sistema de transporte de volátiles.  

 

El sistema de medida, se encarga de la adquisición y el almacenamiento de la 

información química de los compuestos volátiles obtenidos de sensores MOX. Este 

bloque incluye la matriz de sensores, y la electrónica para el control de fuente de 

alimentación del sensor y para polarizar los circuitos de medida. El sistema de 

adquisición de datos está formado por los sensores de gas, una placa de medida, dos 

multiplexores y una tarjeta de adquisición de datos. Utilizamos 8 tipos diferentes de 

sensores MOX proporcionados por las casas comerciales FIGARO (TGS-2600, TGS-

2602, TGS-2610, TGS-2620) y FIS (SB-11B-00, SB-1500, SB-41 a 00, SB-AQ1-04), 

con 12 repeticiones para cada tipo. Estos 96 sensores se colocan en placa de medición de 

8 columnas y 12 filas. Cada columna es independiente de los otros y corresponde a la 

alimentación de un tipo de sensor. El circuito básico de medida de nuestro sistema es el 

divisor de tensión. Cada unidad de sensor se mide a través de una batería de 16 

resistencias de carga  (0.10K, 0.25K, 0.40K, 0.87K, 1.30K, 3.01K, 6.19K, 9.09K, 

21.00K, 30.01K, 40.20K , 51.10K, 68.10K, 82.5K, 90.90K, 105.K). Los divisores de 
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tensión se construyen por medio de un módulo con dos multiplexores de alta velocidad 

Estos multiplexores permiten conmutar la conexión de los sensores a las resistencias de 

carga. El punto de conexión entre los multiplexores se toma para adquirir  la respuesta del 

sensor. Este proceso se realiza utilizando una tarjeta de adquisición de datos.  

 

El bloque de potencia  y  control comprende dos fuentes independientes de energía y una 

placa de control hecho a mano. El circuito básico para la distribución de energía de la 

placa de control consta de un amplificador operacional conectado a la terminal de puerta 

de un transistor de potencia PMOS. El control se realiza mediante la comparación de la 

señal digital proporcionada por un DAQ en el terminal de entrada negativo de la OA con 

una señal de referencia constante de 2.5V en el positivo. Los sensores MOX se modulan 

en temperatura  mediante perfil de rampa de voltaje  generada por una fuente DC, 

mientras que los diferentes divisores de tensión están polarizados a 10 V usando otra 

fuente de alimentación de DC. 

 

La función del sistema de generación de volátiles es generar mezclas de olores a 

diferentes concentraciones y transmitirlos a la cámara de sensor. El sistema de transporte 

de volátiles incluye un generador de compuestos volátiles, dos distribuidores de gas, una 

batería de 8 electro-válvulas, y una cámara de medida de aluminio. El generador de los 

compuestos volátiles se basa en la evaporación controlada de compuestos líquidos en un 

flujo de gas. Después del generador de compuestos volátiles, uno de los distribuidores de 



 
 
 
 

209 
 

 
 

gas divide el flujo de odorante en 8 flujos iguales (uno por cámara tipo canal de 

sensores). Otras configuraciones de distribución de flujo son posibles mediante el uso de 

las electro-válvulas. A  la salida de la cámara de sensores, los 8 flujos correspondientes a 

cada canal de sensores se unifican usando el segundo distribuidor de gas.  

VIII.2.6. Bases de datos 

Usando nuestro sistema hemos adquirido tres bases de datos.  La primera de ellas 

contiene las respuestas matriz de sensores a 7 concentraciones diferentes de acetona 

distribuidos a lo largo de 3 décadas de concentración (10, 50 100 500, 1000, 5000 y 

10000 ppm).  La  segunda, comprende las lecturas de la matriz de sensores a 6 

concentraciones diferentes (0, 20, 40, 60, 80, 100 y 120 ppm) de 3 sustancias puras 

(etanol, acetona y butanona.). Por último,  la última base de datos consiste en las 

respuestas de la matriz de sensores a las mezclas binarias de etanol, acetona y butanona 

en el rango de 0 a 120 ppm de cada substancia pura. Los experimentos se diseñaron para 

tener una transición desde un primer analito a segundo analito en seis pasos, para cada 

uno de 3 combinaciones binarias de los 3 analitos. 

VIII.3. DIVERSIDAD SENSORIAL Y REDUNDANCIA 

El sistema olfativo es el ejemplo arquetípico de una matriz sensorial que codifica la 

información de los estímulos químicos utilizando una vasta población de estímulos 

sensoriales (Friedrich and Stopfer, 2001; Korsching, 2002; Miura et al., 2012; Buck and 

Axel, 1991).   La razón por la evolución ha seleccionado la codificación de estímulos 
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mediante poblaciones de sensores para adquirir está vinculado a su robustez. La 

combinación de gran número de receptores con una arquitectura altamente convergente 

da lugar al fenómeno emergente de la hiper-agudeza sensorial (Bialek, 1987). Dos formas 

de hiper-agudeza están presentes en los receptores olfativos (Pearce et al., 2001). La 

primera de ellas está relacionada con la variabilidad de respuestas de los receptores de 

población (diversidad sensorial) y es responsable de mejorar en la estimación de la 

cualidad del olor (Buck and Axel, 1991). El segundo tipo de hiper-agudeza es producto 

de la  gran cantidad  de copias que existe para los diferentes tipos de receptores 

(redundancia sensorial), y mejora en la estimación de la cantidad del olor (Drongelen, 

1978; Boeckh and Ernst, 1987; Duchamp-Viret et al., 1989; Shier,  2004). 

 

Este capítulo se centra en el estudio de la diversidad de sensor y redundancia en nuestra 

matriz de sensores de gas. En primer lugar, mostramos fuentes de diversidad estructural 

sensor y redundancia presente en nuestra matriz. Después ilustramos que la diversidad de 

sensor y redundancia soportan la codificación de la información olfativa en matrices de 

sensores de sensores.  Finalmente proponemos una definición más general de diversidad 

y redundancia en matrices de sensores. 

VIII.3.1. Diversidad y redundancia en nuestra matriz  

En este apartado, mostramos una variedad de ejemplos de cómo la diversidad de sensores 

y la redundancia mejoran en cierta medida la calidad de las predicciones obtenidas a 
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partir de una matriz de sensores de gas. En particular, comprobamos esto para las 

diferentes fuentes de diversidad estructural  y redundancia de nuestro sistema de medida.  

 
Empezamos con la diversidad sensorial. Al incrementar en número de la variabilidad del 

conjunto de respuestas de los sensores, ya fuera mediante el uso de sensores diferentes o 

mediante la técnica de modulación de temperatura de los sensores, la capacidad de 

predicción de nuestro sistema de detección química tiende mejorar.  Esto lo chequeamos 

mediante la tasa de clasificación de un clasificador cuadrático (para el caso de diferentes 

sensores) y usando el área bajo la curva ROC (para el caso de modulación de 

temperatura). También, comprobamos que existe una relación inversa entra la diversidad 

sensorial y la correlación de la respuesta de los sensores, analizando los loadings de la 

descomposición PCA, para el caso de modulación en temperatura. En cuanto a la 

redundancia de sensores, estudiamos como el error de predicción de concentración 

debido a la presencia de ruido independiente tiende a disminuir al promediar la respuesta 

de sensores (para el caso copias de sensores) u optimizar la respuesta de la matriz 

trabajando en condiciones de máxima sensibilidad (para el caso de las diferentes 

resistencias de carga)  

VIII.3.2. Codificando la información olfativa 

Hemos visto de una manera intuitiva cómo la diversidad y redundancia sensorial soportan 

la codificación de la información de olores en nuestra matriz de sensores. Ahora, 

presentamos un enfoque más formal para abordar esta cuestión sobre la base de 
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estadísticas y medidas de Teoría de la Información. Aquí tratamos de evaluar capacidad 

de codificación para las matrices de sensores dotados con diferentes grados de diversidad 

sensorial y estudiamos en profundidad el papel de la redundancia sensorial en la 

reducción de ruido. 

 

Para el caso de diversidad sensorial, calculamos la Información Mutua de un conjunto de 

sensores virtual al que dotamos con dos niveles de variabilidad en la respuesta. El primer 

nivel de diversidad viene dado por el rango receptivo molecular de los sensores (RR). El 

segundo, con las variaciones de las curvas dosis-respuesta que presenta la población de 

sensores. En nuestro experimento, vamos incrementando paulatinamente el número de 

sensores de la población. Observamos que, si nuestra matriz de sensores sólo tiene uno de 

los dos niveles de diversidad (tener diferentes RRs), tiende a codificar peor la 

información olfativa que si tiene ambos niveles.  Por otro lado, podemos intuir dos tipos 

de codificaciones olfativas: Una basada en optimizar las respuestas de los sensores a una 

serie de estímulos odoríferos dados. Esta codificación estaría basada en la identificación 

de los componentes puros que forman parte del olor, y sería típica sistemas olfativos 

naturales. Otra, que se  basaría en codificar los olores en función de cómo los sensores 

responda a su concentración, y aparecía en sistemas de detección química artificiales. 

  

En referencia a la redundancia de sensores, trabajamos con dos aproximaciones 

diferentes: Agregación de sensores y optimización de la matriz. La agregación de 
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sensores la estudiamos a partir de métodos estadísticos. En esencia, comprobamos que la 

respuesta ruidosa del agregado de sensores disminuye con el número de sensores 

agregados. Sin embargo, está disminución depende de la naturaleza del ruido de los 

sensores y su nivel de independencia. También, ponemos en evidencia la existencia de 

fuentes de ruido común en nuestra matriz de sensores. Respecto a la optimización de la 

matriz, realizamos un análisis de la Información de Fisher obtenida usando diferentes 

resistencias de carga para codificar la concentración de un analito en condiciones 

ruidosas (ruido Gaussiano de media 0). Vemos que encontrar la resistencia de carga que 

optimiza la Información de Fisher para cada concentración equivale trabajar en 

condiciones de máxima sensibilidad del divisor de tensión. Esta solución es mejor que el 

simple promediado de sensores. 

VIII.3.3. Definición funcional de la diversidad y  la redundancia 

En la introducción de esta tesis doctoral, definimos la diversidad sensorial como el 

número de diferentes tipos de sensores responsable de provocar la variabilidad de 

respuesta de sensores a matriz a una colección de olores; y la redundancia sensor, como 

el número promedio de copias de sensores en una población. Observamos que las 

definiciones anteriores implican una agrupación de los receptores de matriz de acuerdo 

con un criterio de similitud. De esta manera, los grupos de receptores similares se 

consideran del mismo tipo. El número de grupos de sensores corresponde entonces a la 

diversidad sensor de la matriz, y el número promedio de receptores a lo largo de las 

agrupaciones a su redundancia sensor. 
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Para caracterizar la diversidad y la redundancia, se propone un método para estimar el 

grado de diversidad de sensor y redundancia de una serie de sensores basados en la 

agrupación de sus unidades sensoriales. Más específicamente, se realiza un agrupamiento 

por el ángulo según los loadings de un PCA de los datos de los sensores. Nuestro 

razonamiento es el siguiente. Tenemos en cuenta que un modelo PCA de los datos es una 

proyección de éstos originales sobre un nuevo conjunto de ejes correspondientes a los 

vectores propios de la matriz de covarianza de los datos (las direcciones en el espacio de 

características donde los datos varían más). Estos vectores propios expresados en los ejes 

originales son llamados generalmente los loadings del modelo PCA. Los sensores de la 

matriz que explican la varianza de los datos de manera similar contribuyen de manera 

similar a los loadings. Por lo tanto, las características de los sensores que son redundantes 

tienden a abarcar el mismo ángulo sólido en el espacio los loadings y ser agrupados en el 

mismo clúster. Del mismo modo, el número direcciones "eficaces" que agrupan el 

conjunto características representan su diversidad sensor.  

VIII.4. ROBUSTEZ AL FALLO SENSORIAL 

El envejecimiento, el envenenamiento, y el fallo eléctrico son las principales causas para 

el fallo sensorial en una matriz de sensores de gas. El  fallo sensorial constituye una 

desventaja en detección química porque degrada los resultados de los modelos de 

predicción formados en ausencia estos fallos. Para asegurar predicciones fiables, los 

sensores dañados deben ser reemplazados por sensores libres de fallos y la matriz tiene 

que ser recalibrada, lo cual es un proceso largo y costoso. Un enfoque posible para evitar 
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el efecto pernicioso fallo sensorial consiste en explotar la información redundante 

obtenida a partir de grandes matrices de sensores. Este enfoque se inspira en la 

redundancia sensorial masiva mostrada por el epitelio y el  bulbo olfativo  (Bozza and 

Kauer, 1998, Firesten, 2001). Sólo unas pocas matrices de sensores de gas dotadas con un 

gran número de unidades receptoras se han fabricado hasta la fecha (Dickinson et al, 

1999; Di Natale et al., 2009; Gardner et al., 2009; Bernabei et al., 2012). Nuestra 

hipótesis es que la distribución de sensores dañados a través de los tipos de sensores y no 

sólo el nivel de redundancia es la clave para hacer que el sistema robusto al fallo 

sensorial. El objetivo de este capítulo es estudiar el efecto de la distribución de sensores 

dañados en la degradación del rendimiento de un sistema conjunto de sensores, para 

diferentes escenarios de fallo (fallo de sensores dependiente e independiente) y tipos de 

fallo (envejecimiento, envenenamiento y fallo eléctrico).  

VIII.4.1. Materiales y métodos 

Para realizar esta tarea, utilizamos los datos experimentales de nuestra  matriz altamente  

redundante de sensores  MOX modulados en la temperatura. Recordamos que nuestra 

matriz esta dotada con dos niveles de redundancia: 1) 12 réplicas de cada tipo de sensor 

para un total de 96 sensores, y 2) 16 resistencias de carga para medir cada  uno de los 

sensores. Esto hace un total de 1.536 medidas por segundo. Los datos experimentales 

usados provienen de la base de datos II.  
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Con el fin de determinar la degradación del rendimiento del sistema se llevan a cabo dos 

experimentos en los que las unidades sensoriales se ven obligadas a fallar,  considerando 

dos escenarios diferentes de distribución de fallo del sensor. En el primer experimento, se 

caracteriza la evolución de la diversidad del sistema y la redundancia para un fallo 

progresivo de unidades sensoriales. Para ello, usamos la definición funcional de la 

diversidad y la redundancia que propusimos en el capítulo II. El segundo experimento  se 

diseña para determinar específicamente la degradación del rendimiento de los modelos 

predictivos. El sistema está capacitado para separar el etanol, acetona y butanona a 

diferentes concentraciones usando un modelo que combina PCA y LDA. Las muestras de 

test se corrompen sintéticamente por medio de tres tipos diferentes de tres tipos diferentes 

de fallos (fallo eléctrico,  envenenamiento y variación de la sensibilidad del sensor). Para 

evaluar la tolerancia de la matriz contra el fallo del sensor, se utiliza una medida de la 

separación de las clases de olor tales como la puntuación de Fisher, ya que proporciona 

una medida mucho más sensible que la clasificación. 

VIII.4.2. Resultados y discusión 

Para caracterizar nuestra serie de sensores en términos de diversidad y redundancia, se 

realiza un experimento en el que eliminamos al azar unidades sensoriales mientras se 

monitorea el número de grupos activos restantes (diversidad) y el número medio de 

unidades sensoriales por clúster activo (redundancia). Consideramos clústeres activos 

aquellos que transmiten información discriminatoria. Para determinar qué clústeres están 

todavía activos, definimos un umbral fijando el porcentaje de unidades sensoriales vivas 
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en clúster dentro de un grupo por debajo del cual el clúster ya no está activo. Para el caso 

independiente, la diversidad del sistema se mantiene en un nivel alto para cualquier nivel 

de umbral hasta que decae abruptamente cuando el porcentaje de sensores dañados 

alcanza el umbral. A continuación, la diversidad cae abruptamente.  Esto es debido a que 

aproximadamente todos los clústeres se inactivan al mismo tiempo al alcanzar el valor de 

umbral. Para el caso dependiente, la diversidad decae de paulatinamente en torno al valor 

de umbral. Este comportamiento es coherente con la manera diferente en que se retiran 

las unidades sensoriales cuando consideramos dependientes. Cada sensor físico contiene 

un número unidades sensoriales adyacentes, es decir que es probable muchas pertenezca 

al mismo clúster. En consecuencia, el fallo de cada sensor físico se concentra en un 

número reducido de clústeres. Esto explica la distribución asimétrica de unidades 

sensoriales defectuosas entre clústeres y por  lo tanto la inactivación progresiva de las 

agrupaciones. Si estudiamos ahora de la redundancia, vemos que ésta disminuye 

progresivamente en ambos escenarios, observándose un comportamiento casi lineal. Este 

comportamiento se mantiene para los valores más altos del umbral en ambos escenarios, 

mientras que para valores bajos del umbral el escenario dependiente se aleja de la 

linealidad. Esto sucede  para valores bajos de la redundancia. La causa de este fenómeno 

parece ser las diferentes distribuciones de terminación de clústeres en los dos escenarios.  

 

En el segundo experimento se estudia la evolución del Fisher Score en términos del 

número de sensores dañados para los 3 tipos de fallo y los 2 escenarios de unidades 
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sensoriales dañadas. Los resultados muestran que  para cualquier tipo de fallo en el 

sensor, el rendimiento es mucho más robusto en el escenario independiente que en la 

dependiente. En las curvas de escenarios independientes, el FS se mantiene sin casi 

ninguna pérdida hasta que un 60-80% de los sensores dañados y cae abruptamente 

después de eso. Esto muestra un alto comportamiento robusto para esta distribución de 

las fallas. Las curvas del escenario dependiente degradan  suavemente. Esto hace que el 

sistema mucho menos robusto para la misma cantidad de fallo del sensor. En cuanto a los 

tipos de fallo, el fallo eléctrico es la más leve de los fallos ya que el sistema es capaz de 

lidiar mejor con él que con los otros dos fallos para ambos escenarios. Por el contrario, el 

envejecimiento es el tipo de fallo más grave para la matriz de sensores. Estos resultados 

muestran que un cambio de sensibilidad de los sensores tiene un impacto negativo más 

fuerte sobre la capacidad del sistema para diferenciar los olores que un sensor insensible 

que siempre proporciona el mismo valor. 

 

Nuestros resultados muestran que el rendimiento de nuestra matriz es radicalmente 

diferente dependiendo de la distribución de los defectos sensoriales. Vemos que ésta 

obtiene el mejor rendimiento cuando las unidades sensoriales defectuosas se distribuyen 

uniformemente a través de los diferentes tipos de sensores. También, que el rendimiento 

de la matriz disminuye cuando las unidades sensoriales defectuosas se concentran en 

algunos tipos de sensores. 
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Esta diferente degradación del rendimiento puede ser explicado observando los resultados 

del experimento sobre caracterización de la diversidad y la redundancia. Comprobamos 

que el nivel de redundancia de la matriz es prácticamente igual para los dos escenarios de 

daño sensorial. Esto significa que, sorprendentemente, la diferencia en el rendimiento en 

ambos escenarios no es directamente debido al nivel de redundancia de la matriz. Hemos 

visto que los dos escenarios exhiben una notable diferencia entre el nivel de diversidad 

del sistema en ambos escenarios. Esto muestra claramente que la diferencia en el 

rendimiento del sistema bajo ambos escenarios es debido al nivel de la diversidad que el 

sistema es capaz de mantener en cada nivel del proceso de daños sensor.  

 

Finalmente, podemos adquirir una mayor compresión de los efectos diferenciales de cada 

fallo mediante el estudio de la proyección PCA-LDA de los datos. Todos los fallos 

provocan un encogimiento más un corrimiento de la proyección de los datos de test en 

este espacio. Además de esto, el envenenamiento incrementa la dispersión dentro de clase 

datos. Sumado a estos dos efectos, el envejecimiento añade una distorsión del patrón 

proyectado. En consecuencia, el orden de fallos según lo dañinos que resultan la 

estabilidad de los patrones de olores obtenidos con el sistema es, de menos a más: fallo 

eléctrico, envenenamiento y envejecimiento.  

VIII.5. SELECCIÓN DE CARACTERÍSTICAS 

Una posible estrategia para aumentar la selectividad de los sensores MOX consiste en 

modificar su temperatura operativa. Este parámetro modifica la sensibilidad del sensor a 
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través de olores, y por lo tanto, el grado de selectividad de un sensor de gas MOX cuando 

se expone a una mezcla de olores (Clifford and Tuma, 1983a; Clifford and Tuma, 1983b).  

 

En este apartado presentamos otra posible aproximación para la discriminación de olores 

usando matrices de sensores MOX moduladas en temperatura. Nuestro método se basa en 

el marco teórico establecido por los autores Pearce y Sánchez-Montañés (Pearce 2000, 

Pearce and Sanchez-Montanes, 2003) para optimizar el rendimiento de detección de los 

sistemas de detección química, cuyo principal objetivo consiste en maximizar el Número 

de Características Olfativas Discriminables (NO), un parámetro semejante a una relación 

señal ruido del sistema. La principal contribución de nuestro trabajo consiste en el uso de 

una versión mejorada de su método para hacer frente a grandes conjuntos de datos con 

sensores no lineales y redundantes. En particular, proponemos el uso de regresión de 

mínimos cuadrados parciales (PLSR) tanto para linearizar la transformación que 

relaciona el espacio de los olores con el espacio de los olores, como para el olor al reducir 

la dimensionalidad del espacio de los sensores. Adicionalmente, proponemos reformular 

el cálculo del volumen que ocupa el ruido en el espacio de los sensores. El método se 

basa en computar el determinante de la matriz del ruido. 

VIII.5.1. Materiales y métodos 

Utilizamos la respuesta de 3 de sensores pertenecientes a nuestro sistema de detección 

química (TGS-2602 y TGS-2610, y TGS-2620, de la casa comercial Figaro Inc.), 

modulados en temperatura con un perfil rampa (de 0 a 5 V durante 90 segundos). Para 
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adquirir la respuesta de los 3 sensores se conecta cada uno de a una resistencia de carga 

de 6.1 KΩ, en configuración de medio puente. Medimos la tensión de salida de los 

sensores al ser expuestos a 6 concentraciones diferentes de etanol y acetona (0, 20, 40, 

60, 80,100 y 120 ppm) y sus mezclas lineales (20-100, 40-80, 60-60, 80-40, 100-20 

ppm), obtenidas de combinar las bases de datos I y 2. Por lo tanto, el total de las 

mediciones por muestra olor es 300 (3 tipos de sensores x 100 temperaturas).  

 

NO se calcula después de realizar una regresión PLSR que relaciona la respuesta de los 

sensores con la composición de las muestras. Este parámetro se obtiene dividiendo el 

volumen del espacio de los olores visto desde el espacio de los sensores (VS), entre el  

volumen de ruido de los sensores (VN).  VS, en el espacio de los scores de la PLSR, se 

computa como el determinante de la matriz sensibilidad reducida Ŝ. Esta matriz, a su vez, 

puede conocerse a partir de la matriz de regresión (Q). VN es proporcional al 

determinante de la matriz del ruido. 

 

Hemos realizado tres experimentos usando los datos previamente descritos. El primer 

experimento (I) ilustra el método  para dos unidades de sensor MOX (TGS-2610, y TGS-

2620).  En un segundo experimento (II) buscamos la mejor combinación binaria de las 

temperaturas de dos unidades de MOX (TGS-2610, y TGS-2620). Para ello, debemos 

regularizar el parámetro NO, dividiéndolo por su matriz el número de condición de Ŝ, 

para hacerlo robusto a colinearidad de la respuesta de los señores de la matriz. En el 
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tercer experimento (III), se modela la resistencia de tres sensores MOX a diferentes 

temperaturas como respuesta a mezclas de gases binarias (TGS-2602, TGS-2610, y TGS-

2620). Encontramos el conjunto óptimo de temperaturas que maximiza la separación de 

olores para un espacio de olores simulado combinando nuestra metodología con una 

selección de características basada en algoritmos genéticos. 

VIII.5.2. Resultados y discusión 

Los resultados del primer experimento estiman que Número de Características Olfativas 

Discriminantes (NO) es aproximadamente de 248, para un número de condición de la 

matriz de sensibilidad reducida Ŝ de 4.6. Si comparamos las áreas ocupadas por el 

volumen accesible por los sensores y el volumen ocupado por el ruido, vemos que este 

resultado es una buena aproximación para NO.  En relación con el segundo experimento, 

calculamos de NO, Cond (Ŝ), y NO/Cond (Ŝ), para las combinaciones por parejas de las 

temperaturas de los sensores. De acuerdo con una selección de características basada sólo 

en el parámetro NO, las mejores temperaturas para separar las muestras de olores están 

más allá de los 250 º C, para ambos sensores. Sin embargo, estos resultados son espurios 

y son debidos a un mal condicionamiento de las matrices Ŝ, tal y como podemos saber al 

calcular a partir de su número de condición. Tras regularizar NO, encontramos que las 

mejores temperaturas están alrededor de 250ºC para la unidad de TGS-2610 y 340ºC para 

el TGS-2620. El valor de NO en este punto es 384. Por último, en el experimento III 

realizamos una optimización de la temperatura para mejorar la discriminación de las 

mezclas de etanol y acetona. Esta optimización temperatura se realiza sobre respuestas de 
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sensores simulados modeladas a partir de las lecturas de los sensores TGS-2602, TGS-

2610, y TGS-2620. Más específicamente, se genera un espacio de sensores que se 

corresponde a un espacio de los  olores de 9 muestras: [80-40; 80-60; 80-80; 60-40; 60-

60; 60-80; 40-40; 40-60; 40-80]. Sin realizar ninguna selección de características el valor 

de NO para esta base de datos simulada es de NO=32. Combinado múltiples repeticiones 

de algoritmos genéticos (5000) con nuestro método de selección, obtenemos que el valor 

final de NO es de 236. 

 

En nuestra opinión, la principal limitación del método original consiste en que éste no es 

aplicable en una base de datos cuyo número de sensores supere al número olores puros. 

Por lo tanto, parte de la información discriminante proporcionada por el conjunto de 

sensores simplemente no puede ser utilizada. Para superar este problema hemos 

propuesto usar métodos de regresión multivariante (tales como PLSR) para disminuir la 

dimensionalidad del espacio de los sensores, combinado las características del sensor más 

correlacionadas. Así el parámetro NO se calcular sobre un espacio de sensores reducido, 

cuya matriz de sensibilidad ha sido linearizada y que, además,  presenta una mejor 

relación señal a ruido. Como mejora adicional del método calculamos el determinante de 

la matriz del ruido para conocer el volumen del ruido en el espacio de sensores. De esta 

manera volumen de ruido  es computado teniendo en cuenta que éste puede co-variar para 

diferentes combinaciones de sensores.  
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Otra de las mejoras clave de nuestra versión del método de selección de características 

consiste en la regularización NO. Esta regularización se realiza simplemente dividiendo 

NO por Cond (s). Números de condición grandes involucran transformaciones mal 

definidas. Esto significa que incluso tolerancias leves en las muestras del espacio olores 

causan grandes diferencias de respuesta en el espacio de los sensores. Cond (Ŝ) se 

relaciona con el grado de ortogonalidad de los vectores fila de la Ŝ. Matrices con vectores 

fila casi ortogonales tienden a tener condiciones números cercanos a 1. Notamos que, en 

consecuencia, NO y NO / Cond (Ŝ) convergen al mismo valor en dichas condiciones. Así 

que las temperaturas de los sensores más discriminativos (que son los que proporcionan 

la respuesta más "ortogonal" a los olores) quedan realzadas.   

Como comentario final, creemos interesante recalcar que nuestra optimización de 

temperaturas de sensor ha llevado a resultados análogos a los que se obtendría imitando 

la arquitectura del epitelio olfativo. Siguiendo la analogía, los diferentes glomérulos 

(clústeres de temperatura) codifican el olor, mientras que los sensores redundantes dentro 

de cada grupo (respuestas del sensor a temperaturas adyacentes) mejorar la estimación de 

la calidad del olor. 

VIII.6. TRANSFERENCIA DE CALIBRACIÓN 

Los cambios en la temperatura de trabajo impiden la transferencia de calibración directa 

entre los instrumento (Lin, 1998). Este tema cobra una gran importancia cuando tratamos 

con matrices de sensores de gas de óxido metálico modulados en temperatura (Lee and 

Reedy, 1999), en los que un cambio global en el perfil de temperatura nominal del sensor 
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perfil modifica drásticamente  la forma de onda de respuesta del sensor. Una metodología 

conveniente para superar este problema consiste en usar técnicas de estandarización  

instrumental (Wang and Veltkamp, 1991) para corregir el cambio de temperatura 

comparando estas matrices con una matriz de referencia (desde ahora matrices esclava y  

maestra, respectivamente) calibrada para un conjunto completo de las condiciones 

experimentales y un perfil adecuado de temperatura.  

 

Hemos identificado cuatro preguntas abiertas importantes para la transferencia de 

calibración entre narices electrónicas. (i) Las narices electrónicas pueden ajustar los 

parámetros de funcionamiento de sus sensores a fin de aumentar su sensibilidad a 

diferentes compuestos. Por lo tanto, las diferencias entre instrumentos que son debidas a 

las tolerancias existentes entre sus parámetros operacionales deben corregirse en 

consecuencia. (ii) Para realizar una transferencia de calibración eficiente, ésta debe 

ejecutarse usando un subconjunto limitado de experimentos en los instrumentos de 

esclavos. Hasta dónde sabemos, ningún estudio sistemático comparativo del rendimiento 

de diferentes técnicas de transferencia de calibración con respecto al número de muestras 

de transferencia ha sido realizado para narices electrónicas. (iii) Los modelos de 

calibración continua (regresores) proporcionan una medida más sensible del rendimiento 

de la transferencia de calibración de modelos de calibración discretas (clasificadores). Sin 

embargo, en la literatura sólo se puede encontrar modelos de clasificación transferidos de 

un instrumento a otro. (iv) Es necesario definir un criterio claro para aceptar o rechazar 



 
 
 
 
226 
 

 
 

una transferencia de calibración en función de su rendimiento. En este capítulo, tratamos 

de aportar soluciones que resuelvan estas cuatro preguntas abiertas. 

VIII.6.1. Materiales y métodos 

Hemos explorado el problema de transferencia de calibración para matrices de sensores 

de óxido de metal modulados en temperatura cuando se produce entre ellas un cambio 

global temperatura. Para realizar este estudio, hemos utilizado un conjunto de tres tipos 

diferentes de sensores semiconductores de óxido metálico Figaro (TGS2600, TGS2610, 

TGS2620) replicados 12 veces. Los 36 sensores fueron expuestos durante 900 segundos a 

tres analitos (etanol, acetona, 2-butanona) a los seis concentraciones diferentes (20, 40, 

60, 80, 100, 120) ppm además de aire sintético (base de datos II). La lectura de los 

sensores se realiza a través de una resistencia de carga (RL = 6,1 KΩ) en una 

configuración de medio puente. La temperatura de los sensores es modulada con un perfil 

de rampa que va desde la temperatura ambiente hasta 495 ° C ± 5 ° C [20] en un período 

de 90 segundos. Los experimentos con niveles de concentración de 0, 40, 80 y 120 ppm 

conforman el conjunto de calibración, mientras que los que tienen niveles de 

concentración de 20, 60, 100 ppm) se utilizan para probar los modelos de calibración. La 

ventana de temperatura seleccionada utilizado para la calibración de los instrumentos de 

maestros era [200-300] ºC. 

 

En todos los experimentos, uno de los conjuntos de tres sensores se utiliza como 

instrumento maestro para encontrar un modelo de calibración (una regresión PLS) y el 
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resto de los conjuntos como instrumentos para estudiar la transferencia de calibración. En 

un estudio exhaustivo que incluye 132 combinaciones de instrumentos maestro-esclavo, 

evaluamos la calidad de la transferencia de calibración obtenida de varias técnicas de 

normalización de instrumentos. Estas técnicas son: Estandarización Directa (DS), 

Estandarización Directa por partes (PDS), Ponderación por Mínimos Cuadrados (GLSW) 

y Corrección Ortogonal del Señal (OSC). Nuestro interés fundamental consiste en 

encontrar la mejor técnica de trasferencia de calibración en función de número de 

muestras transferidas (en el rango de 1 a 12) y el desplazamiento global de temperatura 

(ΔT = 0°C, ±10°C, ±20°C, ±30°C, ±40°C, ±50 °C). 

 

Para realizar este estudio, es necesario crear los diferentes modelos PLS de calibración; 

seleccionar las muestras a transferir entre instrumentos maestros y esclavos; y optimizar 

los parámetros de cada una de las técnicas de transferencia de calibración utilizadas. El 

número de variables latentes de los modelos de calibración se obtiene mediante una 

validación cruzada tipo LOBO (Leave One Block Out). Las muestras de transferencia 

entre modelos se pueden conseguir de dos maneras diferentes: ordenando las muestras 

que tienen más influencia (1) en la base de datos, o (2) en la creación de los modelos PLS 

de instrumento maestro. Finalmente, los parámetros de las técnicas de transferencia de 

calibración se optimizan minimizando el error cuadrático medio de calibración para el 

subconjunto de muestras transferidas entre instrumentos. Para aceptar o rechazar la 
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transferencia de calibración entre instrumentos utilizamos un método basado en la 

descomposición sesgo-varianza del error cuadrático medio de predicción. 

VIII.6.2. Resultados y discusión 

En este estudio, cada una de las repeticiones de matriz se utiliza como instrumento 

maestro para las otras repeticiones o como matriz esclavo de ser corregido por otra matriz 

maestra. La aplicación directa del modelo de calibración maestro en las matrices de 

esclavos conduce a altos errores de predicción. Como se puede esperar, este error 

aumenta a medida que se incrementa el cambio de temperatura entre instrumentos. Sin 

embargo, este efecto no es simétrico: los cambios hacia temperaturas más altas provocan 

una penalización mayor en el error de predicción que los cambios en la dirección opuesta.  

Después de la corrección de datos, los errores de predicción de las matrices de esclavas se 

reducen considerablemente. El grado de reducción del error depende de la cantidad de 

muestras transferidas y del cambio de la temperatura. Como tendencia general, los errores 

disminuyen gradualmente hasta la saturación a el número de muestras de transferencia 

aumenta, para cualquier cambio de temperatura y técnica de transferencia de calibración. 

DS y PDS obtienen los niveles más bajos de error de predicción, aunque PDS necesitan 

un menor número de muestras para alcanzar la saturación de error. OSC y GLSW 

exhiben unos valores más altos de error de predicción y transiciones más lentas a la 

saturación. En cuanto a la influencia del cambio de temperatura, observamos que los 

valores más bajos del error de predicción están sesgados hacia desplazamientos de 

temperatura negativos, para cualquier número de muestras de transferencia y técnica de 
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transferencia de calibración. Sin embargo, PDS demuestra ser la técnica más robusta 

frente a este efecto dependiente de la dirección.   

 

Si consideramos los resultados de la prueba de contraste basada en la descomposición 

sesgo-varianza del error, vemos que ningún instrumento sin corregir pasa la prueba de 

aceptación de transferencia de calibración. Después de la transferencia de calibración, 

sólo un número de estos instrumentos supera los estrictos criterios de la prueba. Éste 

número depende de la cantidad de muestras de transferencia, del cambio de temperatura y 

de la técnica de transferencia de calibración aplicada. Una vez más, PDS presenta el 

mejor rendimiento, ya que la técnica proporciona el mayor número de correcciones de 

esclavos aceptables, usando un menor número de muestras para construir el modelo de 

transferencia de calibración y minimizado la contribución la contribución al error debida 

a la dirección de desplazamiento de la temperatura. 

La razón por la PDS realizan mejores correcciones de DS es que PDS crea modelos 

correctivos locales para cada uno de los canales de la matriz del esclavos mientras que 

DS genera un solo modelo global, menos flexible y complejo. Este parece ser válido 

también para OSC y GLSW. Además de esto, PDS detecta que los canales de la matriz 

principal (dentro de una ventana) más correlacionados con el canal en particular en la 

matriz de esclavo, reduciendo la contribución de los canales poco importantes a la 

corrección. Como consecuencia, el número de muestras necesarias para lograr el mismo 

nivel de error entre la matriz maestra y esclava tiende a ser menor para PDS.  
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El rendimiento de un modelo de calibración con un alto grado de complejidad está 

directamente relacionado con la disponibilidad de un gran número de muestras. 

Efectivamente, nuestros resultados muestran que un incremento en el número de muestras 

de transferencia ofrece, hasta cierto punto, una mejora del error corregido. La razón de la 

saturación de error en las matrices esclavas corregidas se debe a que a partir de un 

determinado número de muestras de transferencia empezamos a encontrar muestras que 

pertenecen a una categoría que ya ha sido previamente adquirida (substancia y 

concentración). En consecuencia, no se añade nueva información a los modelos de 

transferencia y el error de predicción para las matrices esclavas corregidas no puede 

disminuir de manera significativa. 

VIII.8. CONCLUSIONES DE LA TESIS 

En esta tesis hemos estudiado el papel de la diversidad sensor y redundancia en la 

codificación de la información odorífera. Además, hemos utilizado estas propiedades de 

las matrices de sensores para abordar algunos de los problemas abiertos en la olfacción 

artificial, a saber, tolerancia al fallo sensorial, selección de características, y transferencia 

de calibración. 

 

Para ello, hemos diseñado y construido un prototipo avanzado de nariz electrónica basada 

en un conjunto de sensores de gas MOX, e inspirado en la arquitectura del epitelio 

olfatorio.  Consideramos la diversidad sensorial como el número de distintos tipos de 

sensores presentes en una matriz de sensores, y su redundancia como el número medio de 
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copias de sensores por tipo de sensor. Nos propusimos aumentar la diversidad de nuestra 

matriz de sensores combinando diferentes tipos de sensores MOX modulados en 

temperatura modulación, y su redundancia mediante el uso de múltiples copias para cada 

uno de los tipos de sensor y la modificación de sus circuitos de medida (divisores de 

tensión) con diferentes resistencias carga. Cabe destacar, que ligamos implícitamente la 

diversidad sensorial a las características de los sensores que provocaban variaciones en la 

respuesta de la matriz debidas a la interacción química entre los analitos y los sensores. 

Del mismo modo, relacionamos la redundancia sensorial con características que no 

proporcionaban ninguna información química nueva a la respuesta de la  matriz, pero 

disminuían la contribución del ruido de los sensores. Consideramos este tipo de 

diversidad sensor y redundancia estructural, en el sentido de que estaban presentes en la 

matriz por construcción. Hemos mostrado que la diversidad y redundancia estructurales 

tendían a aumentar, respectivamente, la capacidad de nuestro conjunto de sensores para 

discriminar olores, y para estimar la concentración de estos. Sin embargo, estas 

afirmaciones merecen algunos comentarios. La diversidad sensorial no podría aumentar 

de manera indefinida el rendimiento de la matriz de sensores. Un incremento progresivo 

de la tamaño de la matriz (para un tamaño dado de la calibración conjunto de muestras) 

eventualmente conduce a malas estimaciones de los parámetros del modelo de 

predicción, y por lo tanto, a sobreajuste. Por otro lado, la capacidad de la redundancia 

sensorial para mejorar la estimación de la concentración de los olores depende de la 

naturaleza del ruido del sensor.  El ruido sensorial independiente fue rechazado de 
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manera eficiente por la  matriz de sensores, mientras que las fuentes comunes de ruido 

sensorial fijaron el límite para la reducción de ruido. 

 

A un nivel más alto de abstracción, la separación entre características diversas y 

redundantes en una matriz de sensores fue en realidad más difusa. La razón para esto 

radica en tres factores. En primer factor fue la correlación entre respuestas de los 

sensores. Diferentes tipos de sensores comerciales exhibieron respuestas muy similares a 

un conjunto de olores. Lo mismo ocurrió para las respuestas de los sensores adyacentes a 

lo largo del perfil de modulación de la temperatura para un sensor individual. De este 

modo, características sensoriales que en un principio consideramos como diversas eran, 

de hecho, redundantes. El segundo factor, estaba relacionado con la variabilidad de la 

respuesta de un sensor dentro del mismo tipo de sensor. Una modificación del circuito de 

medida del sensor utilizando diferentes resistencias de carga altera la curva dosis-

respuesta del sensor. Como ya demostramos, un incremento en la variabilidad de la 

respuesta de la matriz causada por una mejor cuantificación  de la concentración del olor 

tiende a aumentar el poder de codificación de la matriz de sensores. Desde este punto de 

vista, diferentes resistencias de carga deben considerarse como características diversas, 

en lugar de redundantes. Creemos que solamente características equivalentes de los 

equivalentes pertenecientes a diferentes copias sensores pueden ser consideradas como 

estrictamente redundante. En tercer lugar, la diversidad sensorial y la redundancia no eran 

magnitudes absolutas de la matriz. Conjuntos de datos simples, compuestos por pocas y 
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muy distintas muestras de olor, no aprovechan el potencial de la diversidad del sensor de 

la matriz, por lo que la mayor parte de las características del sensor puede considerarse 

como redundantes. Por el contrario, al incrementar  la complejidad de los conjuntos de 

datos, la diversidad sensorial queda resaltada y el nivel de redundancia del sensor 

disminuye. Así pues, la naturaleza  de los datos determina el grado de similitud entre las 

características del sensor. Llegados a este punto, propusimos definiciones funcionales 

para la diversidad y la redundancia  sensoriales basadas en la agrupación de las 

características de los sensores. Nuestra propuesta consistió en agrupar las características 

de los sensores en función de su contribución a la varianza del conjunto de datos. En 

particular, consideramos que características similares de sensores abarcan el mismo 

ángulo en el espacio de los loadings de una descomposición PCA. Por lo tanto, la 

diversidad sensorial se definió como el número de grupos de sensores obtenidos, y la 

redundancia como el número medio de características en estos grupos. Creemos que estas 

definiciones realmente capturan la esencia de la diversidad y redundancia sensoriales, 

puesto que las características de  sensores que exhiben un comportamiento similar se 

agrupan con independencia a los sensores físicos de las que surgieron. 

 

La segunda mitad de la tesis trata de las aplicaciones de la diversidad y redundancia 

sensoriales  en olfacción artificial. La primera aplicación que tratamos fue la robustez al 

daño  de sensores. Nos preguntamos bajo qué condiciones la redundancia sensorial podría 

soportar el daño sensorial en términos del rendimiento de los modelos predictivos 
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construidos a partir de datos sin fallos. Encontramos que no sólo el nivel de redundancia 

sensorial, sino también la distribución de fallos del sensor a través de los diferentes tipos 

de sensores eran cruciales para prevenir la degradación de modelos predictivos. Tal 

distribución de fallos tenía que mantener el nivel de diversidad de la matriz de sensores 

para mantener el rendimiento de los modelos. En otras palabras, la distribución de fallos 

tenía que ser independiente del tipo de sensor para evitar la acumulación de fallos en sólo 

unos pocos tipos de sensores. Este resultado tiene una implicación importante para el 

diseño de grandes conjuntos de sensores altamente redundantes. Es recomendable 

distribuir los diferentes tipos de sensores a través de la matriz en lugar de hacerlo por 

áreas del mismo tipo de sensor. La segunda aplicación fue selección de características en 

matrices de sensores de gas. Detectamos que este enfoque de reducción de 

dimensionalidad tendía optimizar la diversidad sensorial del subconjunto matriz de la 

matriz seleccionado, sin tener en cuenta las fuentes de la redundancia del sensor. 

Identificamos este problema como un potencial punto débil de esta aproximación, ya que 

la redundancia del sensor contrarresta en cierta medida el efecto del ruido, y debería 

considerarse de alguna manera en la optimización del conjunto de sensores. Hemos 

propuesto incluir una etapa de extracción de características basada en la regresión 

multivariante PLSR en el proceso de selección características para comprimir la 

información de los sensores redundantes y reducir al mínimo el problema de la maldición 

de la dimensionalidad. Esta estrategia fue empleada para mejorar una selección de 

características realizada con algoritmos genéticos. En particular, quisimos optimizar las 
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temperaturas de trabajos de una serie de sensores de gas MOX modulados en temperatura 

para una mejor discriminación de mezclas de dos olores. La solución óptima consistió en 

diferentes grupos de temperatura repartidos a lo largo de los sensores. Estos grupos se 

definían por una temperatura central, que tomamos como representante del clúster, y sus 

temperaturas adyacentes. La optimización de la matriz de sensores realizada utilizando 

sólo los representantes de cada clúster condujo a resultados sustancialmente peores que 

aquellos en los que se emplearon todos los elementos de los clústeres. Este hecho 

refuerza nuestra idea de que la correlación de la respuesta de sensores no es más que otra 

faceta de la redundancia del sensor. Finalmente, hemos explorado la aplicación de 

técnicas de estandarización de instrumentos (DS, PDS, OSC y GLSW) para transferir 

modelos de calibración entre narices electrónicas. Más específicamente, corregimos los 

cambios de temperatura globales entre  instrumentos basados en matrices de sensores 

moduladas en  temperatura. Esta tarea se realizó aprovechando el alto grado de 

redundancia sensorial exhibido por nuestra matriz de sensores, a dos niveles diferentes. 

En primer nivel de redundancia se logró mediante la simple replicación de instrumentos 

(se emplearon 12 copias de una matriz de 3 sensores diferentes de gas MOX). 

Aprovechamos de este tipo de redundancia para realizar múltiples estandarizaciones 

instrumentales, lo que justifica la generalidad de nuestros resultados. El segundo nivel de 

redundancia se obtuvo a partir de las  correlaciones en la respuestas de la forma de onda 

del sensor entre el los instrumentos maestro y esclavo desplazado en temperatura. 

Nuestros resultados mostraron que PDS era la mejor técnica para rectificar diferencias 
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instrumentales. La razón para ello es que PDS buscó las características de los sensores 

más correlacionados entre los instrumentos, y las relaciona por medio de 

transformaciones locales. Eso dio lugar a modelos de transferencia de calibración 

simples, flexibles, y con una alta capacidad de generalizar la transferencia de muestras 

para experimentos no usados en el modelo de transferencia de calibración. Por el 

contrario, las otras técnicas crearon transformaciones globales y complejos, que por lo 

general con condujeron a modelos no válidos de transferencia de calibración. 

  



 
 
 
 

237 
 

 
 

CHAPTER IX 

LIST OF PUBLICATIONS AND CONFERENCES 

 

IX.1. PUBLICATIONS 

IX.1.1. Journals 

 
• Fernández, L., S. Marco, and A. Gutiérrez-Galvez. "Robustness to sensor 

damage of a highly redundant gas sensor array." Sensors and Actuators B: 

Chemical (2015). 

 

• Ziyatdinov, Andrey, J. Fonollosa, L. Fernández, A. Gutiérrez-Gálvez, S. Marco, 

A. Perera. "Bioinspired early detection through gas flow modulation in chemo-

sensory systems." Sensors and Actuators B: Chemical 206 (2015): 538-547. 

 

• Ziyatdinov, Andrey, J. Fonollosa, L. Fernández, A. Gutiérrez-Gálvez, S. Marco, 

A. Perera. "Data set from gas sensor array under flow modulation." Data in Brief 

3 (2015): 131-136. 

 
• Fonollosa, Jordi, L. Fernández, R. Huerta, A. Gutiérrez-Gálvez, S. Marco. 

"Temperature optimization of metal oxide sensor arrays using mutual 

information." Sensors and Actuators B: Chemical 187 (2013): 331-339. 



 
 
 
 
238 
 

 
 

XIX.2. PARTICIPATION IN CONFERENCES 

XIX.2.1. Oral 

 
• Fernández, L., A. Gutierrez-Galvez, and S. Marco. "Robustness to Sensor 

Damage of a Highly Redundant Gas Sensor Array." Procedia Engineering 87 

(2014): 851-854. 

 
• Fernández, L., S. Guney, A. Gutiérrez-Gálvez, and S. Marco. "Calibration 

transfer in temperature modulated sensor arrays". Proceedings of the 15th 

International Symposium on Olfaction and Electronic Nose (ISOEN), Daegu 

(Korea), 2013. 

 

• Gutiérrez‐Gálvez, Agustín, L. Fernández, and S. Marco. "Study of sensory 

diversity and redundancy to encode for chemical mixtures." Olfaction and 

Electronic nose: Proceedings of the 14th International Symposium on Olfaction 

and electronic nose (ISOEN), New York (USA). Vol. 1362. No. 1. AIP 

Publishing, 2011. 
 

• Fernández, L., A. Gutiérrez-Gálvez, and S. Marco. "Gas sensor array system 

inspired on the sensory diversity and redundancy of the olfactory epithelium." 

Procedia Engineering 5 (2010): 25-28. ”. In XXIV Eurosensors, Linz (Austria) 

 



 
 
 
 

239 
 

 
 

XIX.2.2. Poster 
 

• Fernández, L., A. Gutiérrez-Gálvez, and S. Marco. "Multi-way analysis of 

diversity and redundancy factors in large MOX gas sensor data." Proceedings of 

14th International Meeting on Chemical Sensors–IMCS. Vol. 2012. 2012. 

 

• Fernández, L., A. Gutiérrez-Gálvez, J. Fonollosa, and S. Marco. "A biomimetic 

gas sensor array system designed to test computational olfaction models." 

CHEMICAL SENSES. Vol. 36. No. 1. OXFORD UNIV PRESS, 2011. 

  



 
 
 
 
240 
 

 
 

 

  



 
 
 
 

241 
 

 
 

REFERENCES 

  

Albert, Keith J., et al. "Cross-reactive chemical sensor arrays." Chemical reviews 100.7 

(2000): 2595-2626. 

 

Alkasab, Tarik K., Joel White, and John S. Kauer. "A computational system for 

simulating and analyzing arrays of biological and artificial chemical sensors." Chemical 

senses 27.3 (2002): 261-275. 

 

Arshak, K., et al. "A review of gas sensors employed in electronic nose applications." 

Sensor review 24.2 (2004): 181-198. 

 

Baby, R. E., M. Cabezas, and EN Walsöe De Reca. "Electronic nose: a useful tool for 

monitoring environmental contamination." Sensors and Actuators B: Chemical 69.3 

(2000): 214-218. 

 

Bailey, Arthur LPS, Anna Maria Pisanelli, and Krishna C. Persaud. "Development of 

conducting polymer sensor arrays for wound monitoring." Sensors and Actuators B: 

Chemical 131.1 (2008): 5-9. 

 



 
 
 
 
242 
 

 
 

Balaban, M. O., et al. "Transportability of data between electronic noses: mathematical 

methods." Sensors and Actuators B: Chemical 71.3 (2000): 203-211. 

 

Barsan, N., D. Koziej, and U. Weimar. "Metal oxide-based gas sensor research: How 

to?." Sensors and Actuators B: Chemical 121.1 (2007): 18-35. 

 

Bartlett, Phillip N., Joe M. Elliott, and Julian W. Gardner. "Electronic noses and their 

application in the food industry." Food technology (USA) 51.12 (1997):44-48. 

 

Benkstein, K. D., et al. "Inducing analytical orthogonality in tungsten oxide-based 

microsensors using materials structure and dynamic temperature control." Sensors and 

Actuators B: Chemical 137.1 (2009): 48-55. 

 

Bernabei, Mara, et al. "Large-scale chemical sensor array testing biological olfaction 

concepts." Sensors Journal, IEEE 12.11 (2012): 3174-3183. 

 

Bialek, William. "Physical limits to sensation and perception." Annual review of 

biophysics and biophysical chemistry 16.1 (1987): 455-478. 

 

Bishop, Christopher M. Neural networks for pattern recognition. Oxford university press, 

1995. 



 
 
 
 

243 
 

 
 

Boeckh, J., and K-D. Ernst. "Contribution of single unit analysis in insects to an 

understanding of olfactory function." Journal of Comparative Physiology A 161.4 (1987): 

549-565. 

 

Bouveresse, E., and D. L. Massart. "Improvement of the piecewise direct standardisation 

procedure for the transfer of NIR spectra for multivariate calibration." Chemometrics and 

intelligent laboratory systems 32.2 (1996): 201-213. 

 

Bozza, Thomas C., and John S. Kauer. "Odorant response properties of convergent 

olfactory receptor neurons." The Journal of neuroscience 18.12 (1998): 4560-4569. 

 

Branca, Andrea, et al. "Electronic nose based discrimination of a perfumery compound in 

a fragrance." Sensors and Actuators B: Chemical 92.1 (2003): 222-227. 

 

Brian D. Ripley. Pattern recognition and neural networks. Cambridge university press, 

1996. 

 

Brown, W. Michael, and Alex Bäcker. "Optimal neuronal tuning for finite stimulus 

spaces." Neural computation 18.7 (2006): 1511-1526. 

 



 
 
 
 
244 
 

 
 

Buck, Linda, and Richard Axel. "A novel multigene family may encode odorant 

receptors: a molecular basis for odor recognition." Cell 65.1 (1991): 175-187. 

 

Carey, W. P., K. R. Beebe, and B. R. Kowalski. "Selection of adsorbents for chemical 

sensors arrays by pattern recognition." Anal. Chem 59 (1987a): 1529-1534. 

 

Carey, W. Patrick, Kenneth R. Beebe, and Bruce R. Kowalski. "Multicomponent analysis 

using an array of piezoelectric crystal sensors." Analytical chemistry 59.11 (1987b): 

1529-1534. 

 

Chaiyboun, Ali, et al. "Modular analytical multicomponent analysis in gas sensor arrays." 

Sensors 6.4 (2006): 270-283. 

 

Cheng, Z. J., et al. "An electronic nose in the discrimination of breath from smokers and 

non-smokers: a model for toxin exposure." Journal of breath research 3.3 (2009): 036003. 

 

Clifford, P.K. and Tuma D.T., "Characteristics of Semiconductor gas sensors I. Steady 

state gas response", Sensors  and  Actuators,  3  (1982a)  233–254.  

 



 
 
 
 

245 
 

 
 

Clifford, P.K. and Tuma D.T., "Characteristics of Semiconductor gas sensors II. 

Transient response to temperature change", Sensors  and  Actuators,  3  (1982b)  255–

281. 

 

Covey, Ellen. "Neural population coding and auditory temporal pattern analysis." 

Physiology & behavior 69.1 (2000): 211-220. 

 

Dickinson, Todd A., et al. "Current trends in artificial-nose technology." Trends in 

Biotechnology 16.6 (1998): 250-258. 

 

Dickinson, Todd A., et al. "Convergent, self-encoded bead sensor arrays in the design of 

an artificial nose." Analytical chemistry 71.11 (1999): 2192-2198. 

 

Di Natale, Corrado, Arnaldo D'Amico, and Fabrizio AM Davide. "Redundancy in sensor 

arrays." Sensors and Actuators A: Physical 37 (1993): 612-617. 

 

Di Natale, Corrado, et al. "Human skin odor analysis by means of an electronic nose." 

Sensors and Actuators B: Chemical 65.1 (2000): 216-219. 

 



 
 
 
 
246 
 

 
 

Di Natale, Corrado, et al. "Lung cancer identification by the analysis of breath by means 

of an array of non-selective gas sensors." Biosensors and Bioelectronics 18.10 (2003): 

1209-1218. 

 

Di Natale, C., et al. "An artificial olfaction system based on the optical imaging of a large 

array of chemical reporters." Sensors and Actuators B: Chemical 142.2 (2009): 412-417. 

 

Dragonieri, Silvano, et al. "An electronic nose in the discrimination of patients with 

asthma and controls." Journal of Allergy and Clinical Immunology 120.4 (2007): 856-

862. 

 

Drongelen, W. van. "Unitary recordings of near threshold responses of receptor cells in 

the olfactory mucosa of the frog." The Journal of physiology 277.1 (1978): 423-435. 

 

Duchamp-Viret, Patricia, R. Duchamp, and M.Vigouroux. "Amplifying role of 

convergence in olfactory system a comparative study of receptor cell and second-order 

neuron sensitivities." Journal of neurophysiology 61.5 (1989): 1085-1094. 

 

Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern classification. John Wiley 

& Sons, 2012. 

 



 
 
 
 

247 
 

 
 

Efron, Bradley, and Robert J. Tibshirani. An introduction to the bootstrap. CRC press, 

1994. 

 

Eklöv, Tomas, Per Mårtensson, and Ingemar Lundström. "Enhanced selectivity of 

MOSFET gas sensors by systematical analysis of transient parameters." Analytica 

Chimica Acta 353.2 (1997): 291-300. 

 

Fearn, Tom. "On orthogonal signal correction." Chemometrics and Intelligent Laboratory 

Systems 50.1 (2000): 47-52. 

 

Feudale, Robert N., et al. "Transfer of multivariate calibration models: a review." 

Chemometrics and Intelligent Laboratory Systems 64.2 (2002): 181-192. 

 

Figaro USA, http.//www.figarosensor.com/ 

 

Firestein, Stuart. "How the olfactory system makes sense of scents." Nature 413.6852 

(2001): 211-218. 

 

Fonollosa, Jordi, Alexander Vergara, and Ramón Huerta. "Algorithmic mitigation of 

sensor failure: Is sensor replacement really necessary?." Sensors and Actuators B: 

Chemical 183 (2013a): 211-221. 



 
 
 
 
248 
 

 
 

Fonollosa, Jordi, et al. "Temperature optimization of metal oxide sensor arrays using 

mutual information." Sensors and Actuators B: Chemical 187 (2013b): 331-339. 

 

Frank, LLdiko E., and Jerome H. Friedman. "A statistical view of some chemometrics 

regression tools." Technometrics 35.2 (1993): 109-135. 

 

Freund, Michael S., and Nathan S. Lewis. "A chemically diverse conducting polymer-

based" electronic nose". Proceedings of the National Academy of Sciences 92.7 (1995): 

2652-2656. 

 

Friedman, Jerome H. "Regularized discriminant analysis." Journal of the American 

statistical association 84.405 (1989): 165-175. 

 

Friedrich, Rainer W., and Mark Stopfer. "Recent dynamics in olfactory population 

coding." Current opinion in neurobiology 11.4 (2001): 468-474. 

 

Fu, Qingbo, et al. "Short-wave near-infrared spectrometer for alcohol determination and 

temperature correction." Journal of analytical methods in chemistry 2012 (2012). 

 



 
 
 
 

249 
 

 
 

Gardner, Julian W. "Detection of vapours and odours from a multisensor array using 

pattern recognition Part 1. Principal component and cluster analysis." Sensors and 

Actuators B: Chemical 4.1 (1991): 109-115. 

 

Gardner, Julian W., and Philip N. Bartlett. "A brief history of electronic noses." Sensors 

and Actuators B: Chemical 18.1 (1994a): 210-211. 

 

Gardner, Julian W., et al. "A multisensor system for beer flavour monitoring using an 

array of conducting polymers and predictive classifiers." Sensors and Actuators B: 

Chemical 18.1 (1994b): 240-243. 

 

Gardner, Julian W., and Philip N. Bartlett. "Performance definition and standardization of 

electronic noses." Sensors and Actuators B: Chemical 33.1 (1996): 60-67. 

 

Gardner, J. W., et al. "The prediction of bacteria type and culture growth phase by an 

electronic nose with a multi-layer perceptron network." Measurement Science and 

Technology 9.1 (1998): 120-127. 

 

Gardner, J. W., and P. N. Bartlett. "Electronic noses. Principles and applications." 

Measurement Science and Technology 11.7 (2000): 1087. 

 



 
 
 
 
250 
 

 
 

Geladi, Paul, and Bruce R. Kowalski. "Partial least-squares regression: a tutorial." 

Analytica chimica acta 185 (1986): 1-17. 

 

Gosangi, Rakesh, and Ricardo Gutierrez-Osuna. "Active temperature programming for 

metal-oxide chemoresistors." Sensors Journal, IEEE 10.6 (2010): 1075-1082. 

 

Gosangi, Rakesh, and Ricardo Gutierrez-Osuna. "Active temperature modulation of 

metal-oxide sensors for quantitative analysis of gas mixtures." Sensors and Actuators B: 

Chemical 185 (2013): 201-210. 

 

Grate, Jay W., and Michael H. Abraham. "Solubility interactions and the design of 

chemically selective sorbent coatings for chemical sensors and arrays." Sensors and 

Actuators B: Chemical 3.2 (1991): 85-111. 

 

Grosmaitre, Xavier, et al. "Odorant responses of olfactory sensory neurons expressing the 

odorant receptor MOR23: a patch clamp analysis in gene-targeted mice." proceedings of 

the national Academy of Sciences of the United States of America 103.6 (2006): 1970-

1975. 

 

Gutierrez-Osuna, Ricardo. Signal processing and pattern recognition for an electric nose. 

North Carolina State University, 1998. 



 
 
 
 

251 
 

 
 

Gutierrez-Osuna, Ricardo, H. Troy Nagle, and Susan S. Schiffman. "Transient response 

analysis of an electronic nose using multi-exponential models." Sensors and Actuators B: 

Chemical 61.1 (1999a): 170-182. 

 

Gutierrez-Osuna, Ricardo, and H. Troy Nagle. "A method for evaluating data-

preprocessing techniques for odour classification with an array of gas sensors." Systems, 

Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 29.5 (1999b): 626-

632. 

 

Gutierrez-Osuna, Ricardo. "Pattern analysis for machine olfaction: a review." Sensors 

Journal, IEEE 2.3 (2002): 189-202. 

 

Gutierrez-Osuna, R., A. Gutierrez-Galvez, and N. Powar. "Transient response analysis 

for temperature-modulated chemoresistors." Sensors and Actuators B: Chemical 93.1 

(2003): 57-66. 

 

Haddi, Z., et al. "A portable electronic nose system for the identification of cannabis-

based drugs." Sensors and Actuators B: Chemical 155.2 (2011): 456-463. 

 



 
 
 
 
252 
 

 
 

Hansen, Thomas, Mikael Agerlin Petersen, and Derek V. Byrne. "Sensory based quality 

control utilising an electronic nose and GC-MS analyses to predict end-product quality 

from raw materials." Meat science 69.4 (2005): 621-634. 

Hatfield, J. V., et al. "Towards an integrated electronic nose using conducting polymer 

sensors." Sensors and Actuators B: Chemical 18.1 (1994): 221-228. 

 

Haug, M., et al. "Chemical sensors based upon polysiloxanes: comparison between 

optical, quartz microbalance, calorimetric, and capacitance sensors." Sensors and 

Actuators B: Chemical 11.1 (1993): 383-391. 

 

Harun, FK Che, et al. "An electronic nose employing dual-channel odour separation 

columns with large chemosensor arrays for advanced odour discrimination." Sensors and 

Actuators B: Chemical 141.1 (2009): 134-140. 

 

Heeger, Alan J. "Semiconducting and metallic polymers: the fourth generation of 

polymeric materials." The Journal of physical chemistry B 105.36 (2001): 8475-8491. 

 

Hierlemann, Andreas, et al. "Polymer-based sensor arrays and multicomponent analysis 

for the detection of hazardous oragnic vapours in the environment." Sensors and 

Actuators B: Chemical 26.1 (1995): 126-134. 

 



 
 
 
 

253 
 

 
 

Hildebrand, John G., and Gordon M. Shepherd. "Mechanisms of olfactory discrimination: 

converging evidence for common principles across phyla." Annual review of 

neuroscience 20.1 (1997): 595-631. 

Hierlemann, Andreas, and Ricardo Gutierrez-Osuna. "Higher-order chemical sensing." 

Chemical reviews 108.2 (2008): 563-613. 

 

Huang, Xingjiu, et al. "Gas sensing behavior of a single tin dioxide sensor under dynamic 

temperature modulation." Sensors and Actuators B: Chemical 99.2 (2004): 444-450. 

 

Ide, Junichi, Takamichi Nakamoto, and Toyosaka Moriizumi. "Development of odour-

sensing system using an auto-sampling stage." Sensors and Actuators B: Chemical 13.1 

(1993): 351-354. 

 

Ikohura, Kousuke, and Joseph Watson. "The Stannic Oxide Gas Sensor." (1994). 

 

Johansson, Roland S., and Ingvars Birznieks. "First spikes in ensembles of human tactile 

afferents code complex spatial fingertip events." Nature neuroscience 7.2 (2004): 170-

177. 

 

Khlebarov, Zdravko P., Any I. Stoyanova, and Diana I. Topalova. "Surface acoustic wave 

gas sensors." Sensors and Actuators B: Chemical 8.1 (1992): 33-40. 



 
 
 
 
254 
 

 
 

Kirkpatrick, Scott, C. Daniel Gelatt, and Mario P. Vecchi. "Optimization by simulated 

annealing." science 220.4598 (1983): 671-680. 

Kohonen, Teuvo. "Self-organized formation of topologically correct feature maps." 

Biological cybernetics 43.1 (1982): 59-69. 

 

Korsching, Sigrun. "Olfactory maps and odor images." Current opinion in neurobiology 

12.4 (2002): 387-392. 

 

Kunt, Tekin A., et al. "Optimization of temperature programmed sensing for gas 

identification using micro-hotplate sensors." Sensors and Actuators B: Chemical 53.1 

(1998): 24-43. 

 

Lee, Andrew P., and Brian J. Reedy. "Temperature modulation in semiconductor gas 

sensing." Sensors and Actuators B: Chemical 60.1 (1999): 35-42. 

 

Lee, Andrew P., and Brian J. Reedy. "Application of radiometric temperature 

determination methods to semiconductor gas sensors." Sensors and Actuators B: 

Chemical 69.1 (2000): 37-45. 

 

Lin, Jie. "Near-IR calibration transfer between different temperatures." Applied 

spectroscopy 52.12 (1998): 1591-1596. 



 
 
 
 

255 
 

 
 

Mandayo, G.G., et al. "Liquid petroleum gas sensor based on zinc oxide nanorods" 

Sensors and Actuators B: Chemical 95.1 (2003): 221-228. 

 

Mandenius, Carl Fredrik, Thomas Hedman, and Bo Mattiasson. "An online sensor for 

monitoring of ethanol in beer." Journal of the Institute of Brewing 90.2 (1984): 77-80. 

 

Marco, Santiago, and Agustín Gutiérrez-Gálvez. "Signal and data processing for machine 

olfaction and chemical sensing: a review." Sensors Journal, IEEE 12.11 (2012): 3189-

3214. 

 

Michalewicz, Zbigniew. Genetic algorithms+ data structures= evolution programs. 

Springer Science & Business Media, 2013. 

 

Miura, Keiji, Zachary F. Mainen, and Naoshige Uchida. "Odor representations in 

olfactory cortex: distributed rate coding and decorrelated population activity." Neuron 

74.6 (2012): 1087-1098. 

 

Moore, D. S. "Instrumentation for trace detection of high explosives." Review of 

Scientific Instruments 75.8 (2004): 2499-2512. 

 



 
 
 
 
256 
 

 
 

Morris, H., and Schaeffer, J. P. "The Nervous system-The Brain or Encephalon. Human 

anatomy; a complete systematic treatise". New York (1953): Blakiston. 

 

Muezzinoglu, Mehmet K., et al. "A sensor conditioning principle for odor identification." 

Sensors and Actuators B: Chemical 146.2 (2010): 472-476. 

 

Nagle, H. Troy, Ricardo Gutierrez-Osuna, and Susan S. Schiffman. "The how and why of 

electronic noses." Spectrum, IEEE 35.9 (1998): 22-31. 

 

Nakamoto, Takamichi, et al. "Improvement of identification capability in an odor-sensing 

system." Sensors and Actuators B: Chemical 3.3 (1991): 221-226. 

 

Narendra, Patrenahalli M., and Keinosuke Fukunaga. "A branch and bound algorithm for 

feature subset selection." Computers, IEEE Transactions on 100.9 (1977): 917-922. 

 

Niebling, Gerhard, and Rudolf Mu. "Design of sensor arrays by use of an inverse feature 

space." Sensors and Actuators B: Chemical 25.1 (1995): 781-784. 

 

O’Connell, Manuela, et al. "A practical approach for fish freshness determinations using 

a portable electronic nose." Sensors and Actuators B: chemical 80.2 (2001): 149-154. 

 



 
 
 
 

257 
 

 
 

Ohnishi, M., et al. "A molecular recognition system for odorants incorporating 

biomimetic gas-sensitive devices using Langmuir-Blodgett films." Sensors and Materials 

1 (1992): 53-60. 

 

Ortega, Arturo, et al. "An intelligent detector based on temperature modulation of a gas 

sensor with a digital signal processor." Sensors and Actuators B: Chemical 78.1 (2001): 

32-39. 

 

Padilla, M., et al. "Poisoning fault diagnosis in chemical gas sensor arrays using 

multivariate statistical signal processing and structured residuals generation." Intelligent 

Signal Processing, 2007. WISP 2007. IEEE International Symposium on. IEEE, 2007. 

 

Padilla, Marta, et al. "Fault detection, identification, and reconstruction of faulty 

chemical gas sensors under drift conditions, using Principal Component Analysis and 

Multiscale-PCA." Neural Networks (IJCNN), The 2010 International Joint Conference 

on. IEEE, 2010. 

 

Pan, Leilei, and Simon X. Yang. "An electronic nose network system for online 

monitoring of livestock farm odors." Mechatronics, IEEE/ASME Transactions on 14.3 

(2009): 371-376. 

 



 
 
 
 
258 
 

 
 

Pardo, M., et al. "Monitoring reliability of sensors in an array by neural networks." 

Sensors and Actuators B: Chemical 67.1 (2000): 128-133. 

 

Pearce, T. C. "Computational parallels between the biological olfactory pathway and its 

analogue 'The Electronic Nose': Part I. Biological olfaction." BioSystems 41.1 (1997): 43-

67. 

 

Pearce, Timothy C., and Julian W. Gardner. "Predicting organoleptic scores of sub-ppm 

flavour notes: Part 2. Computational analysis and results." Analyst 123.10 (1998): 2057-

2066. 

 

Pearce, Tim C. "Odor to sensor space transformations in biological and artificial noses." 

Neurocomputing 32 (2000): 941-952. 

 

Pearce, Tim, et al. "Robust stimulus encoding in olfactory processing: hyperacuity and 

efficient signal transmission." Emergent neural computational architectures based on 

neuroscience. Springer Berlin Heidelberg, 2001. 461-479. 

 

Pearce, Tim C., et al., eds. Handbook of machine olfaction: electronic nose technology. 

John Wiley & Sons, 2003. 

 



 
 
 
 

259 
 

 
 

Perera, Alexandre, et al. "A portable electronic nose based on embedded PC technology 

and GNU/Linux: Hardware, software and applications." Sensors Journal, IEEE 2.3 

(2002): 235-246. 

 

Persaud, Krishna, and George Dodd. "Analysis of discrimination mechanisms in the 

mammalian olfactory system using a model nose.". Nature 299 (1982):352-355. 

 

Phillips, Michael, et al. "Detection of lung cancer with volatile markers in the breath." 

Chest Journal 123.6 (2003): 2115-2123. 

 

Pudil, Pavel, Jana Novovičová, and Josef Kittler. "Floating search methods in feature 

selection." Pattern recognition letters 15.11 (1994): 1119-1125. 

 

Sánchez-Montañés, Manuel A., and Tim C. Pearce. "Why do olfactory neurons have 

unspecific receptive fields?." Biosystems 67.1 (2002): 229-238. 

 

Schaller, Emmanuelle, Jacques O. Bosset, and Felix Escher. "‘Electronic noses’ and their 

application to food." LWT-Food Science and Technology 31.4 (1998): 305-316. 

 

Schiffman, Susan Stolte, and Robert P. Erickson. "A psychophysical model for gustatory 

quality." Physiology & Behavior 7.4 (1971): 617-633. 



 
 
 
 
260 
 

 
 

Scorsone, Emmanuel, Anna Maria Pisanelli, and Krishna C. Persaud. "Development of 

an electronic nose for fire detection." Sensors and Actuators B: Chemical 116.1 (2006): 

55-61. 

 

Shaham, Oded, Liran Carmel, and David Harel. "On mappings between electronic 

noses." Sensors and Actuators B: Chemical 106.1 (2005): 76-82 

 

Shepherd, G.M. A molecular vocabulary for olfaction”. Annals of the New York Academy 

of Sciences (1987). 

 

Shier, AND., Butler, J. and Lewis, R. Hole's Human Anatomy & Physiology, Boston: 

McGraw Hill, 2004 

 

Shih, Chung-Hung, et al. "Real-time electronic nose based pathogen detection for 

respiratory intensive care patients." Sensors and Actuators B: Chemical 148.1 (2010): 

153-157. 

 

Shurmer, Harold V., and Julian W. Gardner. "Odour discrimination with an electronic 

nose." Sensors and Actuators B: Chemical 8.1 (1992): 1-11. 

 



 
 
 
 

261 
 

 
 

Sjöblom, Jonas, et al. "An evaluation of orthogonal signal correction applied to 

calibration transfer of near infrared spectra." Chemometrics and Intelligent Laboratory 

Systems 44.1 (1998): 229-244. 

 

Snopok, B. A., and I. V. Kruglenko. "Multisensor systems for chemical analysis: state-of-

the-art in Electronic Nose technology and new trends in machine olfaction." Thin Solid 

Films 418.1 (2002): 21-41. 

 

Raman, Baranidharan, et al. "Designing and optimizing microsensor arrays for 

recognizing chemical hazards in complex environments." Sensors and Actuators B: 

Chemical 137.2 (2009): 617-629. 

 

Raman, Baranidharan, et al. "A statistical approach to materials and selection for 

chemical sensor arrays", Computional Methods for Sensor Material Selection, Eds. New 

York: Springer-Verlag, 2009. 

 

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. Learning internal 

representations by error propagation. No. ICS-8506. CALIFORNIA UNIV SAN DIEGO 

LA JOLLA INST FOR COGNITIVE SCIENCE, 1985. 

 



 
 
 
 
262 
 

 
 

Rogers, Phillip H., and Steve Semancik. "Feedback-enabled discrimination enhancement 

for temperature-programmed chemiresistive microsensors." Sensors and Actuators B: 

Chemical 158.1 (2011): 111-116. 

 

Rogers, Phillip H., and Steve Semancik. "Development of optimization procedures for 

application-specific chemical sensing." Sensors and Actuators B: Chemical 163.1 (2012): 

8-19. 

 

Sharaf, Muhammad A., Deborah L. Illman, and Bruce R. Kowalski. Chemometrics. Vol. 

82. John Wiley & Sons, 1986. 

 

Tauler, Romà, Beata Walczak, and Steven D. Brown. Comprehensive chemometrics: 

chemical and biochemical data analysis. Elsevier, 2009. 

 

Therrien, Charles W. Decision estimation and classification: an introduction to pattern 

recognition and related topics. John Wiley & Sons, Inc., 1989. 

 

Tomic, Oliver, et al. "Recalibration of a gas-sensor array system related to sensor 

replacement." Analytica Chimica Acta 512.2 (2004): 199-206. 

 



 
 
 
 

263 
 

 
 

Tran, Vanessa H., et al. "Breath analysis of lung cancer patients using an electronic nose 

detection system." Sensors Journal, IEEE 10.9 (2010): 1514-1518. 

 

Turing, Alan M. "Rounding-off errors in matrix processes." The Quarterly Journal of 

Mechanics and Applied Mathematics 1.1 (1948): 287-308. 

 

Van Deventer, D., and P. Mallikarjunan. "Optimizing an electronic nose for analysis of 

volatiles from printing inks on assorted plastic films." Innovative Food Science & 

Emerging Technologies 3.1 (2002): 93-99. 

 

Vergara, A., et al. "Optimised temperature modulation of metal oxide micro-hotplate gas 

sensors through multilevel pseudo random sequences." Sensors and Actuators B: 

Chemical 111 (2005): 271-280. 

 

Vergara, A., et al. "Quantitative gas mixture analysis using temperature-modulated 

micro-hotplate gas sensors: selection and validation of the optimal modulating 

frequencies." Sensors and Actuators B: Chemical 123.2 (2007): 1002-1016. 

 

Vergara, Alexander, et al. "Information-theoretic optimization of chemical sensors." 

Sensors and Actuators B: Chemical 148.1 (2010): 298-306. 

 



 
 
 
 
264 
 

 
 

Vergara, Alexander, and Eduard Llobet. "Sensor selection and chemo-sensory 

optimization: toward an adaptable chemo-sensory system." Frontiers in 

neuroengineering 4 (2011). 

 

Vermeulen, Arthur, et al. "Coding of odour intensity in a sensory neuron." BioSystems 

40.1 (1997): 203-210. 

 

Vinje, William E., and Jack L. Gallant. "Sparse coding and decorrelation in primary 

visual cortex during natural vision." Science 287.5456 (2000): 1273-1276. 

 

Walczak, B., E. Bouveresse, and D. L. Massart. "Standardization of near-infrared spectra 

in the wavelet domain." Chemometrics and intelligent laboratory systems 36.1 (1997): 

41-51. 

 

Wang, Yongdong, David J. Veltkamp, and Bruce R. Kowalski. "Multivariate instrument 

standardization." Analytical chemistry 63.23 (1991): 2750-2756. 

 

Wang, Yongdong, Michael J. Lysaght, and Bruce R. Kowalski. "Improvement of 

multivariate calibration through instrument standardization." Analytical Chemistry 64.5 

(1992): 562-564. 

 



 
 
 
 

265 
 

 
 

Wilke, Stefan D., and Christian W. Eurich. "Representational accuracy of stochastic 

neural populations." Neural Computation 14.1 (2002): 155-189. 

 

Wilson, Denise M., Thaddeus Roppel, and Ronald Kalim. "Aggregation of sensory input 

for robust performance in chemical sensing microsystems." Sensors and Actuators B: 

Chemical 64.1 (2000): 107-117. 

 

Wilson, D. M., et al. "Array optimization and preprocessing techniques for chemical 

sensing microsystems." Sensors Update 10.1 (2002): 77-106. 

 

Yasufuku, Sachio. "Electroconductive polymers and their applications in Japan." IEEE 

Electrical Insulation Magazine 5.17 (2001): 14-24. 

 

Yinon, Jehuda. "Peer reviewed: detection of explosives by electronic noses." Analytical 

Chemistry 75.5 (2003): 98-A. 

 

Zaromb, S., and J. R. Stetter. "Theoretical basis for identification and measurement of air 

contaminants using an array of sensors having partly overlapping selectivities." Sensors 

and Actuators 6.4 (1984): 225-243. 

 

  



 
 
 
 
266 
 

 
 

 

  



 
 
 
 

267 
 

 
 

APPENDIX A 

THE FISHER SCORE 

 

We used the Fisher Score in Chapter IV as a figure of merit to measure the performance 

of our sensor in discriminating C odour classes. This measure of pattern separability is 

computed using the following expression: 

 
𝐹𝐹𝑆𝑆 = 𝑑𝑑𝑑𝑑(𝑆𝑆𝐵𝐵𝑆𝑆𝑊𝑊−1) (A.1) 

 
where SW and SB are, respectively the within and between class scatter matrices. SW is 

obtained as the summa of the individual within scatter matrices.  

 

𝑆𝑆𝑊𝑊 = ���𝑦𝑦 −𝑚𝑚𝐷𝐷𝑐𝑐��𝑦𝑦 − 𝑚𝑚𝐷𝐷𝑐𝑐�
𝑇𝑇

𝑥𝑥∈𝑐𝑐

𝑐𝑐

𝑐𝑐=1

 
(A.2) 

where y are the samples belonging a class i, and mDi their corresponding sample mean. 

To obtain SB, we first compute the position of the centroid of our pattern of response, m:  

 

 

𝑚𝑚 =
1
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(A.3) 
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being N the total number of samples of the dataset, and ni the number of samples of the 

class i. Then SB is computed as the sum of the individual between scatter matrices respect 

the position of the centroid.  

 

𝑆𝑆𝐵𝐵 = �𝑙𝑙𝑐𝑐�𝑚𝑚𝐷𝐷𝑂𝑂 − 𝑚𝑚�
𝑐𝑐

1=1

�𝑚𝑚𝐷𝐷𝑂𝑂 − 𝑚𝑚�
𝑇𝑇
 

(A.4) 

 

Basically, the Fisher Score increases directly with SB, and inversely with SW. We can see 

intuitively this idea in Fig. 65.  

  
 

 
 
Fig. 65. Illustration of the measure of pattern separability using the FS. (a) Scatter between 

groups. (b) Scatter within groups. 

a) b)

Scatter Within Groups: SWScatter Between Groups: SB

Centroid



 
 
 
 

269 
 

 
 

APPENDIX B 

LINEARIZATION OF THE SENSITIVITY MATRIX 

 

Large arrays of sensors suffer from an inherent problem called ‘the curse of 

dimensionality’.  The origin of this problem is that the number of samples needed to 

accurately estimate the parameters of a random distribution on a given space grows 

exponentially with the dimensions of the space. In addition to this, chemical sensors 

(such as MOX sensors) usually show highly correlated responses when exposed to 

different odours. This fact gives rise to problems of collinearity on the array responses, 

which eventually can led to poorly discriminative datasets. To prevent these two 

problems, the dimensionality of the sensor space is generally deflated employing data 

decomposition algorithms, like Principal Component Analysis (PCA). An alternative 

approach, consist in the use of multivariate regression methods for dimensionality 

reduction, such as Partial Least Squares (PLS). The main advantage of this approach is 

that provides a linearized version of the sensitivity matrix Ŝ on this deflated sensor space. 

In essence, what the PLS algorithm does is to seek the directions of maximum variance 

on the sensor space X (the latent variable scores, T) which are relevant for predicting 

samples of the odour space Y.  Then, the concentrations of the pure compounds are 

regressed onto the latent variable scores: 
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𝑇𝑇𝑄𝑄 = 𝑌𝑌 (B.1) 

where Q is a regression matrix. The latent variable scores T can be considered as a new 

collection of sensors which mostly preserves the information of the original sensors space 

X.  The relation between the previous regression matrix Q and the sensitivity matrix Ŝ on 

the reduced sensor space is obtained as follows: On the one hand, the linear 

transformation that relates the odour and the sensor scores spaces through the sensitivity 

matrix Ŝ is: 

𝑇𝑇𝑇𝑇 = �̂�𝑆𝑌𝑌𝑇𝑇 (B.2) 

On the other, an expression for the odour space samples YT in terms of the regression 

matrix Q and the latent variable scores T can be obtained by transposing both sides of 

equation (B.1): 

𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑌𝑌𝑇𝑇 (B.3) 

If we substitute the latter expression for YT in equation (B.2): 

𝑇𝑇𝑇𝑇 = �̂�𝑆𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇 (B.4) 

Thus, it is found that sensitivity matrix Ŝ in the latent variable space is the pseudo-inverse 

of the transposed regression matrix Q: 
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�̂�𝑆 = (𝑄𝑄𝑇𝑇)+ (B.5) 

 

 

 


