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di solennità. Oltre ad essere il punto finale della mia ricerca intorno ai buchi neri con rotazione,
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escèptic, per les discussions de f́ısica a les aules d’estudi i per haver lloat sempre els meus apunts.
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Gràcies als amigos, per compartir neguits, reflexions, il·lusions, idees i cançons, des de fa
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tutti questi anni.
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conèixer-te.

x



Grazie Vincenzo e Tiziana per avermi trattato come un amico da molto giovane, per avere

ispirato molte mie idee e per essere stati un punto di riferimento, soprattutto nella mia adolescenza.

Grazie zia Pupa, per le estati a Lavinio, insieme ai nonni, per avermi fatto amare i libri

e la lettura, per ”Il Signore degli Anelli” che alla fine non ho mai letto e per avermi regalato

”L’Antologia di Spoon River” nella primavera del 1994.
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a ser autónomo y a responsabilizarme de mis asuntos desde muy pequeño. Grazie papà per avermi
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Chapter 1

Resum de la tesi en català

Aquesta tesi s’emmarca en l’estudi de la gravetat, que, de les quatre interaccions fonamentals és

probablement la més evident en la nostra vida quotidiana. La relativitat general d’Einstein situa

l’origen i l’efecte del camp gravitatori en la pròpia estructura de l’espaitemps. Les seves equacions

relacionen un cert tensor constrüıt a partir de la mètrica de l’espaitemps amb el contingut d’energia

de la regió sota estudi. Aquesta teoria ofereix una descripció molt satisfactòria de gran part dels

fenòmens clàssics coneguts. En canvi, no és possible construir una versió quàntica de la relativitat

general que sigui renormalitzable, és a dir que sigui finita a qualsevol ordre de pertorbació.

Una de les solucions més caracteŕıstiques de les equacions d’Einstein són els forats negres:

objectes on la gravetat és tan intensa que fins i tot la llum queda atrapada dins del que s’anomena

horitzó d’esdeveniments. Un forat negre és el que Fermi hauria anomenat ”l’àtom d’hidrogen” de

la Relativitat General, és a dir, un sistema prou senzill per estudiar-lo anaĺıticament, però prou

complex per reflectir el caràcter no lineal de la teoria.

Un forat negre pot correspondre a l’estat final de l’evolució d’una estrella molt massiva. Segons

la relativitat general, un cop format, es manté igual per sempre, o, com a molt, segueix augmen-

tant la seva massa com a conseqüència de l’acreció de matèria externa. Tanmateix, la cosa canvia

si es considera una teoria semiclàssica en què es quatitzen camps en un espai temps corbat clàssic.

En aquest cas, un forat negre emet radiació tèrmica (radiació de Hawking) i la seva massa dismin-

ueix. Per tant, si els forats negres són objectes tèrmics, és possible assignar-los una temperatura

(temperatura de Hawking) i una entropia (entropia de Bekenstein-Hawking).

En general, l’entropia d’un sistema es pot interpretar estad́ısticament com una mesura del

nombre de microestats compatibles amb un estat macroscòpic. Per tant, una de les qüestions que

hauria de resoldre una teoria quàntica de la gravetat és l’origen microscòpic de l’entropia de forats

negres. Això s’ha aconseguit, per a determinades solucions, en el marc de la teoria de cordes.

En efecte, en el ĺımit de baixes energies d’aquesta teoria, es recuperen les equacions de super-

gravetat, generalització de la Relativitat General, que inclou també altres tipus de camps. Això

fa pensar que la teoria de cordes pot oferir una descripció quàntica satisfactòria de la gravetat.
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Aquesta és una de les motivacions per estudiar forats negres en D > 4, atès que la teoria de cordes

requereix la introducció de dimensions addicionals per a la seva consistència.

Determinades solucions de forat negre es poden relacionar amb estats pertorbatius de la teoria

de cordes. Normalment es tracta de forats negres carregats, per als quals és possible identificar

els estats de cordes corresponents. Aquests estats inclouen Dp-branes, objectes p-dimensionals

on se situen els extrems de les cordes obertes i que actuen com a font de les càrregues. Un cop

identificada la configuració de cordes, es poden comptar els estats microscòpics compatibles amb

les càrregues del forat negre i avaluar-ne aix́ı l’entropia.

Cal tenir present, que aquesta correspondència relaciona estats amb acoblament fort (forats

negres) i estats amb acoblament feble (estats pertorbatius de cordes). En principi, no hi ha cap

garantia que el nombre d’estats i altres magnituds f́ısiques es mantinguin constants en passar d’un

règim a l’altre. Existeixen però determinades solucions amb un alt grau de simetria, per a les

quals l’entropia no es renormalitza en passar d’acoblament feble a acoblament fort. Això passa,

per exemple, en els forats negres supersimètrics (BPS). En aquests casos, és possible reproduir

microscòpicament l’entropia de Bekenstein-Hawking.

Una de les limitacions del procediment anterior és que els forats negres realistes no tenen

càrrega. Aquest fet dificulta identificar els estats de cordes corresponents. Tanmateix, hi ha casos

com la solució extremal de Kerr en què l’entropia té una forma molt simple, que no depèn de la

constant d’acoblament, S = 2πJ . Això fa pensar que ha de ser possible reproduir-la exactament

mitjançant un comptatge d’estats microscòpics.

Un dels reptes actuals és, per tant, reproduir microscòpicament l’entropia de forats negres

neutres. El caṕıtol 3 de la tesi se situa precisament en aquesta ĺınia de recerca. En ell, considerem

forats negres de Kaluza-Klein (KK). Des del punt de vista 4-dimensional, aquestes solucions tenen

càrrega elèctrica i magnètica, però, en canvi, són neutres quan es puja a 5 dimensions.

Els forats negres de KK, es poden interpretar com a estats lligats de D0 i D6 branes, de la

teoria de cordes tipus IIA. A través d’una sèrie de dualitats no trivials podem mapejar aquests

estats a un sistema de 4 càrregues, on se sap com comptar el nombre de microestats. Aquest

procediment ja s’havia utilitzat prèviament per a un dels ĺımits extremals dels forats negres de

KK, el de rotació lenta. Nosaltres, estenem aquesta anàlisi a la solució extremal amb rotació

ràpida. Cal remarcar que aquest forat negre té una velocitat angular de l’horitzó diferent de

zero i, per tant, s’assembla més a la solució extremal de Kerr, que el de rotació lenta. Amb el

nostre estudi, aconseguim reproduir l’entropia de Bekenstein Hawking, però no la massa, atès que

aquesta queda renormalitzada en passar d’acoblament feble a acoblament fort.

Si en el forat negre de KK fem tendir el radi de la dimensió compacta a infinit (ĺımit de

descompactificació), recuperem la solució de Myers i Perry (MP), generalització del forat negre

de Kerr en D > 5. Aquest ĺımit ja s’havia obtingut prèviament per al cas extremal amb rotació

lenta, però nosaltres mostrem com realitzar-lo en el cas general. D’aquesta manera, comprovem

2



que el càlcul microscòpic reprodueix també l’entropia d’un forat negre de MP extremal qualsevol.

Quan treballem amb forats negres amb rotació, apareixen nous fenòmens, que ens poden ajudar

a entendre millor la teoria microscòpica. Aquest és el cas de la superradiància. En solucions en

què l’horitzó té una certa velocitat angular, ΩH , com ara en la de Kerr, el vector de killing

temporal pot esdevenir tipus espai en una certa regió que s’estén fora de l’horitzó. La superf́ıcie

que tanca aquesta regió rep el nom d’ergosfera. Es pot demostrar que en aquest cas, una ona que

impacti amb el forat negre pot sortir reflectida amb una energia superior a la inicial. Això només

passa per a modes amb moment angular, m, diferent de 0 i l’energia dels quals satisfaci la fita

ω < mΩH . Aquest mecanisme permet extreure simultàniament energia i moment angular d’un

forat negre.

La superradiància és un procés clàssic d’emissió estimulada, que, com hem vist, només es pot

produir en forats negres en què l’horitzó té una certa velocitat angular. Té associat un procés

anàleg d’emissió espontània, de caràcter quàntic, molt semblant a la radiació de Hawking. De

fet, en el cas general d’un forat negre rotant, l’emissió tèrmica i la superradiant són simplement

dos aspectes d’un mateix fenomen. En canvi, en forats negres extremals, amb T = 0, no hi ha

efectes tèrmics i l’única emissió possible és la superradiància. Aquest és el fet que motiva el nostre

interès per l’estudi microscòpic de forats negres extremals amb rotació, atès que poden ajudar a

entendre millor el fenomen de la superradiància i la naturalesa de l’ergosfera.

En els forats negres de KK tenim dos casos extremals amb moment angular: el de rotació lenta

i el de rotació ràpida. Només en el segon cas, l’horitzó té una certa velocitat angular i, per tant,

apareix el fenomen de la superradiància. La comparació dels estats microscòpics corresponents a

aquestes dues solucions ens permet explicar-ne la diferència de comportament.

Com hem dit abans, aquests forats negres corresponen microscòpicament a estats lligats de

D0 i D6 branes, que es poden relacionar mitjançant dualitats amb un sistema de 4 càrregues.

Aquest sistema es pot descriure amb una teoria de camps conforme supersimètrica (4,0)-SCFT,

amb dos sectors de quiralitat, dels quals només un és supersimètric. La radiació de Hawking es

pot entendre com l’emissió d’una corda tancada després de la col·lisió de dues excitacions amb

quiralitat oposada.

Podem utilitzar aquesta mateixa imatge per entendre la diferència qualitativa dels dos forats

negres extremals. En el cas de rotació lenta, només tenim excitacions en un dels dos sectors i, per

tant, no hi ha cap tipus d’emissió. En canvi, en el cas de rotació ràpida śı tenim els dos sectors

excitats i això explica la presència de superradiància. En aquest cas, el sector supersimètric consta

només d’excitacions fermiòniques que omplen un mar de Fermi. Això és el que provoca que la

temperatura global del sistema sigui nul·la. A més, aquestes excitacions són portadores d’una

càrrega de tipus SU(2), anomenada càrrega R. Això és el que proporciona el moment angular

al forat negre i el que explica el fet que la radiació emesa tingui necessàriament un cert moment

angular.
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En el caṕıtol 4 estudiem amb detall aquesta descripció microscòpica del fenomen de la su-

perradiància. Per fer-ho, resulta més convenient considerar els forats negres 5-dimensionals amb

3 càrregues D1-D5-P, amb moment angular. Aquests forats negres es poden descriure de forma

directe en termes d’una teoria de camps sobre una corda efectiva, sense necessitat d’aplicar cap

dualitat. A més, com hem dit abans, la superradiància només es produeix per a modes amb una

energia inferior a un cert valor. De cara a reproduir microscòpicament aquesta fita, és, doncs,

important que les energies no quedin renormalitzades en passar d’acoblament feble a acoblament

fort, com passava amb el sistema D0D6 extremal de rotació ràpida. En canvi, això no passa en

el sistema D1D5P, que té una geometria a prop de l’horitzó de tipus AdS3 (BTZ). La simetria

conforme d’aquesta geometria garanteix que les energies no es renormalitzin.

De nou, prenem en consideració dos tipus de solucions extremals amb moment angular: la

solució supersimètrica (BPS), que no presenta ergosfera i la solució extremal no supersimètrica

amb horitzó rotant, que śı en presenta. Ens referim a aquesta solució com a ergo-cold.

La dinàmica dels estats lligats de D1 i D5-branes es pot descriure amb una teoria de camps

conforme 1+1-dimensional al llarg de la seva direcció comuna. Aquesta teoria no és quiral, de

manera que conté dos sectors supersimètrics.

La solució BPS correspon a excitar només un d’aquests dos sectors. Les excitacions fermiòniques

són les que, una vegada més, proporcionen el moment angular. En no tenir els dos sectors poblats,

aquest forat negre no presenta cap mena d’emissió espontània. En canvi, la solució ergo-cold śı

que té els dos sectors excitats, però un d’ells només conté excitacions fermiòniques que omplen

un mar de Fermi. Per això, el forat negre corresponent śı presenta una ergosfera i pot emetre

radiació superradiant.

La situació és anàloga a la dels dos ĺımits extremals del sistema D0D6. En aquest cas però, es

pot realitzar un estudi més quantitatiu, que permet interpretar el fenomen de la superradiància

com una conseqüència de l’estad́ıstica de Fermi-Dirac. La fita superior de l’energia de les emissions

superradiants està relacionada amb el fet que les excitacions fermiòniques d’un dels sectors es

troben totes per sota del nivell de Fermi.

Després d’oferir una imatge senzilla i intüıtiva d’aquesta interpretació de la superradiància,

computem els ritmes d’emissió des de la solució de supergravetat corresponent al forat negre i des

de la teoria de camps conforme que descriu el règim pertorbatiu de teoria de cordes i en discutim

la concordància.

El treball contingut en aquesta tesi ha donat lloc a dues publicacions [1, 2].
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Chapter 2

Introduction

2.1 General relativity and black holes

Of the four fundamental interactions, gravity is without doubt the most evident in our everyday

lives. It is responsible for phenomena as apparently diverse as the weight of physical objects and

the tides on Earth or the movement of celestial bodies in space.

Even though it is the weakest of the four interactions, it is the dominant force on the largest

scale, due to the fact that, macroscopically speaking, matter is neutral with respect to the other

three forces, whereas Everything that has mass or energy experiences or generates gravity.

In secondary education, when students first study physics, they learn that all bodies fall with

the same acceleration. This property is explained by the fact that the magnitude that measures

the resistance of an object to being accelerated (inertial mass) and that which measures the

gravitational charge (gravitational mass) coincide:

G
mM

r2
= ma → a = G

M

r2
. (2.1.1)

The same idea forms the basis of Einstein’s equivalence principle, which can be stated in the

following way: [3, 4] The movement of a body subjected to a gravitational field is physically indis-

tinguishable to that of an accelerated body in flat spacetime.

This universal characteristic is what urged Einstein to transfer the properties of the gravita-

tional field to the structure of spacetime.

His theory of general relativity can be summarised in the following way:

1. Mass and energy are the characteristics of the physical system that allow gravity to be

generated and felt. That is to say, they are the gravitational charge

2. Gravity is a manifestation of the curvature of spacetime. Its structure tells matter how to

move
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3. The geometry of spacetime is not static. Mass and energy cause changes in its structure,

according to Einstein’s equations:

Gµν =
8πG

c4
Tµν , (2.1.2)

where Gµν is Einstein’s tensor, which depends on the geometry of the spacetime and Tµν is

the stress-energy tensor.

There is an important nuance to take into account. Not only matter and radiation have energy.

The curvature of spacetime also has energy, so that in a certain way it affects itself. This is

the root of the strongly non-lineal character of Einstein’s equations, which manifests itself, for

example, in the solutions of black holes.

There is a third aspect to gravity, which makes it especially interesting to study: its capricious

nature. The appearance of special relativity meant that everything that was known about physics

up to that point needed to be revised, in order to adapt it to the new theory. Electromagnetism,

formalized as Maxwell’s equations, was already compatible. In fact, it was inconsistencies between

these equations and Newtonian mechanics that motivated Einstein’s work. It was the theory of

gravity that needed to be rethought and it was this that gave birth to general relativity.

The other revolution in physics in the 20th century was quantum mechanics. This also trans-

formed the way in which known physical phenomena were interpreted. At the moment, electro-

magnetism, the weak interaction and the strong interaction all have a very satisfactory quantum

description within the framework of the Standard Model. However, we do not yet have a com-

plete quantum description of gravity. The quantum version of Einstein’s equations gives rise to

a non-renormalizable theory, which, therefore, is uncontrollable at high energies. As we shall see

later, string theory is one attempt to respond to this challenge.

Due to these reasons, this line of research promises to provide us with a better understanding

of how our universe works.

2.1.1 The Schwarzschild metric

Einstein’s equations provide us with a metric to describe the development of the universe on the

largest scale. They also predict the existence of gravitational waves, which have not yet been

detected. But some of the most evocative solutions obtained, not only for physicists, but also for

art, literature and cinema, are those which give rise to black holes. Black holes are what Fermi

would call the hydrogen atom of general relativity, that is to say, a problem sufficiently simple to

deal with analytically, but sufficiently complex to show the non-lineal character of the theory.

Beyond the images of science fiction, a black hole is an object of gravitational attraction so

intense that not even light can escape from it. In fact, even Newtonian physics can predict the

existence of something similar. From the law of universal gravitation, we can calculate the escape
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velocity :

ve =

√
2GM

r
, (2.1.3)

where M is the mass of the object and r is its radius.

This magnitude indicates with which minimum velocity we would have to launch a body from

the surface of that object so that it would be able to reach infinity, that is to say, so that it

could free itself of the gravitational field. If the object has a very large mass concentrated in a

very small radius, the escape velocity may be greater than the velocity of light. In this case, an

observer far from the object would not even be able to see it and we could say that we are dealing

with a kind of black hole, or more specifically, a black star. For this to happen, the radius must

be lower than a certain minimum value, which depends on the mass:

RS =
2GM

c2
. (2.1.4)

This radius goes by the name of the Schwarzschild radius and, as we shall see, it appears in the

context of the solution of Einstein’s equations that has the same name. However, black holes

which appear within the framework of general relativity have more exotic properties than these

black stars, as we shall see below.

Shortly after Einstein published his definitive formulation of general relativity, the German

physicist Karl Schwarzschild published the first exact vacuum solution to his equations (Tµν = 0)

[5]:

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (2.1.5)

where natural units have been used with G = c = 1 and M represents the total mass of the system

in these units.

Here we are dealing with a static solution with spherical symmetry, which serves to describe

the exterior of a star with these same properties. As can be seen, the metric diverges when

r = 2M and when r = 0.

In general relativity, when a metric diverges it can be for two different reasons. The first is

when some invariant (scalar) built upon Riemann’s tensor, such as Ricci’s scalar or Riemann’s

tensor squared, also diverges. In this case, we are dealing with a singularity of curvature, which

needs new physics to be understood. If the curvature is finite, then the singularity of the metric is

a product of an inappropriate choice of coordinates, which can be resolved by changing to another

system. In the case of Schwarzchild’s solution, the curvature only diverges at r = 0.

As such, we can choose a coordinate system so that the metric does not diverge at r = 2M .

In doing so, another fact is observed [6]: in the region r < 2M , photons that should move radially

outward, actually move to decreasing values of r. This indicates that even light remains trapped

inside the surface r = 2M , which goes by the name of the event horizon. This is what allows us

to interpret Schwarzschild’s solution as a black hole.
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Actually, in ordinary stars, the horizon would be located within their interior, where this

metric is not valid as this region is not a vacuum. However, during collapse, very massive stars

can reduce their radius to a value which is practically zero. There is therefore a moment when

all of the matter becomes concentrated within the horizon and we can say that a black hole has

formed.

If we return to SI units, we can see that the radius of the horizon is r = 2GM/c2, that

is the Schwarzschild radius that we have already found in the classical context (2.1.4). The

interpretation now is considerably different. In the Newtonian case, we had objects which were

incapable of escaping to infinity. In the context of general relativity light cannot even cross the

horizon, and so there is no longer a causal relationship between the interior and the exterior.

What happens inside cannot influence what happens outside.

The star will continue collapsing until it is completely concentrated at the centre of the hole,

r = 0, where, as we have said, Schwarzschild’s solution diverges. This is a sign that a new theory

is needed to understand what is really happening in this singularity. In the context of general

relativity, from now on, the black hole will remain the same forever, at least not decreasing in

size, and possibly growing due to accretion of external matter.

Things change when we take into account quantum effects. Previously we said that general

relativity cannot be quantized in a consistent way in all energy ranges, but quantum theories can

be studied in a classical gravitational environment. Stephen Hawking discovered [7] that when

quantum effects are taken into account near a black hole, certain phenomena appear which are

prohibited from a classical point of view. In particular, black holes emit black-body radiation.

This behaviour allows us to associate a temperature to them

T =
~κ
2π
, (2.1.6)

where, κ is a property of the event horizon, known as surface gravity.

Likewise, Jacob D. Bekenstein argued [8] that a black hole can also be assigned an entropy,

which depends on the area of the horizon AH = 4πR2
s

S =
AH
4G~

. (2.1.7)

It can be shown [9] that with these properties, black holes are consistent with the zeroth law, the

first law and the second law of thermodynamics.

However, if we assign an entropy to black holes, we need to be able to interpret this in terms

of the degeneration of microstates. This is one of the problems that a quantum description of

gravity needs to face.

2.1.2 Charged black holes

A black hole can have an electric or magnetic charge. If so, it couples both to the gravitational field

and to the electromagnetic field. In this case, we have to consider the following Einstein-Maxwell
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equations that describe an electromagnetic field in curved space:

Gµν = 8π

(
FµρF

ρ
ν −

1

4
gµνF

2

)
, (2.1.8)

∂µ
(√
−gFµν

)
= 0. (2.1.9)

The term on the right in the first set of equations is the energy-momentum tensor of the electro-

magnetic field. The second set consists of Maxwell’s equations in curved spacetime.

The static black hole solution corresponding to these equations was found by Reissner and

Nordström [10] and has the following form:

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dΩ2, (2.1.10)

where M is still the mass and the parameter Q is the charge. The components of the tensor Fµν

that do not vanish depend on whether the charge is electric or magnetic.

For weak fields, we have

−gtt ' 1 + 2ΦN , (2.1.11)

where ΦN is the Newtonian potential. We can then see that the electromagnetic field produces a

gravitational repulsion, as shown by the term +Q2/r2. This is not an effect of the electromagnetic

interaction, since it forms part of the metric, and, hence, also acts on neutral particles.

Again, the curvature diverges only at r = 0, which corresponds to a singularity. As we are

dealing with a static metric, in order to detect the presence of horizons, we can search for the

zeros of gtt

gtt = 0 ⇒ r = r± = M ±
√
M2 −Q2. (2.1.12)

Depending on the relationship between the parameters M and Q, we can distinguish three

cases:

• M < |Q|: There is no horizon and r = 0 is a naked singularity.

• M > |Q|: There are two horizons: the inner horizon at r = r− and the outer horizon at

r = r+.

• M = |Q|: This is the extreme limit of the previous case. It represents the maximum charge

that a black hole of mass M can have. In this case, r+ = r− and so the spacetime has only

one degenerate horizon. The metric can be written in the following way:

ds2 = −
(

1− Q

r

)2

dt2 +

(
1− Q

r

)−2

dr2 + r2dΩ2. (2.1.13)

All points with r > r+ are at an infinite proper distance from the external event horizon.

However, timelike trajectories may reach this horizon in a finite time and null trajectories

in a finite affine parameter.
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It is convenient to change coordinates: ρ = r −Q, so that the solution (2.1.13) becomes:

ds2 = − 1

H2
dt2 +H2(dρ2 + ρ2dΩ), (2.1.14)

where

H = 1 +
Q

ρ
. (2.1.15)

With these new coordinates, the horizon is found at ρ = 0 which is not a point since it

corresponds to the sphere r = Q with the singularity found at ρ = −Q. The spacetime

described by this solution is asymptotically flat. It can be shown that the near-horizon

metric is:

ds2 = Q2

[
−ρ̃2dt̃2 +

dρ̃2

ρ̃2
+ dΩ2

]
, (2.1.16)

where t = Q̃2/ε, ρ = ερ̃ and ε→ 0.

As we can see, this geometry is the product of a 2-sphere, S2, and bi-dimensional space of

negative constant curvature AdS2.

2.1.3 Rotating black holes

Macroscopic black holes that we can find in our universe must rotate. The generalization of the

Schwarzschild solution, with non-vanishing angular momentum, is Kerr’s solution [11]:

ds2 = −
(

1− 2Mr

Σ

)
dt2 − 4Mar sin2 θ

Σ
dtdφ+

Σ

∆
dr2 + Σdθ2

+

[
(r2 + a2)2 −∆a2 sin2 θ

Σ

]
sin2 θdφ2, (2.1.17)

where

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2. (2.1.18)

M is the mass, while the parameter a is related to the angular momentum J = Ma. In the case

of a = 0, we recover Schwarzschild’s solution.

One important difference between this solution and the previous solutions is that crossed terms

are present, gtφ 6= 0. This reflects the fact that this is a rotating spacetime and means that a

local observer at rest will have a certain angular velocity from the point of view of an observer

situated at infinity.

The components of the metric diverge when Σ = 0 or when ∆ = 0. Only in the first case, do

we have a curvature singularity, which can be found at r = 0 and θ = 0. An appropriate choice

of coordinates shows that this singularity has the form of a ring.

Analogous to the Reissner-Nordström case, ∆ = 0 is a singularity associated with choice of

coordinates. The function ∆ vanishes when r = r± = M ±
√
M2 − a2. Again, we can distinguish

three cases:
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• M < |a|: There are no horizons, the ring singularity is null and there are closed timelike

curves at all points in space.

• M < |a|: There is an inner horizon at r− and an outer horizon at r+, which hides the

singularity in its interior.

• M = |a|: The angular momentum is J = M2, which is the maximum that a black hole of

mass M can have. The two horizons coincide at r = M .

2.1.4 Ergosphere and superradiance

The Kerr solution with M ≥ a, shows a new feature outside the black hole. The vector ∂/∂t

becomes spacelike when r2 − 2Mr + a2 cos2 θ < 0. This region is outside of the external horizon

and is enclosed by a surface known as ergosphere. In this region, all observers are dragged by the

rotation of spacetime, not only those that are locally at rest.

The Killing vector that becomes null over the external horizon is:

χµ = (∂/∂t)µ + ΩH(∂/∂φ)µ, (2.1.19)

where ΩH = a/2Mr+ is the angular velocity of the horizon.

Penrose showed [12] that energy can be extracted from a rotating black hole, due to the

presence of the ergosphere. Qualitatively the idea is as follows. Suppose that a particle found

inside the ergosphere has a certain energy E. If it decays into two particles, the energy will be

conserved E = E(1) +E(2). Suppose as well that one of these particles falls towards the black hole

and crosses the horizon and the other moves off towards infinity. Since the Killing vector ∂/∂t

becomes spacelike inside the ergosphere, in this region there are geodesics with negative energy. If

the particle that crosses the horizon has negative energy, the particle that moves outwards must

have a higher energy than the original particle: E(2) > E. The extra energy must be extracted

from the black hole, so that its mass and angular momentum are reduced.

The same process takes place in the case of field scattering [13, 14]. We can consider, for

example, a scalar field. Due to the symmetries of the Kerr metric, this field will have the form

φ = f(r, θ)e−iωteimφ. Let us consider the conserved current

Jµ = i(φ∗∇µφ− φ∇µφ∗). (2.1.20)

Its flux through the horizon is

Jµχ
µ = (ω −mΩH)|φ|2, (2.1.21)

where χµ is the Killing vector tangential to the horizon, defined in (2.1.19). This flux is negative

for modes that satisfy

ω < mΩH . (2.1.22)
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Therefore all these modes are reflected with a greater energy than the incident energy and so

have extracted energy from the black hole. This phenomenon goes by the name of superradiance.

It is worth noting that, unlike Hawking radiation, this process is completely classical and only

requires that the horizon of the black hole has a certain angular velocity.

2.2 Extra dimensions

There are several reasons for studying general relativity and its black holes in more than four

dimensions. The first has to do with the fact that general relativity appears as a low energy limit

when studying string theory and this theory requires the introduction of additional dimensions in

order to be consistent.

A second reason is that gravitational models predict extra dimensions on the TeV scale and

this may open the possibility of detecting small black holes in future particle accelerators. These

black holes would occupy more than four dimensions. However, at the moment, results from the

LHC would appear to discard this possibility.

There is a third more ambitious reason. General relativity may have applications beyond

astrophysics or cosmology. It can be considerad a widely applicable theoretical tool, such as

quantum field theory. Indeed, there are a some strongly coupled non-gravitational systems, which

allow a semiclassical description with diffeomorphism invariance, and which can be studied with

the aid of general relativity or its generalisations. We are talking of the whole spectrum of

correspondences of the type AdS/CFT according to which certain gravitational objects can be

related through dualities to excitations of a conformal field theory that lives at the spacetime

boundary. In this context black holes with more than four dimensions often appear.

2.2.1 Black holes in D > 4

The generalisation of Schwarzschild’s solution in greater dimensions, known as the Schwarzschild-

Tangherlini solution, is easy to obtain [15]. Only decay rate of the components of the metric needs

to be modified:

ds2 = −
(

1− µ

rn

)
dt2 +

dr2

1− µ
rn

+ r2dΩn+1, (2.2.23)

where n = D − 3 and dΩn+1 is the differential of the solid angle in n + 1 dimensions. The

parameter µ is proportional to the mass and determines the solution in a unique way. This black

hole has a horizon at r = r0 ≡ µ1/n, which has the topology of an (n + 1)-sphere. This means

that qualitatively there is little new with respect to the case of D = 4.

When we consider rotating black holes, things change significantly. In 1986 Myers and Perry

[16] found a generalisation of the Kerr metric which describes rotating black holes in any dimension

12



D > 4. The explicit form of this solution for D = 5 is:

ds2 = −dt2 +
µ

Σ

(
dt− a sin2 θdψ − b cos2 θdφ

)2
+ Σ

(
dρ2

∆
+ dθ2

)
+(ρ2 + a2) sin2 θdψ2 + (ρ2 + b2) cos2 θdφ2, (2.2.24)

with

Σ = ρ2 + a2 cos2 θ + b2 sin2 θ (2.2.25)

∆ =
(ρ2 + a2)(ρ2 + b2)− µρ2

ρ2
. (2.2.26)

The parameter µ is again related to the mass and a and b to the angular momenta J1 and

J2. As we can see, in this case, the black hole can rotate in two independent planes. In general,

the Myers and Perry solution takes into account the fact that in D dimensions rotations in [D−1
2 ]

different planes can be produced. The horizon of these black holes also takes the shape of a sphere.

Surprisingly, there are many other black holes in D ≥ 5 that are vacuum (neutral) solutions

to Einstein’s equations. In 2001, Emparan and Reall found a solution for a black ring in five

dimensions [17], the first example of a non-spherical asymptotically flat black hole, since in this

case, the topology is S2 × S1.

The appearance of this new solution also demonstrated that the no hair theorem is not verified

in greater dimensions. In four dimensions, once the mass M and the angular momentum J have

been specified there is only one compatible vacuum asymptotically flat black hole which is the

Kerr black hole. However, in five dimensions, for a certain range of parameters, there are two

different black rings and a Myers and Perry black hole with the same values of M and J . Later,

many other five-dimensional solutions appeared (black saturns, black rings with two independent

rotations, etc.) [18]

In D ≥ 6, the number of topologies of black holes is expected to increase. Even though

there are not yet analytical solutions that describe these objects, there does exist a formalism for

constructing them in an approximate way known as blackfold approach. [19]

In D > 4 black objects with non-compact topologies can also be constructed. We only need

to take into account that the direct product of two Ricci flat metrics is Ricci flat too. We can,

therefore, construct solutions adding an arbitrary number of plane dimensions to Schwarzschild’s

solution:

ds2
(D) = ds2(Schw(D−p)) + dx2

(p). (2.2.27)

This solution is called a neutral black p-brane and the topology of its horizon is:

SD−p−2 × Rp. (2.2.28)

For instance, in five dimensions, we can construct a black string, adding a plane dimension to a

Schwarzschild four-dimensional black hole.

ds2
(5) = ds2(Schw(4)) + dy2. (2.2.29)
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Often, for example in the context of string theory, extra dimensions are considered to be

compact. In the previous example this is equivalent to identifying y ∼ y + 2πR. Then the

topology of the horizon becomes S2 × S1. The difference with respect to the solution for a black

ring is that in that case, we would have a horizon with exactly the same topology, but located in

a five dimensional asymptotically flat spacetime, whereas we now have a black string wrapping

one of the dimensions, which is compact.

2.2.2 Kaluza-Klein theory

Another reason for introducing additional dimensions is to try to describe different types of

interactions in a unified manner. Let us consider for example a D = 5 spacetime where one

of the dimensions, y, is rolled into a circle of radius r5, that is, a space time with a topology

asymptotically R4 × S1. This is what is known as Kaluza-Klein theory. [20]

If the metric does not depend on the coordinate y, it can be interpreted as a four-dimensional

spacetime, coupled to an electromagnetic field and a scalar field. To look at it in detail, we start

with a five-dimensional metric of the form:

ds2 = e−4φ/
√

3(dy + 2Aµdx
µ)2 + e2φ/

√
3gµνdx

µdxν . (2.2.30)

If we introduce this ansatz to the Einstein-Hilbert action in five dimensions and integrate the

compact coordinate, we obtain and effective action in four dimensions with additional non-

gravitational terms.

S =
1

16πG5

∫
dyd4x

√
−5g 5R

=
1

16πG4

∫
d4x
√
−g
[
R− 2(∇φ)2 − e−2

√
3φF 2

]
, (2.2.31)

where Fµν = 2∇[µAν] and G4 = G5/2πr5.

Therefore, the terms Aµ and φ of the metric (2.2.30) can be interpreted respectively as an

electromagnetic vector potential and a scalar field, from a four-dimensional point of view.

The simplest black hole solution in this theory is the black string described by (2.2.29). In this

case, the electromagnetic and scalar fields in D = 4 are null and we come back to a Schwarzschild

black hole.

But starting from this metric, there is a simple way of generating new charged solutions [21].

If we apply a boost throughout the compact dimension, the crossed component gty will appear,

which gives rise to the gauge field in four dimensions. This suggests that we can interpret the

momentum along the y coordinate as an electric charge from a four-dimensional point of view.

In more detail, under the transformation

t = t̃ coshα− ỹ sinhα,

y = ỹ coshα− t̃ sinhα, (2.2.32)
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the solution (2.2.29) becomes

ds2
(5) = −

(
1− 2m cosh2 α

r

)
dt̃2 +

(
1 +

2m sinh2 α

r

)
dỹ2

−4m coshα sinhα

r
dt̃ dỹ +

(
1− 2m

r

)−1

dr2 + r2dΩ2. (2.2.33)

If we reorganise the components to give this metric the form (2.2.30), we obtain the fields in

the effective description of D = 4:

e−4φ/
√

3 = 1 +
q

r
, (2.2.34)

At = −
√
q(q + 2m)

2(r + q)
, (2.2.35)

ds2
(4) = −f(r)dt2 +

dr2

f(r)
+R(r)2dΩ2, (2.2.36)

with

f(r) =
r − 2m

[r2 + qr]1/2
, R2(r) = r[r2 + qr]1/2, (2.2.37)

where we have introduced the parameter q = 2m sinh2 α and simplified the notation by removing

the tildes.

The vector potential (2.2.35), indicates that the solution is electrically charged. It is not the

Reissner-Nordström solution (2.1.10) though, since in this case a scalar field also appears in the

theory. In fact, the horizon is still found at r = 2m and the singularity at r = 0 as in the case of

the Schwarzschild solution.

The mass and charge of this black hole is:

G4M =
q

4
+m, Q2 =

q(q + 2m)

4
. (2.2.38)

When q = 0 the charge disappears and we come back to Schwarzschild’s solution, while in the

limit α→∞, m→ 0, with q fixed, we obtain the extremal Q = 2G4M case.

From the electric solution, we can obtain a magnetic solution applying a duality transformation

over the electromagnetic field of the type:

∗Fµν =
1

2
e−2
√

3φε ρσ
µν Fρσ. (2.2.39)

The equations of motion that are derived from the action (2.2.31) are invariant under the

simultaneous transformation F → ∗F , φ→ −φ. Therefore, the four-dimensional metric (2.2.36)

also serves to describe a black hole with magnetic charge.
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To emphasise the change from electric charge to magnetic charge, we change the parameter q

to p, that is, now, p = 2m sinh2 α. The magnetic charge is then:

P =
p(p+ 2m)

4
, (2.2.40)

and the new non-gravitational fields can be described as:

e4φ/
√

3 = 1 +
p+ 2m

r
, (2.2.41)

Aφ = P (1− cos θ). (2.2.42)

Now, we can return to the description in D = 5 and analyse what type of solution we are

dealing with. Remembering that the five-dimensional metric must take the form (2.2.30),we

obtain:

ds2
(5) =

(
1 +

p

r

)−1
[dy + 2P (1− cos θ)dφ]2

−
(

1− 2m

r

)
dt2 +

(
1 + p

r

)(
1− 2m

r

)dr2 + r2
(

1 +
p

r

)
dΩ2. (2.2.43)

This spacetime still has a horizon at r = 2m and a singularity at r = 0. As we can see, there

now appear crossed terms y − φ. In order to understand the meaning of these components, we

will consider the extremal case α→∞, m→ 0, with p fixed.

ds2
(5) =

(
1 +

p

r

)−1
[dy + 2P (1− cos θ)dφ]2 − dt2 +

(
1 +

p

r

)
dr2 + r2

(
1 +

p

r

)
dΩ2, (2.2.44)

where now P = p2/4.

In this case, the horizon disappears and we apparently have a naked singularity at r = 0.

However, if we introduce the new coordinates:

χ ≡ y/2P, ρ ≡ 2
√
pr, (2.2.45)

close to r = 0, the spatial part of (2.2.44) can be written as:

dρ2 +
ρ2

4

{
[dχ+ (1− cosθ)dφ]2 + dθ2 + sin2 θdφ2

}
. (2.2.46)

If the period of χ is 4π, the part between square brackets, corresponds to a 3-sphere, expressed

as a Hopf bundle. Therefore, the metric (2.2.44) is regular at ρ = 0 or r = 0 if the compact

dimension y as a period equal to 8πP . That is to say, the four-dimensional magnetic charge P

fixes the period of the Kaluza-Klein circle. This choice is also necessary to avoid the appearance

of Dirac strings.

The solution (2.2.44) goes by the name of Kaluza-Klein monopole [22]. Its spatial part corre-

sponds to the self-dual Euclidean Taub-Nut geometry, which is characterised by behaving like R4
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close to r = 0 and as R3×S1 close to infinity. [23] The magnetic charge, P , identifies with the nut

N charge and defines the class of the solution, fixing the periodicity of the compact dimension

y ∼ y + 8πN .

It is worth stating that in the extremal case, the four-dimensional solution (2.2.36) is singular.

However, we have seen that the corresponding five-dimensional solution can be regular. This is

an example of how the introduction of extra dimensions can help to resolve singularities.

2.3 Black holes and string theory

String theory is often presented as a quantum theory of gravity [24,25]. There are many reasons

why this is so.

The first reason is that in the fundamental state of the spectrum of closed strings, a mode

without mass and with spin 2 appears, which is interpreted as graviton. In the second place, in the

limit of low energies of string theory, supergravity is obtained, a generalisation of general relativity

which incorporates other types of fields. Therefore, string theory should serve for understanding

some of the open questions concerning black holes, such as the statistical origin of their entropy.

And, in fact, it is in this area that string theory has achieved its most important success.

Supergravity solutions exist that represent charged black holes, which can be related to cer-

tain string configurations [26]. In the perturbation regime it is possible to count the number of

microstates that are compatible with the charges of the system and reproduce in this way the

entropy of the corresponding black holes [27].

This procedure raises a difficulty: black holes appear in the strongly coupled regime, while

the perturbation treatment consists precisely of considering the string coupling constant gs, to

be small. It is not clear that, in passing from one regime to the other, the physical magnitudes

do not get renormalized. In other words, in general, there is no guarantee that the number of

microstates counted in the perturbation calculation coincides with the number of microstates of

the black hole.

There do exist though certain solutions with a high amount of symmetry, where physical

magnitudes, such as entropy, do not depend on the coupling constant. This is the case of su-

persymmetric solutions (BPS) and other extremal solutions, in which the Hawking temperature

is null, but which nevertheless, have a horizon of finite area. In these cases we can be sure that

microscopic counting reproduces the macroscopic entropy [28].

2.3.1 The D1-D5-P system

We can see how this procedure works in a specific example. Consider the D1-D5-P black hole,

which is solution of type IIB supergravity in five-dimensions. The supersymmetric case (BPS)
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has the following form [26]:

ds2
(5) = − 1

(H1H5Hp)2/3
dt2 + (H1H5Hp)

2/3(dr2 + r2dΩ(3)), (2.3.47)

where

Hi = 1 +
qi
r2
. (2.3.48)

This black hole has three charges, corresponding to 3 U(1) gauge fields, which are proportional

respectively to the parameters qi. It has a very similar structure to the extremal Reissner and

Nordström black hole (2.1.14). The horizon is found at r = 0 and it has an area of

AH = 2π2√q1q5qp. (2.3.49)

Therefore, the Bekenstein-Hawking entropy is

SBH =
AH
4G5

=
π2

2G5

√
q1q5qp. (2.3.50)

The solution (2.3.47) can be converted into a black string type solution, if we add an extra

dimensions compactified along a circle, z ∼ z + 2πR in an analogous way to the case of (2.2.29)

ds2
(6) =

Hp

H
3/4
1 H

1/4
5

(dz + (1−H−1
p )dt)2 − 1

HpH
3/4
1 H

1/4
5

dt2

H
1/4
1 H

3/4
5 (dr2 + r2dΩ(3)). (2.3.51)

In this case, we are not dealing with a static solution, as there are crossed terms. The string

has momentum throughout the compact dimension. Inspecting the term gtz, we can see that this

momentum is proportional to the parameter qp, that is to say, that from a five-dimensional point

of view it is interpreted as a charge associated with a gauge field U(1), becoming momentum

when we move up to 6 dimensions, as is usual in Kaluza-Klein type theories (Section 2.2.2).

The entropy is in this case

SBH =
Astring
H

4G6
. (2.3.52)

If we take into account the relationship G6 = 2πRG5, we can see that this coincides with the

five-dimensional case

SBH =
A(5)
H · 2πR

4 · 2πRG5
=
A(5)
H

4G5
. (2.3.53)

Moving from the black hole in 5D to the black string in 6D shows that the momentum P in

the direction of the string has to be quantised in units of the radius of the compact dimension R.

Taking into account that this momentum is related to the parameter qp, allows us to obtain the

following quantisation rule:

qp =
4G5

π
P =

4G5

π

Np

R
, (2.3.54)
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where Np is the whole number of units of momentum.

The three charges can be interchanged, through duality transformations. Therefore, it can be

shown in an analogous way that the charges q1 and q5 are also quantised:

q1,5 =

√
4G5R

π
N1,5. (2.3.55)

If we substitute the quantisation rules (2.3.54) and (2.3.55) into the entropy expression (2.3.50),

we get:

SBH = 2π
√
N1N5Np. (2.3.56)

It is important to notice that neither the gravitational constant nor the radius of the string

nor any other continuous parameter appears in this expression. This is what guarantees that the

entropy does not change with G.

We can imagine starting with this black hole and reducing the strength of the coupling con-

stant, without varying Ni. Consequently, the radius of the horizon also decreases until it becomes

smaller than the length of the string. At this point, the system is more accurately described as a

perturbative state of string theory. In order to know exactly what state we are dealing with, we

need to look for states that have the same charges.

In string theory, the charged objects which source gauge fields in the supergravity solution are

Dp-branes, p-dimensional objects upon which open strings can end.

In the case of the (2.3.47) black hole the microscopic perturbative description consists of a

bound state of N5 D5-branes and N1 D1-branes sharing a common direction. Throughout this

direction there is a net momentum Np/R, corresponding to the movement of the excitations of

the open strings that end on the branes.

It can be shown that this system is equivalent to an effective string of radius Ref = N1N5R

over which bosonic and fermionic excitations can travel [29]. These supply the momentum and

energy and can be described by 1+1-dimensional field theory. If we consider that these oscillations

follow a thermal distribution, a statistical calculation allows us to reproduce the entropy of the

black hole (2.3.56). [27]

At this point, a few things need to be cleared up. The BPS solution corresponds to a funda-

mental state of zero temperature. How is it possible, then, that we can describe it in terms of

thermal excitations? The key point is that the string excitations can have two opposite chiralities.

Supposing that we have a non-BPS state, with two chiral sectors thermally excited, with

temperatures of TL,R. If we assume that there is very little interaction between them, we have

S = SL + SR, E = PL + PR and P = PL − PR, where PL,R = NL,R/R. Given that T−1
L,R =

(∂SL,R/∂PL,R) = 2(∂SL,R/∂E)P then, the total temperature, which verifies T−1 = (∂S/∂E)P

can be expressed as

T−1 =
1

2
(T−1
L + T−1

R ). (2.3.57)
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Therefore, if one of the two sectors is not thermally excited (TL = 0 or TR = 0), the total

temperature will be zero, but the entropy will not vanish. This is the case of the BPS solution.

The interpretation in terms of two sectors also gives a microscopic explanation for Hawking

radiation. In a non-extremal system, two excitations travelling in opposite directions may collide

and emit a closed string towards the exterior. Obviously, in systems that only have one of the

two sectors excited, this process is not possible.

To close this section, we need to add that rotating black holes can also be described using this

model. The rotation is then provided by the R charge carried by fermionic oscillations.

2.3.2 Dualities

The reproduction of the black hole entropy from string theory has a limitation: the types of black

holes to which it can be applied are very different from the simpler and more realistic Schwarzschild

and Kerr solutions. The black hole (2.3.47) has three charges and is supersymmetric. As we have

seen, the charges help to identify the corresponding microscopic state and the supersymmetry

guarantees that the number of microstates does not change when modifying the strength of the

coupling.

There are ways of overcoming these limitations. One of these is to reduce or increase dimen-

sions: charged black holes in a certain dimensionality, can become neutral when they are uplifted

to higher dimensions. We have already seen, that the charge P in (2.3.47) becomes momentum

when we move to D = 6.

Another strategy consists in applying a series of duality transformations that allow us to map

solutions between different string theories [25].

• The T duality consists in changing the radius of compactification R for its inverse 1/R.

In this way, momentum in the compactified direction becomes winding number, and vice

versa. This allows us to relate, for example, solutions in theories IIA and IIB.

• The S duality relates strongly coupled solutions with weakly coupled solutions, by the sub-

stitution g → 1/g. In particular, theory IIB is self-dual with respect to this transformation.

Therefore, S duality allows us to relate different solutions of this same theory.

• The U duality can be considered as a larger group of dualities that combine the previous

two dualities.

2.4 Structure of the thesis

The main objective of this thesis is to understand from a microscopic point of view some of the

characteristic phenomena of rotating black holes.
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We will concentrate on extremal rotating black holes that are not supersymmetric. These

kinds of solutions are the most appropriate for our purpose. Unlike supersymmetric black holes

they have an ergosphere and so they can produce superradiance. However, given that they have

zero temperature this phenomenon does not get mixed with Hawking radiation of purely thermal

origin. At the same time, these extremal geometries also conserve the number of microstates

passing from strong coupling to weak coupling.

The first part of the thesis focuses on the microscopic study of the entropy of rotating Kaluza-

Klein black holes. This family of solutions gives two extremal limits: slowly rotating and fastly

rotating. In [30] the entropy has already been reproduced in the first case. Here, we will extend

this calculation to the fastly rotating extremal limit. At the same time, we will show how the

phenomenon of superradiance can be explained in an analogous way to Hawking radiation, as the

collision of two excitations, giving rise to the emission of a closed string, which in this case carries

an angular momentum.

In the second part, we will focus on this microscopic interpretation of superradiance with a

more quantitative treatment. In this case, we will consider the non-supersymmetric extremal

solution of the rotating D1-D5-P system. From its microscopic description, we shall reproduce

the superradiance condition of type (2.1.22) and show that it can be understood as a conse-

quence of Fermi-Dirac statistics. We shall also evaluate the superradiant emission rates from the

macroscopic and microscopic point of view and analyse concordance.

The order in which the content is presented is aimed at facilitating understanding. First, fun-

damental ideas will be explained in an intuitive way, and later, technical details will be provided,

some of which are to be found in the appendix.
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Chapter 3

Rotating Kaluza-Klein Black Holes

Rotating black holes with maximal angular momentum provide an interesting setting for the

investigation of black hole microphysics. Consider the intriguingly simple form of the entropy of

the extremal Kerr black hole,

S = 2π|J | . (3.0.1)

Since the angular momentum J is naturally quantized, it strongly suggests that some kind of sum

over states should reproduce it. In addition, the absence of Newton’s constant in (3.0.1) gives hope

that the counting might be performed at small gravitational coupling and then reliably extrapo-

lated to the strong coupling regime where the black hole lies. Identifying the microscopic system

behind (3.0.1) remains an open problem in string theory. This motivates the study of analogous

solutions, such as the extremal Myers-Perry (MP) black hole rotating in two independent planes

in five dimensions [16], whose entropy

S = 2π
√
|J1J2|, (3.0.2)

is closely similar to (3.0.1), and also of other black holes sharing some of the features of the Kerr

solution.

A microscopic model for the extremal 5D MP black hole (orbifolded along a certain direction)

has been presented, reproducing exactly the entropy (3.0.2) [30]. The model is based on a con-

nection between the MP solutions and Kaluza-Klein black holes: if we place an MP black hole at

the tip of a Taub-NUT geometry we recover a Kaluza-Klein black hole. Since Kaluza-Klein black

holes are naturally embedded in Type IIA string theory as solutions with D0 and D6 charges,

ref. [30] used the analysis of D0-D6 bound states in [31] to derive a microscopic model for (3.0.2).

Kaluza-Klein black holes are also of interest by themselves. In the generic dyonic case they

are never supersymmetric, nor are in general close to any supersymmetric state. The entropy of

the extremal solutions—with degenerate horizons of zero temperature—depends, like (3.0.1), only

on integer-quantized charges, and not on the coupling or other moduli. There are two branches
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of extremal black holes, depending on whether their angular momentum is below or above a

certain bound [32, 33]. Ref. [30] developed the statistical description of KK black holes in the

slow-rotation regime. In this chapter we extend the analysis to show that the entropy of fastly-

rotating KK black holes can also be accurately reproduced. This is of interest for several reasons.

Unlike the slowly-rotating KK black holes, whose horizons are static, the fastly-rotating black

holes have non-zero horizon angular velocity, possess ergospheres and exhibit superradiance, so

they are qualitatively much closer to the Kerr black hole. In fact, as J grows large with fixed

charges, the KK black holes asymptotically approach the Kerr solution. So one may hope for

hints for a statistical model of (3.0.1).

One feature that we find, and which we argue can be expected for the extremal Kerr black

hole too, is that the microscopic calculations exactly match the entropy but not the mass of the

fastly rotating black hole. As we will see, this fits well with the macroscopic analyses of [34–36] in

the context of the attractor mechanism. Our study also gives a clear indication of how extremal

rotating black holes with superradiant ergospheres are distinguished microscopically from those

that cannot superradiate.

We show in full generality how Myers-Perry black holes are obtained as a limit of Kaluza-Klein

black holes, and discuss the slow and fast rotation regimes and superradiance in this context.

3.1 Extremal Kaluza-Klein black holes

Refs. [32] and [33] independently constructed the solutions for general Kaluza-Klein dyonic ro-

tating black holes, which we give in appendix A. For more details we refer to these papers and

to ref. [37], which contains insightful remarks on their properties. Here we briefly summarize the

most relevant features.

The solutions are characterized by four physical parameters: mass M , angular momentum J ,

and electric and magnetic charges Q and P . For solutions with a regular horizon, the mass always

satisfies

2G4M ≥
(
Q2/3 + P 2/3

)3/2
. (3.1.1)

The extremal limit, defined as the limit of degenerate, zero-temperature horizon, can be achieved

in two ways, giving two distinct branches of solutions:

• Slow rotation: G4|J | < |PQ|. The mass

2G4M =
(
Q2/3 + P 2/3

)3/2
(3.1.2)

saturates the bound (3.1.1) independently of J . The angular velocity of the horizon vanishes,

and there is no ergosphere. The entropy is

S = 2π

√
P 2Q2

G2
4

− J2 . (3.1.3)
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• Fast rotation: G4|J | > |PQ|. The entropy

S = 2π

√
J2 − P 2Q2

G2
4

(3.1.4)

is the natural continuation of (3.1.3), but the mass is strictly above the value (3.1.2) and,

for fixed Q and P , it grows monotonically with |J |. The angular velocity of the horizon is

non-zero, and there is an ergosphere.

The extremal horizon disappears and becomes a naked singularity at the dividing value

G4|J | = |PQ|.
Kaluza-Klein black holes are naturally embedded in Type IIA string theory by taking a product

with T 6. The KK gauge potential is then identified with the RR 1-form potential (so the KK

circle is identified with the M theory direction). Q and P correspond to D0 and D6 charges,

quantized as

Q =
g

4V6
N0 , P =

g

4
N6 , (3.1.5)

where N0 and N6 are the number of D0 and D6 branes, g is the string coupling, and the volume

of T 6 is (2π)6V6. We work in string units, so G4 = g2/8V6.

The mass bound (3.1.2) becomes

M =
1

g

(
N

2/3
0 + (N6V6)2/3

)3/2
, (3.1.6)

and the entropies (3.1.3) and (3.1.4) become

S = 2π

√
N2

0N
2
6

4
− J2 , (3.1.7)

and

S = 2π

√
J2 − N2

0N
2
6

4
, (3.1.8)

respectively. In analogy with (3.0.1), these entropies are independent of g, V6 and any other T 6

moduli.

3.2 Microscopic model of rotating D0-D6 black holes

The microscopic description of two-charge D0-D6 systems requires that we recall first some aspects

of four-charge configurations in Type II string theory compactified on T 6 (or M theory on T 7), in

particular when rotation in the non-compact directions is present.
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3.2.1 Rotating zero-temperature configurations in the (4, 0)-SCFT

Consider brane intersections with four charges N1, N2, N3, N4, in a regime where the dynam-

ics of low energy modes localized at the intersection is described in terms of a chiral (4, 0)-

supersymmetric CFT [38–40]. We shall be somewhat unspecific about what the Ni stand for.

The statistical entropy counting is most easily performed when N1,2,3 denote wrapping numbers

of M5 branes, and N4 denotes momentum units along the (smoothed) intersection [39]. How-

ever, the U-dual frame where the Ni correspond to four stacks of D3 branes intersecting over

a point [41] will be more useful later. Like in [30], the modular invariance of the entropy and

angular momentum makes it natural to assume that the degrees of freedom responsible for them

are localized at the point-like intersection.

To recover the SCFT we take the number of antibranes of the 1,2,3 kind to be suppressed,

but we allow for both branes (or momentum) and antibranes (or oppositely moving momentum)

of type 4. To leading order with N1,2,3 � 1, the central charge for both left- and right-moving

sectors is c = 6N1N2N3, and L0 − L̄0 = N4. Supersymmetric configurations have the left-moving

sector in its supersymmetric ground state, L̄0 = NL = 0 [38]. We are, however, interested in

exciting the left sector, thus breaking all supersymmetries. The reason is that spacetime rotation

requires exciting the fermions in this sector. Their SU(2) R-charge acts on spacetime as SO(3)

rotation, so a macroscopic angular momentum J results from the coherent polarization of these

fermions. This projection also reduces the available phase space, so the effective oscillator number

entering the entropy formula is ÑL = NL − 6J2/c = NL − J2/N1N2N3. Then [40]

S = 2π

√
c

6

(√
ÑL +

√
NR

)
= 2π

(√
N1N2N3NL − J2 +

√
N1N2N3NR

)
. (3.2.1)

Under the assumption that the constituents interact only very weakly, the total mass of the

system is

M = M1N1 +M2N2 +M3N3 +M4(NR +NL) . (3.2.2)

Here Mi are the masses of a unit of each single constituent.

Zero-temperature states must have oscillator distributions such that either the left or right

‘temperatures’, TL or TR, vanish. For a state with J 6= 0, this results into two distinct possibilities:

• TR = 0

Set NR = 0 and NL >
J2

N1N2N3
≥ 0, so N4 = −NL < 0. The left-moving sector gives rise to

both the angular momentum,

J2 < N1N2N3|N4| , (3.2.3)

and the entropy,

S = 2π
√
N1N2N3|N4| − J2 . (3.2.4)
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Hence the mass

M = M1N1 +M2N2 +M3N3 +M4|N4| , (3.2.5)

is fixed by the charges Ni independently of J .

• TL = 0

Set NR > 0, NL = J2

N1N2N3
, so N4 = NR − J2

N1N2N3
. The fermions in the left sector fill up to

the Fermi level, so TL is effectively zero. Both sectors are excited, and in principle N4 can

be either positive, negative, or zero. However, if we require that the right sector be only

slightly excited, NR � NL, then N4 < 0. The left movers provide the angular momentum

J2 = N1N2N3NL > N1N2N3|N4| , (3.2.6)

and the right movers the entropy,

S = 2π
√
N1N2N3NR = 2π

√
J2 −N1N2N3|N4| . (3.2.7)

From (3.2.2) we find the mass

M = M1N1 +M2N2 +M3N3 +M4

(
N4 + 2

J2

N1N2N3

)
= M1N1 +M2N2 +M3N3 +M4|N4|+ 2M4

(
J2

N1N2N3
− |N4|

)
(3.2.8)

is strictly above (3.2.5).

This CFT describes the four-dimensional black holes of [42] ( [40]). The restriction to small

NR, so that J2

N1N2N3
− |N4| is small, is required for the validity of the CFT description. Indeed, it

is only in this regime that the supergravity solutions have a locally-AdS3 near-horizon geometry.

However, the entropy of the extremal TL = 0 black holes appears to be correctly reproduced for

arbitrary values of the parameters. We will comment more on this in Section 3.2.3.

3.2.2 Microscopics of D0-D6

According to [31], a system of N0 D0 branes bound to N6 D6 branes wrapped on T 6 is T-dual

to a non-supersymmetric intersection of four stacks of D3 branes. One of the stacks has reversed

orientation relative to the supersymmetric case. This is similar to the configurations of the

previous section with N4 < 0 (the susy-breaking case), but there is one important difference: the

D3 branes wrap now non-minimal rational directions k/l in each T 2 within T 6 = T 2 × T 2 × T 2.

The number N of D3 branes is the same in each stack, and

N0 = 4k3N , N6 = 4l3N (3.2.9)
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(so N0,6 are necessarily multiples of four).

The main assumption of the model, supported by modular invariance, is that the entropy of

the low energy excitations at the D3 brane intersection is a local property of the intersection and

is independent of whether the branes wrap the torus along minimal or along non-minimal rational

cycles. Then we can import the entropy calculations from the previous section by setting

N1 = N2 = N3 = |N4| = N . (3.2.10)

Crucially, we must also take into account that the number of intersection points in the torus

does depend on how the branes are wrapped: there are 2kl intersections in each T 2, and so a

total of (2kl)3 in T 6. Since the Hilbert space at each intersection is independent of the other

intersections, the total entropy is (2kl)3 times the entropy from a single intersection point. The

angular momentum is also multiplied by this same factor. Since the total entropy is maximized

by distributing J evenly over all intersections, each one carries J0 = J/(2kl)3.

In order to obtain the masses for the D3-brane configuration we note that if the volume of

minimal 3-cycles in T 6 is V3, then each of the 3-branes has volume (k2+l2)3/2V3, so their individual

masses are

MD3 = (k2 + l2)3/2V3

g
, (3.2.11)

for branes in any of the four stacks.

In this set up, we find that the two different extremal rotating D0-D6 systems of Section 3.1

map to each of the two zero-temperature rotating intersecting D3-brane systems of Section 3.2.1:

• Slow rotation. This was the regime studied in [30]. The CFT at the intersection has the

right sector in its ground state, with entropy per intersection given by (3.2.4). So, for the

D0-D6 system,

Sbranes = (2kl)3 × 2π
√
N4 − J2

0 = 2π

√
N2

0N
2
6

4
− J2 , (3.2.12)

in exact agreement with (3.1.7). The mass also matches exactly. Putting N 3-branes with

mass (3.2.11) in each of the four stacks, the total mass is

Mbranes = 4NMD3 =
V3

g

(
N

2/3
0 +N

2/3
6

)3/2
. (3.2.13)

After T-duality in the three appropriate torus directions, the agreement with the mass of

the slow-rotation D0-D6 black hole (3.1.6), is exact.

• Fast rotation. We naturally assign to each intersection a state in the fastly-rotating regime

of the CFT, i.e.,TL = 0. Then, using the entropy formula (3.2.7),

Sbranes = (2kl)3 × 2π
√
J2

0 −N4 = 2π

√
J2 − N2

0N
2
6

4
(3.2.14)
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we recover the correct value for the D0-D6 black hole (3.1.8).

The agreement, however, does not extend to the mass in this case. Consider values of |J |
slightly above N0N6/2, so there is only a small mass δM > 0 above (3.1.6),

M =
V3

g

(
N

2/3
0 +N

2/3
6

)3/2
+ δM . (3.2.15)

We compute first δM within the microscopic brane model. Recall that the mass is simply

proportional to the volume of branes of each kind, so we use (3.2.11) in (3.2.8). δM comes

from the last term in (3.2.8), and we find1

δMbranes =
V3

g
(k2 + l2)3/2 × 2

(
J2

0

N3
−N

)

=
V3

g

(
N

2/3
0 +N

2/3
6

)3/2

2

(
4J2

(N0N6)2
− 1

)
. (3.2.16)

On the other hand, the ADM mass of the black hole gives, after T-duality, and to leading

order in (J2 − (N0N6)2/4),

δMbh =
V3

g

(N0N6)2/3

2
(
N

2/3
0 +N

2/3
6

)1/2

(
4J2

(N0N6)2
− 1

)
. (3.2.17)

So

δMbranes

δMbh
=

[(
N0

N6

)1/3

+

(
N6

N0

)1/3
]2

. (3.2.18)

The discrepancy in the masses is naturally attributed to a mass renormalization as the

gravitational coupling is increased. Observe that δMbranes > δMbh, which is as expected

since gravitational binding should reduce the energy. In the next section we discuss further

why this renormalization occurs for fast but not for slow rotation.

Following the last comments in Section 3.2.1, in principle it would seem possible to extend

the agreement of the entropies to arbitrarily large values of J2/N2
0N

2
6 , but in these cases the use

of the CFT seems largely unjustified. The mass renormalizations get of course much larger.

3.2.3 Discussion

We have shown that it is possible to successfully extend the microscopic model of KK black holes

in [30] to cover the regime of fast rotation, with horizons that rotate with non-vanishing angular

velocity and therefore are more similar to the Kerr black hole. There exist other similar instances

where the entropy is also correctly reproduced: extremal four-charge type II black holes also have

1Note that we saturate NL = J2
0/N

3 at each intersection, which is smaller than J2/N3.
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slow and fast rotation regimes which are correctly captured by the CFT of Section 3.2.1, and

there are analogous three-charge five-dimensional black holes with these properties which can be

described in the (4, 4)-SCFT of the D1-D5 system [40, 42]. However, in these cases not only the

entropy but also the mass is accurately reproduced by the microscopic model, both at slow and

at fast rotation (at least for rotation slightly above the divide). This agreement is understood,

within the context of AdS/CFT duality, as being due to the existence of a locally AdS3 (BTZ)

geometry near the horizon [43, 44]. In contrast, extremal KK black holes do not have in general

AdS3 symmetry near the horizon (only in the singular case |PQ| = G4|J | ), so perhaps we should

be surprised by the fact that the entropy does come out correctly.

Actually, our results are in perfect agreement with the recent macroscopic studies in [34–36],

which argue that the SL(2,R) × U(1) symmetry near the horizon of four-dimensional extremal

rotating black holes, charged as well as neutral, ensures that the macroscopic value for the entropy

can be extrapolated to weak coupling. Extremal KK black holes do possess this near-horizon

symmetry (and their MP limits too [45]). Hence, if a microscopic model is identified, its entropy

should exactly match the macroscopic value. In this section we have provided this microscopic

model and confirmed the agreement of entropies.

Ref. [34] finds that the scalar field, and indeed the whole solution, for slowly rotating KK black

holes is attracted to a completely fixed form near the horizon, so not only the entropy but also the

mass is fixed—in agreement with the microscopic calculation in [30]. However, for fastly rotating

extremal KK black holes there exist flat directions in the effective potential for the scalar near

the horizon, with the effect that only the entropy is attracted to a fixed value. Other quantities,

like the mass, are not guaranteed to be fixed. We have found that in fact they are not. Thus

we conclude that the attractor mechanism correctly predicts which quantities will match at weak

and strong coupling, and which ones will, generically, be renormalized.

Extremal fastly-rotating four-charge black holes with J2 � N1N2N3|N4|, and KK black holes

with J2 � N2
0N

2
6 , do have only SL(2,R) × U(1) near-horizon symmetry. In principle these

black holes can approach arbitrarily closely to the extremal Kerr solution. Their entropies, but

not their masses, agree with naive CFT formulas, although one is far from the regime where

any application of the CFT is justified. So, even if this may not be the correct description, it

seems likely that a microscopic model for the extremal Kerr solution, which also has near-horizon

symmetry SL(2,R)× U(1) [45], should be able to pin down exactly the entropy (3.0.1), but not

the mass of the black hole. Obtaining the exact entropy of non-extremal vacuum black holes, like

Schwarzschild, will require taking into account mass renormalization effects.
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3.3 Ergospheres and Superradiance

3.3.1 Qualitative microscopics

The statistical description above gives some clear hints of what is the microscopic distinction

between extremal rotating black holes with or without ergospheres, and how superradiance arises

from the microscopic theory

Recall first how Hawking radiation appears microscopically. In the 2D CFT, non-extremal,

finite-temperature states occur when the effective temperature of the excitations in both left and

right sectors is non-zero, with the total system at temperature T−1
H = (T−1

L + T−1
R )/2. So if

we couple the CFT to closed strings that propagate out to the asymptotically flat bulk, then

left- and right-moving open string excitations can combine into a closed string, resulting into

Hawking radiation at temperature TH . If rotation is present, superradiance effects will mix in.

However, when one of the sectors is at zero temperature, i.e., at extremality, Hawking radiation

cannot occur. Above we have described two distinct rotating zero-temperature systems. In the

first possibility the right-moving sector remains unexcited. So, in the absence of open string

excitations of one chirality, there cannot be any closed string emission—neither Hawking emission

nor superradiance. This is as it should be, since these states describe extremal black holes without

ergospheres.

In contrast, extremal black holes with a superradiating ergosphere correspond to states with

both left- and right-moving excitations. The emission of (non-thermal) closed strings, from the

combination of left- and right-moving open string excitations, seems possible now. Moreover, since

the left-moving excitations have spin, the emitted closed string will necessarily carry angular

momentum away from the black hole. So it is natural to expect that this process describes

superradiance.

This picture applies not only to Kaluza-Klein black holes but also to the four-charge 4D and

three-charge 5D black holes, for which there also exist extremal rotating states with and without

ergospheres.

In order to work out the details of this correspondence, it seems more convenient to consider

D1-D5-P black holes. Indeed, they have a straightforward description in terms of an effective

string along the D1-D5 intersection [27], with right and left moving excitations as opposed to KK

black holes in which the set of dualities we applied makes this kind of description more involved.

Moreover, the three-charge 5D black holes possess an AdS3 (BTZ) near-horizon geometry,

which ensures that not only the entropy but also the mass doesn’t get renormalized when going

from weak to strong coupling. This could be a crucial point in order to reproduce the superradiant

bound (2.1.22) from the microscopic side, since it involves an energy.

Therefore, in the next chapter we consider D1-D5-P extremal black holes with an ergosphere

to perform a quantitative analysis of our microscopic model for superradiance emission.
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3.3.2 4D vs 5D perspectives

The charges Q and P , or alternatively the corresponding integers N0 and N6, have a neat ge-

ometrical interpretation from the five-dimensional point of view: N0 is the number of units of

quantized momentum in the compact fifth direction, and N6 is the degree of the fibration of this

internal S1 on the orbital S2’s. So when N6 > 0 the horizon topology in 5D is S3/ZN6 . If the

horizon size is much smaller than the compact radius, the black hole can be regarded as an MP

black hole at the tip of a Taub-NUT geometry [46]. We elaborate in detail on this in appendix

A, and mention here only some salient features.

The MP black hole generically has angular momenta J1, J2 in two independent rotation planes.

The KK electric charge Q is proportional to the self-dual component of the angular momentum,

J = J1 + J2, aligned with the KK fiber, and J to the anti-self-dual component J̄ = J1 − J2, off

the KK direction. In the extremal limit, the MP black hole entropy reduces to (3.0.2), which can

be written as

S = π
√
|J 2 − J̄ 2| . (3.3.1)

Both the slowly and the fastly rotating extremal KK black holes lead, in the decompactification

limit, to extremal MP black holes, the former with J 2 > J̄ 2, the latter with J 2 < J̄ 2. From a

purely 5D (decompactified) viewpoint, this distinction is obviously arbitrary. However, we have

found that the brane configurations describing each of these two regimes are rather different. The

point is that the symmetry between J and J̄ is broken once we put the MP black hole at a

certain orientation within Taub-NUT. There is a choice to be made of which of the 5D angular

momenta is going to correspond to the four-dimensional J and which to Q. So the two microscopic

configurations actually describe two different ways to embed the extremal MP black holes within

Taub-NUT, and in this sense they describe different black holes.

One might then ask how it can be that the MP black hole in Taub-NUT is capable of su-

perradiating when J 2 < J̄ 2, but not when J 2 > J̄ 2. It turns out that, as we show in detail

in appendix B, superradiance is possible in both situations but is interpreted differently in each

case. Consider an incident wave in the KK black hole background with dependence

Ψ ∼ eiky+inφ−iωt, (3.3.2)

on the Killing directions, y being the coordinate along the KK circle. The wavenumber k is KK

electric charge from the 4D viewpoint. We find that the necessary condition for superradiant

amplification is

k < ω < nΩH + 2G4kΦE , (3.3.3)

where ΩH is the 4D horizon angular velocity and ΦE is the KK electric potential. From the 5D

viewpoint, 2G4ΦE is the velocity at which the 5D horizon is rotating in the y direction relative

to static asymptotic observers.
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The conventional rotational superradiance of fastly-rotating KK black holes corresponds to

amplification of neutral (k = 0) waves with ω < nΩH . We show in appendix B that this is indeed

possible for scalar fields. This is the process whose microscopic dual is suggested in the previous

section.

On the other hand, slowly spinning extremal black holes have ΩH = 0 so they show no

rotational superradiance. But they can produce superradiant amplification of waves with KK

electric charge k. In appendix B we show that this indeed happens and is always allowed since

these black holes have 2G4ΦE > 1. This process, however, is not so naturally described in the dual

CFT system, since it requires either the emission of 4D charge and hence changing the central

charge of the CFT, or altering the direction in which the branes wrap T 6, which is not seen by

the CFT.
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Chapter 4

Microscopic Theory of Black Hole

Superradiance

The microscopic string theory of black holes provides an accurate statistical counting of the

Bekenstein-Hawking entropy [30,47–50] and a microscopic picture of Hawking radiation [29,51–54]

at least for some classes of black holes. In this chapter we address how this microscopic theory also

accounts for a characteristic phenomenon of rotating black holes: the black hole superradiance. We

shall follow mostly the suggestion advanced in Chapter 3, making it more precise and quantitative.

Superradiance is a phenomenon associated to the presence of an ergoregion around the black

hole [13, 14, 45, 55–59]. Since the Killing vector that defines the energy measured by asymptotic

observers becomes spacelike within the ergosurface, it follows that in the ergoregion there can

exist excitations with negative energy relative to infinity. So if we scatter a wave off the black

hole, this wave can excite negative energy modes that may subsequently fall into the horizon. To

an asymptotic observer this will appear as a positive energy flux coming out of the horizon, and

the scattered wave can emerge with higher amplitude than the impinging wave: this is known as

superradiant scattering. If an incident wave Φ ∼ f(r, θ)e−iωt+imφ, with energy ω > 0 and angular

momentum number m, scatters off a black hole with horizon angular velocity ΩH , the requirement

that a negative-energy flux crosses the horizon towards the future is

0 < ω < mΩH . (4.0.1)

Only modes satisfying this condition can undergo superradiant amplification.

Superradiant scattering can be regarded as stimulated emission, and, just like the latter (clas-

sical) process is related by detailed balance to (quantum) spontaneous emission, rotating black

holes are also known to spontaneously emit superradiant modes within the range (4.0.1), in a

process closely related to Hawking radiation. These carry away energy, but also angular momen-

tum off the black hole. In our microscopic picture it is convenient to first describe the process of

spontaneous superradiant emission, and then infer the stimulated emission.
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When the black hole temperature is different from zero it is difficult to disentangle spontaneous

superradiant emission from thermal Hawking radiation—in fact both become part of one and the

same phenomenon. Since we are interested only in the microphysics behind the presence of an

ergoregion and the existence of superradiant modes (4.0.1), we will investigate the spontaneous

emission from an extremal, i.e., zero-temperature, rotating black hole, for which thermal Hawking

radiation is absent. Since the black hole has a ‘cold’ ergoregion, we refer to it as an ergo-cold black

hole. This will allow us to isolate superradiance: only modes that satisfy (4.0.1) will be emitted.

Note, however, that after the emission of superradiant quanta begins, the angular momentum will

be reduced below its maximal value and the black hole will be driven away from extremality, so

thermal Hawking radiation will promptly set in. It is the onset of the decay that will give us more

neatly the microscopic basis of the superradiant bound (4.0.1).

There have been previous papers dealing with emission rates from rotating black holes and

the microscopic calculations that match them [43, 45, 52, 60] (see [61, 62] for a review), in some

cases discussing, more or less directly, aspects of superradiance. Typically, these papers have

computed the absorption cross sections for a non-extremal black hole and for its microscopic

finite-temperature dual. Even if these results exhibit essential agreement between both sides, we

feel that the long calculations involved, and the mixing with thermal Hawking radiation, hide

some very simple microphysics behind (4.0.1). We hope to clarify the microscopic origin of the

ergoregion and provide a simple interpretation of the superradiant modes in it.

In Section 3.3, we already introduced a picture for these phenomena in terms of opposite

chirality excitations in a CFT, which can collide and emit a closed string mode to the bulk,

in analogy to the microscopic description of Hawking radiation. As mentioned there, in order

to perform a more quantitative analysis it it is convenient to investigate this mechanism in the

context of the D1-D5-P system. The advantages are that this system can be described with a well

known effective string model, namely a 1+1 conformal field theory on a specific sigma model. This

CFT is dual to an AdS3 geometry, and the metric of the black hole near the horizon is the BTZ

black hole. In the extremal limit, these black holes exhibit an attractor mechanism that fixes both

the entropy and the energy as a function only of conserved charges and independently of moduli.

These quantities are therefore not renormalized when interpolating between the gravitational

description (the BH) and the perturbative field theory description.

A salient conclusion of our analysis is a clear understanding of the bound (4.0.1) as essentially

a consequence of Fermi-Dirac statistics for the microscopic degrees of freedom that give the black

hole its angular momentum.

4.1 Microphysics of cold ergoregions

We begin by introducing the microscopic picture of superradiance and then provide a simple

derivation and interpretation of the bound (4.0.1) for the ergo-cold black hole.
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4.1.1 Qualitative microscopic origin of the ergoregion

Our basic picture applies to any black hole that admits an ‘effective string’ description, i.e., to

which AdS3/CFT2 duality applies1, but for definitiness we focus, for the most part, on the D1-

D5-P system, which describes a class of near-supersymmetric five-dimensional black holes. We

shall begin by reviewing in qualitative terms the microscopic picture of several kinds of D1-D5-P

black holes.

The D1 and D5-branes form a bound state whose low-energy dynamics is described by a 1+1-

dimensional field theory along their common worldvolume directions (the other four directions

wrap a small T 4 or K3). It is a non-chiral conformal field theory (CFT) with (4, 4) supersymmetry,

i.e., both the left- and right-moving sectors are supersymmetric. Supersymmetry itself will not

play any essential role in our discussion, but the existence of fermionic excitations in at least one

of the two chiral sectors is important. For large numbers N1, N5, of D1 and D5 branes, the central

charge of both sectors is c = 6N1N5. The CFT can have left- and right-moving excitations, with

levels L0 and L̄0, corresponding to open string excitations propagating along the worldvolume of

the branes. These give rise to a linear momentum P .

When the spatial direction along this D1-D5-P system is compactified on a circle of size

2πR (much larger than the other compact directions), we obtain a five-dimensional configuration.

Typically, the state corresponding to a black hole has both sectors populated by thermal ensembles

of excitations with temperatures TL and TR. If the two sectors interact only very weakly, the

total entropy, energy and momentum are S = SL + SR, E = PL + PR and P = PL − PR, with

quantized momenta PL,R = NL,R/R. Since T−1
L,R = (∂SL,R/∂PL,R) = 2 (∂SL,R/∂E)P , it follows

that the actual temperature T−1
H = (∂S/∂E)P of the entire configuration is

T−1
H =

1

2

(
T−1
L + T−1

R

)
. (4.1.1)

If any of the two sectors is in a ground state (either TL or TR vanish), the temperature of the

entire system vanishes.

The simplest black hole corresponds to a thermal ensemble of excitations in only one of the

two sectors, say the right-moving one. Supersymmetry of the left sector is then preserved, and

TL = TH = 0. This is the static supersymmetric extremal black hole of ref. [47]. If both sectors

are excited, then generically the system has TH 6= 0. An open string excitation from the left sector

can combine with an open string from the right sector, and form a closed string that propagates

away into the bulk of spacetime. This is the microscopic counterpart of Hawking emission at

temperature TH [48, 63].

To include rotation, we take into account that the fermionic excitations of the left and right

sectors are charged under the R-symmetry group SU(2)L× SU(2)R of the supersymmetric CFT.

1And even to some that may not, like in the previous chapter, although in this case the bound (4.0.1) is recovered

only up to numerical factors.

35



Figure 4.1: Four different kinds of black hole in the ‘effective string’ picture. The excitations of the two

chiral sectors, with levels L0 (left-moving) and L̄0 (right-moving), correspond to open strings attached to

the brane bound state. (a) Supersymmetric static black hole: L0 = 0, L̄0 = NR: only the right-moving

sector is excited. (b) Near-supersymmetric static black hole: L0 = NL > 0, L̄0 = NR > 0. Left and right-

moving excitations can annihilate to emit a closed string: this is Hawking radiation. (c) Supersymmetric

rotating black hole: L0 = 0, L̄0 = NR − 6J2
R/c > 0. The coherent polarization of right-moving fermions

yields a macroscopic (self-dual) angular momentum JR. In the absence of left-moving open strings, there

cannot be any radiation of closed strings, hence there is no Hawking nor superradiant emission. (d) Ergo-

cold black hole: L0 > 0, and L̄0 = NR− 6J2
R/c = 0 with NR > 0. The right-moving sector is a Fermi sea of

polarized fermionic excitations, so the temperature vanishes. Open strings in this sector can interact with

those in the left sector and emit closed strings that carry angular momentum: the black hole possesses a

superradiant ergosphere. The superradiant bound on modes (4.0.1) is directly related to the energy of the

Fermi level, and thus is a consequence of Fermi-Dirac statistics for the excitations of the CFT.
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These R-symmetries generate the five-dimensional spatial rotation group SO(4) ' SU(2)L ×
SU(2)R. So the R-charge corresponds to spacetime angular momentum, JL or JR, respectively

for left and right fermions. If many of these fermions are coherently polarized we obtain a

macroscopically large angular momentum. This projection into definite polarization shifts the

levels as

L0 = NL −
6J2

L

c
L̄0 = NR −

6J2
R

c
, (4.1.2)

and in particular the total entropy and temperature are reduced.

Observe now that there are two distinct ways of achieving an extremal (TH = 0) rotating

black hole. In the first one we set, say, NL = 0 = JL (so half of the supersymmetry is preserved),

L̄0 > 0, and some of the right-moving fermions polarized to give JR 6= 0 [64]. Since only one

of the two sectors is excited, the left and right-moving open strings cannot combine to emit a

closed string. This fits nicely with the property that the horizon of the corresponding black hole

remains static relative to asymptotic observers: since ΩL = ΩR = 0 there is no ergosphere nor

superradiant emission, even if JR 6= 0.

The second, less studied way to achieve a zero-temperature rotating black hole is by having

the right-moving sector contain only polarized fermions that fill energy levels up until the Fermi

level. This occurs when

NR =
6J2

R

c
. (4.1.3)

This is a ground state, L̄0 = 0, at fixed JR, with zero entropy and at zero-temperature. The

left-moving sector is assumed to be thermally excited, with L0 > 0: this provides for the entropy.

Both sectors can carry angular momentum, so, in contrast to the supersymmetric case, the total

angular momentum need not be self-dual nor anti-self-dual. More importantly, even if the system

is at zero temperature, both left and right moving open strings are present and can annihilate

to emit a closed string. Since the right-moving open string necessarily carries spin, so will also

the emitted radiation. This is, qualitatively, what we expect from superradiant emission. In fact,

the corresponding black hole possesses an ergosphere and superradiant emission is present. So we

have found a qualitative microscopic picture for the superradiance from the ergo-cold black hole.

4.1.2 Microscopic derivation of the superradiant frequency bound

We can be more quantitative and recover the superradiant frequency bound from this microscopic

picture. In five spacetime dimensions the black hole can rotate in two independent planes and if

we label the rotation angles on these planes by φ and ψ then the bound (4.0.1) is generalized to

0 < ω < mφΩφ +mψΩψ , (4.1.4)

where Ωφ,ψ are the horizon angular velocities on each rotation plane, and mφ,ψ the corresponding

angular momentum (“magnetic”) quantum numbers. We may instead use the left and right Euler
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angles ψL,R = φ∓ ψ, in terms of which the bound is

0 < ω < mLΩL +mRΩR , (4.1.5)

with mL,R = 1
2 (mφ ∓mψ) and ΩL,R = Ωφ∓Ωψ. This is slightly more convenient, since as we saw

above these angles diagonalize the R-charges (i.e., target-space spins) of the left and right-moving

fermions of the CFT.

The ergo-cold black hole described above has ΩR 6= 0 and ΩL = 0 (although JL need not

vanish). So the bound is

0 < ω < mRΩR , (4.1.6)

i.e.,mL does not limit the frequencies. We wish to derive eq. (4.1.6) from our microscopic picture.

To begin with, we can easily obtain that at zero-temperature only one of ΩL, ΩR, can be

different from zero. The two sectors of the CFT have negligible interaction, so S(E,P, JL, JR) =

SL(EL, JL) + SR(ER, JR). For each sector we have a chemical potential µL,R associated to the

respective R-charges, i.e., JL,R, through

µL,R
TL,R

= −
(
∂SL,R
∂JL,R

)
EL,R

. (4.1.7)

The angular velocities of the total system are in turn

ΩL,R

TH
= −

(
∂S(E,P, JL, JR)

∂JL,R

)
E,P

, (4.1.8)

where TH is the total system’s temperature (4.1.1). Hence

ΩL,R =
TH
TL,R

µL,R , (4.1.9)

and in the extremal limit in which TR → 0,

ΩR → 2µR , ΩL → 0 . (4.1.10)

As we explained above, for the ergo-cold black hole we take the right sector of the CFT to be

populated by polarized fermions filling up to the Fermi level, so their number density distribution

is a step function

ρ(ε, jR) = Θ(jRµR − ε) . (4.1.11)

Here ε is the energy and jR the R-charge of the fermion, i.e., spin in SU(2)R, which in general

can be ±1/2. We assume that in the state (4.1.11) they are all polarized with jR = +1/2, to

achieve maximum angular momentum, see (4.1.3). Using the chemical potential µR introduced

above, the Fermi energy is

εFermi =
µR
2

=
ΩR

4
. (4.1.12)
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In this state it is possible to have a collision of left and right-moving open strings creating a

closed string massless scalar mode. Our aim is to show that if this scalar has frequency ω and

angular momentum numbers `, mR and mL, then ω must lie in the range (4.1.6). In order for the

scalar to escape to infinity its energy must be positive, so we need only derive the upper bound

in (4.1.6).

The interaction vertex involves bosonic and fermionic open strings from each sector, in either

the initial or final states. But the spin of the scalar is provided only by fermions. For a given

` the angular momentum of the scalar is in the (`/2, `/2) representation of SU(2)L × SU(2)R,

i.e., |mL|, |mR| ≤ `/2, so we need ` fermionic open strings from each sector to match the spin

quantum numbers of the scalar. A minimal scalar at s-wave (` = 0) couples to an operator of

conformal dimension (1, 1), typically of the form ∂+X∂−X, i.e., one boson from each sector. Then,

at the `th partial wave it will couple to this boson pair and to the ` fermion pairs. Additional

bosons may be involved, but then the amplitudes are suppressed by higher powers of the coupling

and the frequency, although we need not assume their absence.

For our system, the right-sector open strings in the initial-state in the interaction can only

be fermionic with jR = +1/2. The fermions in the final state can have either jR = ±1/2: we

take the numbers of each kind of these to be n±, so the number of initial fermions from the right

sector is `− n+ − n−. The balance of angular momentum in the interaction is then

1

2
(`− n+ − n−) = mR +

1

2
n+ −

1

2
n− , (4.1.13)

i.e., the closed string is emitted with

mR =
`

2
− n+ . (4.1.14)

We will not need to consider any specific properties of the left-moving modes in our analysis.

Both the left and right sectors contribute an equal amount ω/2 to the energy of the emitted

closed string — otherwise the latter would carry the difference as a net momentum: this more

general case will be dealt with later below. The energy-budget of the interaction in the right

sector is then

ω
(f)in
R =

ω

2
+ ω

(f)out
R + ω

(b)
R , (4.1.15)

where f and b denote fermionic and bosonic open strings. In the lhs of this equation we have the

energy of the ` − n+ − n− initial fermions. Since their energy levels are bounded above by the

Fermi energy (4.1.12), we have

ω
(f)in
R ≤ (`− n+ − n−)εFermi = (`− n+ − n−)

ΩR

4
. (4.1.16)

As for the final fermions, the energies of the n− fermions with jR = −1/2 are not constrained other

than to be positive: they may fill states with less or more energy than εFermi. But the n+ fermions
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with jR = +1/2 must have energies above the Fermi level, since in the initial configuration the

levels below εFermi are all filled with positive-spin fermions. This sets a lower bound

ω
(f)out
R > n+

ΩR

4
. (4.1.17)

The energy of the bosonic open strings is only constrained to be positive, ω
(b)
R > 0. Then,

eq. (4.1.15), together with (4.1.14), (4.1.16) and (4.1.17), yields the inequality

ω < mRΩR −
n−
2

ΩR ≤ mRΩR , (4.1.18)

which reproduces exactly the superradiant bound (4.1.6) derived for the rotating black hole2. Note

that this result follows essentially from Pauli’s exclusion principle for the polarized fermions in

the initial state: the superradiant bound on frequencies is a consequence of Fermi-Dirac statistics

for the carriers of angular momentum in the dual CFT.

Note that at least one bosonic open string must appear in the right-sector in the final state, so

the system will not remain extremal after it begins to radiate. This is also just like we anticipated

from the supergravity side.

The left-moving fermions, which can contribute arbitrarily to mL, have not played any role in

this derivation. This is in accord with the fact that when ΩL = 0 (even if JL 6= 0), mL does not

appear in the macroscopically-derived bound (4.1.4).

4.1.3 Four-dimensional black holes

This analysis applies almost immediately to the four-dimensional black holes described by a dual

chiral (0, 4) CFT. Only the right sector is supersymmetric so the R-symmetry consists of a single

SU(2) group. This corresponds to the four-dimensional rotation group SU(2) ' SO(3). Again,

non-BPS extremal rotating black holes exist, with four charges, that possess an ergosphere and

the accompanying superradiant modes satisfying (4.0.1). The dual microscopic state is essentially

the same as above: the right sector is filled up to εFermi = ΩH/4 with fermions with j = +1/2,

while the left sector is in a thermal ensemble and accounts for the entropy. The emission of a

closed string massless scalar with quantum numbers (ω, `,m) involves 2` right-sector fermions

since now |m| ≤ `. So (4.1.14) is replaced by

m = `− n+ . (4.1.19)

There is also one boson from the right sector in the final state of the interaction. From the left

sector the only requirement is an operator of conformal dimension ∆L = 1 + `. Following the

2The bound is as close as possible to saturation when n− = 0, the boson energy ω
(b)
R is minimal (set by the

gap ∼ 1/N1N5R), and all fermions are the closest possible to the Fermi energy (i.e.,within ∼ 1/N1N5R of it). If

n− > 0 then this closest value to the bound cannot be achieved.

40



steps above we find

ω < mΩH −
n−
2

ΩH ≤ mΩH . (4.1.20)

Thus eq. (4.0.1) has been derived microscopically for this ergo-cold black hole.

4.1.4 Other systems with ergoregion

It seems likely that the basic features of our microscopic picture are also valid for any other grav-

itating object with a cold ergoregion. The most familiar of these is the extremal Kerr black hole.

Ref. [52] exhibited in a striking way how the absorption rates from a Kerr black hole contained

hints of a CFT description. That this CFT must contain fermions as the carriers of angular

momentum seems difficult to dispense with, if one wants to account for superradiant emission.

Indeed, the results presented in Chapter 3 together with those in [30] provide a microscopic model

for the extremal five-dimensional Myers-Perry black holes. A microscopic model for the extremal

Kerr black hole has been proposed too [50]. These black holes are mapped, through symmetries

and dualities, to four-dimensional black holes of the kind we have discussed in Section 4.1.3. So

the presence of superradiant emission in these neutral black holes is understood, at least qualita-

tively, in the same terms we have discussed: a filled Fermi sea in one sector of the dual CFT. The

quantitative recovery of the superradiant bound is nevertheless not expected, since these neutral

black holes suffer non-trivial renormalizations of their masses and energy levels (though not of

their entropies) as a function of the coupling.

Systems with cold ergoregions which are not U-dual to these black holes are perhaps of more

interest to test the applicability of our ideas about the microphysics of superradiance. An instance

of this are the extremal rotating black rings with a dipole, in particular those in which the dipole

charge corresponds to a fundamental string and the extremal limit is singular. The microscopic

description of this dipole ring has been described recently in [65], and argued to possess the right

properties to fit our picture for a superradiating system: a zero-temperature sector with angular

momentum carriers, which can interact with excitations from another sector and emit a spinning

closed string into the bulk.

All these ergo-cold black holes provide, in a sense, cleaner laboratories for the study of quantum

emission from a black hole, closely similar to Hawking radiation, than do non-extremal black

holes. Since one of their sectors is in a ground state, they are in a purer, less mixed state than

non-extremal systems. But still, their other sector is in a mixed, thermal ensemble. Therefore

it would be very interesting to consider states of the CFT such that both sectors are in pure

states but nevertheless they can interact and decay by bulk emission. One such example is

provided by the non-supersymmetric smooth supergravity solitons with D1-D5-P charges in [66].

On the microscopic side, they correspond to non-chiral spectral flows of the Neveu-Schwarz ground

state to non-BPS states in the Ramond sector. The states have both sectors containing only

spin-carrying fermions. So we see that an interaction between the two sectors will result into
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the emission of a spinning bulk scalar. Following the overall picture proposed in this chapter,

superradiance is naturally expected. Indeed, these supergravity solitons have ergoregions (but

not horizons) that have been shown to exhibit a superradiant instability [67]. A correspondence

between the two pictures of the decay of precisely this type has been worked out in detail very

recently in [68], and conforms to the overall ideas we have proposed.

4.1.5 No superradiant emission of linear momentum

We can also consider the emission of closed strings that carry away some of the momentum

P of the D1-D5-P system. This is also of interest, as the momentum corresponds to one of

the three charges of the black hole and there is a charge-ergoregion associated to it. From the

six-dimensional perspective, the horizon of the black string is moving with velocity VH along the

string direction y, and the superradiance bound for a mode ∼ exp(−iωt+ ipy + imLψL + imRψR)

is modified to

p < ω < mLΩL +mRΩR + pVH . (4.1.21)

In the non-BPS extremal rotating limit that we study, the black hole has ΩL → 0. For a generic

D1-D5-P black hole the velocity is |VH | ≤ 1, but we are particularly interested in the decoupling

limit in which the D1 and D5 charges of the black hole are much larger than its momentum or the

energy above the BPS bound. In this limit, the ergo-cold black hole has VH → 1, so the bound

becomes

0 < ω − p < mRΩR . (4.1.22)

We can easily derive this again from microscopic considerations. First note that the first law

of thermodynamics gives
VH
TH

= −
(
∂S

∂P

)
E

. (4.1.23)

Reasoning as we did when deriving (4.1.1) for a two-sector system, we find

VH =
TH
2

(
T−1
R − T−1

L

)
=
TL − TR
TL + TR

, (4.1.24)

so VH → 1 when TR → 0. Also observe that in any case |VH | ≤ 1.

The left and right-moving open strings that interact to emit a closed string of frequency ω

and momentum p do not in this case have the same energy, but instead

εL,R =
ω ± p

2
. (4.1.25)

We can follow now the same arguments for the right-sector dynamics that we used above, only

changing ω/2→ εR. Hence we obtain

ω − p < mRΩR . (4.1.26)
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In order to complete the derivation of (4.1.22) we need only notice that if the closed string is

to arrive at infinity as an on-shell, propagating state, it must satisfy ω > 0 and ω2 − p2 ≥ 0,

i.e.,ω ≥ |p| ≥ p.
This implies that there cannot be any superradiant emission of linear momentum (i.e.,P charge

in five dimensions) unless angular momentum is radiated as well. This is in spite of the fact that

in the black hole geometry there is a momentum ergoregion, even in the absence of rotation. From

the supergravity point of view, the reason for this difference between the emission of linear and

angular momentum is that in the former case the contribution to the effective potential for scalar

propagation coming from the momentum does not fall off at infinity but creates an asymptotic

potential barrier of height p, so if ω < |p| the wave is asymptotically exponentially suppressed.

Put another way, in a KK reduction to five dimensions the scalar has mass |p| and a prop-

agating wave at infinity must satisfy ω > |p|. So a would-be superradiant momentum mode,

satisfying ω < pVH , cannot escape to infinity since VH ≤ 1: if emitted, it gets reflected back off

to the black hole by the effective potential. In contrast, the centrifugal potential barriers fall off

faster at large distances: the spin does not affect the dispersion relation of the wave at infinity.

From the microscopic perspective, there is a possible interaction vertex for the emission of a scalar

with linear momentum and zero angular momentum: take an initial state with only a left-moving

boson, and a final state with a right-moving boson and a bulk scalar. However, in this case the

scalar would have ω < |p| and therefore could only exist as a virtual excitation3.

4.1.6 Superradiant amplification, extremal and non-extremal

We have obtained a microscopic picture for the spontaneous emission of superradiant scalars off

an extremal non-BPS rotating black hole — the ergo-cold black hole. It is clear now that, if

there is an incident flux of this scalar field on the black hole, then those modes that satisfy the

bound (4.0.1) will undergo stimulated emission. This is simply the familiar phenomenon that

the amplitude to emit a boson is amplified by a factor
√
N + 1 if the final state already contains

N bosons. This is, superradiant amplification follows conventionally from the relation between

Einstein’s A and B coefficients. For a classical incident wave, i.e., with large bosonic occupation

number N , the stimulated emission is then a classical process.

In more detail, in our system at zero temperature we have argued that superradiant modes,

and only them, can be emitted and have a finite decay rate Γ`m(ω). Moreover, the system cannot

absorb any superradiant mode: if in the argument that lead to the superradiant bound (4.1.6)

we change the scalar from the final to the initial state, i.e.,ω → −ω, mR → −mR, we see that

absorption of this scalar can only happen when ω > mRΩR. So, for an incident flux Fin, detailed

3An alternative interpretation is in terms of charge superradiance: an extremal Reissner-Nordstrom black hole

can spontaneously emit particles of charge e and mass m only if |e| > m [69]. In our case, the 5D mass and KK

electric charge of the particles are both equal to p.
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balance yields a total absorption cross section of superradiant modes σ`m(ω) = −Γ`m(ω)/Fin < 0.

The absorption cross section determines the ratio between the outgoing and ingoing fluxes as

Fout

Fin
= 1− ω3

(`+ 1)24π
σ`m, (4.1.27)

(this is the relation in five dimensions, see [54] for generic dimension). Superradiant modes, and

only them, have σ`m < 0, and therefore yield Fout > Fin, as desired.

This argument shows that the extremal rotating system that we study exhibits classical stim-

ulated amplification for those modes that it can spontaneously decay into, i.e., modes that satisfy

(4.1.6). What happens away from extremality? In this case, the system can spontaneously emit

modes of any frequency by the microscopic dual of Hawking radiation. Why, then, is there su-

perradiant amplification only for modes that satisfy (4.1.6)? The reason is known: the first law,

applied to an emission process from the black hole with δE = −ω and δJ = −m, states that

κ

8πG
δAH = −(ω −mΩH) . (4.1.28)

Then, the classical stimulated emission of a mode with ω > mΩH would violate the area law

δAH ≥ 0 [57]. So, classically, the emission of such non-superradiant modes is strictly forbidden,

while microscopically it is allowed but statistically suppressed by a factor

eδS = e−(ω−mΩH)/TH . (4.1.29)

This is of course the Boltzmann factor for Hawking radiation.

Sometimes the existence of the superradiant frequency bound (4.0.1) is presented as a conse-

quence of the area law. But we see that the latter is important only in constraining the classical,

macroscopic process. Entropic considerations did not play any role in our microscopic analysis,

which nevertheless shows that the superradiant bound on modes holds strictly at the microscopic

level for emission at zero temperature.

4.2 Emission rates: supergravity analysis

The preceding analysis has provided a qualitative origin of the superradiant ergoregion in rotating

black holes at zero temperature. We have also given a quantitative elementary derivation of the

superradiant frequency bound. A more precise match between the two descriptions is obtained

when one considers the actual emission rates.

To do so, in this section we carry out the supergravity computation of absorption cross sections

and Hawking and superradiant emission rates for a minimal scalar. We consider the most general

case where the black hole has all charges and rotations turned on, and the scalar has generic

quantum numbers for the frequency, spins, and linear momentum along the S1 string direction.

At the end of the section we particularize to the ergo-cold black hole in order to isolate the effects

of the ergosphere.
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4.2.1 The D1-D5-P family of black holes

The D1-D5-P black hole solutions belong to type IIB supergravity compactified to five dimensions

on T 4×S1. The T 4 is assumed to be much smaller than the S1 so we view the system as a a six-

dimensional black string. The most general solution is described by eight parameters: a parameter

M0 that measures deviation away from supersymmetry; two spin parameters for rotation in two

orthogonal planes, a1, a2; three ‘boost’ parameters, δ1, δ5, δp, which fix the D1-brane, D5-brane and

momentum charges, respectively; and two moduli: the radius R of the S1, and the volume V of the

T 4. We choose units such that the five-dimensional Newton constant is G5 = G10/2πRV ≡ π/4.

The metric of the six-dimensional black string is [43,70,71]

ds2 = − f√
H1H5

(dt2 − dy2) +
M0√
H1H5

(spdy − cpdt)2

+
√
H1H5

(
r2dr2

(r2 + a2
1)(r2 + a2

2)−M0r2
+ dθ2

)
+

(√
H1H5 − (a2

2 − a2
1)

(H1 +H5 − f) cos2 θ√
H1H5

)
cos2 θdψ2

+

(√
H1H5 + (a2

2 − a2
1)

(H1 +H5 − f) sin2 θ√
H1H5

)
sin2 θdφ2

− M0√
H1H5

(a1 cos2 θdψ + a2 sin2 θdφ)2

−2M0 cos2 θ√
H1H5

[
(a1c1c5cp − a2s1s5sp)dt+ (a2s1s5cp − a1c1c5sp)dy

]
dψ

−2M0 sin2 θ√
H1H5

[
(a2c1c5cp − a1s1s5sp)dt+ (a1s1s5cp − a2c1c5sp)dy

]
dφ , (4.2.1)

where we use the notation ci ≡ cosh δi, si ≡ sinh δi, and

f(r) = r2 + a2
1 sin2 θ + a2

2 cos2 θ , Hi(r) = f(r) +M0s
2
i , with i = 1, 5 ,

g(r) = (r2 + a2
1)(r2 + a2

2)−M0r
2 . (4.2.2)

The dilaton and 2-form RR gauge potential will not be needed and can be found in [71]. We

assume without loss of generality4

a1 ≥ a2 ≥ 0 . (4.2.3)

Depending on the value of the parameters, the geometry can describe a black hole, a naked

singularity, a smooth soliton or a conical singularity [66]. The black hole family of solutions is

described by the range M0 ≥ (a1 + a2)2 and has horizons at g(r) = 0,

r2
± =

1

2
(M0 − a2

1 − a2
2)± 1

2

√
(M0 − a2

1 − a2
2)2 − 4a2

1a
2
2 . (4.2.4)

4The simultaneous exchange a1 → −a1, δp → −δp, y → −y and ψ → −ψ is a symmetry of the solution. The

same is true for a2 → −a2, δp → −δp, y → −y and φ → −φ. So the solutions with a1a2 ≤ 0 are physically

equivalent to the solutions with a1a2 ≥ 0. For definiteness we assume the latter.
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We are particularly interested in the existence of an ergoregion, whose properties were dis-

cussed in [66]. The norm of the Killing vector ∂t,

|∂t|2 = −
f −M0c

2
p√

H1H5
, (4.2.5)

becomes spacelike for f(r) < M0c
2
p. This defines a six-dimensional ergoregion, which includes not

only the effects of rotation but also of the linear motion of the string. As we mentioned above,

and will prove below, the latter does not actually contribute to superradiance. It is therefore

more convenient to consider the vector ζ = ∂t + tanh δp∂y such that, upon dimensional reduction

(so linear momentum becomes charge), its orbits define static asymptotic observers in the five-

dimensional black hole geometry, and whose causal character is therefore associated to the rotation

ergosphere. Specifically, its norm

|ζ|2 = − f −M0√
H1H5

, (4.2.6)

becomes spacelike for f(r) < M0 so a rotational ergosphere appears at f(r) = M0.

The ADM mass M , the angular momenta (Jφ, Jψ) and the gauge charges (Q1, Q5, Qp) are

M =
M0

2
[cosh(2δ1) + cosh(2δ5) + cosh(2δp)] ,

Jφ = M0(a2c1c5cp − a1s1s5sp) ,

Jψ = M0(a1c1c5cp − a2s1s5sp) ,

Qi = M0sici , i = 1, 5, p . (4.2.7)

The horizon angular velocities Ωφ,ψ along the Cartan angles of SO(4), φ and ψ, are more con-

veniently written in terms of the Euler left and right rotations in U(1)L × U(1)R ⊂ SU(2)L ×
SU(2)R ' SO(4),

Ωφ,ψ =
1

2
(ΩR ± ΩL) , ΩR,L =

2π

βH

a2 ± a1

[M0 − (a2 ± a1)2]1/2
. (4.2.8)

Following [60], from the surface gravities of the inner and outer horizons κ± we introduce the

temperatures βL,R = 1/TL,R

βR,L =
2π

κ+
± 2π

κ−
,

1

κ±
=
M0

2

[
c1c5cp + s1s5sp

[M0 − (a2 + a1)2]1/2
± c1c5cp − s1s5sp

[M0 − (a2 − a1)2]1/2

]
. (4.2.9)

Observe that the Hawking temperature of the outer horizon is related to TL,R as in (4.1.1).

Similarly, from the areas of the inner and outer horizons we introduce SL,R such that

S = SL + SR , SR,L = πM0 (c1c5cp ∓ s1s5sp)
[
M0 − (a2 ± a1)2

]1/2
. (4.2.10)
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The horizon of the black string is also moving relative to asymptotic observers that follow orbits

of ∂t. We can compute the linear velocities for both the inner and outer horizons

V± =
πM0

βH

[
c1c5sp + s1s5cp

[M0 − (a2 + a1)2]1/2
± c1c5sp − s1s5cp

[M0 − (a2 − a1)2]1/2

]
, (4.2.11)

and introduce

VR,L = − βH
βR,L

(V+ ± V−). (4.2.12)

In terms of these, the velocity of the outer horizon, V+, which we also denote as VH , is

VH = −TH
2

(
VL
TL

+
VR
TR

)
. (4.2.13)

These velocities become much simpler in the decoupling limit where the D1 and D5 boosts are

very large so the system is near-supersymmetric, the numbers of anti-D1 and anti-D5 branes

are suppressed, and we can make contact with the dual CFT. In this regime we approximate

c1,5 ' s1,5 ' eδ1,5/2 and we find that

VL,R → ±1 , (4.2.14)

which is microscopically interpreted as the fact that the momentum excitations are chiral and

massless5. Observe that in this regime we recover eq. (4.1.24), which we had derived from the

microscopic two-sector system. The role that the inner horizon plays in defining the microscopic

magnitudes associated to the two chiral sectors, emphasized in [60], is very intriguing and not

well understood.

During the remainder of this section we will not need to restrict ourselves to this near-

supersymmetric regime. But our main interest lies in extremal rotating black hole solutions.

These correspond to degenerate horizons, which appear when the two roots r± coincide. From

(4.2.4) we identify two possibilities:

• The BPS black hole.

Obtained by taking the limit M0 → 0, a1,2 → 0, keeping the mass, angular momenta and

charges finite, which requires δ1,5,p →∞. In this limit

TR → 0, TL 6= 0, SR → 0, SL 6= 0 , ΩL,R → 0, −VR, VL → VH → 1. (4.2.15)

Also, Jφ + Jψ → 0, the BPS bound is saturated, the solution is supersymmetric, and the

timelike Killing vector that becomes null at the horizon is globally defined, so there is no

ergoregion. This is also clear from (4.2.6). This is the BMPV black hole.

5We are taking left velocities and momenta as positive.
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• The ergo-cold black hole.

Obtained in the limit

M0 → (a1 + a2)2 , (4.2.16)

in which TH → 0 but now keeping ΩR 6= 0. Since M0 6= 0 the BPS bound is not saturated

and supersymmetry is absent. In this limit,

TR → 0, TL 6= 0, SR → 0, SL 6= 0, ΩL → 0, ΩR 6= 0, −VR → VH , (4.2.17)

while VL takes no particular value (unless we take the decoupling limit) and the conserved

charges M , Qi and Jψ,φ are unconstrained other than by the extremality condition. The

horizon does rotate relative to asymptotic observers, and there is an ergosphere, determined

by f(r) = (a1 + a2)2; see (4.2.6). Observe that in contrast to the BMPV solution, Jφ and

Jψ are independent of each other.

The BMPV black hole has been thoroughly studied, and it will only serve us to emphasize the

differences with the ergo-cold black hole, which is our system of choice for the study of superra-

diance.

4.2.2 Absorption cross section and emission rate

We consider a minimal scalar field, typically a graviton with polarization in the internal T 4 in the

compactification of the IIB theory to six dimensions. The field satisfies the massless Klein-Gordon

equation in the general three-charge black string geometry,

∂µ
(√
−g gµν∂νΦ

)
= 0 . (4.2.18)

Introducing the ansatz

Φ = exp [−iωt+ ipy + imψψ + imφφ] χ(θ)h(r), (4.2.19)

and the separation constant Λ, the wave equation can be separated. The angular equation is

1

sin 2θ

d

dθ

(
sin 2θ

dχ

dθ

)
+

[
Λ−

m2
ψ

cos2 θ
−

m2
φ

sin2 θ
+ (ω2 − p2)(a2

1 sin2 θ + a2
2 cos2 θ)

]
χ = 0. (4.2.20)

This angular equation (plus regularity requirements) is a Sturm-Liouville problem, and the solu-

tions are higher-dimensional spin-weighted spheroidal harmonics. We can label the corresponding

eigenvalues Λ with an index `, Λ(ω) = Λ`(ω) and therefore the wavefunctions form a complete

set over the integer `. In the general case, the problem consists of two coupled second order

differential equations: given some boundary conditions, one has to compute simultaneously both

values of ω and Λ that satisfy these boundary conditions. However, for vanishing a2
i we get the

48



(five-dimensional) flat space result, Λ = `(` + 2), and the associated angular functions are given

by Jacobi polynomials. For non-zero, but small (ω2 − p2)a2
i we have

Λ = `(`+ 2) +O
(
a2
i (ω

2 − p2)
)
. (4.2.21)

The integer ` is constrained to be ` ≥ |mφ| + |mψ|, and can only take even (odd) values when

|mφ|+|mψ| is even (odd) [72]—this follows from the fact that the scalar `th wave is in the (`/2, `/2)

of SU(2)R × SU(2)L. The angular coordinates φ, ψ are periodic with period 2π so mφ, mψ must

take integer values. Our waves have positive frequency ω > 0.

The radial wave equation can be written in a form that is particularly appropriate to find its

solutions. Introduce the new radial coordinate

x =
r2 − 1

2(r2
+ + r2

−)

r2
+ − r2

−
, (4.2.22)

which maps r = (r−, r+,∞)↔ x = (−1/2, 1/2,∞). Introduce also

mL,R =
1

2
(mφ ∓mψ) . (4.2.23)

The radial wave equation is then

∂x

[(
x− 1

2

)(
x+

1

2

)
∂xh

]
+

1

4

[
(ω2 − p2)

(
r2

+ − r2
−
)
x− (Λ− U)

]
h

+
1

4

[
Σ 2

+(
x− 1

2

) − Σ 2
−(

x+ 1
2

)]h = 0 , (4.2.24)

where we defined

Σ± =
ω

κ±
∓mL

ΩL

κ+
−mR

ΩR

κ+
− pV±

κ+
,

U = (ω2 − p2)

[
1

2
(r2

+ + r2
−) +M0(s2

1 + s2
5)

]
+ (ωcp + psp)

2M0 . (4.2.25)

Equation (4.2.24) was first written (though in a much less compact form) in [73]. For p = 0 there

is no dynamics associated to the sixth direction and (4.2.24) reduces to the wave equation studied

in [60] for the scattering of a neutral scalar off the five-dimensional D1-D5-P black hole.

Near-region wave equation and solution

In the near-region, the term p2
(
r2

+ − r2
−
)
x is suppressed and the radial wave equation reduces to

∂x

[(
x− 1

2

)(
x+

1

2

)
∂xh

]
+

1

4

[
−(Λ− U) +

Σ 2
+(

x− 1
2

) − Σ 2
−(

x+ 1
2

)]h = 0 . (4.2.26)
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To find the analytical solution of this equation, define the new radial coordinate,

z = x+
1

2
, r = (r−, r+,∞)↔ x = (−1/2, 1/2,∞)↔ z = (0, 1,∞) , (4.2.27)

and introduce the new wavefunction

h = z−i
1
2

Σ−(z − 1)−i
1
2

Σ+ F . (4.2.28)

The near-region radial wave equation can then be written as

z(1− z)∂2
zF +

[
(1− iΣ−)− [2− i (Σ+ + Σ−)] z

]
∂zF

+

[
i

1

4
(Σ+ + Σ−)[2− i (Σ+ + Σ−)] + (Λ− U)

]
F = 0 , (4.2.29)

which is a standard hypergeometric equation [74], z(1−z)∂2
zF + [c− (a+ b+ 1)z]∂zF − abF = 0,

with

a = ξ − i

2
(Σ+ + Σ−) , b = 1− ξ − i

2
(Σ+ + Σ−) , c = 1− iΣ− , (4.2.30)

where we defined

ξ =
1

2

(
1 +
√

1 + Λ− U
)
. (4.2.31)

Its most general solution in the neighborhood of z = 1 (i.e., r = r+) is AinH z−bF (b, b− c+ 1, a+

b− c+ 1, z−1
z ) +AoutH za−c(z − 1)c−a−bF (c− a, 1− a, c− a− b+ 1, z−1

z ). Using (4.2.28), one finds

that the solution of the near-region equation is

h = AinH

(
x− 1

2

)−i 1
2

Σ+
(
x+

1

2

)−ξ+i 1
2

Σ+

F

(
b, b− c+ 1, a+ b− c+ 1,

x− 1
2

x+ 1
2

)

+AoutH

(
x− 1

2

)+i 1
2

Σ+
(
x+

1

2

)−ξ
F

(
c− a, 1− a, c− a− b+ 1,

x− 1
2

x+ 1
2

)
. (4.2.32)

The first term represents an ingoing wave at the horizon x = 1
2 , while the second term represents

an outgoing wave at the horizon. The computation of the absorption cross-section is a classical

problem where outgoing waves at the horizon are forbidden, so we set AoutH = 0. Furthermore,

we need the large r, x → ∞ behavior of the ingoing near-region solution. We use the z → 1− z
transformation law for the hypergeometric function [74],

F
(
b, b− c+ 1, a+ b− c+ 1,

x− 1
2

x+ 1
2

)
= Γ(a+b−c+1)Γ(a−b)

Γ(a−c+1)Γ(a) F
(
b, b− c+ 1,−a+ b+ 1, 1

x+ 1
2

)
+
(
x+ 1

2

)a−b Γ(a+b−c+1)Γ(−a+b)
Γ(b)Γ(b−c+1) F

(
a− c+ 1, a, a− b+ 1, 1

x+ 1
2

)
, (4.2.33)
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the property F (a, b, c, 0) = 1, and x ± 1
2 ∼ x. The large x behavior of the ingoing near-horizon

solution is then

h ∼ AinH

[
Γ [1− iΣ+] Γ [1− 2ξ]

Γ
[
1− ξ − i 1

2(Σ+ − Σ−)
]

Γ
[
1− ξ − i 1

2(Σ+ + Σ−)
] x−ξ

+
Γ [1− iΣ+] Γ [1− 2ξ]

Γ
[
ξ − i 1

2(Σ+ − Σ−)
]

Γ
[
ξ − i 1

2(Σ+ + Σ−)
] xξ−1

]
. (4.2.34)

Far-region wave equation and solution

In the far-region, the terms
(
x± 1

2

)−1
are suppressed, and x± 1

2 ∼ x. The radial wave equation

can be written as

∂2
x(xh) +

[
(ω2 − p2)(r2

+ − r2
−)

4x
− Λ− U

4x2

]
(xh) = 0 . (4.2.35)

The most general solution of this equation is a linear combination of Bessel functions [74],

h = x−1/2
[
A+
∞J 2ξ−1(µx1/2) +A−∞J 1−2ξ(µx

1/2)
]
, (4.2.36)

where ξ was defined in (4.2.31) and

µ =
[
(ω2 − p2)(r2

+ − r2
−)
]1/2

. (4.2.37)

We want to study the scattering process so we require real µ i.e.,ω > |p|. Using the asymptotic

properties of the Bessel function [74], we find that for small µx1/2 the far-region solution has the

behavior

h ∼ A+
∞

(µ/2)2ξ−1

Γ(2ξ)
xξ−1 +A−∞

(µ/2)1−2ξ

Γ(2− 2ξ)
x−ξ. (4.2.38)

while for large µx1/2 it reduces to

h ∼ 1

2

√
2

πµ
x−3/4

{[
A+
∞e
−iπ(−ξ+1/4) +A−∞e

−iπ(ξ−3/4)
]
e−iµ

√
x

+
[
A+
∞e

iπ(−ξ+1/4) +A−∞e
iπ(ξ−3/4)

]
eiµ
√
x

}
. (4.2.39)

The first term represents an incoming wave while the second term describes an outgoing solution.

Matching the near-region and the far-region solutions

There is an intermediate region for x where the approximations in both the near and far regions

can be simultaneously satisfied. In this overlapping region we can match the large x behavior of
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the near-region solution to the small x behavior of the far-region solution. This allows to fix the

amplitude ratios. Matching (4.2.34) with (4.2.38) yields then

AinH
A+
∞

=
(µ

2

)2ξ−1 Γ
[
ξ − i 1

2(Σ+ − Σ−)
]

Γ
[
ξ − i 1

2(Σ+ + Σ−)
]

Γ(2ξ)Γ(2ξ − 1)Γ [1− iΣ+]
,

A−∞
A+
∞

=
(µ

2

)2(2ξ−1) Γ(2− 2ξ)Γ(1− 2ξ)

Γ(2ξ)Γ(2ξ − 1)

Γ
[
ξ − i 1

2(Σ+ − Σ−)
]

Γ
[
ξ − i 1

2(Σ+ + Σ−)
]

Γ
[
1− ξ − i 1

2(Σ+ − Σ−)
]

Γ
[
1− ξ − i 1

2(Σ+ + Σ−)
] .

(4.2.40)

The first relation will be needed to compute the absorption cross section. In the second relation we

note the presence of the factor µ2ξ−1, where µ is defined in (4.2.37). We want ξ ∈ R which implies

2ξ − 1 > 0. Therefore, for µ � 1, i.e., for low frequency scattering or for near-supersymmetric

solutions (decoupling limit), one has |A−∞| � |A+
∞|. This regime allows to considerably simplify

(4.2.39).

Absorption cross-section, Hawking and superradiant emission rate

The radial flux associated with our radial wave equation is

F =
1

2i

(
h∗
g(r)

r
∂rh− h

g(r)

r
∂rh
∗
)
. (4.2.41)

The incoming flux from infinity Fin is computed using (4.2.39). Near the decoupling regime

|A−∞| � |A+
∞|, this yields

Fin = −
r2

+ − r2
−

2π

∣∣A+
∞
∣∣2 , (4.2.42)

where the minus sign signals incoming flux. On the other hand, use of the ingoing contribution

of (4.2.32) yields for the absorbed flux at the horizon,

Fabs = −Σ+(r2
+ − r2

−)
∣∣AinH ∣∣2 . (4.2.43)

The absorption probability is the ratio of the above fluxes,

1− |S`|2 =
Fabs
Fin

, (4.2.44)

and the absorption cross-section of the `th partial wave is

σ`,p,mR,L =
4π

ω3
(`+ 1)2

(
1− |S`|2

)
. (4.2.45)

In general, the factor multiplying the absorption probability depends on the spacetime dimension

through the codimension of the absorbing object (see, e.g., [54]). So for a six-dimensional black
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string we use the same factor as for a five-dimensional black hole. Collecting the results, the

absorption cross-section is

σ`,p,mR,L =
4π(`+ 1)2

ω3
βH$

[
1

4
(ω2 − p2)(r2

+ − r2
−)

]2ξ−1
∣∣∣∣∣∣
Γ
(
ξ − iβL$L2π

)
Γ
(
ξ − iβR$R2π

)
Γ (2ξ) Γ (2ξ − 1) Γ

(
1− iβH$2π

)
∣∣∣∣∣∣
2

,

(4.2.46)

where we defined

$ = ω − p VH −mLΩL −mRΩR , $L,R =
1

2
(ω + pVL,R )−mL,RΩL,R

βH
βL,R

. (4.2.47)

Observe in the latter equation the presence of ΩL,R
βH
βL,R

, which correspond to the chemical po-

tentials µL,R of the microscopic two-sector system (4.1.9).

By detailed balance, the decay rate is the absorption cross-section divided by the thermal

Bose-Einstein occupation number,

Γ`,p,mR,L =
σ`,p,mR,L
eβH$ − 1

. (4.2.48)

The matching (4.2.40) was performed in the low frequency regime of waves with wavelength

much larger than the typical size of the black hole. This is actually the regime of relevance

when comparing to the microscopic dual, in which the excitations near the horizon are (almost)

decoupled from the asymptotic region, and we only allow a little leakage of energy between the

two regions. The latter corresponds to coupling the dual CFT to a bulk scalar. Using (4.2.21)

and (4.2.25) this is the range of parameters where

U � Λ ' `(`+ 2) ⇒ ξ ' `+ 2

2
. (4.2.49)

In particular, since ξ is integer or half-integer, the relations [74]

|Γ(n− iz)|2 = Γ(n− iz)Γ(n+ iz) , Γ(n± iz) = Γ(1± iz)
n−1∏
j=1

(
j2 + z2

)
,

|Γ(1− iz)|2 =
πz

sinh(πz)
,

∣∣∣∣Γ(1

2
− iz

)∣∣∣∣2 =
π

cosh(πz)
, (4.2.50)

allow to express the absorption cross-section (4.2.46) in terms of Bose-Einstein or Fermi-Dirac

thermal factors.

We have to distinguish the cases of even and odd angular quantum number `. For even `,

(4.2.46), (4.2.48), (4.2.50) give the decay rate,

Even ` : Γ`,p,mR,L =
4π

(`!)4

[
(ω2 − p2)

A(5)
H

4π

]`+1
$L$R

ω3

βLβR
βH

(
eβL$L − 1

)−1 (
eβR$R − 1

)−1

×
`/2∏
j=1

[
j2 +

(
βL$L

2π

)2
][(

j

βH

)2

+

(
βR$R

2πβH

)2
]
, (4.2.51)
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where we have used r2
+ − r2

− = A(5)
H /(4G5βH) with A(5)

H the area of the five-dimensional black

hole, and in our units G5 = π/4.

For odd `, the decay rate is

Odd ` : Γ`,p,mR,L =
2(2π)3

(`!)4

[
(ω2 − p2)

A(5)
H

4π

]`+1
1

ω3

(
eβL$L + 1

)−1 (
eβR$R + 1

)−1

×
(`+1)/2∏
j=1

[(
j − 1

2

)2

+

(
βL$L

2π

)2
][(

2j − 1

2βH

)2

+

(
βR$R

2πβH

)2
]
. (4.2.52)

As observed in [52], for even ` there appear left and right bosonic thermal factors (4.2.51) while

for odd ` they are fermionic thermal factors. This is already a hint of the microscopic degrees of

freedom responsible for the radiation—taking into account that the bosonic factors can emerge

as effective ones from even numbers of fermions [53,75].

4.2.3 Superradiant emission rate from the ergo-cold black hole

These emission rates contain effects of Hawking radiation as well as superradiance. As explained

in the introduction, in order to eliminate the former we take an extremal, zero temperature limit,

while at the same time we want to preserve the superradiant ergoregion.

In the case of the supersymmetric BMPV black hole, neither thermal nor superradiant emission

are present. In the limit to this solution

lim
βR→∞

$R =
ω

2
> 0 , (4.2.53)

and the positivity of $R implies that the right thermal factor (eβR$R ± 1)−1 → 0, so Γ`m = 0.

This is as it should be, since this a BPS state. The absorption cross section is positive for any

quantum numbers of the wave, so stimulated emission cannot occur either.

The ergo-cold black hole is obtained in the limit in which βR → ∞ while ΩR remains finite.

In this case

lim
βR→∞

$L =
1

2
(ω + pVL)−mL

π(a2 − a1)
√
a1a2

βL
,

lim
βR→∞

$R =
1

2
(ω − pVH −mRΩR) . (4.2.54)

Now $R can take negative values, so the decay rates do not vanish for all modes but contain a

factor of a step function

lim
βR→∞

(
eβR$R ± 1

)−1
= ∓Θ(−$R) , (4.2.55)
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so the emission decay rate is

Even ` : Γ`,p,mR,L = Θ(−$R)
8π2

(`!)4

[
(ω2 − p2)

A(5)
H

4π2

]`+1
βL$L |$R|`+1

ω3 (eβL$L − 1)

`/2∏
j=1

[
j2 +

(
βL$L

2π

)2
]
,

Odd ` : Γ`,p,mR,L = Θ(−$R)
2(2π)3

(`!)4

[
(ω2 − p2)

A(5)
H

4π2

]`+1
|$R|`+1

ω3 (eβL$L + 1)

×
(`+1)/2∏
j=1

[(
j − 1

2

)2

+

(
βL$L

2π

)2
]
. (4.2.56)

Thus we have derived the superradiant bound (4.1.21). The ergo-cold black hole can only emit

modes that satisfy $R < 0. The absorption cross section is positive or negative depending on

whether $R is positive or negative, so when $R < 0, and only then, superradiant amplification

occurs.

We can also see that there cannot be any spinless, pure momentum superradiance. An oscil-

lating wave near infinity must have ω > |p|. Technically, this follows from the reality requirement

of quantities like (4.2.37) or (4.2.56). Physically, ω2 − p2 > 0 for a wave propagating in the

asymptotically flat region. According to (4.2.54), spinless superradiant modes require ω < pVH .

But (4.2.12) gives at extremality VH =
c1c5sp+s1s5cp
c1c5cp+s1s5sp

so |VH | ≤ 1 and |pVH | ≤ |p|. Then, none of

these superradiant momentum modes can exist as propagating waves at infinity: if emitted by

the black hole, they will be reflected back to it before getting to the asymptotic region. This is a

general feature present in black string backgrounds [76,77].

4.3 Microscopic description

4.3.1 The dual CFT state

The CFT state dual to the ergo-cold black hole is most easily identified by analyzing the solution

in the decoupling limit. This is a low energy limit, keeping the energies finite in string units,

which is obtained taking α′ → 0 and δ1,5 → ∞ while keeping r(α′)−1, M(α′)−2, a1,2(α′)−1, and

Q1,5(α′)−1 fixed. For the general black hole geometry, this has been shown to result in a twisted

fibration of S3 over the BTZ black hole [43]. The CFT states dual to the extremal black holes we

have been studying can be identified using the map introduced in [78]. This yields the R-charges

(j, j̄) and conformal dimensions (h, h̄) of the CFT state in terms of parameters of the supergravity

solution. Introducing the AdS3 curvature radius `3, BTZ black hole mass M3,

`23 =
√
Q1Q5,

M3 =
R2

`4
[
(M − a2

1 − a2
2)
(
c2
p + s2

p

)
+ 4a1a2spcp

]
, (4.3.1)
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and central charge c = 3`3/2, the following values are obtained for the two extremal rotating

black holes:

• BMPV black hole:

j =
c

6

R

`43
JL , h =

c

24

(
1 + 2M3 +

4R2

`83
J2
L

)
,

j̄ = 0 , h̄ =
c

24
. (4.3.2)

• Ergo-cold black hole:

j =
c

6

R

`43
JL , h =

c

24

(
1 + 2M3 +

4R2

`83
J2
L

)
,

j̄ =
c

6

R

`43
JR , h̄ =

c

24

(
1 +

4R2

`83
J2
R

)
. (4.3.3)

To interpret these results we note that the conformal dimensions receive contributions of three

kinds,

h = h0 + l0 +
6j2

c
, h̄ = h̄0 + l̄0 +

6j̄2

c
. (4.3.4)

Here (h0, h̄0) = (c/24, c/24) correspond to the energy of the Ramond ground-state. On top of

this, the left sector has in both cases an excitation energy given by the Virasoro level l0 = `3M3/8:

this is the energy of its thermal excitations, which give the system a Cardy entropy

SL = 2π
√
cl0/6 . (4.3.5)

Additionally, the left sector contains some polarized fermions, which yield a charge j and an

energy 6j2/c.

The right sector in both black holes is at zero level, l̄0 = 0, so they are at vanishing temperature.

But there is a crucial difference between the two states: whereas in the BMPV black hole this

sector is in the Ramond ground state, in the ergo-cold black hole it is filled with polarized fermions,

giving charge j̄ and additional energy 6j̄2/c that lifts the system above the BPS state. This is

the microscopic picture that we are advocating for this black hole.

4.3.2 Emission rate and absorption cross section

A coupling of the schematic form

Sint ∝
∫
dtdx ∂`Φ(t, x, ~x=0)O(t, x) , (4.3.6)

(t, x are worldsheet coordinates and ~x are directions transverse to the string) describes the in-

teraction of the `th partial wave of the bulk scalar Φ with an operator O(t, x) of the CFT of
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conformal dimension (1 + `/2, 1 + `/2). We build the latter out of a pair of bosons ∂±X, and `

pairs of left and right fermions ψLψ̄R. This coupling gives a decay rate of the CFT into a scalar

mode with quantum numbers ω, mR,L and p, of the form

Γ`,p,mR,L(ω) = V
∫
dx+dx−e−i$Rx

−−i$Lx+G(t− iε, x) , (4.3.7)

where x± = t± x, the Green’s function is

G(t, x) = 〈O†(t, x)O(0)〉 , (4.3.8)

with the iε prescription in (4.3.7) corresponding to emission, V is a factor from the interaction

vertex to be discussed below, and

$L,R =
1

2
(ω ± p)−mL,RµL,R, (4.3.9)

account for the presence of left and right sectors with chiral momenta (ω ± p)/2 and chemical

potentials µL,R for the R-charges mR,L, given by (4.1.9). These $L,R coincide with those defined

for supergravity in (4.2.47) if we take the decoupling limit in which VL,R → ±1.

Superradiant bound

We can easily derive from these formulas the bound on decay frequencies for the CFT state dual

to the black hole (4.3.3). For this state, the left sector is at temperature TL so the left-chirality

operator OL(x+) gives in (4.3.8) a thermal two-point function periodic in imaginary time,

〈O†L(x+)OL(0)〉TL ∼
(

πTL
sinh(πTLx+)

)2+`

. (4.3.10)

The right sector is at zero-temperature, and so the boson gives the two point function ∂−X(x−)∂−X(0) ∼
1/(x−)2 and each fermion gives ψ(x−)ψ(0) ∼ 1/x−, so

〈O†R(x−)OR(0)〉0 ∼
(

1

x−

)2+`

, (4.3.11)

and the integration over the right sector in the decay rate (4.3.7) gives a factor∫
dx−e−i$Rx

−
(

1

x− − iε

)2+`

. (4.3.12)

This contour integral vanishes for $R > 0, so

Γ`,p,mR,L(ω) ∝ Θ(−$R) . (4.3.13)

This bound on frequencies coincides with the one we derived from the supergravity side, (4.2.54),

(4.2.56), in the extremal limit where µR → ΩR/2 (4.1.10), and in the decoupling limit in which

VH → 1. We feel, nevertheless, that the derivation we gave in Section 4.1 is physically more

transparent.
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Absorption cross section: general case

It is actually possible to compute the absorption cross section for the more general case where

both sectors are at temperatures TL and TR so we can compare it with the general results we

obtained from the supergravity side. We follow [52,61,62] but discuss the general case with non-

vanishing µL,R and p. The Green’s function (4.3.8) now has thermal correlation functions from

both sectors,

G(t, x) = (−1)`CO

(
πTL

sinh (πTLx+)

)2+`( πTR
sinh (πTRx−)

)2+`

, (4.3.14)

where CO = CO+CO− = Q1Q5

4π2 accounts for the normalization factors of the operators [62]. The

CFT absorption cross-section is the difference between absorption and emission rates divided by

the flux F . Then

σCFT`,p,mR,L
=

2πR

F
V
∫
dx+dx−e−i($Rx

−+$Lx
+) [G(t− iε, x)− G(t+ iε, x)]

= V 2πRCO
F

(2πTL)1+`(2πTR)1+`

Γ(2 + `)2
sinh

(
$H

2TH

)
∣∣∣∣Γ(`+ 2

2
+ i

$L

2πTL

)
Γ

(
`+ 2

2
+ i

$R

2πTR

)∣∣∣∣2 . (4.3.15)

Here $H is exactly the same quantity that we introduced in the supergravity analysis in (4.2.47),

with VH given in terms of TL,R as in (4.1.24). The precise form of the factor V requires an explicit

derivation of the interaction vertex from string theory, but there are several features that can be

deduced heuristically [53]. The Q1Q5 flavors of fermions in the long string yield a factor (Q1Q5)`

for the ` fermion pairs entering the interaction. We must also divide it by (`!)2 to account for the

fact that we are overcounting possibilities since the ` fermions in each sector are indistinguishable.

Additionally, it must at least contain the ` factors of momentum from the derivatives in the vertex.

Each of the left and right fermions contribute, respectively, with (ω∓ p)/2 to this factor, yielding

a total

V =

[
1

4
(ω2 − p2)

]` (Q1Q5)`

(`!)2
V̂` , (4.3.16)

where there remains an undetermined `-dependent factor V̂`. The flux F measures the frequency

or energy flow per unit cross section. For a scalar of frequency ω and vanishing momentum p = 0

the canonically normalized flux of the incident field is F = ω. However, if it has momentum p,

then in the frame of the string the frequency is increased by a Lorentz factor (1 − p2/ω2)−1/2,

while the cross section is Lorentz-contracted by (1− p2/ω2)1/2. Therefore, in (4.3.15) the flux is

F =
ω

1− p2/ω2
. (4.3.17)
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The final result is then

σCFT`,p,mR,L
=

π V̂`
(`!(`+ 1)!)2

1

ω

(
ω2 − p2

4

)` (
4π2TLTRQ1Q5

)`+1
sinh

(
$H

2TH

)
×
∣∣∣∣Γ(`+ 2

2
+ i

$L

2πTL

)
Γ

(
`+ 2

2
+ i

$R

2πTR

)∣∣∣∣2. (4.3.18)

In order to compare this with the result from supergravity, we must restrict the latter to the

decoupling limit. In this regime

AH → 4π3TLTR
TH

Q1Q5 , (4.3.19)

while the velocities all become light-like, (4.2.14), so $L,R and $H are identical quantities in both

sides of the correspondence. In this case (4.3.18) is such that

σCFT`,p,mR,L
= (`+ 1)2V̂` σsugra

`,p,mR,L
. (4.3.20)

So the decay rates agree remarkably well, and it would only remain to check that a computation

from first principles of V̂` yields a perfect match. Taking the limit TR → 0 we find the decay via

superradiant emission of the ergo-cold black hole (4.2.56).
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Chapter 5

Conclusions

The inclusion of rotation gives rise to physics that allows a more precise and detailed understanding

of the microscopic string theory of black holes. In this thesis we have focused on two models of

particular interest: one is based on the D0-D6 system and the other on the D1-D5-P system. The

former is interesting because, through its connection to M-theory, it yields a statistical-mechanics

description of neutral black holes. The latter allows us to have better control over the microscopic

conformal field theory and yields a cleaner picture of the origin of superradiance.

We extended the microscopic analysis of extremal dyonic Kaluza-Klein (D0-D6) black holes

to cover the regime of fast rotation in addition to slow rotation. Fastly rotating black holes, in

contrast to slow ones, have non-zero angular velocity and possess ergospheres, so they are more

similar to the Kerr black hole. The D-brane model reproduces their entropy exactly, but the mass

gets renormalized from weak to strong coupling, in agreement with recent macroscopic analyses

of rotating attractors. We discussed how the microscopic model accounts for the fact that fastly

rotating extremal KK black holes possess an ergosphere and exhibit superradiance while slow ones

don’t.

In addition, we showed in full generality how Myers-Perry black holes are obtained as a limit

of Kaluza-Klein black holes, and discussed the slow and fast rotation regimes and superradiance

in this context. A, perhaps surprising, consequence of our analysis is that both slowly and fastly-

rotating KK black holes provide microscopic accounts of the entropy formula of MP black holes,

even if they correspond to rather different microscopic states. As we discussed, this does not pose

any problem, since the microscopic theory always retains a memory of how the 5D black hole is

embedded within Taub-NUT.

For a more detailed and quantitative study of black hole superradiance from the stringy

microscopic side, we moved to the D1-D5-P system. In order to disentangle superradiance from

finite-temperature effects, we considered an extremal, rotating D1-D5-P black hole that has an

ergosphere and is not supersymmetric.

We explained how the microscopic dual accounts for the superradiant ergosphere of this black
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hole. The bound 0 < ω < mΩH on superradiant mode frequencies was argued to be a consequence

of Fermi-Dirac statistics for the spin-carrying degrees of freedom in the dual CFT.

We also computed the superradiant emission rates from both sides of the correspondence, and

showed their agreement. This is an extension of previous analyses of radiation from the D1-D5-P

black holes studied at length in [43, 60]. We generalized their results to include momentum for

the bulk scalar.

It would be interesting to extend our picture for superradiance to the smooth SUGRA solitons

with D1-D5-P charges which correspond to CFT states such that both sectors are in pure states.

Another issue to be investigated would be the absence of fermionic superradiance emission by

the previously considered systems with ergoregion.
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Appendix A

Myers-Perry from Kaluza-Klein:

General case

From a five-dimensional standpoint, KK black holes with non-zero magnetic charge can be re-

garded as black holes sitting at the tip of a Taub-NUT space, at least as long as the black hole size

is much smaller than the compact radius. This was noted, in a particular case, in ref. [46], which

showed that in a limit of large fifth-dimensional radius the static (J = 0) dyonic Kaluza-Klein

black holes reduce to five-dimensional Myers-Perry black holes with self-dual angular momentum.

This corresponds to the case where the rotation of the MP black hole is aligned exactly along the

Kaluza-Klein direction. In this appendix we consider the most general case: the KK black hole

has non-vanishing four-dimensional angular momentum J , which corresponds to the anti-self-dual

component of the angular momentum of the MP black hole. We keep parameters in the KK so-

lution arbitrary, in particular we do not confine ourselves to extremal limits. Hence we are able

to recover the general MP solution.

A.1 Limiting procedure

We write the solution in essentially the form given in [33], and use the results therein for the

physical parameters1. In five-dimensional form,

ds2 =
Hq

Hp
(dy + A)2 − ∆θ

Hq
(dt+ B)2 +Hp

(
dr2

∆
+ dθ2 +

∆

∆θ
sin2 θdφ2

)
, (A.1.1)

1Here, and in (A.1.21) below, our sign choices for the rotation parameters are such that positive α, a, and b

correspond to positive rotation.
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where

Hp = r2 + α2 cos2 θ + r(p− 2m) +
p

p+ q

(p− 2m)(q − 2m)

2

+
p

2m(p+ q)

√
(q2 − 4m2)(p2 − 4m2) α cos θ , (A.1.2)

Hq = r2 + α2 cos2 θ + r(q − 2m) +
q

p+ q

(p− 2m)(q − 2m)

2

− q

2m(p+ q)

√
(q2 − 4m2)(p2 − 4m2) α cos θ , (A.1.3)

∆θ = r2 + α2 cos2 θ − 2mr , (A.1.4)

∆ = r2 + α2 − 2mr , (A.1.5)

A = −

[
2Q(r +

p− 2m

2
)−

√
q3(p2 − 4m2)

4m2(p+ q)
α cos θ

]
H−1
q dt−

[
2P (Hq + α2 sin2 θ) cos θ

−

√
p(q2 − 4m2)

4m2(p+ q)3
[(p+ q)(pr −m(p− 2m)) + q(p2 − 4m2)]α sin2 θ

]
H−1
q dφ , (A.1.6)

B =
√
pq

(pq + 4m2)r −m(p− 2m)(q − 2m)

2m(p+ q)∆θ
α sin2 θdφ . (A.1.7)

The (four-dimensional) physical parameters are

2G4M =
p+ q

2
, (A.1.8)

G4J =

√
pq(pq + 4m2)

4(p+ q)

α

m
, (A.1.9)

Q2 =
q(q2 − 4m2)

4(p+ q)
, (A.1.10)

P 2 =
p(p2 − 4m2)

4(p+ q)
. (A.1.11)

Solutions with black hole horizons have q ≥ 2m, p ≥ 2m, m ≥ |α|.
For regularity, the coordinate y must be periodically identified as

y ∼ y + 2πR , R =
4P

N6
, (A.1.12)

for integer N6. As usual, φ ∼ φ+ 2π. From a five-dimensional viewpoint the KK electric charge

is momentum along the y-direction and so is quantized as

Q =
2G4N0

R
, (A.1.13)

for integer N0. In the string theory embedding, N0 and N6 correspond to the numbers of D0 and

D6 branes introduced in (3.1.5), and R = g in string units.
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We take a limit where the magnetic charge P grows to infinity while Q, J and the black

hole size remain finite. This has the effect of effectively decompactifying the fifth direction. To

perform this, we send p → ∞, and also send r,m, α, q → 0, and y → ∞ in such a way that p r,

pm, pα, p q, y/p, remain finite. It is convenient to introduce new finite parameters µ, a, b, and

finite radial and angular coordinates, ρ and ψ, through

p q =
µ

4
, (A.1.14)

pα =
1

8

(
µ− (a+ b)2

)1/2
(a− b) , (A.1.15)

pm =
1

8

[
µ(µ− (a+ b)2)

]1/2
, (A.1.16)

p r =
1

4

[
ρ2 − 1

2

(
µ− a2 − b2 −

√
µ(µ− (a+ b)2)

)]
, (A.1.17)

ψ =
y

p
, with ψ ∼ ψ +

4π

N6
. (A.1.18)

The angles (ψ, φ, θ) are Euler angles for (a topological) S3/ZN6 . It is also convenient to use

ψ̃ =
ψ + φ

2
, φ̃ =

ψ − φ
2

, θ̃ =
θ

2
, (A.1.19)

with

(ψ̃, φ̃) ∼
(
ψ̃ +

2π

N6
, φ̃+

2π

N6

)
∼ (ψ̃, φ̃+ 2π) . (A.1.20)

After lengthy algebra, in the limit p→∞ the metric (A.1.1) becomes

ds2 = −dt2 +
µ

Σ

(
dt− a sin2 θ̃dψ̃ − b cos2 θ̃dφ̃

)2
+ Σ

(
dρ2

∆̃
+ dθ̃2

)
+(ρ2 + a2) sin2 θ̃dψ̃2 + (ρ2 + b2) cos2 θ̃dφ̃2 , (A.1.21)

with

Σ = ρ2 + a2 cos2 θ̃ + b2 sin2 θ̃ , (A.1.22)

∆̃ =
(ρ2 + a2)(ρ2 + b2)− µρ2

ρ2
. (A.1.23)

This is the general five-dimensional MP black hole, with independent rotation parameters a and

b [16]. When N6 > 1 the orbifold identification (A.1.18) implies that the solution is not globally

asymptotically flat, but instead the spatial geometry asymptotes to R4/ZN6 . In this case the MP

black hole sits at the tip of a conical space.

A.2 Relations between physical parameters

The 4D and 5D Newton constants are as usual related by

G4 =
G5

2πR
, (A.2.24)
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with R given in (A.1.12).

The 4D mass, given by (A.1.8), is dominated in the limit p→∞ by the magnetic KK monopole

mass. This is identified as

MKK =
P

2G4
, (A.2.25)

and diverges as p → ∞. The finite limiting difference between the total 4D mass and the KK

monopole mass corresponds exactly to the 5D mass,

M −MKK →
3π

8N6G5
µ = M(5) . (A.2.26)

According to this equation, we can regard the 5D mass as the excitation energy above the KK

monopole background. The N6 in the denominator comes from integration over the ZN6-orbifolded

S3.

Consider the following two Killing vectors of the KK black hole geometry,

ζ(1),(2) = 2P∂y ± ∂φ . (A.2.27)

Their associated conserved charges are2

J1,2 =
PQ

G4
± J =

N0N6

2
± J , (A.2.28)

which are independent of R and therefore remain invariant as p→∞. In this limit

ζ(1) → ∂ψ̃ , ζ(2) → ∂φ̃ , (A.2.29)

so J1 and J2 become the angular momenta of the MP black hole in the directions ψ̃ and φ̃,

J1 →
πµa

4G5N6
, J2 →

πµb

4G5N6
. (A.2.30)

So, from (A.2.28), the electric charge, which is the component of the rotation aligned with the

KK direction y, corresponds to the 5D self-dual angular momentum J

N0 =
J1 + J2

N6
=
J
N6

, (A.2.31)

and the 4D angular momentum,

J =
J1 − J2

2
=
J̄
2
, (A.2.32)

is the 5D anti-self-dual angular momentum J̄ . This is a U(1) charge in the SU(2) ⊂ SO(4)/ZN6

that remains unbroken by the compactification. It is the component of the rotation of the MP

black hole that lies away from the compactification direction.

2Our definitions of J1,2 differ from [30] by a factor of N6.
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It can also be checked, with some work, that the entropy measured from the area in four

dimensions agrees in the limit with the entropy of the MP black hole,

S =
AKKbh

4G4
=
π
√
pq

G4

[
m+

pq + 4m2

2m(p+ q)

√
m2 − α2

]
→ 2π2

4G5N6
µρ+ =

AMPbh

4G5
, (A.2.33)

(with ρ+ the outer horizon radius).

A.3 The two extremal limits

There are two different extremal limits for KK black holes, which correspond to two different

classes of extremal limit for the MP black holes:

• Slowly-rotating extremal KK black holes are the limit of (A.1.1) where α,m→ 0 with finite

|α|/m < 1. This implies G4|J | < |PQ|.

In the decompactification limit to the MP black hole, this corresponds to

µ = (a+ b)2 with ab > 0 , (A.3.34)

which is

M3
(5) =

27π

32G5N6
J 2 , with |J | > |J̄ | . (A.3.35)

• Fastly-rotating extremal KK black holes have |α| = m > 0, so G4|J | > |PQ|. In the

decompactification limit this is

µ = (a− b)2 with ab < 0 , (A.3.36)

i.e.,

M3
(5) =

27π

32G5N6
J̄ 2 , with |J̄ | > |J | . (A.3.37)

The mass bound (3.1.1) translates into a bound on M(5) in terms of J ,

M3
(5) =

27π

32G5N6
J 2 , (A.3.38)

which is obviously saturated at extremal slow-rotation, (A.3.35), and never saturated at fast

rotation, (A.3.37). From a purely 5D viewpoint the distinction is arbitrary. It is only when we

put the solution at a certain orientation within Taub-NUT that the symmetry between J and J̄
is broken.

Finally, since

J1J2 =
(N0N6)2

4
− J2 , (A.3.39)
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we can write the entropy as

S = 2π
√
|J1J2| , (A.3.40)

independently of R. The two extremal cases above correspond to J1J2 > 0 and J1J2 < 0,

respectively.
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Appendix B

Ergospheres and superradiance in

extremal KK-Black Holes

Let us first consider a general necessary condition for superradiant scattering, which follows from

the second law of black hole thermodynamics. From the 4D point of view, we must have

THdS = dM − ΦEdQ− ΦMdP − ΩHdJ > 0, (B.0.1)

(the condition is still valid in the extremal limit where TH → 0). We only consider processes

where the topology of the 5D solution remains fixed, so dP = 0.

Consider a scalar field Ψ in the black hole background (A.1.1), satisfying

�(5)Ψ = 0, (B.0.2)

with the form

Ψ = ψωkn(r, θ)eiky+inφ−iωt . (B.0.3)

Here k is interpreted as KK electric charge and is quantized in units of 1/R. From a 4D viewpoint

it also gives a rest mass, so if the charged wave is to propagate to infinity it must satisfy ω > |k|.
It can easily be shown that absorption of this field by the black hole results in a change in

black hole parameters such that

δJ

δM
=
n

ω
,

δQ

δM
= 2G4

k

ω
. (B.0.4)

Then (B.0.1) requires

δM

(
1− n

ω
ΩH − 2G4

k

ω
ΦE

)
> 0 . (B.0.5)

Since we are considering a process of energy extraction, δM < 0, the only way for this to hold is

that

ω < nΩH + 2G4kΦE . (B.0.6)
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• For the slowly-rotating extremal solution the four dimensional horizon has ΩH = 0 and

hence what we have is a charge ergosphere. We can only extract energy by discharging the

black hole. The electric potential for these black holes is

2G4ΦE =

√
p+ q

q
> 1, (B.0.7)

so the charge-superradiance condition can be satisfied.

• The fastly-rotating extremal solution has both non-zero angular velocity and electric poten-

tial on the horizon,

ΩH =
1
√
pq
, (B.0.8)

and

2G4ΦE =

√
q2 − 4m2

q(p+ q)
< 1 . (B.0.9)

Rotational superradiance of neutral (k = 0) waves is obviously possible. Bearing in mind

that ω > k for a wave to escape, then it is not possible to extract energy by simply discharg-

ing the black hole (k > 0, n = 0), but it seems possible to do so by simultaneous extraction

of angular momentum and charge.

Note that (B.0.6) is necessary, but not sufficient, for superradiance to be possible. Next we

perform a detailed analysis of scalar wave propagation to find, in particular illustrative cases,

that superradiance indeed happens when this is satisfied. We consider extremal black holes with

non-zero magnetic charge, but set to zero either J or Q, to obtain simple examples of slowly and

fastly rotating black holes.

B.1 Q 6= 0, J = 0 extremal black hole

This is the static (in 4D) limit of slowly rotating black holes, obtained taking α = 0 and then

m → 0. The horizon is at r = 0 and from a 5D viewpoint it is moving along y. Indeed, the

horizon is generated by orbits of the Killing vector

ξ =
∂

∂t
+ vH

∂

∂y
, (B.1.10)

where

vH =

√
p+ q

q
. (B.1.11)

So the horizon is rotating at velocity vH relative to asymptotic static observers that follow orbits of

∂t. The vector ∂t becomes spacelike for r < re = 1
2

(
q − p+

√
q2 + p2

)
, so there is an ergosphere,
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which from the 4D viewpoint is a charge ergosphere. The velocity vH is actually the same as the

KK electric potential 2G4ΦE . The fact that vH > 1 does not result in any causal pathology.

We now analyze if there are massless scalar superradiant modes in this background. The

equation (B.0.2) is separable for the ansatz

Ψ =
f(r)

χ(r)
Θ(θ)einφ+iky−iωt, (B.1.12)

where

χ(r) =
[(

2qr2 + 2pr(q + r) + p2(q + 2r)
) (

2qr(q + r) + p(q2 + 2qr + 2r2)
)]1/4

. (B.1.13)

For the angular part we get

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

(
λlnk +

1

sin2 θ

(
pk

√
p

p+ q
+ n cos θ

)2
)

Θ = 0, (B.1.14)

where λlnk is a separation constant.

For the radial part we obtain
d2f

dr2
∗

+ V (r)f = 0, (B.1.15)

where we have defined the ‘tortoise’ radial coordinate r∗ as

dr∗
dr

=
1

2r2(p+ q)

(
p3q3 + 4p2q2(p+ q)r + 6pq(p+ q)2r2 + 4(p+ q)3r3 + 4(p+ q)2r4

)1/2
,

(B.1.16)

and whose asymptotic behaviour is{
r∗ ∼ r for r →∞ ,

r∗ ∼ −1
r for r → 0 .

(B.1.17)

For the analysis of superradiance, we follow the approach of [14], which only requires the asymp-

totic behavior of (B.1.15). Near the horizon

V (r) ' ω2
H +O(r) (r → 0), (B.1.18)

with

ωH = ω − vHk . (B.1.19)

Near infinity

V (r) ' ω2
∞ +O(1/r) (r →∞) , (B.1.20)

where ω2
∞ = ω2 − k2. Then

f(r) ∼

{
e−iω∞r∗ +Reiω∞r∗ r →∞ ,

T e−iωHr∗ r → 0 ,
(B.1.21)
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is a wave of unitary amplitude travelling from infinity and then splitting into a transmitted wave

of amplitude T that goes into the horizon, and a reflected wave of amplitude R which goes back

to infinity. If (B.1.21) corresponds to a solution of (B.1.15) so does its complex conjugate

f∗(r) ∼

{
eiω∞r∗ +R∗e−iω∞r∗ r →∞ ,

T ∗eiωHr∗ r → 0 .
(B.1.22)

These two solutions are linearly independent, and the theory of ordinary differential equations

tells us that their wronskian W = ff ′∗ − f∗f ′ must be independent of r. Near infinity this is

W = 2iω∞(|R|2 − 1), and near the horizon W = −2iωH |T |2. Equating these we get

|R|2 = 1− ωH
ω∞
|T |2 . (B.1.23)

A wave travelling from and to infinity (ω > |k|) will undergo superradiant amplification (|R| > 1)

if ωH < 0, i.e.,

k < ω < vHk . (B.1.24)

This can be always fulfilled since vH > 1. Since these black holes have ΩH = 0, it reproduces

correctly the condition (B.0.6).

B.2 Q = 0, J 6= 0 extremal black hole

This is a particular case of extremal fastly rotating black holes. It is obtained taking |α| = m and

q = 2m. The latter sets Q = 0.

Now the horizon is at r = m. The ergosphere is a squashed sphere given by r = m(1 + sin θ),

which touches the horizon at θ = 0. The Killing horizon generator is

ξ =
∂

∂t
+ ΩH

∂

∂φ
, (B.2.25)

where

ΩH =
1√
2mp

. (B.2.26)

The procedure to study superradiance is as in the previous section. For simplicity we consider

a field without any dependence on y, so in 4D terms this is an electrically neutral (k = 0) scalar

field. Since the background is also neutral, the only effect of having k 6= 0 would be to give a 4D

mass to the field.

The Klein-Gordon equation is separable for an ansatz of the form

Ψ =
f(r)

χ(r)
Θ(θ)einφ−iωt (B.2.27)

with

χ(r) =
[(
m2 + r2

) (
m2 − 2mr + r(p+ r)

)]1/4
. (B.2.28)

72



The angular equation is

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

(
λln +m2ω2 cos2 θ − n2

sin2 θ

)
Θ = 0, (B.2.29)

which is the equation for spheroidal harmonics. The radial equation takes again the form (B.1.15),

but with a different V (r) and a different ‘tortoise’ coordinate, now defined as

dr∗
dr

=
1

(r −m)2

[(
m2 + r2

) (
m2 − 2mr + r(p+ r)

)]1/2
, (B.2.30)

and with the asymptotic behavior{
r∗ ∼ r for r →∞,
r∗ ∼ − 1

r−m for r → m.
(B.2.31)

The potential goes as

V (r)→

{
ω2 for r →∞,
(ω − ΩHn)2 for r → m.

(B.2.32)

In this case we have no potential barrier near infinity from the KK massess. Arguing as before,

we get superradiant modes for

0 < ω < ΩHn . (B.2.33)

B.3 Q 6= 0, J 6= 0, fastly rotating extremal black hole

The generalization from the previous section to fastly rotating black holes with Q 6= 0 (α = m,

q > 2m) is straightforward but very cumbersome, so we do not provide here the full calculation.

The result one obtains is the natural generalization of the electrically neutral case: (B.2.33) is

still valid, now with the general value (B.0.8) for ΩH . Since we are considering neutral fields,

k = 0, this is in perfect agreement with (B.0.6).
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Appendix C

The near-horizon signature of

superradiance

It is natural to expect that the near-horizon geometry of the black hole, which encodes in a dual

manner the CFT description, contains information about the possibility or not of superradiance.

In the dual CFT, superradiance refers to an interaction between the CFT and a bulk scalar. The

latter appears when the near-horizon geometry is not fully decoupled from asymptotic infinity

and therefore disappears in the strict decoupling limit. Nevertheless, it would seem natural

that the near-horizon geometry could still encode a signature that anticipates the existence of

superradiant phenomena in the full geometry. An effect of this kind was identified in [45] for the

extremal Kerr black hole, which is the simplest example of an ergo-cold black hole. From the

study of scalar propagation in the near-horizon geometry, they could indeed identify an effect

that signals superradiance in the Kerr solution. In this appendix we show how this same effect is

present in our ergo-cold black hole, but not in the BMPV solution.

C.1 Near-horizon geometry

Take the black hole solutions of the D1-D5-P system described in (4.2.1). To obtain their near-

horizon geometry we introduce

r2 = r2
+ + ερ , τ = γ

t

ε
, (C.1.1)

where γ is a constant to be defined later, and we take the ε → 0 limit. To avoid divergencies

of the type 1/ε and 1/ε2, this coordinate transformation must be accompanied by a shift in the

circle and angular directions,

y = ỹ + VH
t

ε
, φ = φ̃+ Ωφ

t

ε
, ψ = ψ̃ + Ωψ

t

ε
, (C.1.2)
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where Ωφ,Ωψ, VH represent the horizon angular velocities defined in (4.2.8), (4.2.13). With the

shift (C.1.2), the Killing vector ∂/∂t becomes tangent to the horizon, i.e., the new coordinates

co-rotate with the horizon. Next, we just write the near-horizon limit of the extreme black hole

metrics (in the end of this appendix we comment on the non-extreme cases), since the near-horizon

dilaton and RR fields are not important for our discussion.

• Near-horizon geometry of the BPS black hole.

In this case one has Ωφ,ψ = 0 and γ = `23
√
Qp/2 and one gets (dropping the ˜ in the angular

coordinates),

ds2
NH =

`23
4

(
−ρ2dτ2 +

dρ2

ρ2

)
+ `23

(
dθ2 + sin2 θdφ2 + cos2 θdψ2

)
+
Qp
`23

(
dy +

`23ρ

2
√
Qp

dτ

)2

+
2Jφ
`23

dy
(
sin2 θdφ+ cos2 θdψ

)
, (C.1.3)

where `23 =
√
Q1Q5.

• Near-horizon geometry of the ergo-cold black hole.

One has Ωφ = Ωψ. We restrict our attention to the simplest case with a1 = a2. This case

contains all the features that are crucial for our study and does not loose any important

information, while avoiding non-insightful factors.

One gets, with γ = −
[
2a3(c1c5cp + s1s5sp)

]−1
(and dropping the ˜ in the angular coordi-

nates),

ds2
NH =

K0

4

(
−ρ2dτ2 +

dρ2

ρ2

)
+K0dθ

2 +K(sin2 θdφ+ cos2 θdψ + Pρdτ)2

+K0 sin2 θ(dφ+ Pρdτ)2 +K0 cos2 θ(dψ + Pρdτ)2

+Ky

[
dy +Ktyρ dτ + Pφy(sin

2 θdφ+ cos2 θdψ)
]2
, (C.1.4)

where K0,K, P,Ky,Kty,Kφy are constants given in terms of the black hole parameters

a, δ1,5,p by

K0 = 2a2
√

cosh (2δ1) cosh (2δ5) , K =
2a2[1− 2sech (2δp)(s1s5cp − c1c5sp)

2]√
cosh (2δ1) cosh (2δ5)

,

P = −1 + cosh (2δ1) cosh (2δ5) + cosh (2δ1) cosh (2δp) + cosh (2δ5) cosh (2δp)

8(s1s5sp + c1c5cp)2
,

Ky =
cosh (2δp)√

cosh (2δ1) cosh (2δ5)
,

Pφy = −2a(s1s5cp − c1c5sp)sech (2δp) , Pty = −a(s1s5cp + c1c5sp)sech (2δp) .(C.1.5)

When a1 6= a2, there are overall θ-dependent multiplicative factors both on the AdS2 and

fibred S3 parts of the metric. They play no fundamental role in the analysis that we do

next.
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The key observation in (C.1.4) is that the cross terms between the time coordinate τ and the

angular coordinates φ, ψ, are linear in the radial coordinate ρ in the case of the black hole with

ergoregion. On the other hand, when the ergoregion is absent, the radial dependence in the cross

terms is also not present. This feature plays an important role in the near-horizon superradiant

analysis that we do next.

C.2 The Bardeen-Horowitz signature of superradiance

In this section we identify and justify the superradiant signature in a near-horizon geometry. We

refer to this as the Bardeen-Horowitz signature, since the feature that we will describe was first

identified by these authors in the extremal Kerr solution [45]. We will initially focus our analysis

on the near-horizon geometry (C.1.4) of the ergo-cold black hole. We will single out the factor

responsible for superradiance in this case. Then we will observe that this factor is absent when

the ergoregion is not present, and in particular in the BPS case.

Take (C.1.4). The following analysis gets simplified if we carry dimensional reduction along y

(again we will take waves with no momentum along the T 4, so this plays no role in the discussion).

This yields 1

ds2
NH(5) =

K0

4

(
−ρ2dτ2 +

dρ2

ρ2

)
+K0dθ

2 +K(sin2 θdφ+ cos2 θdψ + Pρ dτ)2

+K0 sin2 θ(dφ+ Pρ dτ)2 +K0 cos2 θ(dψ + Pρ dτ)2 . (C.2.6)

This five-dimensional metric is of the form AdS2×S3. We can introduce global AdS2 coordinates

to cover the entire spacetime [45],

ρ =
√

1 + x2 cosT + x , τ =

√
1 + x2 sinT

ρ
, (C.2.7)

whose ranges are −∞ < T < ∞, −∞ < x < ∞. To avoid new crossed terms between S3 and

AdS2 coordinates, we have to shift φ and ψ [45],

φ, ψ = φ̃, ψ̃ + P log

[
cosT + x sinT

1 +
√

1 + x2 sinT

]
. (C.2.8)

In these global coordinates the metric (C.2.6) reads,

ds2
NH(5) =

K0

4

(
−(1 + x2)dT 2 +

dx2

1 + x2

)
+K0dθ

2 +K(sin2 θdφ̃+ cos2 θdψ̃ + PxdT )2

+K0 sin2 θ(dφ̃+ PxdT )2 +K0 cos2 θ(dψ̃ + PxdT )2 . (C.2.9)

1We absorb a factor of K−1
y in the lhs that comes from the KK dilaton (which being constant plays no role):

ds2NH(5) ≡ K−1
y ds2NH(5). There is also a gauge field which is irrelevant for our purposes, and whose components are

Aτ = Ktyρ, Aφ = Kφy sin2 θ, Aψ = Kφy cos2 θ.
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We now study the Klein-Gordon equation in this near-horizon background (C.2.9). Introducing

the ansatz

Φ = e−i(wT−mφ̃−nψ̃)Θ(θ)X(x) , (C.2.10)

the wave equation separates and yields

1

sin 2θ

d

dθ

[
sin 2θ

dΘ

dθ

]
+

[
Λ− m2

sin2 θ
− n2

cos2 θ

]
Θ = 0 ,

d

dx

[
(1 + x2)

dX

dx

]
+

1

4

[
4[w + (m+ n)Px]2

1 + x2
+

K

K +K0
(m+ n)2 − Λ

]
X = 0 ,(C.2.11)

where K0, K and P are defined in (C.1.5).2

The radial equation presents an important feature. Indeed, apart from the contribution com-

ing from the piece (m + n)Px, this radial equation is very similar to the equation describing

perturbations in a pure AdS2 background [45]. That is, in (C.2.11) we have [w + (m + n)Px]2

instead of w2 that is present in the pure AdS2 case. The origin of this factor can be easily traced

back and found to be due to the presence of the terms Pρdτ in (C.1.4); see discussion at the end

of Section C.1. We next discuss the implications of this property for the near-horizon signature

of superradiance.

In a WKB approximation the effective wavenumber for traveling waves obeying (C.2.11),

k = − i
X
dX
dx , is

k = ± 1

4
√

1 + x2

[
4[w + (m+ n)Px]2

1 + x2
+

K

K +K0
(m+ n)2 − Λ

]1/2

, (C.2.12)

from which follows the associated group velocity,

dw

dk
= ± 4(1 + x2)3/2

w + (m+ n)Px

[
[w + (m+ n)Px]2

1 + x2
+

K

K +K0
(m+ n)2 − Λ

]1/2

. (C.2.13)

On the other hand, the phase velocity of the waves is w/k. As first observed in [45], in the context

of the Kerr geometry, here the group and phase velocities can have opposite signs. For positive

(m+n)P this occurs when x < w
(m+n)P , while for negative (m+n)P this is true when x > w

(m+n)P .

An original argument from Press and Teukolsky [13], concludes that this defines the near-horizon

superradiant regime. Indeed, the opposite sign between group and phase velocities of a wave in the

vicinity of a horizon is responsible for the fundamental origin of superradiance. Classically, only

ingoing waves are allowed to cross the horizon. The quantity that defines the physical direction of

a wave is its group velocity rather than its phase velocity. So the classical absorption of incident

waves is described by imposing a negative group velocity as a boundary condition. Note however

that in the near-horizon superradiant regime above mentioned, the associated phase velocity is

2The separation constant is exactly Λ = `(`+ 2) (this is a consequence of working with the a1 = a2 case), and

poses a bound on the other angular quantum numbers: ` ≥ |m|+ |n|.
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positive and so waves appear as outgoing to an inertial observer at spatial infinity. Thus, energy

is in fact being extracted, i.e., superradiance is active [13].

At this point, we make a contact with the other extreme case and with the discussion in the end

of Section C.1. For the BPS black hole, there is no radial dependence in the cross terms between

the time and angular coordinates in its near-horizon geometry (C.1.3). As a consequence, there

is no linear term in the frequency in the wave equation associated with this background. But this

implies that group and phase velocities always have the same sign in this background. Thus there

is no available room for a superradiant regime in the near-horizon geometries of extreme black

holes without ergoregion. Finally note that in a general non-extreme black hole the situation is

quite similar to the ergo-cold black hole in what concerns the issue discussed in this appendix.
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