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Resum de la tesi

El major misteri que ens brinda l’Univers no és la vida, és el tamany.

Stephen King

Tractament Anaĺıtic de l’Agregació No Lineal de Matèria

Fosca a través del Filtrat del Camp de Densitat Primordial

Des de l’inici dels temps, la humanitat s’ha preguntat sobre l’origen i la naturalesa

del nostre Univers. Totes les religions conegudes, des de l’antiga Mesopotàmia a

les presents avui en dia, han intentat respondre a preguntes com Quin és l’origen

de l’Univers? i De que es compòn el món que ens envolta?. La gran majoria de

filòsofs tambe han indagat en la naturalesa de l’Univers durant segles i, finalment,

la cosmologia ha estat un dels camps de recerca més important dels últims temps.

La formació d’estructures a l’Univers ha estat un tema que ha desafiat als

cient́ıfics durants segles i, encara avui en dia, és un dels principals camps de re-

cerca en cosmologia. La resposta més acceptada a la pregunta de com es formen

les estructures a gran escala de l’Univers és que petites inhomogeneitats al camp

primordial de densitat varen colapsar, després de la recombinació, degut a la seva

inestabilitat gravitacional, donant lloc a les llavors de les estructures que observem

avui en dia.

El descobriment de les galàxies i de l’expansió del Univers per part d’Edwin

Hubble (Hubble 1929) als inicis del segle XX i, més endavant, el descobriment dels

fons còsmic de microones (CMB, degut a les seves sigles en anglès)(Penzias & Wil-

son 1965) van fixar el marc on construir una teoria per a explicar les inestabilitats

gravitacionals. Aquesta teoria es va basar en el treball de James Jeans (Jeans 1902),

que ja en el segle XIX va demostsrar que si les forces de pressió en un fluid són neg-

ligibles en comparació amb l’atracció gravitatòria genereada per les seves pròpies

part́ıcules, les regions amb més densitat acabaran col·lapsant. Aquest resultat va
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Resum

dur a diversos autors (Doroshkevich et al. 1967; Silk 1967, 1968; Peebles & Yu 1970;

Field 1971; Weimberg 1971; Chibisov 1972) a intentar desenvolupar una teoria de

la formació d’estructura a través de la inestabilitat gravitacional.

Per altra banda, tot i que la matèria fosca va ser proposada per primera vegada

als anys 30 del segle passat(Zwicky 1933; Babcock 1939), no va ser fins als anys

70 que la idea de que les galàxies i els clusters es trobaven dins d’halos massius de

matèria fosca va ser àmpliament acceptada. Aquesta acceptació va dur als primers

models de formació de galàxies dincs d’halos de matèria fosca (White & Rees 1978).

Des d’aleshores, el camp de la formació de galàxies ha estat extensament estudiat,

tant de manera anaĺıtica com, sobretot, usant simulacions numèriques de N-cosos.

En aquesta tesi, demostrem com les propietats dels halos de matèria fosca poden

ser derivades directament del camp primordial de densitat si s’usa un filtre adequat

i, en aquest marc, desenvolupem el ConflUent System of Peak trajectories (CUSP).

Aquest treball és el resultat d’un llarg procés, encetat per Manrique & Salvador-Solé

(1995) i Manrique & Salvador-Solé (1996), essent més endavant reprès per Salvador-

Solé et al. (2012a) i Salvador-Solé et al. (2012b). Tot i això, aquests treballs es

basaven, per una banda, en el Ansatz de que existeix una correspondència uńıvoca

entre pics de densistat del camp primordial i els halos i; per l’altra, també requeria

que els halos creixessin de dins cap enfora (és a dir, sense alterar la seva estructura

interna), punt que es basava en arguments teòrics consistents però que no havia

pogut ser comprovat. Aquests inconvenients feien que el formalisme CUSP quedés

incomplet i perdés bona part del seu poder predictiu.

Aquest treball completa aquest tractament anaĺıtic acurat de la formació no

linear d’estructura a través del filtrat del camp primordial de densitat. En primer

lloc, fem un repàs al formalisme, les seves bases teòriques i expliquem com pot ser

usat per a derivar les propietats t́ıpiques dels halos. A la vegada:

1. Hem demostrat l’existència d’una correspondència uńıvoca entre halos i pics,

tot i que aquests col·lapsin de forma el·lipsoidal.

2. Hem demostrat que els halos que es formen a través de fusions i els que es

formen per acreció pura tenen les mateixes propietats, que depenen de les

propietats dels pics progenitors a la major escala.

3. En conseqüència, hem explicat perquè les propietats t́ıpiques dels halos depe-

nen només de la seva massa i dels temps d’observació, independentment de si

han patit una fusió, en cas d’haver-la tingut, de quan ha tingut lloc.
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Un cop establert el formalisme CUSP i demostrats els punts en els quals es basa,

hem procedit a usar-lo per tal d’estudiar el creixement dels halos. En particular:

1. Hem demostrat que els halos creixent de dins cap a fora, ingredient crucial en

el desenvolupament dels formalisme CUSP.

2. Hem establert unes relacions anaĺıtiques per a les relacions massa-concentració-

forma dels ajustos NFW i Einasto, vàlides per a tots els redshifts i masses

rellevants.

3. Hem comprovat els dominis de validesa, tant en massa com en redshift, de les

relacions mencionades en el punt anterior.

Finalment, també hem aplicat al CUSP per a estudiar les funcions de massa i

multiplicitat, i la seva dependència en la definició de massa feta servir. En particular:

1. Hem demostrat que l’ algoritme de busqueda d’halos FoF(0.2) (molt usat en

simulacions numèriques) és equivalent a la definició SO(∆vir), habitualment

usada en tractaments anaĺıtics de la formació i evolució dels halos de matèria

fosca. Conseqüentment, hem pogut explicar el perquè la distància 0.2 de

l’algoritme FoF sembla ser una definició privilegiada.

2. Hem demostrat el motiu pel qual els radis virials dels halos són propers als

halos top-hat descrits pel model de col·lapse esfèric i perquè la funció de mases

dels halos té una forma tant similar a la de Press-Schechter.

3. Hem explicat perquè la funció de multiplicitat dels halos és pràcticament uni-

versal ens els dos casos equivalents descrits més amunt.

Tot i no haver-se inclòs en aquesta tesi, el formalisme CUSP també es ppot

aplicar en l’estudi acurat de la subestructura dels halos, treball que ara mateix

s’està efectuant. Altres camps on el formalisme CUSP podria ser aplicat per tal

d’estudiar-los són

• La dispersió de les propietats dels halos.

• L’assembly bias dels halos.

• La correlació espacial entre halos de diferents masses.

• La formació d’estructures en forma de filament a grans escales.
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• Les propietats dels fluxos i esferoides estel·lars que es troben al centre dels

halos de matèria fosca.

Aix́ı doncs, amb aquesta tesi completem l’estudi purament anaĺıtic dels halos

de matèria fosca, trobant de forma rigurosa i autoconsistent les seves propietats.

Donem una resposta anaĺıtica a un problema normalment estudiat a través de sim-

ulacions numèriques i, a la vegada, expliquem el perqué dels resultats trobats en les

citades simulacions.
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1
Introduction

The greatest mystery the Universe offers is not life, but size.

Stephen King

Since the dawn of time, humanity has wondered about the origin and nature of

our Universe. All known religions, from ancient Mesopotamia to the present day,

include their own explanations to questions such as what is the origin of the Uni-

verse? and what is it made of? Most philosophers also worked on the nature of the

Universe through the centuries and, finally, Cosmology has been one of the major

scientific topics for the last centuries.

Structure formation in the Universe is a subject that challenged scientists for cen-

turies and is still one of the main research fields of modern Cosmology. The most

widely accepted answer to this issue is that small inhomogeneities in the primordial

density field grew and collapsed, after the time of matter-radiation equality, via

gravitational instability to give rise to the structures we observe today.

Afer the discovery of galaxies and the expansion of the Universe by Edwin Hub-

ble (Hubble 1929) at the beginning of the 20th century and the discovery of the

Cosmic Microwave Background (CMB) (Penzias & Wilson 1965), the framework

for a gravitational instability theory was set. This theory was based on the work

by James Jeans (Jeans 1902) who, in the 19th century, showed that if the pressure

forces of a homogeneous fluid are negligible compared to the self-gravitational attrac-

tion generated by its particles, overdense regions will collapse into gravitationally
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1. Introduction

bound objects. This brought several authors (Doroshkevich et al. 1967; Silk 1967,

1968; Peebles & Yu 1970; Field 1971; Weimberg 1971; Chibisov 1972) to attempt

the derivation of a theory of structure formation through grativational instability in

the cosmological framework.

Although dark matter was first proposed in the 1930’s (Zwicky 1933; Babcock

1939), it was not until the 1970’s that the idea that galaxies and clusters are embed-

ded in massive dark matter halos was widely accepted. This led to the first models

of galaxy formation in dark matter halos (White & Rees 1978). Since then, the is-

sue of galaxy formation has been extensively studied, approached both by analytical

models and, specially, by N-body numerical simulations.

In this Thesis, we show how the properties of dark matter halos can be directly

derived from the proper filtering of the primordial density field. This work is the

result of a long process, started by Manrique & Salvador-Solé (1995) and Manrique

& Salvador-Solé (1996), retaken by Salvador-Solé et al. (2012a) and Salvador-Solé

et al. (2012b). However, those works relied, on the one hand, on the Ansatz that

there is a one-to-one correspondence between peaks and halos and, in the other

hand, on the condition that halos grow in an inside-out fashion, based on simple

theoretical arguments but not checked against simulations.

In the present Thesis we complete the formalism, proving the existence of a one-

to-one correspondence between halos and primordial denstiy peaks and confirming

the inside-out growth of halos. The formalism has also been applied to better char-

acterise halo growth, as well as the halo mass and multiplicity functions.

The structure of the Thesis is as follows. In Chapter 2 we review the basics

of dark matter structure formation theory. In Chapter 3 we give an overview of

the CUSP formalism and its application to the derivation of halo properties. In

Chapter 4 we study how halo density profiles evolve with time and present some

useful analytical fits to their typical density properties. In Chapter 5 we study the

link between halo mass definitions and halo mass and multiplicity functions. Finally,

in Chapter 6 we present the conclusions of this work and mention some possible

developments of the CUSP formalism to the study and better understanding of

structure formation in our Universe.
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2
Structure Formation - Theory

I want to see gamma rays, I want to hear X-rays...

and I want to smell dark matter.

Brother Cavil

In this Chapter we give an overview of several approaches followed in the ana-

lytic study of the evolution of primordial dark matter density perturbations. In §2.1

we explain the linear theory for small fluctuations. In §2.2 we study the nonlinear

regime. In §2.3 we review the spherical collapse model and its application to the

study of collapsed objects through the excursion set formalism. Finally, in §2.5 we

introduce the peak theory on which the CUSP formalism is based.

2.1 Linear Regime

As mentioned, dark matter structure forms from small inhomogeneites of the primordial

density field. Therefore, it is convinient to define the mass density contrast δ, as the

departure from the mean density around a point x

δ(x, t) ≡ ρ(x, t) − ρ̄(t)

ρ̄(t)
, (2.1)

being ρ̄(t) the mean background density at a given time t. Using comoving spatial

coordinates, the matter density field at a point x given time t is:

3



2. Structure Formation - Theory

ρ(x, t) = ρ̄(t)[1 + δ(x, t)] . (2.2)

In order to use the linear approximation, we must assume that perturbations

are small, meaning that δ << 1, and that their size is smaller than the horizon

scale1 r ≪ rH ∼ c/H (Lifshitz 1946). Under these circumstances, the gravitational

potential is weak enough to allow us to treat the gravitational unstability in a non-

relativistic way, using Newtonian mechanics.

If the mean free path between collisions of a particle is also small, matter can be

treated as an ideal fluid which satisfies both the mass conservation equation

(
∂ρ

∂t

)

r

+ ∇r · (ρu) = 0 , (2.3)

and the Euler equation of motion

(
∂u

∂t

)

r

+ (u · ∇ru)u = −∇rΦ − 1

ρ
∇rP , (2.4)

where Φ is the gravitational potential that verifies Poisson’s equation

∇2
r
Φ = 4πGρ . (2.5)

where r and u are, respectively, the position and velocity of a fluid element mea-

sured in an inertial frame.

Given that the Universe is expanding, it is better suited to use the comoving

coordinates x = r/a(t), where is the cosmic scale factor, instead of an inertial

coordinate system. In this new reference frame the velocity field can be written as

u = ȧx + v(x, t) , (2.6)

where the first term on the right hand side is the Hubble flow due to the expansion

of the Universe, Hr = ȧx, and the last one is the peculiar velocity relative to the

velocity imprinted by the general expansion, v(x, t) = aẋ.

We will use φ to denote the perturbations of the gravitational potential Φ due

to the inhomogeinities in the matter distribution.

1The largest structure known in the Universe, the “el Gordo” cluster, is over 400kpc (Menanteau
et al. 2012), about one order of magnitude smaller than the Horizon scale.
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2.1. Linear Regime

After changing the position variables to comoving coordinates, the time deriva-

tive at a fixed r and the gradient along the same direction at a fixed t have respec-

tively the form

(
∂

∂t

)

r

=

(
∂

∂t

)

x

− ȧ

a
x · ∇x (2.7)

∇r =
1

a
∇x . (2.8)

We can apply these transformations to equations (2.3)–(2.5) and after some

algebra, we are led to the analog equations, but in the comoving frame and expressed

in terms of the density contrast δ, the peculiar velocity v and the perturbed part of

the gravitational potential φ

∂ρ

∂t
+ 3

ȧ

a
ρ +

1

a
∇x(ρv) = 0 , (2.9)

∂(av)

∂t
+ (v · ∇x)v = −1

ρ
∇xP −∇xφ , (2.10)

∇2
x
φ = 4πGa2(ρ − ρ̄) = 4πGa2ρ̄ δ . (2.11)

In linear perturbation theory, we can compute δ and v by considering only small

amplitude perturbations in the mass density, which leads to small streaming motions

and small values of the perturbed gravitational potential φ. This is equivalent to

expanding perturbatively the density field, the velocity field and the gravitational

potential in equations (2.3)–(2.5), then cut at first order this expansion, and work

out the equations containing only those first order terms. These operations will

lead to the following linearised expressions for the continuity, Euler and Poisson

equations, respectively

∂δ

∂t
+

1

a
∇x · v = 0 , (2.12)

∂v

∂t
+

ȧ

a
v +

1

a
∇xφ = − 1

ρa
∇xP , (2.13)

∇2
x
φ = 4πGa2ρ̄ δ , (2.14)

Given that in the early epochs of the Universe density fluctuations are still small,

(2.12)-(2.14) provide an excellent description of their evolution. Furthermore, the

linear regime is also a good approximation on large scales for an approximately

5



2. Structure Formation - Theory

homogeneous mass distribution in a hierarchical scenario. In this case, large-scale

fluctuations evolve linearly (δ < 1) even if at smaller scales they already were in a

highly nonlinear regime (δ ≫ 1).

2.1.1 Pressureless Fluids

Let us consider an expanding ideal fluid with negligible pressure, for instance, the

Universe in the matter dominated era. In this case, the linearised equations describe

the evolution of small density perturbations under the exclusive action of gravity.

Therefore, we will obtain a secon-order differential equation for the time evolution

of a given density contrast by removing the peculiar velocity from equation (2.12)

and (2.13).

δ̈ + 2
ȧ

a
δ̇ − 4πGρ̄ δ = 0 . (2.15)

Perturbation Growth in an Einstein-de Sitter universe

In the classic and well-known Einstein-de Sitter model, which assumes a critical

Universe without dark energy or cosmological constant (i.e. Λ = 0, Ω = 1), the scale

factor increases as a(t) ∝ t2/3, and, therefore, the background density decreases as

ρ̄(t) ≡ ρcr ∝ t−2. In this framework, equation (2.15) takes the form:

δ̈ +
4

3t
δ̇ − 2

3t2
δ = 0 . (2.16)

This second-order differential equation admits two solutions: the first one pro-

portional to t2/3 (∝ a), known as “growing mode”, and the second one, proportional

to t−1, known as “decaying mode”. For those perturbations with amplitude δ = δi

at an initial time ti that begin to grow from rest [i.e. δ̇(ti) = 0], the solution is a

linear combination of both modes

δ(t) = δi

[
3

5

(
t

ti

)2/3

+
2

5

(
t

ti

)−1
]

, (2.17)

From this equation it is clear that the growing mode contributes 60% to the

density contrast at the initial time, whereas the decaying mode contributes only with

a 40%. Due to the monotonical amplitude decrement as time proceeds, the decaying

mode will go to zero asymptotically. As it does not actually play any relevant role

in structure formation, from now one we will deal only with the growing mode.

6



2.1. Linear Regime

Perturbation Growth in Open and Closed Models

Let us now derive the growing solution in a general cosmological model following

the development by Sahni & Coles (1995). Defining D+ as the growin mode and

D− as the decaying mode, we can write the the Wronskian equation (2.15) as

W (t) = Ḋ+D− − Ḋ−D+ (2.18)

is proportional to a−2. Once the decaying mode is known, and given the previous

relation between those two modes, a differential equation for the growing mode can

be found. Taking into account the Wronskian definition, we can write

W (t)

D2
−(t)

=
d

dt

(
D+(t)

D−(t)

)
. (2.19)

Isolating D+(t) and integrating over t we have

D+(t) = D−(t)

∫ t

W (t′)D−2
− (t′)dt′ = H(t)

∫ t dt′

a2(t′)H2(t′)
,

(2.20)

D+(a) = H(a)

∫ a da

(Ha)3
.

In order to compute this integrals, it is preferable to use the redshift z instead of

the scale factor as the integration variable. We can write the relation between both

variables and the expression for H(z) as

a(z) = a0 (1 + z)−1 ,

(2.21)

H(z) = H0 (1 + z) (1 + Ω0z)1/2 ,

where a0, H0 and Ω0 are the present time scale factor (usually taken as 1), Hubble

parameter and total density parameter, respectively. Taking all these relations into

account, equation (2.20) can be writen as

D+(z) = (a0H0)
−2(1 + z)(1 + Ω0z)1/2

∫ ∞

z

dz′

(1 + z′)2(1 + Ω0z′)3/2
. (2.22)

This integral has an analytical solution that leads to

7



2. Structure Formation - Theory

D+(z) =
1 + 2 Ω0 + 3 Ω0z

|1 − Ω0|2
+ 3 Ω0

(1 + z)(1 + Ω0z)1/2

|1 − Ω0|5/2
f(Ω0, z) , (2.23)

where f(Ω0, z) can be written as

f(Ω0, z) = −1

2
log

[
(1 + Ω0z)1/2 + (1 − Ω0)

1/2

(1 + Ω0z)1/2 − (1 − Ω0)1/2

]
,

(2.24)

f(Ω0, z) = arctan

[
1 + Ω0z

Ω0 − 1

]1/2

,

for the cases Ω0 < 1 and Ω0 > 1, respectively. In the simpler case where Ω0 = 1, we

have

D+(z) ∝ (1 + z)−1 . (2.25)

Perturbation Growth in Models with Cosmological Constant

To study models with a cosmological constant, we will follow the same strategy as

in the previous case, but taking into account that the dynamics of the Universe are

affected by the presence of a cosmological constant Λ. Like we have seen before, the

decaying mode is proportional to H(a), and the growing mode is given by equation

(2.20). Let us consider a spatially flat universe (Ω0 + ΩΛ = 1). In this kind of

universe, the Hubble parameter can be written as

H(a) ∝ a−3/2

(
1 +

Ω0

ΩΛ

a3

)1/2

, (2.26)

and the integration of equation (2.20) leads to

D+(a) = C
5

6
Bx

(
5

6
,
2

3

) (
Ω0

ΩΛ

)1/3 [
1 +

Ω0

ΩΛa3

]1/2

, (2.27)

where

x =
ΩΛa3

Ω0 + ΩΛa3
, (2.28)

C is an arbitrary constant, and Bx(α, β) is the incomplete Beta function.
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2.1. Linear Regime

In models including a cosmological constant, the expansion rate passes through

two distinct stages. As the density of matter decreases (ρm ∝ a−3) the expansion

rate growth experiences a deceleration, which leads to an almost constant scale

factor with time when the repulsive force, driven by the cosmological constant,

and the gravitational attraction, driven by matter, cancel out. During this epoch

density perturbations grow increasingly faster approaching the exponential Jeans

rate, characteristic of a non-expanding universe. At later times, when the dynamics

are completely dominated by the cosmological constant, the scale factor begins to

grow again and tends to the value a(t) = exp(
√

Λ/3 t). This acceleration in the

expansion rate of the Universe keeps the perturbation amplitude from growing.

From equation (2.27), we can see that the growing mode becomes constant for

z ≪ zΛ = (ΩΛ/Ω0)
1/3 − 1.

Perturbation Growth in Models with Two Components

Let us now consider the universe filled with pressureless matter, contributing with

ρm to the total density ρtot, and radiation, contributing with ρr. We also consider

a flat universe, and assume that the radiation component is not perturbed2, the

resulting equations are

δ̈ + 2

(
ȧ

a

)
δ̇ − 4πGρ̄ δ = 0 ,

(2.29)
(

ȧ

a

)2

=
8πG

3
(ρm + ρr) =

8πG

3
ρtot .

If we now change the time variable to τ = ρm/ρr ∝ a(t), the second-order

differential equation can be rewritten as

d2δ

dτ 2
+

(2 + 3τ)

2τ(1 + τ)

dδ

dτ
− 3

2τ(1 + τ)
δ = 0 . (2.30)

The growing solution of this equation is D+(τ) ∝ 1 + 3τ/2. We can see that

for τ ≪ 1 the growing mode is a constant, so fluctuations do not grow. This

behaviouris a consequence of radiation dominating the dynamics of the universe

at early times, causing the scale factor to evolve as t1/2. As time goes on, the

contribution of radiation to the total energy density diminishes rapidly, with matter

taking its place as the dominant component, allowing for density inhomogeneities

2Primordial adiabatic perturbations do affect radiation as well as matter. However, this sim-
plification leads to a correct qualitative result
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2. Structure Formation - Theory

to grow. Since,during the matter dominated era, the scale factor increases as t2/3,

it is clear that the expansion rate will experience an acceleration throughout the

transition. Therefore, the growth of density perturbations is suppressed as long as

ρr ≫ ρm.

The Peculiar Velocity

To see how perturbations in the Hubble flow evolve with time, we have to consider

the linearised continuity equation with P = 0, Poisson’s equation and the solution of

the second-order differential equation describing the density contrast growth. Since

the growing mode dominates the general solution of equation (2.15), we can write

δ(x, t) ≡ δ(x)D+(t). Substituting this result in the linearised mass conservation

equation [eq. (2.12)] we see that the relation between density and velocity is

∇x · v = −a
∂δ

∂t
= −a δ

Ḋ+

D+

= −a δHf , (2.31)

where the dimensionless velocity factor is

f =
a

ȧ

Ḋ+

D+

=
1

H

Ḋ+

D+

=
d log δ

d log a
≃ Ω0.6

0 +
ΩΛ

70

(
Λ +

Ω0

2

)
. (2.32)

In order to isolate the density contrast, we use Poisson’s equation, and equation

(2.31) yields

∇x · v = −∇x ·
(

Hf

4πGa
∇xφ

)
, (2.33)

which, after integration, leads to

v = − 2f

3ΩHa
∇xφ +

const

a(t)
. (2.34)

These linearised equations show that the peculiar velocity field associated with

the growing mode can be expressed in terms of a velocity potential exclusively (i.e.,

the peculiar velocity field is irrotational) v = −∇xφv/a. In this case we can write

φv =
2 f

3ΩH
φ . (2.35)

This interesting property of the velocity field has been applied to several cos-

mological topics, such as some analytical approximations to the non-linear regime

(Zel’dovich 1970) or reconstruction techniques used to obtain the density field by

measuring the peculiar motions of galaxies relative to the cosmological frame defined

10



2.1. Linear Regime

by the microwave background (Bertschinger & Dekel 1989; Dekel et al. 1990, 1993),

assuming that galaxies trace the velocity field.

The presence of gravitational forces causes an acceleration field of magnitude

g = −∇xφ/a. Taking equation (2.34) and setting the integration constant equal to

zero, we get

v =
2 f

3ΩH
g . (2.36)

It is clear from this equation that the peculiar velocity is parallel to the accel-

eration. In an Einstein-de Sitter model, with negligible cosmological constant and

density parameter equal to unity, we would have f = 1 and H = 3/2 t−1. In this

case the peculiar velocity field would adopt the simple form v = g t. In the absence

of a gravitational field (φ = 0), the linearised Euler equation for pressureless fluids

can be written as
∂v

∂t
+

ȧ

a
v =

1

a

∂(av)

∂t
= 0 , (2.37)

and any initial peculiar velocity decays as a−1(t).

2.1.2 Pressure Effects

So far we have only considered simple models assuming a pressureless fluid. How-

ever, at some scales and at given epochs, pressure cannot be simply neglected.

Therefore, we will study what happens on those scales when pressure is introduced

in the linearised equations. Assuming pressure is only a function of density, mak-

ing use of equation (2.2) and remembering that the “sound speed” is defined as

cs = (dP/dρ)1/2, the pressure force in an expanding fluid can be written as

F = −1

a
∇xP = −dP

dρ

∇xρ

a
= −c2

s ρ̄
∇xδ

a
. (2.38)

Going back to the linearised equations, substituting the former result in the

Euler equation (2.13) leads to

∂v

∂t
+

ȧ

a
v +

1

a
∇xφ = −c2

s

a
∇x δ . (2.39)

Following the same steps as in the pressureless case, we get to the perturbation

equation

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
−

(cs

a

)2

∇x
2δ − 4πGρ̄δ = 0 . (2.40)
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2. Structure Formation - Theory

It is convenient to expand the density contrast in Fourier series

δ =
∑

k

δk exp(−ik · x) , (2.41)

where k ≡ |k| = 2πa/λ is the comoving wavenumber. All the coefficients in equation

(2.41) are independent from x, therefore the amplitude δk(t) associated with the

wavenumber k satisfies the second-order differential equation

δ̈k + 2Hδ̇k + ω2
kδk = 0 . (2.42)

This is the well known damped oscillator equation with a damping factor equal

to 2H and a proper frequency

ω2
k =

(
kcs

a

)2

− 4πGρ . (2.43)

According to equation (2.42), density perturbations are damped due to the ex-

pansion of the universe as long as the frequency ω2
k is positive. When it becomes

negative, we have to abandon the damped oscillator interpretation and reconsider

the solutions for a pressureless fluid. The limiting case is given by the condition

ω2
k = 0, which defines the so-called Jeans length

λJ = cs

(
π

Gρ

)1/2

. (2.44)

At scales larger than the Jeans length, λ > λJ , perturbations do not feel the

influence of pressure and grow just like they do in a pressureless fluid, whereas on

smaller scales, λ < λJ , pressure gradients force perturbations to oscillate as acoustic

waves with steadily decreasing amplitude. This behaviour can also be discussed in

terms of characteristic times. From equation (2.44) we see that, for perturbations

of a scale equal to the Jeans length, the characteristic time of gravitational growth

(∼ √
Gρ̄) is comparable to the crossing time of pressure waves (∼ λJ/cs). On scales

larger than that, the crossing time is longer than the gravitational growth time for

the density contrast. Therefore, pressure effects can be neglected. On scales smaller

than the Jeans scale, the opposite is true, and the density contrast behaves as a

damped oscillator.

From equation (2.44), it can be seen that the Jeans length is extremely sensitive

to the sound speed within the fluid. On the radiation dominated era, electrons

are tightly coupled to radiation via Thomson scattering, in such a way that we are

12



2.1. Linear Regime

allowed to consider the mixture as a single fluid with an adiabatic speed of sound

cs =
1√
3

(
3ρm

4ρr

+ 1

)−1/2

. (2.45)

Taking into account that ρr ≫ ρm and ρr ∝ t−2, it can be seen that the Jeans

length is proportional to t. Said otherwise, during the radiation dominated era the

Jeans length scales with the cosmological horizon. During recombination, the cou-

pling between electrons and radiation breaks down, and pressure becomes supported

by neutral hydrogen atoms instead of radiation. This change in the physical prop-

erties of the fluid causes an abrupt decrease in the value of the sound speed. If the

mass associated with the Jeans length at recombination is MJ ≃ 9×1016(Ωh2)−2M⊙

(of the same order than that of superclusters of galaxies), the corresponding value

after recombination drops to MJ ≃ 1.3 × 105(Ωh2)−
1
2 M⊙, which is comparable to

the mass of a globular cluster

Another phenomenon, known as Silk damping, begins to play a relevant role on

the evolution of baryonic density perturbations just before recombination. As recom-

bination approaches, the mean free path of photons increases due to the progressive

weakening of the coupling between matter and radiation. As a result, photons are

able to escape from the potential wells created by overdensities, and carry with them

still tightly coupled electrons. This free-streaming causes an effective damping of

perturbations in the photon-baryon mixture on scales smaller than a characteris-

tic length known as the Silk length. The associated Silk mass at recombination is

Ms ≃ 1.3 × 1012(Ωh2)−3/2M⊙ similar to that of a galaxy.

Although pure baryonic models are simpler than multicomponent models, they

suffer a number of problems, such as the difficulty of reconciling the predictions based

on primordial nucleosynthesys and not being able to predict the CMB temperature

fluctuations in the detected range. On the other hand, non-baryonic dark matter

is not coupled to radiation after the epoch of matter-radiation equality, so it is

not subject to this kind of collisional damping. However, given that dark matter

is free-streaming, particles may travel through regions of high density into regions

of low density, and vice versa. If the dark matter particles are relativistic, the

phase mixing caused by this free-streaming movement may be efficient enough to

wash out all the fluctuations on scales smaller than the free-streaming distance (i.e.,

the mean distance a particle travels until its momentum becomes non-relativistic).

While important in Hot Dark Matter (HDM) models, in Cold Dark Matter (CDM)

models the free-streaming cut-off scale is too small to be relevant, either because non-
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2. Structure Formation - Theory

baryonic particles are very massive (e.g., gravitinos) or because they were created

out of thermal equilibrium (e.g. axions). This is enough to rule out pure HDM

models in favour of CDM ones, as the cut-off power spectrum of the first ones fails

to predict the formation of objects at galactic scales.

2.2 Nonlinear Regime

As the amplitude of a fluctuation approaches unity at a given scale, the spatial

Fourier modes [eq. (2.41)] begin to couple and the and the linear approximation is

no longer valid. The perturbation starts to evolve in the nonlinear regime, with

no known exact treatment. Therefore, some kind of approximation is needed in

order to be able to follow the collapse of density perturbations and the formation

of nonlinear structures. One possible approach is to derive some quantity using

linear theory and extrapolate the result to the nonlinear regime, as in the case of

the Zel’dovich approximation. Another possibility is to make some assumptions

on the collapse process (e.g., self-similarity). In either case the direct comparison

with numerical simulations has proven to be a necessary test of the validity of these

assumptions that, most of the times, are not fully physically justified.

2.2.1 Mildly Nonlinear Regime: the Zel’dovich Approxima-

tion

Given that the density contrast is still close enough to the linear regime (δ . 1),

Zel’dovich (1970) proposed an elegant solution to follow the evolution of density

fluctuations in a mildly nonlinear regime (for an extensive review of the Zel’dovich

approximation see also Shandarin & Zel’dovich 1989).

In this approach, perturbations are considered to grow in an expanding Fried-

mann universe filled with dust (pressure-free matter) in the Newtonian approx-

imation. Only growing perturbation are considered, thus, from equation (2.17),

δ(x, t) = δ(x)D+(t). If the initial (unperturbed) Lagrangian coordinates of a dust

particle are described by q, then its trajectory in linear theory (i.e., its Eulerian

coordinates x at time t) is given by

r(q, t) = a(t)x(q, t) = a(t)[q + D+(t)u(q)] . (2.46)

The term u(q) is the initial velocity field of the particle and its related to the lin-

ear velocity potential, which is proportional to the Newtonian gravitational potential
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2.2. Nonlinear Regime

[eq. (2.35)], according to

u(q) = −∇xφv(q)/a . (2.47)

This implies that the initial velocity flow is irrotational (see §2.1.1), which is

generally true since expansion would damp any rotations potentially present at the

initial time.

The approximation proposed by Zel’dovich consists in extrapolating equation

(2.46), valid in the linear regime (δ ≪ 1), into the region where the density contrast

is not so small (δ . 1).

Equation (2.46) is formally analogous to the equation of motion of a particle

moving with constant velocity u,

x = q + τu(q) , (2.48)

except for the presence of the a(t) term accounting for the cosmic expansion and

of the D+(t) term accounting for the presence of gravity. Taking this into account,

note that a typical feature of inertial motion given random initial condition is that

particles intersect trajectories, which leads to the formation of singularities in the

density field. A similar effect is also encountered by the Zel’dovich approximation

by requiring the conservation of the mass

ρ(r, t)dr = ρ0dq , (2.49)

where ρ0 is the density at the initial time. Defining the deformation tensor as

Dij =
∂ri

∂qj

= a(t) δij + D+(t)
∂ui

∂qj

, (2.50)

we can choose the eigensystem formed by its eigenvectors as a basis and diagonalise

it, so that the density field is given by

ρ(r, t) =
ρ̄

[1 − D+(t) α(q)][1 − D+(t) β(q)][1 − D+(t) γ(q)]
, (2.51)

where ρ̄ = ρ0/a
3 is the mean density at time t, and −α, −β and −γ are the eigen-

values of the tensor of deformation.

In the linear regime, |D+ α| ≪ 1, |D+ β| ≪ 1 and |D+ γ| ≪ 1, therefore equation

(2.51) is simplified to
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ρ(r, t) ≈ ρ̄ [1 + D+(t)(α + β + γ)] , (2.52)

or equivalently

δ ≈ D+(t)(α + β + γ) . (2.53)

Therefore, at the linear stage, the spatial structure of the density distribution is

given by the trace of the deformation tensor.

As D+(t) grows with time, we will reach a moment when a singularity appears

in equation (2.51) causing the density to become formally infinite in a region where

at least one of the eigenvalues is positive. Specifically, if the eigenvalues are ordered

in such a way that α ≥ β ≥ γ, then the first singularity will occur when α attains its

maximum positive value, αmax , at the time tmax = 1/αmax, such that D+(t) = α−1
max.

When this happens, particle trajectories have crossed and two points with different

Lagrangian coordinates may coincide at the same Eulerian coordinate, meaning that

the mapping (2.46) is no longer unique. This corresponds to the collapse along the

corresponding axis and the formation of a pancake (a flattened, sheet-like structure

of quasi-two-dimensional nature). Generally, α is not equal to β or γ. However,

in the improbable case that two or three eigenvalues take the same positive values,

the collapse will result in a filament or a knot (point) respectively. Doroshkevich

(1970) computed the probability distribution of the three eigenvalues in the case of

a Gaussian random field and showed that the simultaneous vanishing of more than

one of them is very unlikely. Pancakes are therefore expected to be the generic result

of nonlinear gravitational clustering.

The Zel’dovich approximation describes well the evolution of density perturba-

tions after they have left the linear regime, up to the point were some crossings

in the particle trajectories occur in numerical simulations (e.g., Coles et al. 1993).

After this point the collapse enters the highly nonlinear regime (δ > 1) and the

approximation is no longer valid.

2.2.2 Highly Nonlinear Regime

At the time of last scattering the density distribution of the Universe was almost

homogeneous (δρ/ρ < 1). As we have already seen, linear theory can only explain

the evolution of density fluctuations at early epochs (or at very large scales) and the

Zel’dovich approximation, while holding also at later times, ceases to be valid when

the firsts crossing between particle orbits (i.e., shell-crossing) occurs. However, the
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2.3. The Spherical Collapse Model

structures observed today are highly nonlinear (δ > 1)3. Therefore, a nonlinear

gravitational instability theory is needed to account for structure formation. Nev-

ertheless, it is not possible to follow in detail the evolution of a given perturbation

in such a regime; some other assumption about the characteristics of the collapse is

needed.

One possible solution is to apply the Zel’dovich approximation, not to the actual

density field, but to a smoother field obtained by filtering out small scale fluctu-

ations from the initial conditions which are responsible for shell crossing, leaving

only perturbations of protogalactic scale (White 1984). However, this approxima-

tions ignores the effects of shell crossing and assumes that small scale (nonlinear)

fluctuations have no influence on the large scale (quasilinear) ones, which is a not

physically justified assumption.

Therefore, the Zel’dovich approximation is valid on scales relevant only to clus-

ters and superclusters, whereas for smaller scales, which rapidly become nonlinear,

another approximation is needed. The only exact solution in such a nonlinear regime

is provided by the spherical collapse model, which is the subject of the next Section.

2.3 The Spherical Collapse Model

The spherical collapse model assumes a universe which i sspherically symmetric

about one point, filled with pressureless matter behaving as an ideal fluid. This

approach was originally proposed by Peebles (1967) and extended by Gunn & Gott

(1972) in the Secondary Infall context. In this approach, any tidal effect of the neigh-

bouring structure upon the perturbation itself and any deviation from sphericity of

the potential well due to the distribution of matter inside or outside the volume

element whose evolution is being followed are neglected. Under these conditions,

the Gauss theorem (or the Birkhoff theorem in the context of General Relativity)

guarantees that the motion of a spherical mass shell depends only on the mass inside

the shell’s radius. This model also assumes that the perturbation initially expands

according to the Hubble flow, i.e. with null initial peculiar velocity. Due to hav-

ing density higher than the cosmic mean density, the overdensity will decelerate

faster than the background medium because of its own gravitational pull. Eventu-

ally it will begin to collapse after reaching its maximum expansion radius, known

3The density contrast corresponding to a galaxy cluster is of the order of several hundreds, at
least.
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as “turnaround radius”.

The model also assumes that the density profile of the perturbation is monoton-

ically decreasing with increasing radius in order to avoid shell crossing and, hence,

to ensure mass conservation inside evolving spherical shells. It has to be noted that

this is not the case for the subsequent collapse phase which involves crosses between

the infalling shells and the more internal ones that have already collapsed and are

expanding again. In this phase, the system oscillates around an equilibrium state

and shells mix, thereby exchanging energy. This leads to the so called “phase mix-

ing” and “violent relaxation” mechanisms (Lynden-Bell 1967; Shu 1978; Stiavelli &

Bertin 1987; Spergel & Hernquist 1992; Kull et al. 1997; Nakamura 2000; Trenti &

Bertin 2005) which are responsible for the virialisation of the system.

Under these simplifying assumptions an exact analytical treatment of the non-

linear stage of gravitational instability is possible.

2.3.1 Energy Balance and Maximum Expansion Radius

Let us consider a spherical density inhomogeneity of radius Ri centered around a

point x at an initial time ti and containing a mass M = ρb(1 + δi)(4/3)πR3
i , where

δi is the initial overdensity, and ρb is the density of the background. For simplicity,

we will assume that the shell has a flat (“top hat”) density profile

ρ(r) = ρb (1 + δi) for r ≤ Ri,

ρ(r) = ρb for r > Ri.

At early times the expansion of the shell is virtually indistinguishable from that

of the rest of the universe, so that the velocity of the shell relative to the centre

is governed by the Hubble flow Ṙi = HiRi, being Hi the Hubble parameter at the

initial time. Thus, the kinetic energy per unit mass at a distance Ri from the centre

is Ki = H2
i R2

i /2, and the potential energy per unit mass can be expressed as

Ui = −GM/Ri = −4πG

3H2
i

ρb(1 + δi)H
2
i R2

i = −ΩiKi(1 + δi) . (2.54)

Conservation of energy guarantees that the sum of the kinetic and potential

energies is a constant. In particular, at the initial time we have

E = Ki + Ui = KiΩi[Ω
−1
i − (1 + δi)] . (2.55)
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2.3. The Spherical Collapse Model

The requirement for a shell to be gravitationally bound is that its total energy

E must be negative. In this case, the shell keeps on expanding until it reaches a

maximum radius, turns around and begins to collapse. According to equation (2.55),

the condition ensuring E < 0 is 1 + δi > Ω−1
i . Taking into account that the initial

time ti corresponds to a given redshift z, the former condition can be rewritten as

δ(z) > Ω−1(z) − 1 =
1 − Ω0

Ω0(1 + z)
. (2.56)

For those shells that are gravitationally bound, it is straightforward to relate the

maximum expansion radius to its initial values Ri, and δi (or, equivalently, R(z)

and δ(z)). Owing to the monotonically decreasing density profile of the spherical

perturbation, a shell with a given radius does not cross with other shells until after

turnaround, so the mass contained inside the shell remains constant with time while

the expansion is taking place. On the other hand, the shell velocity at turnaround

is zero, Ṙ|ta = 0. Therefore, only potential energy contributes to the total energy

at turnaround

E = Uta = −GM

Rta

= − Ri

Rta

KiΩi(1 + δi) . (2.57)

Equating this equation and (2.55) due to energy conservation, we obtain the

relation

Rta

Ri

=
1 + δi

δi − (Ω−1
i − 1)

≡ [1 + δ(z)]

[
δ(z) − 1 − Ω0

Ω0(1 + z)

]−1

. (2.58)

Dynamics of a Mass Shell

The radius R(t) of a spherical shell comprising a mass M satisfies the following

equation of motion

dR2

d2t
= −GM(< R)

R2
. (2.59)

Its first integral leads to the energy equation

1

2

(
dR

dt

)2

=
GM

R
+ C , (2.60)

where the constant of integration C is just the total energy E. Taking E < 0

(E > 0) we recover the case of a gravitationally bound (unbound) spherical shell.

The solution of equations (2.59) and (2.60) can be expressed in a parametric form
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2. Structure Formation - Theory

R = A(1 − cos θ) t = B(θ − sin θ) , (2.61)

for the case of a bound shell (E < 0), and

R = A(cosh θ − 1) t = B(sinh θ − θ) , (2.62)

for the case of an unbound shell (E > 0). The constants A and B are not indepen-

dent, but related through A3 = GMB2. As we have noted above, the dynamical

evolution of a spherical mass shell is similar to that of the whole universe. In fact,

the corresponding parametric solution for a closed universe is (see Peebles 1980)

Rb = Ab(1 − cos µ) t = Bb(µ − sin µ) , (2.63)

and for an open universe

Rb = Ab(cosh µ − 1) t = Bb(sinh µ − µ) . (2.64)

If we assume that a(t) = Rb(t), then the spherical portion of the universe con-

tains the same mass as the shell, and the constraint between Ab and Bb just writes

A3
b = GMB2

b .

At this point we are able to compute the density contrast in each mass shell.

Since mass is conserved we get, using M = 4πR3ρ/3 and equation (2.61),

ρ(t) =
3M

4πA3(1 − cos θ)3
. (2.65)

Working on a spatially flat, matter dominated universe the background density

scales as

ρb(t) =
1

6πGt2
=

1

6πGB2(θ − sin θ)2
. (2.66)

So, from the definition of the density contrast in terms of the ratio ρ(t)/ρb(t)

[eq. (2.2)], and using equations (2.65) and (2.66), we have

δ(θ) ≡ ρ(t)

ρb(t)
− 1 =

9

2

(θ − sin θ)2

(1 − cos θ)3
− 1 , (2.67)

for gravitationally bound density perturbations, and

δ(θ) =
9

2

(θ − sinh θ)2

(cosh θ − 1)3
− 1 , (2.68)
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2.3. The Spherical Collapse Model

for unbound density fluctuations.

We can expresse constants A and B in terms of the maximum expansion radius

and the time at which it is reached. According to equation (2.61), maximum expan-

sion occurs for θ = π. Then, for this specific value of the developing angle, constants

A and B are

A = Rta/2 B = tta/π . (2.69)

However, these relations are only valid for gravitationally bound shells. If we use

initial quantities instead of the “turnaround” ones, we can obtain the expressions

for a more general case. This is achieved by applying equation (2.58), the constrain

A3 = GMB2 and expressing the constant mass M in terms of Ri and ρi. The final

result is

A =

(
Ri

2

)
1 + δi

δi − (Ω−1
i − 1)

,

(2.70)

B =
1 + δi

2HiΩ
1/2
i [δi − (Ω−1

i − 1)]3/2
.

Bearing in mind that initial conditions are set in an early epoch, it is reasonable

to assume δi ≪ 1. Then, in a flat cosmological model equation (2.70) becomes,

A ≃ Ri

2δi

B ≃ 3

4
ti δ

−3/2
i . (2.71)

From equations (2.67) and (2.71) we can recover the density contrast limit for

small θ (or small t):

lim
θ→0

δ(θ) ≃ 3θ2

20
≃ 3

20

(
6 t

B

)2/3

=
3

5
δi

(
t

ti

)2/3

, (2.72)

that correspond to the linear theory growth law for a purely growing mode if the

initial peculiar velocity is set to zero [see eq. (2.17)]. In view of equation (2.72) the

critical condition (2.56) turns into δi > 3(Ω−1
i − 1)/5.

Turnaround and Collapse

The spherical model provides us with a variety of relations between quantities com-

puted at turnaround (θ = π) and at collapse (θ = 2π) for bound shells. Let us
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2. Structure Formation - Theory

consider a flat background cosmology with negligible cosmological constant. From

equation (2.61), we have that the collapse time tcoll is twice the turnaround time

tta. From equation (2.67), we find that δ(θ = π) ≃ 4.6 at the maximum expan-

sion radius, whereas at collapse the overdensity tends to infinity due to the fact

that the radius becomes zero. Exact spherical collapse breaks down as the density

perturbation starts to collapse due to physical processes, such as shell crossing and

rebounding, and the subsequent violent relaxation ensures that the system reaches

virial equilibrium at a finite density, and, therefore δcoll → ∞ is never achieved. The

typical radius of the virialised perturbation can be estimated by means of energetic

arguments. At the time of turnaround, only the potential energy contributes to the

total energy of the spherical shell. After relaxation, the system satisfies the virial

theorem, i.e., 2K = |W |. Energy conservation leads to

U(R = Rta) = E = U(R = Rvir)/2 , (2.73)

being U(R) = −GM/R. Since the shell mass is conserved along the process, then

the final virial radius Rvir is half the turnaround radius Rta. This result assumes

that the uniform density profile is preserved during the relaxation process. But viri-

alised objects exhibit an outward-decreasing density profile instead of a flat one. In

this case, the final potential energy does not take the same form that it had at the

turnaround epoch, and consequently the relation 2Rvir = Rta does not hold. There-

fore, the following calculations should be taken only as raw estimations. Bearing

in mind this warning, let us compute the typical overdensity of a virialised object

δvir = ρvir/ρ̄vir−1 where ρ̄vir is the background density at the epoch of virialisation.

From the previous results, we know that

ρvir = 8ρta = 8ρ̄ta(4.6 + 1) . (2.74)

Taking into account that the background density scales as t−2, and assuming

that tvir ≃ tcoll ≃ 2tta then δvir = 8 × 5.6 × 4 − 1 = 178.24. From here, it is easy

to calculate the density of the relaxed system in terms of the present mean density

and the collapse redshift zvir

ρvir ≃ 179.2(1 + zvir)
3ρ0 . (2.75)

Sometimes it is interesting to know extrapolated values of the density contrast

assuming that the perturbation always evolves in the linear regime. This is equiva-

lent to consider the limit of equation (2.67) for small values of the developing angle

4This result has been used by Navarro et al. (1997) to define the virialised regions of dark
matter halos. For a more accurate treatment see Bryan & Norman (1998) and Henry (2000).
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2.3. The Spherical Collapse Model

θ (small t). Given that we have set initial conditions at an early epoch, the linear

behaviour of the perturbation is ensured. So, the extension to any epoch of the limit

(2.72), only valid for times close to the initial one, gives the wanted extrapolation.

Equations (2.61) and (2.71) bring this limit to

δL(θ) ≃ 3

5

(
3

4

)2/3

(θ − sin θ)2/3 . (2.76)

In particular, δL(π) ≃ 1.063 for the linear density contrast at turnaround, and

δL(2π) ≃ 1.686 at recollapse (Gunn & Gott 1972). In an Einstein-de Sitter universe,

perturbations in the linear regime grow as the scale factor a(z) ∝ (1 + z)−1. Then,

known the linear density contrast of a given spherical perturbation, the correspond-

ing true redshifts at which the perturbation reached the maximum expansion and

collapsed are, respectively,

1 + zta ≃ δL

1.063
(2.77)

1 + zcoll ≃
δL

1.686
.

However, the spherical collapse model is founded on strong assumptions. As

already discussed, there is no physical motivation for the assumption that the virial

radius equals half the turnaround radius, and that virialisation happens at twice

the turnaround time. Moreover, a spherical model is far from giving an adequate

description of the collapse of protogalaxies or protoclusters, since, as proved by

Lin, Mestel & Shu (1965), departures from spherical symmetry are amplified once

the almost spherical density perturbation starts collapsing. During this stage the

perturbation develops non-radial motions which invalidate the applicability of the

spherical model. However, this phenomenon can be incorporated to the analysis

by modelling the collapsing perturbation as a homogeneous ellipsoid of ideal fluid

with negligible pressure. Classical studies on the motion of homogeneous spheroids,

neglecting the tidal field of surrounding matter, show that collapse occurs along the

minor axis at a faster rate than that of an equivalent spherical overdensity, while the

other axes tend to contract or expand in finite factors, so the perturbation finally

reaches a pancake configuration.

Nonetheless, this model can be successfully applied to some astrophysical prob-

lems, such as the statistical description of dark matter clustering or the growth

23
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of individual virialised objects from the monolithic infall of matter onto an initial

overdensity according to the so-called Secondary Infall (SI) model. In the following

section we give an overview on the work done based on the SI model over the last

decades.

2.4 The Excursion Set Formalism

The spherical collapse model, although being simple, allows us to relate linear den-

sity perturbations to relaxed objects in a straightforward (although not completely

accurate) way. In the present section, we show how this simple model can be used

to obtain some information on highly non-linear structures from the statistics of the

linear density field. We deal with the mass function of halos, that is, the number

density of relaxed objects per unit volume with mass in an infinitesimal range at a

given epoch, which gives a valuable but incomplete information about the clustering

history of objects.

2.4.1 Statistics of Primordial Density Fluctuations

The primordial density field δ(x, ti) can be mathematically described as a homo-

geneous and isotropic three-dimensional scalar Gaussian random field, as long as

perturbation amplitudes remain small. There are physical and statistical arguments

which support the Gaussianity assumption. The physical argument relies on infla-

tion. According to this theory, small amplitude curvature perturbations generated

by quantum fluctuations in the inflationary phase are very likely to be Gaussian.

The statistical argument is based on the central limit theorem, which states that the

superposition of a large number of independent random variables (all having the

same form of distribution) gives rise to a new random variable whose probability

distribution is Gaussian. We have already showed that the density field δ(x) can

be written as an infinite sum (2.41) with coefficients δk, which are statistically in-

dependent in a homogeneous universe (see below) and come from the same shaped

distribution. Furthermore, the phases between the different modes are supposed to

be random and uniformly distributed from 0 to 2π, unless density fluctuations arise

from gravitational fall into topological defects such as cosmic strings.

For statical purposes, it is convenient to express the density field in the Fourier

space by using the Fourier transform (the continuous limit of the series [2.41])
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2.4. The Excursion Set Formalism

δ(x) =
1

(2π)3

∫
d3k δ(k) e−ik·x (2.78)

[δ(k) ≡ δ(k, t)], which has the inverse relation

δ(k) =

∫
d3x δ(x) eik·x. (2.79)

Notice that, in k-space, the Dirac delta function can be written in the form

δD(k) =
1

(2π)3

∫
d3x e±ik·x . (2.80)

The most relevant quantity in the statistical description of the density field is

the two-point correlation function or autocovariance function defined as the volume

average of the product of the function δ(x) evaluated at points x1 and x2 = x1 + r 5

〈δ(x1)δ(x2)〉 = ξ(|x1 − x2|) = ξ(r) , (2.81)

where we have used the fact that the field is homogeneous and isotropic (i.e., in-

variant under translations and rotations), which means that the covariance function

only depends on the relative distance between points. Developing equation (2.81)

in the k-space and taking into account that δ(x) is real, we have

ξ(r) = 〈δ(x1)δ(x2)〉 =

〈∫
d3k1

(2π)3
δ(k1) e−ik1·x1

∫
d3k2

(2π)3
δ(k2) e−ik2·x2

〉
=

=

∫ ∫
d3k1

(2π)3

d3k2

(2π)3
〈δ(k1) δ∗(k2)〉e−ik1·x1 eik2·x2 =

=

∫
d3k

(2π)3
P (k) e−ik·(x1−x2) , (2.82)

where the Fourier transform of the autocovariance function, P (k), is the primordial

power spectrum, defined as 6

5Since random Gaussian processes are ergodic, volume averages are equivalent to ensemble
averages.

6Given that δ(x) is real, δ(−k) = δ∗(k), and expression (2.83) is equivalent to

P (k) δD(k1 + k2) = 〈(δ(k1) δ(k2)〉 .
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P (k) δD(k1 − k2) = 〈(δ(k1) δ∗(k2)〉 , (2.83)

where ∗ denotes complex conjugation.

The power spectrum describes the amplitude of fluctuations on different length

scales or, equivalently, on different mass scales. The Dirac delta function δD in (2.83)

indicates that, because of homogeneity, ξ ≡ ξ(x1 − x2), modes of different spatial

frequency are statistically independent (and,therefore, have vanishing covariance).

On the other hand, isotropy implies that the power spectrum should depend on the

modulus of k and not on its direction. When the condition k1 = k2 is enforced,

we obtain the expression P (k) = 〈|δ(k)|2〉 which is sometimes used as a definition

of the power spectrum. In the case of a density field in which the fluctuations are

drawn from a Gaussian distribution, the two-point correlation function or its Fourier

transform, P (k), gives a complete statistical description of the fluctuations and can

be used to fully characterize the random field.

Many physical properties of the primordial density field can be related to the

power spectrum. For example, the mean square density fluctuation is defined as the

average 〈δ(x) δ(x)〉, so from equations (2.81) and (2.83) we get

〈(
δρ

ρ

)2
〉

= 〈δ(x) δ(x)〉 =
1

2π2

∫ ∞

0

dk k2P (k) . (2.84)

In hierarchical scenarios of structure formation the linear density field contains

perturbations on all scales. In order to single out a given scale, one has to to smooth

the density field using a spherically symmetric window with the appropriate size.

The filtering operation brings equation (2.84) to

〈(
δρ

ρ

)2
〉

R

≡ σ2
0(R) =

1

2π2

∫ ∞

0

dk k2W 2(kR)P (k), (2.85)

where W (kR) is the Fourier transform of the filter function used to smooth the

density field in real space. It tends to unity for small values of the argument,

and falls off rapidly beyond the value kc ∼ 1/R suppressing the contribution to the

filtered density field from modes of wavelength smaller than the size of the smoothing

function. The most used filters are the top hat (or spherical) and the Gaussian ones,

which have the following form in the real and Fourier space:
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top hat:

W (r; RT ) =

(
4π

3
R3

TH

)−1

θ

(
1 − r

RTH

)

(2.86)

W (k; RT ) = 3
sin(kRT ) − kRT cos(kRT )

(kRT )3
;

Gaussian:

W (r; RG) =
1

(2π)3/2R3
G

exp

(
− r2

2R2
G

)

(2.87)

W (k; RG) = exp

(
−k2R2

G

2

)
;

where θ(x) is the Heaviside step function. The rms fluctuation can be interpreted as

the zero-order spectral moment. It is straightforward to extend the definition (2.85)

to include moments of higher order

σ2
j (R) =

1

2π2

∫ ∞

0

dk k2(j+1) W 2(kR)P (k) . (2.88)

where j indicates the order of the spectral moment σj(R).

Quantities such as the mean square velocity smoothed on a scale R and the mean

square gravitational potential fluctuation can be calculated by using the linearised

continuity equation and Poisson’s equation expressed in the Fourier space. The

contribution of these quantities, along with the mass fluctuation, per logarithmic

interval of wavenumber is

dσ2

d log k
= 4πk3P (k) ;

dσ2
v

d log k
= 4π(aHf)2kP (k) ; (2.89)

dσ2
φ

d log k
= 4π

(
3

2
Ω0H

2a2

)2
P (k)

k
.

In order to complete this statistical description, we should specify the fluctuation
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spectrum. Inflationary theories predict a scale-invariant power spectrum with a

power-law form

P (k) = Akn , (2.90)

usually with index n = 1. This special case, known as the Harrison-Zel’dovich power

spectrum (Harrison 1970; Zel’dovich 1972), results also from assuming that density

fluctuations on all scales enter the horizon with the same amplitude. However, due

to the evolution of density perturbations, the slope of the shape of the primordial

spectrum is not conserved. Perturbations that exceed the horizon size grow through

self-gravity and leave the power spectrum unchanged, but, on smaller scales, even

in the linear regime, the growth of density perturbations after the horizon entry is

affected by collisional processes (see §2.1.2) and depends on the nature of the matter

which dominates the expansion. To account for this change in shape, the primordial

power spectrum is expressed in terms of the transfer function T (k, tf ) from ti to tf

P (k, tf ) = T 2(k, tf ) P (k, ti) . (2.91)

When perturbation evolution is only driven by gravity, the transfer function

adopts the simple form T (k, tf ) ∝ D+(k, tf ). Transfer functions depend on the val-

ues of the cosmological parameters and convey the information about the matter

content of the universe. If the dynamics of the universe is driven by weakly interact-

ing massive particles which left the relativistic regime at a very late epoch, then a

Hot Dark Matter transfer function, which eliminates power on small and intermedi-

ate scales, has to be applied. On the other hand, if the matter content of the universe

is dominated by weakly interacting massive particles non-relativistic in all epochs of

interest, the Cold Dark Matter transfer function, which gently bends the primordial

power-law power spectrum from n = 1 on large scales to n ≈ −3 on small scales, is

more suited (Bond & Efstathiou 1984; Eisenstein & Hu 1999). Expressions of these

transfer functions are given in Appendix G of Bardeen et al. (1986, hereafter BBKS).

The primordial amplitude A is usually determined observationally. The first

attempts were based on galaxy counts on scales large enough to ensure linear regime.

One approach uses the statistics J3, which is the integral of the two-point correlation

function ξ(r) times r2. In terms of the power spectrum, J3 becomes

J3(R) ≡
∫ R

0

ξ(r)r2dr =
R3

3

1

(2π)3

∫ ∞

0

dkW 2(kR) P (k) . (2.92)

The variance of the galaxy counts-in-cells is easily related to the power spectrum
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by means of equation (2.85). Galaxy surveys seem to indicate that perturbations

on scales of 8h−1 Mpc are currently entering the non-linear regime (δ ≈ 1) (Bond

& Szalay 1983; Loveday et al. 1996). However, this result assumes that galaxies

trace the mass, and there is no evidence that this has to be true. It is believed that

fluctuations in galaxy counts can be proportional to mass perturbations

(
δN

N

)
= b

(
δρ

ρ

)
, (2.93)

with the bias factor b likely dependent on the scale. Therefore, by definition, the

galaxy biasing provides a measure of the difference between the distribution of lu-

minous and dark matter. Taking into account the proportionality (2.93), the nor-

malisation condition writes

σ8 = σ0(8 h−1Mpc)t0 = b−1 , (2.94)

by means of which the primordial amplitude A is fixed.

After COBE (and more accurate CMB probes such as WMAP and Planck),

another method to normalise the primordial amplitude of the fluctuation spectrum

appeared, based on the level of the CMB anisotropies at large scales. It can be shown

(see e.g., Sahni & Coles 1995) that the quadrupole moment, which appears after the

expansion of temperature fluctuations in spherical harmonics, can be expressed in

terms of the primordial power spectrum.

2.4.2 The Press-Schechter Formalism

With all these tools, it is possible to develop a method capable of retrieveing the ana-

lytical mass function of relaxed objects in terms of statistical properties of the initial

density field. The following formalism was originally derived by Press & Schechter

(1974) (PS) and, therefore, it is commonly referred as the PS formalism. It is based

on the linear extrapolation, for the growing mode, of the growth of density fluctua-

tions according to the spherical collapse. Despite ignoring some of the difficulties of

gravitational collapse, it is a very simple approximation that is able to reproduce the

results of numerical simulations and, therefore, has many practical uses. Scales and

densities are henceforth assumed to be expressed in comoving coordinates. To turn

comoving lengths into physical ones, they must be multiplied by the factor a(t)/a0.

According to the spherical model (see §2.3.1), the collapse time for a shell of

radius R around the centre, located at x, of a spherically symmetric, outwards
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decreasing (to avoid shell crossing), linear density fluctuation at ti only depends

on the mean value of δ inside it. More exactly, the value of the average density

contrast for collapse at t in an Einstein-de Sitter universe is δc(t) = δc0 a(ti)/a(t)

with δc0 = 1.686. Of course, the collapse of the shell of radius R represents the

appearance, at t, of a virialised object of mass equal to 4π/3 ρ̄R3 to 0th order in δc
7.

This therefore suggests that any point in the real density field at ti smoothed with

a top hat filter of scale R with density contrast above a positive linear threshold

δc should tend to collect matter so to reach, at a time t related to δc through the

previous expression, a mass M larger than 4π/3 ρ̄R3. Since we are dealing with a

Gaussian density field (as a consequence of assuming uncorrelated phases for the

various Fourier components of the density field via the central limit theorem), the

probability that a given point has a density contrast above some critical value δc

when the field is smoothed on the scale R adopts the simple form

P (δ > δc, R) =
1√

2πσ0(R)

∫ ∞

δc

dδ exp

[
− δ2

2σ2
0(R)

]
≡

≡ 1

2
erf

[
δc√

2σ0(R)

]
, (2.95)

where σ0(R) is the linear rms fluctuation on scale R given by equation (2.85) and

erf(x) is the error function. According to the PS formalism, this probability can

also be interpreted as the probability that a given point has ever been embedded

in a collapsed object on scales greater than R. This assumes that if a point has a

density contrast exceeding δc on a given scale, then it will reach the value δc when

filtered on some larger scale and will be computed as a distinct object of the larger

scale. In other words, it assumes that the only objects which exist at epoch t are

those that have just collapsed. But, what happens to underdense regions which

seem to contain half of the matter of the universe? PS proposed that the matter of

underdense regions was efficiently accreted by overdense regions, and therefore, the

correct probability was obtained by adding a factor 2.

The probability P (δ > δc, R) gives the volume fraction occupied by points with

overdensity above the threshold δc when the density field is smoothed on scale R

with a top hat window. Consequently, by differentiating this probability over M one

should obtain the volume fraction contributing at t with objects of mass between

7Since the mean density within the spherical perturbation is ρ = ρ̄(1+δc), then the actual mass
contained inside a radius R is M(R) = 4π/3 ρ̄(1 + δc)R3.
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M and M + dM , and by dividing the result by M/ρ̄ to the number density of such

objects

N(M, t) dM = 2
ρ̄

M

∣∣∣∣
∂P (δ > δc, R)

∂R

∣∣∣∣
dR

dM
dM =

=

√
2

9π

ρ̄

M2

δc

σ0

∣∣∣∣
d ln σ0

d ln R

∣∣∣∣ exp

[
− δ2

c

2σ2
0

]
dM . (2.96)

Assuming that every particle in the Universe is at any time t within some viri-

alised object with the appropriate mass, then the mass function must verify the

normalisation condition

∫ ∞

0

dM M N(M) = ρ̄ . (2.97)

The factor 2 in the right-hand member of equation (2.96) is the one interpreted

as accounting for the underdense regions and must be inserted in order to properly

normalize the mass function (i.e, the total mass of the Universe remains constant).

This is a weak point of the PS theory that has been frequently criticised (e.g.,

Bond et al. 1991; Peacock & Heavens 1990; Bower 1991) and is related with the so-

called “cloud-in-cloud” problem (above-threshold regions lying inside of other above

threshold regions), which is not treated by the PS formalism, especially in the case

of underdense regions embedded in overdense regions(Jedamzik 1995).

Another quantity closely related to the mass function is the mass fraction (or

multiplicity function) contained in objects of mass M , defined as

f(M)dM =
M

ρ̄
N(M)dM =

=
1

M

√
2

9π

δc

σ0

∣∣∣∣
d ln σ0

d ln R

∣∣∣∣ exp

[
− δ2

c

2σ2
0

]
dM . (2.98)

For a power-law power spectrum P (k) ∝ kn, the rms fluctuation on scale R is

σ0(R) ∝ R−(n+3)/2, or in terms of the mass σ0(M) ∝ M−(n+3)/6. Let us define the

characteristic mass M∗ as the mass for which the rms fluctuation is equal to the

threshold value σ0(M∗) = δc. In this case the mass function and the mass fraction of

objects in an infinitesimal interval of the variable M/M∗ have the respective forms

31



2. Structure Formation - Theory

N

(
M

M∗

)
=

√
2

π

n + 3

6

ρ̄

M∗

(
M

M∗

)n
6
− 3

2

exp

[
−1

2

(
M

M∗

)n+3
3

]

(2.99)

f

(
M

M∗

)
=

√
2

π

n + 3

6

(
M

M∗

)n
6
− 1

2

exp

[
−1

2

(
M

M∗

)n+3
3

]
.

Notice that for a scale invariant power spectrum the mass fraction when ex-

pressed in terms of the variable M/M∗ is time invariant, as it is expected in self-

similar models of structure evolution.

The PS theory provides a simple analytical description for the evolution of grav-

itational structure in a hierarchical universe. Nonetheless, the PS mass function is

not fully satisfactory. The origin of the factor two added “by hand” in (2.96) is

unclear and the disappearance of objects of any given mass swallowed by previously

collapsed ones owing to “cloud-in-cloud” configurations is not accounted for. In

addition, the real density field is not spherically symmetric and outwards decreasing

around any point. As a consequence, the growth of density fluctuations leaving the

linear regime deviates from spherical collapse and involves complicated non-local,

nonlinear, dynamics. Therefore, it is by no means obvious that the PS prescription

can provide a good description of the formation of bound virialised objects. In fact,

small changes in some aspects strongly connected with the spherical collapse model

might be suitable. Moreover, this method does not allow to follow the evolution of

halos that accrete into larger systems.

Yet, the PS mass function gives reasonably good fits to the mass function inferred

from N -body simulations. For this reason numerous authors have tried to properly

justify it by greatly refining and extending it. A rigorous solution to the cloud-

in-cloud problem, which also naturally recovers the factor 2 in the mass functions

(but see also Peacock & Heavens 1990), has been proposed by Bond et al. (1991)

by means of the powerful “excursion set formalism”8. Bond et al. also showed how

the mass function depends on the filter used to define the spatial smoothing, par-

ticularly, that the only case in which exact analytical results can be obtained is the

case of the k-sharp window, for which the standard PS formula is recovered. An

identical expression for the conditional mass function was derived independently by

8In the theory of stochastic processes, an excursion set is defined as a region in wich the linear
density contrast is larger than some threshold.
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Bower (1991).

Jedamzik (1995) got rid of the cloud-in-cloud problem by considering only iso-

lated regions, defined as those regions lying above the threshold on a given scale, and

lying below the threshold for any larger scale. He obtained a correctly normalised

mass function that seems to agree much better with mass distributions derived from

N -body simulations than the PS one. The effects of the departure from spherical

collapse have also been studied (Monaco 1995, 1998; Lee & Shandarin 1998; Sheth

et al. 2001). Monaco (1995, 1998) showed that when the assumption of spherical

collapse is relaxed, δc becomes a function of the local shape of the perturbation

spectrum.

The PS formalism has also been extended to calculate other properties, notably

the merger histories of dark matter halos. In particular, Lacey & Cole (1993), were

able to calculate analytically the fraction of the total number of halos with mass M

at t, which give rise per unit time to halos with mass in the range M ′, M ′ + dM ′

through instantaneous mergers of any amplitude This is usually referred as the EPS

(Extended Press-Schechter) theory. However, in the EPS model, the formation and

destruction of halos is modelled trough an unrealistic prescription (Kitayama & Suto

1996; Percival et al. 2000, see e.g.,) where the age and survival time of an object are

defined arbitrarily in terms of some relative mass variation. On the other hand, the

so called Modified Press-Schechter formalism (MPS) (Salvador-Solé et al. 1998; Raig

et al. 1998, 2001; Hiotelis 2003; Manrique et al. 2003) solves this problem through the

distinction between major and minor merger events, defined according to whether

they cause the complete rearrangement of the system (based on the comparison of

the resulting fractional mass increase with respect to the reference halo with a given

threshold ∆m ≈ 0.6) or not. Thus, the halo formation and destruction times are un-

ambiguously defined as the times corresponding to their last and next major merger9.

All these improvements only apply to the PS original prescription dealing with

undefined regions above the threshold overdensity. However there is no reason for

every point above the threshold overdensity to tend to accrete matter. This is

expected to happen rather onto density maxima or “peaks” (Doroshkevich 1970;

Kaiser 1984; Doroshkevich & Shandarin 1978; Peacock & Heavens 1985; Bardeen

9Whithout distinguishing between merger and accretion this would not have been possible.
Since the number density of objects diverges at small masses, objects continuously experience
captures. If a unique process of mass increase is considered(generically called merger, as in the
Lacey & Cole 1993 model), it cannot be defined any specific event to mark the beginning or the
end of any stable entity.
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et al. 1986; Bernardeau 1994; Manrique & Salvador-Solé 1995, 1996; Bond & Myers

1996; Manrique et al. 1998). In the PS framework there is no satisfactory derivation

of the theoretical mass function for peaks as seeds of virialised objects. Furthermore,

none of the former studies has supplied a well justified relation between the window

used to filter the density field and the mass of the collapsed object, or the one be-

tween the critical overdensity and the time of collapse (Manrique & Salvador-Solé

1995, 1996; Manrique et al. 1998).

Despite the good agreements with numerical simulation, the PS formalism has to

be taken as a useful simplification to a far more complex problem. Nevertheless, the

above arguments are enough to demand a more rigorous approach than that given by

the PS theory. An alternative is to assume that objects form from peaks in the initial

density field. This possibility has been extensively investigated in the study of clus-

tering of galaxies and clusters (Peacock & Heavens 1985, BBKS), but has been less

used in calculating mass functions because of the mathematical difficulties that arise

when trying to solve the cloud-in-cloud problem, with the risk of miscounting the

number of objects, and of identifying what mass object forms from a given size peak.

This formalism was adopted in subsequent refinements carried out with the aim

to account for the more realistic ellipsoidal collapse (Monaco 1995; Lee & Shandarin

1998; Sheth & Tormen 2002).

But the assumptions made in this derivation are not fully satisfactory: i) Every

overdense region does not collapse into a distinct halo; only those around peaks do.

Unfortunately, the extension of the excursion set formalism to peaks is not trivial

(Paranjape et al. 2012; Paranjape & Sheth 2012); ii) Real haloes (and peaks) are

not spherically symmetric but triaxial, so halo seeds do not undergo spherical but

ellipsoidal collapse. Unfortunately, the implementation in this approach of ellip-

soidal collapse is hard to achieve due to the dependence on M of the corresponding

critical density contrast (Sheth & Tormen 2002; Paranjape et al. 2012; Paranjape &

Sheth 2012). iii) The formation of haloes involves not only the collapse of the seed,

but also the virialisation (through shell-crossing) of the system, which is hard to

account for. And iv) there is a slight inconsistency between the top-hat filter used

to monitor the dynamics of collapse and the sharp k-space window used to correct

for nesting. The use of the top-hat filter with this latter purpose is again hard to

implement due to the correlation between fluctuations at different scales in top-hat

smoothing (Musso & Paranjape 2012).

The excursion set formalism has also recently been modified (Paranjape et al.
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2012; Paranjape & Sheth 2012) to account for the fact that density maxima (peaks)

in the initial density field are the most probable halo seeds (Hahn & Paranjape

2014).

2.5 The Peak Formalism

As we have seen, the PS formalism considers any positive perturbation as the seed

of some object at a given epoch. These overdense regions evolve linearly until their

density contrast reaches a value about unity, and then experience a collapse analog

to that of a perfect spherical, isolated inhomogeneity. This picture implies a rapid

transition from linear to non-linear regime and a good correspondence between over-

dense regions and final objects. In other words, in the PS formalism, any point with

density contrast above a critical value when the density field is smoothed on a spe-

cific scale gives rise to a collapsed object with the appropriate mass at t. This means

that, somehow, points have to efficiently accrete the surrounding matter in order to

achieve the mass corresponding to the filtering radius at the appropriate collapse

time.

However, this simple model is not accurate enough. Numerical simulations have

shown that not all the overdense regions in the linear density field end up in col-

lapsed objects at a given epoch (Bond et al. 1991). Density maxima (also known as

peaks) have been shown to be seeds of virialized halos (Hahn & Paranjape 2014).

Only 15 − 20% of haloes arise from two nodes (Porciani et al. 2002; Ludlow &

Porciani 2011), which is compatible with them being currently undergoing a major

merger. Indeed, for steep power-law spectra (n < −1) and moderately high am-

plitudes (ν ≡ δ/σ0 ≥ 2), the non-linear evolution of peaks is well-described by the

spherical collapse (Bernardeau 1994).

This is the basis of the so-called peak formalism. The study of peak statis-

tics in Gaussian random fields was first introduced by Doroshkevich (1970) and

has been extensevely extended and refined by man other authors (Doroshkevich &

Shandarin 1978; Kaiser 1984; Peacock & Heavens 1985; Bardeen et al. 1986; Cline

et al. 1987; Couchman 1987; Heavens & Peacock 1988; Coles 1989; Bernardeau 1994;

Bond & Myers 1996; Avila-Reese et al. 2005; Del Popolo et al. 2000; Ascasibar et al.

2004).The Ansatz of the peak formalism (which will later be proved to be correct,

see section 3.2) states that virialized objects of a mass M at a time t emerge from

maxima of the density field with a density contrast that is a monotonously decreas-

ing function of t when the density field is filtered at a scale Rf that is monotonously
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increasing with M . Said otherwise, there is a one-to-one correspondence between

virialized halos with mass M at a time t and non-nested peaks with density contrast

δ(t) at the filtering radius R(M). Under this assumption, the evolution of peaks in

the filtering of the density field at ti automatically traces the dynamical growth of

halo mases in the CDM clustering process.

The confluent system formalism of peak trajectories (CUSP), introduced by Man-

rique & Salvador-Solé (1995, 1996); Manrique et al. (1998) and further developed by

Salvador-Solé et al. (2012a) (hereafter SVMS); Salvador-Solé et al. (2012b) (here-

after SSMG) and Viñas et al. (2012), is an extension of the peak theory that makes

it possible to derive the theoretical mass function of relaxed objects and their inner

properties, relying on the peak model Ansatz. In what follows, we will review the

general peak theory, while in the following sections we further develop the CUSP

formalism and show the results obtained by it.

2.5.1 Basic Theory

Let us consider a homogeneous and isotropic Gaussian random field δ(r) charac-

terised by a power spectrum P (k). If the random field describes the primordial

density field, then the power spectrum gives information about the distribution of

density perturbations as a function of the scale. In order to give rise to a cosmology

with hierarchical gravitational clustering, the power spectrum must have power at

all scales. Moreover, in order to have a well defined set of local maxima, the field

has to be smooth and differentiable, therefore having its harmonic content limited

at high wavenumbers. Finally, the density field has to be filtered with a smoothing

function at a given scale in order to single out one of the maxima. This additional

dependence on scale should be always born in mind, although it will not always be

explicitly specifiedfor the sake of notation.

The Joint Probability Function

In §2.3.1, we used the properties of a random Gaussian field to calculate the prob-

ability of finding a point above a threshold when the density field is smoothed on a

given scale (equation [2.95]). In that case, the probability density can be writen as

P (δ) dδ =
1√

2π σ0

exp

(
δ2

2σ2
0

)
dδ . (2.100)

The extension of the distribution probability function to two points separated

by a distance r requires the use of the covariance function ξ(r), because the values
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of the density field at different points are not statistically independent. Then the

probability that one of the points has density contrast in the interval δ1 to δ1 + dδ1,

and the other point has density contrast in the interval δ2 to δ2d + dδ2 is

P (δ1, δ2) dδ1dδ2 =
1

2πσ2
0

1√
1 − w2(r)

exp

[
−δ2

1 + δ2
2 − 2w(r)δ1δ2

2σ2
0[1 − w2(r)]

]
dδ1dδ2 , (2.101)

where w(r) = ξ(r)/σ2
0 is the scaled correlation function. Notice that if the points

were not correlated [ξ(r) = 0] the above probability would be simply equal to the

product P (δ1) P (δ2). It is easy to generalise the former Gaussian joint probability

distribution for m points

P (δ1, ..., δm)
m∏

i

dδi =
exp(−Q)

[(2π)m det(M)]1/2

m∏

i

dδi ,

(2.102)

Q ≡ 1

2

m∑

ij

δi(M
−1)ijδj ,

where we have taken the means of random variables 〈δi〉 = 0. In this case, only

the covariance matrix Mij ≡ 〈δiδj〉 = ξ(rij) is required to specify the distribution.

The successive derivatives of a random Gaussian field are random Gaussian fields,

which implies that expression (2.102) for the joint probability function does not hold

exclusively for the values of the density field at different points, but for the values

of its derivatives as well.

The Maximum Constraint

The characterisation of maxima for one-dimensional functions is reduced to finding

those points with null first derivative and negative second derivative. In the case

of random Gaussian fields, we need the joint probability function for the value of

the field δ, and its first δ′ ≡ η, and second δ′′ ≡ ζ derivatives at a given point. By

enforcing η = 0, and ζ < 0, the integration over these variables in the appropriate

domains leads to the probability of finding a maximum at the point with density

contrast in the interval δ to δ + dδ. However, this procedure cannot be applied

because the set comprising those points with η = 0 has null measure, so the corre-

sponding probability seems to be zero. Luckily enough, it is possible to substitute
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dη for |ζ|dx 10, because, owing to ergodicity, the integral over x is equivalent to

the integral over the probability distribution, being x the spatial coordinate. In

this way, the measure problem is avoided and a peak number density, instead of a

probability, is achieved by dividing by dx.

In three-dimensional Gaussian random fields (as the one describing the density

field), the process to characterise peaks is the same than in the one dimensional case,

but taking into account that the first Cartesian derivatives of the field involve three

components, ηi = ∇iδ, (one for each possible direction), and second derivatives ζij =

∇i∇jδ make a symmetric 3×3 matrix with six independent components. Therefore,

the probability of having a maximum at a given point with density contrast in the

range from δ to δ + dδ is

ppk(δ) dδ = dδ

∫
d3η d6ζ P (δ,η = 0, ζ) , (2.103)

integrated over the domain for which the second derivatives are negative. To over-

come the problem of null measure sets, we turn the ensemble average into a volume

average. The Jacobian of the transformation is J = det ζ, then the probability

(2.103) becomes

ppk(δ) dδ = dδ d3r

∫
d6ζ | det ζ|P (δ,η = 0, ζ) . (2.104)

By dividing both sides by the volume element d3r we obtain the number den-

sity of peaks per infinitesimal range of height11. Given that the Gaussian field is

homogeneus and isotropic, the probability (i.e., number density) of peaks does not

depend on the position. For simplicity, we will hereafter evaluate the joint proba-

bility functions at r = 0.

The expression (2.104) can also be derived considering a point process. In this

case the number density of points p selected to be maxima of the field δ(r) is

npk =
∑

p

δ(3)(r − rp) , (2.105)

10The Taylor expansion of the first derivative of the field in the neighbourhood of a maximum
located at xp is

η(x) ≈ ζ(xp)(x − xp).

11In peak statistics, the density contrast is usually referred as the peak “height”.
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where δ(3) is the three-dimensional Dirac delta function. The following step is to

express this point process in terms of the random field and its derivatives. To do

so, let us expand the field and its gradient in Taylor series around the maximum

located at rp

δ(r) ≈ δ(rp) +
1

2

∑

ij

ζij (r − rp)i (r − rp)j,

(2.106)

ηi(r) ≈
∑

j

ζij (r − rp)j .

If the matrix ζij is non-singular (i.e., it can be inverted) we can write

r − rp ≈ ζ−1(rp)η(r),

(2.107)

δ(3)(r − rp) = | det ζ(rp)| δ(3)[η(r)] .

Notice that the δ-function picks out all the points satisfying η(r)= 0. For now,

we can only obtain the number density of extrema

next = | det ζ(rp)| δ(3)[η(r)] . (2.108)

In practice, only the ensemble average of expression (2.108) can be calculated.

This average involves the joint probability function P (δ,η, ζ) evaluated at r = 0.

Integrating over the domain where ζ is negative one gets the number density of

peaks with height in the interval δ to δ + dδ

〈npk(δ)〉 dδ = dδ

∫
d6ζ | det ζ|P (δ,η = 0, ζ) . (2.109)

In Appendix A we show how to calculate the number density of peaks per in-

finitesimal ν ≡ δ/σ0 range at a given scale Rf , following the derivation of BBKS.

However, the quantity needed in order to compute the halo mass function (both

unconditional and conditional) is the number density of peaks with a given δ per

infinitesimal Rf range. The CUSP formalism allows us to compute these quantities

and mass functions, as well as other important halo properties, such as their inner

structure.
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The Confluent System of Peak Trajectories

Simplicities are enormously complex. Consider the sentence “I love you”.

Richard O. Moore

In the present Chapter, we give a general overview of the Confluent System of

Peak Trajectories (CUSP) and its application to the analytic derivation of halo prop-

erties from the filtering of the primordial density field. The CUSP formalism was

introduced by Manrique & Salvador-Solé (1995, 1996); Manrique et al. (1998) to deal

with the properties of relaxed halos within the general peak formalism. Some years

later, SVMS and SSMG managed to establish the whole link between the charac-

teristics of triaxial peaks (abundance, height, ellipticity, prolateness, curvature and

nesting) and the properties of virialised halos (abundance, structure, kinematics,

shape and substructure), taking into account ellipsoidal collapse and virialisation.

These results opened the possibility to build a complete accurate analytic treat-

ment of non-linear clustering in any hierarchical (cold as well as warm; Viñas et al.

2012) dark matter cosmology from the filtering of the linear density perturbation

field. Unfortunately, the peak Ansatz was not proved and the functions describing

the a one-to-one correspondence between virialised haloes with mass M at t and

non-nested peaks with density contrast δ(t) at the filtering radius R(M) were deter-

mined by fitting the halo MF to the PS one, which caused the formalism to loose its

predicting power. In addition, it was argued although not checked that halos grow

inside-out, a condition that plays a crucial role in the formalism. Last but no the

least, the theory focused on halos formed in smooth accretion, assumin that major

mergers lead to halos with identical properties due to the fact that virialisation is a
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real relaxation process.

In this overview we include the proof by Juan et al. (2014a) that these relations

hold as well as the formal justification that the formalism developed for accretion is

valid, indeed, for major mergers.. In Chapter 4 we check the inside-out growth of

accreting halos and, in Chapter 5, apply the formalism to derive the halo mass and

multiplicity functions that correspond to realistic halo mass definitions.

3.1 Filtering vs. Gravitational Clustering

In this Section, we show that the Gaussian filter allows one to establish a one-to-one

correspondence between virialised halos with mass M (according to any given mass

definition) at time t and non-nested peaks with density contrast δ(t) at scale R(M, t)

in the density field at ti. In other words, the Gaussian filter is the best adapted to

monitor the gravitational collapse and virialisation of density perturbations through

the filtering evolution of the initial density field.

3.1.1 Gaussian Filter

The density contrast δ(r) at any arbitrary point r of the density field filtered with

a Gaussian window satisfies the relation

∂δ(r)

∂R
= R∇2δ(r, R) (3.1)

that warrants the negative sign of the R-derivative of δ at density maxima of scale

R. The fixed sign of δ(r) in peaks is only ensured for that particular window, so the

existence of a monotonous dependency of δ on R (or of R on δ) as needed in order

to trace the monotonous mass growth of halos with time is only possible for that

filter (Manrique & Salvador-Solé 1995).

3.1.2 Ellipsoidal Collapse

Provided spherical symmetry, the sphere of radius R around a peak with δ in the

density field at ti filtered with a top-hat window of that radius collapses at a time t

satisfying δ(t) = δth
c (t)D(ti)/D(t), where δth

c (t) is a time- and cosmology-dependent

critical value, equal to 1.686 in the Einstein-de Sitter universe. In these circum-

stances, a one-to-one correspondence can thus be established between peaks at ti
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Figure 3.1: Distribution of curvatures for peaks corresponding to current haloes
with extreme masses of 108 M⊙(red solid line) and 1016 M⊙(blue dashed line), for
which 〈(x − 〈x〉)2〉1/2/〈x〉 are respectively equal to 0.25 and 0.16.

with δ at R and halos at t with mass M = 4π/3 ρ̄(ti) R3, where ρ̄(ti) is the mean

cosmic density at ti.

Unfortunately, in the Universe, peaks are triaxial and undergo ellipsoidal col-

lapse. In this case, the time of collapse of spheres of any radius R around a peak

depends not only on δ but also on the ellipticity and prolateness of the peak as well

as on the spherically averaged density profile around it (Peebles 1980).
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However, for the Gaussian filter, the ellipticity and prolateness of peaks with

δ at R depends only on their curvature and so does also the spherically averaged

density profile around them (BBKS). The curvature x of a peak of scale R is defined

as minus the Laplacian over the rms value of such a quantity on that scale, equal to

the second order spectral moment

x ≡ −∇2δ/σ2. (3.2)

Therefore, we can rewrite Equation 3.1 as

∂δ(r)

∂R
= R∇2δ(r, R) ≡ −xσ2(R)R. (3.3)

In addition, the distribution of peak curvatures is sharply peaked at its maximum

(BBKS, 3.1) due to Laplace transform being linear

〈(dρp

dr
−

〈dρp

dr

〉)2〉1/2

〈dρp

dr

〉 ≈ 〈(x − 〈x〉)2〉1/2

〈x〉 ≪ 1 , (3.4)

so all peaks with δ at R have similar ellipticity and prolateness as well as similar

spherically averaged density profiles. Consequently, all spheres with mass equal to

a function of R and δ, M(R, δ), around peaks with δ at R collapse and virialise1 at

approximately the same time (Juan et al. 2014a).

Of course, the scatter around the mean curvature will cause some scatter in the

properties of virialised halos derived under the approximation of identical time of

collapse and virialisation. The distribution of any halo property around the typical

value should be possible to be calculated for halos with M at t from the well-known

distribution of curvatures of the corresponding peaks. But we will concentrate here

in the typical (mean) halo properties, without caring about their scatter.

3.1.3 Peak Nesting

Strictly, not all spheres with M(R, δ) around peaks with δ at R will collapse and

virialise at t. This would be the case provided peaks were isolated. But, in the Uni-

verse, peaks are often located within the collapsing cloud of other peaks with identical

1The time of virialisation of a collapsed system depends on its mass (and its radius determined
by the the former and the cosmic time; see below), so the full time of collapse and virialisation
depends indeed on R and δ.
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density contrast at larger-scales. When such a peak nesting happens, the halos the

former peaks would eventually evolve into are swallowed by those of their larger

scale hosts, which aborts their growth.

Therefore, besides the use of a Gaussian filter, another necessary condition for

the existence of a halo-peak one-to-one correspondence is that peaks are corrected

for nesting. The higher a peak,2 the rarer it is and the lower the probability of

being nested in other peaks with identical δ at even larger scales. The correction for

nesting will thus depend on the peak height. We will comeback to this correction

in Section 3.4.1.

3.1.4 The Halo-Peak Correspondence

According to that correspondence, for suited functions δ(t) and R(M, t), every viri-

alised halo with M at t arises from the collapse and virialisation of a non-nested

peak with δ at the Gaussian filtering scale R.

But, what mass M are we talking about? As mentioned, the mass of a virialised

halo is a rather fuzzy concept. One can adopt, for instance, the mass of the re-

gion with the time-dependent virial overdensity, ∆vir(t), relative to the cosmic mean

density ρ̄(t) predicted by the top-hat spherical collapse model, which defines the

so-called virial mass, Mvir, or with a fixed overdensity, say ∆ = 200, relative to the

critical density ρc(t), which defines the mass usually denoted by M200. The ques-

tion then rises: is the one-to-one correspondence only possible for one specific mass

definition and, if this is the case, which is it? We will come back to this question

later (see section 5.3).

3.2 Setting the one-to-one correspondence between

peaks and halos

In any given cosmology, we can take any desired monotonous decreasing δ(t) func-

tion3 and find non-nested peaks with fixed δ at any scale R in the density field at

ti filtered with a Gaussian window. Then, taking at t the mass definition matching

2The height ν of a peak of scale R is defined as its density contrast over the rms value of such
a quantity on that scale, equal to the zero order spectral moment, i.e. ν ≡ δ/σ0(R).

3The only constraint is that it must be proportional D(ti)/D(t) for consistency with the arbi-
trariness of ti (see Juan et al. (2014a)).
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3. The Confluent System of Peak Trajectories

the masses M(R, δ) ≡ M(R, t) of the collapsed clouds arising from different R’s, we

will end up with a one-to-one correspondence between virialised halos with M at t

and non-nested peaks at ti with δ at R. The mass definition corresponding to any

given monotonous δ(t) function can be found following the prescription described

further in this section.

But the converse is also feasible and even more interesting: for any chosen halo

mass definition, we can determine, at the arbitrary small time ti, one only couple of

δ(t) and R(M, t) functions defining non-nested peaks giving rise to halos with M at

t. This is achieved by enforcing the two following consistency conditions: the total

mass density locked into halos must be equal to the mean cosmic density4 and the

mass of a halo must coincide with the integral of its density profile times 4πr2. The

result takes the form (Juan et al. 2014a)

δ(t) = δc(t)
D(ti)

D(t)
(3.5)

σ0(M, t) =
1

2π2

∫ ∞

0

dk k2P (k) exp

(
−k2R2

2

)
= σth

0 + δ(t) · S(t) (3.6)

where S(t) is a function of time that will be specified later on (eq. [3.10]).

It should be noted that, due to using the Guassian filter instead of the top-hat

one, the deffinition of the filtering radius is slightly different

R(M, t) =
1

q(M, t)

[
3M

4πρ̄(ti)

]1/3

(3.7)

The dependence on ti on the right of equations (3.5)–(3.7) ensures the arbitrari-

ness of that initial time. Equation (3.5) defines the density contrast δc(t) of peaks

with δ(t) at ti linearly extrapolated to the time t, and equation (3.7) defines the

radius q(M, t) of halo seeds in units of the radius R(M, t) of the Gaussian filter.

As shown by several authors (e.g. Hahn & Paranjape (2014)), the density contrast

of density perturbations undergoing ellipsoidal collapse depends on M , while in the

CUSP formalism it does not. We note however that in all those works the filter used

is top-hat, while in the CUSP formalism it is Gaussian. This introduces a freedom

in R(M, t) associated to a given halo mass M through the function q(M, t). We can

4This is for ideal hierarchical cosmologies with divergent rms density fluctuation at vanishing
scales. If the power spectrum is truncated (e.g. below the free streaming mass of the DM particle),
the normalisation should be taken equal to that of the non-truncated power-spectrum at the same
large enough masses.
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3.2. Setting the one-to-one correspondence between peaks and halos

then chose δ(t) independent of M and let the radius of the seed in units of R(M, t)

to depend on M .

Note that the relation between the filtering radius R and the mass M of the final

halo (equal to that of the collapsing cloud around the peak) is given by equations

(3.5)–(3.6), so it is different in general from the mass of the sphere of radius R. Fur-

thermore, a peak with δ on the top-hat filtering scale R is not the seed of a halo with

the corresponding mass M at the time t. It is therefore not surprising that the mass

of top-hat peaks may substantially deviate from those of their corresponding halos in

spherical collapse; no tidal compression is actually needed to explain that difference.

As we have already seen, for halos with a well known trajectory, equation (3.21)

is a Fredholm integral equation of first kind for δp(r) which allows us to obtain

the typical spherically averaged density profile of the protohalo. Then, bringing the

profile ρp(r) = ρ̄i[1+δp(r)] into equations (3.41) and (3.42), we can calculate Ep(M)

and, through equation (3.40), obtain the mean spherically averaged density profile

ρh(r) for haloes with M at t.

Each boundary condition δ(t0) at R = R(M0, t0) for the integration of equation

(3.13) gives rise to one peak trajectory δ(R) leading to one specific density profile

whose integration out to r = R0 yields a value of the mass different from M0 in

general. Only one particular value of R(M0, t0) or, equivalently, of q(M0, t0), en-

sures the equality M(R0) = M0. Consequently, imposing this constraint, we can

find the desired value of q(M0, t0) for any couple of values M0 and t0. Note that, by

changing the value of δ(t0) the resulting value of q(M0, t0) will change, but neither

the solution δ(R) of equation (3.13) nor the associated final density profile will, so

the particular value of δ(t0) used is irrelevant at this stage. And, repeating the same

procedure for different masses M0, we can determine the whole function q(M, t0)

corresponding to any arbitrary value of δ(t0) for any given time t0 (see Fig. 3.2).

The mean spherically averaged density profiles so predicted for current haloes

with three spherical overdensity, SO(∆vir), masses encompassing the whole mass

range covered in simulations are compared, in Figure 3.3, to the best NFW fits

(Navarro et al. 1997) for simulated haloes with identical masses obtained by Zhao

et al. (2009). The deviations observed are typically less than 10 %. Only at the out-

ermost radii in the less massive halo, where the density profile of simulated haloes

is the most uncertain, do they reach 30 %. Given the absence of any free parameter

in the theory, the agreement found over 4 decades in mass and two decades in radii
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3. The Confluent System of Peak Trajectories

Figure 3.2: Radius of seeds, in units of Gaussian filtering radius, of present haloes
with SO(∆vir) masses (solid lines) and Friends of Friends, FoF(0.19), masses (dashed
lines) for the quoted values of δ(t0). The two kinds of curves fully overlap, but this
is not the case for any arbitrary mass definition. The thick black line is for the value
of δ(t0) yielding the right normalisation of the associated MF.

is remarkable.

The previous result refers to the mean halo density profile. A scatter is expected

arising from that in individual peak trajectories (due to the scatter in x at each R),

added to the scatter in the peak ellipticity and density slope. In fact, an “assembly
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3.2. Setting the one-to-one correspondence between peaks and halos

Figure 3.3: Typical spherically averaged density profiles (solid lines) predicted for
current haloes with SO(∆vir) masses equal to 5× 1010 M⊙(red), 5× 1012 M⊙(green)
and 5 × 1014 M⊙(blue), compared to the typical NFW profiles of simulated haloes
(dashed lines) with identical masses and the same cosmology according to Zhao et al.
(2009).

bias” is foreseen as the peak trajectory δ(R) of individual haloes will slightly deviate

from the average peak trajectory and, consequently, the final density profile of in-

dividual haloes and the time at which they reach a given mass fraction will slightly

depend on their mass aggregation history.

49



3. The Confluent System of Peak Trajectories

In order to find the correct value for δ(t0), we need to impose another condition.

As we have already said, in Manrique & Salvador-Solé (1995), the CUSP mass func-

tion was fitted to the PS one in orther to find the proper values of the parameters.

However, if one uses the normalization of the mass function, one can rigorously

find the proper value and time dependence of δ(t0), giving the CUSP formalism full

predictive power. See Section 3.4 for the detailed explanation on how the CUSP for-

malism can be used in order to compute the halo mass function and how to correct

the nesting effect.

Using this prescription, every function q(M, t0) obtained above for each value of

δc(t0) will give rise to one possible MF, although not necessarily satisfying the right

normalisation condition

ρ̄ =

∫ ∞

0

M(R) Nnest(R, δ) dR . (3.8)

Thus, imposing this constraint, we can determine the right value of δc(t0) and the

corresponding function q(M, t0). And repeating the same procedure at any time t,

we can determine the whole functions δc(t) and q(M, t).

The MF for FoF(0.19) or SO(∆vir) masses is compared in Figure 3.4 to the MFs

of simulated FoF(0.2) haloes at three redshifts encompassing the interval studied by

Lukić et al. (2007). Once again, there is overall agreement, particularly if we directly

compare the theoretical predictions with the empirical data. Peaks with very low

ν’s will often be disrupted by the velocity shear caused by massive neighbours. But

peaks suffering such strong tides will be nested, so they will not counted in the MF.

This explains why the theoretical MF is well-behaved even at small masses.

For FoF(0.2) or more exactly FoF(0.19) masses, the functions δc(t) and q(M, t)

are found to be identical to those for SO(∆vir) masses. Generally, for any given

cosmology and mass definition, one can write

δc(t) = δth
c (t)

ad(t)

D(t)
(3.9)

σ0(M, t) = σth
0 (M, t) +

{
s0 + s1a(t) + log

[
as2(t)

1 + a(t)/a1

]}
δ(t). (3.10)

where a(t) is the cosmic scale factor, δc(t) is the density contrast for spherical col-

lapse at t and σth
0 (M, t) is the top-hat 0th order linear spectral moment at t. The
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3.2. Setting the one-to-one correspondence between peaks and halos

Figure 3.4: MFs predicted for haloes with FoF(0.2) masses (solid lines), compared
to Warren et al. (2006) analytic fits to the MFs of simulated haloes (dashed lines)
at z = 20 (blue lines), 10 (green lines), 5 (yellow lines) and 0 (red lines), from left to
right. The dashed curves cover the ranges analysed in simulations. The ratios in the
bottom panel are with respect to the theoretical predictions. Points are the raw data
obtained by Lukić et al. (2007) in simulations with box sizes around ∼ 128(1 + z)−1

Mpc/h giving the best common resolution at all z’s.

values of the coefficients d, s0, s1, s2 and a1 can be found on Table 3.1.

From the relation (3.10) and assuming a linear power spectrum P (k) equal to

51



3. The Confluent System of Peak Trajectories

Table 3.1: Coefficients in the halo-peak correspondence.

Cosmology Mass d s0 s1 s2 a1

Planck14a Mvir 0.928 0.0226 0.0610 0.0156 11.7
M200 0.928 0.0341 0.0684 0.0239 6.87

WMAP7b Mvir 1.06 0.0422 0.0375 0.0318 25.7
M200 1.06 0.0148 0.0630 0.0132 12.4

a Planck Collaboration et al. (2014)
b Komatsu et al. (2011)

a power law with spectral index equal to the effective one, n(M), one can infer a

simple approximation for the value of q(M, t)

q(M, t) ≈
[
Q(M)

σth
0 (M, t)

σ0(M, t)

]−2/[n(M)+3]

, (3.11)

where Q(M) is defined as

Q2(M) =

∫ ∞

0
dxx2+n(M) W 2

G(x)∫ ∞

0
dxx2+n(M) W 2

TH(x)
, (3.12)

and WTH(x) and WG(x) are the Fourier transforms of the top-hat and Gaussian

windows of radius x/k, respectively. This means that for the CDM spectrum both n

and Q depend slightly on M . However, q(M, t) is only needed to calculate σ0(M, t),

which can be readily inferred from the well-known value of σth
0 (M, t) from the exact

relation (3.10).

Now that we have fixed the one-to-one correspondance between halos and peaks

using simple consistency arguments and have checked that the predictions of the

CUSP formalism are in full agreement with those of simulations for two ΛCDM

cosmologies, we will use this formalism to study further properties of halos and

make some predictions of halo properties.
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3.3. Peak Trajectories

3.3 Peak Trajectories

The existence of the halo-peak one-to-one correspondence ensures the possibility

to monitor halo clustering (via accretion and major mergers)5 by means of the

Gaussian filtering evolution of peaks in the δ–R plane. The fact that there is at

most one peak at the immediate vicinity (i.e. at a distance r . ∆R) from a peak at

scale R when the scale is increased form R to R + ∆R with ∆R ≪ R (Manrique &

Salvador-Solé 1995) ensures the possibility to identify the peak tracing a given halo

on infinitesimally contiguous scales, even though the exact location of peak varies

with scale.

3.3.1 Peak Trajectories

The series of peaks tracing accreting halos describe continuous δ(R) trajectories in

the δ–R plane.

Given the relation (3.1) and the definition of peak curvature, the trajectory δ(R)

tracing a halo with M0 at t0 accreting at the typical (mean) instantaneous rate is

the solution of the differential equation (Manrique & Salvador-Solé 1995)

dδ

dR
= −xe(δ, R) σ2(R)R , (3.13)

for the boundary condition δ(t0) at R(M0, t0), where xe(δ, R) is the inverse of their

mean inverse curvature, 〈〈1/x〉〉−1 of peaks with δ at R. Given the sharply peaked

curvature distribution, xe(δ, R) is in practice essentally equal to the mean curvature

〈〈x〉〉(R, δ) calculated in BBKS.

The relations δ(t) and R(M, t) (eqs. [3.5] and [3.6]) allow one to calculate the in-

stantaneous mass accretion rate, dM/dt, of halos with M at t from the R-derivative

of δ of their corresponding peaks. In particular, according to the definition of xe, the

derivative dR/dδ given by equation (3.13) yields the typical (mean) mass accretion

rate of halos with M at t.

Taking into account that, for low and moderately high peaks as corresponding to

ordinary halos, 〈〈x〉〉(R, δ) is well-approximated by γν, where γ is σ2
1/(σ0σ2), being

σj the jth spectral moment (BBKS, equation 2.88), equation (3.13) leads to the

5We distinguish between minor mergers contributing to the smooth growth of the most massive
partner without destroying it, the so-called accretion, and major mergers producing its destruction.
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3. The Confluent System of Peak Trajectories

Figure 3.5: Idealized confluent system of peak trajectories for a limited sample
volume. Solid lines represent the continuous filtering evolution of peaks undergoing
accretion. Dashed lines represent the discontinuities caused by major mergers (figure
from Manrique & Salvador-Solé 1995).

approximate relation

d ln δ

d ln R
≈ −

(
n + 3

2

)3/2

, (3.14)

where n is the effective spectral index, P (k) ∝ kn. This demonstrates that the

typical peak trajectory tracing purely accreting halos is roughly universal, i.e. very

similar for all halo masses, redshifts and cold dark matter cosmologies.

In major mergers, the continuous peak trajectories δ(R) tracing the evolution

by accretion of merging halos are interrupted 6 and a new peak appears 7 with the

same δ as the disappeared peaks, but on a larger scale R corresponding to the sum

of the masses of the progenitors (Manrique & Salvador-Solé 1995).

6At R + dR, there is no peak at the immediate vicinity of the peak at R.
7At R − dR, there is no peak at the immediate vicinity of the peak at R.
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3.4. Halo Mass Function and Subhalo Abundance

Major mergers are the only events where peak trajectories are interrupted and

new trajectories arise, the peak trajectory interruption and appearance rates thus

measure the halo destruction and formation rates through major mergers. The cal-

culation of those rates involves the peak-peak correlation. A practical estimate of

such a correlation, also useful for the calculation of peak nesting and halo substruc-

ture among other quantities, is given in (Manrique et al. 1998).

3.3.2 Subhalos and Nested Peaks

Since there is no destruction (or appearance of) peak trajectories when a halo is

accreted by another more massive one, those peaks tracing halos accreted onto a

more massive one necessarily become nested “in the collapsing cloud around the

corresponding peak”, or simply “in the corresponding peak”. On the other hand,

when two halos suffer a major merger, even though their peak trajectories are in-

terrupted, those of their respective nested peaks are not, so they become nested in

the new peak resulting from the merger.

This process of peak nesting truthfully traces the process of halo nesting taking

place in real DM clustering. Indeed, in accretion, less massive halos (with higher

concentrations) become first-level (second-level,...) subhalos of the accreting halo

at the same time that their own first-level clumps become second-level ones, and so

on. And, in major mergers of similarly massive halos (with similar concentrations),

the merging objects meld but their respective first-level (second-level,...) subhalos

survive as such in the new halo resulting from the merger.

3.4 Halo Mass Function and Subhalo Abundance

To infer the mass function of virialised halos at t and the abundance of first-level

(second-level,...) subhalos in halos with M at t we can thus simply compute the

comoving number density of non-nested peaks with δ per infinitesimal scale R in

the density field at ti and the number of first-level (second-level,...) peaks with δ

nested in non-nested peaks with δ at R, respectively.

3.4.1 Non-Nested Peak Number Density

The number density of peaks with δ at scales between R and R + dR is the number

density of peaks at scale R with density contrast δ̃ greater than δ that cross such
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3. The Confluent System of Peak Trajectories

a density contrast when the scale is increased to R + dR or, equivalently, with δ

satisfying the condition

δ < δ̃ ≤ δ + σ2(R) x̃ R dR . (3.15)

Therefore, it is simply the integral of the density of peaks with infinitesimal height

ν̃ = δ̃/σ0(R) and curvature x̃, Npk(ν̃, x̃, R) dν̃ dx̃, calculated by BBKS, over the

range (3.15) of δ̃ and all possible x̃. The result is Manrique & Salvador-Solé (1995)

Npk(R, δ) dR =
〈〈x〉〉(R, δ)

(2π)2R3
⋆

exp

(
−ν2

2

)
σ2(R)

σ0(R)
R dR , (3.16)

where ν ′ = ν + [σ2(R)/σ0(R)]RdR and R⋆ =
√

3 σ1/σ2.

But number density (3.16) refers to all peaks with δ between R and R + dR,

while virialised halos correspond to non-nested peaks only. We must thus correct

that density for nesting. The number density of non-nested peaks with δ between

R and R + dR, N(R, δ)dR is the solution of the Volterra integral equation

N(R, δ) = Npk(R, δ)

− 1

ρ̄(ti)

∫ ∞

R

dR′M(R′) N(R′, δ) Nnest
pk (R, δ|R′, δ). (3.17)

The comoving density (5.12) of peaks with δ is thus equal to the (differential) co-

moving mass function of halos at t. In Chapter 5 we will give a deeper insight on

the halo mass function.

3.4.2 Abundance of Peaks Nested in another Peak

Following the same procedure from the conditional density of peaks with infinitesi-

mal ν̃ and x̃ at R subject to being located in peaks with ν ′ at R′, N (ν̃, x̃, R|ν ′, R′)dν̃dx̃)

calculated by BBKS, we can also compute the conditional number density of peaks

with δ at scales between R and R +dR subject to being nested in non-nested peaks

with δ′ at R′ Manrique et al. (1998). The result is

N(R, δ|R′, δ′)dR dR′

= Nnest
pk (R, δ|R′, δ′) dR N(R′, δ′)

M(R′)

ρ̄(ti)
dR′, (3.18)

where M(R′)/ρ̄(ti) is the volume of the collapsing cloud of peaks with δ′ at R′.
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Then, the total number of first-level peaks with δ at scales greater than Rs nested

in a non-nested peak with δ at scale R is (see Chapter 5)

N (>Rs, δ|R, δ)=
M

ρ̄(ti)

∫ R

Rs

dR′

{
Nnest

pk (R′, δ|R, δ)

−
∫ R

R′

dR′′N f nest
pk (R′, δ|R′′, δ)Nnest

pk (R′′, δ|R, δ)
M(R′′)

ρ̄(ti)

}
, (3.19)

where the integral over R′ on the right corrects the number density of peaks nested

in the peak with δ at R for nesting in peaks with δ at intermediate scales between

Rs and R so to ensure that only first-level nested peaks are counted and the function

N f nest
pk (R′, δ|R′′, δ), solution of the Volterra integral equation

N f nest
pk (R′, δ|R′′, δ) ≡ Nnest

pk (R′, δ|R′′, δ)

−
∫ R′′

R′

dR′′′Nnest
pk (R′, δ|R′′′, δ)N f nest

pk (R′′′,δ|R′′, δ)
M(R′′′)

ρ̄(ti)
, (3.20)

is the conditional number density of peaks with δ at R′ subject to be directly nested

in peaks with δ at R′′. This ensures that the correction for intermediate nesting is

not over-counted.

Given that first-level subhalos with masses greater than Ms ≡ M(Rs, t) in a halo

with M at t are traced by first-level peaks with δ = δ(t) at scales greater than

Rs = R(Ms, t) nested in the non-nested peak with δ = δ(t) and R = R(M, t), their

abundance N (> Ms, t) is equal to the corresponding abundance of nested peaks,

N (> Rs, δ|R, δ), given by equation (3.19). Needless to say that the abundance of

subhalos of any other level can be derived in a similar way from the corresponding

abundance of nested peaks. However, the higher the nesting level, the more compli-

cate the calculation.

Actually, since accreted halos are truncated by the host potential well, their

masses change when they become subhalos. For this rerason, the subhalo abundance

given by equation (3.19) is right provided subhalo masses are estimated by means of

the maximum circular velocity, Vmax, which is stable against truncation. To express

it as a function of the real truncated mass we should take into account for truncation

whose strength depends on the properties of the host halo.
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3.5 Protohalo Properties

The properties of halos depend on those of their unconvolved seeds, i.e. the col-

lapsing clouds around their corresponding peaks, hereafter simply protohalos. To

distinguish from now on between the properties of protohalos and halos we denote

them with subscripts p and h, respectively.

The velocity field in the protohalo is due to the perturbed Hubble-flow. Con-

sequently, to fully characterise protohalos we only need their spherically averaged

density, ellipticity and prolateness unconvolved profiles, which must be inferred from

the height, curvature, ellipticity and prolateness of the peaks. Certainly, peaks refer

to the filtered density field and the filtering (convolution) with a Gaussian window

yields some loss of information, so the deconvolution of those peak properties may

seem unfeasible. Actually, for purely accreting halos, we know the whole series of

peaks on different scales along the corresponding δ(R) trajectory, which, as we will

see, is enough to achieve the desired deconvolutions.

When the protohalo on a scale slightly larger than that of a given halo has

only collapsed along the two first axes, the collapse along the third one will be

seen as accretion along a filament, as often found in simulations (e.g. Dekel &

Birnboim (2006)). Since no statement is made in the CUSP formalism on how

isotropic accretion must be, such an extremely anisotropic accretion is accounted

for.

3.5.1 Spherically Averaged Density Profile

As mentioned, the exact location of peaks along the trajectory traced by a purely

accreting halo may vary with R. However, we have the right to re-locate the origin

of the coordinate system at every R on the peak. Then, the density contrast δ at

r = 0 along the δ(R) trajectory is but the value at r = 0 of the unconvolved density

contrast field δp(r) in the protohalo, convolved with the Gaussian window of radius

R. Thus, after integration over the polar angles, we have

δ(R) =

√
2

π

1

R3

∫ ∞

0

dr r2 δp(r) exp

(
− r2

2R2

)
, (3.21)

where we have introduced the following compact notation: F (r) stands for the spher-

ical average of any function F (r). Only in case of a product of two or more functions

of r will the spherical average be hereafter written in angular brackets.
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For halos with known δ(R) trajectory, equation (3.21) is a Fredholm integral

equation of first kind for δp(r), which can be solved in the way explained in Salvador-

Solé et al. (2012a). In the case of halos accreting at the typical (mean) instantaneous

rate, δ(R) is the typical (with mean inverse curvature at each point) trajectory

solution of the differential equation (3.13). Consequently, we can readily deconvolve

equation (3.21) and obtain the typical (mean) spherically averaged density profile

δp(r) for protohalos.

3.5.2 Ellipticity and Prolateness Profiles

The squared semiaxes of the peak with δ at R, A2
j , are defined as the second order

spatial derivatives along the cartesian axes j, ∂2
i , at the peak of the filtered density

contrast field δp(r), scaled to the Laplacian so to have A2
1 +A2

2 +A2
3 = 1. They thus

satisfy the relation

A2
i xσ−1

2 =
−∂2

i

(2πR2)3/2

{∫
dr δp(r) exp

[
−(r−r′)2

2R2

]}

r′=0

. (3.22)

Writing δp(r) in terms of δp(r) and the protohalo axis profiles apj(r) (see the Ap-

pendix B) and integrating over the polar angles, we arrive at (Salvador-Solé et al.

2012b)

A2
j

(
dδ

dR
,R

)
dδ

dR
+ 3 δ(R)

=

√
2

π

3

5R5

∫ ∞

0

dr r4δp(r)

[
2a2

p1(r)

a2
pj(r)Gp(r)

+1

]
exp

(
− r2

2R2

)
, (3.23)

where we have taken into account that the axes Aj of peaks are well-known func-

tions of their curvature (BBKS) and introduced the function Gp(r) defined in the

Appendix B.

Hence, for peaks with known δ(R) trajectory, equation (3.23) is again a Fredholm

integral equation, which can be solved in the same way as equation (3.21). In the

case of halos accreting at the typical (mean) instantaneous rate, δ(R) is the solution

of equation (3.21), so we can determine the typical profiles a2
p1(r)/[a

2
pj(r)Gp(r)] for

the three orientations j and, taking the ratios between them, we can infer the typical

(mean) ellipticity and prolateness profiles (or, equivalently, eccentricity profiles; see

the Appendix B for their definition) of protohalos.
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3. The Confluent System of Peak Trajectories

3.6 The link between Halo and Protohalo

The properties of halos can be inferred from those of their protohalos thanks to the

conservation of a few quantities over ellipsoidal collapse and virialisation. As we

will see, these conserved quantities arise from the fact that, in ellipsoidal collapse

and virialisation, there is no apocentre crossing of particles in the ellipsoidal shells

(homeoids) of protohalos. This causes the inside-out growth of virialised halos. Such

a growth will be confirmed later on (Chapter 4) against simulations.

3.6.1 “Spherical” Quantities

Given any arbitrary mass distribution, we can split the density and gravitational

potential at a separation r from any arbitrary point, taken as origin of the coordinate

system, in the sum of their spherical average and a residual

ρ(r) = ρ(r) + δρ(r) (3.24)

Φ(r) = Φ(r) + δΦ(r) . (3.25)

The residual |δρ(r)| may be greater than ρ(r) in some points over the sphere of

radius r. But, in well-centred triaxial systems, the typical (rms) value is necessarily

smaller because the minimum possible value is −ρ(r) and, hence, the maximum

value cannot be greater than ρ(r). This implies that the quantities 〈(δρ/ρ)2〉(r),
〈(δΦ/Φ)2〉(r) and |〈δρδΦ/(ρΦ)〉(r)| are necessarily less than one (see Salvador-Solé

et al. (2012b) for details).

Thanks to this splitting, any macroscopic quantity X(r) takes the form X (r) +

δX (r), where X (r) coincides with the value of X(r) were the system spherically

symmetric, hence why quantities X (r) are dubbed “spherical”, and a residual δX (r)

measuring the deviation of the system “from spherical symmetry”, or simply “from

sphericity”, necessarily smaller in absolute value than the spherical quantity (Salvador-

Solé et al. 2012b).

In particular, the mass inside r,

M(r) = 4π

∫ r

0

dr̃ r̃2 ρ(r̃) , (3.26)

takes the form M = M + δM, with δM null. In turn, the total energy inside r,
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E(r), splits in the sum of

E(r) = 4π

∫ r

0

dr̃ r̃2 ρ(r̃)

[
s2(r̃)

2
− GM(r̃)

r̃

]
(3.27)

and

δE(r) = 2π

∫ r

0

dr̃ r̃2 δs2(r̃)

2
+ 〈δρ δΦ〉(r̃) , (3.28)

where G is the gravitational constant and s2(r) is a velocity variance, different

in general from the real velocity variance, σ2(r), through the non-null residual

δs2 ≡ σ2(r) − s2(r). Indeed, the spherical total energy, E(r), is taken equal to

the total energy of the sphere with M(r), accounting for the energy lost by shell-

crossing (if any), but without including any possible gravitational energy exchange

between the sphere and the rest of the system due to non-sphericity (it is instead

included in the residual δs2).

If the system is, in addition, in equilibrium, the steady collisionless Boltzmann

equation leads to the virial relation Salvador-Solé et al. (2012b)

2E(r)

W(r)
= 1 − S(r) , (3.29)

where

W(r) = −4π

∫ r

0

dr̃ r̃2 ρ(r̃)
GM(r̃)

r̃
(3.30)

and

S(r) = 4πr3ρ(r) s2
r (r)W−1(r) (3.31)

are respectively the spherical potential energy and spherical surface term, being

s2
r (r) the spherical radial velocity variance, equal to its ordinary counterpart σ2

r (r)

minus the residual

δs2
r (r) =

1

r3ρ(r)

∫ r

0

dr̃ r̃2
[
δs2(r̃) − r̃〈δρ ∂rδΦ〉(r̃)

]
. (3.32)

Differentiating equations (3.26), (3.27) and (3.29), we arrive at the relations

ρ(r) =
1

4πr2

dM

dr
, (3.33)

s2(r) = 2

[
dE/dr

dM/dr
+

GM(r)

r

]
, (3.34)
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3. The Confluent System of Peak Trajectories

and

s2
r (r) =

2E(r) −W(r)

r dM/dr
, (3.35)

identical to the relations resulting for spherically symmetric systems with E = E
and W = W . Since these relations hold regardless of the exact deviation from

sphericity, the profiles ρ(r), s2(r) and s2
r (r) cannot depend on the shape of the

system, contrarily to the profiles σ2
h(r) and σ2

rh(r) (see eqs. [3.28] and [3.32]).

3.6.2 Conserved Quantities

In the linear regime, collapsing clouds expand radially through a factor D(t) and,

hence, homothetically, without any shell-crossing nor energy exchange between dif-

ferent regions. This ensures that homeoids reach turn-around orderly. After reaching

turn-around, shells collapse non-radially (and non-homothetically) and, since DM

is collisionless, they rebound and cross other infalling shells. The consecutive shell-

crossing near pericentre and apocentre between any couple of shells with correlated

oscillatory phases yields a net energy transfer from the shell having reached apoc-

entre first to that having reached it later.

The energy lost in one orbit by particles in a homeoid is small, so the character-

istic time of their apocentre decay is greater than the orbital period. Consequently,

even though particles in that homeoid do not reach next apocentre simultaneously,

they still define an apocentre locus which, for symmetry reasons, is also triaxial.

Repeating the same reasoning as many times as required, we are led to the con-

clusion that particles in a homeoid at turnaround define a triaxial apocentre locus

that progressively shrinks and varies its ellipticity and prolateness (or eccentricities;

see the Appendix B). As a consequence, an energy flux is set from the old inner

to the new outer homeoids of the system with its consequent contraction together

with an increasing, circularisation of individual particle orbits. When the random

shell-crossing causes the oscillatory phase of a shell to become uncorrelated from

those of all the remaining shells, it stops contracting or, equivalently, it virialises.

Even though, neither the total energy E inside spheres of fixed mass M nor the

eccentricities ep and es of homeoids are conserved over collapse and virialisation, the

following quantities are (Salvador-Solé et al. 2012b):

i) The mass of ellipsoids. Apocentre loci evolve (shrink) orderly without crossing

each other. If two of them did intersect, particles at that point, with null radial
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3.6. The link between Halo and Protohalo

velocity, would always coincide at their respective apocentres, so the two apocentre

loci would always intersect, which would contradict the fact that homeoids reaching

turnaround are homothetic to the non-intersecting isodensity contours in the proto-

halo. Consequently, the mass inside those triaxial apocentre loci is conserved from

ti to t. Moreover, since particles stay much of the time at their apocentres, a good

estimate of ρh(r) consists of considering all particles at their respective ellipsoidal

apocentre loci. We thus have

Mh(r) = Mp(rp) , (3.36)

where rp(r) is the radius of the ellipsoid in the protohalo (see Appendix B for its

definition) evolving into to the ellipsoid of radius r in the halo.

ii) The ellipsoid to sphere volume ratio. To leading order in the deviation from

sphericity, the volume of the ellipsoid with a given mass does not depend on its

triaxial shape. Consequently, the ratio between the volumes of the ellipsoid and the

sphere of the same mass is conserved, to leading order, from ti to t,

ah1(r) ah2(r) ah3(r)

ap1(rp) ap2(rp) ap3(rp)
=

r3

r3
p

. (3.37)

iii) The spherical to ordinary total energy ratio. To leading order in the deviation

from sphericity, E and E coincide, in spheres of any given mass. Indeed, the energy

loss through shell-crossing is accounted for in both quantities. (Only the gravita-

tional energy exchange due to triaxiality is not accounted for in E while it is in

E.) Consequently, the ratio E/E is conserved to leading order from ti to t. This

conservation has two consequences.

First, the equality E = E + δE then implies, to leading order,

Eh(r)

Ep(rp)
=

δEh(r)

δEp(rp)
. (3.38)

Second, since E does not depend on the shape of the system, it must be the same

in a triaxial as in a spherically symmetric system with identical mass profile. The

non-radial motion produced in the non-linear evolution of a triaxial system must

thus cause a transfer from the radial to the tangential kinetic energy in parallel to a

departure of the gravitational potential from its spherically symmetric counterpart

without altering, to leading order, the total energy found in the spherically sym-

metric system. In other words, the fractional velocity variance transferred from the
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3. The Confluent System of Peak Trajectories

radial to the tangential direction (equal to half the fractional 1-D tangential velocity

variance generated) must be equal, to leading order, to half the typical fractional

deviation of the potential from its spherical average, implying

σ2
th(r)

σ2
h(r)

=

〈(
δΦh

Φh

)2
〉1/2

(r) . (3.39)

We stress that the conservation relations ii and iii are only satisfied to leading

order. But this is enough to determine the triaxiality and kinematics of the halo to

the same order.

3.7 Halo Properties

In the present Section, we derive the properties of halos from those of protohalos,

i.e. the unconvolved spherically averaged density and ellipticity and prolateness (or

primary and secondary eccentricity) profiles derived in Section 3.5. This derivation

makes use of the link between the inner properties of protohalos and halos that arises

from ellipsoidal collapse and virialisation. It is independent of how the properties of

the protohalo (i.e. the collapsing cloud around a peak) are derived. That is, we do

not need the halo to evolve by pure accretion. It may have undergone major mergers

as well, provided, of course, the properties of the protohalo can also be inferred in

that case from the peak characteristics (see Sec. 3.8).

3.7.1 Spherically Averaged Density Profile

As apocentre loci never cross each other in ellipsoidal collapse and virialisation,

when a shell stabilises, it is necessarily located outside all previously stabilised loci.

Taking profit of that growth and of the fact that the turnaround radii of homeoids

increase with increasing time, we can virtually move one after the other the layers

reaching turnaround without any crossing in order to match the corresponding apo-

centres in the final halo inside any fixed radius r.8 The spherical total energy profile

of this toy object, Ẽh(r) will differ, of course, from the real total energy Eh(r) of

the halo because the latter includes the energy loss by shell-crossing, while the toy

object has been built with no shell-crossing. In fact, Ẽh(r) will be equal to the

spherical total energy of the corresponding shell at turnaround or directly equal to

8By “virtual” motion we mean a motion that preserves the particle energy and angular mo-
mentum, but not the real timing of the motion.
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that of the sphere with identical mass in the protohalo, Ẽh(r) = Ep(rp).

Another difference between the toy object and the real halo is that the toy object

is not in equilibrium. But this can be arranged. As the quantity Ẽh(r)−W̃h(r), with

W̃h(r) equal to the potential energy of a homogeneous sphere with identical mass

Mh(r), is positive,9 we can virtually expand, one after the other, every homeoid

outwards avoiding shell-crossing so as to end up with a uniform density equal to

the mean density of the real halo inside r and still have an excess of spherical

kinetic energy inside that radius. This kinetic energy can then be re-distributed over

the sphere, exchanging the local radial and tangential components of the spherical

velocity variance, s̃2
h(r), so as to satisfy the spherical virial relation (3.29) with

null spherical radial velocity variance. In doing this, we will end up with a steady

homogeneous toy object with the same total mass Mh(r) as the real halo, but a

spherical total energy profile Ẽ(r) equal to Ep(rp) and a null s̃rh(r) profile. This

uniform toy object will thus satisfy the virial relation (eq. [3.29]) for a spherical

homogeneous system, i.e. W̃h(Mh) = −3/5 GM2
h/r(Mh), with total energy equal to

Ep(rp) and null spherical surface term S̃h(r) or, equivalently (Salvador-Solé et al.

2012a),

r(Mh) = − 3

10

GM2
h

Ep(Mh)
. (3.40)

Note that the inside-out growth of halos leads to the same virial relation as in the

simple homogeneous spherical collapse model, the spherical total energy being also

conserved despite the energy lost by shells during virialisation.

Equation (3.40), satisfied by collisionless systems having undergone ellipsoidal

collapse and virialisation regardless of their triaxial shape, fixes the mass profile

Mh(r) of halos from the spherical total energy Ep(Mp = Mh) of their corresponding

protohalos with density profile ρp(r) = ρ̄(ti)[1+ δp(r)], given in the parametric form

by

Ep(rp)=4π

∫ rp

0

dr r2ρp(r)

{
[H(ti)r−vp(r)]

2

2
− GMp(r)

r

}
(3.41)

Mp(rp) = 4π

∫ rp

0

dr r2 ρp(r) , (3.42)

9At turnaround, Ẽh is equal to the potential energy of the system less concentrated than the
homogeneous toy object.
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where H(t) is the Hubble constant and

vp(r) =
2G [Mp(r) − 4πr3ρ̄(ti)/3]

3H(ti)r2
(3.43)

is the peculiar velocity caused by the mass excess within r Peebles (1980).10

Once Mh(r) is known, equation (3.33) leads to the typical spherically averaged

halo density profile ρh(r). On the other hand, as ρh(r), s2
h(r) and s2

rh(r) do not

depend on the shape of the object, we can assume spherical symmetry in order

to infer the latter two functions from the former one. In the spherical symmetric

case, orbits are purely radial because they collapse and virialise radially, so we have

s2
h(r) = s2

rh(r). Then, equations (3.34) and (3.35) lead to a differential equation for

Eh(r) that can be readily integrated for the boundary condition Eh = 0 at r = 0, the

result being

Eh(r) = −R

∫ r

0

dr̃

[
4π ρh(r̃) GMh(r̃) +

Wh(r)

2r̃2

]
. (3.44)

From equations (3.44) and (3.27)–(3.28), we can compute the dissipation factor

by shell-crossing, D(M) ≡ Eh(M)/Ep(M). The form of the resulting D(r) profile

is such that ρh(r) is always outwards decreasing (Salvador-Solé et al. 2012a) as a

consequence of the energy lost by homeoids during virialisation.

3.7.2 Shape and Kinematic Profiles

Taking into account the relations (B.3), equation (3.37) takes the form

(1−ǫ2
h)(1−ε2

h)

[1+(1−ǫ2
h) + (1−ε2

h)]
3
(r)=

(1−ǫ2
p)(1−ε2

p)

[1+(1−ǫ2
p) + (1−ε2

p)]
3
(rp) , (3.45)

in terms of the eccentricities ep(r) and es(r). On the other hand, substituting the

expressions for δE (eq. [3.28]) in the halo and protohalo into equation (3.38) and

differentiating it, we are led to

Φh(r)

D(r)

[〈
δρh

ρh

δΦh

Φh

〉
+

σ2
h−s2

h

Φh

]
(r)=Φp(rp)

〈
δρp

ρp

δΦp

Φp

〉
(rp) . (3.46)

10In equation (3.43), we have taken into account that the cosmic virial factor f(Ω) ≈ Ω0.1 is
at ti essentially equal to one. We have also neglected the velocity dispersion of DM particles (see
Salvador-Solé et al. (2012a)).
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And, taking the mean crossed density-potential fluctuation as a function of the mean

squared density fluctuation and the relation between this latter and the eccentricities

(see the Appendix B), we arrive at

{
1− 3[(1−ǫ2

h)
2(1−ε2

h)
2 + (1−ǫ2

h)
2 + (1−ε2

h)
2]

[(1−ǫ2
h)(1−ε2

h) + (1−ǫ2
h) + (1−ε2

h)]
2

−Sh

}
(r)

=
1

U(r)

{
1− 3[(1−ǫ2

p)
2(1−ε2

p)
2 + (1−ǫ2

p)
2 + (1−ε2

p)
2]

[(1−ǫ2
p)(1−ε2

p) + (1−ǫ2
p) + (1−ε2

p)]
2

}
(rp) ,

(3.47)

where

U(r) ≡ Φh(r)Vp(rp)

Φp(rp)D(r)Vh(r)
(3.48)

Sh(r) =
5

2

σ2
h(r) − s2

h(r)

Φh(r)
Vh(r) (3.49)

with V (r) = 1− ξ(r)γ(r)
{
1 − [1 + κ(r)]γ(r) − d ln γ

d ln r

}
and ξ(r), κ(r) and γ(r) being

the DM two-point correlation function and the logarithmic derivatives of the mean

squared density and mean crossed density-potential fluctuation profiles, respectively.

Equations (3.45) and (3.47) show that the eccentricity profiles of halos, ǫh(r)

and εh(r), arise from those of their protohalos, ǫp(r) and εp(r), through a relation

that involves the halo velocity dispersion σ2
h(r) profile (eq. [3.49]). Only at small

radii is Sh(r) negligible,11 so that, except for factor U(r), equation (3.47) becomes

an identity relation like equation (3.45). Interestingly, the set of algebraic equations

(3.47) and (3.45) is solvable only for a very narrow range of U(r) values around

unity. Therefore, halo eccentricities at small radii are necessarily close to those of

the protohalo at the corresponding radii (Salvador-Solé et al. 2012b). To accurately

solve the problem for any r we need the closure relation between σ2
h(r) and the shape

of the system provided by equation (3.39).

Replacing the anisotropy profile,

βh(r) = 1 − σ2
th(r)

σ2
rh(r)

= 1 − σ2
th(r)

σ2
h(r)

[
1 − 2

σ2
th(r)

σ2
h(r)

]−1

, (3.50)

in the generalised Jeans equation for steady virialised objects to leading order in the

11σ2
h(r) is always of the order of the squared circular velocity, GMh(r)/r, while |Φh(r)| is much

larger than GMh(r)/r at small radii.
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deviation from sphericity (Salvador-Solé et al. 2012b),

d

dr

(
ρh σ2

h

3−2βh

)
+ρh(r)

[
2βh(r)

3−2βh(r)

σ2
h(r)

r
+

GMh(r)

r2
−Φh(r)

]
=0, (3.51)

and writing the ratio σ2
th(r)/σ

2
h(r) as a function of the rms potential fluctuation

profile (eq. [3.39]) and the latter as a function of its counterpart in the protohalo

(as functions of the known typical eccentricity profiles; see the Appendix B) and

the halo velocity variance profile (eqs. [3.47] and [3.49]), we arrive at a differential

equation for σ2
h(r), which can be solved for the usual boundary condition of null

dispersion at infinity.12

The solution so found is such that the pseudo phase-space density profile is very

close to the power-law form found by Bertschinger (1985) taking into account shell-

crossing in a spherically symmetric system undergoing self-similar collapse. The

reason for this is that, in ellipsoidal collapse and virialisation: i) the increase in the

coarse-grained phase-space density is due to the phase-mixing produced by shell-

crossing; ii) the inside-out growth of accreting halos makes homeoids evolve in a

closely self-similar way; and iii) the tangential velocity dispersion develops from the

initial radial one at the same time that there is a deviation of the gravitational energy

from spherical symmetry, keeping the total spherical energy unaltered, like in spheri-

cally symmetric systems where both deviations are null (Salvador-Solé et al. 2012b).

Once σh(r) is known, we can compute the crossed density-potential fluctuation

profile in the halo from that in the protohalo (eq. [3.46]), then the squared density

and squared potential fluctuation profiles (see the Appendix B) and, from the latter,

the velocity anisotropy profile, βh(r) (eqs. [3.50]–[3.39]), as well as the eccentricity

profiles, ǫh(r) and εh(r) (eqs. [3.45] and [B.7]). As a byproduct, we can also obtain

the deviation from sphericity of the gravitational potential in the halo at r.

3.8 Major Mergers

As shown in in Section 3.5, the typical properties of protohalos inferred assuming

pure accretion are determined by the typical (mean) δ(R) trajectory of the associ-

12Inside-out growth ensures that the solution is kept unaltered as the radius increases, so we
have the right to endorse the boundary condition at infinity, even though current halos do not
reach that radius.
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ated peaks, so the typical properties of the corresponding halos are determined by

the typical (mean) accretion rate, according to their inside-out growth.

But halos often undergo major mergers where the system is brought out of equi-

librium and suffers an important rearrangement, in contrast with what happens

during accretion. The fact that the predictions of the CUSP formalism assuming

pure accretion are in excellent agreement with the results of simulations thus seems

to imply that the typical properties of halos with M at t formed in major mergers

are identical, despite that rearrangement, to those of halos arising from pure ac-

cretion. In the present Section, we show that this is indeed the case and that this

is a consequence of the halo-peak one-to-one correspondence in Gaussian filtering

without any extra assumption.

3.8.1 Typical Protohalo

As mentioned, the link between protohalos and halos is set by ellipsoidal collapse

and virialisation, regardless of the particular past aggregation history of the objects.

The only difference in halos formed through pure accretion or major mergers is the

properties of their respective unconvolved protohalos. In the former case, there is

a smooth mass distribution giving rise to a monolithic collapse while, in the other,

there is a more clumpy distribution giving rise to a hierarchical mass assembly. Is

that difference compelling for the properties of the final objects?

The deconvolution of peak properties achieved in Section 3.5 for purely accret-

ing halos taking into account the halo-peak one-to-one correspondence was carried

out down to R = 0. However, such a deconvolution is, of course, meaningful only

down to the particle size. DM particles are tiny, but they are not smoothly dis-

tributed in the protohalo. There are small-scale mass concentrations that evolve in

the substructures detected in halos.13 Consequently, that deconvolution seems to

be justified only down to the size of the biggest clumps.

Actually, the only protohalo properties whose convolution characterise peaks

are the spherically averaged density profile δp(r) and the axis profiles ap(r) (see

eqs [3.21] and [3.22]) and these profiles harbour no information on the small-scale

clumps present in protohalos, just on the smooth mass distribution around the corre-

13In fact, such mass concentrations may even harbour virialised nodes at small enough scales
collapsed and virialised before ti.
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sponding peaks. Indeed, following Salvador-Sole & Solanes (1993), we can scramble

the position of particles over the ellipsoidal isodensity contours of the protohalo,

which will automatically destroy all its small-scale clumps but conserve the ellip-

soidal isodensity contours of the protohalo, and the resulting (convolved) properties

of the associated peak will be the same. Therefore, the deconvolution can indeed be

carried out down to R = 0 (more exaclty down to the size of DM particles) because

the protohalo properties we need in order to infer those of halos do not depend on

how clumpy the matter is around the peak. (The information on clumps is is only

needed provided we want to determine the subhalo abundance.)

In these circumstances, the fact that there is only one main or two main clumps

in the protohalo, implying that the final halo has formed either through accreting or

through a major merger, is irrelevant for the properties of the final object. What is

only needed to find those properties is the spherically averaged density and axes pro-

files, δp(r) and ap,j(r), respectively, of the protohalo, indistinguishable from those of

the smooth (or scrambled) mass distribution around the central peak, which would

lead to a virialised halo formed by pure accretion. In other words, halos arising from

the ellipsoidal collapse and virialisation of peaks have identical shape, spherically av-

eraged density and kinematics profiles, regardless of their aggregation history. (The

only imprint of such a history is their substructure, which informs on the halos as-

sembled, regardless of whether they have been directly accreted or they have resulted

from possible major mergers, the largest objects in those events having disappeared.)

Therefore, if we are interested in the typical properties of halos with M at t, we

have the right to consider protohalos with the tyical properties (including substruc-

ture) of a peak with suited δ and R, having the typical δ(R) trajectory (and the

typical nested peaks).

3.8.2 Memory Loss

The fact that the individual or typical properties of halos with M at t do not depend

on whether they have developed by pure accretion or have undergone major mergers

is consistent with the idea that “virialisation is a real relaxation yielding the memory

loss of the system”, as assumed in previous papers. Here we have shown that such

a memory loss naturally results from ellipsoidal collapse and virialisation and, since

ellipsoidal collapse without shell-crossing does not lose the memory of the protohalo,

virialisation (through shell-crossing) is necessarily what causes the memory loss.
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We are then led to the following implication. Since halos with M at t are fully

equivalent to peaks with δ at R in the density field at ti filtered with a Gaussian

window, the properties of peaks cannot harbour information either on their filter-

ing evolution. Otherwise, we could unveil the past aggregation history of halos by

looking at the filtering evolution of their corresponding peaks.

None of the properties characterising peaks at R, namely the height, curvature,

ellipticity and prolateness, allows one to assess whether or not there is a peak in

its immediate vicinity at an infinitesimally smaller scale. If no second order spatial

derivative, ∂2
i δ(r), vanishes at that scale, the peak exists at the smaller scale (and

the corresponding halo has formed through accretion), while, if some does, there is

a saddle point at the new scale indicative of the existence of two peaks of identi-

cal density contrast at similar smaller scales (and the halo has formed in a major

merger). To know the answer we would need to know all higher order spatial deriva-

tives of the convolved density field at the peak or, equivalently, all the information

on the density field on smaller scales, not just the properties of the peak.
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I... a universe of atoms, an atom in the universe.

Richard Feynman

In the present Chapter, we use the CUSP formalism to analize halo growth and

the evolution of density profile fits. This allows us to confirm that halos evolve

inside-out, one crucial ingredient in this formalism.

The spherically averaged density profile for cold dark matter (CDM) halos plays

a key role in many cosmological issues. N -body simulations provide with accu-

rate numerical density profiles, well-fit by the multiparametric NFW (Navarro et al.

1995) and Einasto (1965) analytic expressions. However, they cover relatively small

volumes with a modest dynamic range, so the validity of those fitting expressions is

only ensured in a rather limited domain.

For instance, simulations reach halos with the neutralino free-streaming mass

(∼ 10−6 M⊙) only at redshifts (z) of about 30 (Diemand et al. 2005; Anderhalden &

Diemand 2013; Ishiyama 2014), while the calculation of the CDM annihilation signal

requires the density profile of halos with that mass when they were aggregated by

current halos. Similarly, galaxy formation models need the density profile of halos

with ordinary masses at redshifts higher than covered by current simulations (Bul-

lock et al. 2001; Eke et al. 2001; Neto et al. 2007; Gao et al. 2008; Zhao et al. 2009;
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Muñoz-Cuartas et al. 2011; Klypin et al. 2011; Prada et al. 2012; Ludlow et al. 2013;

Dutton & Macciò 2014).

On the other hand, simulations do not easily inform on how the inner structure

of halos evolves. The radial mapping of particles does not enable one to ascertain

to which extent they grow from the inside out because particles orbit within halos

(Wang et al. 2011). While the accurate follow-up of density profiles is not conclu-

sive either (Zhao et al. 2009; Muñoz-Cuartas et al. 2011) due to the non-perfect

fit of halo density profiles by the analytic expressions above (see Section 4.3.2 for

details). Likewise, the possible dependency of density profiles on halo formation

time is hard to disentangle from the apparent signal due the usual formation time

estimates themselves (Salvador-Solé et al. 2005; Li et al. 2008; Li 2010).

As a consequence, some authors (Manrique et al. 2003; Helmi et al. 2003; Romano-

Dı́az et al. 2006; Wang et al. 2011; Salvador-Solé et al. 2005, 2007; Salvador-Solé

et al. 2012a) claim that, in accretion periods, halos stretch indeed inside-out (see

also the recent finding by Ludlow et al. 2013, 2014), while others (Bullock et al. 2001;

Wechsler et al. 2002; Zhao et al. 2003; Muñoz-Cuartas et al. 2011) maintain that

the whole density profile is changing. Similarly, some authors defend the idea that

density profiles depend on whether halos have undergone major mergers (Wechsler

et al. 2002; Zhao et al. 2003; Lu et al. 2006; Duffy et al. 2008), while others claim

it does not (Huss et al. 1999; Wang & White 2009; Salvador-Solé et al. 2005, 2007;

Salvador-Solé et al. 2012a).

Since the halo merger rate or, similarly, the halo formation time seems to depend

on environment (e.g. Gottlöber et al. 2001, 2002; Sheth & Tormen 2004; Fakhouri

& Ma 2009a, 2009b; Hahn et al. 2009), the latter trend would cause the so-called

“assembly bias” that the density profile for halos depends on their environment be-

sides their mass. However, provided that halos grow inside-out during accretion,

their density profile will depend on their accretion rate and environment even if

major mergers leave no imprint in halo density profiles.

As one can see, in order to be able to make substantial progress within all these

questions one cannot simply rely on improvements in N -body simulation perfor-

mance; greater effort is required to find complementary information and to design

more compelling tests to reveal the evolution of halo density profiles. In the follow-

ing sections we will use the CUSP formalism to make those tests and understand

the evolution of halo density profiles in CDM cosmologies.
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4.1 The NFW and Einasto Profiles

N-body simulations show that spherically averaged density profiles for virialised

halos with ordinary masses at low-z are well fit, down to one hundredth the total

radius R, by the two-parameter NFW profile (Navarro et al. 1995)

ρh(r) = ρs
4r3

s

r (r + rs)
2 , (4.1)

where the scale radius rs (sometimes written r−2 to indicate the logarithmic slope

of the density profile at this radius) or the concentration c ≡ R/rs correlate with

the total mass M or the characteristic density ρs ≡ ρh(rs) or the mass inside rs,

Ms = 16π

(
ln 2 − 1

2

)
ρs r3

s . (4.2)

These correlations define an independent relation between typical (usually median)

values of the NFW parameters. The most widely used formulations of this rela-

tionship are the M − c relation (Navarro et al. 1997; Eke et al. 2001; Bullock et al.

2001; Kuhlen et al. 2005; Neto et al. 2007; Gao et al. 2008; Duffy et al. 2008; Macció

et al. 2007; Macciò et al. 2008) and the Ms − rs relation (Zhao et al. 2003, 2009;

Salvador-Solé et al. 2005, 2007). The fact that c is a decreasing function of M is

interpreted as being due to the fact that less massive halos assemble at higher z,

when the mean cosmic density is higher (Navarro et al. 1997; Salvador-Solé et al.

1998).

The three-parameter Einasto (1965) profile,

ρh(r) = ρs exp

{
− 2

α

[(
r

rs

)α

− 1

]}
, (4.3)

yields slightly better fits at smaller radii, down to 10−3–10−4 the radius R (Navarro

et al. 2004, 2010; Merritt et al. 2005, 2006; Prada et al. 2006; Gao et al. 2008;

Diemand et al. 2008; Salvador-Solé et al. 2007; Stadel et al. 2009; Salvador-Solé

et al. 2012a; Dutton & Macciò 2014). At any z, parameters rs or c, defined as in

the NFW case, also correlate with ρs ≡ ρh(rs) or M (Merritt et al. 2005; Gao et al.
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2008; Ludlow et al. 2013; Dutton & Macciò 2014) or the mass inside rs,

Ms = 2π

(
2

α

)1− 3
α

e
2
α

[
Γ

(
3

α

)
− Γ

(
3

α
,
2

α

)]
ρsr

3
s , (4.4)

where Γ(x) and Γ(x, y) are the Gamma and incomplete Gamma functions, respec-

tively.

Part of the success of the Einasto profile over the NFW profile is of course due to

the extra freedom arising from the shape parameter α. Halo density profiles become

increasingly steep as we move outwards. In the NFW case, the inner and outer

asymptotic logarithmic slopes take fixed values, respectively equal to −1 and −3,

while in the Einasto profile they depend on the value of α: the larger α, the less

steep the inner asymptotic profile and the steeper the outer one (being respectively

equal to zero and −∞ for the largest possible value of α equal to 2; see Dutton &

Macciò 2014). The price to be paid for this extra freedom is the greater number

of parameters to be adjusted which causes a greater degeneracy, particularly in pa-

rameter α.

For halos with ordinary masses at low redshifts, α takes values from ∼ 0.12 to

∼ 0.35 (Gao et al. 2008; Ludlow et al. 2013; Dutton & Macciò 2014). The results

are however very sensitive to the fitting radial range used. If the NFW and Einasto

expressions fit halo density profiles well, the respective values of rs, ρs and Ms for

halos with given values of M at t should be quite similar. Equations (4.2) and (4.4)

then imply the approximate relation

(
2

α

)1− 3
α

e
2
α

[
Γ

(
3

α

)
− Γ

(
3

α
,
2

α

)]
≈ 8

(
ln 2 − 1

2

)
, (4.5)

whose solution is α = 0.256. Certainly, as the NFW and Einasto profiles are not

identical, α can deviate notably from this value. In particular, it should take values

substantially less than 0.256 for halos with steep inner profiles and shallow outer

ones and vice versa.

Note that, while the Ms − rs and, at a lesser extent, the Ms −α relations involve

parameters that characterise halo inner structure,1 the M − c and M − α relations

1Strictly, parameter α characterises the whole profile; but, since the Einasto profile fits halo
density profiles better at very small radii, its value should be mostly determined by the inner
structure of halos.
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involve global properties such as M and R. For this reason, the former relations are

hereafter referred to as ‘internal’, while the latter are referred to as ‘global’.

4.2 Mass-Concentration-Shape Relations

4.2.1 Numerical Relations

In N -body simulations, halos are identified at any z by means of some halo-finding

algorithm. In the Spherical Overdensity (SO) algorithm, the radius R from a den-

sity maximum encompassing a region with fixed overdensity ∆(z) with respect to

the mean cosmic density, ρ̄(z), or the critical density, ρcrit(z), hereafter generically

denoted by ρcos(z), is supposed to delimit a halo with mass M given by

3M

4πR3
= ∆(z)ρcos(z) . (4.6)

When ∆(z) is taken equal to the cosmology-dependent virial overdensity, ∆vir(z)

(e.g. Bryan & Norman 1998; Henry 2000) and ρcos(z) equal to ρ̄(z), halo masses are

usually denoted by Mvir. While if ∆ is taken fixed and equal to 200 and ρcos(z) is

ρcrit(z), then masses are usually denoted by M200. In the Friends-of-Friends (FoF)

percolation algorithm, halos are identified according to a linking length b in units of

the mean interparticle separation, usually taken as equal to 0.2.

For those halos harbouring a large enough number of mass particles (usually

≥ 500) and satisfying some virialisation criteria, a discrete spherically averaged

mass profile is derived by counting the mass particles in constant logarithmic radial

bins around the peak-density, outwards from some fraction (usually one hundredth)

of the total radius R. This mass profile or its associated density profile is then fitted

to the NFW or Einasto density profiles. The fit is better if all the parameters (two

or three) entering the fitting expression are adjusted freely. However, since the fit

is never perfect, the mass corresponding to the analytic density profile will differ

somewhat from the real mass of the object. Alternatively, one can adjust one fewer

parameter by imposing the mass (or the maximum circular velocity, Vmax) of the

halo. Another more subtle effect arising from the non-perfect fit is that the adjusted

parameter values will depend slightly on the fitting radial range used.

Once the parameters have been adjusted, their median values are calculated for

objects in logarithmic mass bins at every z. An alternative justified (Reed et al.
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Table 4.1: Cosmological Parameters.

Cosmology ΩΛ Ωm h ns σ8 Ωb

Planck14 0.71 0.32 0.67 0.96 0.83 0.049
WMAP7 0.73 0.27 0.70 0.95 0.81 0.045

Millennium 0.75 0.25 0.73 1.0 0.90 0.045

2011) procedure is to fit the stacked profiles directly for halos in every logarithmic

mass bin, which rather leads to the values of the parameters fitting the average

density profile of halos in the mass bin. Lastly, the sampled values of the param-

eters are fitted by some guessed parametric function of M and z. The result is a

toy model that allows one to calculate the parameter values for any desired M and z.

For the NFW profile, we will consider the toy models by Zhao et al. (2009),

Muñoz-Cuartas et al. (2011) and Klypin et al. (2011), available for the same WMAP7

cosmology (Komatsu et al. 2011) or close to it2 (see Table 4.1), the same SO(∆vir)

halo-finding algorithm, the same Mvir masses and the same minimum number (500)

of particles in halos. The most recent toy models by Prada et al. (2012) and Dutton

& Macciò (2014) give essentially the same results as those by Klypin et al. (2011) and

Muñoz-Cuartas et al. (2011), respectively, but use distinct cosmologies or parametri-

sations (see Sec. 4.5). The only difference between those toy models arises from the

different characteristics of the simulations and the virialisation criteria used and the

fact that Zhao et al. (2009) and Muñoz-Cuartas et al. (2011) adjust two parameters,

while Klypin et al. (2011) impose the Vmax and adjust only one parameter. In all

cases the fits are performed down to R/100.

For the Einasto profile, the only toy models available are those by Gao et

al. (2008) and Dutton & Macciò (2014). They refer to the Millennium (Springel

et al. 2005) and Planck14 (Planck Collaboration et al. 2014) cosmologies, respec-

tively (see Table 4.1) and, even though halos are identified by means of the FoF(0.2)

and the SO(∆vir), respectively, the masses adopted in both studies are M200. In both

cases, the fitting is unconstrained and it is performed on stacked density profiles of

halos with at least 3000 particles, down to 5×10−2R in Gao et al. (2008) and on in-

dividual profiles of halos with a number of particles of the order of 10000 (the exact

number depends on z; at z = 0 it is as large as 63000), in the range R/100 to 1.2Rvir

2Klypin et al. (2011) use the Bolshoi cosmology and Muñoz-Cuartas et al. 2011 the WMAP5

cosmology (Dunkley et al. 2009).
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in Dutton & Macciò (2014). Ludlow et al. (2013) recently repeated the study by

Gao et al. (2008) for the same cosmology, but fitting the stacked density profiles of

halos with at least 6000 particles, down to 10−2.5R, and focusing on z = 0 where the

results by Gao et al. (2008) are confirmed. Note the much higher minimum number

of particles in halos adopted by these authors than that used in the NFW case with

the purpose of balancing the degeneracy in the results due to the extra parameter.

In any event, parameter α is poorly determined, so that Dutton & Macciò (2014)

rely on the M − α relation reported by Gao et al. (2008).

In all figures throughout this Chapter, the mass-concentration-shape relations

arising from these toy models are drawn in thick solid lines over the mass ranges

covered by the original simulations and in thin dashed lines outside those ranges.

4.2.2 Theoretical Relations

As we have already seen, there is a one-to-one correspondence between peaks in the

primordial density field and halos that can be described using equations (3.9), (3.10)

and the values found on Table 3.13.

Halo density profiles, ρh(r), predicted trough the procedure detailed in the last

chapter, can be fitted to the NFW or Einasto profiles, in the same fashion that

numerical ones are. The only difference is that, once the parameters are adjusted,

we do not need neither to take their median (or mean) value in halo mass bins at

any z nor to guess any toy model fitting them. The theoretical profiles are, by con-

struction, typical (mean) profiles for halos with M at z, so they coincide with the

stacked profile of such halos. Furthermore, the fits can be achieved for halos with

any desired M and z, so there is no need to interpolate discrete values.

To facilitate the comparison between the theoretical and numerical parameters,

in the NFW case, we adopt the same cosmology and mass definition (Mvir) as in the

corresponding toy models, while, in the Einasto case, we adopt M200 masses as in

all the corresponding toy models, but we also include Mvir masses as in the NFW

case.

Regarding the use of mass-constrained or unconstrained fits, each procedure

3We use a BBKS CDM spectrum with Sugiyama (1995) shape parameter. In Section 4.5, we
also consider the same power spectrum exponentially cut at the neutralino free-streaming scale
(Green et al. 2004).
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has its pros and cons. Unconstrained fits yield density profiles closer to, but total

masses farther from, the real ones. While the converse is true for mass-constrained

fits. Since the toy models here considered use both fits and the difference between

the two kinds of values relative to their mean is small (< 3% at 10−4Mcr(t) and up

to about 12% at M = 104Mcr(t), where Mcr(t) is the critical mass for ellipsoidal

collapse at t, defined through the equality σ0[Mcr(t), t] = δcr(t)), when dealing with

Mvir masses, we take the mean values of the constrained and unconstrained fits.4

While, in the Einasto case, we also consider unconstrained fits as in all the corre-

sponding toy models.

As a guide, in all Figures throughout this section, the theoretical curves are

drawn in thick solid lines for M ≤ 104Mcr(t)) and in thin dashed lines beyond this

limit.

4.3 Characterisation of Halo Growth

As we have already mentioned, the CUSP formalism assumes that i) accreting halos

grow inside-out and ii) that their density profiles are representative of all halos, that

is that major mergers lead to the same typical density profile as pure accretion.

Therefore, the comparison between the theoretical and numerical relations should

reveal whether or not these two growth conditions are met in simulations. More

specifically, for at least one of these conditions to be rejected, the theoretical re-

lations should deviate from the numerical ones more markedly than the numerical

relations deviate from themselves.

4.3.1 Global Relations

In Figure 4.1, we show the theoretical and numerical NFW M − c relations. Even

though the theoretical curves refer to mean parameter values while the numerical

ones refer, in this case, to median values, they are very similar at z = 0. More

specifically, the theoretical curve is very close to, just slightly higher than, the nu-

merical one given by Zhao et al. (2009) (Fig. 4.2). They only deviate at very large

masses (M & 1015 M⊙) where the theoretical curve continues to decrease at the

same accelerated rate, while the curve given by Zhao et al. (2009) suddenly levels

off. In fact, all the curves differ from each other at M & 1015 M⊙; in particular,

4In the case of c, we take the mean logarithmic value because of the lognormal distribution of
halo concentrations (Reed et al. 2011).
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those in Muñoz-Cuartas et al. (2011) and Klypin et al. (2011) continue to evolve at a

constant or decelerated rate, respectively, the latter even bending upwards at masses

beyond the range in the Figure. But all the numerical curves behave strangely at

the high mass end: their smooth trend with halo mass changes at M ∼ 1015 M⊙,

while there is no reason for this change.

The same strange behaviour is shown by the numerical curves at any other z but

at progressively smaller masses. This causes the agreement between the theoretical

and numerical curves at z = 0 to deteriorate as z increases. While there is nothing

special with regard to z = 0 in the CUSP formalism, there is a small effect varying

with z in the numerical curves: halos in the fixed mass range analysed have ordinary

masses relative to Mcr at z = 0, while they become increasingly massive relative to

Mcr(z) at higher z’s. Thus, there seems to be something wrong with simulations at

very large masses at every z.

The Einasto M − c relations shown in Figure 4.3 behave similarly to the NFW

ones (Fig. 4.1), so the numerical curves are likely also affected by the same bias

above. Indeed, Ludlow et al. (2012) noticed that some fraction of massive halos are

non fully virialised. Ludlow et al. (2013) state: a number of “massive halos that pass

the virialisation criteria are actually out of equilibrium”. According to these authors,

the Einasto profile does not correctly fit their density profiles and their values of c

and α are higher-than-average. This explains the progressive departure of the theo-

retical curves from the numerical ones at increasingly smaller masses as z increases.

In contrast, at z = 0, there is good agreement between the theoretical and numeri-

cal curves, despite the disparity in cosmologies and numbers of parameters adjusted.

The theoretical M − α relations shown in Figure 4.4 are very different from the

numerical ones. In the former, the values of α decrease with increasing mass, while,

in the latter, they increase. The main difference is at large masses and starts at

increasingly lower M as z increases. Thus, the discrepancy seems to be due to the

same bias mentioned above. This suspicion is confirmed by Ludlow et al. (2013) who

state that, at z = 0, unbiased “halos of average concentration have approximately

the same shape parameter α (α ≈ 0.18), regardless of mass”. Note that α ∼ 0.18

corresponding to unbiased halos agrees with the predicted value of α for halos with

masses1012M⊙ . M . 1015M⊙.

The theoretical curves in panels a of Figures 4.3 and 4.4 are very similar to those

in panels d, but shifted towards lower z’s, an effect that tends to decrease with
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Figure 4.1: NFW M − c relation derived from the CUSP formalism (black lines
in panel a) and the numerical relations drawn from the toy models by Zhao et al.
(2009) (red lines in panel b), Muñoz-Cuartas et al. (2011) (green lines, in panel c)
and Klypin et al. (2011) (blue lines in panel e) at z = 0, 1, 2 and 3 (from top to
bottom) for essentially the same cosmology and Mvir masses.

increasing z. This is also expected from inside-out growth since, in the cosmology

considered, the overdensities at z = 0 with respect to ρ̄(z) for Mvir and M200 halos

are 359 and 740, respectively, and equal to 181 and 208, respectively, at z = 3.

Thus, M200 objects are much like Mvir ones at a higher z (but see Sec. 4.5).
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Figure 4.2: Same as Figure 4.1 but restricted to the curves at z = 0, superimposed
in one panel.

4.3.2 Internal Relations

As mentioned in Section 4.2.2, if the CUSP formalism is right, the Ms − rs relation

should be close to a power-law. Furthermore, it should not depend on z because,

given the inside-out growth of accreting halos, the values of rs and Ms (and, at a

lesser extent α) should remain unchanged. Of course, such a time invariance could

be blurred by major mergers; but, if the density profiles emerging from such events
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Figure 4.3: Einasto M − c relations derived from the CUSP formalism for Mvir

masses (black lines in panel a) and M200 masses (pink lines in panel d) in the same
cosmology as in Figure 4.1 and from the toy models by Gao et al. (2008) (orange
lines in panel b), Dutton & Macciò (2014) (cyan lines in panel c), both for M200

masses but somewhat different cosmologies, at z = 0, 1, 2 and 3.

are indistinguishable from those resulting from pure accretion, this should not hap-

pen. Since the density profiles are not perfect NFW and Einasto profiles, the values

of rs and Ms can slightly vary with z due to the varying fitting radial range. But

this effect can be readily shown up: fitting the density profiles at different z’s over
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Figure 4.4: Same as Figure 4.3 but for the corresponding M − α relations for
redshifts 0, 1, 2 and 3 (from bottom to top; on the left in panels a and d).

the same fixed radial range, any dependency on z should automatically disappear.

The chance of the Ms − rs relation being time-invariant and essentially scale-free

for any other reason is highly unlikely, so confirmation (or rejection) of those prop-

erties are a very compelling test of the validity (or not) of the two growth conditions

included in the CUSP formalism.
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Figure 4.5: NFW Ms − rs relations (same lines and colours as in Figure 4.1). In
all panels, the curves corresponding to redshifts 0, 1, 2 and 3 spin clockwise.

Figure 4.5 shows the NFW Ms − rs relations. All the curves are much more

similar to each other than in the M − c case. In fact, at z = 0 where the toy models

are unbiased, all the curves essentially overlap (Fig. 4.6). Moreover, they are close

to power-laws as predicted by the CUSP formalism, although their logarithmic slope

varies slightly with z. This effect is negligible in the theoretical curves and com-

pletely disappears when fits are carried out over the same fixed radial range, while

it is quite marked in the numerical curves and shows significant differences between
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Figure 4.6: Same as Figure 4.5 but restricted to the curves at z = 0, superimposed
in one only panel.

the results of different authors, as for the M − c curves. This indicates that such a

light dependency on z of the numerical curves is due to the bias affecting massive

halos.

The Einasto Ms − rs relations shown in Figure 4.7 are even more similar to the

NFW ones than in the M − c case. The theoretical curves at different values of

z now almost fully overlap and coincide in panels a and d. The Ms − α relations,
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Figure 4.7: Einasto Ms − rs relations (same lines and colours as in Figure 4.3).

shown in Figure 4.8, also behave similarly to the M −α relations (Fig. 4.4). Again,

the variation of α with z disappears when the fit is carried out over a fixed radial

range.
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4.4 Analytic Approximations

Thus, not only cannot the growth conditions checked be rejected, but they are

strongly favoured. But the CUSP formalism is hard to implement. For this reason,

we provide practical analytic expressions for the theoretical mass-concentration-

shape relations, more reliable than the toy models affected by the bias. We em-

phasise that these analytic expressions are not toy models: they are physically

motivated. Moreover, since the CUSP formalism does not privilege any particular

mass or redshift range, they should be valid for halos well beyond the usual ranges

covered by simulations.

The NFW and Einasto Ms − rs relations at a given z predicted by the CUSP

formalism are approximately of the power-law form with a small torsion with Ms

and a slight spinning with z, so they are well-fitted by the expression

rs = r0

(
Ms

M0

)τ

, (4.7)

τ = τ0

[
1 + t1(1 + z)t2 + t3

(
Ms

M0

)t4
]

, (4.8)

where M0 and r0 are the values of Ms and rs around which the Ms−rs relation spins

as z varies. For similar rerasons, the Einasto Ms − α relations are well-fitted by the

expression

α = α0

[
1 + a1

[
Ms

Ms+M1

]a2

+

[
Ms+M1

M1

]a3
]
, (4.9)

The best fitting values of the coefficients are given in Tables 4.2 and 4.3.

The c(M, z) values follow from the identity c ≡ R/rs and the functions R(M, z)

and rs(M, z) given by equations (4.6) and (4.7), respectively, for M = Ms/f(c)

with f(c) = ln(1 + c) − c/(1 + c) in the NFW case (eqs. [4.1]–[4.2]) and f(c) =

Γ(3/α) − Γ(3/α, 2cα/α) in the Einasto case (eqs. [4.3]–[4.4]). Likewise, the α(M, z)

values follow from equation (4.9) for M = Ms/f(c, α).

As shown in Figures 4.9, 4.10 and 4.11, these analytic approximations give very

good fits to the relations predicted by the CUSP formalism over the whole relevant

range: 10−6 M⊙ . M . 1016 M⊙ and 40 . z ≤ 0. There is just a small deviation in

the NFW case for very low masses at z . 2. In principle, the fit could be improved

by taking a more complicated analytic expression, but the simple one proposed is
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Figure 4.8: Same as Figure 4.7 but for the Ms − α relations.

enough because, as shown below, the NFW profile does not yield acceptable fits in

that particular region of the M vs. z plain.
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Table 4.2: Coefficients in the NFW and Einasto Ms − rs relations.

Cosmol. Mass Profile r0 (Mpc) M0 (M⊙) τ0 t1 t2 t3 t4

Planck14
Mvir

NFW .069 2.09 × 1012 .264 .0526 −1.381 .548 .00876
Einasto .026 1.63 × 1011 .353 -.00344 1.0 .175 .0316

M200
NFW .062 2.31 × 1012 .229 .117 −.141 .631 .00603

Einasto .022 1.12 × 1012 .354 −.00330 1.0 .172 .0325

WMAP7
Mvir

NFW .071 2.01 × 1012 .313 .224 −.116 .134 .0453
Einasto .076 1.74 × 1012 .384 −.00394 1.0 .140 .0631

M200
NFW .030 2.51 × 1011 .308 0.140 −.175 .219 .0141

Einasto .048 6.31 × 1011 .382 −.00404 1.0 .125 .0631

Table 4.3: Coefficients in the Einasto Ms − α relation, identical for all mass defi-
nitions.

Cosmology M1 (Mpc) a0 a1 a2 a3

Planck14 1.44 × 1012 0.238 −1.068 −0.00336 −0.0341
WMAP7 7.08 × 1010 0.364 −1.375 −0.00316 −0.0272

4.5 Acceptability Domain of the NFW and Einasto

Profiles

The estimates of c for halos of very low masses and redshifts is important for the

calculation of the CDM annihilation signal. Unfortunately, those halos cannot be

reached by current simulations. Assuming c(M, z) a power-law of M for fixed z, one

can estimate the concentration of halos with the neutralino free-streaming mass from

that of halos with ordinary masses at z = 0. Alternatively, one can use (Sánchez-

Conde & Prada 2014) the functionality c(M, z) ∝ (1 + z)−1 for halos with fixed M

to convert the concentration of halos with the neutralino free-streaming mass found

at z ∼ 30 (Diemand et al. 2005; Anderhalden & Diemand 2013; Ishiyama 2014) to

z = 0. Are those procedures justified?

The approximate functionality c(M, z) ∝ (1 + z)−1 (Bullock et al. 2001) arises

from the assumption that rs is roughly constant, i.e. rs(M, z) = rs(M, 0), which

leads to5

5At high redshifts, ∆vir(z) also tends to the fixed value 186 and ρcrit(z) to ρ̄(z), implying
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4. Halo Growth and Evolving Density Profiles

Figure 4.9: Same M − c relations for the NFW profile as in Figure 4.1 but in one
single panel across a much wider mass range and z equal to 0, 2, 3, 5 and 9, now
including the analytic approximations to the theoretical curves (thin black lines).

c(M, z) ≡ R(M, z)

rs(M, z)
≈ R(M, 0)(1 + z)−1

rs(M, 0)
=

c(M, 0)

1 + z
. (4.10)

Unfortunately, rs varies with z and the exact functionality of c on z differs from

equation (4.10) by the extra factor r0/rs = [M0f(c)/M ]τ . Consequently, c(M, z) is

R(M, z) ≈ R(M, 0)(1 + z)−1.
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4.5. Acceptability Domain of the NFW and Einasto Profiles

Figure 4.10: Same as Figure 4.9 but for the Einasto profile as in Figure 4.3. To
avoid crowding, the analytic approximations (thin solid lines) are for the theoretical
relations corresponding to Mvir (black lines) only, not to M200 (pink lines).

not proportional to (1 + z)−1 (see Fig. 4.12). The dependency of rs on z is not only

due to the varying fitting radial range, but also to an intrinsic effect. Indeed, the

inside-out growth ensures that the values of rs and Ms remain unaltered only for

accreting halos; in major mergers, they both increase, keeping the Ms − rs relation

unchanged. Since major mergers also increase the relative abundance of massive
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Figure 4.11: Same as Figure 4.10 but for the M − α relations.

halos, the average value of rs (and of Ms) increases with decreasing z.6 However, at

fixed M , rs slightly decreases with decreasing z (see Fig. 4.13), causing c(M, z) to

decrease with increasing z more rapidly than (1 + z)−1.

Likewise, c(M, z) is not a power-law of M but it becomes shallower at low masses.

This trend predicted by the CUSP formalism agrees with that found by Prada

6This slight trend prevents the M − c relations for different mass definitions from exactly coin-
ciding with a change in z (see panels a and d in Fig. 4.3).
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Figure 4.12: M − c relations for halos with M200 masses at redshifts 0, 3, 5 and 9
(from top to bottom) predicted by the CUSP formalism in the NFW (solid brown
lines) or Einasto (dashed yellow lines) cases, shifted by a factor of 1 + z.

et al. (2012) by means of the sophisticated toy model for Mvir masses, parametrised

through σth(M, z). Such a parametrisation yields very good results, indeed, be-

cause the function c(σth
0 ) appears to be roughly universal, i.e. time- and cosmology-

invariant (Prada et al. 2012), so that we can adjust it by taking simultaneously into

account the ordinary mass range at z = 0 and masses around 10−6 M⊙ at z ∼ 30.

The reason for such a rough universality is the same as for the rough universality of
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4. Halo Growth and Evolving Density Profiles

Figure 4.13: Same as Figure 4.12 but for the M − rs relations. The curves at
redshifts 0, 3, 5 and 9 are from bottom to top.

the halo multiplicity function for Mvir mases (see the next Chapter and Juan et al.

2014b): the relation (3.10) between the filtering scale of peaks and halo masses in

ellipsoidal collapse.

And what about the acceptability domain of the NFW and Einasto fitting ex-

pressions in general. Halo concentration increases towards high-z and small M .

In particular, c(M, z) approaches one at high-z, implying that rs approaches R or,
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Figure 4.14: Acceptability domains of the NFW (brown hatched area) and Einasto
(yellow hatched area) best analytic fits to the density profiles for halos with M200

masses in the WMAP7 cosmology (without exponential cut-off at the neutralino
free-streaming mass) over the whole relevant mass and redshift ranges according to
the CUSP formalism. The region of ordinary masses, 10−4 ≤ M/Mcr(z) ≤ 104, is
that between the two dashed black lines around the Mcr(z) curve, in thick solid
black line. The region explored at every z is limited to M . 1011Mcr(z).

equivalently, that the outer logarithmic slope approaches −2 (the value defining rs).

This means that the profile becomes shallower. If the inner slope became greater

than −1, it would be impossible to fit the profile with the NFW analytic expression,
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4. Halo Growth and Evolving Density Profiles

while this should not be a problem for the Einasto profile, able to reach arbitrarily

shallow inner profiles for α close to 2 (and large values of rs). On the other hand,

c(M, z) increases towards 100 at small M , implying that rs approaches R/100 or,

equivalently, that the inner slope approaches −2. This means that the profile be-

comes very steep. If the outer slope became smaller than −3, it would be impossible

to fit the profile with the NFW analytic expression, while this should not be a prob-

lem for the Einasto profile, able to reach arbitrarily small outer slopes for α close to

2 (and small values of rs). And, at large M , the situation is similar to that found

at high-z.

This discussion suggests that the acceptability of the NFW profile may be

bounded for small enough and large enough halo masses at any given z, contrarily

to the Einasto profile which should be acceptable in a much wider range of masses

and redshifts. In Figure 4.14, we show the acceptability domains of the two fitting

expressions for halos with M200 masses in the WMAP7 cosmology according to the

CUSP predictions. As can be seen, the NFW profile gives acceptable fits over ordi-

nary masses, but not for extremely low ones at any given z. In particular, the NFW

profile is not acceptable for halos with the neutralino free-streaming mass at z = 0,

which have steeper inner density profiles. (For Mvir masses reaching larger total

radii, this restriction is slightly more severe. On the other hand, when the CDM

power spectrum includes an exponential cut-off at the neutralino free-streaming

mass, the density profiles near that mass limit are slightly more cuspy, in agreement

with the results by Ishiyama 2014.) No similar restriction is found, however, at the

large mass up to masses as high as 1011Mcr(z) and redshits up to 35. In contrast,

the Einasto profile yields acceptable fits over the whole relevant region. It is worth

noting that, according to the CUSP formalism that accounts for ellipsoidal collapse,

the mass of 10−6 M⊙ is reached as an ordinary mass, M . 104Mcr(z), at z = 31,

in agreement with the results of simulations (Diemand et al. 2005; Anderhalden &

Diemand 2013; Ishiyama 2014),7 which confirms once again the validity of the CUSP

formalism.

7In contrast, the same mass would be reached at z ∼ 25 if Mcr(z) were defined according to
spherical collapse.
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Halo Mass and Multiplicity Function

When you look into the abyss, the abyss also looks back at you.

Friedrich Nietzsche

In this Chapter, we use the CUSP formalism to have a deeper insight on the

halo mass and multiplicity functions and the role of the halo mass definition used.

5.1 Halo mass

As already mentioned, the boundary of a virialized halo is a fuzzy concept. There

are several mass definitions found in the literature, usually arising from the halo

finders used in simulations (Klypin et al. 2011). The halo mass function depends on

the mass definition used. In this chapter we will use the CUSP formalism to study

how these properties change depending on the mass definition used, comparing our

results with those obtained using the excursion set formalism.

The various halo mass definitions found in the literature arise from the different

halo finders used in simulations (Klypin et al. 2011). For instance, in the Spherical

Overdensity (SO) definition (Lacey & Cole 1994), the mass of a halo at the time t

is that leading to a total mean density ρ̄h(Rh) equal to a fixed, constant or time-
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varying, overdensity ∆ times the mean cosmic density ρ̄(t),

ρ̄h(Rh) = ∆ρ̄(t) . (5.1)

While in the Friends-of-Friends (FoF) definition (Davis et al. 1985), the mass of a

halo is the total mass of its particles, identified by means of a percolation algorithm

with fixed linking length b in units of the mean inter-particle separation.

The main drawback of the FoF definition is that, for large values of b, it tends to

over-link haloes. Its main advantage is that it can be applied without caring about

the symmetry and dynamical state of haloes. Haloes are, indeed, triaxial rather than

spherically symmetric, harbour substantial substructure and may be undergoing a

merger, which complicates the use of the SO definition. However, one can focus

on virialised objects and consider the spherically averaged density profile ρh(r) and

mass profile M(r) around the peak-density, in which case the FoF mass coincides

with the mass inside the radius Rh where spheres of radius b harbour two particles

in average (Lacey & Cole 1994),

ρh(R) =
3

2π
b−3ρ̄(t) . (5.2)

Equations (5.1) and (5.2) imply the relation

∆ =
3F (c)

2π
b−3 , (5.3)

between ∆ and b for haloes of a given mass M , where F (c) ≡ ρ̄h(Rh)/ρh(Rh) is a

function of halo concentration c.

As c depends on M , there is no pair of ∆ and b values satisfying equation (5.3)

for all M at the same time. Consequently, there is strictly no equivalent SO and

FoF mass definitions (Muñoz-Cuartas et al. 2011). Yet, numerical simulations show

that, at least in the Standard Cold Dark Matter (SCDM) cosmology, FoF masses

with b = 0.2, tightly correlate with SO masses with overdensity ∆ equal to the

so-called virial value, ∆vir ≈ 178, from now on SO(∆vir) (Cole & Lacey 1996). This

correlation is often interpreted as due to the fact that haloes are close to isothermal

spheres, for which F (c) is equal to 3, so equation (5.3) for b = 0.2 implies ∆ ≈ 178.

Simulations also show that, in any cold dark matter (CDM) cosmology, FoF(0.2)

haloes have a multiplicity function that, expressed as a function of the top-hat height
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5.1. Halo mass

for spherical collapse, is approximately universal (Jenkins et al. 2001; White 2002;

Warren et al. 2006; Lukić et al. 2007; Tinker et al. 2008; Crocce et al. 2010) and

very similar to that found for SO(∆vir) haloes (Jenkins et al. 2001; White 2002).

As ∆vir may substantially deviate from 178 depending on the cosmology, such a

similarity cannot be due to the roughly isothermal structure of haloes as suggested

by the SCDM case. Moreover, the universality of this multiplicity function is hard

to reconcile with the dependence on cosmology of halo density profile (Courtin et al.

2011). On the other hand, haloes do not form through spherical collapse but through

ellipsoidal collapse. For all theses reasons, the origin of such properties is unknown.

Having a reliable theoretical model of the halo MF would be very useful for trying

to clarify these issues.

Assuming the spherical collapse of halo seeds, Press & Schechter (1974) derived

a MF that is in fair agreement with the results of numerical simulations (e.g. Ef-

stathiou et al. 1988; White et al. 1993; Lacey & Cole 1994; Bond & Myers 1996),

although with substantial deviations at both mass ends (Lacey & Cole 1994; Gross

et al. 1998; Jenkins et al. 2001; White 2002; Reed et al. 2003; Heitmann et al. 2006).

An outstanding characteristic of the associated multiplicity function is its universal

shape as a function of the height of density fluctuations. Whether this characteris-

tic is connected with the approximately universal multiplicity function of simulated

haloes for FoF(0.2) masses is however hard to tell.

In an alternative approach, the extension to peaks was directly attempted from

the original Press-Schechter MF (Bond 1989; Colafrancesco et al. 1989; Peacock &

Heavens 1990; Appel & Jones 1990; Bond & Myers 1996; Hanami 2001). As we

have already seen, the most rigorous derivation along this line was by Manrique

& Salvador-Solé (1995, hereafter MSS; see also Manrique et al. 1998) through the

CUSP formalism.

A common feature of all these derivations is that they assume monolithic collapse

or pure accretion. While in hierarchical cosmologies there are certainly periods in

which haloes evolve by accretion, major mergers are also frequent and cannot be

neglected. We will comeback to this point at the end of the paper. A second and

more important issue in connection with the problem mentioned above is that none

of these theoretical MFs makes any explicit statement on the halo mass definition

presumed, so the specific empirical MF they are to be compared with is unknown.
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5.2 Mass Function

All derivations of the halo MF proceed by first identifying the seeds of haloes with

mass M at the time t in the density field at an arbitrary small enough cosmic time

ti and then counting those seeds.

5.2.1 The Excursion Set Formalism

In this approach, halo seeds are assumed to be spherical overdense regions in the

initial density field smoothed with a top-hat filter that undergo spherical collapse.

The time of spherical collapse (neglecting shell-crossing) of a seed depends only

on its density contrast, so there is a one-to-one correspondence between haloes with

M at t and density perturbations with fixed density contrast δcr at the filtering radii

R satisfying the relations

δcr(t) = δc(t)
D(ti)

D(t)
(5.4)

R(M) =

[
3M

4πρ̄i

]1/3

. (5.5)

In equations (5.4) and (5.5), ρ̄i is the mean cosmic density at t = ti, δc(t) is the almost

universal density contrast for spherical collapse at t linearly extrapolated to that

time and D(t) is the cosmic growth factor. In the Einstein-de Sitter universe, D(t)

is equal to the cosmic scale factor a(t) and δc(t) is equal to 3(12π)2/3/20 ≈ 1.686.

While, in the concordant model and the present time t0, D(t0) is a factor 0.760

smaller than a(t0) and δc(t0) is equal to ≈ 1.674 (e.g. Henry 2000).

Equation (5.5) is valid to leading order in the perturbation, the exact relation

between R and M being

R(M, t) =

{
3M

4πρ̄i[1 + δcr(t)]

}1/3

. (5.6)

The interest of adopting the approx relation (5.5) is that the filtering radius then

depends only on M . This greatly simplifies the mathematical treatment.

Following Press & Schechter (1974), every region with density contrast greater

than or equal to δcr(t) at the scale R(M) will give rise at t to a halo with mass

102



5.2. Mass Function

greater than or equal to M . Consequently, the MF, i.e. the comoving number

density of haloes per infinitesimal mass around M at t, is simply the M -derivative

of the volume fraction occupied by those regions, equal in Gaussian random density

fields to

V (M, t) =
1

2
erfc

[
1√
2

δcr(t)

σth
0 (M, ti)

]
, (5.7)

divided by the volume M/ρ̄(t) of one single seed,

∂nPS(M, t)

∂M
=

ρ̄(t)

M

∂V (M, t)

∂M
. (5.8)

In equation (5.7), σth
0 (M, ti) is the top-hat rms density fluctuation of scale M at ti.

But this derivation does not take into account that overdense regions of a given

scale may lie within larger scale overdense regions, which translates into a wrong

normalisation1 of the MF (5.7)–(5.8). To correct for this effect, Bond et al. (1991)

introduced the excursion set formalism. The density contrast δ at any fixed point

tends to decrease as the smoothing radius R increases, so, using a sharp k-space

filter, δ traces a Brownian random walk, easy to monitor statistically. In particular,

one can estimate the number of haloes reaching M at t by counting the excursion sets

δ(R) intersecting δcr(t) at any scale R(M). The important novelty of this approach

is that, whenever a halo undergoes a major merger, δ increases instead of decreasing,

so every trajectory δ(R) can intersect δcr(t) at more than one radius R, meaning

that there will be haloes appearing within other more massive ones. Therefore, to

correct for cloud-in-cloud configurations, one must simply count the excursion sets

intersecting δcr(t) for the first time as R decreases from infinity (or σth
0 increases

from zero), as if they were absorbed at such a barrier. The MF so obtained has

identical form as the Press-Schechter one (eqs. [5.8]-[5.7]) but with an additional

factor two,
∂nes(M, t)

∂M
= 2

∂nPS(M, t)

∂M
, (5.9)

yielding the right normalisation of the excursion set MF.

Note that, as the height of a density fluctuation, defined as the density con-

trast normalised to the rms value at the same scale, is constant with time, the vol-

ume V (M, t) (eq. [5.7]) can be written as a function of νes = δcr(t)/σ
th
0 (M, ti) =

δc(t)/σ
th
0 (M, t) = δc0(t)/σ

th
0 (M, t), where δc0(t) is δc(t)D(t0)/D(t) and σth

0 (M, t)

1The normalisation condition reflects the fact that all the matter in the universe must be in the
form of virialised haloes.
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stands for the 0th order spectral moment at the current time t0. Thus, the re-

sulting MF (eq. [5.8]) is independent of the arbitrary initial time ti.

5.2.2 The CUSP Formalism

Given the one-to-one correspondence between haloes and non-nested peaks, the

counting of haloes with M at t reduces to count non-nested peaks with that scale

at ti. In the original version of the CUSP formalism (MSS), such a counting did

not take into account the correlation between peaks at different scales. How-

ever, the more accurate version later developed (Manrique et al. 1998) yielded

essentially the same result, so we will follow here that simple version (see the

Appendix [C] for the more accurate one). For simplicity, we will omit hereafter

any subindex in the Gaussian rms density fluctuation σ0 and in the CUSP height

ν ≡ δpk/σ0(M, ti) = δc(t)/σ0(M, t) = δc0(t)/σ0, where δc0(t) is δc(t)D(t0)/D(t) and

σ0 stands for the 0th order spectral moment at t0. The subindexes “th” and “es”

in the excursion set counterparts are enough to tell between the two sets of variables.

As we have already seen, the number density of peaks with δpk per infinitesimal

ln σ−1
0 (M, ti) at ti or, equivalently, with δc0 per infinitesimal ln σ−1

0 at t0 can be readily

calculated from the density of peaks per infinitesimal height around ν, derived by

BBKS. The result is

N(σ0, δc0) =
〈x〉(σ0, δc0)

(2π)2 R3
⋆ γ

e−
ν2

2 , (5.10)

where R⋆ and γ are respectively defined as
√

3σ1/σ2 and σ2
1/(σ0σ2), being σj the

j-th order (Gaussian) spectral moment, and 〈x〉(σ0, δc0) is the average curvature

(i.e. minus the Laplacian scaled to the mean value σ2) of peaks with δc0 and σ0,

well-fitted by the analytic expression (BBKS)

〈x〉(ν) = γν +
3(1 − γ2) + (1.216 − 0.9γ4)e−

γ

2 ( γν

2 )
2

[3(1 − γ2) + 0.45 + (γν/2)2]1/2 + γν/2
. (5.11)

But this number density is not enough for our purposes because we are interested

in counting non-nested peaks only. The homologous number density of non-nested
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peaks, Nnest(σ0, δc0), can be obtained by solving the Volterra integral equation

Nnest(σ0, δc0) = N(σ0, δc0) −
∫ ∞

ln σ−1
0

d ln σ′
0
−1

×N(σ0, δc0|σ′
0, δc0)

M(σ′
0, δc0)

ρ̄
Nnest(σ′

0, δc0), (5.12)

where the second term on the right gives the density of peaks with δc0 per infinitesi-

mal ln σ−1
0 nested into peaks with identical density contrast at larger scales, ln σ′

0
−1.

The conditional number density N(σ0, δc0|σ′
0, δc0) of peaks with δc0 per infinitesimal

ln σ−1
0 subject to lying in backgrounds with δc0 at σ′

0 < σ0 can also be calculated from

the conditional number density per infinitesimal ν in backgrounds with ν ′ derived

by BBKS. The result is

N(σ0, δc0|σ′
0, δc0) =

〈x〉(σ̃0, δc0)

(2π)2 R3
⋆ γ

√
1 − ǫ2

e
−

(ν−ǫ ν′)2

2(1−ǫ2) , (5.13)

where ν ′ and ǫ are respectively defined as δc0/σ
′
0 and σ2

0(Rm)/[σ0σ
′
0], being R2

m equal

to the arithmetic mean of the squared filtering radii corresponding to σ0 and σ′
0,

and where 〈x〉(σ̃0, δc0) takes the same form (5.11) as 〈x〉(σ0, δc0) in equation (5.10)

but as a function of γ̃ν̃ instead of γν, being

γ̃2 = γ2

[
1 + ǫ2 (1 − r1)

2

1 − ǫ2

]
(5.14)

ν̃(r)=
γ

γ̃

1 − r1

1 − ǫ2

[
ν

(
1 − ǫ2r1

1 − r1

)
− ǫν ′

]
, (5.15)

with r1 equal to [σ0(R)σ1(Rm)/(σ1(R)σ0(Rm))]2.

Thus, the MF of haloes at t is then

∂n(M, t)

∂M
= Nnest[σ0, δc]

∂ ln σ−1
0

∂M
. (5.16)

Note that this expression of the MF is also independent of the (arbitrary) initial

time ti.

The CUSP formalism thus solves all the problems met in the excursion set formal-

ism: it deals with triaxial peaks that undergo ellipsoidal collapse and virialisation,

conveniently corrected for nesting, and the smoothing of the initial density field is

always carried out with the same Gaussian filter. The only drawback of this ap-
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proach is the need to solve the Volterra equation (5.12), which prevents from having

an analytic expression for the resulting MF.

5.3 Implicit Halo Mass Definition

For any theoretical MF to be complete, the mass definition it refers to must be

specified. In other words, one must state the condition defining the total radius

Rh or, equivalently, the spherically averaged density profile for haloes with different

masses at t that result from the specific halo seeds and dynamics of collapse assumed.

5.3.1 The Excursion Set Formalism

In the excursion set formalism, halo seeds are arbitrary overdense regions with no

definite inner structure, so their typical (mean) density and peculiar velocity fields

are uniform. As a consequence, the density distribution in the corresponding final

virialised objects is also uniform2. In addition, the system is supposed to undergo

spherical collapse. Therefore, halo formation follows the simple spherical top-hat

model, in which case the typical radii Rh of haloes with different masses at t can be

readily inferred (Peebles 1980).

As we have seen in section 3.7 the virial relation, holds for the final uniform

object3 together with energy conservation4. This implies that Rh is half the radius

of the uniform system at turnaround.

we are lead to

Ep(r) = −20π

3

∫ r

0

dr̃ r̃ ρp(r̃) GδM(r̃) . (5.17)

Taking into account that the total energy Ep(Mh) is, to leading order in the

2As shown in SVMS, what causes the outwards decreasing density profile of virialised objects
is the fact that, for seeds with outwards decreasing density profiles, virialisation progresses from
the centre of the system outwards. In the case of homogeneous spheres in Hubble expansion, all
the shells cross at the same time at the origin of the system, so the final object does not have an
outwards decreasing density profile.

3The effects of the cosmological constant at halo scales can be neglected.
4In the top-hat spherical model, energy cannot be evacuated outwards like in the virialisation

of haloes formed by the collapse of seeds with outwards decreasing density profiles (SVMS), so the
total energy is conserved.
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perturbation, equal to −δcr(t)GM2/R, equation (3.40) takes the form

Rh =

[
3M

4π∆vir(t)ρ̄(t)

]1/3

(5.18)

or, equivalently,

ρ̄h(Rh) = ∆vir(t) ρ̄(t) , (5.19)

where we have introduced the so-called virial overdensity corresponding to the spher-

ical top-hat model,

∆vir(t) ≡
[
10 δth

c (t)a(t)

3 D(t)

]3

. (5.20)

Comparing equations (5.1) and (5.19), we see that the halo mass definition im-

plicitly presumed in the excursion set formalism is the SO(∆vir) one, with ∆vir

dependent on time and cosmology. In the Einstein-de Sitter universe, where δc(t) is

equal to 3(12π)2/3/20 and D(t) = a(t), ∆vir(t) takes the constant value 18π2 ≈ 178.

While, at t0 in the concordant model, where δc(t0) and D(t0) are respectively equal

to ≈ 1.674 and ≈ 0.760, ∆vir(t0) takes the value ≈ 359 (Henry 2000)5.

5.3.2 The CUSP Formalism

As we have already seen, the CUSP MF is more general than the excursion set one

in the sense that it does not presume any particular mass definition; it holds for any

arbitrary one, adapting to it through the functions δc(t) and the relation between

top-hat and Gaussian spectral moments.

5.4 Similarity of SO and FoF Masses

The fact that the CUSP formalism distinguishes between different mass definitions

can be used to try to understand the origin of the similarity between SO and FoF

masses and their respective mass and multiplicity functions.

5According to equation (5.20), ∆vir(t0) = 359 and D(t0) = 0.760 imply δc(t0) = 1.621 rather
than 1.674. This 3.5% error arises from the neglect of the cosmological constant in equation (5.20).

107



5. Halo Mass and Multiplicity Function

Equations (3.42) and (5.17) imply

dEp

dM
= −5GδM(Rp)

3Rp

= −5

3

[
4πρ̄i

3

]1/3

GM2/3δth
c (M, t) , (5.21)

where we have taken into account that the radius Rp of the protohalo is equal to qpR

(see Section 3.2). Comparing with the M -derivative of equation (3.40) and taking

into account the identity M = 4πρ̄h(Rh)R
3
h/3, equation (5.21) leads to the relation

5

9

[
ρ̄i

ρ̄(t)

]1/3

δth
c (M, t) =

[
ρ̄h(Rh)

ρ̄(t)

]1/3[
1 − ρ̄h(Rh)

6 ρh(Rh)

]
, (5.22)

which, making use of the definition of F (c), can be rewritten in the two following

forms

ρ̄h(R) = ρ̄(t)

[
5 δth

c (M, t)a(t)

9 a(ti)

]3 [
1 − F (c)

6

]−3

(5.23)

and

ρh(R) = ρ̄(t)

[
5 δth

c (M, t)a(t)

9 a(ti)]

]3 [
1 − F (c)

6

]−3
1

F (c)
. (5.24)

For SO and FoF masses, these expressions therefore imply

∆ =

[
5 δth

c (M, t)a(t)

9 a(ti)

]3 [
1 − F (c)

6

]−3

(5.25)

and

b =

[
2π

3F (c)

]−1/3 [
5 δth

c (M, t)a(t)

9 a(ti)

]−1 [
1 − F (c)

6

]
, (5.26)

respectively.

Equation (5.25) seems to indicate that, in the SO case, the mass dependence of

δth
c must cancel with that coming from F (c). But equation (5.1) implies Rh ∝ M1/3,

which, replaced into equation (3.40) at r = Rh, leads to Ep(M) ∝ M5/3 and, hence,

to dEp/dM ∝ M2/3, implying (see eq. [5.21]) that δth
c is a function of t alone. The

solution to this paradox is that, to leading order in the perturbation as used in the

derivation of the density profile (see eq. [3.43]), δth
c and F (c) are, in the SO case,

independent of M . (Likewise, eq. [5.26] multiplied by the cubic root of F (c) leads in

the FoF case to a similar paradox, with identical solution.) Consequently, to such

an order of approximation, the SO and FoF mass definitions with ∆ and b satisfying

equation (5.3) are equivalent to each other.
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We thus see that the origin of this approx equivalence is the inside-out growth

of accreting haloes, crucial to obtain equation (3.40) setting the typical spherically

averaged density profile for haloes arising from peaks that undergo ellipsoidal col-

lapse and virialisation. But this is not all. We can go a step further and infer the

value of b leading to FoF masses equivalent to SO(∆vir) ones.

The relation between the two functions (of t) δth
c and 1 − F (c)/6 can be readily

derived for the particular case of SO(∆vir) haloes. Through equation (3.40), we

have that haloes arising from ellipsoidal collapse of peaks with δc in the density field

at ti smoothed with a Gaussian filter of radius R, could have formed according to

the spherical top-hat model from the same seeds with δth
c when the density field is

smoothed with a top-hat filter of radius qR.6 Equations (5.20) and (5.25), the latter

for ∆ = ∆vir, then imply

δth
c (t) = δcr(t) 6

[
1 − F (c)

6

]
. (5.27)

The typical value of F (c) for SO(∆vir) haloes can be inferred from equation (5.27)

for δcr(t) given by equation (5.4) and δth
c given by

δth
c (M, t) =

3

R3
p

∫ Rp

0

dr r2 δp(r) . (5.28)

for seeds of any arbitrary mass. However, the density profile δp(r) of protohaloes is

not accurate enough (owing to the inverse Laplace transform of eq. [3.21]) for δth
c to

be inferred with the required precision. Therefore, as the CUSP formalism recovers,

to leading order in the perturbation, the typical spherically averaged density profile

for simulated haloes, we can estimate F (c) directly from such empirical profiles. As

well-known these profiles are of the NFW form (Navarro et al. 1997) and, hence,

satisfy the relation

F (c) ≡ ρ̄h(Rh)

ρh(Rh)
= 3

(1 + c)2

c2

[
ln(1 + c) − c

1 + c

]
. (5.29)

For c spanning from ∼ 5 to ∼ 15 as found in simulations of the concordant cosmol-

6The outwards decreasing density profile of seeds for purely accreting haloes ensures the pos-
sibility to use any spherical window to define the one-to-one correspondence between haloes and
peaks. The use of a Gaussian window is only mandatory, as mentioned, if haloes can also undergo
major mergers (see MSS and SVMS).
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ogy for SO(∆vir) haloes at t0 (and approximately at any other time and cosmology),

we find F (c) ∼ 5.1± 0.1. And, bringing this value of F (c) and ∆ = ∆vir ≈ 359 into

equation (5.3), we arrive at b ∼ 0.19, in full agreement with the results of numerical

simulations. Of course, the exact typical value of F (c) varies with time and cosmol-

ogy (see Chapter 4). But, according to the results of numerical simulations, we do

not expect any substantial variation in this sense, so we have that FoF(0.2) masses

are approximately equivalent to SO(∆vir) ones, in general.

As a byproduct we have that equation (5.27) for F (c) ≈ 5.1± 0.1 implies the re-

lation δth
c (t) ∼ 0.9 δc(t). In other words, in the case of SO(∆vir) or FoF(0.2) masses,

the top-hat density contrast for ellipsoidal collapse and virialisation would take an

almost universal value independent of M , just a little smaller than the almost uni-

versal value δc(t) for spherical collapse. This result thus suggests that it should be

possible to modify the excursion set formalism in order to account for ellipsoidal col-

lapse and virialisation by simply decreasing the usual density contrast for spherical

collapse by a factor ∼ 0.9. We will comeback to this interesting prediction below.

5.5 Multiplicity Function

The multiplicity function associated with any given MF, ∂n(M, t)/∂M , is defined

as

f(σth
0 , t) =

M

ρ̄

∂n[M(σth
0 ), t]

∂ ln[(σth
0 )−1]

. (5.30)

In the excursion set case, this leads to a function of the simple form

fes(σ
th
0 , δc0) =

(
2

π

)1/2

νes e−
ν2
es
2 , (5.31)

while, in the CUSP case, it leads to (see eqs. [5.16] and [5.30])

fCUSP(σ0, δc0) =
M(σ0, δc0)

ρ̄
Nnest(σ0, δc0) . (5.32)

To obtain equation (5.32) we have taken the partial derivative of nCUSP with respect

to σ0 instead of σth
o as prescribed in equation (5.30). But this is irrelevant for

SO(∆vir) or FoF(0.19) masses in the concordant cosmology as hereafter assumed,

given the relation (3.10) between the two 0th order spectral moments.
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5.5.1 Comparison with Simulations

In Figure 5.1 we compare these two multiplicity functions at t0 to the Warren et al.

(2006) analytic expression, of the Sheth & Tormen (2002) form,

fW(νes) = 0.3303
(
ν1.625

es + 0.5558
)

e−0.4565ν2
es , (5.33)

fitting the multiplicity function of simulated haloes with FoF(0.2) masses at t0 in all

CDM cosmologies. fW is usually expressed as a function of σth
0 instead of νes; the ex-

pression (5.33) has been obtained from that usual expression assuming δc(t0) = 1.674

(taking the value 1.686 would make no significant difference). In Figure 5.1, all the

multiplicity functions are expressed as functions of the Gaussian height for ellipsoidal

collapse and virialisation, ν, instead of the top-hat height for spherical collapse, νes.

The change of variable from νes to ν has been carried out using the relation 3.10.

This is a mere change of variable; it does not presume any modification in the as-

sumptions entering the derivation of the different multiplicity functions.

As can be seen, while fes shows significant deviations from fW at both mass

ends, fCUSP is in excellent agreement with fW all over the mass range covered by

simulations. This is true regardless of whether we consider the approximate or more

accurate versions of fCUSP. The deviation (of opposite sign in both cases) is less

than 6.5%. We stress that there is no free parameter in the CUSP formalism, so

this agreement is really remarkable.

It might be argued that fCUSP cannot be trusted at small ν’s because peaks

with those heights have big chances to be destroyed by the gravitational tides of

neighbouring massive peaks. Although this possibility exists, peaks suffering strong

tides are expected to be nested within such neighbours and, hence, they should not

be counted in the MF corrected for nesting. The correction for nesting becomes

increasingly important, indeed, towards the small ν end. On the other hand, fCUSP

is well-normalised7 and still predicts the right abundance of massive haloes, which

would hardly be the case if fCUSP overestimated the abundance of low-mass objects.

Therefore, we do not actually expect any major effect of that kind.

It is thus worth seeing how fCUSP compares to fW outside the mass range covered

by simulations. In Figure 5.2 we represent the same multiplicity functions as in

Figure 5.1 over a much wider range. Surprisingly, the agreement between fCUSP and

7The CUSP MF is well-normalised by construction as this is one of the conditions imposed to
obtain the functions δc(t) and q(M, t).
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Figure 5.1: Multiplicity function at t0 derived from the CUSP (red lines) and
excursion set (green long-dashed line) formalisms, compared to Warren et al. (2006)
analytic fit to the multiplicity function of simulated haloes (blue dotted line) over
the maximum mass range (2 × 1010 M⊙, 2 × 1015 M⊙) covered by simulations. For
the CUSP case, we plot both the the approximate solution not accounting for the
correlation between peaks of different scales (dashed line) and the more accurate
solution given in Appendix C (solid line). Ratios in the bottom panel are with
respect to fW.

fW is still very good. At very small ν’s, fW shows a slight trend to underestimate
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5.5. Multiplicity Function

Figure 5.2: Same as Figure 5.1 but in a much wider mass range, corresponding to
current haloes with masses from 1 M⊙to 3 × 1016 M⊙.

the abundance of haloes predicted by fCUSP, but the difference is small. It increases

monotonously until reaching, in the case of the accurate version of fCUSP, a ratio of

∼ 0.70 (∼ 30% deviation) at M ∼ 5 × 104 M⊙.
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5.5.2 Approx Universality

The excursion set multiplicity function expressed as a function of νes, fes(νes), is

cosmology-independent (it takes the same form [5.31] in all cosmologies) and time-

invariant (the height is constant). Hence, it is universal in a strict sense. Such a

universality is in fact what has motivated the use of the multiplicity function defined

in equation (5.30) instead of the (non-universal) MF. Unfortunately, fes does not

properly recover the multiplicity function of simulated haloes.

But fCUSP does, so the question rises: is fCUSP also universal? Certainly, since

the CUSP MF (as well as the real MF of simulated haloes) depends on the particular

halo mass definition while σth
0 does not, fCUSP will necessarily depend on the mass

definition adopted.(like the multiplicity function of simulated haloes; see e.g. Tinker

et al. 2008). Thus, we will focus on the SO(∆vir) or FoF(0.2) mass definitions, as

suggested by the results of simulations (see the form [5.33] of fW(νes)).

By construction, the unconditioned and conditional peak number densities, N(σ0, δc)

and N(σ0, δc|σ′
0, δc) entering the Volterra equation (5.12) take the same form of σ0,

σ′
0 and δc0, through the heights ν and ν ′, in all cosmologies (see eqs. [5.10], [5.13] and

[5.11])8. Certainly, these number densities also depend on γ, γ′ and R⋆ that involve

spectral moments of different orders and, hence, depend on the cosmology through

the exact shape of the (linear) power spectrum. However, in all CDM cosmologies,

the effective spectral index n takes essentially the same fixed value, with less than

20% error over the whole mass range (2× 1010 M⊙, 2× 1015 M⊙) of interest, imply-

ing that γ ≈ γ′ and R⋆/R[3(1− γ2)]1/2 takes almost “universal” values respectively

equal to 0.6 ± 0.1 and 1.4 ± 0.1. Thus, those number densities are indeed very ap-

proximately universal functions of ν and ν ′ but for a factor R−3. Moreover, if we

multiply the Volterra equation (5.12) by M/ρ̄ = 4πρ̄i(qR)3/(3ρ̄) so that its solution

is directly fCUSP (see eq. [5.32]), then the factor R−3 in the two number densities

cancels with the factor R3 coming from the mass. Therefore, the solution fCUSP of

such a Volterra equation will have very approximately the same expression of ν in

all CDM cosmologies, provided only the function q(M, t) does.

But, according to equations (3.11)–(3.10) holding for SO(∆vir) and FoF(0.19)

haloes, q(M, t) involves the ratio σth
0 /σ0 which is not a function of ν alone, but

also depends on t through the cosmology-dependent relation 3.10. Nevertheless,

8ǫ takes the form 2(n+3)/2(ν/ν′)[1 + (ν/ν′)4/(n+3)]−(n+3)/2, where n is the effective spectral
index in the relevant mass range.
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Figure 5.3: CUSP multiplicity functions at z = 0, 5, 10 and 20, from left to right,
in red (solid line), orange (long-dashed line), gold (dashed line) and brown (dotted
line), respectively. Ratios in the bottom panel are with respect to the multiplicity
function at z = 20.

the term with the ratio σth
0 /σ0 responsible of the undesired functionality of q(M, t)

is small in general (except for large ν’s), particularly at high-z where D(t)/D(t0)

becomes increasingly small. There, q(M, t) becomes constant (equal to Q−2/(n+3))

and fCUSP(ν) becomes essentially universal. However, at low-z this is only true for

small enough ν’s.
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Figure 5.4: Same as Figure 5.3 but for fCUSP expressed as a function of variable
νes instead of ν. The green long-dashed line represents the multiplicity function that
would be obtained from the excursion set formalism taking a density contrast for
spherical collapse equal to 0.89 times the usual value.

In Figure 5.3 we show fCUSP(ν) in the concordant model for various redshifts (see

3.4 for the corresponding MFs, in full agreement with the results of simulations).

The deviations from universality or, more exactly, from time-invariance at high-z

are small as expected, but at low-z they are very marked. Thus, fCUSP(ν) is far
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from universal.

But this result was not unexpected. Given the relation between ν and νes, we

cannot pretend that fCUSP(ν) is universal as a function of both arguments at the

same time. Inspired by the universality of fes(νes), most efforts in the literature have

been done in trying to find one mass definition rendering the multiplicity function of

simulated haloes approximately universal as a function of the top-height for spherical

collapse, not as a function of the (unknown) Gaussian height for ellipsoidal collapse

and virialisation. Therefore, what we should actually check is whether fCUSP is uni-

versal as a function of νes and not of ν. As shown in Figure 5.4, when the change

of variable from ν to νes is made, fCUSP becomes indeed almost fully time-invariant.

Strictly, it still shows slight deviations from universality at large νes, but these de-

viations are in full agreement with those found in simulations (see Fig. 14 in Lukić

et al. 2007).

Thanks to the CUSP formalism, we can determine the Gaussian height for ellip-

soidal collapse and virialisation corresponding to any desired mass definition. Thus,

we can seek the halo mass definition for which fCUSP expressed as a function of ν

takes a universal form. According to the reasoning above, for this to be possible

the ratio σth
0 /σ0 should be equal to 1 + c ν, with c equal to an arbitrary universal

constant. This would ensure both that the partial derivative of nCUSP with respect

to σ0 coincides with the partial derivative with respect to σth
0 and that the function

q(M, t) is a function of ν alone: q(ν) ≈ [Q (1 + c ν)]−2/(n+3). Consequently, follow-

ing the procedure given in Section 5.3.2, we can infer, from such a function q(ν) and

any arbitrary function δc(t), the desired halo mass definition. Unfortunately, despite

the freedom left in those two functions, the mass definition so obtained will hardly

coincide with any of the practical SO and FoF ones. Thus, it is actually preferable to

keep on requiring the universality of the multiplicity function in terms of νes as usual.

But this does not explain why the FoF mass definition with linking length ∼ 0.2

is successful in giving rise to a universal multiplicity function expressed as a func-

tion of νes. Clearly, what makes this mass definition special is that, for the reasons

explained in Section 5.4, it coincides with the SO(∆vir) definition. In fact, as men-

tioned there, the exact value of the linking length may somewhat vary with time and

cosmology, so the canonical mass definition would be the SO(∆vir) definition rather

than the FoF(0.2) one. But why should a mass definition that involves the virial

overdensity ∆vir arising from the formal spherical top-hat model successfully lead to

a universal multiplicity function expressed as a function of νes if haloes actually form
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Figure 5.5: Modified excursion set multiplicity function resulting from a density
contrast for collapse equal to 0.889 times the usual value (solid green line), compared
to fW for FoF(0.2) haloes (dotted blue line). Both multiplicity functions are strictly
universal, so the two curves hold for any arbitrary redshift.

from peaks that undergo ellipsoidal collapse and virialisation? The reason for this

is that, as a consequence of the inside-out growth of haloes formed from ellipsoidal

collapse and virialisation, they satisfy the relation (3.40), also satisfied by objects

formed in the spherical top-hat model.
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Figure 5.6: Same as Figures 5.3 and 5.4 but for fCUSP expressed as a function
of the top-hat height for ellipsoidal collapse and virialisation, νth, as suggested by
the CUSP formalism. This multiplicity function would be strictly universal, so the
curves for the different redshifts fully overlap. For comparison we also plot the
function fW (blue dotted curve) expressed with the same argument.

As mentioned, an interesting consequence of this “coincidence” is that the top-

hat density contrast for ellipsoidal collapse and virialisation for SO(∆vir) masses,

δth
c , takes a universal value, independent of M , approximately equal to 0.9 times the

top-hat density contrast for spherical collapse, δc(t). Given this relation, changing
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the latter density contrast by the former in the excursion set formalism, fes(νes)

should keep on being universal and, in addition, recover the real multiplicity func-

tion of haloes formed by ellipsoidal collapse and virialisation. As shown in Figure

5.5, this is fully confirmed. One must just renormalise the resulting modified ex-

cursion set multiplicity function in the relevant mass range by multiplying it by

0.714. But this is simply due to the fact that the correction for nesting achieved

in the excursion set formalism is inconsistent with top-hat smoothing, which yields

an increasing deviation of the predicted function at low-masses, the most affected

by such a correction. (The right normalisation should naturally result if we could

implement the excursion set correction for nesting with top-hat smoothing.)

Therefore, the ultimate reason for the success of the SO(∆vir) mass definition,

and by extension of the FoF(0.2) one, is that, as a consequence of the inside-out-

growth of accreting haloes, the corresponding top-hat density contrast for ellipsoidal

collapse and virialisation is essentially proportional to the formal top-hat density

contrast for spherical collapse.

To end up we want to mention that the previous result suggests what is actually

the most natural argument for the halo multiplicity function to take a universal

form: the top-hat height for ellipsoidal collapse and virialisation, νth, defined as

δth
c0(t0)/σ

th
0 ≈ 0.889 δc0(t0)/σ

th
0 . This expression holds for the current time and the

concordant cosmology. The exact dependence of δth
c (t) (or, more exactly, of the

ratio δth
c (t)/δc(t)) on time and cosmology is hard to tell owing to the insufficient

precision of the inverse Laplace transform of equation (3.21) or, alternatively, the

unknown range of c values of simulated haloes with SO(∆vir) masses at other times

and cosmologies. But a reasonable guess is that such a dependence should make

fCUSP(νth) be strictly universal and equal to the multiplicity function represented

in Figure 5.6. The reason for this guess is the full consistency, at any time and

cosmology, between the SO(∆vir) mass definition and the real dynamics of collapse

and virialisation of halo seeds. A similar full consistency is what causes fes(νes) to

be also strictly universal. The difference between the two cases is that, while the

excursion set formalism assumes a non-realistic dynamics of collapse (unless it is

modified as prescribed above), the CUSP formalism assumes the right dynamics.
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Summary and Conclusions

Maybe all the schemes of the devil were nothing

compared to what man could think up.

Joe Hill

Throughout this Thesis we have completed an accurate analytic treatment of

non-linear structure formation by means of the filtering of the primordial density

field. This formalism is able to accurately recover the results of N -body simulations

for any desired halo mass definition and cosmology (Salvador-Solé et al. 2012a,b)

and allows one to shed light on their ultimate origin.

We have given a general overview of this formalism, explaining its theoretical

grounds and how it can be used to derive the typical properties of relaxed dark

matter halos. In this overwiew:

1. We have proven the existence of a one-to-one correspondence between halos

and peaks despite the ellipsoidal collapse of peaks.

2. We have shown that halos formed through major mergers and accretion have

the same properties, dependent on the properties of the respective progenitor

peaks at the largest scale.

3. As a consequence, we have explained why the typical properties of halos de-

pend only on their mass and time, regardless of whether and when they have
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suffered major mergers.

We have also applied this analytic formalism to analyze halo growth. In partic-

ular:

1. We have shown that accreting halos grow inside-out, which is a crucial ingre-

dient in the CUSP formalism.

2. We have derived practical analytical expressions for the mass-concentration-

shape NFW (Navarro et al. 1995) and Einasto (1965) relations over the whole

mass and redshift ranges.

3. We have stablished the validity domains of the above mentioned relations.

Finally, we have applied the CUSP formalism to study the halo mass and mul-

tiplicity functions, and their dependence on the exact mass definition used. In

particular:

1. We have shown that the FoF(0.2) halo finding algorithm is equivalent to the

SO(∆vir) one, which explains the privileged linking length equal to 0.2

2. We have shown why the virial radii of halos are close to the top-hat radii

described by the spherical collapse model, and why the halo mass function is

so close to the Press-Shechter form.

3. We have explained why the halo multiplicity function is closely universal in

the two equivalent cases of FoF (0.19) and SO(∆vir).

Although not included in this Thesis, the CUSP formalism also allows one to

accurately deal with halo substructure. Work along this particular line is currently

in progress (Salvador-Solé et al. 2016b).

The only limitations of this formalism arise from the neglect of the gravitational

pull between nearby objects, which yield tidal torques between them, causing their

small angular momenta (Doroshkevich 1970; White 1984) and tidally-supported

elongations (Salvador-Sole & Solanes 1993), and of the gravitational drag of baryons

(Gnedin & Ostriker 1999; Gnedin & Zhao 2002; Governato et al. 2012). These effects

should nonetheless be easier to address analytically from the sound basis presented

here dealing with self-gravitating, though non-interacting, pure DM halos.
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6.1 Further Work

Making use of the CUSP formalism, it should be possible to calculate such important

issues as:

• Halo substructure and kinematics, explaining why the later are approximately

universal.

• The scatter in halo properties.

• The halo assembly bias

• The spatial correlation between halos of different masses

• Filamentary large-scale structure formation

• The properties of stellar streams and stellar spheroids at the centre of dark

matter halos.
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A
The Number Density of Peaks

A.1 Evaluating the Maximum Constraint

The notation used in this Chapter follows the one introduced by BBKS. Therefore,

Npk(ν)dν, with ν = δ/σ0(R), refers to the number density of peaks per infinitesi-

mal range of height, and npk(νc) refers to the number density of peaks with height

above the value νc. Both quantities also depend on the scale R, which works as a

parameter. In some case we will include it as an argument, to explicitly stress the

dependence.

In order to evaluate the joint probability function P (δ,η, ζ), we need the corre-

lations between the different fields evaluated at a given point, say at r = 0. Even

though correlations between variables are strictly convolution products, owing to er-

godicity, they can be also calculated as ensemble averages over different realisations

of the field. Therefore, it is convenient to perform these calculations in the Fourier

space, in which the smoothed field δ(r, R), its gradient ηi(r, R), and its second-order

Cartesian derivatives ζij(r, R) have the form
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δ(r, R) =
1

(2π)3

∫
d3k δ(k) W (kR) e−ik·r ,

ηi(r, R) =
1

(2π)3

∫
d3k (−iki)δ(k) W (kR) e−ik·r , (A.1)

ζij(r, R) =
1

(2π)3

∫
d3k (−kikj) δ(k) W (kR) e−ik·r .

To simplify the notation, from now on, we do not show explicitly the dependence

on the point and scale in the field variables. From the definitions of the power

spectrum (eq. [2.83]) and the spectral momenta (eq. [2.88]), it can be shown that

〈δ δ〉 = σ2
0 , 〈ηi ηj〉 =

σ2
1

3
δij ,

〈δ ηi〉 = 0 , 〈ηi, ζjk〉 = 0 , (A.2)

〈δ ζij〉 = −σ2
1

3
δij , 〈ζij ζkl〉 =

σ2
2

15
(δijδkl + δikδjl + δilδjk) .

The covariance matrix M has dimension 10 since it includes correlations between

the field, its three first derivatives and its six independent second derivatives. It is

almost diagonal apart from one 3 × 3 box involving the second-order derivatives.

We label them ζA, where subscript A ranging from 1 to 6 refers to ij = 11, 22, 33,

12, 13, 23. The Gaussian joint probability P does not depend on the form of the

variables chosen to characterise the random field. By using variables x, y, and z,

defined as

σ2x = −∇2δ = −(ζ1 + ζ2 + ζ3) , σ2y = −1

2
(ζ1 − ζ3) ,

(A.3)

σ2z = −1

2
(ζ1 − 2ζ2 + ζ3) ,

instead of ζ1, ζ2, and ζ3 one obtains a diagonal covariance matrix. Then, by in-

troducing the variable ν = δ/σ0 the corresponding non-zero correlations adopt the

simple form
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A.1. Evaluating the Maximum Constraint

〈ν2〉 = 1 , 〈x2〉 = 1 , 〈ν x〉 = γ , 〈y2〉 =
1

15
, 〈z2〉 =

1

5
, (A.4)

where γ = σ2
1/(σ0σ2) is a measure of the bandwidth of the power spectrum. From

the covariance matrix M it is possible to calculate the quadratic form Q

2Q = ν2 +
(x − x∗)

2

1 − γ2
+ 15 y2 + 5 z2 + 3

η · η
σ2

1

+
6∑

A=4

15ζ2
A

σ2
2

. (A.5)

with x∗ = γ ν.

The next step is aimed to simplify the calculations and consists of selecting a

suitable reference frame. This procedure is always allowed because the correlations

given by (A.4) are independent of this choice. Since the matrix ζij is symmetric,

there is a rotation which diagonalises it: diag(λ1, λ2, λ3) = −R ζ R†, where λi (i =

1, 2, 3) are the eigenvalues of the matrix −ζij, and R and R† are the rotation matrix

and its transpose respectively. One can select the principal axes along the direction

of the eigenvalues λi; thus ζA = −λA (A = 1, 2, 3). In this way, we have used up

three degrees of freedom. The other available three permit to fix the orientation of

the orthonormal eigenvectors of the matrix by means of the Euler angles α1, α2, α3.

All these choices introduce changes in the volume element associated with the

space defined by the second-order derivatives

6∏

A=1

dζA = |(λ1 − λ2)(λ2 − λ3)(λ1 − λ3)| dλ1 dλ2 dλ3
dΩS3

6
,

dΩS3 = sin α2 dα2 dα1 dα3 , (A.6)

3∏

A=1

dλA =
2

3
σ3

2 dx dy dz ,

where dΩS3 is the volume element on the surface of the three-sphere. Since the whole

space is available (there is no constraint on the Euler angles), then its integration

yields 2π2. The factor 6 dividing the first of equations (A.6) arises because the

eigenvalues are not ordered. In the new variables, the joint probability function

becomes

P (ν,η, x, y, z) dν d3
η dx dy dz = F |2y (y2 − z2)|e−Qdν dx dy dz

d3
η

σ3
0

,
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F =
155/2

32π3

σ3
0

σ3
1 (1 − γ2)1/2

. (A.7)

To ensure that the matrix ζij is negative definite the eigenvalues have to be

ordered in the form

λ1 ≥ λ2 ≥ λ3 , (A.8)

and impose λ3 > 0. In this case the factor 1/6 in the first of equations (A.6) dis-

appears. The eigenvalue ordering causes the variables x, y, and z to be constrained

in such a way that the integration only picks out positive values for the λ’s. The

solution of the inequation system leads to two different domains

0 < x , 0 ≤ y ≤ x

4
, −y ≤ z ≤ y ;

(A.9)

0 < x ,
x

4
≤ y ≤ x

2
, 3y − x ≤ z ≤ y .

The peak density of maxima of height ν0 is given by the average

Npk(ν0) dν = 〈|λ1λ2λ3| θ(λ3) δ(3)(η) δ(ν − ν0)〉 dν , (A.10)

which involves the integration of the joint probability function over the variables ηi

and λi (or x, y, z) taking into account the corresponding constraints. It is valuable

to consider the number density of peaks with parameters ν and x 1 per infinitesimal

range. This is done by introducing additional δ-functions in equation (A.10). The

result is

Npk(ν, x) dν dx =
e−ν2/2

(2π)2R3
∗

f(x)

[2π (1 − γ2)]1/2
exp

[
− (x − x∗)

2

2(1 − γ2)

]
dν dx , (A.11)

where R∗ =
√

3 σ1/σ2 is a measure of the characteristic coherence length of the field,

and f(x) contains the outcome of integrating the joint probability function over the

variables z and y

1Notice that in this case we cannot strictly say that these points are peaks since the variable x
can be positive or negative. We refer to them as peaks because, eventually, we impose the condition
x > 0.
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f(x) =

(
x3 − 3x

2

) {
erf

[
x

√
5

2

]
+ erf

[
x

2

√
5

2

]}
+

+

√
2

5π

[(
31x2

4
+

8

5

)
e−5x2/8 +

(
x2

2
− 8

5

)
e−5x2/2

]
. (A.12)

Taking into account the asymptotic behaviour of f(x) for the limits x → 0 and

x → ∞, this function can be reasonably approximated by

fapp(x) =
x8

13.2 (1 + 5x2/8)
for x < 1.5 ,

fapp(x) = x3 − 3x +
4.08

x2
for x ≥ 1.5 .

Finally, the integration over the variable x (for x > 0) leads to the number

density of peaks with height in the interval ν to ν + dν

Npk(ν) dν =
e−ν2/2

(2π)2R3
∗

G(γ, x∗) dν , (A.13)

where the numerical function

G(γ, x∗) =
1

[2π (1 − γ2)]1/2

∫ ∞

0

dx f(x) exp

[
− (x − x∗)

2

2(1 − γ2)

]
, (A.14)

has been accurately fitted by BBKS (see their equations [4.4] and [4.5]) in the range

0.3 < γ < 0.7 and x∗ > 1.

In the biased formation model, it is assumed that collapsed objects arise from

peaks of the smoothed density field (on a fixed scale) with height above a specific

threshold. Thus, we can compute the number density of these objects by integrating

the differential density (A.13) over the variable ν constrained in the interval (νc,∞)

npk(νc) =

∫ ∞

νc

Npk(ν) dν . (A.15)

A.2 The conditional number density

In hierarchical scenarios the evolution of density fluctuations on a given scale can

be altered by the presence of fluctuations on larger scales. The most notable ex-
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ample is the aforementioned cloud-in-cloud problem. Furthermore, it is well-known

that some regions of the space are almost devoided of galaxies (voids), while others

have a galaxy density much greater than that of the background. This fact can be

interpreted in the peak model framework. Since relaxed objects are supposed to

arise from peaks of the density field above a global critical height, the presence of

a background field is able to boost the object formation in those sites where the

background density is higher than the average (due to the decrease of the local

threshold) and suppress it in those sites where the background density is lower than

the average (because the local threshold is increased). In practice, the peak and the

background fields are generated by smoothing the same random density field δ(r)

on two different scales that we denote Rs and Rb respectively. Instead of writing

explicitly the scale dependence, we will use subscripts s and b to refer to quantities

concerning the peak and the background fields.

To quantify the influence of the background field on the peak evolution it is neces-

sary to calculate the number density of peaks on backgrounds with a specific height.

Let us begin with the calculation of the conditional probability P (νb|νs, x) dνb, which

gives the probability that the background field has height νb = δb/σ0b in an infinites-

imal range subject to the constraint that there is a peak with νs = δs/σ0s and scaled

Laplacian x 2. According to BBKS, conditional probabilities involving Gaussian

variables adopt a Gaussian form with mean equal to

〈YB ⊗ YA〉〈YA ⊗ YA〉−1Y †
A , (A.16)

and dispersion equal to

〈YB ⊗ YB〉 − 〈YB ⊗ YA〉〈YA ⊗ YA〉−1〈YA ⊗ YB〉 . (A.17)

The angular brackets indicate ensemble averages. The tensor product notation

YB ⊗ YA just builds a m× n matrix out of the vectors YB, of dimension m, and YA,

of dimension n. In this particular case YB = νb and YA = (νs, x). We have already

found the correlation between the peak variables 〈ν x〉 = γ. The other non-vanishing

correlations appearing in the calculations are

〈ν2
b 〉 = 1 , 〈νbνs〉 =

σ2
0h

σ0sσ0b

≡ ǫ , 〈νb x〉 =
σ2

1h

σ2sσ0b

= γsǫr1 , (A.18)

with the cross-momenta defined as

2It is not necessary to introduce more variables to characterise the peak because the background
variable νb does not correlate with y, z, and ζA, A = 4, 5, 6.
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σ2
jh =

∫ ∞

0

dk k2j+1

2π2
P (k) W (kRs) W (kRb) . (A.19)

The parameters ǫ and r1 = σ2
1h σ2

0s/(σ
2
0h σ2

1s) account for the correlations between

the peak and background fields resulting from the fact that both are obtained by

smoothing the same random field on two different scales. For physically interesting

power spectra and filtering functions, this kind of correlations decreases asymp-

totically to zero as the background smoothing radius increases. For instance, a

power-law power spectrum filtered with a Gaussian window leads to

ǫ =

(
RsRb

R2
h

)(n+3)/2

→
(

2Rs

Rb

)(n+3)/2

, r1 =

(
Rs

Rh

)2

→ 2

(
Rs

Rb

)2

, (A.20)

where R2
h = (R2

b + R2
s)/2. The limits hold for Rb ≫ Rs .

Finally, the conditional probability can be written as

P (νb|νs, x) dνb =
1√

2π ∆νb

exp

[
−(νb − ν̄b)

2

2(∆νb)2

]
dνb , (A.21)

with mean ν̄b and dispersion ∆νb given respectively by

ν̄b =
ǫ2

1 − γ2
s

[νs(1 − γ2
sr1) − γsx(1 − r1)],

(A.22)

∆ν2
b = 1 − ǫ2

1 − γ2
s

(1 − 2γ2
sr1 + γ2

sr
2
1) .

The second step consists of calculating the joint density of points with height

νb when the field is smoothed on scale Rb, and height νs and scaled Laplacian x

when it is filtered on scale Rs. This quantity is straightforwardly derived from

the differential number density Npk(νs, x) (see equation[A.11]) and the conditional

probability P (νb|νs, x)

Npk(νb, νs, x) dνbdνsdx = Npk(νs, x) dνsdxP (νb|νs, x) dνb . (A.23)

The integral of this expression over x, with the constraint x > 0, to ensure that

the points with height νs are peaks, yields
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Npk(νb, νs) dνb dνs = dνb dνs

∫ ∞

0

dxNpk(νs, x) P (νb|νs, x) =

=
G(γ̃, x̃∗)

(2π)2 R3
∗s

exp

[
−(νs − ǫνb)

2

2(1 − ǫ2)

]
e−ν2

b
/2dνb dνs√

2π (1 − ǫ2)
. (A.24)

The tilde variables γ̃, x̃∗ = γ̃ ν̃ have been introduced to express the integral in a

closed form

γ̃2 = γ2
s

[
1 + ǫ2 (1 − r1)

2

1 − ǫ2

]
, ν̃ =

γs

γ̃

(
1 − r1

1 − ǫ2

)[
νs

(
1 − ǫ2r1

1 − r1

)
− ǫνb

]
. (A.25)

The conditional number density Npk(νs|νb) dνs of peaks with height within the

interval νs to νs + dνs in backgrounds with height νb is derived by dividing the joint

density Npk(νb, νs) by the probability of finding a background. Taking into account

that this is a Gaussian probability, the conditional number density writes

Npk(νs|νb) dνs ≡ Npk(νb, νs)

P (νb)
dνs =

=
G(γ̃, x̃∗)

(2π)2 R3
∗s

√
1 − ǫ2

exp

[
−(νs − ǫνb)

2

2(1 − ǫ2)

]
dνs . (A.26)

To obtain the density of peaks exceeding a given threshold at a point where the

background field has height νb, it is necessary to integrate the above expression over

νs with the constraint νs > νc

npk(νc|νb) =

∫ ∞

νc

Npk(ν |νb) dν . (A.27)

Finally, the effect produced by a background field on the peak population can

be quantified by means of the enhancement factor, defined as the ratio

E(νb) =
npk(νc|νb)

npk(νc)
. (A.28)
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B
Eccentricities and Semiaxes

Given a triaxial system with isodensity contours ρiso(r), semiaxes a1 ≥ a2 ≥ a3 and

labelling radii r defined as

r =

[
1

3

(
a2

1 + a2
2 + a2

3

)]1/2

, (B.1)

the density at r = (r, θ, ϕ) takes the form

ρ(r) = ρiso(r)

[
1 − e2

p(r) + e2
s (r)

3

]

×
[
sin2 θ cos2 φ +

sin2 θ sin2 φ

1 − e2
sp(r)

+
cos2 θ

1 − e2
ps(r)

]
, (B.2)

where the azimutal axis is taken aligned along with the major axis and eps and esp

stand for the primary or secondary eccentricities, ep and es, respectively, defined as

ep =

(
1 − a2

3

a2
1

)1/2

and es =

(
1 − a2

2

a2
1

)1/2

, (B.3)

and the remaining quantity depending on the orientation of the x and y Cartesian

axes relative to the minor and intermediate ellipsoid semiaxes. The spherically
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averaged density at r is then

ρ(r) =
ρiso(r)

3

[
1 − e2

p(r) + e2
s (r)

3

]
G(r), (B.4)

G(r) = a2
1(r)

[
1

a2
1(r)

+
1

a2
2(r)

+
1

a2
3(r)

]
. (B.5)

Dividing equation (B.2) by equation (B.5), we obtain

1+
δρ(r)

ρ(r)
=

3

G(r)

[
sin2θ cos2φ +

sin2θ sin2φ

1−e2
sp(r)

+
cos2θ

1−e2
ps(r)

]
. (B.6)

Then, using the definitions (B.3), the mean squared density contrast fluctuation

over the sphere of radius r leads to

〈(
δρ(r)

ρ(r)

)2
〉

=

−2

5

{
1 − 3[(1 − e2

p)
2(1 − e2

s )
2 + (1 − e2

p)
2 + (1 − e2

s )
2]

[(1 − e2
p)(1 − e2

s ) + (1 − e2
p) + (1 − e2

s )]
2

}
(r).

(B.7)

Using the Poisson equation relating δΦ(r)/Φ(r) to δρ(r)/ρ(r) and integrating

over the solid angle, we can express the mean squared potential and mean crossed

density-potential fluctuations as function of the mean squared density fluctuation

(see Salvador-Solé et al. 2012b).

136



C
Accurate Conditional Peak Number

Density

As shown in Manrique et al. (1998), the conditional number density Nnest(σ0, δc|σ′
0, δc)

of peaks with δc per infinitesimal ln σ−1
0 subject to being located in the collapsing

cloud of non-nested peaks with δc at σ′
0 < σ0 is well-approximated by the integral

over the distance r from the background peak out to the radius Rp of the collaps-

ing cloud in units of q(M, t)R of the conditional number density of peaks with δc

per infinitesimal ln σ−1
0 , subject to being located at a distance r from a background

peak, N(σ0, δc|σ′
0, δc, r),

Nnest(σ0, δc|σ′
0, δc) =C

∫ 1

0

dr 3r2N(σ0, δc|σ0, δc, r) . (C.1)

The conditional number density in the integrant on the right of equation (C.1) can

be obtained, as the ordinary number density (3.16), from the conditional density of

peaks per infinitesimal x and ν, subject to being located at the distance r from a

background peak with ν at σ′
0, calculated by BBKS. The result is (Manrique et al.
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1998)

N(σ0, δc|σ′
0, δc, r)d ln σ−1

0

=
〈x〉[σ̃0(r), δc]

(2π)2 R3
⋆ γ e(r)

e
−

[ν−ǫ(r) ν′(r)]2

2e2(r) d ln σ−1
0 , (C.2)

where 〈x〉[σ̃0(r), δc] is the average curvature of peaks with δc at σ0 located at a

distance r from a background peak with identical density contrast at σ′
0. This

latter function takes just the same form as the usual average curvature 〈x〉(σ0, δc)

for the properly normalised (by integration over x from zero to infinity) curvature

distribution function

h(x, σ0, δc) = f(x) e
−

(x−x⋆)2

2(1−γ̃2) , (C.3)

f(x) =
x3 − 3x

2

{
erf

[(
5

2

)1/2

x

]
+ erf

[(
5

2

)1/2
x

2

]}

+

(
2

5π

)1/2[(
31x2

4
+

8

5

)
e−

5x2

8 +

(
x2

2
− 8

5

)
e−

5x2

2

]
, (C.4)

but for x̃⋆(r) ≡ γ̃(r) ν̃(r) instead of x⋆ ≡ γ ν, being

γ̃2(r) = γ2

[
1 + ǫ(r)2 (1 − r1)

2

1 − ǫ(r)2

]
(C.5)

ν̃(r)=
γ

γ̃(r)

1 − r1

1 − ǫ(r)2

[
ν

(
1 − ǫ(r)2r1

1 − r1

)
− ǫ(r)ν ′(r)

]
. (C.6)

In equations (C.2), (C.5) and (C.6), we have used the following notation: e(r) =√
1 − ǫ(r)2, ǫ(r) = (σ2

0(Rh) /[σ0σ
′
0]g(r, σ′

0), and ν ′(r) = g(r, σ′
0)δ(r)/σ

′
0 and r1 =

[σ0(R)σ1(Rh)/(σ1(R)σ0(Rh))]
2, where Rh is defined as usual and g(r, σ′

0) is {1 − [∆δ′(r)]2/σ′
0}

1/2
,

being δ′(r) and ∆δ′(r) the mean and rms density contrasts at r from the background

peak, respectively given by

δ(r) =
γδpk

1 − γ2

(
ψ

γ
+

∇2ψ

u2

)
− xσ0

1 − γ2

(
γψ +

∇2ψ

u2

)
(C.7)
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[∆δ(r)]2 = σ2
0

{
1− 1

1 − γ2

[
ψ2 +

(
2γψ +

∇2ψ

u2

) ∇2ψ

u2

]

−5

(
3ψ′

u2r
− ∇2ψ

u2

)2

− 3(ψ′)2

γu2

}
, (C.8)

where ξ(r) is the mass correlation function at the separation r and scale R, ψ is

the ratio ξ(r)/ξ(0), ψ′ is its r-derivative and u is defined as [q(M, t)R]2σ2(R)/σ0(R).

Lastly, the factor C on the right, defined as

C ≡ 4πs3N(σ′
0, δc)

3N(σ0, δc)

∫ s

0

dr 3r2 N(σ0, δc|σ′
0, δc, r) (C.9)

with s equal to the mean separation between the larger scale non-nested peaks drawn

from their mean number density1, is to correct for the overcounting of background

peaks in N(σ0, δc|σ′
0, δc, r) as they are not explicitly required to be non-nested.

The simpler version of the conditional peak number density given in Section 5.2.2

can be readily recovered from the present one by ignoring the radial dependence of

the typical spherically averaged density profile around peaks, that is taking δ(r) = δc

and ∆δ(r) = 0.

1This must be calculated iteratively, although two iterations, starting with C = 1, are enough
to obtain an accurate result.
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Manrique A., Salvador-Solé E., 1996, ApJ, 467, 504
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