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Resumen

En esta tesis se estudian los beneficios de distintos métodos de calibra-
ción sobre la previsión estacional y la mejora del pronóstico estacional
de recursos hídricos e incendios forestales. Sequías e incendios son un
problema consustancial a la región Mediterránea y es probable que
puedan empeorar si el cambio climático continúa. Ambos riesgos son
una fuente de costes económicos importantes, daños en el medio am-
biente y, en el caso de los incendios forestales, incluso de pérdidas
humanas. Estos impactos han fomentado el interés por el desarro-
llo de protocolos de decisión que permitan reducir la vulnerabilidad
a través de medidas de adaptación y mitigación. En ese sentido la
predicción estacional podría participar de esta tarea anticipando el
comportamiento de los recursos hídricos y los incendios forestales a
meses vista. Además, la previsión estacional también puede dar lugar
a marcos operativos que puedan funcionar tanto en las condiciones
climáticas actuales cómo en las futuras.

Sin embargo, en latitudes extra-tropicales la previsibilidad estacio-
nal generalmente se considera bastante limitada y, en consecuencia,
las predicciones estacionales rara vez se utilizan en la toma de de-
cisiones. No obstante, hay estudios que sugieren que los métodos de
calibración estadística podrían ayudar a mejorar las previsiones de los
modelos actuales. Por lo tanto, la brecha existente entre los objetivos
de los usuarios finales y la investigación teórica requiere trabajos que
permitan demostrar la utilidad de las predicciones estacionales. Así
pues, siguiendo esta línea de investigación y para lograr dicho obje-
tivo este proyecto se ha estructurado en tres sub-objetivos: evaluación
del rendimiento de un modelo de previsión estacional operativo y de
sus calibraciones, el pronóstico estacional de los recursos hídricos y el
pronóstico estacional de los incendios forestales.
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Las salidas del modelo de predicción estacional ECMWF System-4 se
han calibrado mediante las técnicas MOS-analog, regresión lineal y
corrección media del sesgo sobre cuatro dominios: Europa, España,
Cataluña y la cuenca del río Muga. La validación de estos resultados
y su comparación con la climatología, persistencia y las salidas sin
calibrar del S4 se ha desarrollado desde una perspectiva determinista
y probabilística mediante parámetros como el MAE, los diagramas de
Taylor, las curvas ROC, el diagrama de atributos o las curvas de valor
económico.

Una vez determinado que el embalse de la Boadella es un buen caso
de estudio tanto por sus características geomorfológicas así cómo por
la longitud de sus series de datos (1971-2013) se procede a la selección
física de los predictores para la construcción del modelo de regresión
múltiple (MLR) que permita reproducir las anomalías mensuales de
caudal de entrada, salida y volumen de dicha infraestructura hidráu-
lica. El proceso que se sigue es una previsión de tipo out-of-sample
perfect prognosis con total screening de las variables conduciendo a un
elevado número de modelos que son filtrados de acuerdo con la varia-
bilidad explicada, el MAE y el coeficiente de información de Akiake.
Finalmente, de entre estos modelos se escoge aquel que con el mí-
nimo número de predictores sea capaz de maximizar la variabilidad
explicada.

Con cada uno de los modelos seleccionados en el apartado anterior se
ha realizado la previsión hasta un horizonte de 7 meses con los datos
sin post-proceso del ECMWF-System 4 y las observaciones E-OBS.
También se ha evaluado la bondad de las previsiones en comparación
con los valores climáticos y las observaciones antecedentes mediante
la metodología desarrollada en la tesis. Después, la previsibilidad
estacional del caudal y volumen de la Boadella ha sido evaluada a
través de varios métodos de pronóstico estacional.

Por último, con respecto al pronóstico estacional de incendios fores-
tales el primer paso ha sido modelizar el área quemada durante el



verano (JJAS) en Cataluña a través de un MLR considerando las
condiciones de sequía presentes y antecedentes (mediante los índices
SPI/SPEI). Posteriormente, el ajuste ha sido evaluado bajo distintas
configuraciones de previsión estacional.

Entre los resultados obtenidos se ha observado que la mejor predicción
del System-4 ECMWF, ya sea calibrado o sin calibrar, se concentra en
el primer mes de previsión. A ese horizonte las predicciones determi-
nistas mejoran la climatología y la persistencia en la mayoría de meses
y para todas las variables consideradas. La evaluación probabilística,
por su parte, se ha mostrado especialmente positiva en los meses de
invierno. Además, también se ha comprobado el valor añadido de
las técnicas de post-proceso estadístico (MOS-analog, regresión lineal
y corrección media del sesgo). Dichas técnicas siempre mejoran las
salidas del modelo original mediante la corrección de los sesgos del
modelo de primer orden. Sin embargo, el resultado de la calibración
MOS-analog insinúa la posibilidad de ir más allá de estos resultados
si se pudiese aumentar suficientemente la cantidad de meses dónde
buscar situaciones análogas.

En referencia a las aplicaciones para las variables del embalse (ano-
malías en el caudal de entrada, salida y volumen) nuestro estudio
ha revelado que las tres variables se pueden modelizar mediante re-
gresión lineal múltiple (MLR). En los tres casos los meses de verano
mostraron una previsibilidades más allá del primer mes, un resultado
significativo para los gestores hídricos. Por otra parte, los resultados
muestran también que en el caso de las anomalías de volumen los
pronósticos estacionales a través de MLR podrían empezar a sustituir
operativamente las previsiones climatológicas actuales. Esto también
es cierto para algunos meses del caudal de salida (especialmente los
de mayor demanda hídrica, JA). Para las anomalía de caudal de en-
trada, sin embargo, aunque Julio muestra un comportamiento muy
bueno, hace falta investigar mejor las relaciones del caudal de salida
con los diversos predictores para intentar mejorar el rendimiento de



los modelos y así poder llegar a sustituir la climatología cómo método
de previsión.

Por último, en relación con los incendios forestales, el vínculo existente
entre el área quemada en verano (JJAS) en Cataluña y las condiciones
de sequía anteriores nos ha permitido modelizar satisfactoriamente el
área quemada a través de un modelo MLR. Dicho modelo, además,
proporciona una estimación de la anomalía positiva o negativa del
área quemada antes de la estación de incendios y puede ser fácilmente
adaptado a otras regiones de tipo Mediterráneo.



Abstract

This thesis studies the benefits of different calibration approaches on
seasonal forecasting and the improvement of seasonal prognosis of
water resources and forest fires. Droughts and wildfires are an inher-
ent problem to the Mediterranean and are likely to worsen if climate
change continues. Both hazards are a source of important economic
costs, environmental damage and, in the case of wildfires, even life
losses. These impacts have encouraged policy- and decision-makers
to reduce vulnerability by placing great efforts in the development of
mitigation and adaptation strategies. Seasonal forecasting could help
with this task by foretelling the behaviour of water resources and
wildfire with months in advance. Furthermore, it has the capacity to
provide operational frameworks that can work both in present and
future climate conditions.

However, seasonal predictability in extra-tropical latitudes is usually
considered rather limited and, consequently, seasonal forecasts are sel-
dom used in decision-making. There are studies, though, suggesting
that calibration methods could help improving current model’s out-
put. Thus, the existing gap between end-user goals and theoretical
research needs more work to demonstrate the utility of seasonal fore-
casts. To achieve this objective this study has been divided in three
sub-objectives: skill assessment, seasonal forecast of water resources
and seasonal forecast of forest fires.

The skill assessment comprises an evaluation of the skill of the raw
ECMWF System-4 output in Europe, Spain, Catalonia and the Muga
river basin; and the study of the impact on the ECMWF System-
4 performance of the MOS-analog and linear regression calibrations
in comparison to mean bias correction. As for the seasonal forecast
of water resources the application began with the modelling of the
Boadella reservoir in-flow, out-flow and volume anomalies through a
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Multiple Linear Regression (MLR) procedure. Afterwards, the sea-
sonal predictability of the Boadella predictands has been evaluated
through several seasonal forecast approaches. Finally, regarding the
seasonal forecast of wildfires the first step has been to model summer
(JJAS) burned area in Catalonia through a MLR with antecedent and
current year drought conditions. Subsequently, the MLR performance
has been tested under different seasonal forecast configurations.

Among the results obtained it has been found that most of the skill
of the ECMWF System-4 is focused in the first lead. At this hori-
zon deterministic forecasts improve climatology and persistence in the
majority of months and for all the variables considered. The proba-
bilistic assessment, on the other hand, showed this skill was mainly
centred in the winter months. Also, the added value of calibration
post-processing techniques has been checked. These techniques al-
ways ameliorate the skill of the original model output by correcting
first order biases. Nevertheless, the MOS-analog outcome has also
hinted the possibility to go beyond these results if the analog pool
was sufficiently increased.

In reference to the reservoir’s applications the perfect prognosis ap-
proach revealed that in-flow, volume and out-flow anomalies can be
modelled through multiple linear regression (MLR). In all three cases
summer months showed enhanced predictability way beyond the first
lead, a significant result for water managers. Moreover, the results
proved that volume anomaly seasonal forecasts could begin the opera-
tional switch from customary climatology to another forecast strategy
based on MLR models. This is also true for some months in the out-
flow’s modelling. For the in-flow case, though, there is still further
research needed before reaching that sate. Finally, regarding forest
fires, exploiting the relationship between summer burned area and
preceding drought conditions can lead to MLR models that provide
a seasonal estimate of the expected above/below-normal summer fire
burned area in Mediterranean-type regions.



Un camí de molts móns





Contents

List of Figures xix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Antecedents & Objective . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Seasonal forecasting 9
2.1 What is seasonal forecasting? . . . . . . . . . . . . . . . . . . . . 9
2.2 Seasonal Predictability . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Sea Surface Temperature (SST) . . . . . . . . . . . . . . . 12
2.2.2 Soil moisture . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Snow and sea-ice cover . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Stratosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Methodological approaches . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Dynamical . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Statistical . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Mediterranean water scarcity . . . . . . . . . . . . . . . . 18
2.4.2 Mediterranean summer wildfires . . . . . . . . . . . . . . . 20

3 Datasets 23
3.1 European Observational Dataset (E-OBS) . . . . . . . . . . . . . 23
3.2 ECMWF System-4 (S4) . . . . . . . . . . . . . . . . . . . . . . . 26

xv



3.3 Hydrological data . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Fire data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Regions of study 33
4.1 Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Spain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Catalonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Muga river basin . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Boadella reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Common methods 49
5.1 Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Bilinear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . 52
5.4 Leave-one-out cross validation . . . . . . . . . . . . . . . . . . . . 52

5.4.1 Uncertainty estimation . . . . . . . . . . . . . . . . . . . . 54
5.5 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5.1 MOS-Analog . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5.2 Linear regression . . . . . . . . . . . . . . . . . . . . . . . 56
5.5.3 Mean bias correction . . . . . . . . . . . . . . . . . . . . . 57

5.6 Multiple Linear Regression modelling . . . . . . . . . . . . . . . . 57
5.6.1 Akaike Information Criterion . . . . . . . . . . . . . . . . 58

5.7 Forecast Verification . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.7.1 Validation from deterministic forecasts . . . . . . . . . . . 60

5.7.1.1 Goodness-of-Fit . . . . . . . . . . . . . . . . . . . 60
5.7.1.2 Pearson correlation coefficient . . . . . . . . . . . 61
5.7.1.3 MAE, MSE and RMSE . . . . . . . . . . . . . . 62
5.7.1.4 Taylor diagram . . . . . . . . . . . . . . . . . . . 63

5.7.2 Validation from probabilistic forecasts . . . . . . . . . . . 64
5.7.2.1 Contingency tables . . . . . . . . . . . . . . . . . 64
5.7.2.2 Verification Rank Histogram . . . . . . . . . . . . 66
5.7.2.3 Brier Score . . . . . . . . . . . . . . . . . . . . . 67
5.7.2.4 Attributes diagram . . . . . . . . . . . . . . . . . 68

xvi



5.7.2.5 Ranked Probability Score . . . . . . . . . . . . . 69
5.7.2.6 ROC curve . . . . . . . . . . . . . . . . . . . . . 71
5.7.2.7 Economic Value . . . . . . . . . . . . . . . . . . . 72

6 Seasonal forecasting: calibration for improvement 77

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Region selection and interpolation . . . . . . . . . . . . . . 79
6.2.2 S4 ensemble recombination . . . . . . . . . . . . . . . . . . 80
6.2.3 S4 ensemble unification . . . . . . . . . . . . . . . . . . . . 82
6.2.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2.5 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.1 Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.2 Spain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.3 Catalonia . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.4 Muga river basin . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Discussion & Conclusions . . . . . . . . . . . . . . . . . . . . . . . 133

7 Seasonal forecasting applications: water reservoirs 139

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.4 Discussion & Conclusions . . . . . . . . . . . . . . . . . . . . . . . 172

8 easonal forecasting applications: summer fires 177

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.2.1 Drought indicators . . . . . . . . . . . . . . . . . . . . . . 179
8.2.2 Burned area analysis . . . . . . . . . . . . . . . . . . . . . 180
8.2.3 Fire-drought model . . . . . . . . . . . . . . . . . . . . . . 182

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.4 Discussion & Conclusions . . . . . . . . . . . . . . . . . . . . . . . 190

xvii



9 Conclusions 195
9.1 Overall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.2 Contributions to the field . . . . . . . . . . . . . . . . . . . . . . . 204

10 Prospects & Future work 209

References 215

xviii



List of Figures

2.1 Weather to climate forecasting time-scales. . . . . . . . . . . . . . 10

3.1 E-OBS station cover map for maximum temperature . . . . . . . 25
3.2 E-OBS monthly median standard error map for precipitation . . . 26
3.3 S4 forecast horizon example . . . . . . . . . . . . . . . . . . . . . 28
3.4 Burned area (BA) in each record of the SPIF database . . . . . . 31

4.1 Europe’s relief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Europe annual precipitation climatology . . . . . . . . . . . . . . 35
4.3 Europe seasonal precipitation climatology . . . . . . . . . . . . . 36
4.4 Europe’s seasonal maximum and minimum temperature climatolo-

gies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Iberian Peninsula’s relief . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Spain annual precipitation climatology . . . . . . . . . . . . . . . 39
4.7 Spain seasonal precipitation climatology . . . . . . . . . . . . . . 40
4.8 Spain seasonal maximum and minimum temperature climatologies 41
4.9 Catalonia’s relief . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.10 Muga basin’s location and relief . . . . . . . . . . . . . . . . . . . 43
4.11 Muga basin’s climogram. . . . . . . . . . . . . . . . . . . . . . . . 44
4.12 Boadella reservoir location . . . . . . . . . . . . . . . . . . . . . . 45
4.13 Muga river Boadella in-flow climatology . . . . . . . . . . . . . . 46
4.14 Boadella reservoir volume climatology . . . . . . . . . . . . . . . . 46
4.15 Boadella out-flow climatology . . . . . . . . . . . . . . . . . . . . 47
4.16 Boadella storage series for the period 1981-2010. . . . . . . . . . . 47
4.17 Boadella Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xix



5.1 Quantile-Quantile plot example . . . . . . . . . . . . . . . . . . . 51
5.2 Scheme of a leave-one-out cross validation . . . . . . . . . . . . . 53
5.3 Anscombe’s quartet . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 General form of a Taylor diagram . . . . . . . . . . . . . . . . . . 64
5.5 General 2× 2 contingency table . . . . . . . . . . . . . . . . . . . 65
5.6 General form of a Verification Rank Histogram . . . . . . . . . . . 67
5.7 Example of an attribute diagram . . . . . . . . . . . . . . . . . . 69
5.8 Example of a ROC curve . . . . . . . . . . . . . . . . . . . . . . . 72
5.9 Contingency table for a dichotomous cost/loss problem . . . . . . 73
5.10 Example of an economic value envelope curve . . . . . . . . . . . 75

6.1 Small region expansion-selection scheme . . . . . . . . . . . . . . 80
6.2 MOS-analog calibration scheme . . . . . . . . . . . . . . . . . . . 84
6.3 Europe’s Taylor diagrams for precipitation at lead one for the best

and worst performing months . . . . . . . . . . . . . . . . . . . . 90
6.4 Europe’s precipitation MAE plot for every month and lead includ-

ing climatological control . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 Europe’s Taylor diagrams for minimum temperature at lead one

for the best and worst performing months . . . . . . . . . . . . . 93
6.6 Europe’s minimum temperature MAE plot for every month and

lead including climatological control . . . . . . . . . . . . . . . . . 94
6.7 Europe’s minimum temperature dBSS improvement over climate

for all months and leads for BC-GE S4. . . . . . . . . . . . . . . . 95
6.8 Europe’s Taylor diagrams for maximum temperature at lead one

for the best and worst performing months . . . . . . . . . . . . . 97
6.9 Europe’s maximum temperature MAE plot for every month and

lead including climatological control . . . . . . . . . . . . . . . . . 98
6.10 Europe’s maximum temperature dBSS improvement over climate

for all months and leads for BC-GE S4. . . . . . . . . . . . . . . . 99
6.11 Spain’s Taylor diagrams for precipitation at lead one for the best

and worst performing months . . . . . . . . . . . . . . . . . . . . 101
6.12 Spain’s precipitation MAE plot for every month and lead including

climatological control . . . . . . . . . . . . . . . . . . . . . . . . . 102

xx



6.13 Spain’s precipitation dBSS improvement over climate for all months
and leads for BC-GE S4. . . . . . . . . . . . . . . . . . . . . . . . 103

6.14 Spain’s Taylor diagrams for minimum temperature at lead one for
the best and worst performing months . . . . . . . . . . . . . . . 104

6.15 Spain’s minimum temperature MAE plot for every month and lead
including climatological control . . . . . . . . . . . . . . . . . . . 105

6.16 Spain’s minimum temperature dBSS improvement over climate for
all months and leads for BC-GE S4. . . . . . . . . . . . . . . . . . 106

6.17 Spain’s Taylor diagrams for maximum temperature at lead one for
the best and worst performing months . . . . . . . . . . . . . . . 107

6.18 Spain’s maximum temperature MAE plot for every month and lead
including climatological control . . . . . . . . . . . . . . . . . . . 108

6.19 Spain’s maximum temperature dBSS improvement over climate for
all months and leads for BC-GE S4. . . . . . . . . . . . . . . . . . 109

6.20 Catalonia’s Taylor diagrams for precipitation at lead one for the
best and worst performing months . . . . . . . . . . . . . . . . . . 111

6.21 Catalonia’s precipitation MAE plot for every month and lead in-
cluding climatological control . . . . . . . . . . . . . . . . . . . . 112

6.22 Catalonia’s precipitation dBSS improvement over climate for all
months and leads for BC-GE S4. . . . . . . . . . . . . . . . . . . 113

6.23 Catalonia’s Taylor diagrams for minimum temperature at lead one
for the best and worst performing months . . . . . . . . . . . . . 115

6.24 Catalonia’s minimum temperature MAE plot for every month and
lead including climatological control . . . . . . . . . . . . . . . . . 116

6.25 Catalonia’s minimum temperature dBSS improvement over climate
for all months and leads for BC-GE S4. . . . . . . . . . . . . . . . 117

6.26 Catalonia’s Taylor diagrams for maximum temperature at lead one
for the best and worst performing months . . . . . . . . . . . . . 119

6.27 Catalonia’s maximum temperature MAE plot for every month and
lead including climatological control . . . . . . . . . . . . . . . . . 120

6.28 Catalonia’s maximum temperature dBSS improvement over cli-
mate for all months and leads for BC-GE S4. . . . . . . . . . . . . 121

xxi



6.29 Muga basin’s Taylor diagrams for precipitation at lead one for the
best and worst performing months . . . . . . . . . . . . . . . . . . 123

6.30 Muga basin’s precipitation MAE plot for every month and lead
including climatological control . . . . . . . . . . . . . . . . . . . 124

6.31 Muga_basin’s precipitation dBSS improvement over climate for all
months and leads for BC-GE S4. . . . . . . . . . . . . . . . . . . 125

6.32 Muga basin’s Taylor diagrams for minimum temperature at lead
one for the best and worst performing months . . . . . . . . . . . 126

6.33 Muga basin’s minimum temperature MAE plot for every month
and lead including climatological control . . . . . . . . . . . . . . 127

6.34 Muga_basin’s minimum temperature dBSS improvement over cli-
mate for all months and leads for BC-GE S4. . . . . . . . . . . . . 128

6.35 Muga basin’s Taylor diagrams for maximum temperature at lead
one for the best and worst performing months . . . . . . . . . . . 130

6.36 Muga basin’s maximum temperature MAE plot for every month
and lead including climatological control . . . . . . . . . . . . . . 131

6.37 Muga_basin’s maximum temperature dBSS improvement over cli-
mate for all months and leads for BC-GE S4. . . . . . . . . . . . . 132

7.1 Boadella monthly mean water demands from agriculture and urban
areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2 Modelled and observed in-flow, out-flow and volume anomaly val-
ues of the best perfect prognosis MLR model . . . . . . . . . . . . 151

7.3 In-flow forecast strategy with the lowest MAE at the Boadella
reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4 Percentage of October’s in-flow MAE reduction with respect to
climatology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5 In-flow forecast strategy with the highest Economic Value at the
Boadella reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.6 Economic value plots and attributes diagram for October’s in-flow
lower and upper thirtile forecasts at lead one . . . . . . . . . . . . 156

7.7 Attributes diagram for October’s in-flow lower and upper thirtile
persistence forecasts at lead one . . . . . . . . . . . . . . . . . . . 157

xxii



7.8 Volume forecast strategy with the lowest MAE at the Boadella
reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.9 Percentage of July’s volume MAE reduction with respect to clima-
tology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.10 Volume forecast strategy with the highest Economic Value at the
Boadella reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.11 Economic value plots for July’s volume lower and upper thirtile
forecasts at lead five . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.12 Attributes diagram for July’s volume lower and upper thirtile per-
sistence forecasts at lead five . . . . . . . . . . . . . . . . . . . . . 164

7.13 Out-flow forecast strategy with the lowest MAE at the Boadella
reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.14 Percentage of July’s out-flow MAE reduction with respect to cli-
matology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.15 Out-flow forecast strategy with the highest Economic Value at the
Boadella reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.16 Economic value plots for July’s outflow lower and upper thirtile
forecasts at lead three . . . . . . . . . . . . . . . . . . . . . . . . 170

7.17 Attributes diagram for July’s out-flow lower and upper thirtile
A+Clim forecasts at lead three . . . . . . . . . . . . . . . . . . . 171

8.1 Domain of study and dominant land cover from the Global Land
Cover dataset GLC2000 . . . . . . . . . . . . . . . . . . . . . . . 178

8.2 Summer Burned Area (BA) in Catalonia . . . . . . . . . . . . . . 181
8.3 Out-of-sample prediction for BA using current-year and antecedent

SPEI as predictors . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.4 ROC diagram for BA using an MLR model . . . . . . . . . . . . . 186
8.5 MLR-BA model results considering three forecast approaches . . . 188
8.6 ROC diagrams for (a) S4, (b) climatology forecast and (c) persis-

tence forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

xxiii





CHAPTER 1

Introduction

1.1 Motivation

The recent IPCC Working Group II reports (IPCC, 2014) warn of the potential
growth of natural risks around the world due to the steady increase in tempera-
tures (IPCC, 2013a). These comprise a broad range of different phenomena such
as heat waves, droughts, flooding, cold spells, cyclones or wildfires. In this con-
text the Mediterranean area, being amidst Africa and the Eurasian continents,
has been identified as a climate change hot-spot for its possible impacts on the
population’s safety and way of life (Diffenbaugh et al., 2007; Diffenbaugh and
Giorgi, 2012).

However, among the previous threats droughts and wildfires are already an
inherent problem to the Mediterranean and are likely to worsen if the warming
continues (see i.e. Flannigan et al., 2009; Dai, 2011; Turco et al., 2014). Droughts,
for example, have been documented in the region for many centuries (Barriendos
et al., 2003; Brewer et al., 2007) and are still a major trouble in modern societies
(see i.e. Nola et al., 2008). On the other hand, Mediterranean summer fires com-
prise the greatest part of the 500000 hectares and the 50000 fires that each year
burn in Europe (San-Miguel-Ayanz et al., 2013b). Regularly then, we find that
both hazards are a source of important economic costs, environmental damage
and, in the case of wildfires, even life losses. (Carroll et al., 2007; Moreira et al.,
2011).
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1. Introduction

Therefore, great efforts are placed on developing mitigation and adaptation
strategies to reduce our vulnerability to these hazards. Some of them are de-
tailed in the hydrologic administration plans set up in Spain and Catalonia to
coordinate management response to water scarcity (see i.e. MIMAM, 2007; ACA,
2009a); and others even have noticeable achievements (see i.e. Plana, 2011) such
as the observed decreasing trends of summer number of fires and burned area at-
tained in Catalonia (Turco et al., 2013b). Nevertheless, there is a high potential
mitigation tool that despite being in operational stage for several years, still has
not been widely adopted: seasonal forecasting. Theoretically, this field could help
reducing drought and wildfire impacts by foretelling their behaviour with months
in advance (Mavsar et al., 2013; Dutra et al., 2014). Furthermore, it also has the
capacity to establish operational frameworks that can work both in present and
future climate conditions.

Seasonal forecasting tries to foretell climate anomalies at time-scales com-
prised between one month and one year (see chapter 2). This places seasonal
forecasts in a temporal framework of great interest for many societal sectors and
economic users (Doblas-Reyes et al., 2013). However, seasonal predictability in
extra-tropical latitudes is often deemed as complex and limited to some seasons
or events and, consequently, it has not been widely adopted in decision-making
(i.e. Brands et al., 2012; Iglesias and Garrote, 2014). The resolution to undertake
this thesis, though, was triggered by the works of Palmer and Anderson (1994);
Llasat et al. (2010) and the technical memorandum of the ECMWF System-4
(S4, hereafter; Molteni et al., 2011). These studies suggest that there could be
coherent signals in the models coming from the observed general circulation and
other inertial climatic factors (see chapter 2). Further research confirmed that
calibration methods could help to improve the model’s output (i.e. Johnson and
Bowler, 2009; Boer et al., 2013). Additionally, the existence of a gap between
end-user goals and theoretical research and the subsequent need for applications
demonstrating seasonal forecast utility offered a window of opportunity for this
project (see i.e. Johnston et al., 2004; Schneider and Garbrecht, 2006; Garbrecht
and Schneider, 2007; Kumar, 2009; Coelho and Costa, 2010).
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1.2 Challenges

In spite of the steady advances, seasonal forecasting has to face many theoreti-
cal and practical challenges to become an everyday tool in our societies. These
challenges are related either to accurate skill assessment, the identification of fun-
damental uncertainties and knowledge gaps, development and implementation of
improvement strategies or the demonstration of useful applications in different
fields. Works such as Schwierz et al. (2006), Koenigk and Mikolajewicz (2009),
Doblas-Reyes et al. (2013), Weisheimer and Palmer (2014) and many others sug-
gest the most important to be,

• Establish the skill of each new forecast system and/or configuration so as
to clearly identify the progress achieved and its predictive limits. Actually,
with every new model instalment it is vital to clearly assess the improve-
ments with respect to its predecessors and/or their contemporaries. This
can be also related to the evaluation of uncertainties and predictability
limits that might derive in the identification of mechanisms that were not
previously considered in the models.

• Determine an optimal number of verification techniques to evaluate the
desired aspects of an issued forecast so as the information could be com-
municated clearly both to the academic world and end-users. In this sense
it is vital to test and introduce any new method or strategy that allows us
to look at the forecast from different perspectives and assess whether it can
be used to better characterize the predictions.

• Improve the ocean-atmospheric and land-surface coupled models by identi-
fying the main sources of uncertainty and the most influencing predictability
features. This can be achieved through the implementation of physical re-
lationships not considered before, parametrization improvement, reduction
or elimination of physical equations’ approximations, enhancement of initial
condition assimilation and the increase of model resolution.

• Characterize the skill of the models at different scales from planetary to
local domains. Since most of the seasonal forecasting models offer coarse
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resolutions this involves the application of downscaling techniques. Often
these methods are used to resolve higher resolution features that are not
well represented in the raw model output.

• Improvement of model output through calibration. The raw model fore-
casts contain biases and the application of linear and non-linear calibration
techniques can be used to correct them. However, the identification of the
best techniques it is not straightforward and might depend on the domain
and variable considered as well as in the nature of the calibration technique
itself.

• Prove that the information provided by current seasonal forecast systems
can be already useful for certain applications. Nowadays most end-users do
not rely on seasonal forecasts because there are still few implementations
that combine users needs and vulnerabilities to state the advantages of
using the limited skill of current forecasts or the predictability hidden in
antecedent observations. This often requires a fluid knowledge exchange
between researchers and users to elaborate specific verification solutions to
ease the transferability of the message and maximize its utility.

1.3 Antecedents & Objective

This thesis is continuation of a seasonal forecast research line within the GAMA
group (Meteorological Hazards Analysis Team) and it has the support of the
Catalan Water Agency (ACA) and it is also considered in the HYMEX interna-
tional program. Some of the ideas carried out in this thesis were firstly shaped in
the CENIT-SOSTAQUA project where the use of seasonal data extracted from
low resolution coloured charts showed some potential in the forecast of volume
anomalies (Llasat et al., 2010). Others implied the adaptation and development of
downscaling calibration methods based on past and present collaborations with
Électricité de France (EDF-DTG) and the University of Grenoble (Llasat and
Puigcerver, 1997; Gibergans-Báguena and Llasat, 2007; Llasat et al., 2010); the
inspiration from the integration of meteorological and hydrological models at dif-
ferent scales (Quintana-Seguí et al., 2008, 2009, 2010); the conceptual influence
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from projects AMPHORE and ESTCENA (Altava-Ortiz et al., 2006; Herrera
et al., 2011; Turco et al., 2011); and the promising results of wildfire modelling
in our group (Turco et al., 2013a,b, 2014). Hence, considering the contemporary
challenges of the field and the aforementioned antecedents our main objective for
this thesis is:

The study of the benefits of different calibration approaches
on seasonal forecasting and the development of strategies to
improve the seasonal prognosis of water resources and forest
fires.

To achieve this objective we have divided our work in three other sub-objectives
with different embedded tasks:

1. Skill assessment

a) Evaluation of the skill of the raw ECMWF System-4 (S4) output in
Europe, Spain, Catalonia and the Muga river basin.

b) Impact on the S4 performance of the MOS-analog and linear regression
calibrations in comparison to mean bias correction Europe, Spain,
Catalonia and the Muga river basin.

2. Seasonal forecast of water resources

a) Modelling of the Boadella reservoir in-flow, out-flow and volume anoma-
lies through a Multiple Linear Regression (MLR) procedure.

b) Evaluation of the seasonal predictability of the Boadella reservoir pre-
dictand anomalies through several seasonal forecast approaches.

c) Performance comparison of the considered seasonal forecast strategies
with climatology.

5
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3. Seasonal forecast of forest fires

a) MLR modelling of summer (JJAS) burned area in Catalonia taking
into account antecedent and current year drought conditions with the
Standardized Precipitation Index and the Standardized Precipitation
and Evapotranspiration Index (SPI/SPEI).

b) Performance of the MLR model under different seasonal forecast con-
figurations.

1.4 Organisation

This thesis is structured in ten chapters. Particularly, this is the last section
of chapter 1, devoted to put forward our work’s outline. Previously, we have
presented our motivating force, the current challenges in the seasonal forecasting
knowledge, our study choice and the objectives set to progress in their resolution.
Chapter 2 is where we introduce the seasonal forecasting field in accordance with
the existent literature. Therein we deal with its nature, its predictability sources,
the methodological approaches and its potential applications. In this last aspect
we centre our attention in the two topics that focus our dissertation’s seasonal
forecast implementation: Mediterranean water scarcity and summer wildfires. Af-
terwards we find chapter 3, which embodies the characterization of the different
datasets used. In chapter 4 we analyse the climatology and relief of the studied
regions and domains. This is done for Europe, Spain, Catalonia, the Muga river
basin and the Boadella reservoir. Chapter 5 contains the description of the
mathematical techniques applied in the calibration, modelling and verification
processes. Each of its sections refers to the chapters where the corresponding
methodology is implemented.

The next three chapters develop the objectives raised at the beginning of this
thesis. Each of these chapters is presented in a self-contained structure which
also includes a brief reference to the data, region and the methods used. In case
a more expanded view of these contents was needed the reader is referred to
their respective extended versions of chapters 3, 4 or 5. In chapter 6 we study
the performance of the ECMWF System-4 monthly forecasts in four domains:
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Europe, Spain, Catalonia and the Muga river basin. Afterwards, we compare
these results with three calibration approaches and climatology and persistence
controls. These calibration are: mean bias correction (linear), linear regression
(linear) and MOS-analog (non-linear). Once their main characteristics are identi-
fied we move to the first application of seasonal forecasting, chapter 7, studying
the prediction of in-flow, volume and out-flow monthly anomalies in the Boadella
reservoir (Muga river basin). We begin by constructing multiple-linear regression
(MLR) models for each month identifying the leading predictors for each vari-
able. Subsequently we test every forecast horizon with different forecast systems
that combine antecedent observations with the S4 calibrations and comparing
them with persistence, climatology and the corresponding MLR models in per-
fect prognosis conditions. Chapter 8 consists on testing the predictability of
summer burned area in Catalonia with antecedent and forecast values of SPI
and SPEI indices through a two term MLR model with antecedent and current
drought conditions. In this case we test the skill of the found MLR model with
antecedent observations, persistence and bias corrected ECMWF System-4. Fi-
nally, chapter 9 recaps the overall conclusions and original contributions of this
work; and chapter 10 hints the possible paths for future research.
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CHAPTER 2

Seasonal forecasting

2.1 What is seasonal forecasting?

Seasonal forecasting is a discipline that can be placed somewhere between weather
an climate forecasting (see figure 2.1). Its purpose is the estimation of meteoro-
logical anomalies at monthly or multi-month level for lead-times ranging from one
month to one year. However, knowing that the meteorological skill decreases for
forecasts of, approximately, one or two weeks ahead (Lorenz, 1969b) one might
ask about the feasibility of issuing successful forecasts with months in advance.
In principle, the answer to this question is affirmative for in seasonal forecasting
one seeks departures from the climatological mean making these forecasts more
responsive to boundary conditions (i.e. Barnston et al., 1994; Palmer and Ander-
son, 1994; Carson, 1998; Murphy et al., 2001). Actually, seasonal forecasting was
not thought to be possible until the late seventies when several studies centred
on the Indian monsoon showed some predictability at time-scales larger than a
month (see i.e. Charney and Shukla, 1981). This is due to the fact that some
systems with which the atmosphere is bounded and interacts evolve more slowly
than the atmosphere itself, favouring some states instead of others. Often, these
boundary conditions are also known as external or inertial forcings and the most
important can be summarised in the following list,

a) SST

b) Soil moisture
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day week month season year decade century

Weather 
predictions

Seasonal to 
interannual 
predictions

Decadal 
predictions

Long term climate 
change projections

Figure 2.1. Weather to climate forecasting time-scales. Elaborated from Boer et al.
(2013).

c) Snow and sea-ice cover

d) Stratospheric circulation and stratospheric thermal anomalies

Some of these relations were firstly identified as teleconnections, that is,
changes in one variable in one part of the world that affected other variables
farther apart in the globe without apparent spatial connections among them.
Examples of teleconnections are pressure indices such as the North Atlantic Os-
cillation (NAO) or the Eastern Atlantic (EA) affecting rainfall in Western Europe
(see i.e. Castro et al., 2011; el Kenawy et al., 2012); as well as other indices such
as the El Niño Southern Oscillation (ENSO), SST anomalies in the eastern part
of the equatorial Pacific that influence rainfall and temperature regimes in many
parts of the planet (see i.e. Ropelewski and Halpert, 1986; Wang et al., 1999, and
section 2.2.1).

Actually, in Europe, these predictors, their relationships and the nature and
implications of seasonal forecasting are or have been studied in several projects
such as the European PRediction of climate Variations On Seasonal to interan-
nual Time-scales (PROVOST; Doblas-Reyes et al., 2000); the Development of
a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction
(DEMETER; Palmer et al., 2004); ENSEMBLES (Weisheimer et al., 2009); or the
on-going Seasonal-to-decadal climate Prediction for the improvement of European
Climate Services (SPECS; Manzanas et al., 2013) and the EUropean Provision
Of Regional Impact Assessment on a Seasonal-to-decadal timescale (EUPORIAS;
Falloon et al., 2014).
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2.2. Seasonal Predictability

Nowadays, seasonal forecasting has become a field in expansion, thanks to
the advances in the Global Climate Models and the increase in computational
power. The World Meteorological Organization coordinates the efforts of a selec-
tion of international centres in charge of the release of the operational long range
forecasts. They are called Global Producing Centres (GPC) and their seasonal
forecasts are then transferred to Regional Climate Centres as well to the Na-
tional Meteorological and Hydrological Services to adapt and communicate this
information to the end-users (see i.e. Doblas-Reyes et al., 2013). This coordi-
nation tasks are mainly undertaken by two institutions: the WMO Lead Centre
for Long Range Forecast Multi Model Ensemble and the WMO Lead Centre for
Long Range Forecast Verification System.

2.2 Seasonal Predictability

Predictability as a concept refers to the possibility to foretell future states of a
given system. Its characterization is achieved by identifying elements or mecha-
nisms that connect the system’s past states with its future behaviour. Applied
to seasonal forecasting, it speaks of all the Earth system features, normally tro-
pospheric boundary conditions, that can contribute to elaborate anomaly predic-
tions of meteorological variables with months in advance (see i.e. Froude et al.,
2013). Yet in 1994, during the first steps of seasonal forecasting models, Palmer
and Anderson (1994) thoroughly reviews the existing results in the field and finds
that multiple components of the general atmospheric circulation might present
predictability beyond the usual synoptic patterns thanks to boundary conditions
such as the SST. However, he also states that this characteristic would be rather
concentrated in the tropics for in the extra-tropics the internal instabilities of the
system as well as the effects of non-linearities are much stronger.

Nowadays, though the existing studies confirm the idea that predictability in
the extra-tropics is reduced in comparison to the tropics (see i.e. Doblas-Reyes
et al., 2013), this does not mean that it is missing at all (see i.e. Stockdale, 2000).
For example, several studies have observed that winter circulations in northern
latitudes can be grouped in quasi-stationary states that are preserved during
weeks with relatively rapid transitions among them (Rodwell and Doblas-Reyes,
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2006; Guéremy et al., 2012). Since the objective of seasonal forecasting it is not
to pin-point the exact moment of these transitions it would suffice to identify the
driving factors of these states to increase extra-tropical predictability. Actually,
winter is deemed to be the more predictable season in Europe and North-America
(see i.e. Barnett and Preisendorfer, 1987; Carson, 1998; Quan et al., 2006; Folland
et al., 2012; Scaife et al., 2014), probably due to the prevalence of westerlies (Fil
and Dubus, 2005). However, this is something linked to the intrinsic variability of
the atmospheric system in every region (Palmer et al., 2004) and this is only one
aspect of the more general notion that the capacity to anticipate the atmospheric
behaviour depends on the season because the annual cycle affects the evolution,
stationariness and interaction between the atmosphere and its multiple boundary
conditions (Boer et al., 2013).

Hereafter we will present five of the principal sources of seasonal predictabil-
ity, namely: sea surface temperature (SST), soil moisture, snow cover, sea-ice
cover and stratospheric thermal anomalies. Other factors such as variations in
the atmospheric chemical composition, aerosol concentration, land cover change
or volcanic eruptions can modify the radiative balance of the climate system
and, consequently, influence its seasonal predictability but, strictly, they are not
sources of seasonal predictability themselves (Doblas-Reyes et al., 2013).

2.2.1 Sea Surface Temperature (SST)

Sea surface temperature is one of the major influencing factors on the general
atmospheric circulation. Its enormous heat capacity slows down the thermal
response to external forcings and, as a result, the atmosphere can be biased
towards specific weather regimes. Therefore, a great amount of current research
on seasonal predictability has been focused on trying to foresee changes in the
SST and/or its interactions with the atmosphere (see i.e. Yang and Lau, 1998;
Trenberth, 2005; Haren et al., 2012). One way to ease this task is the construction
of ocean indices such the El Niño Southern Oscillation (ENSO) which, to date,
is the main source of seasonal predictability at a planetary level (i.e. Palmer and
Anderson, 1994; Wang et al., 1999; Ye and Hsieh, 2008). That said, in the extra-
tropics this influence it is not as clear as in the tropics (Palmer and Anderson,
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1994; Stockdale, 2000). For instance, authors such as Rodwell and Doblas-Reyes
(2006) note that even though the role of the SST as a seasonal predictor for
Europe it is not well established there are some observational evidences that
particular SST anomaly patterns can have important impacts on the continental
temperatures.

Finally, the SST can be included in Global Climate Models (GCM) in two
forms. Tier-two models assume the ocean in a fixed state and allow the at-
mosphere to evolve under its influence (see i.e. Bengtsson et al., 1993). Tier-one
models, on the other hand, couple the atmosphere to the ocean in a way that both
systems can impact on the evolution of each other (see i.e. Blumenthal, 1991).
Nowadays the latter approach is generally preferred for it better represents the
natural behaviour of the atmosphere and the ocean (Kug et al., 2008).

2.2.2 Soil moisture

Soil moisture can modify the Bowen ratio of a given surface (quotient between
sensible and latent heats). As a consequence, it affects its temperature (Dai et al.,
1999; Hirschi et al., 2010). This is generally a local effect with little long-term
structure. However, under some circumstances it can influence temperature and
precipitation with months in advance even at continental scales (see i.e. Beljaars
et al., 1996; Stockdale, 2000; Kanamitsu et al., 2003; Orth and Seneviratne, 2012).
Palmer and Anderson (1994) attributes this predictability to the fact that the hy-
drological state of the soil could act as an stabilizer of certain circulation patterns
turning them more prevalent than they would be without these conditions.

In fact, authors such as Rodwell and Doblas-Reyes (2006) state that soil mois-
ture was determinant in the European heat wave of 2003 for this same reason.
Others, like Wilks (2008) suggest that drought indices as the Palmer Drought
Severity Index (PDSI) can be used to improve seasonal forecasts. Also, since soil
moisture influences the structure and abundance of vegetation it can be directly
(or indirectly through precipitation) a source of predictability for wildland fires
(i.e. Nepstad et al., 2004; Turco et al., 2013a). Nevertheless, the driving mech-
anisms of this kind of land-atmosphere dynamics (evaporation, heat-fluxes, . . . )
are still not well represented in current dynamical models and so it is expected
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that as soon as this question is addressed its role in seasonal forecasting will be
clarified.

2.2.3 Snow and sea-ice cover

The snow cover influence on the atmospheric long-range predictability comes from
the albedo and its role as a water reservoir (Fukutome et al., 2001; Boer et al.,
2013). Until recently, it was believed that its impact was restricted to regional
scales (Yang and Lau, 1998; Céron et al., 2010; Brands et al., 2012). However,
the latest studies suggest that the snow pack in the northern hemisphere has an
influence in the NAO and the northern Pacific pressure regimes (Shongwe et al.,
2007). Still, since it is a non-stationary predictor more studies are needed to
exactly pin-point its influence domains. As for the sea-ice, it seems that the
Arctic-sheet can have some influence in the summer-storm track and winter cir-
culation in the northern Atlantic (Balmaseda et al., 2010), but it is still not clear
whether these effects are robust enough to be systematically used in operational
seasonal forecasting (Wielicki et al., 2002). Even so, the initialization of sea-ice
in the models is still subject to intense research (Orsolini et al., 2011; Sigmond
et al., 2013a) and has to be improved before assuming or discarding its role in
seasonal predictability.

2.2.4 Stratosphere

Recent studies have proposed that changes in the stratospheric thermal distribu-
tion and circulation can propagate through the troposphere in form of anomalies
in a process that can take as long as two months (see i.e. Baldwin and Dunker-
ton, 2001; Cohen et al., 2007; Ineson and Scaife, 2008; Orsolini et al., 2009). It
is thought that the predictability associated to the stratosphere comes from two
sources: the quasi-biennal oscillation (QB; Marshall and Scaife, 2009) and sudden
stratospheric warmings (SSW; Sigmond et al., 2013b). The general mechanism
of action remains unknown and it is still under study (Boer et al., 2013).
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2.3 Methodological approaches

2.3.1 Dynamical

Dynamical seasonal models are Global Circulation Models (GCM) aimed to repro-
duce the physics of the ocean-atmosphere system and its interactions. Initially,
they were limited to the study of tropical domains and the ENSO (Cane et al.,
1986), but the teleconnections found between these areas and extra-tropical re-
gions suggested that the use of coupled ocean-atmospheric models could also be
implemented to middle-latitudes. Hence, many experiments were set to study
seasonal forecasting in the extra-tropics and, before long, they obtained a rather
positive outcome (see i.e. Molteni et al., 1987; Branković et al., 1990; Ji et al.,
1994).

At that point in time, due to the inherent complexities of the interactions
between the ocean and the atmosphere, there were two strategies to tackle dy-
namical forecasts. The so-called tier-one, which takes into account the physical
interactions and mutual feedbacks between the atmosphere and the ocean (see
i.e. Blumenthal, 1991); and tier-two, which establishes SST boundary conditions
in a particular moment that affect the subsequent evolution of the atmosphere
(see i.e. Bengtsson et al., 1993). Tier-two models are less computer demanding
but, in return, they normally offer worse results than tier-one models (Kug et al.,
2008). That being said, there are still great uncertainties on the results obtained
by these models. This is due to knowledge gaps in the atmospheric and ocean un-
derstanding, along with the need for several parametrizations and computational
approximations during calculations (see i.e. Palmer, 1999; DelSole and Shukla,
2010). However, as long as these gaps are progressively filled, and the computa-
tional power increases, it is thought that these uncertainties will decrease in the
future (Doblas-Reyes et al., 2013).

Additionally, the forecast output of dynamical models can be of two types:
deterministic or probabilistic. Deterministic forecasts provide a single exact value
for the variable whereas probabilistic forecasts describe the uncertainty inher-
ent to the forecast in the form of an ensemble of different predictions driven
by perturbations in the initialization of the mode (Palmer, 1999; Gneiting and
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Raftery, 2005). Theoretically, the purpose of any ensemble is to characterize the
pdf function corresponding to all the possible outcomes driven by the uncertain-
ties affecting the initial conditions and the model itself.(i.e. Gutiérrez et al., 2004;
Doblas-Reyes et al., 2009). In practice, since the ensemble of a single model does
not always represent well the uncertainties of the model, nowadays it is becoming
widespread the use of a multi-model ensemble or an ensemble of different model
ensembles (see i.e. Barnston et al., 2003; Hagedorn et al., 2005; Doblas-Reyes
et al., 2005; Sirdas et al., 2007). Ultimately, the more similar the ensemble pdf
is to the observed, the more reliable the probabilistic forecasts will be. Likewise,
a better resolution will be achieved as long as the variability of the ensemble
approaches the inherent of the observed climatology (see i.e. Wilks, 2006).

2.3.2 Statistical

This strategy is based on the analysis of historical data in order to identify re-
lationships among variables, atmospheric configurations or teleconnections that
can be used to forecast the same or other variables (i.e. Barnston et al., 1994;
Murphy et al., 2001; Diez et al., 2005; Wilks, 2008; Kumar, 2009). Every statis-
tical technique that allows us to identify such relationships can be used in this
approach. Among the most common we can find: CCA (canonical correlation
analysis), SVD (singular value decomposition), the analog method, MOS (Model
Output Statistics), the MLR (multiple linear regression), and the Bayesian and
neural networks (Gutiérrez et al., 2004; Wilks, 2006; Benestad et al., 2008). As
of today its maximum advantage is to attain results similar to the raw output of
dynamical models but at a much smaller computational cost (see i.e. Hastenrath
et al., 2009). On the contrary, there is the difficulty of establishing the sta-
tionariness of the relationships found and the limited number of past situations
available. In reality, though, statistical strategies are no longer used alone. That
is because the best results are attained when the dynamical model outputs are
post-processed with statistical methods (Schepen et al., 2012; Yoon et al., 2012).
This post-processing of the dynamical output can be of two forms:

a) Regionalization: also known as statistical-downscaling, it consists on
the amelioration of the dynamical model output by filling the gap be-
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tween the coarse resolution of the model and the real world. In this
way we can increase the forecast spatial resolution and, thus, recover me-
teorological (climatological) features that otherwise would be hidden or
directly missing (Maraun et al., 2010; Turco et al., 2011; Vrac et al., 2012;
Gutiérrez et al., 2013). This statistical approach can add information not
present in the dynamical output as long as it uses observation reference
fields.

b) Calibration: it is the process by which statistical methods are applied
to correct the biases and/or systematic errors of the model output by
using antecedent series of forecasts and observations (Weigel et al., 2009;
Piani et al., 2010; Peng et al., 2014). These errors are consequence of the
inherent limitations of the physical model related to parametrizations,
equation simplification and uncertainties in the initialisation procedure.

Moreover statistical methods can be used, independently or combined, to
isolate and characterize the uncertainties coming from different aspects of the
dynamical modelling process (Doblas-Reyes et al., 2009; Weisheimer et al., 2011,
2014). This conception puts to an end the passionate controversy about the supe-
riority of implementing either statistical or dynamical approaches for it combines
the strengths of the two worlds. This is highly important in the field of seasonal
forecasting applications, for it eases its main objective, which is to provide the
end-user with the best seasonal information available.

2.4 Applications

This section refers to the potential developments that can make use of seasonal
forecasting information to suit end-user needs. This is a sort of holy grail in the
seasonal forecasting discipline, for the possibility of anticipating seasonal anoma-
lies in the long-term is a clear advantage to deal with decision-making in many
economic and strategic areas. Nowadays it is part of what is commonly known
as climate services (Coelho and Costa, 2010; Graham et al., 2011; Hewitt et al.,
2012) and embraces a number of fields:
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i) Agriculture (Schneider and Garbrecht, 2006; Fraisse et al., 2006; Gar-
brecht and Schneider, 2007; Davey and Brookshaw, 2011)

ii) Water resources (Chowdhury and Sharma, 2009; Céron et al., 2010;
Wang and Robertson, 2011; Robertson et al., 2012; Dutra et al., 2013)

iii) Energy (Damrongkulkamjorn and Churueang, 2005; García-Morales and
Dubus, 2007; Block, 2011)

iv) Risk and disaster management (Goddard et al., 2010; Tall et al., 2012;
Dutton et al., 2013)

v) Forest fires (Roncoli et al., 2012; Turco et al., 2013a; Harris et al., 2014;
Spessa et al., 2014)

vi) Health (Pascual and Dobson, 2005; Thomson et al., 2006; Tompkins and
Di Giuseppe, 2014)

vii) Hurricane activity (see i.e. Wang et al., 2009; LaRow et al., 2010; Kim
and Webster, 2010; Leckebusch et al., 2015)

viii) Financial markets (Gaushell, 2002; Campbell and Diebold, 2005; Brands,
2013)

In the following subsections we will center our attention in the two areas where
we focus the application of seasonal forecasting in this thesis: Mediterranean
water scarcity and summer wildfires.

2.4.1 Mediterranean water scarcity

Water scarcity in the Mediterranean is usually linked to the relationship between
droughts, water supplies and water demands. Actually, droughts are a recurrent
problem in southern Europe (see i.e. Lloyd-Hughes and Saunders, 2002; Brewer
et al., 2007; Nola et al., 2008). Historical reports speak of such events arising
in multiple moments of the past with great impacts to the affected communi-
ties (Martín-Vide and Barriendos, 1995). Examples of these conditions were the
Maldà oscillation, characterized by an anomalous succession of intense drought
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and flood periods between 1760-1800 in the western Mediterranean (Barriendos
et al., 2003; Barrera et al., 2006) or the long-lasting drought of 1812-1818, which
affected the Mediterranean Coast and the Balearic Islands (Álvarez et al., 2008).
At present the Mediterranean keeps on being affected by these situations and it
is presumed that the influence of climate change can strengthen these episodes
in the future (see i.e. Hill et al., 2008; Dai, 2011; MedCLIVAR, 2012; Singla,
2012). In Spain, at the midst of the XXth century, the authority carried out
a plan to build multiple dams and canalizations to ease the effects of droughts
and regulate water supply for the increase of agriculture and urban uses. Even
though, hydraulic administration in Spain and Catalonia still has to deal with
problems caused by droughts (MIMAM, 2007). In this context the optimization
of dam management becomes a feasible need (i.e. Iglesias et al., 2009; Iglesias and
Garrote, 2014; Bianucci et al., 2015).

The critical effects which dry and wet periods have on numerous aspects of
the society and economy have turned the possibility to foretell rainfall or river-
stream flow anomalies with months in advance an engaging subject of research
in many parts of the world. In fact, in the late 2000s many studies began to
show the feasibility of hydrological seasonal forecasting in middle latitudes, both
in North America and Europe (see i.e. Wedgbrow et al., 2002; Gobena and Gan,
2010; Céron et al., 2010; Shukla and Lettenmaier, 2011; Zalachori et al., 2012).
However, the translation of seasonal forecasting advances to actual water-resource
applications is still a matter of intense investigation (Soubeyroux et al., 2010;
Shafiee-Jood et al., 2012). Some authors like Rodwell and Doblas-Reyes (2006)
argue that the ultimate goal of a forecast is to influence decision making:

“If a forecast, however skilful, has no impact on decision making, one
can argue that it is pointless to make it. The value of such forecasts to
a particular user depends on their vulnerability to weather or climate
anomalies and on what actions they can take to mitigate against any
loss."

But determining the usefulness of a forecast is a complex issue because it not
only depends on the performance of the predictions themselves but also on the
needs and vulnerabilities of the end-user (Watkins and Wei, 2008). Stockdale
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(2000) and Steinemann (2006) state that working closely with decision-makers
offers the possibility to tailor indices based on seasonal forecast information that,
even with the limited skill of current models can have advantages for them.

2.4.2 Mediterranean summer wildfires

In Europe, approximately 500,000 hectares burn in about 50,000 fires each year
(San-Miguel-Ayanz et al., 2013b). Most of these are Mediterranean summer fires
that lead to damage to the natural environment and property, causing loss of lives
and important economic losses every year (Moreira et al., 2011). Estimating the
fire risk a few months in advance may thus allow fire protection agencies to devise
timely reactions and adequate provision of human and material resources (Mavsar
et al., 2013). The predictability of fires is a complex issue, due in part to the
fact that fire activity is closely related to both natural factors and human action
whose relative importance on different scales may be challenging to estimate
(Bonan, 2008; Bowman et al., 2009; Dube, 2009; Macias Fauria et al., 2011; Moritz
et al., 2012). Human activities influence fires either directly, via ignition and
suppression, or indirectly, via fuel management (Moreira et al., 2011; Ganteaume
et al., 2013). Another important driver of fires on a regional scale are climatic
processes (Dwyer et al., 2000; Meyn et al., 2007; Flannigan et al., 2000, 2009;
Pechony and Shindell, 2010; Hessl, 2011). In particular, although most fires are
ignited by human activity, year-to-year changes in the ease of ignition and in the
burned areas are mainly related to interannual climate variability. Several studies
support the hypothesis that in Mediterranean-type ecosystems, droughts are a
primary driver of the interannual variability of fires, controlling fuel flammability
and fuel structure (see, e.g. Pausas, 2004; Pereira et al., 2005; Meyn et al., 2007;
Gudmundsson et al., 2014). That is, drought conditions may lead to high levels
of fuel flammability, but fire activity is also favoured by the presence of the fine
fuels produced during antecedent periods with favourable climate conditions (see
e.g. Turco et al., 2013a; Koutsias et al., 2013; Bedia et al., 2014).

The dependence of wildfires on weather and climatic conditions therefore
means that fire risk has a certain level of predictability (Bonan, 2008; Dube,
2009; Macias Fauria et al., 2011). Fire risk predictability has been thoroughly
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addressed in the case of fire danger forecasts from 1 day to 2 weeks, through
fire weather indices (e.g. Canadian Forest Fire Weather Index van Wagner and
Pickett, 1985; Bedia et al., 2013; de Groot and Flannigan, 2014, for a review). On
longer time scales, however, studies addressing seasonal prediction of fire danger
are still relatively scarce with most of them following an empirical approach, sta-
tistically linking antecedent climatic variables used as predictors with observed
fire activity in Australia (Harris et al., 2014) and in North America (e.g. Chu
et al., 2002; Westerling et al., 2002, 2003, 2006; Preisler et al., 2004; Preisler and
Westerling, 2007; Preisler et al., 2008; Chen et al., 2011; Shabbar et al., 2011).
For southern Europe, a recent study (Gudmundsson et al., 2014) has shown that
above-normal summer wildfire activity can be forecasted several months in ad-
vance by using drought indices, through the effect on fuel flammability, while
a few studies have used global climate models (GCM) to seasonally predict fire
danger (Roads et al., 2005, 2010; Spessa et al., 2014).
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CHAPTER 3

Datasets

This chapter presents a comprehensive description of the various datasets used in
this thesis. For each database it establishes the reasons behind our choice as well
as its main features. Thus, it poses the basis to better understand the framework
of the applied methodologies and the results obtained.

Its organization is as follows: the first section describes the observational
dataset, E-OBS (3.1); the next one corresponds to the seasonal forecasting model,
ECMWF System 4 (3.2); the third contains the hydrological data (3.3); and the
last one is for the fire dataset (3.4) .

3.1 European Observational Dataset (E-OBS)

The observational dataset is the truth against which we verify our findings. Here,
the word truth is very important because, philosophical considerations aside, it
is not as unique as one might think. In fact, there is an intrinsic limitation in
the measurement of spatially dependent continuous variables; for having an exact
image of such systems also needs of a continuous (infinite) observational network.
Since this is not possible, we will always have to rely on approximations to this
truth. In our case we have chosen E-OBS, for the following reasons:

i. It is an observational gridded dataset. We prefer this approach
to any reanalysis to avoid the possibility that the assimilation method
could resemble to the one used by the ECMWF System 4. With this
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strategy we try to eliminate one hypothetical source of uncertainty in
the verification process (see i.e. Kim et al., 2012, as an example of the
effect of different reanalysis in a verification process).

ii. It covers the European domain. Other observational datasets such
as Spain02 (Herrera et al., 2012) or the Mesoscale Alpine Programme
(MAP, Bougeault et al., 2001) have a larger station density but, on the
other hand, are restricted to regional areas. To maintain homogeneity
on the verification and calibration processes we decided it was worth
having a slightly reduced number of stations if in return we got a more
homogeneous coverage for Europe.

iii. It provides values in a daily basis from 1950 to present, has extensive
metadata with interpolation error assessment and it is updated
in a regular basis (almost two times per year).

iv. It offers a resolution of 0.25◦ × 0.25◦. This resolution is the min-
imum encountered for the European domain that can approximately
resolve river basins such la Muga with the aforementioned features.

In the ideal case, an observational interpolated gridded dataset of 0.25◦×0.25◦

resolution would have one station per cell (at least). In the European domain,
with an area of approximately 107 km2, this would require a network of around
16000 stations. Unfortunately, current European observational network is both
far from these numbers and from an optimal uniform distribution (see Haylock
et al., 2008, and figure 3.1).

Initially, E-OBS comprised 2200 stations with daily observations for precipi-
tation, minimum, maximum and mean surface temperature, mostly spanning the
period 1950˘2006 (Haylock et al., 2008; Klok and Klein-Tank, 2009). Since then,
almost two times per year there has been an update with a fix for minor bugs
and the inclusion of new stations and/or the expansion of temporal ranges of the
already existing datasets. Thus, this continuous revision made E-OBS a highly
valuable database for verification purposes.

More specifically in this thesis we have used E-OBS v8.0. In this version most
of the interpolated stations cover the period 1950-2012, with daily observations in
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more than 4000 sites for maximum and minimum temperature, and 7000 regard-
ing precipitation. Figure 3.1 depicts E-OBS observation network distribution for
maximum temperature. For the other variables, though the absolute number of
stations might differ, the overall disposition is very similar.

Figure 3.1. E-OBS v8.0 maximum temperature station cover map for Europe. Note
network’s heterogeneous distribution. Elaborated from ECA&D.

The methodology applied to interpolate the aforementioned observations is
comparable to universal kriging (Journel and Huijbregts, 1978). In this case,
however, Haylock et al. (2008) follow a three-step process to homogenize the
climatic differences of the underlying daily data, a required condition for the
correct application of a regular kriging process (further details can be found in
Haylock et al., 2008; Hofstra et al., 2008).

In the presentation paper Haylock et al. (2008) speak of two levels of quality
assessment. The first one dealt with raw data, identifying and correcting poten-
tial non-homogeneous series (i.e. Peterson et al., 1998; Ducré-Robitaille et al.,
2003; Reeves et al., 2007; Turco et al., 2012). It involved quality tests to de-
tect and remove doubtful values, i.e. outliers, and the identification of other
obvious problems such as shifting in date assignment. The second level involved
the characterization of global uncertainty, showing that the interpolation fraction
was probably larger than all of the other sources combined. Hence, efforts were
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focused in the determination of its magnitude. As a result ECA&D supplies grid-
ded standard error files for the entire domain and for each of the variables (see
i.e. 3.2).
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Figure 3.2. E-OBS v8.0 monthly median interpolation standard error map for Europe’s
precipitation (1950-2012). The biggest errors are mostly centred on high mountain
ranges and in the rainiest areas of the continent. Elaborated from ECA&D.

3.2 ECMWF System-4 (S4)

Dynamical seasonal forecasting models did not become operational until they
outperformed simple statistical approaches such as climatology and persistence.
This did not happen until the mid 90’s when dynamical seasonal forecasts pro-
gressively turned from experimental to fully operational frameworks (see Molteni
et al., 2011, and chapter 2).

S4 is today’s most recent instalment of ECMWF in the seasonal forecasting
field. It consists of a coupled suite of atmospheric and oceanic models reproducing
the general oceanic and atmospheric circulations as well as their entangled feed-
backs. This is achieved through the numerical resolution of the thermodynamic
and motion equations corresponding to each grid box in which the S4 divides our
planet’s atmosphere and ocean.
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The atmospheric component is the CY36R4 version of ECMWF’s weather
forecasting model IFS (Integrated Forecasting System) with a land surface ini-
tialization driven by ERA Interim (Dee et al., 2011). The horizontal resolution
is of approximately 80 km whereas for vertical distribution the atmosphere has
91 levels, up to 0.01 hPa. As for the ocean model, it uses NEMO (Nucleus
for European Modelling of the Ocean) version 3.0 and NEMOVAR (Mogensen
et al., 2012), a state-of-the-art modelling and analysis frameworks. Horizontally,
NEMO grid boxes have an approximate length of 1◦ (110 km) while, vertically,
they includes 42 levels. For further technical details we refer to Molteni et al.
(2011).

We have preferred S4 because it is the evolution of the well considered ECMWF
System 3 (see i. e. Stockdale et al., 2011) and for its full potential has not
been totally assessed (Molteni et al., 2011; Rodrigues et al., 2014). In compari-
son with S3 and regarding our studied region, some of its achievements involve:
a) enhancement of deterministic and probabilistic scores in extra-tropical regions;
b) improvement of natural ocean/atmosphere variability simulation and forecast-
ing in tropical Atlantic and nearby regions; and c) increase of the anomaly corre-
lation of ENSO indices for most regions and seasons. Thus, some of its interesting
features include:

i. It is an operational fully coupled GCM. We choose fully coupled
atmospheric-ocean models (tier-one, see chapter 2) for their best results
in comparison with simpler models such as tier-two (Kug et al., 2008).

ii. It spans the European domain with a resolution of 0.75◦ × 0.75◦.
Though there was the possibility to get 0.25◦ interpolated S4 data we
decided to download the minimum native resolution available to take
control of the interpolation process (see section 5.2).

iii. It provides monthly mean values re-forecasts from 1981-2010
including a 15-members ensemble. To have a climatic period re-
forecast with its associated ensemble is a neat advantage for the verifi-
cation process.
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iv. The long experience of the institution, ECWMF, in the evaluation,
updating and improvement of the inner structure of the model.
In fact, it is the fourth version of ECMWF seasonal forecast system
since its first implementation in 1997 and his predecessors have been
already evaluated in DEMETER and ENSEMBLES projects (Palmer
et al., 2004; Weisheimer et al., 2009).

Hence, in this thesis we have worked with the 30 years S4 monthly mean values
re-forecasts (1981-2010) with each run consisting of 7 month forecasts issued on
the first day of every month. This means that each month of the year (January to
December) has been forecasted seven times, ranging from the issued month (m-0)
to 6 months in advance (m-6). In figure 3.3 we can find an schematic example of
the S4 different forecast horizons for April.

Issued 1st Dec.
Lead 5 (m-4)

Issued 1st Nov.
Lead 6 (m-5)

Issued 1st Oct. 
Lead 7 (m-6)

Issued 1st Feb.
Lead 3 (m-2)

Issued 1st Jan.
Lead 4 (m-3)

Issued 1st Mar.
Lead 2 (m-1)

Issued 1st Apr.
Lead 1 (m-0)

April S4 Forecasts

Figure 3.3. Schematic S4 forecast horizons for April. Each cell includes the day
and month of the issued forecast along with the forecast horizon in two nomenclatures:
lead, which corresponds to the number of months between the month of the most recent
observations included in the model and the forecast month; and m-number in which
m referes to the forecast month and number the months between this month and the
month in which the forecast was issued.

Every forecast comes along a 15-members ensemble at a spatial resolution
of 0.75◦. Most of the spread in the ensemble is internally generated and, even
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though there are initial perturbations and stochastic physics that contribute to
its generation, the role of initial perturbations is rather limited (Molteni et al.,
2011).

Finally, it has to be mentioned that we could eventually obtain S4 full reso-
lution re-forecast issued at every month thanks to AEMET and ECMWF autho-
rization. Prior to that, however, most of the work of this thesis had been done
through the CHFP (Climate-System Historical Forecast Project) which publicly
provides 4 initializations of the hindcast (February, May, August and November)
in a resolution of 2.5◦ but for the same period and forecast attributes as the
complete re-forecast.

3.3 Hydrological data

The hydrological data comprises mean daily values of in-flow, out-flow and total
water volume measured by ACA (Agència Catalana de l’Aigua) in the Boadella
reservoir, on the upper part of the Catalan Muga river basin (see section 4.4 for
its detailed description). This particular choice responds to the accomplishment
of a number of requisites to check the usability of seasonal forecast information:

i. It is within the studied area and has in-flow, out-flow and water
volume records for the period 1981-2010. This gives us the possi-
bility to depict the performance of S4 seasonal forecasts with the three
variables that mostly determine the availability of stored resources.

ii. There are no up-stream influencing human infrastructures. This
is important for it assures that the quantities measured by the in-flow
gauge are determined only by natural factors.

iii. It satisfies water demands from agriculture and urban areas
with observed discontinuous drought periods. The existence of
such periods can influence the provision for water and, therefore, it offers
the opportunity to assess the potential benefits of seasonal forecasting
information in such circumstances.
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Though we have used data for 1981-2010, these time-series go from 1971 to
2011. They have been recorded with automatic gauges in the reservoir system (en-
trance and exit) which offer direct (in-flow and out-flow) or indirect (volume from
water level) measurements. There is also an undefined period in which in-flow
data was indirectly computed through variations in water volume and out-flow
measures (ACA personal communication). That being said, all datasets under-
went an automatic checking through the verification tool of the Cicle de l’Aigua
al Territori based on the software HEC-DSS Vue of the Hydrologic Engineering
Center.

3.4 Fire data

The fire data is obtained from the Forest Fire Prevention Service of theGeneralitat
de Catalunya, SPIF, and it consists of monthly series of burned area (BA) in
Catalonia for the period 1983-2010. This selection has been favoured for:

i. It spans the period 1983-2010 with comprehensive metadata
support. After seeking in the European Forest Fire Information System
(EFFIS) at NUTS3 resolution we found that Catalonia fire series is one
of the few that covers a period similar to the S4 re-forecast. Particularly,
this choice is in coherence with the former team-works by Turco et al.
(2013a, 2014) and the hydrological case studied.

ii. It represents fire behaviour of a typical Mediterranean envi-
ronment (see section 4.3). Hence, the results will have the potential
to be transferred to other areas with similar characteristics.

We have also established a lower limit of 0.5 ha below which fire records are
not considered to guarantee the homogeneity of fire series (see figure 3.4). This
condition has been adopted in accordance with SPIF because the lower threshold
for wildfire report has been changing over time. Fortunately this restriction, if
any, has a very limited effect on BA since already up to 74% of it comes from
fires exceeding 500 ha (Turco et al., 2013a).
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650 M. Turco et al.: Decreasing fires in Catalonia

Fig. 1.Map of Catalonia and start year of the fire database for each
local administrative division. The two domains of our study are (i)
the whole of Catalonia (without the red and brown divisions) in
the period 1983–2010, (ii) the eastern part of Catalonia (in green;
i.e. excluding the Lleida province), which has a homogeneous fire
database for the period 1970–2010.

the potential regulating factors, to set up a framework for
developing impact scenarios based on updated and homoge-
neous fire records.

2 Fire data and quality control

Accurate ground measurements of fire occurrence and
burned area in Catalonia are obtained from the Forest Fire
Prevention Service of the Generalitat de Catalunya (SPIF)
for the period 1968–2010. However, due to changes in the
administrations responsible for data collection, significant
variations in the criteria for fire recording have occurred.
These and other changes may affect the homogeneity of the
database and interfere with the trend analysis of fire series.
The data from 1968 to 1970 have several missing val-

ues and prior to 1983 there are no complete records for the
Province of Lleida (which covers an area of about 38% of
Catalonia, Fig. 1). For these reasons, two domains have been
considered in the analysis presented here.
The first includes the whole of Catalonia in the period

1983–2010, excluding two local divisions (highlighted in red
and brown colours in Fig. 1), for which the starting year of
the fire database is posterior to 1983. The second domain in-
cludes the eastern part of Catalonia, which is characterised
by a homogeneous fire data record for the period 1970–2010.
This region does experience the majority (around 75%) of
forest fires in Catalonia.
An aspect that can affect the homogeneity of the data is the

minimum burned area for which a fire is recorded. Figure 2
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Fig. 2. Burned area (BA) in each record of the SPIF database in
chronological order (BA in logarithmic scale, log10).

shows all the fire records in the database, in chronological
order. It indicates that the minimum fire area is not constant
over time: for example, the first part of the database has no
records with area smaller than 0.01 ha. This inhomogeneity
can significantly affect the record of the annual number of
fires. To obtain a homogeneous series, it is necessary to re-
tain only those fires whose area is above a fixed threshold
which is kept constant over the years (Malamud et al., 2005;
Pereira et al., 2011). Note that, from a methodological point
of view, the simple use of a plot in logarithmic scale, such
as that of Fig. 2, can help to immediately identify a possible
inhomogeneity.
In the following, we restrict the analysis to fires with

burned area of at least 0.5 ha; this is a safe minimum value
which was detectable over the whole period considered. Note
that the burned area is almost unaffected by this threshold,
since it is largely determined by a few large fires: around
70% of the burned area is associated with fires with a burned
area above 500 ha. The difference between the total burned
area considering all fires and that for the fires with burned
area larger than 0.5 ha is less than 0.5%.

3 Trend analysis

We analysed the annually burned area (hereafter, BA) and
the number of fires (hereafter, NF). In addition, also BA and
NF at monthly scale have been considered to assess the past
evolution of forest fires in the different periods of the year.
Figure 3 shows the annual series of BA and NF. Already

by visual inspection of Fig. 3, we observe that the BA se-
ries show a slight decreasing trend with two peaks in 1986
and 1994, when a total annual burned area of 70 000 ha was
recorded, while the NF series shows an overall decreasing
trend. The trend significance is estimated with the Monte-
Carlo test implemented by Turco and Llasat (2011). This
method firstly decomposes the fire series into a linear trend
line and a time series of residuals, then the residuals are

Nat. Hazards Earth Syst. Sci., 13, 649–652, 2013 www.nat-hazards-earth-syst-sci.net/13/649/2013/

Figure 3.4. Burned area (BA) in each record of the SPIF database in chronological
order (BA in logarithmic scale, log10). Note the evolution of the lower limit of fire
recording along the series. From (Turco et al., 2013b).
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CHAPTER 4

Regions of study

This chapter compiles the geographical and climatological characterization of
the regions studied in this thesis. In the forthcoming chapters this will help us
understand the importance of seasonal forecasting in different periods of the year
and its dependence on the areas considered. The structure of this unit goes from
larger to local domains as follows: the first section is devoted to Europe (4.1); the
next one refers to Spain (4.2); the third is for Catalonia (4.3); the fourth comes
for the Muga river basin (4.4); and the last one is for the Muga’s river Boadella
reservoir (4.5).

4.1 Europe

Europe is a large peninsula limiting to the north with the Arctic Ocean; to the
south, with the Black, Caspian and Mediterranean seas; to the West, with the
Atlantic Ocean; and that it is connected to the east with the Eurasian continent.
As we can see in figure 4.1 its relief is greatly varied, ranging from vast plains
to high mountain areas of more than 2500 m. Often, these height transitions
occur in relatively small distances, leading to an abrupt succession of different
climatologies. This can be observed in the Mediterranean shores, where barely
a few kilometres inside we can encounter mountain ranges of more than 500 m
that can surpass 2000 m in just 50 or 100 kilometres more.

In fact, Europe’s northern extra-tropical situation determines some meteo-
rological features that, combined with every region’s particular relief, leads to
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Figure 4.1. Europe’s relief. Elaborated from GMTED2010 (Danielson and Gesch,
2011).

a distinct mix of climatic regions. Firstly, we should highlight the prevalence of
western oceanic circulations, a characteristic that regulates much of the prevailing
weather over the continent. For instance, common yearly precipitation amounts
above 1100 mm in the occidental coasts of Great Britain, Ireland, Norway, France
or Spain can be directly linked to these westerlies. Mountainous ranges such as
the Pyrenees, Alps, Massif Central or the Apennines are also regions of high an-
nual rainfall with total cumulates of more than 1100 mm. Finally, other maxima
can be found in the north-eastern Adriatic coasts and in the Genoa gulf, and are
linked to the presence of the Alps and Mediterranean cyclone configurations (see
figure 4.2).

The driest regions, with yearly values below or around 400 mm coincide with
central and southern Spain and regions limiting to the east with the Black and
Caspian seas. The vast plains of eastern Europe have values ranging from 500
mm to 700 mm, with local registers above/below these numbers. In the Mediter-
ranean, the eastern coasts of Italy and Greece have total values around 500 mm.
The other regions have annual amounts between 600 and 900 mm. In figure 4.3 we
can observe precipitation behaviour throughout the four seasons. In the Mediter-
ranean shores the driest season coincides with summer, with values around or well
below 100 mm. In the western coasts of the continent, although the precipitation
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Figure 4.2. Europe annual precipitation climatology for the period 1981-2010. Elab-
orated from E-OBS.

amount is higher compared to the aforementioned area, it is also reduced regard-
ing to the other seasons. Turning to the Alps and central and eastern Europe
plains, the maximum in rainfall occurs during summer months and it is linked to
prevalence of daily convection. In the eastern part of the continent the minimum
occurs during spring and winter whereas in the Atlantic shores the maximum is
extended from autumn to spring. In the Mediterranean, on the other hand, the
wet season is autumn. In this region there is also a secondary maximum that
shows up in spring in western Mediterranean, and during winter in the central
and eastern area.

Europe’s situation, surrounded by seas and oceans, is what mostly determines
the thermometric regime of the continent. Latitude and altitude are the other
factors that play a key role in the final characterization of Europe’s temperatures.
Hence, all coastal areas have relatively warmer temperatures than the inner re-
gions of the continent and also warmer compared to regions that are in the same
latitudes but surrounded either by terrain or colder oceans. In fact, the Mediter-
ranean is the warmest sea around the continent and, therefore, it contributes
to give the areas near it the warmest annual median maximum and minimum
temperatures. Temperature magnitude also varies through the continent in ac-
cordance with latitude and altitude. The highest regions are normally cooler
whereas the lower are hotter. The differences between the highest mountainous
ranges and the nearest plains is about 10◦C regarding median maximum tem-
peratures and 6◦C for median minimums. As for latitudinal differences, the gap
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Figure 4.3. Europe seasonal precipitation climatology for the period 1981-2010. Elab-
orated from E-OBS.

between the southern and northern regions is usually around 15◦C for minimum
temperatures, and 25◦C for maximums. More specifically, differences also pro-
gressively increase from north-western Europe to south-western Iberian Peninsula
and south-eastern Europe, near the Caspian sea. Turning to seasonal behaviour,
the annual cycle is present in all regions, with progressive winter-summer and
summer-winter transitions. Additionally, oceanic sectors have milder differences
among seasons than continental areas, where these contrasts are stronger (see
figures 4.4a and 4.4b).
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Figure 4.4. Europe’s seasonal maximum and minimum temperature climatologies for
the period 1981-2010 (a) Median seasonal maximum temperature (b) Median seasonal
minimum temperature. Elaborated from E-OBS.

37



4. Regions of study

4.2 Spain

Spain is the largest country in the Iberian Peninsula, in south-western Europe
(see figures 4.1 and 4.5). Although it includes some regions which are not in the
Peninsula, like the Balearic and Canary Islands, hereafter we will use Spain to
refer to Peninsular Spain. It is mainly surrounded by water bodies: the Mediter-
ranean to the east and south-east; and the Atlantic Ocean to the north, north-west
and south-west. To the west it limits with Portugal and, in the north-east, it is
connected to the rest of Europe through the Pyrinnees. The former and Sierra
Nevada are its highest mountain ranges, with summits above 2500 m.

Figure 4.5. Iberian Peninsula’s relief. Elaborated from GMTED2010 (Danielson and
Gesch, 2011).

Its geographical situation, relief and the influence of surrounding water bod-
ies determines a variety of climatic regimes. Although it is also influenced by
westerlies, only the north-west is completely defined by them. Annually, the pre-
cipitations are maximum in the north, with median total amounts above 700 mm
(see figure 4.6). In fact, the maximum is reached in the north-West, were year
amounts are beyond 1100 mm. A secondary maxima can be found in the Pyren-
nees and in some regions of the northern coasts, with values around or above
1100 mm. The driest zones are in the south-east, the Ebro Valley and the inte-
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4.2. Spain

rior plateaus, with yearly rainfall below 400 mm. still, mountain ranges in these
areas have higher precipitation numbers, normally between 500 and 700 mm. In
the rest of the country rainfall is comprised between 500 and 800 mm. Taking a
deeper look into the seasonal distribution of this rainfall (see figure 4.7) we find
that the driest season appears in summer with median values below or around
100 mm in the most part of the Peninsula. The rainiest season is autumn, with
a secondary maximum that comes in winter for the south-west, and in spring for
the east.

E−OBS 1981−2010 Spain precipitation climatology
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Figure 4.6. Spain annual precipitation climatology for the period 1981-2010. Elabo-
rated from E-OBS.

If we turn our attention to maximum and minimum temperatures, their me-
dian annual behaviour is very similar. Additionally, in these images we can also
observe the effect of latitude and height, which give generally colder temperatures
in northern and higher domains. Another features shown in these maps are: a) the
effect of water bodies, giving higher temperatures in coastal sites in comparison
to their surroundings; b) the increased temperature in Ebro and Guadalquivir
valleys; and c) the lower temperatures of the Spanish interior plateaus. These
properties are also maintained when going seasonally (see figures 4.8a and 4.8b.
Particularly, we can highlight a well defined annual cycle with the hottest season
in summer, the coldest in winter and with milder temperatures in spring and au-
tumn. In this last case we can see that autumn is warmer than spring, probably
consequence of the summer thermal inertia thanks to the presence of the sea.
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Figure 4.7. Spain seasonal precipitation climatology for the period 1981-2010. Elab-
orated from E-OBS.
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Figure 4.8. Spain seasonal maximum and minimum temperature climatologies for
the period 1981-2010 (a) Median seasonal maximum temperature (b) Median seasonal
minimum temperature. Elaborated from E-OBS.
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4.3 Catalonia

Catalonia is located in the north-east of the Iberian Peninsula. Its surface area
of 31930 km2 is bounded on the north by the Pyrenees (summits above 2500 m)
and on the east by the Pre-coastal range (1700 m) and the Coastal Range (700
m), both parallel to the Mediterranean coast (see figure 4.9). Catalonia’s yearly
precipitation decreases from more than 1100 mm in the northern Pyrenees to
less than 500 mm in the south. The minimum, around 400 mm, is located in the
Central plain. The thermometric regime is characterized by warmer temperatures
near the Mediterranean which progressively decrease as we move to the west and
to the north. Seasonally, the driest and hottest season coincides with summer
(specially in the interior). The rainiest season, conversely, falls in autumn. In the
northern area winter and spring are also important periods of rainfall. Speaking
of temperature, the coldest season is winter. Spring and autumn are milder, with
the latter being a bit warmer than the former. Finally, summer is the warmest.

Figure 4.9. Catalonia’s relief. Elaborated from GMTED2010 (Danielson and Gesch,
2011).
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4.4 Muga river basin

The Muga river basin is located in the north-eastern part of the Iberian Penin-
sula. It covers a catalan region delimited to the north by the Pyrenees, and the
Mediterranean to the east (see figure 4.10). Although its surface is relatively
small, about 854 km2, there are high contrasts between the mountainous region,
with altitudes around 1100 m (summits about 1400 m) and the lower sedimentary
plains. The river Muga, which gives the basin’s name, is 64 km long and in its
upper flow is regulated by the Boadella reservoir (see section 4.5. The moun-
tainous area is mainly covered with forests whereas the lower heights are devoted
to agriculture. Main urban areas lie in the lower stream. Its climogram shows
that summer is the hottest and driest season (see figure 4.11). On the contrary,
the wettest season is autumn, with a secondary maximum in late spring (April-
May). The coldest season is winter, whereas spring and autumn are milder and
show some inertia from the precedent seasons. Temperatures along the year are
always positive and tend to be cool in winter (max. ∼13◦C min. ∼3◦C), mild
in spring-autumn (max. ∼17◦C min. ∼10◦C) and hot in summer (max. ∼27◦C
min. ∼16◦C).

Figure 4.10. Muga basin’s location and relief. Elaborated from GMTED2010 (Daniel-
son and Gesch, 2011) and Spanish river cover from the Ministerio de Agricultura, Ali-
mentación y Medio Ambiente.
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Figure 4.11. Muga basin’s climogram. Elaborated from E-OBS.

4.5 Boadella reservoir

The Boadella reservoir, built between years 1959 and 1969, is located to the south
of Darnius municipality, in Catalonia’s Muga river basin. It collects water from
a sub-basin of approximately 182 km2 with summits ranging from the 1373 m of
the Bassegoda mount to more than 1400 m in the Salines massif (see figures 4.10
and 4.12). The sub-basin is overgrown with vegetation: oaks in the low lands
and chestnut and beech in high areas. The dense undergrowth also determines a
high level of water retention. The reservoir accomplishes four objectives: a) flood
lamination; b) irrigation; c) urban water supply; and d) electricity production. Its
maximum length and depth are, respectively, 8.5 km and 54 m. The occupied area
is 364 ha, and though the highest volume retained could be of 62 hm3 for security
reasons the maximum volume allowed is 61 hm3 (Pavón, 2001a,b; Colomer et al.,
2004).

The reservoir is fed by the Muga river. Its hydrological regime is typical of
the Mediterranean, with important fluctuations during the year. Winter and
spring are the seasons of maximum contribution, whereas the annual minimum
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4.5. Boadella reservoir

Figure 4.12. Boadella reservoir location in the Muga basin. Elaborated from
GMTED2010 (Danielson and Gesch, 2011) and Spanish river cover from the Minis-
terio de Agricultura, Alimentación y Medio Ambiente.

coincides with the summer dry season. Figure 4.13 depicts this behaviour for
the Muga river at the reservoir’s entrance. In general the reservoir reaches its
highest capacity in spring, after the rainfall and snow-melting periods. As for its
minimum, it shows up in september, when the intensive irrigation after the dry
season ends (see figure 4.14). Figure 4.15 shows the climatological distribution
of the reservoir out-flow. On average, the water removed is distributed as follows
(Colomer et al., 2004):

a) 79% for electricity production and irrigation.

b) 4% for urban supply.

c) 5% for ecological flow.

d) 9% in peak flow periods or for other reasons.

The annual in-flow oscillates between 60 and 70 hm3. However, the highly
variable Mediterranean behaviour of Muga flow together with the intensive evap-
oration rates and water uses drive important fluctuations in the inter-annual
water storage. Taking a closer look to the monthly series (see figure 4.16) we will
not only see the annual cycle but also the alternation of high and low storage
periods.
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Figure 4.13. Climatology of the Muga river Boadella in-flow for the period 1981-2010.
Note the summer minimum and the winter-spring maximum. Elaborated from ACA
Boadella in-flow dataset.
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Figure 4.14. Climatology of the Boadella reservoir volume storage for the period 1981-
2010. Note the maximum of late spring and the minimum of September. Elaborated
from ACA volume Boadella dataset.
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Figure 4.15. Climatology of Boadella’s reservoir out-flow for the period 1981-2010.
Note the spike in summer. Elaborated from ACA out-flow Boadella dataset.
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Figure 4.16. Boadella storage series for the period 1981-2010. Note the year cycle
and the multiple stress periods. Elaborated from ACA volume Boadella dataset.
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Figure 4.17. Boadella reservoir. Picture taken by Jordi Verdugo.
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CHAPTER 5

Common methods

Nowadays we can find a myriad of computational tools that in a fairly straight-
forward way enable us to carry out complex statistical tests and post-processing
techniques. This chapter is centred on the mathematical description of the com-
mon methods implemented in the calibration, verification and modelling strate-
gies of this thesis. Further considerations and particular insights on the applied
approaches are left to be specifically developed in chapters 6, 7 and 8.

5.1 Quantiles

Quantiles, fractiles or also, percentiles, are one of the more elementary methods
to describe any kind of dataset. They are widely used in the characterization
of meteorological and climatological variables due to their resistance to outliers
(their value it is not susceptible to them) and their robustness (their value is
independent of the underlying distribution). Each quantile, qp, is a number q
which represents the fraction of data in the dataset, p, that is smaller than this
number. From this definition it is clear that to determine any quantile there is
a need to arrange the members of the dataset in order, in what is known as the
order stastics (Wilks, 2006).

The most frequent quantile to work with is the q0.5 or the median. It can also
be recognized as the 50th percentile and its familiarity comes from the fact that
lies in the center of the dataset leaving the same number of elements above and
below. There is a detail to be born in mind when obtaining the median from
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the order statistics since its computation varies a little if the number of elements
in the dataset, n, is odd or even. In (5.1) we summarise how to work out this
difference,

q0.5 =

{
x([n+1]/2) , n odd

x(n/2)+x([n/2]+1)

2
, n even

(5.1)

To sum up we can say that the median is the middle order statistic if the
number of elements is odd, and the average of the two middle statistics if it is
even. Other common quantiles are the quartiles, q0.25 and q0.75, because they are
the basis to obtain the Interquartile Range, IQR.

IQR = q0.75 − q0.25 (5.2)

Additional less frequent but also used quantiles are the terciles, q0.333 and
q0.667; the quintiles, q0.2, q0.4, q0.6 and q0.8; and the deciles, q0.1, q0.2,. . . q0.9. In this
thesis we have only worked with the median, the IQR and terciles.

Quantile-Quantile plots

A quantile-quantile (Q-Q) plot is a scatter-plot to compare any pair of datasets
in order to see whether they follow the same distribution. These datasets can
range from direct observations to modelled (or extracted) from an analytical dis-
tribution. The mathematical function that corresponds to the distribution giving
the more similar structure to the current scatter-plot is the quantile function.
Two datasets following the same distribution would have their points on the 1 : 1

diagonal line (see figure 5.1).

This conception is the basis for the so-called Quantile-Mapping methodology
used to correct the modelled distribution with the observed pdf (see i.e. Déqué,
2007; Wilcke et al., 2013). In this thesis it is applied in chapter 8 as a substitute to
mean bias correction in the construction of SPI and SPEI series from the mixing
of S4 and E-OBS datasets.

50



5.2. Bilinear interpolation

−20 −15 −10 −5 0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

10

15

20

25

30

Observed daily mean temperature (ºC)

E-
O

BS
 d

ai
ly 

m
ea

n 
te

m
pe

ra
tu

re
 (º

C)

Figure 5.1. Quantile-Quantile plot example for Montbrun mean temperature (Tarn
river basin, France). In this case both datasets approximately follow the same distribu-
tion (except for the highest values).

5.2 Bilinear interpolation

Bilinear interpolation can be qualitatively conceived as the process to recover an
approximate value of a 2-variable function, f(x, y) in a location of a 2D grid that
does not belong to any of the regular points of the grid for which we already
have the values of the function f(x, y). To do so we begin by performing a
linear interpolation in one direction that is followed by an identical interpolation
in the remaining dimension. This concatenation of linear applications turns the
method quadratic and, therefore, no linear. Mathematically, to perform a bilinear
interpolation at an arbitrary point s = (x, y) we need to know the values of the
function f(x, y) at the four nearest grid points: S11 = (x1, y1), S12 = (x1, y2),
S21 = (x2, y1) and S22 = (x2, y2). Once this first condition is accomplished we
can perform the first linear interpolation without regarding direction because, in
the end, we obtain the same result. Hence, let us begin by the x-direction,

(x, y1) ≈ x2 − x
x2 − x1

f(S11) +
x− x1

x2 − x1

f(S21)

f(x, y2) ≈ x2 − x
x2 − x1

f(S12) +
x− x1

x2 − x1

f(S22)
(5.3)
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Then, it is time to perform the second interpolation along the y dimension,

f(x, y) ≈ y2 − y
y2 − y1

f(x, y1) +
y − y1

y2 − y1

f(x, y2) (5.4)

Finally we only have to introduce (5.3) in (5.4) and compute the approximate
value of the function at the desired point. We have used this methodology to
increase the resolution of S4 forecasts from 0.75◦ to 0.25◦ in section 6.2.1 to
match E-OBS resolution and grid-point position. Afterwards, this interpolated
dataset has also been used in chapter 7.

5.3 Principal Component Analysis (PCA)

The PCA analysis is a mathematical technique that, in summary, allows us to
build a minimum set of n independent dimensions from a N dimensional field,
with the possibility to reconstruct the N field from these n dimensions at any
moment (with N > n). Each member of the n dimensional field is a linear
combination of the elements of the N field. The size of the n field is determined
by the fraction of the variability of the original data that we want to retain and by
the existent dependencies among the dimensions of theN domain. In practice this
means that all the complex calculations can be applied on the reduced n domain
and, if needed, recover the N field at the end of the process. This is really helpful
in large dimensional fields (N >> n) with multiple dependent dimensions, as it
is usually the case in atmospheric maps (Gutiérrez et al., 2004).

We have applied this PCA in section 6.2.4 to ease the search for analogs in the
MOS-analog calibration of S4 forecasts. Since this thesis only uses this technique
as a tool, and PCA is an extensive topic, for a deeper mathematical insight the
reader is referred to Wilks (2006) or Benestad et al. (2008).

5.4 Leave-one-out cross validation

The leave-one-out cross validation (LOOCV) is a particular application of the
cross validation method (Michaelsen, 1987). It consists on leaving aside one
member of the n dataset and fitting our model with the remaining n−1 samples.
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5.4. Leave-one-out cross validation

The resulting model is then used to predict the value of the unused element and,
therefore, to test its performance. This process is repeated n times and, as a
result, we end having n different models that give an overall picture of the chosen
predictor/s functioning (see figure 5.2).

...

...

...

...

...
Figure 5.2. A schematic view of an out-of-sample test that follows a leave-one-out
cross-validation approach. Iteratively, all the single samples from the original dataset
are used as the test data with the remaining n− 1 elements as training data. Adapted
from (Turco et al., 2012).

One important condition to be met before relying on its results is that there
should be no underlying relationships among the members of the n dataset, for
then this would lead to overconfidence when testing the performance of the model
(DelSole and Shukla, 2009). Nevertheless, providing that our dataset accom-
plishes this condition and all of its members are independent of each other, we
can shed light on the advantages on the use of this technique. The first one arises
when we are dealing with a model approximation that has an open number of
possible predictors, i.e. multiple-linear regression model, since we can use it to
make visible the existence of over-fitting with our chosen predictor set. Besides,
it puts the constructed model in an operational context, which can give us an
idea of its true performance. Some authors such as Barnston et al. (1994) high-
light that this approximation gives us a sub-estimation of precision because with
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LOOCV we are not using all the data during the verification process. However,
since the final model would be constructed with all the available data and the
testing process is equal for all the predictor sets, its impact in the general outcome
is rather limited.

One of its main drawbacks, however, is that it can be computationally ex-
pensive. Fortunately enough, our applications have been quite affordable and we
have been able to apply it in all the verification approximations of chapters 6, 7
and 8.

5.4.1 Uncertainty estimation

In chapters 7 and 8 when applying the out-of-sample test we have also estimated
the associated uncertainty to the outcome following the methodology proposed
by Calmanti et al. (2007). The practical implementation of this method can
be summarised as: a) computation of the residual variance for the study period;
b) generation of 1000 white stochastic series with variance equal to that calculated
previously; and c) addition of the stochastic series to the predicted model values,
generating an ensemble of 1000 downscaled series.

5.5 Calibration

Calibration of model forecasts is an extensive topic spanning from the most
straightforward strategies to the most mathematically demanding. In this thesis
we have chosen three approaches: mean bias correction, MOS-analog and lin-
ear regression. In the following lines we will present a brief description of each
technique along with the reasons for its selection.

5.5.1 MOS-Analog

This subsection introduces the MOS adaptation of the popular analog methodol-
ogy, the MOS-analog technique. It is based on the concept of analog which was
firstly introduced in Meteorology by Lorenz (1969a) and extensively applied ever
since (see i.e. Duband, 1981; van Den Dool, 1989; Zorita and von Storch, 1999;
Benestad et al., 2008). Nowadays it is a popular and widely used technique in
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calibration and downscaling of weather and climate forecasts. It is built on the
hypothesis that similar atmospheric patterns lead to similar atmospheric effects.
This idea is the premise to set up a simple algorithm to search past situations
that are similar to the one that is forecast. The main advantages of this method
are: a) it is able to reproduce non-linear relationships between predictors and
predictands; b) it is easy to implement with a low computational cost; and c) it
is able to reproduce realistic and spatially coherent patterns.

Conversely, its main drawback is that it cannot simulate unobserved weather
phenomena. Even so, it can produce accumulated values, means or frequencies
larger (or smaller) than the historical ones if we consider the union of several
of the analog independent outcomes. This limitation is related to the assump-
tion of stationarity (Wilby et al., 2004), a common weakness in many statistical
methods and dynamical models, since the statistical relationships of the former
and the parametrizations of the latter must hold in all the time series (Trenberth
et al., 2003). This limitation, that should be cautiously considered in climate
change projections, it is less problematic when employed in calibration processes
of current forecasts with known past datasets. Even so, this weakness can be
mitigated by using a long and varied historical database (i.e. van den Dool, 1994;
Zorita and von Storch, 1999; Diomede et al., 2006; Barrera et al., 2007) and
with statistical relationships based on a small number of parameters and/or ro-
bust physical predictor-predictand connections (Benestad et al., 2008; Maraun
et al., 2010). This is particularly the case of the MOS analog calibration, where
the same variable acts as predictor and predictand. Hence, given an historical
training period (with known predictors and predictands) and a test period (with
known predictors), the MOS-analog calibration consists of three main steps (see
also figure 6.2):

1. Selection of the study region.

2. For each uncalibrated forecast in the test set (acting as predictand) search
for the nearest analog/s pattern in the training period (formed by the re-
maining forecasts of the same variable acting as predictors). These patterns
are chosen considering the Euclidean distance between the fields (Matulla
et al., 2007).
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3. The corresponding observation fields are then picked to compose the final
calibrated forecast.

Finally, it is also worth noting that the selected analogs should correspond to
similar periods of the year because otherwise the inherent variations in the annual
cycle can lead to different predictand outcomes even if the predictor patterns were
similar (Lorenz, 1969a). In this thesis we have applied this method in chapters 6
to calibrate raw S4 forecasts and in chapter 7, where the calibrated S4 forecasts
have been used to analyse the performance a seasonal forecast model of reservoir
in-flow, out-flow and volume anomalies.

5.5.2 Linear regression

The method of linear regression seeks the linear relationship between two vari-
ables, one acting as the dependent or predictor variable, y, and the other as the
independent or predictand variable, x. This is achieved through the depiction of
the line that minimizes the error between the values of y obtained from x in its
corresponding scatterplot. The line is obtained through the expression (5.5),

ŷ = a+ bx (5.5)

The circumflex accent means that (5.5) determines the predicted value of y.
The customary error criterion is the minimization of the sum of the squared errors.
That is why this technique is also called least-squares regression. Unfortunately,
the priority to minimize the distance between the points and the line means that
this method is not resistant to outliers. The differences between the points and
the line are called residuals and are computed as,

ei = yi − ŷ(xi) (5.6)

Where y and x refer to the actual values of data and the ŷ to the predicted
values through equation (5.5). Thus, if we combine equations (5.5) and (5.6) we
get equation (5.7),

yi = ŷi + ei = a+ bxi + ei (5.7)
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which states that the true value is the sum of the predicted value plus the
residual. The expressions for the intercept of the line, a and its slope, b, are:

b =

n∑
i=1

[(xi−x̄)(yi−ȳ)]

n∑
i=1

(x−x̄)2

a = ȳ − bx̄

(5.8)

Where x̄ and ȳ are the respective mean values of the x and y datasets. For
more information on the derivation of (5.8) equations see i.e. Wilks (2006). In
the MOS approximation of linear regression the pair of x and y variables are,
respectively, the forecasts and observations of the re-forecast period that will
serve us to calibrate the line that will be used to correct the present forecast. We
have used this procedure in chapter 6 to correct S4 forecasts.

5.5.3 Mean bias correction

Perhaps the simplest method available, this approach consists on seeking for the
mean error in the model forecasts and adding (subracting) it from every single
element of the dataset in order to have zero mean error after the calibration.
In a linear regression, the independent term accomplishes the same function.
Mathematically the mean error can be written as,

ME =
1

n

n∑
k=1

(fk − ok) (5.9)

Where fk accounts for the forecast and ok for the observation. This approach
has been used in chapter 6 to correct the raw S4 forecasts and compare its per-
formance with the more complex MOS-analog and linear regression calibrations.
Afterwards, the resulting dataset has been applied in chapter 7.

5.6 Multiple Linear Regression modelling

The linear regression presented in the previous section 5.5.2 is a particular case
of multiple linear regression (MLR). The main difference between them is that
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while in linear regression there is only one possible predictor, in MLR they can
be several. In this case, however, our objective rather than calibrating a dataset
is to model monthly in-flow, out-flow and volume anomalies in a reservoir (see
chapter 7) and summer burned area anomalies in a region (see chapter 8). The
most simple form of MLR is the one of equation (5.10).

Yi = β0 +

p∑
j=1

βjXi,j + εi (5.10)

Where for each element i, Y is the predictand; the Xi,1,. . . ,Xi,p are the p
predictors; εi is the residual term; and the β0, . . . , βp are the regression parameters
which are found by minimizing the sum of the squared residuals (see i.e. Wilks,
2006).

The preference for this methods lies in the hypothesis that monthly anoma-
lies of the aforementioned predictands can have approximate linear relationships
with monthly anomalies of the meteorological predictors we work with, namely,
maximum and minimum temperatures, precipitation and SPI/SPEI indices. Be-
sides, this method is conceptually accessible and requires a limited number of
computing resources, which means that the methodology might be transferred to
other regions or situations with ease (see i.e. Huth, 2002; Benestad et al., 2008).
However, it is important to bear in mind that the open number of possible pre-
dictors can lead to over-fitting so their inclusion must be considered case by case
with caution. To overcome this pitfall we have used the Akaike Information Cri-
terion. Eventually though, to progress in the understanding of any problem, each
predictor inclusion should respond to a physical connection with the predictand.

5.6.1 Akaike Information Criterion

The Akaike information criterion (AIC) is an information theory tool used in
model selection (Akaike, 1974). For a given statistical model it can be computed
from equation (5.11) as,

AIC = 2k − 2 ln(L) (5.11)
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where L is the maximized value of the likelihood function of the model; and k
refers to the number of estimated parameters. Hence, for a set of different models
calibrated with our dataset the preferred would be the one with the minimum
AIC. The main advantage of this criterion is that it is a trade-off between the
goodness-of-fit and the risk of over-fitting, since it includes a penalty for the
number of included parameters (predictors). It is important to note that the AIC
only accounts for the relative quality among the models, it tells nothing about
the absolute quality of them, for it can happen that all the models fit badly and
still find a minimum AIC. In our case it is used to aid the discrimination of the
best models in chapters 7 and 8.

5.7 Forecast Verification

When facing any kind of forecast there is always a question to ask: How good is
it? Forecast verification (or also validation) is the tool that lets us give an answer.
It deals with the comparison of past forecasts with the respective observations
in a range of ways. However, there are multiple aspects of a forecast that can
be assessed and so are the possible responses to that question. The Anscombe’s
quartet is a good example of the importance of analysing data from a diversity
of viewpoints (see figure 5.3).
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Figure 5.3. Anscombe’s quartet. All the depicted scatterplots have the same Pearson
correlation coefficient, mean and variance. The differences among datasets highlight the
need to look at them from a diversity of approaches. From Anscombe (1973).

That is why, before issuing a verdict, there is always a need to look at a
forecast from different perspectives taking into account not only the needs of the
end-user but also the inherent complexities of the forecast itself (Doblas-Reyes
et al., 2008). Therefore, among all the possible methods to work with, we have
to bear in mind that there is no universal metric that can account for the quality
of all the aspects of a model (see i.e. Barnston et al., 1994; Carson, 1998; Wilks,
2006). Hence, only a combination of them can provide us with a precise idea of
its performance. Consequently, in the following lines we will present the metrics
that in accordance to our objectives will help us to assess the behaviour of the
models in the forthcoming chapters.

5.7.1 Validation from deterministic forecasts

5.7.1.1 Goodness-of-Fit

When assessing the goodness of fit of a regression model there are two common
metrics in use. There is also a third one, the F ratio, but its application has
some restrictions that are not usually met with the MLR and, therefore, it will
not be considered (see i.e. Wilks, 2006). The other two are the Mean Squared
Error (MSE) and the Coefficient of Determination (R2). The MSE indicates the
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uncertainty around the regression line, providing us with an evaluation of the
accuracy of the model. It can be computed from equation (5.12).

MSE =
1

n− k − 1
(SST − SSR) =

SSE

n− k − 1
(5.12)

Where k refers to the number of regression parameters and n to the total num-
ber of compared elements. The SST , SSR and SSE expressions are summarised
in (5.13).

SST =
n∑

i=1

(yi − ȳ) SSR =
n∑

i=1

[ŷ(xi)− ȳ]

SSE =
n∑

i=1

e2
i = SST − SSR

(5.13)

SST is an acronym for the sum of squares total which stands for the sum
of squared deviations of the predictand, y, around its mean value; SSR is the
regression sum of squares this time accounting for the squared differences between
the regression predicted values, ŷ and the observed mean of the predictand, ȳ;
finally, SSE accounts for the sum of squared errors, which is the sum of squared
differences between the residuals (5.6), ei, and their mean, ē = 0 (for further
information see i.e. Wilks, 2006). In the perfect case, MSE = 0, SST equals
SSR and the SSE = 0. The second usual measure to evaluate the fit of a
regression is the coefficient of determination, or R2. This can be computed from,

R2 =
SSR

SST
= 1− SSE

SST
(5.14)

The R2 accounts for the fraction of the predictand variability (proportional
to SST) that is reproduced in the regression SSR. In a perfect situation R2 = 1;
while in the worst, R2 = 0. It is important to remark that R2 value does not imply
causality for it only checks the existence of a relationship between the predictand
and predictors. In this work we have used the MSE and R2 as discriminant factors
in the choice of MLR models in chapter 7.

5.7.1.2 Pearson correlation coefficient

The Pearson correlation coefficient between two variables x and y is a tool to
asses the linear relationship between them and can be applied to any pair of
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matching datasets, namely time-series or map fields. It can be regarded as the
proportion of the covariance between the two variables to the product of the their
respective standard deviations,

rxy =
Cov(x, y)

σxσy
=

1
n−1

n∑
i=1

[(xi − x̄)(yi − ȳ)][
1

n−1

n∑
i=1

(xi − x̄)2

]1/2[
1

n−1

n∑
i=1

(yi − ȳ)2

]1/2
(5.15)

Where xi and yi refer to each element pair; x̄ and ȳ are the mean values; and n
is the total number of elements (it is the same for both variables). One advantage
of the Pearson correlation is that it is bounded: −1 ≤ rxy ≤ 1. Thus, the best
possible values are 1 or -1, depending on the sign of the linear relationship between
x and y. When there is no kind of linear relationship between them, its value is 0.
Another important property is that in linear regression its square value coincides
with the Coefficient of Determination (5.14). Again, we have to remember that
this does not imply causality between the two variables, just the existence of a
linear relationship that can either be casual or causal. Finally, it is worth noting
that Pearson correlation coefficient is neither robust nor resistant and so has to
be used with caution. In our work we have used it in the verifications sections of
chapters 6, 7 and 8.

5.7.1.3 MAE, MSE and RMSE

In accordance to (Wilks, 2006) there are three well-established accuracy measures
in use. All of them can be applied upon time-series or field maps. The first one
is the mean absolute error (MAE),

MAE =
1

n

n∑
k=1

|fk − ok| (5.16)

Where fk and ok refer to each of the forecast-observation pairs in the series. As
it can be inferred from equation (5.16) the outcome of a perfect model would equal
the observations and, consequently, MAE = 0. The second accuracy measure,
the mean squared error (MSE) has been already introduced in section 5.7.1.1.
We reproduce here its expression for completeness.
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MSE =
1

2

M∑
m=1

(fm − om)2 (5.17)

Clearly, for a perfect forecasts MSE = 0. Often, the MSE is transformed
into the third accuracy measure, the root mean squared error (RMSE) by means
of a squared root (5.18). This is done to retain the units of the variable and,
thus, ease its comprehension as an error magnitude.

RMSE =
√
MSE (5.18)

The MSE/RMSE, being squared averages of differences tend to penalise
most the bigger errors than theMAE. We have extensively used them in chapters
6 and 7.

5.7.1.4 Taylor diagram

The Taylor diagram (see Taylor, 2001) is a graphical device to depict in a sin-
gle figure the centred RMSE (cRMSE), the standard deviation and the Pearson
correlation coefficient. The main difference of the RMSE and the cRMSE is that
the latter accounts for the RMSE of the anomalies instead of the direct differ-
ence between forecasts and observations. It is based on the fact that the centred
RMSE can be written in the form of equation (5.19).

cRMSE =
√
σ2
f + σ2

o − 2σfσorfo (5.19)

Where σo and σf correspond, respectively, to the standard deviations of ob-
servations and forecasts; and rfo is the Pearson correlation coefficient between
forecast and observed values. (5.19) is directly analogous to the law of cosines.

c2 = a2 + b2 − 2ab cos θ (5.20)

If we then associate each of the elements of equations (5.19) and (5.20) we can
describe a triangle in which two of the legs correspond to the standard deviations
σf and σo and the third, to cRMSE. Besides, if we now focus our attention to the
angle, θ, between σf and σo we will see that its cosine is the correlation rfo. This
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construction can be directly described with polar coordinates: the forecast field is
plotted at the farthest part of the radius σf at an angle cos−1(rfo). On the other
hand the distances to the reference point indicate the cRMSE (see figure 5.4).
We have used Taylor diagrams in the forecast verification sections of chapters 6
and 7.

Figure 5.4. General structure of a Taylor diagram. From Taylor (2001).

5.7.2 Validation from probabilistic forecasts

5.7.2.1 Contingency tables

In many occasions we need to collapse probabilistic forecasts to non-probabilistic
yes/no predictions by means of threshold considerations. In fact, some verifi-
cation techniques have to screen all of these thresholds to obtain the necessary
information to build graphical displays such as the ROC or the Economic Value
curves (see subsections 5.7.2.6 and 5.7.2.7).

For each case we can build what is commonly known as a 2 × 2 contingency
table which is a useful summary tool for verification of non-probabilistic yes/no
forecasts. It is also the basis for computing multiple quality scores, some of
them fundamental in the aforementioned verification constructions (Wilks, 2006).
Figure 5.5 depicts the general structure of one of such tables. We can see that
the event occurrence was successfully forecast a times out of n total forecasts,
that is, the analysed model had a hits. Conversely, this model forecast the event
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on b instances in which it was not finally observed, namely, the model gave b
false alarms. Similarly, there are c misses in which the model did not forecast
the event when it actually occurred. Finally, the d term accounts for the correct
rejections or situations in which the model did not forecast the event and it did
not happen. Outside the table it is usual to include the marginal totals and the
sample size, n = a+ b+ c+ d.

ObservedObserved
Yes No

Yes a b a+b

No c d c+d

a+c b+d n=a+b+c+d

Fo
re
ca
st

Figure 5.5. Relationship between counts (letter a-d) of forecast/event pairs for the
dichotomous noprobabilistic verificaiton situation as displayed in a 2 × 2. Also shown
are the marginal totals, indicating how often each of the two events was forecasted and
observed in absolute terms and the sample size n. Adapted from (Wilks, 2006).

Two scores, namely the False Alarm Rate (F) and theHit Rate (H), are widely
employed to characterize a dichotomous forecast system that can be described by
a 2× 2 contingency table. F can be computed as,

F =
b

b+ d
(5.21)

That is, F is the ratio of false alarms with respect to the total number of the
event non-occurrences. The best possible value of F is zero and the worst is one.
As for the H, it is defined as,

H =
a

a+ c
(5.22)

Which is the fraction of hits with reference to the number of event occurrences.
It is positively oriented being 1 its best value and 0, the worst. Equations (5.21)
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and (5.22) are the conceptual and geometrical basis for ROC and EV curves of
chapters 7 and 8.

5.7.2.2 Verification Rank Histogram

The verification rank histogram is a graphical device to assess whether an ensem-
ble includes the possible observations as equiprobable forecast members of the
ensemble. If we have an ensemble of nens members it is build as follows. Consider
n possible forecast situations. For each one of them we will have nens forecasts
and the final observation. If both the nens and the observation come from the
same distribution the rank of the observation would be any of nens + 1 values,
that is, i = 1, 2, 3, . . . , nens + 1. If, for example, the observation is larger than
any other of the ensemble, the assigned rank would be nens + 1; conversely, if it
is smaller than any other ensemble value, the assigned rank would be 1. If we
annotate the ranks of the n corresponding observations and plot them in the form
of a histogram we will end having the verification rank histogram. In figure 5.6 we
can see what a normal verification rank histogram looks like and the possible de-
partures from normality. In our case it has been applied as a preliminary analysis
in chapter 6 to verify that a 15-member ensemble produces and under-dispersed
verification rank histogram (see figure 5.6).
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Figure 5.6. General form of a verification rank histogram and its departures from
uniformity. From (Callado et al., 2013).

5.7.2.3 Brier Score

The Brier Score (BS) is, basically, the mean squared difference between the fore-
cast probability of a given event, fk, and the occurrence, ok = 1, or not, ok = 0,
of the event. It is a scalar accuracy measure for probabilistic forecasts.

BS =
1

n

n∑
k=1

(fk − ok)2 (5.23)

The index k refers to each pair of the n forecast-observation events. It can
take values between 0 and 1, 0 ≤ BS ≤ 1, being 0 the BS of a perfect forecast.
Additionally, if we would like to compare the BS of a given model with a reference
forecast (climatology in our case) we can use the Brier Skill Score (BSS) that is
computed as follows,

BSS =
BS −BScl

BSprf −BScl

(5.24)

Since the BS of a perfect forecast equals 0, BSprf = 0, equation (5.24) yelds,
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BSS = 1− BS

BScl

(5.25)

When the probabilistic forecast comes from a relatively small ensemble (nens <

40) there is an intrinsic negative bias in the BSS (Weigel et al., 2007). This is
corrected in the so-called diescrete Brier Skill Score which can be obtained from
equations 5.26 and 5.27,

BSSD = 1− BS

BScl +D
(5.26)

D =
1

M
p (1− p) (5.27)

Where M is the size of the ensemble and p the climatological probability of
the event. In this thesis we have used the discrete Brier Skill Score referenced to
climatology in chapters 6 and 7.

5.7.2.4 Attributes diagram

The attributes diagram is a reliability diagram that includes the components of
a singular decomposition of the Brier Score (see i.e. Wilks, 2006),

BS =
1

n

l∑
i=1

Ni(fi − ōi)2

︸ ︷︷ ︸
Reliability

− 1

n

l∑
i=1

Ni(ōi − ō)2

︸ ︷︷ ︸
Resolution

+ ō (1− ō)︸ ︷︷ ︸
Uncertainty

(5.28)

Where I refers to the total number of probability categories (e.g. 5 categories
would mean that the probabilities can only take one of these five values: 0%,
25%, 50%, 75%, 100%); Ni is the number of occasions each probability category

has been forecast; n is the total number of forecast-observed pairs; ō = 1
n

n∑
k=1

ok

is the overall occurrence frequency of the event observed; and ōi = 1
Ni

∑
k∈Ni

ok is

the relative frequency of the event occurrences with respect to the ith probability
forecast category. It is worth to remember that if the event occurs ok = 1 and
0, otherwise. In figure 5.7 we can see an example of one of such diagrams. The
diagonal line corresponds to a perfect reliability, and is the line that the outcome of
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a perfect forecast would follow. The horizontal dashed lines refer to the resolution
term in equation (5.28) and represent the limit of no-resolution. This limit is
established by the climatological probability of the forecast event. On these
lines the model is unable to distinguish if the event occurrence is more or less
probable than its climatological probability (Wilks, 2006). The shaded region is
determined by the line of no-skill. It is halfway the lines of perfect-reliability and
no-resolution and defines the forecast elements that contribute positively in the
overall skill in 5.28. It is important to note that lying outside the shaded region
does not imply that our forecast is useless (see i.e. Weisheimer and Palmer, 2014,
and the introduction to section 5.7)). Diagrams for the lower 33.3 percentile. January forecast. Lead 1
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Figure 5.7. Example of an attribute diagram. Elaborated with data from chapter 7.

5.7.2.5 Ranked Probability Score

The Ranked Probability Score (RPS) is a tool to assess the performance of multi-
categorical probabilistic forecast systems. These systems issue, for every forecast,
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J probability values corresponding to each of the J pre-established categories
where the final observation could be. It is computed as the squared difference be-
tween the forecast, F , and observed, O, cumulative vectors. So for each forecast-
observation pair we have,

RPSi =
J∑

m=1

(Fm −Om)2 (5.29)

Where F and O are computed as,

Fm =
m∑
i=1

fi , m = 1, . . . , J

Om =
m∑
i=1

oi , m = 1, . . . , J

(5.30)

J refers to the number of established categories and, consequently, to the F
and O vector dimensions; fi is the forecast probability; and oi corresponds to the
occurrence, oi = 1, or not, ok = 0, of the event. For instance, the cumulative
vectors for F would be, F1 = f1, F2 = f1 + f2, F3 = f1 + f2 + f3,. . .,FJ =

f1 + f2 + f3 + . . .+ fJ . It is clear that FJ = 1 and OJ = 1 since their components
represent the probabilities of a fixed set of categories. If we combine equations
(5.29) and (5.30) we will get,

RPSi =
J∑

m=1

[(
m∑
j=1

fi

)
−

(
m∑
j=1

oj

)]2

(5.31)

The RPS has a negative orientation, the best possible value is RPS = 0. Its
extension to n forecasts is direct,

RPS =
1

n

n∑
k=1

RPSk (5.32)

Finally, we can compute the Ranked Probability Skill Score with respect to
climatology as,

SSRPS =
RPS −RPSclim

0−RPSclim

= 1− RPS

RPSclim

(5.33)
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For situations in which the ensemble size is smaller than 40 members the
RPSS suffers from a negative bias (Weigel et al., 2007). The way to proceed is
the same as in section 5.7.2.3,

RPSSD = 1− RPS

RPScl +D
(5.34)

D =
1

M

J2 − 1

6J
(5.35)

WhereM is the size of the ensemble and J is the number of forecast categories.
In this thesis we have used the discrete Ranked Probability Skill Score referenced
to climatology in chapters 6 and 7.

5.7.2.6 ROC curve

The ROC curve is an acronym for Relative Operating Characteristic curve (see
i.e. Gutiérrez et al., 2004; Wilks, 2006) that we have applied in the verification
sections of chapters 7 and 8. It is built by screening the H and F performance of
a forecast system (see section5.7.2.1) through all the probability threshold range,
that is, 0 ≤ p ≤ 1. Afterwards, these values are depicted in a diagram where the
H is represented in the y-axis and the F, in the x-axis. In both cases the axis’
limits are 0 and 1.

From these considerations we can infer that in the lowest threshold, p = 0,
the H and F are maximum because our system always forecasts the occurrence
of the event. On the other hand, in the upper threshold, p = 1, our system will
never predict the event, and the H and F are minimum. These points constitute,
respectively, the ending and beginning of every ROC curve (see i.e. figure 5.8).
The diagonal line that can be observed in this figure corresponds to the ROC
curve generated by an aleatory forecast system based on the climatology of the
event (see i.e. Wilks, 2006). Therefore, the more the curve of a forecast system
falls to the left of the climatology line, the better the system is. This can be
quantified through the so-called ROC Area which is the area under the ROC
curve. Considering that the climatological forecast system would give a ROC
area of 0.50, values over this threshold will generally represent better forecast
systems. Nevertheless, in every case it is also necessary to look at the ROC curve
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because for each threshold the system may still be falling to the right or left of
the diagonal line.
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Figure 5.8. Example of a ROC curve. Elaborated with data from chapter 7.

5.7.2.7 Economic Value

The Economic value, EV , is a verification parameter for probabilistic forecasts
of dichotomous events to summarise their quality from a cost/loss perspective
(Gutiérrez et al., 2004). Each EV can be obtained from a contingency table (see
figure 5.9) taking into account that any preventive action has a cost, C, whereas
taking no action has the risk of having a loss, L. From figure 5.9 the total expense
of the probabilistic system can be computed as,

TE = αC + βC + γL (5.36)

Where α, β, γ and δ refer to the relative frequencies obtained by dividing the
elements a, b, c and d of figure 5.5 by the sample size, n. If we now consider
(5.21) and (5.22) and re-write (5.36) in function of H and F yields,
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Figure 5.9. Contingency table for a dichotomous cost/loss approximation. Adapted
from (Gutiérrez et al., 2004).

TE = H pc C + F (1− pc)C + (1−H) pc L (5.37)

Where pc refers to the climatological probability of the event occurrence,

pc = α + γ =
a+ c

n
(5.38)

Let us now introduce the total expense of the perfect and climatological fore-
cast systems. In a perfect prediction H = 1 and F = 0 and thus,

TEperf = pc C (5.39)

Moving on to the climatological forecast, it would have a global expense of,

TE clim = min {C, pcC} (5.40)

Because the expense generated by the preventive action should never surpass
the limit L pc. If we now take into account all the aforementioned developments,
the EV of a prediction can be conceived as the difference between what we could
get with our model with respect to the climatology and what we could obtain
with a perfect model,
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EV =
TE − TEclim

TEperf − TEclim
(5.41)

Now if we insert the ratio R = C/L in (5.41) we will have the expression of
the EV with respect to the cost/loss ratio and the H and F .

EV =
H pc R + F (1− pc)R + (1−H)pc −min {R, pc}

pcR−min {R, pc}
(5.42)

Since H and F depend on the probability threshold, pt, that converts our
probabilistic forecast to a dichotomous prediction (Wilks, 2006), we have that
the EV is both function of pt and the cost/loss ratio, R. Consequently, for every
threshold, pt, we will have a function EV = f(R). Additionally, since these
functions are continuous, for every value of R it will exist a pt that maximizes
the EV of the system. Particularly, this is reached when R = pc for each pt. In
that situation (5.42) becomes,

EV =
H p2

c + F (1− pc) pc + (1−H)pc − pc
p2
c − pc

(5.43)

Which simplified, is equal to the Hanssen-Kuipers Score or HKS,

EV = H − F = HKS (5.44)

Often, since every pt has its own EV (R) function, the final diagram only
depicts the envelope of these maximum EV values (see figure 5.10). In this thesis
we have applied the EV in chapter 7.
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Figure 5.10. Example of an economic value envelope curve. Usually, to avoid clut-
tering, economic value plots only depict the envelope curve of the maximum economic
value for each Cost/Loss ratio and probabilistic threshold. Elaborated with data from
chapter 7.
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CHAPTER 6

Seasonal forecasting: calibration for
improvement

6.1 Overview

The following lines present an effort to explore seasonal predictability and its
possible improvement by means of calibration of S4. Particularly, we will focus
our attention on a multiple-step approach, ranging from continental to regional
domains, in a process through four areas (see chapter 4):

i. Europe iii. Catalonia
ii. Spain iv. Muga river basin

The reason behind this choice is to provide a thorough comparison of S4
performance before/after calibration, not only to test the former hypothesis but
to cover a broader spectrum of end-user needs. Likewise, our objective is also
to analyse the effect of domain size on the performance of our hypothesis and
methods. In this regard, the results obtained will be applied in chapters 7 and
8 to show the potential benefits of seasonal forecasting in the fields of water
resources and summer fire predictability. But before, we will have to answer
some questions:

1. Which is the current skill of S4 in the aforementioned domains? Does it
depend on them?
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2. Can S4 forecasts be improved by linear/non-linear calibrations? At which
scales? At what lead-times?

3. Are our calibrations able to improve the results of a simple-bias correction?
At what cost?

Each response will pave the way to the contextualization of our framework as
well as to the establishment of prospects for the upcoming applications. We will
see, for example, that the answer to the first question provides us with a robust
starting point, a picture of the model behaviour depending on the area studied,
as well as its performance at different lead-times and for different variables. The
second issue, on the other hand, leads us to investigate the possibility of adding
information to the forecasts seeking for hidden signals through calibration. Fi-
nally, the last inquiry will reveal if the complexity added by calibration is justified
or not.

Consequently, the success of this chapter also revolves around the validation
process. It involves deterministic and probabilistic verification metrics that will
be matched with climatological and persistence controls to test overall S4 perfor-
mance (original and calibrated). This will consist of an out-of-sample verification
of the issued S4 forecasts against the observational dataset, E-OBS. In both cases
the variables considered are: a) maximum temperature; b) minimum tempera-
ture; and c) precipitation amount. More details on these datasets can be found
in sections 3.1 and 3.2. Hence, the organization of this chapter is as follows: the
Methodology section presents and justifies the selection of different calibration
and data-treatment strategies; then, Results sums up the outcome of the analysis
performed; and finally, in Discussion & Conclusions there are the answers to the
questions previously raised.
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6.2 Methodology

6.2.1 Region selection and interpolation

In section 3.2 we have seen that the S4 hindcast (1981-2010) is composed of a
15-member ensemble of 1 to 7 monthly lead-time predictions issued every month
in a global grid resolution of 0.75 degrees. In our case, after extracting European
forecasts, the next step has been to interpolate its resolution from 0.75 to 0.25
degrees through an interpolation method. This is meant to ease the verification
process by matching S4 and E-OBS resolutions. As for the interpolation itself, it
has been based on the application of a bilinear approach (see section 5.2) because
its mathematical simplicity ensures that changes on the original information (Ac-
cadia et al., 2003) would be minimized through the calibration approach.

Regarding the smaller domains, they have been drawn from the European
region extraction. For Spain and Catalonia it has been quite trivial, since it is
enough to superimpose the region shape on the Europe dataset and identify the
grid-points that fall within. However, for a smaller area such the Muga river
basin it can be the case that no grid-point falls inside the polygon. Consequently,
we had to develop a protocol to select the N closest points to a given region (see
figure 6.1),

i. Take the coordinates of the region that define its polygon and compute
the median values of its latitudes and longitudes.

ii. Enlarge the region’s polygon by adding or subtracting 0.1◦ to every pair
of shape coordinates (latitude and longitude) depending on whether they
are above or below the aforementioned median values. Repeat until the
enlarged polygon encompasses the minimum required N points.

iii. As a result the region shape expands isotropically until it reaches the
minimum of N inside points. These points will always be the closest to
the original region.
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Figure 6.1. Small region expansion-selection scheme. The colored grid-points falling
inside the expanded shape are the two closest.

6.2.2 S4 ensemble recombination

The analysis of the ensemble through the verification rank histogram has shown
that with 15 members we get an under-dispersed histogram, with its characteristic
U-shape (see section 5.7.2.2). Although this is something that it is inherent
to our hindcast it is important to bear it in mind when analysing the results
obtained. Even so, the available computing resources have been not enough to
work independently with each one of the 15 members of the ensemble in the
deterministic approximation.

To overcome this situation we have restructured the re-forecast ensemble
through what we have called the generalized ensemble (GE). It is, plainly, a
reorganization of the information of the ensemble in a smaller number of maps
constructed with values corresponding to a given percentile. In this way we
could maintain the characterization of the pdf of the ensemble but without the
need to work with its every single member when going deterministically. To our
knowledge, this approximation in literature is mainly limited to the work with
mean/median maps or global values (i.e. Doblas-Reyes et al., 2005; Johnson and
Bowler, 2009). Here, we also retain the other percentiles to develop a determin-
istic approach (see next section) and visualize the variability of the pdf. The
process to build the GE is as follows:
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1. For each grid-point and lead-time retrieve the values corresponding to all
the forecasts of the ensemble for that grid-point. In our case,

zj = {x1, . . . , x15} (6.1)

2. Set percentiles of interest to define the general distribution. To cover the
IQR and a lower and upper region of the distribution we have chosen,

zj = {p10, p25, p50, p75, p90} (6.2)

3. For each grid-point, draw the values corresponding to those pre-set per-
centiles to build a new ensemble matching the percentile thresholds defined.
In our case,

zj = {xp10, xp25, xp50, xp75, xp90} (6.3)

The choice of the p10 and p90 instead of the more common p95 or p99.9 to
represent the extremes pursues the reduction of the induced error coming both
from the size of the ensemble and the coarse E-OBS resolution. That said, p10 and
p90 are the characteristic measures of moderate climate extremes (i.e. Moberg and
Jones, 2005). As for the resulting GE, it has some advantages beyond the obvious
reduction of hindcast size. Firstly, it represents the pdf of the original ensemble
as a whole no matter if this corresponds to a single grid-point or a region field.
In the latter this avoids the underlying complexity of dealing with the forecast
variability (standard deviation), σfc, as combination of random variables with
possible entangled dependencies,

σfc ∝ {σt, σspc, σens} (6.4)

Where σt represents the variability linked to time; σspc, the variability linked
to the spatial distribution; and σens, the variability linked to the original en-
semble members. Thus it also provides information about deficiencies in the
original ensemble such as limited variability and the existence of systematic bi-
ases. Moreover, statistical downscaling and calibration methods can act directly
on the general pdf independently of the nature of the underlying distributions
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and the dependence or independence of the random variables considered. Finally,
spatially organized differences in any of the members of the generalized ensemble
can give information about the general pdf. For example, imagine that we look
at a map corresponding to the lowest 10th percentile of lead 1 forecast monthly
precipitation anomaly for Europe and we observe an organized structure with
positive values in the south and negatives in the north. This means the model
ensemble expects a wetter than normal month for the south. It is worth noting
that we can say nothing about the north because the drier than normal 10p is
what we should expect for this percentile’s behaviour.

6.2.3 S4 ensemble unification

Current models usually comprise the association of deterministic control output
along with an ensemble of perturbed runs. The former is used to embody a de-
terministic forecast whereas the latter is the base for probabilistic predictions.
However, one may ask whether there is a way to take advantage of the benefits
of the ensemble to issue a deterministic forecast instead of sticking to the unper-
turbed run of the model. Though there are a number of strategies to face the
problem, the most common approach deals with the ensemble mean and variance
(Wilks, 2006). However, here we will offer an approach based on the construction
of a single time series from the GE. To do so we have to follow these steps: :

1. Create a GE from the original ensemble (see section 6.2.2). In our case,
the GE is formed of 5 member-series corresponding to percentiles 10, 25,
50, 75 and 90.

2. For each element of the grid-point series of the GE evaluate the Mean
Absolute Error (MAE) for all the other elements following a Leave-One-
Out Cross-Validation (see section 5.4). Here we have a hindcast period
of 30 years (1981-2010) so each monthly MAE will be evaluated with 29
elements for each of the five members of GE.

3. The forecast for that particular element will be the value of the one in five
GE member that showed a lower MAE in the LOOCV.

82



6.2. Methodology

6.2.4 Calibration

As we have stated in section 5.5 we have applied three statistical calibration
techniques on the interpolated and reorganized output of the S4 model:

i. MOS-analog

ii. Linear regression

iii. Mean bias correction

In this way we can evaluate the efficiency of both non-linear (MOS-analog)
and linear (linear regression and mean bias correction) approximations. In the
MOS-analog the search for analogs is made considering simultaneously the entire
number of region grid-points, whereas in the linear regression and mean bias
correction each grid-point series is independently calibrated. In the three cases
predictors and predictands are referred to the same variables, predictors coming
from the S4 previsions and predictands, from E-OBS. When determining the
usefulness of calibration procedures we first compare scalar values against raw
GE S4 forecasts. Afterwards, we work with unbiased S4 GE1 in order to to better
assess whether these calibration techniques can go beyond the skill recovered by
correcting any existing first order systematic errors. Regarding the protocol to
assess the performance of the calibrated forecasts it consists of a LOOCV. Hence,
each year is calibrated with all the available years except from itself. Then the
same process is repeated for every year of the 1981-2010 series and the validation
metrics are computed.

MOS-Analog

The MOS-Analog technique has been chosen, among other alternatives (see 2.3.2),
because it is a non-linear method that has already offered interesting results in
RCM downscaling (Turco et al., 2011) and for it can be transferred easily to model
calibration. In this case it consists on seeking, for each member of the GE-S4, N

1This correction consists on the computation, for each pixel forecast, of the median anomaly
in reference to E-OBS climatology. Afterwards, this quantity is added or subtracted to each
forecasted value.
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Figure 6.2. MOS-analog calibration scheme. For each lead, GE member, variable
and forecast month we search the N analogs in the analog pool formed by the same
month forecasts taken from the hindcast (excluding the forecast month that we want
to calibrate). Afterwards, we take the N E-OBS observation fields corresponding to
the N analogs and merge them to form a single output that will become our calibrated
forecast.

same member analogs in a pool consisting of forecasts for the same month and
horizon coming from the rest of the hindcast. The analogs are obtained through
minimization of the euclidean distance among forecast maps of the same variable.
Once found, we select the corresponding E-OBS observation field to be the true
forecasts. Afterwards, we merge the N analogs through a simple pixel mean
procedure to obtain a single calibrated forecast map (see figure 6.2). Finally, once
the entire GE has been calibrated we perform the unification process of section
6.2.3. It is worth noting that the calibration process cannot be applied to the
unified original forecast because otherwise we would have an over-fitting problem.
For more details on the method see section 6.2.
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The MOS application is done upon the principal components computed from
every member of the GE maintaining a variability explained of the 99% to restrict
the influence of its associated error (Gutiérrez et al., 2004). The decision of using
principal components instead of direct forecasts in the search for analogs is to
reduce the computational burden of the calculations performed. To sum up, the
MOS-analog calibration protocol can be summarised in the following steps,

1. Calculation of the principal components of the S4 generalized ensemble
monthly forecasts preserving a minimum variability of 99%.

2. Application of the LOOCV MOS-analog process upon the principal com-
ponents of each variable and for every GE member with the identification
of the 5 nearer analogs and their corresponding observed fields.

3. Computation of the mean of the 5 observation fields to obtain a single
calibrated forecast.

Regarding the domain, aside from working with multiple-sized dominions we
also performed different experiments to assess the relationship between the analog
pool and the domain size. We found that if we search for analogs directly upon a
smaller region such Catalonia we get much better results than extracting values
for the same domain but from a bigger area such as Spain or Europe. A possible
explanation for this result could be that the bigger number of potential situations
that can arise in the bigger domain cause that for an equal size of the analog pool,
the representativeness of each member for the smaller portions of the domain
decreases. Consequently, if the analogs for the smaller region are obtained from
a bigger domain we would need a larger analog pool than if we directly searched
them upon the smaller area. In table 6.1 there is a compilation of the MOS-analog
experiments performed to select the optimal configuration (exp. 7).

Linear regression

When going for a linear calibration technique we have chosen the simplest one
available: a linear regression of the form,

Y = bX (6.5)
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Table 6.1. MOS-analog experiments

Exp. N◦ Analogs Agg. Method* Analog pool PC var.

1 1 - 29 95%
2 3 WM 29 95%
3 5 WM 29 95%
4 10 WM 29 95%
5 5 M 29 95%
6 5 M 209 95%
7 5 M 29 99%
8 5 R 29 99%

* Weighted Mean (WM) / Mean (M) / Random (R)

The choice of a regression form without independent term is explained because
it is the expected reaction of a perfect model. In fact, without biases or systematic
errors, the perfect forecast should respect the value and magnitude of the observed
changes. The calibration is performed through a LOOCV for each variable and
for every GE member (percentiles 10, 25, 50, 75 and 90). In each LOOCV
approach we have computed the b parameter taking forecasts as predictors, X,
and observations as predictands, Y . Afterwards, the forecast to be calibrated is
taken as predictor and with the parameter previously computed we have obtained
the final calibrated forecast. It is important to remember that since this process
is repeated for every single year we end having N calibrating parameters.

Mean bias correction

This strategy consists on searching for the mean error in the model forecasts and
adding (subracting) it from every single element of the dataset to have zero mean
error. Mathematically the mean error can be written as,

ME =
1

n

n∑
k=1

(fk − ok) (6.6)
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Where fk accounts for the forecast and ok for the observation.

6.2.5 Verification

The skill of the original S4 forecasts and the calibration techniques has been eval-
uated using a LOOCV approach, considering E-OBS observations for the hindcast
period 1981-2010. In that way we can simulate the operative way of working since
we calibrate the forecasts with all the available past years, except from the cur-
rent one. Hence, in the verification process the deterministic and probabilistic
skills have been assessed (both kind of metrics are fully described in section 5.7).
To evaluate the deterministic skill of the S4 and its calibrations the correspond-
ing parameters have also been computed for climatology and persistence (at the
corresponding lead) in order to identify their added value. The selected metrics
have been: a) Spearman correlation; b) standard deviation; c) MAE and RMSE.

All the metrics have been computed for each grid-point series, and for the 30-
years hindcast. Since the analysis is aimed to study individual months, this means
that for each forecast horizon we have 12 field maps with 30 temporal values for
each grid-point. One advantage of this approach is that it prevents the influence
of the annual cycle in the verification process, for we compare observations and
forecasts corresponding to the same month of the year, and therefore, the same
radiative influx. However, the final verification metric has been presented through
a single summarising value. This has been achieved by firstly computing the mean
of the 30-element series at each grid-point of the re-forecast and, eventually,
calculating the spatial median among the grid-points. The reason to use the
median instead of the mean is because the former is more robust to outliers and
represents better the overall performance over a region. Besides, in case there are
no departures from normality, both parameters should give the same results.

Additionally, we have used Taylor diagrams to depict in a single figure the
centred RMSE (cRMSE), the standard deviation and the Spearman correlation.
To do so we have rearranged all the grid-point time series for each region to form
a single series concatenating one after the other (Taylor, 2001). This strategy
has one main advantage. For regions with two or more grid-points this lets us
include climatology spatial correlation in the diagram. This is important because
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climatology does not have temporal correlation and, thus, any forecast correlation
bigger than the associated to climatology hints the existence of temporal skill.

Turning to the probabilistic parameters, we have compared the performance
of the S4 and its calibrations against climatology assuming percentiles 33 and 66
as thresholds for below, normal or above normal conditions which is a common
format for seasonal forecasts (see i.e. Mason et al., 1999; O’Lenic et al., 2008). We
have used: a) Discrete Brier Skill Score (dBSS); b) Discrete Ranked Probability
Score (dRPSS). The differences between the standard BSS (RPSS) and the dBSS
(dRPSS) can be found in subsections 5.7.2.3 and 5.7.2.5 but, synthetically, the
dBSS and dRPSS are corrections of the BSS and RPSS when working with small
ensembles. In the results chapter we only present the analysis of the dBSS because
it depicts an independent assessment of the three studied categories (see 6.2.5).
The dRPSS evaluation, on the other hand, acts rearranging all of them in a
single index and since one or two categories often function much worse than
climatology, the index becomes degraded and seldom shows global improvements
beyond climatology. Finally, there is one remark to be made and it is that since
we do not work with the entire pdf, just only 5 percentiles, we had to decide
which approach to take when attributing a probability to a forecast. There were
a couple of options: the conservative (collapse towards the lower probability) or
the brave (collapse towards the higher). In overall, the differences between the two
approximations were small to non-existent, and we stayed with the conservative
conception.
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6.3 Results

The preceding section introduced the way in what we have rearranged the original
S4 ensemble to characterize its pdf and to issue a unified deterministic forecast
from itself. Here we will show the performance of this new set of forecasts with
its corresponding MOS-analog, linear regression (LR) and mean bias correction
calibrations, in comparison with observations and climatology and persistence
controls.

6.3.1 Europe

Precipitation

The analysis of lead one Taylor diagrams shows that the LR performs generally
better than the MOS-analog and the original S4 forecasts. In fact, LR surpasses
climatology from September to March whereas the MOS-analog only performs
better than climatology in January. The raw S4 forecasts always work worse than
climatology. The best forecast period goes from September to March whereas
the worst forecast months comprise April to August. Figure 6.3 depicts the
Taylor diagrams for the best and worst forecast months. After the mean bias
correction of the original S4 forecasts we find that this is the most efficient way
of calibration. Actually, when analysing the MAE graph (see figure 6.4) we see
that the median of the distribution shows not only lower error than climatology
but also lower error than the LR and MOS-analog approaches. It is worth noting
that this improvement can be seen in all months. Again, the LR reveals to
be a better option for calibration than the MOS-analog. The lowest errors are
found in winter, whereas summer shows the highest. This might be due to the
central Europe summer mesoscale convection that is not resolved by the original
S4 resolution and confers an increased spatial and temporal rainfall variability to
this season. Taking the analysis to the probabilistic field, the dBSS reveals that
the improvement seen with the MAE does not suffice to go beyond any of the
thirtile climatic forecast categories. At further leads any approach works better
than climatology. As for persistence control, it is always the worst option to
choose.
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Figure 6.3. Europe’s Taylor diagrams for precipitation at lead one for the best and
worst performing months. Each diagram contains the GE for raw S4 forecasts, MOS-
analog and MOS-LR S4 calibrations, their unified deterministic forecast as well as per-
sistence and climatological controls. The period of study is 1981-2010 (a) The best
performing month: January (b) The worst performing month: August.
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Figure 6.4. Europe’s precipitation MAE plot for every month and lead including
climatological control. The period of study is 1981-2010 (a) GE-50th percentile of bias
corrected S4 (b) GE-50th percentile of MOS-analog calibrated S4 (c) GE-50th percentile
of MOS-LR calibrated S4.
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6. Seasonal forecasting: calibration for improvement

Minimum temperature

In this case lead one Taylor diagrams identify the best forecast period from De-
cember to March and the best method, LR calibration. The period April to
November is the worst, with the latter being the exponent of a fruitless forecast.
On the other hand, January is the most successful (see figure 6.5). Once the
original S4 is mean bias corrected this option becomes the most advantageous.
In fact, in figure 6.6a we can see a general MAE reduction corresponding to this
method that goes below climatology in all months. The greatest amelioration is
attained in winter and, secondarily, also in the summer months. On the contrary,
spring and autumn are the seasons with the modest improvement. Turning to
the probability verification through the dBSS the best results are obtained with
the mean bias correction, which in practice, are the same results that would be
obtained with the original S4. The lower and upper thirtile report positive values
in winter with also modest improvements in the summer months (see figure 6.7).
The central tercile, however, is not improved. At further leads any approach
works better than climatology. As for persistence control, it is always the worst
option to choose. At further leads any approach works better than climatology.
As for persistence control, it is always the worst option to choose.
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(a) Best (b) Worst

Figure 6.5. Europe’s Taylor diagrams for minimum temperature at lead one for the
best and worst performing months. Each diagram contains the GE for raw S4 forecasts,
MOS-analog and MOS-LR S4 calibrations, their unified deterministic forecast as well
as persistence and climatological controls. The period of study is 1981-2010 (a) The
best performing month: January (b) The worst performing month: November.
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Figure 6.6. Europe’s minimum temperature MAE plot for every month and lead in-
cluding climatological control. The period of study is 1981-2010 (a) GE-50th percentile
of bias corrected S4 (b) GE-50th percentile of MOS-analog calibrated S4 (c) GE-50th
percentile of MOS-LR calibrated S4.
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Figure 6.7. Europe’s minimum temperature dBSS percentage improvement over cli-
mate for all months and leads for BC-GE S4 (a) The lower tercile (b) Upper tercile.
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Maximum temperature

The lead one Taylor diagram comparison among the original maximum tempera-
ture S4, LR and MOS-analog calibrations shows that the LR gives the best results:
it improves climatology in all months except May and October. Figure 6.8 depicts
the best and worst forecast diagrams, namely, January and May. The amplitude
of the correction, however, is increased when calibrating the original S4 forecasts
through a mean bias correction. In the MAE study we have found that the largest
error correction takes place in winter months whereas the other seasons, spring
to autumn, see a smaller amendment with May and October maintaining their
no-improvement with respect to climatology (see figure 6.9). Moving on to the
dBSS, the mean bias correction of S4 keeps on showing the leading results with
positive values in the lower tercile for December-March and July. In the upper
tercile there is an enhancement beyond climatology for January-April, June, July
and October. No improvement is detected for the middle tercile (see figure 6.10).
The other calibrations perform generally worse. At further leads any approach
works better than climatology. As for persistence control, it is always the worst
option to choose.
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(a) Best (b) Worst

Figure 6.8. Europe’s Taylor diagrams for maximum temperature at lead one for the
best and worst performing months. Each diagram contains the GE for raw S4 forecasts,
MOS-analog and MOS-LR S4 calibrations, their unified deterministic forecast as well
as persistence and climatological controls. The period of study is 1981-2010 (a) The
best performing month: February (b) The worst performing month: May.
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Figure 6.9. Europe’s maximum temperature MAE plot for every month and lead in-
cluding climatological control. The period of study is 1981-2010 (a) GE-50th percentile
of bias corrected S4 (b) GE-50th percentile of MOS-analog calibrated S4 (c) GE-50th
percentile of MOS-LR calibrated S4.
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Figure 6.10. Europe’s maximum temperature dBSS percentage improvement over
climate for all months and leads for BC-GE S4 (a) The lower tercile (b) Upper tercile.
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6.3.2 Spain

Precipitation

In this case lead one Taylor diagrams show that the LR calibration gives the best
results, going beyond climatology in all months except April, June, September
and October. That being said spring and summer show the modest ameliora-
tions. The MOS calibration seems to be the worst option and the original S4 lies
somewhat in the middle. The best performing month is January and the worst,
June (see figure 6.11). Once the original S4 is corrected through mean bias this
option becomes the preferable. As we can see in figure 6.12 it reduces MAE below
climatology for all months except June. Winter is the interval with larger reduc-
tions, whereas summer and autumn see the smaller enhancements. When turning
to the dBSS we see that mean-bias corrected S4 only displays positive values in
the lower and upper terciles for December and January. Besides, in the latter
tercile there are also humble improvements in May and August. For the middle
tercile, on the contrary, the climatology is not upgraded by any of the calibration
systems. At further leads any approach works better than climatology. As for
persistence control, it is always the worst option to choose.
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Figure 6.11. Spain’s Taylor diagrams for precipitation at lead one for the best and
worst performing months. Each diagram contains the GE for raw S4 forecasts, MOS-
analog and MOS-LR S4 calibrations, their unified deterministic forecast as well as per-
sistence and climatological controls. The period of study is 1981-2010 (a) The best
performing month: January (b) The worst performing month: June.
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Figure 6.12. Spain’s precipitation MAE plot for every month and lead including
climatological control. The period of study is 1981-2010 (a) GE-50th percentile of bias
corrected S4 (b) GE-50th percentile of MOS-analog calibrated S4 (c) GE-50th percentile
of MOS-LR calibrated S4.
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Figure 6.13. Spain’s precipitation dBSS percentage improvement over climate for all
months and leads for BC-GE S4 (a) The lower tercile (b) Upper tercile.
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Minimum temperature

The analysis of lead one Taylor diagrams among the original S4 and the MOS-
analog and LR calibrations reveal that the best results come with the latter,
surpassing climatology in all months except March, September and November.
The best performing month is May and the worst, September (see figure 6.14).
Once the mean bias correction is applied the S4 becomes the best option followed
by the LR and the MOS-analog calibrations. In the MAE graphs it depicts the
largest upgrade with respect to climatology in all months except September. The
magnitude of the improvement is similar throughout the year, with perhaps larger
values in the winter months (see figure 6.15). Moving on to the dBSS analysis of
the three options (see figure 6.16), we find the same behaviour, with the mean
bias correction as the best performing method. In fact we see an amelioration
beyond climatic values in the lower and upper terciles in January, February, May,
August and October. Besides, in the lower thercile there is also an improvement
in June. There are other leads that show modest upgrades in the lower tercile
but they are not consistent and might be regarded as noise. As for persistence
control, it is always the worst option to choose.

  0
.5

  1
.5

  2
.5

  3
.5

0

1

0

2

0

3

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5

0.4
0.3

0.20.10

S
ta

n
d

a
rd

 d
e
v
ia

ti
o

n

Co r r e l a t i on
 Coe

f f i c
i e

n
t

R
M

S
D

 Forecasted month: May  Lead: 1  Test period: 1981−2010
 Variable:  minimum temperature  Region: Spain

 

 

Obs

GEp90

GEp75

GEp50

GEp25

GEp10

GE−Unif

MOSp90

MOSp75

MOSp50

MOSp25

MOSp10

MOS−Unif

LRp90

LRp75

LRp50

LRp25

LRp10

LR−Unif

Clim

Pers

(a) Best

  0
.5

  1
.5

  2
.5

  3
.5

0

1

0

2

0

3

0

4

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5

0.4
0.3

0.20.10

S
ta

n
d

a
rd

 d
e
v
ia

ti
o

n

Co r r e l a t i on
 Coe

f f i c
i e

n
t

R
M

S
D

 Forecasted month: September  Lead: 1  Test period: 1981−2010
 Variable:  minimum temperature  Region: Spain

 

 

Obs

GEp90

GEp75

GEp50

GEp25

GEp10

GE−Unif

MOSp90

MOSp75

MOSp50

MOSp25

MOSp10

MOS−Unif

LRp90

LRp75

LRp50

LRp25

LRp10

LR−Unif

Clim

Pers

(b) Worst

Figure 6.14. Spain’s Taylor diagrams for minimum temperature at lead one for the
best and worst performing months. Each diagram contains the GE for raw S4 forecasts,
MOS-analog and MOS-LR S4 calibrations, their unified deterministic forecast as well
as persistence and climatological controls. The period of study is 1981-2010 (a) The
best performing month: May (b) The worst performing month: September.
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Figure 6.15. Spain’s minimum temperature MAE plot for every month and lead in-
cluding climatological control. The period of study is 1981-2010 (a) GE-50th percentile
of bias corrected S4 (b) GE-50th percentile of MOS-analog calibrated S4 (c) GE-50th
percentile of MOS-LR calibrated S4.
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Figure 6.16. Spain’s minimum temperature dBSS percentage improvement over cli-
mate for all months and leads for BC-GE S4 (a) The lower tercile (b) Upper tercile.

Maximum temperature

Maximum temperature Taylor diagrams for lead one show that the MOS-analog
and LR calibrations are better than the original S4 forecasts. The LR gives the
best results going beyond climatology in February, March, April, June, August
and September (see figure 6.17). The comparison with S4 mean bias correction
reveals that the former is the best choice, with a neat MAE upgrade in all months,
as it can be observed in figure 6.18. The only months that do not surpass clima-
tology are May, July and December. The largest improvement is found in spring,
whereas the modest can be located in autumn. When looking at the dBSS (figure
6.19) the mean bias corrected S4 presents the best results. In the lower thirtile
we find positive values in Feburary, June, July and October. The middle thirtile,
conversely, does not show any improvement. Finally, the upper thirtile reports
an upgrade beyond climatology in February, August and October. At further
leads any approach works better than climatology. As for persistence control, it
is always the worst option to choose.
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Figure 6.17. Spain’s Taylor diagrams for maximum temperature at lead one for the
best and worst performing months. Each diagram contains the GE for raw S4 forecasts,
MOS-analog and MOS-LR S4 calibrations, their unified deterministic forecast as well
as persistence and climatological controls. The period of study is 1981-2010 (a) The
best performing month: February (b) The worst performing month: May.
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Figure 6.18. Spain’s maximum temperature MAE plot for every month and lead in-
cluding climatological control. The period of study is 1981-2010 (a) GE-50th percentile
of bias corrected S4 (b) GE-50th percentile of MOS-analog calibrated S4 (c) GE-50th
percentile of MOS-LR calibrated S4.
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Figure 6.19. Spain’s maximum temperature dBSS percentage improvement over cli-
mate for all months and leads for BC-GE S4 (a) The lower tercile (b) Upper tercile.
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6.3.3 Catalonia

Precipitation

Lead one Taylor diagrams for precipitation in Catalonia show a similar behaviour
as in the previous domains. When comparing original S4 with MOS-analog and
LR calibrations, the best results are obtained with the latter. LR goes beyond
climatology in all months except July, August, September and November. Figure
6.20 depicts the best and worst forecast months (December and August, respec-
tively). Once the original S4 forecasts are mean bias corrected we find that this is
the configuration which attains the best results. In the MAE plot (see figure 6.21)
it improves all monthly records with respect to the LR. The only months that are
worse than climatology are August and September. It is also worth noting that
in February and March almost all seven leads show minor MAE than climatol-
ogy. However, when turning to the dBSS we only find positive values in January
for the lower thirtile; and in April, October and December in the upper tercile.
The middle thirtile does not show any amelioration (see figure 6.22). At further
leads any approach works better than climatology. As for persistence control, it
is always the worst option to choose.
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Figure 6.20. Catalonia’s Taylor diagrams for precipitation at lead one for the best
and worst performing months. Each diagram contains the GE for raw S4 forecasts,
MOS-analog and MOS-LR S4 calibrations, their unified deterministic forecast as well
as persistence and climatological controls. The period of study is 1981-2010 (a) The
best performing month: December (b) The worst performing month: August.
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Figure 6.21. Catalonia’s precipitation MAE plot for every month and lead including
climatological control. The period of study is 1981-2010 (a) GE-50th percentile of bias
corrected S4 (b) GE-50th percentile of MOS-analog calibrated S4 (c) GE-50th percentile
of MOS-LR calibrated S4.
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Figure 6.22. Catalonia’s precipitation dBSS percentage improvement over climate for
all months and leads for BC-GE S4 (a) The lower tercile (b) Upper tercile.
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Minimum temperature

Minimum temperature lead one Taylor diagrams exhibit the LR as the finest
approach among the MOS-analog calibration and original S4 forecasts. It sur-
passes climatology in January, February, May, June, July, August, October and
November. However, the MOS-analog calibration ameliorates the LR in February
and March. Figure 6.23 depicts February and December as the best and worst
performing months. Nevertheless, when the original S4 is mean bias corrected it
surpasses the performance of the previously considered calibrations. The MAE
plot (see figure 6.24) reports an improvement in all months which now show lower
errors than climatology (except in September). The major MAE reductions are
attained in winter and the lowest, in autumn. The dBSS for lead one reveals
that the mean bias correction also offers the best results, with positive values in
the lower thirtile for February, March, May, June, July, August and October. In
the middle thirtile there is no improvement and for the upper one there is an
enhancement only for January and March. Other positive values arise also at
other leads but since they are not systematic we regard them to be the effect of
noise (see figure 6.25). As for persistence control, it is always the worst option to
choose.
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Figure 6.23. Catalonia’s Taylor diagrams for minimum temperature at lead one for the
best and worst performing months. Each diagram contains the GE for raw S4 forecasts,
MOS-analog and MOS-LR S4 calibrations, their unified deterministic forecast as well
as persistence and climatological controls. The period of study is 1981-2010 (a) The
best performing month: February (b) The worst performing month: December.
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Figure 6.24. Catalonia’s minimum temperature MAE plot for every month and lead
including climatological control. The period of study is 1981-2010 (a) GE-50th per-
centile of bias corrected S4 (b) GE-50th percentile of MOS-analog calibrated S4 (c)
GE-50th percentile of MOS-LR calibrated S4.
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Figure 6.25. Catalonia’s minimum temperature dBSS percentage improvement over
climate for all months and leads for BC-GE S4 (a) The lower tercile (b) Upper tercile.
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Maximum temperature

Moving on to the study of the maximum temperature lead one Taylor diagrams
comparing the original S4 forecasts versus its MOS-analog and LR calibrations we
find that the LR is the better option enhancing climatology results in February,
March, April, August, October and November. The MOS-analog, on the other
hand, is generally worse than the LR except in October. The best forecast month
is February and the worst, May (see figure 6.26). The application of the mean
bias correction upon the original S4 provides much better results than the LR and
MOS-analog calibrations. As we can see in figure 6.27 there is a general reduction
in the absolute errors. However, this is not enough to surpass climatology in
the months that the LR could not improve. An interesting feature that can be
observed in the same figure is that the MOS-analog shows lower error than mean
bias correction in October. Mean bias correction is also the best option when
analysed through the dBSS. It exhibits positive values in the lower thirtile for
February, July, September, October and November. In the upper tercile there
is an amelioration at lead one for February, March, August and October (see
figure 6.28). In the middle thirtile there is no improvement. At further leads any
approach works better than climatology. As for persistence control, it is always
the worst option to choose.
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Figure 6.26. Catalonia’s Taylor diagrams for maximum temperature at lead one
for the best and worst performing months. Each diagram contains the GE for raw S4
forecasts, MOS-analog and MOS-LR S4 calibrations, their unified deterministic forecast
as well as persistence and climatological controls. The period of study is 1981-2010 (a)
The best performing month: February (b) The worst performing month: May.
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Figure 6.27. Catalonia’s maximum temperature MAE plot for every month and lead
including climatological control. The period of study is 1981-2010 (a) GE-50th per-
centile of bias corrected S4 (b) GE-50th percentile of MOS-analog calibrated S4 (c)
GE-50th percentile of MOS-LR calibrated S4.
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Figure 6.28. Catalonia’s maximum temperature dBSS percentage improvement over
climate for all months and leads for BC-GE S4 (a) The lower tercile (b) Upper tercile.
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6.3.4 Muga river basin

Precipitation

Lead one Taylor diagrams for precipitation in the Muga river basin show that, in
most cases, the original S4 offers best results than its LR and MOS-analog cali-
brations. Figure 6.29 depicts the best and worst months (October and Septem-
ber, respectively). The mean bias correction of the original S4 forecasts exhibits
the greatest upgrade, far beyond the LR and MOS-analog calibrations (see figure
6.30). The largest ameliorations are found in March-June and October-December,
although it surpasses climatology in all months but September. Some positive
results are also observed at other leads, but their lack of consistency made us
attribute the skill to the weak signal to noise signal found at lower scales. As for
persistence control, it is always the worst option to choose. When analysing the
dBSS we find that for lead one and the lower thirtile the mean bias corrected S4
does not show any positive value. For the middle thirtlile, on the other hand,
October is enhanced. Eventually, in the upper thirtile the mean bias correction
improves February, March, May, June, October, November and December (see
figure 6.31).
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Figure 6.29. Muga basin’s Taylor diagrams for precipitation at lead one for the best
and worst performing months. Each diagram contains the GE for raw S4 forecasts,
MOS-analog and MOS-LR S4 calibrations, their unified deterministic forecast as well
as persistence and climatological controls. The period of study is 1981-2010 (a) The
best performing month: October (b) The worst performing month: September.
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Figure 6.30. Muga basin’s precipitation MAE plot for every month and lead including
climatological control. The period of study is 1981-2010 (a) GE-50th percentile of bias
corrected S4 (b) GE-50th percentile of MOS-analog calibrated S4 (c) GE-50th percentile
of MOS-LR calibrated S4.

124



6.3. Results

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

45

50

 BSS  BC−GE  Period: 1981−2010  Var.:  precipitation  Reg.: Muga basin
Below 33% of climatic record

%
 I
m

p
ro

v
e
m

e
n
t 
o
v
e
r 

c
lim

a
te

 (
B

S
S

)

Months

 

 

Lead1

Lead2

Lead3

Lead4

Lead5

Lead6

Lead7

(a)

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

45

50

 BSS  BC−GE  Period: 1981−2010  Var.:  precipitation  Reg.: Muga basin
Between 33% and 66% of climatic record

%
 I
m

p
ro

v
e
m

e
n
t 
o
v
e
r 

c
lim

a
te

 (
B

S
S

)

Months

 

 

Lead1

Lead2

Lead3

Lead4

Lead5

Lead6

Lead7

(b)

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

45

50

 BSS  BC−GE  Period: 1981−2010  Var.:  precipitation  Reg.: Muga basin
Above 66% of climatic record

%
 I
m

p
ro

v
e
m

e
n
t 
o
v
e
r 

c
lim

a
te

 (
B

S
S

)

Months

 

 

Lead1

Lead2

Lead3

Lead4

Lead5

Lead6

Lead7

(c)

Figure 6.31. Muga_basin’s precipitation dBSS percentage improvement over climate
for all months and leads for BC-GE S4 (a) Lower tercile (b) Middle tercile (c) Upper
tercile.
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Minimum temperature

Minimum temperature lead one Taylor diagrams show that the original S4 fore-
casts exhibit better performance than the LR and MOS-analog calibrations. The
best predicted month is February whereas the worst is September (see figure
6.32). Once the original S4 forecasts are mean bias corrected the MAE is im-
proved beyond the original S4 and MOS-analog and LR calibrations. Figure 6.33
displays a surpassing of climatology skill in all months except April, September
and December. In some particular cases, such as March, the MOS-analog gives
better results. The biggest amelioration is observed in the January-March period,
while the smallest is found in June and November. The dBSS assessment displays
the best results for the mean bias corrected approach. In the lowest tercile we
have positive values for February, May, June, August and October. In the middle
thirtile only February is improved. Finally, for the upper thirtile we find posi-
tive values in January, February, March, October and June. As for persistence
control, it is always the worst option to choose.

  0
.5

  1
.5

0

0.5

0

1

0

1.5

0

2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5

0.4
0.3

0.20.10

S
ta

n
d

a
rd

 d
e
v
ia

ti
o

n

Co r r e l a t i on
 Coe

f f
i c

i en
t

 Forecasted month: February  Lead: 1  Test period: 1981−2010
 Variable:  minimum temperature  Region: Muga basin

 

 

Obs

GEp90

GEp75

GEp50

GEp25

GEp10

GE−Unif

MOSp90

MOSp75

MOSp50

MOSp25

MOSp10

MOS−Unif

LRp90

LRp75

LRp50

LRp25

LRp10

LR−Unif

Clim

Pers

(a) Best

  0
.5

  1
.5

0

0.5

0

1

0

1.5

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5

0.4
0.3

0.20.10

S
ta

n
d

a
rd

 d
e
v
ia

ti
o

n

Co r r e l a t i on
 Coe

f f i c
i e

n
t

 Forecasted month: September  Lead: 1  Test period: 1981−2010
 Variable:  minimum temperature  Region: Muga basin

 

 

Obs

GEp90

GEp75

GEp50

GEp25

GEp10

GE−Unif

MOSp90

MOSp75

MOSp50

MOSp25

MOSp10

MOS−Unif

LRp90

LRp75

LRp50

LRp25

LRp10

LR−Unif

Clim

Pers

(b) Worst

Figure 6.32. Muga basin’s Taylor diagrams for minimum temperature at lead one
for the best and worst performing months. Each diagram contains the GE for raw S4
forecasts, MOS-analog and MOS-LR S4 calibrations, their unified deterministic forecast
as well as persistence and climatological controls. The period of study is 1981-2010 (a)
The best performing month: February (b) The worst performing month: September.
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Figure 6.33. Muga basin’s minimum temperature MAE plot for every month and
lead including climatological control. The period of study is 1981-2010 (a) GE-50th
percentile of bias corrected S4 (b) GE-50th percentile of MOS-analog calibrated S4 (c)
GE-50th percentile of MOS-LR calibrated S4.
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Figure 6.34. Muga_basin’s minimum temperature dBSS percentage improvement
over climate for all months and leads for BC-GE S4 (a) Lower tercile (b) Middle tercile
(c) Upper tercile.
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Maximum temperature

The analysis for maximum temperature is similar to the other variables for the
same area. The comparison of the lead one original S4 forecasts with its LR and
MOS-analog calibrations through Taylor diagrams displays the finest results for
the former. February is the best predicted month, whilst May is the worst (see
figure 6.35). When the original S4 is mean bias corrected it becomes the preferable
approach (see figure 6.36). It improves climatology in all months except May and
September. In this case we can also observe some consistency in the amelioration
at lead-6 in March-June. Turning to the analysis of the BC/original S4 we can
see positive values at multiple leads in the three categories (see figure 6.37).
However, the best results are always attained at lead one. In the lowest thirtile
the amelioration can be observed in the January-March period, June, August,
October and November. In the middle thirtile lead one improvement is seen in
October. As for the upper category there is an enhancement between December-
March and August. An interesting feature of this assessment is the apparent
consistency of lead-6 predictability since we have found positive values for the
period March-May in the lower tercile; April-May in the middle; and May-June
in the upper. As for persistence control, it is always the worst option to choose.
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Figure 6.35. Muga basin’s Taylor diagrams for maximum temperature at lead one
for the best and worst performing months. Each diagram contains the GE for raw S4
forecasts, MOS-analog and MOS-LR S4 calibrations, their unified deterministic forecast
as well as persistence and climatological controls. The period of study is 1981-2010 (a)
The best performing month: February (b) The worst performing month: May.
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Figure 6.36. Muga basin’s maximum temperature MAE plot for every month and
lead including climatological control. The period of study is 1981-2010 (a) GE-50th
percentile of bias corrected S4 (b) GE-50th percentile of MOS-analog calibrated S4 (c)
GE-50th percentile of MOS-LR calibrated S4.

131



6. Seasonal forecasting: calibration for improvement

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

45

50

 BSS  BC−GE  Period: 1981−2010  Var.:  maximum temperature  Reg.: Muga basin
Below 33% of climatic record

%
 I
m

p
ro

v
e

m
e
n

t 
o
v
e

r 
c
lim

a
te

 (
B

S
S

)

Months

 

 

Lead1

Lead2

Lead3

Lead4

Lead5

Lead6

Lead7

(a)

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

45

50

 BSS  BC−GE  Period: 1981−2010  Var.:  maximum temperature  Reg.: Muga basin
Between 33% and 66% of climatic record

%
 I
m

p
ro

v
e
m

e
n

t 
o
v
e
r 

c
lim

a
te

 (
B

S
S

)

Months

 

 

Lead1

Lead2

Lead3

Lead4

Lead5

Lead6

Lead7

(b)

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

45

50

 BSS  BC−GE  Period: 1981−2010  Var.:  maximum temperature  Reg.: Muga basin
Above 66% of climatic record

%
 I
m

p
ro

v
e
m

e
n

t 
o
v
e
r 

c
lim

a
te

 (
B

S
S

)

Months

 

 

Lead1

Lead2

Lead3

Lead4

Lead5

Lead6

Lead7

(c)

Figure 6.37. Muga_basin’s maximum temperature dBSS percentage improvement
over climate for all months and leads for BC-GE S4 (a) Lower tercile (b) Middle tercile
(c) Upper tercile.
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6.4 Discussion & Conclusions

In this chapter we have assessed current S4 skill in a) monthly precipitation,
b) minimum temperature and c) maximum temperature as well as its possible
improvement through the implementation of three calibration strategies: MOS-
analog, linear regression and mean bias correction. They have been tested in
four extra-tropical domains from lead-1 to lead-7 to evaluate their capabilities in
a diversity of targets for seasonal forecast applications. These areas range from
continental to grid-point scales and they are: Europe, Spain, Catalonia and the
Muga river basin. The rearrangement of the original S4 information has been
achieved through the so-called generalized ensemble, GE, and the construction of
a unified deterministic forecast from itself. Besides, all the forecasts have been
compared with E-OBS observations as well as E-OBS climatology and persistence
as benchmark controls. This comparison has been eased by bi-linearly interpo-
lating the original S4 to match the E-OBS grid resolution.

In the MOS-analog case we have also analysed the effect of the domain upon
the analog search and subsequent calibration and we have found that for each
region there is a certain number of analogs that optimize the representativeness of
each member of the analog pool. For example, when working with the Catalonia
domain we have found that the results were worse when extracting the Catalonia
area from the Spanish or European domains than if we directly searched for
analogs upon the Catalonia region. This might mean that a certain number
of historical analogs may suffice or not depending on the number of possible
situations that can arise on the studied region, that is to say, on the inherent
variability of the variable field map. This result is in accordance with van den
Dool (1994) findings and may be used to derive an expression to relate the inherent
variability of a region with the optimal number of analogs needed to find similar
monthly situations within an arbitrary error band. Conversely, this could also
serve to state the maximum variability for which an analog pool is able to offer
useful analogs. However, this hypothesis is beyond the objectives of this thesis
and it is left for future studies.

Additionally, we have conducted seven MOS-analog experiments to take into
account the influence of the number of analogs chosen, the methodology of analog
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6. Seasonal forecasting: calibration for improvement

aggregation, the variability threshold in the principal component selection and
the total samples of the analog pool. The best results showed up with 5 analogs,
mean aggregation, 29 analog-pool (corresponding to the same month for which
we searched the analogs) and a retained variability of 99%.

The linear regression (LR), on the other hand, presented the initial contro-
versy of considering its calibration equation with or without the independent
term. We decided to follow the approximation that a perfect model would show
a 1 : 1 correspondence with the observations so the independent term should not
appear. Some authors, like Benestad et al. (2008), state that the inclusion of this
term is both necessary and useful because it accounts for the mean bias of the
model. In practice, we have found that pushing the linear calibration through
the origin inherently corrects part of the bias, as we have seen in the MAE plots.
Notwithstanding, even if we had decided to include the independent term to cor-
rect the mean bias after the linear regression calibration, we can anticipate that
it would add little value to the direct mean bias correction of S4 forecasts. This
can be observed in the dBSS graphs where the mean bias has no effect (we work
with anomalies) and the mean bias correction shows better or equal results than
linear regression calibration. However, it is also true that the correction through
the independent term might lead to slightly better MAE results and, hence, it is
something that we would like to check in a near future. Now we can ask ourselves
whether we have been able to answer the questions put forward at the beginning
of this chapter. To the first one,

Which is the current skill of S4 in the aforementioned domains? Does
it depend on them?

We have seen that the original S4 forecasts excel climatology generally at
lead one and in winter months. In Europe this is the case for maximum and
minimum temperature, but not for precipitation. Spain and Catalonia improve
precipitation but not temperatures. Finally, in the Muga river domain the raw
lead one forecasts can surpass climatology for the three variables in winter, but
also in autumn and the early spring. The observed first-lead winter predictability
can be related to the stability of the winter general circulation anomalies (see i.e.
Boer et al., 2013). In the first horizon cases with no upgrade beyond climatology,
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the study of the bias seems to confirm that first order model biases are responsible
for this skill reduction. At further leads climatological improvements are scarce.
As for persistence, it is systematically surpassed by the S4 in most horizons and
regions and so it cannot be considered as a functional monthly seasonal forecasting
system. Hence, the next step has been to check the performance of its MOS-
analog, linear regression and mean bias calibrations.

Can S4 forecasts be improved by linear/non-linear calibrations? At
which scales? At what lead-times?

After calibrating the S4 forecasts with the MOS-analog and LR approaches
we have noticed a neat improvement of skill with both methods. However, the LR
has given generally better results than the MOS-analog. Still, they are centred at
lead one, but now with an increased number of months upgrading the climatol-
ogy outcome. Occasionally, the MAE plots have also shown some ameliorations
beyond climatology at other leads. This is specially perceptible in the smaller
domains, Catalonia and the Muga river basin, but it also happens seldom in the
larger ones. These enhancements are scarcely reflected in the dBSS graphs but
are a sign that, under some particular and region-dependent circumstances, there
can be foreseeable reductions of the MAE with months in advance. Yet, this pre-
dictability is not as systematic as the corresponding to lead one and, therefore,
to discard the possibility of being noise, it has to be independently studied case
by case (i. e. lead 6 maximum temperature forecasts for the Muga river basin
for March-May).

As for the under-population of the centre members of the ensemble distribu-
tion (see figure 5.6) we have seen that it probably causes a recurrent decrease
in skill when dealing with the middle tercile of each variable (with climatology
giving the best results). However, since we have found positive performance in
the lower and upper thirtiles we do not know if these results are enhanced or
handicapped by this feature. For this reasons we plan to increase the number of
ensemble members and clarify this aspect of our study at some point of the near
future. This discussion leads us to the final question,

Are our calibrations able to improve the results of a simple-bias cor-
rection? At what costs?
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Following our analysis, even though the MOS-analog and LR calibrations have
improved the original S4, they could not surpass the performance of mean bias
corrected S4. Again, this improvement is rather limited at lead one but with
visible exceptions in all domains. Incidentally, it is important to highlight that in
all regions the first lead MAE of the mean bias calibrated S4 forecasts (50th per-
centile) improves climatology in practically all months. However, this correction
seems to be more effective on temperatures and larger domains suggesting that
these variables are more affected by first order biases and that these departures
tend to arise more consistently on larger regions. When looking to the dBSS of
the lower and upper terciles, though, these improvements are more restricted to
winter and some scattered months in other seasons.

Going more specifically, and still focusing in the first lead, in the European
domain all the variables are best forecast in winter (though June and July are
also good months). In Spain, this is also the case for precipitation and minimum
temperature, where winter is the best forecast period and August, July and June
also show good performance. For maximum temperatures, on the other hand,
February, June and October are the highest upgrade exponents. In Catalonia,
February and October are the months which show the best improvements for
the three variables. Besides, in the case of minimum temperature, winter is also
a good lead one forecast period. Finally, in the Muga river basin we find that
for precipitation the February-March and October-November periods show the
largest ameliorations. The same months are found for minimum temperature
only exchanging November by January. Finally, for maximum temperature, the
best months are January-March, August and October-November.

The recurrent predictability of February and October in the Spanish Mediter-
ranean (sometimes even beyond lead one) is highly valuable because both are key
months in water management (ACA personal communication). Eventually, it is
worth remarking that there are occasions in which the MOS-analog calibration
gives larger ameliorations than the mean bias correction (and linear regression
calibration). This points to the fact that, even if the linear calibration method
offered a general better behaviour than MOS-analog calibration, the introduction
of a larger analog pool could upgrade the MOS-analog performance. This is a
recurrent problem when working with analogs but in this case, since our calibra-
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tion pool is a re-forecast, it is feasible to think that somewhere in the future this
might be further extended in the past. In such a case we would be able to check
whether the MOS-analog calibration is improved by the pool expansion or not.

Ultimately, there are a couple of remarks to be made. The first deals with
the unification strategy presented in section 6.2.3, since it showed a somewhat
erratic behaviour, alternating good and bad results. Two reasons may explain this
outcome. The first one is concerned with the possibility that no specific percentile
of the pdf gives better results at each of the grid-points. The second is that the
differences between the discriminating parameter (MAE) among the candidate
members are too small and the method cannot efficiently distinguish the best
option. One solution could be, either changing the discriminating parameter or
increasing the re-forecast sample. We plan to address this in a future study, which
simultaneously, will help us to establish which one of both hypothesis is correct.
The second, and most important, is the role that our GE together with the Taylor
diagrams has had in the study of the ensemble variability and skill. Particularly,
their use showed to be very practical to assess the variability obtained through the
ensemble in comparison to the observed and also to judge whether our calibrations
or the model itself were able to add temporal skill beyond the spatial climatic
characterization of the variable.
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CHAPTER 7

Seasonal forecasting applications:
water reservoirs

7.1 Overview

In chapter 2 we have seen that one of the most important applications of sea-
sonal forecasting is the prediction of droughts. Humid and dry periods are, in
fact, the main drivers of water resource distribution and, therefore, the main
actors in its management. In the Mediterranean type ecosystems, for example,
summer is typically a season of major hydrological stress. This causes a critical
increase in water demands (specially for agriculture) that often poses strain on
the available supply systems. Regions such as Spain, and particularly Catalonia,
usually rely on the provision of reservoirs to guarantee the fulfilment of these
demands. If we consider the growth of demographic and environmental pressures
on water demands (Iglesias et al., 2006) and the Mediterranean climatic tendency
to drought (see i.e. Brewer et al., 2007; Nola et al., 2008; Turco and Llasat, 2011;
Quintana-Seguí et al., 2011), we can infer that Mediterranean regions are areas
of increased vulnerability towards water scarcity (see i.e. Garrote de Marcos and
Cubillo, 2008).

Studies such as Rossi et al. (2012) or Chavez-Jimenez et al. (2014) show that
establishing warning thresholds to a reservoir can improve its management by
enabling its administrators to adopt measures when the water amount descends
below certain levels. For instance, if in May we have our reservoir at a 60% of its
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capacity and by looking to the historical record we know that in this situation
there is a probability of 10% that by September we cannot satisfy water demands
we can activate a protocol to adapt the decisions of the forthcoming months to
prevent or minimise the hypothetical restrictions. Our window of opportunity
arises because instead of looking into the climatological record in search for ana-
logue events, we can try to take advantage of the memory of the system and
the S4 seasonal information. To investigate whether we can improve the use of
climatology with this strategy we have to answer a set of questions:

1. Can we model monthly anomalies for the in-flow, out-flow and volume
stored in a reservoir through a multiple linear regression (MLR) approach?

2. Can we issue seasonal forecasts of these anomalies? Can these forecasts be
more useful than climatology?

To do so we will develop monthly MLR models based on combinations of dif-
ferent predictor anomalies: a) maximum temperature, b) minimum temperature,
c) precipitation, d) observed in-flow and e) observed volume; to foresee anomalies
in the three main variables of the reservoir, in-flow, out-flow and stored vol-
ume. For further details on these datasets see sections 3.1, 3.2 and 3.3. These
forecast configurations comprise persistence and climatology controls and MLR
models combination of the antecedent observed conditions with a) climatology;
b) ECMWF System-4 (S4); c) MOS-analog calibrated S4; and d) Linear regres-
sion calibrated S4 (LR). Since we work with anomalies, the S4 is already mean
bias corrected. We also maintain the MOS-analog and LR calibrations because at
a grid-point level there were some months that surpassed the S4 skill (see chapter
6).

To test the applicability of this methodology we have chosen the Boadella
reservoir in the upper Muga river basin because it accomplishes the requirements
for a case study of this kind (see sections 4.4 and 4.5). It satisfies water demands
from urban areas and agriculture uses and it does not have any human up-stream
structures that can interfere in its modelling. Besides, it also spans the 30-year
period of the S4 re-forecast. Finally, the verification process will help us determine
the best option among the six approaches.
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Thus, we have organized this chapter as follows: firstly, Methodology section
presents and justifies the selection of the model strategies and techniques; then,
Results synthesises the outcome of the research performed; and finally, in Discus-
sion & Conclusions there is an analysis of the answers to the questions raised.

7.2 Methodology

The statistical models built to foresee monthly in-flow, out-flow and volume
anomalies in the Boadella reservoir are based on a multiple linear regression
approach (MLR; see section 5.6 and i.e. Adamowski and Karapataki, 2010; Bao
et al., 2012; Adamowski et al., 2012; Fan et al., 2015). We have worked upon
forecast and observed anomalies because we wanted to avoid hypothetical inter-
ferences of the year cycle (i.e. Wilks, 2006). Therefore, for every grid-point we
have computed S4 and E-OBS monthly median values for the period 1981-2010
to subtract them from each forecast/observed value. Before any further step,
though, we had to establish which were the potential predictors for each of our
predictands. In the first place we have considered that the anomalies of the Muga
in-flow are due to anomalies in precipitation, maximum and minimum tempera-
tures because the response of the sub-basin is quite linear with precipitation (the
observed rainfall and in-flow series have a Pearson correlation coefficient of 0.65,
pval < 0.05), there are no up-stream human structures that can affect the river,
and maximum and minimum temperatures act as proxies for evapotranspiration
(see i.e. Thornthwaite, 1948; Xu and Singh, 2001; Hobbins et al., 2008). In this
way we keep the models simple, away from derived quantities and/or parametriza-
tions. Secondly, volume anomalies have been regarded as dependent on the same
variables as before but with the addition of in-flow anomaly observations. Finally,
the out-flow monthly anomaly models should rely on E-OBS rainfall, maximum
and minimum temperature anomalies as well as volume anomaly observations.
The reason not to consider volume anomalies as out-flow dependent is because
from a decision-maker perspective the ultimate driver of the out-flow anomalies
are the existing anomalies in volume and not the other way around (EDF-DTG
personal communication).
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After this initial verification we have proceeded to build multiple MLR models
for each month and variable to seek for the model with the greatest explanatory
power and the smallest number of predictors. These predictors comprise monthly
to several-month anomaly accumulations and its inclusion in each MLR model
has been done through a total screening process. Furthermore, since our objective
is to work with antecedent observations as well as forecasts we have considered
predictors ranging up to one year in the past (with respect to the month that we
wanted to model). This one year threshold has been established in accordance to
the spin-up stage of hydrological modelling, because the system normally takes
one-year to lose the memory of its initialisation conditions (see i.e. Ajami et al.,
2014; Rahman and Lu, 2015; Seck et al., 2015). Additionally, we have limited
ourselves to a maximum of five predictors to prevent model over-fitting as well
as to only retain the predictors with greater physical meaning. The choice of
total screening instead of a step-wise regression is because we have developed
an algorithm for the former that allows us to easily take a deeper control of
the selection process by setting a maximum number of predictors and separately
analysing the relative importance of them (i.e. in groups of two, three, four,
etc.). Nevertheless, we have also searched for the best models of one, two and
three predictors with step-wise regression and found the same models as with
total screening. That said, it is important to bear in mind that the total number
of possible combinations for an established number of predictors can be computed
through the binomial coefficient without repetition from (7.1),

(
n

k

)
=

n!

k! (n− k)!
(7.1)

where n is the total number of possible predictors (n = 122× n◦ of variables);
and k is the number of predictors in our MLR model. The reason for the number
12 to be squared is because we also consider as possible predictors accumulated
anomalies through different consecutive months. In the final MLR, however, we
only allow each month to appear once for the same variable (i.e. we cannot have
TN3−6 and TN5−6 in the same MLR). This initial phase, devoted to predictor
choice, involved working with E-OBS data as well as in-flow and volume observa-
tions in an in-sample and perfect prognosis scheme. Moreover, to avoid artificial
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skill due to any existing trends all the predictors and predictands have been lin-
early de-trended previously (see i.e. Boer et al., 2013; Benestad et al., 2008). As
for the ordering of the best predictors to build our models we have considered dif-
ferent verification metrics: a) coefficient of determination; b) Akaike information
criterion; c) MAE; d) RMSE; and e) trend and autocorrelation of the residuals.
Predictor combinations with trend and/or autocorrelation in the residuals have
been discarded in favour of similar models without these features because they
point towards flaws in the model (Wilks, 2006). Thus, at the end of this process
we have obtained one MLR model for each month, making a total of 36 models
for the study. Tables 7.1, 7.2 and 7.3 summarise the models for each month and
variable with the predictors ordered in accordance to their explanatory power.

In the case of in-flow anomalies (see table 7.1) we can see that the best pre-
dictors are rainfall anomalies for the same predicted month or the accumulated
anomalies for the same month and the previous one. This is not surprising for
the river flow in this upper sub-basin has a rather linear response with precipi-
tation at a monthly scale. The influence detected in months far away the same
modelled month are probably due to the effect of rainfall anomalies upon soil
moisture, groundwater and their impacts on the river flow (i.e. Sear and Dawson,
1999; Sophocleous, 2002). The second most influencing predictor at in-flow level
is the maximum temperature, indicative of the effects of evapotranspiration on
soil moisture and run-off. In fact, as the soil becomes more (less) saturated, the
response of the rainfall threshold to produce run-off becomes smaller (greater)
and, consequently, there is an enhancement (decrease) of the linear relationship
between rainfall and stream-flow. Finally, minimum temperatures act as a proxy
of the snow amount in winter (Bednorz, 2004) and also as a less effective proxy
of evapotranspiration.
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Best Predictor Combination R2

Jan rr12−12( ), rr1−1( ),  Tx 1−1( ), Tn 10−1( ){ } 0.81

Feb rr12−12( ),  rr1−2( ),  Tx 6−9( ),  Tn 11−1( ){ } 0.77

Mar rr 5−8( ), rr1−2( ), Tx 7−7( ){ } 0.41

Apr rr 4−4( ),  rr12−3( ), Tx 6−6( ), Tn 5−7( ), Tn 8−10( ){ } 0.66

May rr 4−5( ), rr 7−7( ), rr10−10( ){ } 0.73

Jun rr 6−6( ), Tn 9−9( ), Tn 11−11( ){ } 0.63

Jul rr 6−7( ), Tx 10−1( ),  Tn 11−12( ){ } 0.79

Aug rr 7−8( ), Tx 1−7( ), Tn 10−1( ){ } 0.51

Sep rr 6−9( ), Tx 3−3( ), Tn 8−8( ){ } 0.31

Oct rr 9−10( ), Tx 11−3( ), Tn 1−2( ){ } 0.76

Nov rr11−11( ), rr 7−7( ), Tn 4−5( ){ } 0.57

Dec rr10−12( ), Tn 5−7( ), Tn 8−9( ){ } 0.55

Table 7.1. Performance of the best predictor combinations for in-!ow monthly anomalies 
in the Boadella reservoir (precipitation, rr; maximum temperature, Tx; and minimum 
temperature, Tn). The subscript numbers indicate the months for which the anomalies 
are accumulated. Each row contains the month, the best predictor combination and the 
reproduced variance, R2, in LOOCV perfect conditions. 

144



7.2. Methodology

Turning to volume anomalies (see table 7.2), the predictor with most explana-
tory power is the accumulated in-flow anomaly observed in the preceding months
and/or for the same month. This is logical since the main driver of the stored
volume in a reservoir is its supplying river flow. This is followed by antecedent
accumulated rainfall anomalies (from antecedent months and/or for the mod-
elled month), which are related to the groundwater state (see i.e. Sophocleous,
2002). Finally, we have maximum and minimum temperature predictors, proxies
for evapotranspiration in the reservoir and the upper sub-basin. In the case of
minimum temperature, it also acts as proxy for winter snow amount.

Finally, moving on to the out-flow models we can see that they are, generally,
the ones with the less number of predictors (see table 7.3). That is because in
many months its modelling through a MLR has limited success and the inclusion
of further predictors does not increase the performance of the model. This is
consequence of the high level of human intervention in its evolution, because not
only it depends on meteorological anomalies but also on other non-linear factors
such as regulation protocols. Thus, if we turn our attention to the best modelled
months we will see that they coincide with the maximum and the end of the irriga-
tion season (July-August-September) with volume and temperature anomalies as
main predictors. An hypothesis to explain June’s decreased predictability would
be that this month’s outflow could be more influenced by the human decision to
set the beginning and intensity of the irrigation season. Conversely, in the center
and final months of summer the soil moisture conditions and irrigation needs are
more settled and human decisions would be mainly driven by antecedent volume
anomalies and evapotranspiration (ACA, 2009b).
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Best Predictor Combination R2

Jan flwin 6−12( ),  Tn 2−5( ),  Tn 11−12( ){ } 0.74

Feb flwin 5−11( ),  rr 9−9( ),  rr11−2( ),  Tn 4−5( ),  Tn 11−12( ){ } 0.82

Mar flwin 4−11( ),  flwin 2−2( ),  rr 9−12( ),  Tx 5−5( ),  Tn 4−5( ){ } 0.72

Apr flwin 2−4( ),  flwin 5−5( ),  rr 7−7( ),  rr 9−12( ),  Tx 1−1( ){ } 0.69

May flwin 6−2( ),  flwin 3−4( ),  rr11−5( ),  Tx 1−1( ),  Tn 9−9( ){ } 0.61

Jun flwin 11−12( ),  flwin 3−4( ),  rr11−12( ),  Tx 12−1( ),  Tn 9−9( ){ } 0.62

Jul flwin 3−5( ),  flwin 6−7( ),  rr10−11( ),  Tx 9−4( ),  Tn 6−7( ){ } 0.76

Aug flwin 3−5( ),  flwin 6−7( ),  rr 9−11( ),  Tx 9−9( ),  Tn 6−7( ){ } 0.76

Sep flwin 3−5( ),  flwin 6−7( ),  Tx 7−8( ),  Tn 6−7( ){ } 0.81

Oct flwin 3−5( ),  flwin 6−8( ),  rr 7−10( ),  Tx 6−6( ),  Tn 11−5( ){ } 0.85

Nov flwin 4−4( ),  flwin 7−10( ),  rr 6−11( ),  Tx 2−2( ),  Tn 12−2( ){ } 0.86

Dec flwin 4−11( ),  rr 8−12( ),  Tx 2−2( ),  Tn 1−8( ){ } 0.84

Table 7.2. Performance of the best predictor combinations for volume monthly anomalies 
in the Boadella reservoir (in-!ow, !win; precipitation, rr; maximum temperature, Tx; and 
minimum temperature, Tn). The subscript numbers indicate the months for which the 
anomalies are accumulated. Each row contains the month, the best predictor combination 
and the reproduced variance, R2, in LOOCV perfect conditions. 
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Best Predictor Combination R2

Jan rr10−1( ),  Tx 11−1( ){ } 0.60

Feb rr1−2( ),  Tx 7−9( ),  Tn 1−1( ){ } 0.86

Mar rr 7−8( ), vl 12−2( ){ } 0.42

Apr rr10−2( ){ } 0.32

May rr 4−5( ), vl 10−4( ){ } 0.55

Jun vl 3−4( ){ } 0.33

Jul Tx 4−4( ),  Tn 10−11( ),  vl 3−5( ){ } 0.75

Aug vl 3−5( ), vl 6−6( ), vl 7−7( ){ } 0.90

Sep Tx 5−6( ), vl 7−7( ), vl 8−8( ){ } 0.85

Oct rr1−4( ), rr 6−6( ), Tn 7−7( ){ } 0.51

Nov rr1−6( ), Tn 4−5( ){ } 0.18

Dec rr10−12( ), Tx 9−11( ), Tn 10−12( ){ } 0.18

Table 7.3. Performance of the best predictor combinations for out-!ow monthly 
anomalies in the Boadella reservoir (volume, vl; precipitation, rr; maximum temperature, 
Tx; and minimum temperature, Tn). The subscript numbers indicate the months for 
which the anomalies are accumulated. Each row contains the month, the best predictor 
combination and the reproduced variance, R2, in LOOCV perfect conditions. 
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Figure 7.1. Boadella monthly water demands from agriculture and urban areas (in
hm3). Adapted from ACA (2009b).

Concerning the other months, from October to May the main predictors are the
accumulated rainfall, temperature and volume anomalies. During these months
the out-flow is determined by a combination of human and meteorological factors,
without anyone being clearly predominant (see figure 7.1).

Afterwards we have proceeded to forecast the monthly anomalies with those
models. To do so we have carried out a LOOCV approach (see section 5.4). The
uncertainty on the series has been estimated with a bootstrap method based on a
methodology of Calmanti et al. (2007, see also 5.4). Subsequently we have tested
the aforementioned models with six strategies: a) Climatology; b) Persistence;
c) Antecedent observations + climatology (A+Cl); d) Antecedent observations
+ S4 anomalies (A+S4); e) Antecedent observations + MOS-analog calibrated
S4 anomalies (A+MOS); and f) Antecedent observations + LR calibrated S4
anomalies (A+LR). The first three approaches act as controls, and they comprise
three approximations that only use observations as input data; the other three
combine both observations and S4 calibrated forecasts.

As for the in-flow and volume anomalies acting as predictors, aside from using
direct observations, we have also derived the corresponding series for each of the
forecast leads from the different model approaches. Finally, we have conducted
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a verification analysis of each forecast lead (up to seven months), based on a se-
lection of deterministic and probabilistic criteria. In the deterministic approach
we have considered the 50th percentile for the S4 and its calibrations, whereas in
the probabilistic approximation we have used the information coming from the
ensemble to test the performance of the forecast methods in three conditions:
dry (lower climatic thirtile), normal (middle climatic thirtile) and humid (middle
climatic thirtile). The deterministic metrics applied have been the MAE and the
Pearson correlation coefficient. In the MAE comparison of our forecast systems
against climatology we have set a threshold of 5% MAE amelioration below which
we do not consider that our method enhances climatic results to try to minimize
random noise influence. With respect to the probabilistic validation we have cho-
sen the Attributes diagram and the Economic Value curve (EV; see section 5).
When dealing with the EV curves it is important to remark that we have estab-
lished a threshold of 0.10 EV Area above which we consider the method better
than climatology. Actually, we have observed that EV Areas below 0.10 imply
value for users when no other skill metric offers positive results. We hypothesise
that this behaviour might be related to the intrinsic noise of this scale.

7.3 Results

In the previous section we have introduced the framework to obtain the MLR
models for each variable. Here we will compare the performance of these models
under perfect prognosis with the results of climatology and persistence approaches,
and also with the MLR forecasts coming from the combination of antecedent
observations with climatology, S4 and its MOS-analog and LR calibrations (see
subsection 7.2).

Initially, we have modelled the hindcast anomalies (1981-2010) in a LOOCV
perfect prognosis approach, that is, knowing the observed values for the modelled
month. This initial step provided us with a deterministic benchmark for the study
(see tables 7.1, 7.2 and 7.3). It is important to remark that, even we have also
considered the perfect prognosis approximation in the probabilistic verification,
it is no longer a benchmark in that case. In this way we have found that the in-
flow perfect prognosis simulation attains an amelioration over MAE climate up
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to 60%, with January being the best month and September, the worst, with no
amelioration whatsoever. Their corresponding Spearman correlation coefficients
range from 0.55 in September to 0.90 in January (pval< 0.05). Volume anomalies,
on the other hand, improve climatology in all months, from a minimum 35% MAE
enhance in October to more than 65% in November and December. In this case
the Spearman correlations go from 0.75 to 0.95 (pval < 0.05). The worst month
is October and the best, November and December. Finally, out-flow anomalies
are generally the most difficult to be modelled through the MLR, with Spearman
correlation coefficients from 0.45 to 0.85 (pval < 0.05). The finest results are
focused in July, August and September, with potential ameliorations from 30%
to 50%. The poorest results comprise April, November and December, with any
upgrade beyond climatology. In figure 7.2 we can see the best modelled month
for each of the variables.

Afterwards we have proceeded to compare these results with the other forecast
configurations and controls, taking climatology as the reference forecast (both
deterministically and probabilistically). This choice responds to the fact that it
is the usual strategy for reservoir’s decision making. To ease the readability of
this section the results will be presented separately for each variable.

In-Flow

If we analyse the in-flow MAE the best results are obtained at lead one, where
in all months except April, June, September and December there is always one
or multiple forecast configurations that go beyond the climatology control (see
figure 7.3). In general, the most consistent approach at this lead is the use of
the MLR models with antecedent anomaly observations, A+Clim. However, in
May and October persistence offers better results and, in July, the combination
of antecedent observations with the MOS-analog calibrated S4, A+MOS, is the
finest. Nevertheless, in all these cases the A+Clim remained as the second option.
At lead two we have that A+Clim keeps on showing good performance, surpass-
ing climatology in March, July and August. At further leads only three months
can go beyond climatology: February, A+Clim; July, A+MOS; and November,
A+S4. At longer leads there is no consistent pattern among the best methods and
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Figure 7.2. Modelled and observed in-flow, out-flow and volume anomaly values of
the best MLR model in a LOOCV approximation and perfect prognosis conditions.

151



7. Seasonal forecasting applications: water reservoirs

in the occasions some skill is shown there is an alternation among persistence,
A+Clim, A+MOS and A+S4. The observed predictability in July, though, is
an interesting result for this area, attending the potential of seasonal forecasting
in summer water management. In figure 7.4 we can see that the percentage of
October’s in-flow MAE reduction compared to climatology with the six forecast
strategies considered is only perceptible at lead one. We show October’s perfor-
mance because it is the month with the highest rainfall in the basin (see figure
4.11).

Lead-1 Lead-2 Lead-3 Lead-4 Lead-5 Lead-6 Lead-7

Jan

Feb   

Mar  

Apr

May  

Jun

Jul c

Aug

Sep

Oct  

Nov

Dec

Pers.

A+Clim.

A+S4

A+MOS

A+LR

Clim.

In-!ow min. MAE

Figure 7.3. In-flow forecast strategy with the lowest MAE for each month and forecast
horizon at the Boadella reservoir. The six forecast systems considered are: climatology
(Clim), persistence (Pers), antecedent observation combined with climatological val-
ues (A+Clim), antecedent observations combined with mean bias corrected S4 (A+S4),
antecedent observations combined with MOS-analog calibrated S4 (A+MOS) and an-
tecedent observations combined with S4 calibrated with a linear regression procedure
(A+LR). Note that forecast strategies different from climatology only appear in the
table if they improve climatology MAE results by a minimum of 5%.

Moving on to the probabilistic performance our attention is centred in the
envelope of the Economic Value curve and its enclosed area (EVA). We have to
recall that positive values of the EVA mean that it exists a probability threshold
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Figure 7.4. Percentage of October’s in-flow MAE reduction with respect to clima-
tology. Perf.Prog. refers to the MLR model performance with observed values. The
other bars correspond to the five forecast configurations considered: persistence (Pers),
antecedent observation combined with climatological values (Obs.Clim), antecedent ob-
servations combined with mean bias corrected S4 (Obs.S4.), antecedent observations
combined with MOS-analog calibrated S4 (Obs.MOS-S4.) and antecedent observations
combined with S4 calibrated with a linear regression procedure (Obs.LR-S4.).
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that, for a certain forecast method and a specific range of users, leads to more
valuable decisions than using climatology alone (see subsection 5.7.2.7). From
the three situations studied it is clear that the upper and lower thirtiles are the
best forecast, ameliorating climatology in many leads. The middle thirtile, on the
contrary, is the worst forecast with reduced ameliorations (see figure 7.5). As we
have said in section 6.2.2 this is probably due to the small number of ensemble
members.

Starting with the lower thirtile (corresponding to dry conditions) we have
found that the best results are attained at lead one, with an amelioration beyond
climatology in all the months except December. Persistence is the option with
best results in March, April, May and November. The A+S4 shows the best
results in February and July; A+MOS presents the best outcome in June and
September; in October the A+LR is the leading option; and in January, A+Clim
At other leads there are scattered cases in which we find economic value, mostly
centred in the A+MOS, but they do not follow any consistent pattern. If we turn
our attention to the upper tercile we find that the EVA is positive in all months
except May, June and December. Persistence is the optimal forecast system in
January, March, July and September; A+Clim is the best option in February;
A+S4 in August and October; and A+MOS in November. At other leads there
are scattered positive values that are not systematic and depend on the month
and the forecast system. In general there is a dominance of the A+MOS but
persistence, A+S4 and A+LR are also good options in particular cases.

Finally, as an example, we show the EV curves for October in-flow forecasts at
lead 1, 4 and 7 (see figure 7.6). This is the month with the precipitation maxima
in the Muga river basin (see figure 4.11). Note that there are always users that are
able to take better decisions in all three leads if they use an appropriate forecast
system and that the best results are attained at lead one and for lower and upper
thirtiles. Figure 7.7 details the attributes diagram for the lower and upper thirtile
of this same forecast focused respectively, in A+LR and A+S4 (the best strategies
at this horizon). As we can see the forecast probabilities lie inside and outside
the reliability shaded region. This contrasts with the EV results highlighting the
importance of facing the verification process from different perspectives.
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Figure 7.5. In-flow forecast strategy with the highest Economic Value (EV) for each
month, forecast horizon and climatic conditions (D -lower tercile-, N -middle tercile-,
and W -upper tercile-) at the Boadella reservoir. The six forecast systems consid-
ered are: climatology (Clim), persistence (Pers), antecedent observation combined with
climatological values (A+Clim), antecedent observations combined with mean bias cor-
rected S4 (A+S4), antecedent observations combined with MOS-analog calibrated S4
(A+MOS) and antecedent observations combined with S4 calibrated with a linear re-
gression procedure (A+LR). Note that forecast strategies different from climatology
only appear in the table if they have a minimum EV Area of 0.10.
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Figure 7.6. EV plot for October’s lead one forecast of (a) dry conditions (b) hu-
mid conditions. The base line corresponds to climatology. Perf.Prog. refers to the
MLR model performance with observed values. The other curves correspond to the
five forecast configurations considered: persistence (Pers), antecedent observation com-
bined with climatological values (Obs.Clim), antecedent observations combined with
mean bias corrected S4 (Obs.S4.), antecedent observations combined with MOS-analog
calibrated S4 (Obs.MOS-S4.) and antecedent observations combined with S4 calibrated
with a linear regression procedure (Obs.LR-S4.).
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Figure 7.7. Attributes diagram for October’s first lead in-flow forecast of (a) dry
conditions with A+LR (b) humid conditions with A+S4. Only some of the forecast
probabilities lie inside the reliability shaded region.
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Volume

Volume anomalies are the best modelled variable through the MLR approxima-
tion. When looking at the MAE we see important ameliorations with respect to
climate in all months up to lead four (see figure 7.8). Furthermore, in the case
of July, November and December the predictability upgrade reaches lead seven;
and for January and June, we have positive results up to lead six. Persistence
and the A+Clim are the options which give the best results.

At the first lead, persistence shows the best results in all months except
from October to January, A+Clim (October, December and January) and A+LR
(November) surpass persistence. At lead two persistence keeps on being the
most advantageous approach in March to August. At this same horizon the
A+Clim ranks first in January and September, whereas the A+MOS should be
the choice in February, persistence in October and the A+S4 in November and
December. At lead three persistence is the finest forecast system between April
and July, followed by the A+Clim in January, August, September and October,
and A+S4/MOS/LR (with little differences among them) in February, March,
November and December. At lead four A+S4/MOS/LR show better results from
November to April; A+Clim should be the preferred option for August, Septem-
ber and October; and persistence is the best approach from May to July. Pro-
gressing to lead five, persistence is only useful in January and June; A+Clim
in September; A+S4 in March, July and November; A+MOS in December; and
A+LR in February. At lead six, A+MOS is the best approach in January and
June; A+LR in July and December; and A+S4, November. Finally, at lead seven
December and March are better forecast with A+MOS while July and November
show better results with A+LR. In figure 7.9 we can see the percentage of July’s
volume MAE reduction compared to climatology with the six forecast strategies
considered. We show July’s forecast performance because it is the month with
the highest hydrological stress (see figure 4.11) and when there is a peak of the
irrigation demands (see figure 7.1).
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Figure 7.8. Volume forecast strategy with the lowest MAE for each month and forecast
horizon at the Boadella reservoir. The six forecast systems considered are: climatology
(Clim), persistence (Pers), antecedent observation combined with climatological val-
ues (A+Clim), antecedent observations combined with mean bias corrected S4 (A+S4),
antecedent observations combined with MOS-analog calibrated S4 (A+MOS) and an-
tecedent observations combined with S4 calibrated with a linear regression procedure
(A+LR). Note that forecast strategies different from climatology only appear in the
table if they improve climatology MAE results by a minimum of 5%.
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Figure 7.9. Percentage of July’s volume MAE reduction with respect to climatology.
Perf.Prog. refers to the MLR model performance with observed values. The other bars
correspond to the five forecast configurations considered: persistence (Pers), antecedent
observation combined with climatological values (Obs.Clim), antecedent observations
combined with mean bias corrected S4 (Obs.S4.), antecedent observations combined
with MOS-analog calibrated S4 (Obs.MOS-S4.) and antecedent observations combined
with S4 calibrated with a linear regression procedure (Obs.LR-S4.).
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The probabilistic performance also exhibits better results than in-flow. At
first lead persistence is the leading method in all climatic categories except for
November and December, where the A+S4 offers the greatest EVA (see figure
7.10). For lead two persistence shows the finest upgrade in all the three terciles
in March, April, June, July and September. In February it is the best option
in the lower and upper tercile and in August, for the lower and middle thirtiles.
At this forecast horizon the A+S4 and A+MOS are the best options in the rest
of terciles and months. The middle tercile is not enhanced in January, February
and November. At lead three the lower and upper terciles always display a
prediction approximation which offers better results than climatology. Yet, we
have that the finest is generally persistence, followed by A+S4 and A+MOS. The
middle thirtile is only better modelled than climatology in 5 months: January,
May, June, August and September. In January, May, June and August the best
forecast systems A+S4 and MOS whereas in September persistence is the most
advantageous. From August to October there is an upgrade with respect to
climatology in the upper and lower thirtiles up to lead seven normally by means
of persistence but also with A+S4 and MOS. This pattern can be also seen in
May and June, up to lead five and July, up to lead six, but in the latter case being
persistence the best option. As for November and December the predictability
of the first and third thirtile reaches lead seven, but in this case the dominant
forecast system is the A+MOS. This also happens in January and, restricted to
the lower thirtile, in February. From lead four to lead seven the middle tercile
is normally better forecast by climatology and only in scattered cases there is
another forecast approach which gives better results.

In figure 7.11 we can see the EV curves for July’s volume forecast issued
in March (lead five) with the six forecast strategies considered. We focus our
attention in March because it is when the projections of summer water price
are normally made (ACA personal communication). Figure 7.12 details the at-
tributes diagram for the lower and upper thirtile of this same forecast focused in
persistence (the best strategy at this horizon). In this occasion, all the forecast
probabilities lie inside the reliability shaded region in accordance with the EV
results.
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Figure 7.10. Volume forecast strategy with the highest Economic Value (EV) for
each month, forecast horizon and climatic conditions (D -lower tercile-, N -middle
tercile-, and W -upper tercile-) at the Boadella reservoir. The six forecast systems
considered are: climatology (Clim), persistence (Pers), antecedent observation combined
with climatological values (A+Clim), antecedent observations combined with mean bias
corrected S4 (A+S4), antecedent observations combined with MOS-analog calibrated
S4 (A+MOS) and antecedent observations combined with S4 calibrated with a linear
regression procedure (A+LR). Note that forecast strategies different from climatology
only appear in the table if they have a minimum EV Area of 0.10.
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Figure 7.11. EV plot for July’s lead five forecast of (a) dry conditions (b) humid con-
ditions. The base line corresponds to climatology. Perf.Prog. refers to the MLR model
performance with observed values. The other curves correspond to the five forecast
configurations considered: persistence (Pers), antecedent observation combined with
climatological values (Obs.Clim), antecedent observations combined with mean bias
corrected S4 (Obs.S4.), antecedent observations combined with MOS-analog calibrated
S4 (Obs.MOS-S4.) and antecedent observations combined with S4 calibrated with a
linear regression procedure (Obs.LR-S4.).
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Figure 7.12. Attributes diagram for July’s fifth lead volume persistence forecast of
(a) dry conditions (b) humid conditions. All forecast probabilities lie in the reliability
shaded region.
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Out-flow

The out-flow MAE analysis highlights August and September going beyond cli-
matology up to lead seven (see figure 7.13). At lead one there is an upgrade driven
by persistence in January, February, April, May and August, and by A+Clim in
March, June, July, September and October. At lead two persistence is the lead-
ing method in May, whereas A+Clim shows the best results from June to August
and also in October. In March the better method is A+MOS and, in September,
the A+S4. Lead three presents an upgrade in March and from May to October.
A+Clim is the best option in July, August and October. On the other hand,
A+MOS is the choice for March and June, while A+S4 is the finest approach in
May and September. For lead four February shows an upgrade with persistence,
March with A+LR and May with A+S4. From July to September the best MLR
configuration is A+Clim. At lead five, July presents an upgrade with A+LR; Au-
gust, with A+Cl; and September with A+MOS. For leads six to seven August and
September improve climatology with A+Clim and with A+MOS at lead seven in
September. May also show some enhancement at lead seven. Finally, November
and December do not show any MAE amelioration at any forecast horizon. In
figure 7.14 we can see the percentage of July’s out-flow MAE reduction compared
to climatology with the six forecast strategies considered. We show July’s fore-
cast performance because it is the month with the highest hydrological stress (see
figure 4.11) and when the irrigation demands peak (see figure 7.1).
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Figure 7.13. Out-flow forecast strategy with the lowest MAE for each month and
forecast horizon at the Boadella reservoir. The six forecast systems considered are:
climatology (Clim), persistence (Pers), antecedent observation combined with climato-
logical values (A+Clim), antecedent observations combined with mean bias corrected S4
(A+S4), antecedent observations combined with MOS-analog calibrated S4 (A+MOS)
and antecedent observations combined with S4 calibrated with a linear regression pro-
cedure (A+LR). Note that forecast strategies different from climatology only appear in
the table if they improve climatology MAE results by a minimum of 5%.
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Figure 7.14. Percentage of July’s out-flow MAE reduction with respect to climatology.
Perf.Prog. refers to the MLR model performance with observed values. The other bars
correspond to the five forecast configurations considered: persistence (Pers), antecedent
observation combined with climatological values (Obs.Clim), antecedent observations
combined with mean bias corrected S4 (Obs.S4.), antecedent observations combined
with MOS-analog calibrated S4 (Obs.MOS-S4.) and antecedent observations combined
with S4 calibrated with a linear regression procedure (Obs.LR-S4.).
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The EVA analysis of the first lead shows that persistence is the best option in
the lower and upper terciles from November to February, April, September; the
lower thirtile of May and June; and March’s upper thirtile (see figure 7.15). In
the other months it is the combination A+Clim which shows the greatest ame-
lioration. The middle thirtile does not display any general amelioration beyond
climatology at any lead. At lead two persistence is the finest system in the upper
thirtile of April, May and the lower thirtile of December. January, February,
April and November do not show any enhance beyond climatology for the lower
tercile; and January, June and December, neither for the upper. In all the rest
is the A+Clim forecast system the one which poses the greatest upgrade with
respect to climatology. Progressing to lead three, the lower tercile forecasts only
surpasses climatology in March and from May to October. For the upper tercile
these amelioration comprise February, March, May, and from July to December.
This lead’s best forecast strategies are the A+Clim followed by the A+MOS.
From lead four onwards we only have scattered positive EVA values distributed
between the lower and the upper thirtiles of, specially, the months comprised
between May and October. In those cases the predominant forecast approach is
the A+MOS, followed by the A+S4 and the A+Clim.

In figure 7.16 we can see the EV curves for July’s out-flow forecast issued
in May (lead three) with the six forecast strategies considered. We focus our
attention in May because it is the farthest lead in which we still have remarkable
positive skill in the forecast of July’s anomalies (see i.e. figure 7.14). Figure
7.17 details the attributes diagram for the lower and upper thirtile of this same
forecast focused in A+Clim (the best strategy at this horizon). As we can see,
all the forecast probabilities are inside the reliability shaded region, a result that
is in concordance with the EV analysis’ outcome.
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Figure 7.15. Out-flow forecast strategy with the highest Economic Value (EV) for
each month, forecast horizon and climatic conditions (D -lower tercile-, N -middle
tercile-, and W -upper tercile-) at the Boadella reservoir. The six forecast systems
considered are: climatology (Clim), persistence (Pers), antecedent observation combined
with climatological values (A+Clim), antecedent observations combined with mean bias
corrected S4 (A+S4), antecedent observations combined with MOS-analog calibrated
S4 (A+MOS) and antecedent observations combined with S4 calibrated with a linear
regression procedure (A+LR). Note that forecast strategies different from climatology
only appear in the table if they have a minimum EV Area of 0.10.
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Figure 7.16. EV plot for July’s lead three forecast of (a) dry conditions (b) hu-
mid conditions. The base line corresponds to climatology. Perf.Prog. refers to the
MLR model performance with observed values. The other curves correspond to the
five forecast configurations considered: persistence (Pers), antecedent observation com-
bined with climatological values (Obs.Clim), antecedent observations combined with
mean bias corrected S4 (Obs.S4.), antecedent observations combined with MOS-analog
calibrated S4 (Obs.MOS-S4.) and antecedent observations combined with S4 calibrated
with a linear regression procedure (Obs.LR-S4.).
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Figure 7.17. Attributes diagram for July’s third lead out-flow A+Clim forecast of
(a) dry conditions (b) humid conditions. All forecast probabilities lie in the reliability
shaded region.
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7.4 Discussion & Conclusions

In this chapter we have studied the potential of seasonal forecasting in the predic-
tion of in-flow, out-flow and volume monthly anomalies in the Boadella reservoir
(upper Muga river basin). This region has been selected by the Oficina Catalana
del Canvi Climàtic (2012) as an area of interest for its particular vulnerability
towards water scarcity in a context of climate change. Hence, this case study has
been an opportunity to see whether seasonal forecasting can play an active role
in the elaboration of future water management strategies. If we recall the first
question raised at the beginning of this chapter,

Can we model monthly anomalies for the in-flow, out-flow and volume
stored in a reservoir through a MLR approach?

We have approached the answer through a MLR strategy by searching for the
minimum number of predictors with the greatest explanatory power. To do so
we have screened the performance of all the possible models with a previously
developed algorithm that allows us to control different aspects of the forecast
quality (see section 7.2). Although our experiments showed the results obtained
are very similar to those derived with a step-wise regression, in the near future
we would like to extend our algorithm to the latter because it is more computing
efficient.

The LOOCV verification revealed that reservoir volume was the variable best
described by the MLR models, followed by in-flow and out-flow anomalies (see sec-
tion 7.2). In all these cases the meteorological predictors were rainfall, maximum
and minimum temperature anomalies. Rainfall can be related to groundwater,
river flow and soil-moisture state whereas the temperature predictors are proxies
of evapotranspiration with the particularity that, in the case of minimum tem-
perature, it is also a proxy for winter snow amount. Besides, in-flow observations
demonstrated to be an important predictor for volume anomalies due to its role
in the replenishment of the reservoir; and volume anomalies were also a transcen-
dent driver for out-flow anomalies because they act as proxies for water-manager
decisions.
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As for the differences in the modelling of the predictands through an MLR,
they are probably consequence of three factors: the inherent diversity of depen-
dences of the predictand variables with the predictors, the non-linearitie/linearities
introduced by human decisions and the different sources of predictor data. The
inherent dependencies of the predictand variables have been already dealt in sec-
tion 7.2. Out-flow anomalies are affected by the objectives of water demand sat-
isfaction and avenue lamination, which are non-linear in nature for they heavily
depend on the environmental conditions. On the other hand, volume anomalies
are influenced by the objective of maintaining water supplies which turn this vari-
able very linear. Regarding the third factor, when in-flow and volume anomalies
act as predictors the antecedent observations are in-site observations instead of
interpolated values from stations far apart.

This means that, in case a linear relation between variables and predictors
existed, this will be clearer if the predictors were observations taken in the upper
sub-basin rather than data coming from an interpolated gridded dataset. The
reason to use E-OBS instead of direct observations was to search for a method-
ology that could be easily transferred into other regions. Nevertheless, our next
step will be to compare the results obtained in this thesis with the outcome got
when using observed values of rainfall, maximum and minimum temperatures in-
stead of E-OBS values. Our hypothesis here is that the results found with E-OBS
are a lower quality threshold and that the use of observed values can only improve
those results. However, this is something that has yet to be proven.

Up to this point, then, it is a safe conclusion to say that the MLR can be an
effective way to reproduce volume anomalies, the most part of in-flow anomalies
and out-flow anomalies when using E-OBS as meteorological predictors and local
in-flow and volume observation anomalies. Consequently, we went on to answer
the second question and third questions:

Can we issue seasonal forecasts of these anomalies? Can these fore-
casts be more useful than climatology?

To answer this question we have carried out a deterministic and probabilistic
verification of the six forecast strategies for every month and each of the forecast
leads. The combination of both approximation (mainly through the MAE and
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EV) of the exact values and three climatic categories (dry, normal and humid)
provided us with a more complete picture to assess the potential utility of this
application for end-users. It is worth noting that in some cases there were values
of the EVA between 0 and 0.10 of that arose when no other skill metric showed
positive values. Since these values did not follow any recognizable scheme nor a
specific forecast system we attributed this to noise and established EV Area of
0.10 as a threshold above which we could determine more robust surpassing of
climatology. Still, it could be the case that for certain users the application of
forecast systems different from climatology might imply some advantages even
when the skill demonstrated in other metrics was little to non-existent. However,
this is an hypothesis that has to be specifically tested in future studies.

That said, we can answer the question affirmatively. Nevertheless, since each
variable has its particular characteristics and dependencies, the performances
shown are very different among them. For instance, volume is the best fore-
cast variable with MAE and EVA going beyond climatology up to lead four for
the three climatic categories (dry, normal and humid) and even reaching lead
seven from August to January. In winter, the best forecast configuration is the
A+S4/MOS, an outcome that resembles the results obtained in chapter 6. In
the other months, persistence and A+Clim are the best forecast systems up to
lead four. In-flow forecast amelioration is almost restricted to the first lead and
dry and humid conditions. There are also some enhancements at other scattered
leads and months but without following any clear pattern. At first leads the
antecedent information plays a determining role, with the A+Clim and persis-
tence as the main sources of predictability. At further leads the combinations of
A+S4/MOS/LR are the finest methods. Finally, the out-flow anomalies display
some contrasts between the MAE and EVA results, an outcome that confirms the
usefulness of looking at data from distinct perspectives. This is specially evident
in November and December where there is no MAE amelioration and we can find
positive values of EVA for dry and humid conditions at first lead (or even at lead
six, in November’s reaching upper thirtile). The other months show predictability
for dry and humid conditions at the first lead and even at lead two. Persistence
and A+Clim, are the better approaches at this horizon. From August to October
this is also true almost up to lead seven and, in July, until lead three. In the
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other months and leads the A+S4 and MOS are the forecast systems which sur-
pass climatology in the scattered occasions this happens. Eventually, it is worth
noting that the middle thirtile of the climatology is the worst forecast category,
probably due to the small size of the ensemble.

Hence, since most of today’s reservoir management and end-user decisions are
taken on the basis of climatology, the use of antecedent observations as well as
current seasonal forecasts through the development of monthly MLR models con-
stitute a window of opportunity to decision-making optimization. In fact, we have
seen that our models already provide added value for each month of the year with
a minimum of four months in advance in the case of volume anomalies, but also
for in-flow and out-flow first leads, with the latter variable exhibiting enhanced
predictability at longer horizons for the months of higher water demands.

The determinant role observed of antecedent conditions in seasonal predictabil-
ity reinforces the idea of underlying physical mechanisms that connect the chosen
predictors with our predictands and, additionally, that the MLR is a good way
to uncover them. However, the importance that persistence shows in many oc-
casions points towards the possibility to upgrade our models by including it in
the MLR as another possible predictor, and so it is the next step we will work on
(starting with volume anomalies).

As for the combination of antecedent observations with the mean bias cor-
rected S4 and its calibrations, the A+S4 along with the A+MOS are the preferred
options when they function best than the A+Clim and persistence (with a slight
bias towards the A+MOS). The increase of the ensemble size, the expansion of
the analog pool, the inclusion of the independent term in the LR and the use
of in-site meteorological observations are interesting research lines to follow that
might offer better results in the future. It is also our plan to extend our work to
other areas such the Tarn basin in France or other basins and reservoirs in Spain
and Europe to check the applicability and transferability of our findings.
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CHAPTER 8

Seasonal forecasting applications:
summer fires

8.1 Overview

In chapter 6 we have seen that bias corrected S4 is the best option to tailor
seasonal forecast end-user applications that can go beyond climatology and per-
sistence controls. This result only showed up systematically at lead one, although
in all variables and domains there are cases which also exhibited some skill at
longer leads. In the previous chapter this result has been applied in the integral
study of seasonal forecasting as a tool to foresee reservoir in-flow, out-flow and,
specially, volume anomalies with months in advance.

As of now, we turn our gathered learnings to the study of another potential
seasonal forecasting application: the study of seasonal predictability of summer
burned area. Several works have already analysed the relationships between cli-
mate variables and summer fires and found that the inter-annual variability of
summer fires in the Mediterranean area is driven by drought and temperature
influence upon fuel flammability and structure (see i.e. Pausas, 2004; Meyn et al.,
2007; Turco et al., 2013a). This suggests the existence of potential predictability
for this kind of fires. In fact, to our knowledge, to date there is no compara-
tive analysis addressing the combination of statistical-empirical approaches and
dynamical seasonal forecasting models in this field. To fill this gap we explore
the seasonal predictability of summer burned area in Catalonia, a Mediterranean
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Figure 8.1. Domain of study and dominant land cover from the Global Land Cover
dataset GLC2000 (Bartholomé and Belward, 2005). The inset shows a geographical
map at larger scale.

environment (see figure 8.1). Approximately 60% of its extent (32000 km2) is
covered by shrubland and forest (mostly low-height forest dominated by conifers,
such as Pinus halepensis, Pinus sylvestris and Pinus nigra) and is frequently af-
fected by high intensity, stand-replacing fires (Díaz-Delgado et al., 2004; González
and Pukkala, 2007). Further information on this region can be found in section
4.3.

Our goal is achieved through three supporting questions:

1. Can we develop a statistical model to link fire activity to current-summer
and antecedent drought values?

2. What is the performance of such a model combining the observed an-
tecedent drought with forecasts of the current-summer drought based on
the S4, climatology and persistence?

3. Can we draw some general conclusions on the most convenient forecast
system to obtain skilful seasonal prediction of fire activity in the region
under study?

The answers to these points will help us define the feasibility to establish an
operational framework for seasonal fire prevention in a mid-term future. To do
so we have evolved our former MLR approach to predict summer burned area
anomalies (see section 3.4) with the use of two standard drought indices: the
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Standardized Precipitation Index (SPI; Mckee et al., 1993) and the Standard
Precipitation and Evaporation index (SPEI; Vicente-Serrano et al., 2010). These
new set of variables are then rearranged in two terms: antecedent and current
drought conditions, in which current refers to the months of the same summer
year for which we issue the forecast, and antecedent, which refers to any month
lying before.

These SPI and SPEI can be both computed from the three variables that we
have already been using throughout this thesis: Tmax, Tmin and Pr (see sections
3.1 and 3.2). However, the combination often requires merging of E-OBS and
S4 data, so the implementation of a bias correction requires a more complex
approach than the addition or subtraction of the mean bias. This methodology
is known as Quantile Mapping (see i.e. Déqué, 2007; Wilcke et al., 2013).

Referring to the validation process, this consists of an out-of-sample verifica-
tion of the different model approximations against the observational fire dataset.
It involves deterministic and probabilistic metrics that match S4 with climato-
logical and persistence controls to identify which one has the best overall perfor-
mance.

So, after this brief overview, this chapter is organized as follows: firstly,
the Methodology section presents and justifies the selection of different data-
treatment, modelling and verification strategies; then, Results sums up the out-
come of the analysis performed; and finally, in Discussion and conclusions there
is a recap of the answers to the questions raised.

8.2 Methodology

8.2.1 Drought indicators

We considered two standard drought indices: the Standardized Precipitation In-
dex (SPI; Mckee et al., 1993) and the Standard Precipitation and Evaporation
index (SPEI; Vicente-Serrano et al., 2010). SPI has been widely used for me-
teorological drought studies and is recommended by the World Meteorological
Organization (WMO, 2012). SPI is a transformation of the accumulated precipi-
tation values over a specific period (usually from 1 to 12 months) into a Gaussian
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distribution with mean zero and unity standard deviation. Positive values indi-
cate situations of surplus rainfall, while negative values identify dry situations.
The SPEI is mathematically similar to SPI, but includes the effects of tempera-
ture (Hargreaves, 1994; Vicente-Serrano et al., 2010).

In order to compute SPI (and SPEI) from forecast precipitation (and temper-
ature), we merged the seasonal forecasts of precipitation (and temperature) with
the antecedent series of historical records from EOBS, following the methodology
from Dutra et al. (2013). Since two different datasets are merged, special care has
to be taken to ensure that the climatological mean is preserved for both datasets.
To this aim, we used a quantile-quantile mapping (QM; Wilcke et al., 2013), a
non-parametric technique that can be applied to any type of variable (in this
case precipitation and temperature) regardless of its distributional properties.
We also upscaled the climatological series to the regional level (Catalonia) prior
to their calibration, thus reducing the amount of data to process. To do so, we
used the QM implementation provided in the R package downscaleR (Santander
Meteorology Group, 2015). After merging the observed reference and the (QM
calibrated) series of temperature and precipitation, we aggregated to a monthly
scale, and then computed both SPI and SPEI using the implementation of the R
package SPEI (Begueria and Serrano, 2015).

8.2.2 Burned area analysis

We have analysed the burned area in Catalonia of the summer months from June
to September (BA hereinafter). This is the period with larger fires, which account
for about 86% of the annual burned area. For more details on this dataset, the
reader is referred to section 3.4.

Since BA follows an approximate log-normal distribution, we normalize the
variable by applying a standard log transformation. Figure 8.2a shows the total
burned area in summer, while figure 8.2b displays the log-transformed BA. These
series reveal strong year-to-year oscillations, with two peaks in 1986 and 1994,
and a general negative trend. A possible driver of this negative fire trend is
improved fire-management strategies resulting in reinforced fire prevention and
fighting resources (Turco et al., 2013b, 2014).
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Figure 8.2. Summer Burned Area (BA) in Catalonia (NE Spain) over the 30-year
period 1983-2012 (a) and log-transformed Burned Area (b).
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8.2.3 Fire-drought model

Recent studies (Turco et al., 2013a, 2014) have shown that summer fires in Cat-
alonia are connected to the temperature and precipitation of both the coincident
season and that of two years before. Our approach builds on these studies by ex-
ploring the predictive relationship between drought indicators and fires through
a statistical model. This method links drought indices to BA through a multiple
linear regression model (MLR hereafter) based on the following hypothesis: an-
tecedent droughts influence fuel structure, while current-year drought promotes
favourable conditions for ignition and combustion. Essentially, the model relates
year-to-year changes in BA with current and antecedent droughts:

log(BA) = a ·DIC(τa) + b ·DIA(τb) + ε (8.1)

where DIC refers to the Drought Index Current (SPI or SPEI) condition and
DIA to the Drought Index Antecedent situation; a and b are coefficients that
represent the sensitivities of BA to DIC and DIA, respectively; finally, τa and
τb are the months to which the indexes DIC and DIA refer, respectively. Prior
to the analysis, the time series of both fire and drought indexes were linearly
detrended to minimize the influence of slowly changing factors.

8.3 Results

In the previous section we have introduced the elements to build our MLR model.
After testing several MLR combinations (eq. 8.1) with SPI/SPEI for 3, 6, 9 and 12
accumulation months we have found that the best results show up with SPI/SPEI
6-month accumulation for τa and τb of 1 and 27 months, respectively. Afterwards,
we have computed the parameters a and b by least-square fitting to the data. In
eqs. 8.2 and 8.3 we show the resulting models for SPI and SPEI:

BA = −0.90 · SPI6(1) + 0.64 · SPI6(27) + ε (8.2)

BA = −1.05 · SPEI6(1) + 0.61 · SPEI6(27) + ε (8.3)
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In both cases, SPI and SPEI, we identify similar drought variables as efficient
predictors from coincident and antecedent years. The Pearson correlations of
the models (eqs. 8.2 and 8.3) are respectively 0.68 and 0.70 (pValue < 0.05),
indicating that these parsimonious models show skill in reproducing the year-to-
year changes in BA. Turning to the model residuals they satisfy the hypothesis
of normality, zero autocorrelation and no trend.

To find out which are the relative importances of DIC and DIA in eqs. 8.2
and 8.3 we use the Akaike Information Criterion (AIC). The AIC score (Akaike,
1974) measures the validity of a statistical model based on a trade-off between its
accuracy and its complexity (that is, the number of free parameters) being the
best models those with the lower AIC. In table 8.1 we can appreciate the added
value of including antecedent drought conditions in the analysis.

Table 8.1. AIC values for SPI and SPEI with consideration of only current drought
conditions (DIC), or of the combination of current and antecedent drought conditions
(DIC +DIA, as in eqs. 8.2 and 8.3)

AIC DIC DIC+DIA

SPI -7.8 -11.5
SPEI -10.7 -13.4

These results confirm the importance of the year-to-year drought variability
in regulating both fuel flammability and fuel structure. A negative SPI or SPEI
means a stronger drought whereas a positive value refers to a moisture surplus.
In our case it is worth noting that the signs of the coefficients for 6-month accu-
mulation SPI and SPEI for month 1 and 27 are reversed. This means that BA is
promoted if a wet period exists at month 27 and it is followed by a drought pe-
riod in the months just before summer. This is explained because antecedent wet
periods increase vegetation growth (fuel structure) whereas coincident droughts
increase fuel flammability, so when they are combined (in Catalonia, for months
27 and 1 before summer) they act favouring summer BA.

Given the similarity between the two models, in the following we will focus
on the SPEI drought index since it performs slightly better. An important test
for the models is assessing their ability to perform out-of-sample predictions: we
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determine the model parameters on one subset of the data (training set) and
validate the prediction on the other subset (testing set). Specifically, we apply a
leave-one-out cross-validation (von Storch, 1999) in which we iteratively test one
year using the remaining observations as training data.

To avoid artificial skill, the data are linearly detrended in each step of the
cross-validation. To estimate the uncertainty of this kind of predictions, we
followed the methodology proposed by Calmanti et al. (2007). Basically, this
consists in calculating the variance, V , of the residuals in the calibration period;
then generating 1000 random residual time series with the same variance, V ,
and finally adding the stochastic residuals to the predicted values to generate an
ensemble of 1000 predictions.

Figure 8.3 shows the observed BA data together with the median of the en-
semble of 1000 model realizations and its uncertainty bands (defined by the inter-
quartile range of the ensemble of the 1000 out-of-sample predictions). This figure
reveals valid model skill also in out-of-sample mode, with 0.58 Pearson correlation
(pValue < 0.05).

From an operational point of view, it is important to assess whether this
model can be used to separate positive and negative anomalies. We thus evaluate
whether the MLR model can predict the occurrence of events, defining as events
those cases with above-normal fire activity. We consider probabilistic forecast
values ranging between 0% and 100% obtained as the percentage of the 1000
different out-of-sample predictions above their mean values. That is, our forecast
is not deterministic and users need to take into account the uncertainty of the
forecast expressed by these probabilities. For instance, users could decide to take
action when a 10% probability of an above-average event is forecast. In this case,
the number of missed events may be very low, but this may imply a high number
of false alarms.

The Relative Operating Characteristic (ROC) diagram shows the Hit rate
(i.e., the relative number of times a forecasted event actually occurred) against the
False Alarm Rate (i.e., the relative number of times an event has been forecasted
as an event but did not actually happen) for different potential decision thresholds
(Mason and Graham, 1999). The area under the Roc curve, that is, the ROC
Area (RA), is a useful measure to summarize the skill of a model. RA ranges
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Figure 8.3. Out-of-sample prediction for BA using current-year and antecedent SPEI
as predictors (Eq. 8.3). The continuous line with solid circles represents the observed
data. The dotted line with empty circles is the median of 1000 different out-of-sample
predictions; the dashed bands include the inter-quartile range of the ensemble of out-
of-sample predictions. The vertical dotted lines show the edges of the 30 test periods
considered.
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Figure 8.4. ROC diagram for BA using the MLR of eq. 8.3 (i.e. using current year and
antecedent SPEI as drought indicator). The grey open dots indicate a set of probability
forecasts by stepping a decision threshold with 5% probability through the forecasts.
The number inside the plots is the ROC Area (RA).

from zero, for a forecast with no hit and only false alarms, to one, indicating a
perfect forecast. Models with ROC areas above 0.5 have more skill than random
forecasts.

Figure 8.4 shows that our model (eq. 8.3) has skill: the ROC curve is well
above the identity line, with a ROC Area of 0.77. This model is then used to the
study of seasonal predictability of summer forest fire BA as discussed below.

Our climate-fire model is based on two terms: antecedent drought, which is
already known well before the fire season, and coincident drought, which needs
to be forecasted to obtain an estimation of the summer BA. In the following we
will drive the MLR model (eq. 8.3) with observed antecedent drought conditions
and with different forecast sources for the coincident drought: a) seasonal S4
predictions; b) climatology; and c) persistence. Climatology forecasts are the
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average condition for the current-summer drought, which is equivalent to setting
the SPEI to 0. For persistence forecasts, we consider the SPEI of the preceding
1 to 5 months prior to the first summer month, which is June.

Figure 8.5 shows the observed BA evolution together with the application of
the MLR (eq. 8.3) according to the three forecast approaches described above.
Figure 8.6 shows the ROC diagrams for these forecast systems. At first glance, the
seasonal S4 forecast system seems to follow a similar behaviour to the climatology
approach. However, both predictions show some amount of skill, with correlations
of 0.36 (pValue = 0.06) and 0.37 (pValue = 0.04) and RA of 0.58. We argue that,
in this case, this source of predictability is attributable to antecedent drought
variables. The persistence forecast shows the best results considering the drought
condition in May, with a correlation of 0.49 (pValue < 0.01) and RA of 0.72.
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Figure 8.5. MLR model (eq. 8.3) results considering three forecast approaches (a) the
seasonal forecast S4 issued in February for the current-summer drought conditions (b)
climatology and (c) persistence of May SPEI6 conditions. The continuous line with solid
circles represents the observed data. The dotted line with empty circles is the median
of 1000 different out-of-sample predictions; the dashed bands include the interquartile
range of the members of the ensemble of out-of-sample predictions. The vertical dotted
lines show the edges of the 30 test periods considered.
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8.4 Discussion & Conclusions

The goal of this chapter was to evaluate the predictability of summer fires BA in a
Mediterranean environment (NE Spain). To this aim, we tested the performance
of parsimonious linear models by building on current-summer and antecedent
drought variables. So, to the first question,

Can we develop a statistical model to link fire activity to current-
summer and antecedent drought values?

The answer is positive for we have been able to develop a MLR model that
can successfully link current-summer and antecedent drought. As a result, one
might reasonably think that the addition of accurate seasonal forecasts for the
expected summer drought would enable its fire prediction ability. However, we
have found a lack of skill of the model when introducing the S4 forecasts, a result
that can be directly linked to the uncertainties identified for leads beyond one
and the particular misbehaviour of S4 for May maximum temperature at lead
one in Catalonia (see section 6.3.3). The importance of lead one is clear when we
see that persistence shows the best results when computing May SPEI6. Hence,
the answer to the second question,

What is the performance of such a model combining the observed an-
tecedent drought with forecasts of the current-summer drought based
on the S4, climatology and persistence?

Is that when predicting the probability of above/below-normal summer fire
BA the use of S4 in this particular approximation only equals climatology, whereas
the use of persistence can go far beyond them. Consequently at this point, we
have the answer for the third question,

Can we draw some general conclusions on the most convenient forecast
system to obtain skilful seasonal prediction of fire activity in the region
under study?
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Indeed, persistence for May SPEI6 should be the choice to start building an
operational forecast structure to identify positive/negative BA anomalies. How-
ever, it cannot be discarded that with another strategy the S4 could offer more
valuable results (see chapters 6 and 7) and so will be an objective for future works.
In fact, we argue that our persistence model has two main sources of predictabil-
ity: one linked to the dependency of the fuel structure on antecedent droughts,
and the other related to the influence of preceding drought on fuel flammability.
Potentially, it is reasonable to expect that the approach presented here could also
be applied to other geographical areas with similar characteristics to Catalonia’s,
such as several Mediterranean regions covered by the so-called Mediterranean for-
est, woodland and scrub. These regions are covered by an abundance of fine fuels
that need relatively short periods to dry sufficiently. In addition to these direct
effects, climate may influence the abundance, continuity, and type of fuels (fine
vs. coarse). In these regions, antecedent climate could favour fuel gaps to be
filled within the landscape, resulting in increased abundance and continuity of
fuel load.

While many studies have investigated this relationship in North America
(Westerling et al., 2002; Preisler et al., 2004; Preisler and Westerling, 2007;
Preisler et al., 2008; Roads et al., 2010) less analysis have been done in southern
Europe. In spite of that, the existent studies support our hypothesis: fires are
related to antecedent climate variables in Mediterranean environments. For ex-
ample, Pausas (2004) analysed fires and climate in another Mediterranean region,
Valencia (close to the area studied in this paper), and found that the year-to-year
changes in burned area is (negatively) correlated with concurrent summer rainfall
and (positively) correlated with antecedent summer rainfall. Similarly, Koutsias
et al. (2012) investigated the relationships between forest fire activity and mete-
orological variables in Greece and found significant correlations with fire-season
precipitation and lagged precipitation. Additionally, Gudmundsson et al. (2014)
explored the relationship between above normal wildfire activity and meteorolog-
ical drought (SPI) in Mediterranean Europe as well as in the Iberian Peninsula,
the South Italy and in Greece sub-regions. In this case their focus was on explor-
ing predictive relationships between fires and meteorological drought by means
of fuel moisture. Although they did not specifically analyse the fire link with
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antecedent climate variables, their results for South Italy and Greece indicated:
significant predictability of regional wildfire activity can be yielded from antecedent
meteorological conditions.

Recently there have been serious warnings related to the impact of climate
change and other environmental or socioeconomic changes on forest fire risk
(Moriondo et al., 2006; Bowman et al., 2009; Moreira et al., 2011; Pausas and
Keeley, 2014). A recent study suggests that without the prevention and fire-
fighting efforts undertaken in the last decades, the recent increase in temperature
(Giorgi and Lionello, 2008; Turco et al., 2012; IPCC, 2013b) would have signifi-
cantly aggravated the observed fire impacts in Catalonia (Turco et al. 2014). In
addition, future regional projections indicate that climate effects could become
stronger and overcome fire prevention efforts (Bedia et al., 2014; Turco et al.,
2014). Understanding the link between the interannual variability of drought
and fire is therefore important not only to better understand fires and predict
their change, but also to support the decision-making process of policy-makers
and civil protection agencies for fuel management and resource allocation deci-
sions (Mavsar et al., 2013; San-Miguel-Ayanz et al., 2013a). In fact, the ability
to forecast the risk of fire months in advance makes it possible to organize allo-
cation of fire fighting resources (e.g. fire fighters, equipment and aircraft) and
target specific burning restrictions. For instance, seasonal forecasts may help to
increase preparedness in vulnerable areas such as wildland-urban interfaces and
may help to support decisions to reduce fuel load and continuity with prescribed
burning and fuel-breaks (San-Miguel-Ayanz et al., 2013b; Moreno et al., 2014).

The empirical drought-fire model proposed here does not require large compu-
tational costs and can provide a preliminary estimate of the expected fire condi-
tions for the summer season. Consequently, the relative simplicity and scalability
of this approach leaves the door open to the development of an operational pre-
dictive framework that could be adopted in other geographical regions. Notwith-
standing, there is still room for improvement since there is a fraction of summer
fire variance that it is still out of our model. Indeed, although our regression
model indicates a strong relationship to drought, there are other factors that also
play a major role for determining the burned area, such as soil moisture, pre-
existent biomass structure (that might depend on both natural factors as well as
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on human activities), fire suppression or fire ignition characterization. Hence, a
further improvement of the modelling framework presented here may be expected
with a better calibration of the predictors, the identification of new physical pro-
cesses and/or the use of new improved climate data products such as better-skilled
seasonal forecast dynamical models. Nevertheless, despite these limitations, our
results suggest that by exploiting the relationships between summer BA and pre-
ceding drought conditions, the model might allow for a satisfactory long-term
prediction of above/below-normal burned area.
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CHAPTER 9

Conclusions

In this thesis we have studied the benefits of different calibration approaches on
seasonal forecasting and the development of strategies to improve the seasonal
prognosis of water resources and forest fires. To do so we have established three
sub-objectives with a set of embedded tasks that have been addressed in chapters
6, 7 and 8:

1. Skill assessment

a) Evaluation of the skill of the raw ECMWF System-4 (S4) output in
Europe, Spain, Catalonia and the Muga river basin.

b) Impact on the S4 performance of the MOS-analog and linear regression
(LR) calibrations in comparison to mean bias correction in Europe,
Spain, Catalonia and the Muga river basin.

2. Seasonal forecast of water resources

a) Modelling of the Boadella reservoir in-flow, out-flow and volume anoma-
lies through a Multiple Linear Regression (MLR) procedure.

b) Evaluation of the seasonal predictability of the Boadella reservoir pre-
dictand anomalies through several seasonal forecast approaches.

c) Are these seasonal forecast more advantageous than climatology?
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3. Seasonal forecast of forest fires

a) MLR modelling of summer (JJAS) burned area in Catalonia taking
into account antecedent and current year drought conditions with the
Standardized Precipitation Index and the Standardized Precipitation
and Evapotranspiration Index (SPI/SPEI).

b) Performance of the MLR model under different seasonal forecast con-
figurations.

Now it is our aim to summarize our central findings and the original contri-
butions to the field.

9.1 Overall

1. Skill assessment

The ECMWF System-4 (S4) model output has been calibrated on four do-
mains: a) Europe b) Spain c) Catalonia and d) the Muga river basin, with
a MOS-analog, linear regression (LR) and mean bias correction strategies.
Afterwards we have compared the original and calibrated S4 forecasts with
climatology and persistence. We have studied the S4 hindcast period 1981-
2010 for each month of the year and up to lead seven considering an ensemble
of 15 members rearranged in the so-called generalized form (see section 6.2.2).
The verification metrics chosen to depict the results have been the mean abso-
lute error (MAE), Taylor diagrams (taking into account the root mean squared
error -RMSE-, the standard deviation and the Pearson correlation coefficient)
and the discrete Brier skill score (dBSS).

(a) Evaluation of the skill of the raw S4 output in Europe, Spain,
Catalonia and the Muga river basin. The original S4 forecasts
surpass climatology skill generally at lead one and in winter months.
In the European domain this behaviour is observed for maximum
and minimum temperatures but not for precipitation. Turning to
Spain and Catalonia, precipitation forecasts overcome climatology

196



9.1. Overall

while forecasts for maximum and minimum temperatures don’t. Fi-
nally, for the Muga river basin we spot winter skill in the three anal-
ysed variables and also in autumn and the early spring. At further
leads climatological improvements are scarce.

The observed first-lead winter predictability can be related to the
stability of the winter general circulation anomalies. In the occasions
when there is no first lead upgrade beyond climatology the bias study
seems to confirm that first order model biases are the cause for this
reduction in skill. Finally, focusing on persistence, it is surpassed by
the S4 in virtually all leads, months and domains.

(b) Impact on the S4 performance of the MOS-analog and LR
in comparison to mean bias correction in Europe, Spain,
Catalonia and the Muga river basin. Our study showed that
although the MOS-analog and LR calibrations have improved the
original S4, they seldom surpass the performance of mean bias cor-
rected S4. That said, the MOS-analog calibration sometimes gives
larger ameliorations than the mean bias correction and the linear re-
gression calibration (though the latter is normally better than the
MOS-analog approach). It is worth noting that the mean bias S4
calibration enhancements are rather limited to the first lead but with
exceptions in all domains.

Incidentally, it is also important to highlight that in all regions the
first lead MAE of the mean bias calibrated S4 forecasts (50th per-
centile) improves climatology in practically all months. However, this
correction seems to be more effective on temperatures and larger do-
mains suggesting that these variables are more affected by first order
biases and that these departures tend to arise more consistently on
larger regions. When looking to the dBSS of the lower and upper
terciles, though, these improvements are more restricted to winter
and some scattered months in other seasons.

Going more specifically, and still focusing in the first lead, in the Eu-
ropean domain all the variables are best forecast in winter (though
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June and July are also good months). In Spain, this is also the case
for precipitation and minimum temperature, where winter is the best
forecast period and August, July and June also show good perfor-
mance. For maximum temperatures, on the other hand, February,
June and October are the highest upgrade exponents. In Catalonia,
February and October are the months which show the best improve-
ments for the three variables. Besides, in the case of minimum tem-
perature, winter is also a good lead one forecast period. Finally, in the
Muga river basin we find that for precipitation the February-March
and October-November periods show the largest ameliorations. The
same months are found for minimum temperature only exchanging
November by January. Finally, for maximum temperature, the best
months are January-March, August and October-November.

The recurrent predictability of February and October in the Span-
ish Mediterranean is highly valuable because both are key months
regarding water management (ACA personal communication). Oc-
casionally, the results have also shown some ameliorations beyond
climatology at other leads. This is mostly perceptible in the smaller
domains, Catalonia and the Muga river basin, but it also happens
seldom in the larger ones. Yet, this predictability is not as system-
atic as the corresponding to lead one and, therefore, to discard the
possibility of being noise, it has to be independently studied case by
case (i. e. lead 6 maximum temperature forecasts for the Muga river
basin for March-May).

2. Seasonal forecast of water resources

The application of seasonal forecast to water resources has been based in the
construction of monthly multiple linear regression models (MLR) for the in-
flow, out-flow and volume anomalies in the Boadella reservoir. To build these
models we have identified the underlying physical relationships between our
predictands and the potential predictors to identify the models with the mini-
mum number of independent variables and the maximum explanatory power.
This initial phase, devoted to predictor choice, involved working with E-OBS
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data as well as in-flow and volume observations in an in-sample and perfect
prognosis scheme. Moreover, to avoid artificial skill due to any existing trends
all the predictors and predictands have been linearly de-trended previously.
As for the ordering of the best predictors to build our models we have con-
sidered different verification metrics: a) coefficient of determination b) Akaike
information criterion c) MAE d) RMSE and e) trend and autocorrelation of
the residuals.

Afterwards, we have proceeded to forecast the monthly anomalies with those
models for the period 1981-2010 (for each month of the year and up to
lead seven). To do so we have carried out a leave-one-out cross-validation
(LOOCV). Subsequently we have tested the aforementioned models with six
strategies: a) Climatology b) Persistence c) Antecedent observations + cli-
matology (A+Cl) d) Antecedent observations + S4 anomalies (A+S4) e) An-
tecedent observations + MOS-analog calibrated S4 anomalies (A+MOS) and
f) Antecedent observations + LR calibrated S4 anomalies (A+LR). The first
three approaches act as controls, and they comprise three approximations that
only use observations as input data; the other three combine both observa-
tions and S4 calibrated forecasts. The verification metrics chosen to depict
the results have been the mean absolute error (MAE), the coefficient of de-
termination (R2), the attributes diagram, the economic value curve (EV) and
the economic value area (EVA).

(a) Modelling of the Boadella reservoir in-flow, out-flow and
volume anomalies through a MLR procedure. The LOOCV
revealed that reservoir volume was the variable best described by the
MLR models, followed by in-flow and out-flow anomalies. In the case
of volume anomalies, the predictor with most explanatory power is
the accumulated in-flow anomaly observed in the preceding months
and/or for the same month. This is logical since the main driver
of the stored volume in a reservoir is its supplying river flow. This
is followed by antecedent accumulated rainfall anomalies (from an-
tecedent months and/or for the modelled month), which are related
to the groundwater state. Finally, we have maximum and minimum
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temperature predictors, proxies for evapotranspiration in the reser-
voir and the upper sub-basin. In the case of minimum temperature,
it also acts as proxy for winter snow amount.

Turning to in-flow anomalies the best predictors are rainfall anoma-
lies for the same predicted month or the accumulated anomalies for
the same month and the previous one. This is not surprising for the
river flow in this upper sub-basin has a rather linear response with
precipitation at a monthly scale. The influence detected in months
far away the same modelled month are probably due to the effect
of rainfall anomalies upon soil moisture, groundwater and their im-
pacts on the river flow. The second most influencing predictor at
in-flow level is the maximum temperature, indicative of the effects of
evapotranspiration on soil moisture and run-off. In fact, as the soil
becomes more (less) saturated, the response of the rainfall threshold
to produce run-off becomes smaller (greater) and, consequently, there
is an enhancement (decrease) of the linear relationship between rain-
fall and stream-flow. Finally, minimum temperatures act as a proxy
of the snow amount in winter and also as a less effective proxy of
evapotranspiration.

Finally, moving on to the out-flow models we can see that they are,
generally, the ones with the less number of predictors. That is because
in many months its modelling through a MLR has limited success and
the inclusion of further predictors does not increase the performance
of the model. This is consequence of the high level of human interven-
tion in its evolution, because not only it depends on meteorological
anomalies but also on other non-linear factors such as regulation pro-
tocols.

If we turn our attention to the best modelled months we will see
that they coincide with the maximum and the end of the irriga-
tion season (July-August-September) with volume and temperature
anomalies as main predictors. An hypothesis to explain June’s de-
creased predictability would be that this month’s outflow could be
more influenced by the human decision to set the beginning and in-
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tensity of the irrigation season. Conversely, in the center and final
months of summer the soil moisture conditions and irrigation needs
are more settled and human decisions would be mainly driven by an-
tecedent volume anomalies and evapotranspiration. Concerning the
other months, from October to May the main predictors are the ac-
cumulated rainfall, temperature and volume anomalies. During these
months the out-flow is determined by a combination of human and
meteorological factors, without anyone being clearly predominant.

(b) Evaluation of the seasonal predictability of the Boadella
reservoir predictand anomalies through several seasonal fore-
cast approaches. Volume is the best forecast variable with MAE
and EVA going beyond climatology up to lead four for the three cli-
matic categories (dry, normal and humid) and even reaching lead
seven from August to January. In winter, the best forecast configu-
ration is the Antecedent+S4/MOS (A+S4/MOS), an outcome that
resembles the results obtained in chapter 6. In the other months,
persistence and Antecedent+Clim (A+Clim) are the best forecast
systems up to lead four.

In-flow forecast amelioration is almost restricted to the first lead and
dry and humid conditions. There are also some enhancements at
other scattered leads and months but without following any clear
pattern. At first leads the antecedent information plays a determin-
ing role, with the A+Clim and persistence as the main sources of
predictability. At further leads the combinations of A+S4/MOS/LR
are the finest methods.

Finally, the out-flow anomalies display some contrasts between the
MAE and EVA results, an outcome that confirms the usefulness of
looking at data from distinct perspectives. This is specially evident
in November and December where there is no MAE amelioration and
we can find positive values of EVA for dry and humid conditions at
first lead (or even at lead six, in November’s reaching upper thirtile).
The other months show predictability for dry and humid conditions
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at the first lead and even at lead two. Persistence and A+Clim, are
the better approaches at this horizon. From August to October this
is also true almost up to lead seven and, in July, until lead three.
In the other months and leads the A+S4 and MOS are the forecast
systems which surpass climatology in the scattered occasions this
happens. Eventually, it is worth noting that the middle thirtile of
the climatology is the worst forecast category, probably due to the
small size of the ensemble.

(c) Performance comparison of the considered seasonal forecast
strategies against climatology. We have seen that our models al-
ready provide added value for each month of the year with a minimum
of four months in advance in the case of volume anomalies, but also
for in-flow and out-flow first leads, with the latter variable exhibiting
enhanced predictability at longer horizons for the months of higher
water demands (which can be very valuable for water-managers).
Therefore, there is the possibility to work on the construction of op-
erational frameworks to replace climatology for these variables and
horizons.

Besides, the determinant role of antecedent conditions in seasonal
predictability reinforces the idea of underlying physical mechanisms
that connect the chosen predictors with our predictands and, addi-
tionally, that the MLR is a good way to uncover them. Moreover, the
importance that persistence shows in many occasions points towards
the possibility to upgrade our models by including it in the MLR as
another possible predictor. As for the combination of antecedent ob-
servations with the mean bias corrected S4 and its calibrations, the
A+S4 along with the A+MOS are the preferred options when they
function best than the A+Clim and persistence (with a slight bias
towards the A+MOS).
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3. Seasonal forecast of forest fires

In this part we have explored the seasonal predictability of summer (JJAS)
wildfires in Catalonia developing a multiple linear regression model (MLR)
with antecedent and current-summer drought indices (standardised precipi-
tation index, SPI; and standardised precipitation evapotranspiration Index,
SPEI). We have tested three forecast systems based on a) ECMWF System-
4 (S4) b) persistence and c) climatology. These approaches are evaluated
through a leave-one-out cross-validation (LOOCV) over the period 1983–2012
(for each month of the year and up to lead seven). The verification metrics
chosen to depict our results have been the Pearson correlation coefficient, the
Relative Operating Characteristic curve (ROC) and the ROC area.

(a) MLR modelling of summer burned area in Catalonia tak-
ing into account antecedent and current year drought con-
ditions with the SPI/SPEI indices. We have developed a MLR
model that can successfully link current-summer (SPEI6) and an-
tecedent drought (SPEI27). This SPEI configuration responds to
the particular influence between drought conditions and Catalonia’s
Mediterranean ecosystem in which there is usually an abundance
of fine fuels that need relatively short periods to dry. In fact, in
Mediterranean-type environments drought acts influencing burned
area by controlling fuel flammability and structure. More specifi-
cally, present drought conditions can induce fine fuel drying whereas
antecedent climate could favour the filling of fuel gaps within the
landscape, resulting in an increased abundance and continuity of fuel
load. Thus, it is reasonable to expect that the approach presented
in this thesis could also be applied to other geographical areas with
similar characteristics to Catalonia’s.

(b) Performance of the MLR model under different seasonal
forecast configurations. We have observed that the probability
prediction of above/below-normal summer fire burned area with the
calibrated S4 forecasts has the same skill as climatology. Persistence,
on the other hand, can enhance climatological forecasts with May’s
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SPEI6. Therefore, persistence should be the choice to start building
an operational forecast structure to identify positive/negative burned
area anomalies. The lack of skill of the model when introducing the
S4 forecasts is a result that can be directly linked to the uncertainties
identified for leads beyond one and the particular misbehaviour of S4
for May’s maximum temperature at lead one in Catalonia (see section
6.3.3). The importance of lead one is clear when we see that persis-
tence shows the best results when computing May’s SPEI6. Hence,
it cannot be discarded that with another approach the S4 could offer
more valuable results.

9.2 Contributions to the field

The accomplishment of the objectives planned has lead to a number of original
results and methodological approaches that might contribute to the progression
of the seasonal forecasting field. This has been achieved, for instance, by means of
the evidences provided on the skill of the S4 on different domains, the impacts of
applying linear/non-linear calibrations on the S4 predictions or the utility found
in water reservoir and summer forest fire seasonal forecast applications. Besides,
the comprehensibility of our methodologies and the accessibility of the datasets
used eases the transferability of these strategies virtually to any part of the world.
More specifically we can detail these contributions as,

• Multi-scale S4 skill assessment in Europe from continental to lo-
cal domains. Up to this moment few studies have analysed the skill of
the S4 forecasts in Europe. Furthermore, to our knowledge there is no work
studying the skill at a monthly level for the whole year from a determinis-
tic and probabilistic perspective and ranging from continental to grid-point
domains. We have found that the majority of skill is focused in the first
lead. However, although the probabilistic assessment showed that the most
part of this skill was focused in the winter months, we have seen that deter-
ministic forecasts improved climatology and persistence controls also in the
majority of months and for all variables. Besides, this amelioration appears
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to be more effective on temperatures and bigger domains. This suggests
that first order model biases are more focused in temperatures and that
they arise more easily in larger regions due to their aggregated nature.

• Application of the MOS-analog method as a calibration strategy
for seasonal predictions. In the recent years the MOS-analog method has
been introduced as a post-processing tool for the calibration and downscal-
ing of climate change projections. However, its use in seasonal forecasting
is rather uncommon and we could not find any examples of its application,
particularly for Europe. With our implementation we put forward the po-
tential of this non-linear post-processing technique in the correction and
improvement of seasonal model output.

• Evaluation of the linear regression and MOS-analog calibration
performance with respect to mean bias correction in downscaling
at different scales. The reviewed studies consider that calibration post-
processing techniques add little skill to the original seasonal model output,
essentially correcting first order biases. In this thesis we have reached sim-
ilar conclusions but with an important difference for it seems that with the
MOS-analog some results hint the possibility to go beyond mean bias cor-
rection if the analog pool is sufficiently increased. Something similar might
arise with the linear regression calibration approach if working also with
an independent term. Since this behaviour seems to appear fundamentally
in the smaller domains this also highlights the importance of conducting
multi-scale analysis when evaluating the performance of post-processing
methods.

• Seasonal MLR model of monthly in-flow, out-flow and volume
anomalies with MLR procedure. We have performed a comprehensive
study of the possibility to model reservoir water-supply variables through
monthly MLR models. Although the MLR strategy has been applied thor-
oughly in hydrology we have not found any references in which the three
main reservoir’s water-supply variables (in-flow, volume and out-flow) had
been treated from an integrated MLR perspective. That is, in views of using
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the MLR model output of one variable as predictor information for another
predictand MLR forecast. Generally, the perfect prognosis approach re-
vealed that all three variables can be modelled through the MLR though
volume has been the most successful.

• Value of seasonal forecasts to foresee reservoir’s in-flow, out-flow
and volume monthly anomalies. We have extensively studied the per-
formance of our MLR model suite for every month of the year under six
seasonal forecast configurations considering that decision-makers use cli-
matology as the base predictive model. The results showed that volume
anomaly seasonal forecasts can begin the operational switch from clima-
tology to another forecast strategy. This is also true for some months in
the out-flow’s modelling. For the in-flow case, though, there is still further
research needed before reaching that sate but we think there is potential
in achieving it somewhere in the short-middle term. Besides, the nature of
the MLR relationships obtained makes us think that, specially for volume
anomalies, this behaviour might transcend the specificity of the Boadella
reservoir.

• Seasonal MLR model for summer fire burned in Catalonia. Our re-
sults suggest that by exploiting the relationships between summer burned
area and preceding drought conditions there is the possibility to develop
MLR models that can provide a preliminary seasonal estimate of the ex-
pected above/below-normal summer fire burned area in Mediterranean re-
gions such as Catalonia.

• Value of seasonal fire forecast with respect to climate change im-
pacts on forest fires. Understanding the link between the interannual
variability of drought and fires is important not only to better understand
fires and predict their change, but also to support the decision-making pro-
cess of policy-makers and civil protection agencies for fuel management and
resource allocation decisions. In fact, the ability to forecast the risk of fire
months in advance makes it possible to organize allocation of fire fight-
ing resources (e.g. fire fighters, equipment and aircraft) and target specific
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burning restrictions. For instance, seasonal forecasts may help to increase
preparedness in vulnerable areas such as wildland-urban interfaces and may
help to support decisions to reduce fuel load and continuity with prescribed
burning and fuel-breaks.
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CHAPTER 10

Prospects & Future work

The development of this thesis has risen some questions that require further
analysis and research, the extension of some datasets or that directly lie beyond
the original objectives for this work. In this chapter we will list some of these
matters, in the hope that we can progress in their resolution somewhere in the
future.

• Increase of the ensemble and hindcast size. We hope that with the
extension of the re-forecast the MOS-analog calibration technique could be
substantially improved. The probabilistic verification results would also
benefit by an enlargement of the ensemble size, to avoid the underrepresen-
tation of the centre ranks in the analysis. In this sense there are two ways
to proceed: either see whether we can increase our collaboration with the
ECMWF accessing to the operative or near-operative configuration of the
S4, or switch to another forecast system that fulfils our requirements.

• MOS-analog pool optimization expression. In the MOS-analog cal-
ibration we have found that for each region there is a certain number of
analogs that optimize the representativeness of each member of the analog
pool. In accordance with literature this means that a certain number of
historical analogs may suffice or not depending on the number of possible
situations that can arise on the studied region, that is to say, on the inher-
ent variability of the variable field map. This result may be used to derive
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an expression to relate the inherent variability of a region with the optimal
number of analogs needed to find similar monthly situations within an ar-
bitrary error band. Conversely, this could also serve to state the maximum
variability for which an analog pool is able to offer useful analogs.

• Check the impact of adding the independent term to the linear
regression calibration. Although we think that the influence should be
small it is our aim to effectively check this perception by comparing the
value of adding or not this term to the linear calibration procedure.

• Assess the skill and variability of the ensemble forecasts from
spatial and temporal perspectives through a Taylor diagram rep-
resentation. In chapter 6 we have rearranged the original ensemble in
accordance to percentiles (the so-called generalized ensemble, GE). When
representing it in a Taylor diagram along with the spatial climate correla-
tion we have hypothesised that we can distinguish whether our model can
go beyond spatial correlation by adding temporal skill. Besides, we think
that this representation can be used to evaluate the ensemble variability
with respect to the temporal and spatial variabilities observed. However,
since they are only preliminary results it is our goal for the near future to
state their theoretical basis and try to establish a clear protocol to apply
the approach in the aforementioned analysis.

• Reconsider the unification approach followed to issue a single fore-
cast from the ensemble. The unification strategy presented in section
6.2.3 showed a somewhat erratic behaviour, alternating good and bad re-
sults. Two reasons may explain this outcome. The first one is concerned
with the possibility that no specific percentile of the pdf gives better results
at each of the grid-points. The second is that the differences between the
discriminating parameter (Mean Absolute Error, MAE) among the can-
didate members are too small and the method cannot efficiently identify
the best option. One solution could be, either changing the discriminating
parameter or increasing the re-forecast sample. We plan to address this
question in a future study.
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• Change the process of predictor selection from total screening to
step-wise regression. In chapter 7 we have approached the best predictor
Multiple Linear Regression (MLR) search with a total screening process.
Further exploration showed the results obtained are very similar to those
coming from a step-wise regression but at a much less computational cost.
Thus, it is our aim to switch to this methodology as soon as we can.

• Evaluate the performance of the reservoir’s in-flow, out-flow and
volume anomaly MLR models with in-site meteorological predic-
tors. When in-flow and volume anomalies act as predictors the antecedent
observations are in-site observations instead of interpolated values from sta-
tions far apart. This means that, in case a linear relation between variables
and predictors existed, this will be clearer if the predictors are observations
taken in the reservoir rather than data coming from an interpolated grid-
ded dataset. The reason to use E-OBS instead of direct observations was to
search for a methodology that could be easily transferred into other regions.
Nevertheless, we plan to compare the results obtained in this thesis with the
outcome got when using values of rainfall, maximum and minimum temper-
atures observed at the reservoir instead of E-OBS values. Our hypothesis
is that the results found with E-OBS are a lower quality threshold and that
the use of observed values can only improve those results. However, this is
something that has still to be proven.

• Analyse the advantages and disadvantages of introducing persis-
tence as a predictor in the MLR models. The importance of per-
sistence in many occasions points towards the possibility to upgrade our
models by including it as another predictor when searching for the best
MLR models. This is specially the case for volume anomalies but it will
also be checked in the other two variables (in-flow and out-flow).

• Establish the robustness of setting 5% MAE and 0.10 Economic
Value Area (EVA) thresholds to consider enhancement beyond
climatology. In some cases there were values of the EVA between 0 and
0.10 and MAE, between 0 and 5% that arose when no other skill metric
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showed positive results. Since these values did not follow any recognizable
scheme nor a specific forecast system we attributed this to noise and estab-
lished EVA of 0.10 and a MAE of 5% as thresholds above which we could
determine more robust surpassing of climatology. Still, it could be the case
that for certain users the application of forecast systems different from cli-
matology might imply some advantages even when the skill demonstrated
in other metrics was little to non-existent. However, this is an hypothesis
that has to be specifically tested and will be a matter of future studies.

• Contact the Boadella reservoir’s water managers to examine the
possibility to tailor specific seasonal forecast solutions from the re-
sults obtained. We have seen that our MLR approach for the modelling
and forecast of reservoir’s main variable anomalies can have more skill than
climatology. Hence, there is the potential to start working with decision-
makers to develop better seasonal predictive frameworks ahead than the
customary use of climatology. For example, one possible approach could
be to look into the water guarantee curves just before the beginning of
the irrigation season and issue seasonal forecasts in order to provide water-
managers with different future projections for the available water amount.
Of course, after the beginning of the season this information would be still
useful to dynamically re-adapt management decisions, but having the infor-
mation before its onset would be very valuable for defining aspects such as
water pricing or to contract insurances against possible losses derived from
the advent of hypothetical drought restrictions.

• Explore the improvement of the fire-drought model by including
other predictors and the use of other calibrations. The empiri-
cal drought-fire model proposed here does not include a fraction of the
summer fire variance. Indeed, although our regression model indicates a
strong relationship to drought, there are other factors that might play an
important role in determining the burned area, such as soil moisture, pre-
existent biomass structure (that might depend on both natural factors as
well as on human activities), fire suppression or fire ignition characteriza-
tion. Therefore, it is our aim to inspect whether they can add skill in our
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model. Furthermore, we have only used S4 information calibrated through
a Quantile-Mapping (QM) procedure. In the future we will also explore the
possibility to build the Standardized Precipitation and Standardized Pre-
cipitation and Evapotranspiration (SPI/SPEI) indices with MOS-analog
and linear calibrated S4 forecasts. Therefore, a further improvement of
the modelling framework may be expected with the identification of new
physical processes and/or the better calibration of the model’s predictors.
With these enhancements, the prospects of a summer fire seasonal forecast
operational structure in cooperation with the fire prevention service of the
Generalitat de Catalunya would be closer.

• Extend these methodologies to other models, regions and fields.
The simplicity and scalability of these methods along with the positive re-
sults obtained commit ourselves to continue this line of research by trying
to expand these studies to other seasonal forecast models, different geo-
graphical domains and distinct disciplines. For instance, we have begun a
collaboration with EDF-DTG to implement the MLR modelling to study
seasonal forecast of the Montbrun’s stream-flow, in the Tarn’s river basin
(France) with preliminary results that are similar to those found in the
Boadella reservoir.
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