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Chapter 1

Introduction

1.1 Introduction

1.1.1 From single neurons to neuronal circuits

Neuronal networks are an example of an important paradigm shift in neuro-
science. Single neurons, considered since Ramón y Cajal the structural and
functional units of the nervous system, are now viewed as the constituents of
a much more fundamental building block: the neuronal circuits. They shape
in great measure the functionality of the brain, from simple motor tasks to
complex abstract thinking (Yuste, 2015).

An individual neuron responds to particular stimulus in a on-off manner
that pictures its dynamical non–linearity and complexity. However, this
inherent behavior does not confer a neuron a predominant role in a neuronal
circuit. Indeed, the single–neuron conceptual framework started to lose
popularity by 1930, when multi-neuron imaging technologies were brought to
light and brain spontaneous activity started to be measured (Fox and Raichle,
2007). This emergent activity is characterized by the coherent activation of
large neuronal assemblies in the absence of stimuli, and cannot be explained
from a single-neuron perspective. More importantly, individual neurons never
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seem to respond identically to the same stimulus (Gross and Kowalski, 1999),
and the activation of a single neuron often leads to the activation of an entire
population (Feldt et al., 2011). Thus, one of the big assertions of modern
neuroscience is that information is distributed in cell assemblies rather than
encoded by single cells, although the nature of coding or the information
processing in these neuronal circuits remains unclear.

Cortical columns are considered the minimum functional element in the
brain (DeFelipe et al., 2012; Mountcastle, 1997). These cortical columns
are characterized by a dense, highly organized population of neurons that
are vertically arranged across the horizontal discrete layers in the cortex.
The connectivity pattern features groups of neurons more densely connected
among them than to neurons constituting cortical columns, altogether shaping
a connectivity profile in the form of modules.

The topological organization of the connections among neuronal popula-
tions is one of the key ingredients for information processing. The architecture
of the underlaying neuronal circuitry can indeed substantially constrain the
resulting dynamics (Sporns et al., 2000, 2004). Additionally, the connectivity
of the circuit can be tuned by neuronal dynamics in a plastic manner. The
strength of the connections can be reinforced or weakened, as well as the
number and location of synapses. Thus, a neuronal circuit can be seen as a
hard–wired but tunable system where dynamics may continuously modify the
synaptic coupling strengths, shaping activity patterns that may in turn reshape
the physical connections. In this sense, the relationship between connectiv-
ity and functionality is not straightforward since the dynamic elements that
are the neurons, coupled through the network, may in principle give rise to
very diverse activity patterns with few modifications in circuitry wiring and
neuronal dynamics.

In this line, the studies presented in this thesis are framed along this
neuronal circuit level. Our scenario is simplified: living neuronal networks
in the form of neuronal cultures that shape a topological connectivity that
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resemblances cortico–cortical connectivity structures. Neuronal cultures offer
a suitable platform to study in a more precise —and accessible— manner
the dynamics, connectivity, and information processing capabilities among
neuronal populations; and to shed light on the intricate interplay between
anatomical connectivity and the repertoire of activity patterns that emerge in
the system.

1.1.2 Neuronal circuits and complex networks

A characteristic feature of a Complex System is the emergence of a rich
collective behavior in an ensemble of coupled dynamical elements. In other
words, the resulting system exhibits much richer features than the sum of its
parts, being the interactions between the elements the hallmark of the arising
collective behavior.

Uncovering the complexity of a neuronal circuit, and ultimately the human
brain, is obviously a challenging task that has gathered extraordinary support
along the last 50 years from modern network science (Stam, 2014). This
branch of knowledge has become a powerful tool in describing complex
systems in fields as diverse as social, technological, and biological sciences,
and using a combination of theoretical tools that include graph theory, non–
linear dynamics, noise theory and concepts from statistical physics.

The main scheme of graph theory —also known as complex network
theory— (Alon, 2007; Barrat et al., 2008; Dorogovtsev and Mendes, 2003;
Estrada, 2011a; Newman, 2010) is the representation of the elements of a
system as nodes of a network, and their interactions as links or connections
between elements. The number of links connected to a node is termed degree.
The degree distribution, p(k), is the probability to find a node with degree
k randomly chosen. Many complex networks usually present non–Gaussian
p(k), exhibiting a long tail towards high degrees. The most typical degree dis-
tribution exhibited by many complex networks is the ‘scale–free’ distribution
and that follows a power law scaling p(k)∼ k−γ . This scaling leads to a high
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number of low–degree nodes together with a small number of high–degree
ones. The latter are often termed hubs, and ensure a high level of global con-
nectivity (Barabási and Albert, 1999; Barabási and Bonabeau, 2003; Grigorov,
2005). Another organization principle that is often shared in different complex
systems is the presence of small–world attributes. A small–world network
shows high clustering among nodes (similar to a regular or a lattice network),
combined with short average node–to–node distances as occurs in a random
network (Watts and Strogatz, 1998). Moreover, real networks can also be
modular, i.e. shaped by highly interconnected nodes that form definite entities
known as modules or communities, and whose interconnectivity is mediated
by a few inter–moduli links that govern their integration (Blondel et al., 2008;
Newman, 2006). Networks in which modularity dominates are often called
segregated, and networks in which the whole system is strongly assembled
are called integrated. This integration–segregation balance has become an
important breakthrough for the characterization of neuronal networks and the
quantification of their efficiency and robustness.

In the context of neuroscience, this rich mathematical framework has
proven to be exquisitely useful for studying the development and evolution of
neuronal circuits (Feldt et al., 2011), comprehending network robustness and
vulnerability (Achard et al., 2006; Srinivas et al., 2007), as well as understand-
ing the interplay between connectivity and dynamics (Bullmore and Sporns,
2009). For instance, synchronization between neuronal assemblies in the de-
veloping hippocampus has been ascribed to the existence of super-connected
nodes in a scale–free topology (Bonifazi et al., 2009); efficient information
transfer has been associated to circuits with ‘small–world’ features (Latora
and Marchiori, 2001), such as in the the nematode worm C. elegans (Watts
and Strogatz, 1998) or the brain cortex (Harriger et al., 2012; Sporns and
Zwi, 2004); and the coexistence of both segregated and integrated activity in
the brain has been hypothesized to arise from a modular circuit architecture
(Hagmann et al., 2008; Meunier et al., 2010).
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The analysis of neuronal circuits in terms of network science can take
two visions: structural, where the nodes are actual neurons (or ensembles of
them) and connections are actual anatomical paths; or functional, where the
nodes are dynamic elements, and connections are statistical relations between
them. These two levels of representation can lead to very different networks.
Their relationship, though intimate and complementary to one another, is
challenging to assess and a vast field of research.

Structural neuronal networks, on the one hand, has been described at
different scales. At the microscopic scale, nodes correspond to single neu-
rons, and the anatomical connections to neurites. At the other extreme, at
the macroscopic scale, nodes are associated with brain regions and the con-
nections with white matter, the most prominent connectivity highways. The
microscale description can be highly complex due to the extensive biological
and molecular details, and thus may fail at providing a clear picture of emer-
gent collective phenomena. Conversely, the macroscale studies provide many
fundamental insights into large-scale organization, but may result insufficient
for a complete understanding of the human brain’s functional dynamics and
information processing capabilities. The necessary scale that fills the gap
between both descriptions is the mesoscale, where nodes correspond to neu-
ronal populations, and the links to fibers of axons. In addition, the first sings
of emergent functional features occur at this intermediate scale, making the
exploration of such systems of extreme importance.

Functional neuronal networks, on the other hand, are based on dynam-
ical observations, as illustrated in Figure 1.1. To be more precise, one can
consider functional connections when referring to the statistical dependence
between neuronal activities without assuming the mechanisms of the mutual
relationship; and effective connections, when the direct influence that a node
exerts on another —or causal relationship between the pair–wise activity— is
taken into account. The functional or effective connectivity maps can be seen
as a good proxy of neuronal dynamics. These functional or effective maps
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are inferred from neuronal activity data provided by imaging techniques such
as functional magnetic resonance imaging (fMRI) or electro–physiological
techniques such as electroencephalography (EEG) or magnetoencephalog-
raphy (MEG). At lower scales, the neuronal firing of single neurons or the
events associated to populations of neurons are measured typically through
fluorescence calcium imaging (Figure 1.2A-B) or through micro-electrode
arrays (MEAs, Figure 1.2D). However, a wide spectrum of techniques have
been developed with their advantages and limitations, as summarized in Ta-
ble 1.1. In particular, calcium imaging techniques have incredibly improved
in the last decade thanks to new imaging technologies such as two–photon
imaging (Svoboda and Yasuda, 2006) and laser–scanning light–sheet mi-
croscopy (Keller et al., 2008). These technologies, combined with new better
fluorescence probes and genetic calcium indicators (Tian et al., 2009), have
provided incredible advances, for instance the visualization of in vivo activity
of the zebrafish at single–cell resolution (Ahrens et al., 2013).

1.1.3 The brain as a complex network

Mapping the wiring architecture of the brain, as well as comprehending the
complex mechanisms that executes, has been one of the most fundamental
goals in modern neuroscience (Behrens and Sporns, 2012; Toga et al., 2012).
And not only to understand how the brain works but also, ultimately, our-
selves (Seung, 2012). These efforts have increased in the last decade with the
establishment of two grand initiatives that aim at either simulating or disen-
tangling the whole human connectome at the microscale. The first project
to appear was the European ‘Blue Brain Project’ in 2002, which was able to
describe the complete connectivity map of a cortical column (Markram, 2006),
and that was later extended in 2013 to shape the ‘Human Brain Project’ (Ab-
bott, 2013; Markram, 2012). In parallel, the US administration launched the
‘BRAIN Initiative’ (Insel et al., 2013) to develop new imaging and compu-
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8 Introduction

tational resources to image the whole brain in vivo, explore its handling of
information, and characterize both health and diseased circuits.

These two grand projects are being essential to unify the way in which
neuroscience data is recorded and shared, from the molecular level (starting
by the gene expression of molecular channels) up to whole–brain activity.
Both projects are becoming a central reference for a broad range of special-
ized databases, interdisciplinary collaborations, improvement of mechanistic
models, and interpretation of human functional brain data.

The human brain circuitry, however, contains around 1011 neurons and
1014 synapses (Herculano-Houzel, 2009; Pakkenberg et al., 2003). Storing
such an amount of data is comparable to storing all the worldwide written
information until today (Lichtman et al., 2014). Furthermore, the complexity
of the human brain not only resides in the high number of neurons and
connections, but also in the high spectrum of dynamical processes that can
sustain at different temporal and spatial scales (Buzsáki and Draguhn, 2004;
Honey et al., 2007b). Thus, the feasibility of these ambitious quests is creating
a growing debate.

Despite the high efforts and resources being poured on these enterprises,
the necessity to tackle the brain using different approaches is evident. In
that sense, two different approaches have emerged, the top–down approach
that explores the brain at the large–scale, and the bottom–up approach that
investigates the brain at the micro and mesoscale. The latter uses simple
model systems with small size and relative architectural simplicity, but pro-
viding a rich behavioral repertoire (Macosko et al., 2009; Sumbre et al.,
2008). By combining microscale description with accessible neuronal cir-
cuits, mesoscale models provide a better knowledge on the emergence of
general neuronal mechanisms that are often disregarded when one dives into
biological details.
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1.1.4 Graph theory and brain networks

Macroscale studies in the brain have revealed many important characteristics
in structural as well as functional networks. First graph theoretical analysis
were applied to examine the anatomical connection patterns between brain
areas in the cat cerebral cortex and monkey (Hilgetag et al., 2000; Scannell
et al., 1995; Young, 1993). Later, they started to analyze structural (Gong
et al., 2009; He et al., 2007) as well as functional human brain data (Achard
et al., 2006). In particular, the topological organization in functional human
brain networks is inferred from data measured in healthy human volunteers
‘at rest’, i.e. not performing any particular task, shaping what is known as the
resting state functional network (Deco et al., 2011; Wang et al., 2009).

Modern network science has pinpointed that this ‘normal brain’ network’s
organization is characterized by ‘small–world’ features that shape a cost–
efficient configuration that combines strong local connectivity (high cluster-
ing) and efficient long distance connections (short path length) (Achard et al.,
2006; Bassett and Bullmore, 2009; Sporns, 2011). Moreover, the distribution
of the connections (degree distribution) among brain regions seems to follow
a near scale free topology, that gives rise to the presence of hubs, i.e. nodes
that cope with much of the information flow (Bullmore and Sporns, 2012;
Sporns, 2013; van den Heuvel and Sporns, 2013). It has also been seen that
these hubs are highly interconnected, shaping a connectivity backbone in
the network known as ‘rich club’ core (Sporns, 2013; van den Heuvel and
Sporns, 2011; van den Heuvel et al., 2013). It is important to note that hubs
in general, and the rich club in particular, handle most of the information
traffic in brain networks. Additionally, it has been observed that normal brains
present a hierarchical modular dynamics, where each module seems to be
associated to specific functions such as motor action or sensory processing
(He et al., 2009; Meunier et al., 2010). The interplay between these segregated
modules and their integration is believed to result in a correct processing,



10 Introduction

synchronization and information flow across the brain, ultimately leading to
normal task–related functions and cognition (Sporns, 2013; Stam, 2014).

Another common feature that appears in structural and functional brain
networks is a positive ‘assortativity’ (Eguíluz et al., 2005; Hagmann et al.,
2008). This network measure evaluates the tendency of nodes with high
number of connections (degree) to be connected between them. Thus, positive
assortativity reveals the high likelihood of the appearance of a rich club, and
in turn a higher robustness to attack (i.e. removal of nodes) as compared
to dissassortative networks (Newman, 2002, 2003). Hence, the presence of
assortative connectivity and rich club traits in the brain networks is highly
relevant since it may facilitate redundancy in information processing that
ultimately reinforces and stabilizes the network (Fornito et al., 2015; Rubinov
and Sporns, 2010a).

Several of these organizational aspects of brain networks have been ob-
served at different human brain scales, different species, and in a wide range of
other complex systems . Indeed, as we will see along this thesis, the clustered
neuronal networks that we investigated share a large number of similarities
with functional brain networks, particularly the presence of assortativity and
rich club features. These similarities grant the clustered networks as an ap-
pealing experimental system not only to deepen in the understanding of brain
network organization but also to study network resilience to perturbations and
damage.

1.1.5 Network resilience and brain disorders

The continuous improvement in the characterization of healthy brain networks
has motivated the study of neurological and psychiatric pathologies from this
complex network perspective (Crossley et al., 2014; Fornito et al., 2015; Stam
et al., 2007; Stam, 2014; van den Heuvel et al., 2013). The main goal is
to understand network changes from healthy brains to diseased ones, and
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to create opportunities to develop new diagnostic and therapeutic strategies
using network descriptors as markers.

Network resilience has been the subject of strong debate since Barabasi et
al. (Albert and Barabási, 2002; Albert et al., 2000) studied ‘attack vulnera-
bility’ in complex networks. Several studies after their seminal paper have
adopted this approach to study network resilience under different degrees of
damage in complex systems (Crucitti et al., 2004; Doyle et al., 2005; Holme
et al., 2002). The study of Albert and Barabasi (Albert et al., 2000) intro-
duced two kinds of perturbations termed ‘random error’ and ‘targeted attack’.
Random error is simulated by selecting one node (e.g. a region of the brain)
at random and removing it as well as all its links. The largest connected
component and the mean path length (or global efficiency) is then reevaluated.
The process is repeated incrementally, eliminating at random node after node
until the size of the largest component corresponds to a single node. The
targeted attack follows the same procedure but the first node to be eliminated
is the hub, defined as the node with the largest degree. After hub deletion,
the degree of the nodes are reevaluated, and then iteratively removed from
the network in order of decreasing degree. The difference between the mean
path length before and after every isolated elimination of nodes provides a
measure of the centrality of this region to global network topology.

In their study, Barabasi and coworkers concluded that networks with ‘scale
free’ degree distribution are more robust under random error than networks
with a ‘gaussian–like’ degree distribution (Erdös–Rényi random networks).
On the other hand, networks with a scale free distribution seemed to be more
vulnerable under targeted attack due to the presence of hubs, whereas the
impact of removing high degree nodes in random networks is limited since
every node has a ‘small’ connectivity. Posterior several studies in this field
have also examined resilience to insult in networks that presented different
degree distributions and comparing them with the previous ones, highlighting
the indirect link between degree distribution and resilience. It has been shown
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that in physical embedded networks such as the brain, the appearance of
highly connected nodes is less probable than in scale free networks (Hilgetag
and Kaiser, 2004; Sporns and Zwi, 2004; Sporns et al., 2004) since the wiring
cost to make long distance connections may be prohibitive. As a result, brain
networks are characterized by near scale free distributions and present less
hubs. In consequence, these networks are considerable more resilient under
hub targeted attacks than scale free ones (Achard et al., 2006).

Computational models of affected systems typically consists in simulating
on empirically mapped network structures the effects of various structural le-
sions (Alstott et al., 2009; Honey and Sporns, 2008). Although this integrated
approach enables rigorous and testable predictions, more empirical results
are needed. To date, few empirical brain studies exists to directly evaluate the
effects of such lesions and quantify the changes in the the real functional con-
nectivity (Achard et al., 2006; Warren et al., 2014). It has been theoretically
suggested that human brain networks are highly vulnerable under the specific
attack of ‘connector hubs’, defined in modular networks as nodes that highly
participate with other modules. The deletion of such a central hub can result
in a disruption of the hierarchical architecture, affecting the normal balance
between integration and segregation (Stam, 2014). This hypothesis has been
recently supported empirically in studies showing that the loss in network
integration is related with a loss of cognitive domains (Warren et al., 2014).

These studies are essential to understand the development of pathologies
after structural lesions as occurs in stroke, traumatic brain injury, cancer or
neurodegeneration. For instance, recent findings have indicates that many
brain disorders such as Alzheimer’s or Parkinson’s showed damage in highly
central nodes, giving rise to a rich club deterioration (Buckner et al., 2009;
Crossley et al., 2014; Stam, 2014; van den Heuvel and Sporns, 2013).

In addition, the brain network also presents recovery mechanisms to
fight against or restore focal lesions. For instance, by increasing activity in
unaffected brain regions, as occurs in patients with stroke(Riecker et al., 2010;
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Saur et al., 2006), although a high persistent hyper–activation can lead to
degeneration as well (de Haan et al., 2012; Saxena and Caroni, 2011). This
compensatory mechanisms can explain the observed increased activity in
some brain areas in Alzheimer’s disease, Parkinson’s, and multiple sclerosis,
though at early stages of the disease, with the activity strongly declining
at later disease stages (Poudel et al., 2014; Schoonheim and Filippi, 2012;
Sperling, 2007).

In this sense, we will see along this thesis that our clustered neuronal
cultures are characterized by a functional organization qualitatively similar to
the brain, a property that confers them a higher resilience than other network
configurations. In this sense, our cultures are an accessible, excellent model
system to empirically study the impact of these random and targeted attacks.
These studies would lead to better knowledge on the link between the physical
neuronal circuit damage and the resulting functional disturbances (i.e. global
activity disruptions), as well as to study the recovery mechanisms that can
give rise to their final global restoration and stability.

1.1.6 The need of in vitro approaches: neuronal cultures

Despite considerable advances, the link between brain connectivity, neuronal
activity, and function (or dysfunction) that ultimately give rise to a normal
(impaired) behavior and cognition, remains elusive. Understanding this
intricate puzzle requires the study of neuronal circuits in simpler systems at a
mesoscale level. In such systems, not only their complexity is reduced, but
also their controllability and manipulation highly increased.

Mesoscale approaches include theoretical models, computational simu-
lations, and experiments in simple living systems, e.g. animal models or in
vitro preparations in the form of slices or neuronal cultures. The three aspects
often work together, reinforcing the validity of the derived tools as well as
their applicability (Markram et al., 2015).
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In vitro neuronal networks are gaining increasing interest given their rea-
sonable number of nodes and connections. Figure 1.2 illustrates different
culture preparation and different strategies for measuring activity. These
networks are easily manipulable, exhibit rich spontaneous activity, and both
neurons and their dynamics can be monitored in detail. The in vitro en-
vironment also allows highly reproducible pharmacological and chemical
manipulations, making it highly attractive to study cellular, connectivity, and
molecular aspects related to healthy and diseased neuronal circuits.

The simplest yet highly advantageous in vitro system are ‘primary neu-
ronal cultures’. They consist in the isolation of a specific brain tissue, its
dissociation into individual cells, and their culturing in an appropriate, nu-
tritious environment. Primary cultures preserve the cellular variety of the
original tissue although the initial topology is lost. Both connectivity and
spontaneous activity emerge de novo, in a fascinating self–organized manner
that is still poorly understood.

Three major types of cultured neuronal networks are of particular interest,
namely ‘homogeneous’, ‘clustered’, and ‘patterned’ (Figure 1.2). For the
first type, neurons are plated on a substrate that contains a layer of adhesive
proteins. Neurons firmly adhere to the substrate, leading to cultures with a
homogeneous distribution of neurons (Cohen et al., 2008; Orlandi et al., 2013;
Tibau et al., 2013; Wagenaar et al., 2006). For the second type, neurons are
plated with full motility freedom, swiftly aggregating into small, compact
assemblies termed clusters that connect to one another (Gabay et al., 2005;
Segev et al., 2003a; Shein Idelson et al., 2010; Teller and Soriano, 2013). Fi-
nally, for the third type, neurons are anchored in a specific locations following
a dictated topological map.

Despite the enormous gap between neurons in the brain and in vitro, neu-
ronal cultures are playing an important role in the understanding of brain
alterations. They can indeed mimic deficiencies of some brain pathologies,
allowing to study the implications of the damage as well as to investigate pos-
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sible recovery strategies using pharmacological drugs (Srinivas et al., 2007) or
even stimulation (Mazzatenta et al., 2007). In this context, neuronal cultures
have assisted in the comprehension of circuit dysfunction in mild traumatic
brain injury (Bottlang et al., 2007; Cullen and LaPlaca, 2006; Morrison III
et al., 2011; Patel et al., 2012), epilepsy (Srinivas et al., 2007; Sun et al., 2002,
2004) or neurodegenerative diseases, particularly Alzheimer’s (Dahlgren
et al., 2002b; Hartley et al., 1999). In the enlightening study of Ref. (Patel
et al., 2012), for instance, an isotropic mechanical pressure on a dissociated
culture was applied to resemble the biomechanics of a in vivo deformation in
concussions. Interestingly, the authors observed that a mild injury (> 35%
stretch) caused a widespread effect in the neuronal global dynamics that
leaded to a break down of the initial synchrony into multiple, smaller inter-
connected functional modules. The versatility of the experiment was such
that the network could be nearly completely restored to its pre-injury state. In
other investigations, chemical agents were added to model stroke–induced
episodes in epilepsy, and where cultures were overexcited under glutamate
action. Interestingly, the study of Ref. (Srinivas et al., 2007) found that the
exponential degree distribution and small–world features that presented their
hippocampal cultures were lost upon glutamate injury. Furthermore, neuronal
cultures have been also used as a platform for drug development and testing
of toxicity (Frega et al., 2012). It is worth to point out that all these studies
facilitated not only the comparison of the dynamics between control and
impaired cultures, but also the investigation of the molecular basis of these
alterations for reversing them.

In addition of the above disease–oriented investigations, neuronal cultures
can provide valuable data for basic theoretical neuroscience research, for
instance by combining in vitro data with in silico models. They are also
unique tools to improve imaging technologies, for instance, by helping the
interpretation of data provided by electrodes or calcium fluorescence imaging
(Ito et al., 2011; Stetter et al., 2012). These neuronal cultures also offer the
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possibility to study scaling properties, e.g. by changing the neuronal density
or the physical dimensions of the cultures. Interestingly, different studies have
been carried out in unidimensional cultures (Figure 1.2E) to study an aspect
as fundamental as wave propagation and information coding (Feinerman
et al., 2005, 2007; Jacobi et al., 2010) or to build neuromorphic devices
(i.e. logical gates) capable of ‘computation’ (Feinerman et al., 2008). At
the other extreme, three–dimensional cultures have started to catch attention
given their topological proximity to naturally formed circuits, and using glass
beads(Pautot et al., 2008), polymers (Lai et al., 2012) or other structures
(LaPlaca et al., 2010) as the skeletal supports of the network.

Finally, neuronal cultures are also remarkable platforms to study network
response on electrical, chemical, and optical stimulation. Low levels of
electrical stimulation have been explored to add noise to a neuronal system,
for instance in the study of stochastic resonance or synchronization. And a
combination of electrical stimulation and chemical action have been used
to devise a theorico–experimental percolation framework for assessing the
connectivity of living neuronal circuits (Breskin et al., 2006; Soriano et al.,
2008). And, recently, with the introduction of the optogenetics technology
(Yizhar et al., 2011), the stimulation or silencing of neurons with light can
be precisely controlled, allowing the interrogation of neuronal circuits, the
induction of activity patterns, as well as the control of excitability, for instance
to stop an epileptiform activity(Tønnesen et al., 2009).

1.1.7 Homogeneous cultures

Homogeneous neuronal cultures (Figure 1.2A-C) represent the most standard
and most used culture preparation. They have proven highly valuable in
addressing questions related to the generation and propagation of spontaneous
activity patterns. This is characterized by the collective activation of all the
neurons in a short time window, a phenomenon called network bursts (Ben-
Ari, 2001; Gross and Kowalski, 1999; Kamioka et al., 1996; Streit et al., 2001;
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Wagenaar et al., 2006). Fos sake of clarity, we must specify that a neuron
in such preparation elicits upon firing a series of action potentials or spikes.
A train of such spikes in a neuron is termed burst, whereas the collective
network activation is the ‘network burst’. Diverse studies showed that this
collective activity exhibits a rich repertoire of patterns throughout the time
life of the network (Van Pelt et al., 2004; Wagenaar et al., 2006). Additionally,
various groups studied the initiation of these spontaneous network bursts, and
developed a high variety of theories that include the existence of initiation
zones (Feinerman et al., 2007), synchronization of different type of neurons
and networks(Segev et al., 2004), or the presence of a small subset of highly
active neurons called ‘leader neurons’ (Eckmann et al., 2008, 2010; Ham
et al., 2008) or ‘functional hubs’ (Sun et al., 2010).

This spontaneous activity, however, needs to present universal regulatory
mechanisms since it has been observed in systems as diverse as the retina
(Harris et al., 2002), the hippocampus (Mazzoni et al., 2007), or the spinal
cord (Streit et al., 2001). In this line, our research group at the University of
Barcelona recently proposed a new scenario (Orlandi et al., 2013) that explains
this spontaneous activity as an amplification of the synaptic neuronal noise
through the network. The new scenario was unveiled by combining theoretical
modeling, simulations and in vitro experiments. Although these studies are
not the topic of the present thesis, I participated in their development and
co–authored the main publication describing the problem (Orlandi et al.,
2013).

In addition of the initiation mechanisms, researchers have also studied
in detail the propagation characteristics of the network bursts. Some studies
observed that they propagate trough the network as a circular wave (Maeda
et al., 1995; Orlandi et al., 2013), while others claimed that propagation is
power law distributed in time (Mazzoni et al., 2007; Pasquale et al., 2008; Pu
et al., 2013; Tetzlaff et al., 2010), indicating that the wave propagation occurs
in avalanche–like manner and drives the culture towards a critical state. In
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particular, these studies have pointed out that the age of the neuronal culture
sets different critical regimes, evolving from sub–critical to super–critical
and finally reaching the critical one. This criticality was previously shown in
brain slices (Beggs and Plenz, 2003, 2004) and has been strongly related with
memory and optimal computational capabilities.

Homogeneous culture were also found to support learning (Madhavan
et al., 2006, 2007). Following the discovery of plasticity rules in the coupling
between single neurons (Bi and Poo, 2001) a network–level analog was found
in which path specific potentiation and depression were induced using elec-
trical stimulation (van Pelt et al., 2005). In addition to these plastic changes,
a series of regulatory mechanisms constantly tune synapses and intrinsic
neuronal excitability to achieve single cells and network–level homeostasis
(Shein et al., 2008; Turrigiano and Nelson, 2004). These studies show that
neuronal cultures are potential platforms to explore network–level mecha-
nisms important to information processing, activity propagation, memory and
learning.

Despite all these important studies, homogeneous cultures have two major
imitations. First, the homogeneous organization is markedly different from in
vivo networks. And, second, the restriction of motility impedes the formation
of richer physical circuits which, in turn, could favor a wider spectrum of
activity patterns and functional connectivity traits. For instance, homogeneous
cultures a cannot support parallel and hierarchical information processing,
as observed in the brain (Meunier et al., 2010) and, as we will see, in other
culture preparations.

1.1.8 Patterned cultures

A much richer repertoire of connectivity and activity patterns can be ob-
tained by facilitating heterogeneity in the distribution of the neurons over
the substrate. For instance, modular architectures can arise by sparsely in-
terconnecting small subsets of highly connected neurons. Experimentally,
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and boosted by recent advances in cell patterning techniques, a large set of
tools have become available for controlling neuronal network architecture
(reviewed in Ref.(Wheeler and Brewer, 2010)). However, activity analysis of
patterned networks has been poorly addressed, but the continuous develop-
ments proves the great potential of such an idea.

In general, patterned cultures emerged to explore the intriguing relation-
ship between connectivity and dynamics (Eckmann et al., 2007; Wheeler and
Brewer, 2010). Ideally, by modifying the connectivity of a neuronal culture
in a control manner, one can build neuronal circuits with predefined structural
architectures, to later ascribe them to functional topological characteristics.
Several tools and approaches have been applied to immobilize neurons in
specific locations, or to make them grow on predefined areas (Figure 1.2E-I).
Some of them include the physical caging of neurons within barriers, bio-
chemical approaches to combine cell–attracting with cell–repelling surfaces,
or the patterning of surfaces with lithographic techniques (Gabay et al., 2005;
Macis et al., 2007; Shein et al., 2009; Shein-Idelson et al., 2011; Sorkin
et al., 2006). In order to guarantee neuronal activity in some sparse network
configurations, the majority of these studies used small aggregates of neurons
(clusters) rather than single neurons as nodes in the network ((Figures 1.2C
and 1.2F-G)). Although high density preparations are better to ensure culture
viability —for easily more than a month—, the major requirement in the
preparation of patterned cultures is to reach full network maturation while
preserving the neurons in their initial locations. Neurons indeed present a
high motility that often compromises the quality of patterning(Shein-Idelson
et al., 2011) (Figure 1.2). Substantial efforts are poured in this direction,
and the most successful technique so far combines micro-contact printing
of an adhesion promoter in combination with an agarose repulsive layer. By
using such a cell patterning approach, (Marconi et al., 2012) achieved a regu-
lar structural configuration that exhibited a functional activity that matched
theoretical predictions.
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Finally, these patterned networks were used to study scaling properties in
homogeneous networks, for instance to investigate the robustness of network
bursts under different sizes as well as their self-regulatory nature (Shein Idel-
son et al., 2010). Interestingly, it was also shown that neuron–glia clusters
composed by 40 cells is the smallest network that can show global activity
(Shein Idelson et al., 2010), although other groups refined later the experi-
mental procedures to prepare ‘micro–cultures’ consisting of 4−30 neurons
that were able to exhibit collective spontaneous activity (Cohen and Segal,
2011).

1.1.9 Clustered cultures: appealing complex organization
in a dish

When there are not constraints to keep cells at specific locations, neurons
spontaneously tend to connect to each other, giving rise to highly packed
clusters of neurons and glia that connect with other clusters by bundles of
neurites (axons and dendrites). The size of the clusters range between 20 and
120 µm in diameter and can contain several hundred of neurons and glial
cells. Typically, these glia cells spatially arrange forming a layer on top of
which neurons grow (Shein Idelson et al., 2010).

These clustered neuronal cultures were initially studied to comprehend
the self-organizing principles behind the formation of the clusters (Segev
et al., 2003b; Shefi et al., 2002). Particularly, in biological systems, the
characterization of the emergent self–organization of their components is of
utmost importance to comprehend the mechanisms of life (Eckmann et al.,
2007; Gross and Kowalski, 1999; Van Essen, 1997). Interestingly, the study of
(Segev et al., 2003b) showed theoretically that this spontaneous aggregation
occurs when the pulling forces exerted by the bundle of neurites overcome
the adhesion of the neurons on the substrate. Moreover, this clustered con-
figuration seems to occur without participation of the glia cells and without
any activity (Segev et al., 2003b). In line with this characterization, clustered
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networks emerged as an attractive platform to study the interplay between
morphological and functional connectivity at the mesoscale (Gabay et al.,
2005; Macis et al., 2007; Shein et al., 2009; Shein-Idelson et al., 2011; Sorkin
et al., 2006). Indeed, the fact that the neurons self–organize into clusters facil-
itate cell patterning since they provide higher stability and culture viability is
much higher.

Studies of individual cluster of neurons, i.e. intra–cluster level, revealed
that they present global firing events resembling the network bursts found in
homogeneous networks (Segev et al., 2003b; Shein et al., 2008; Shein Idelson
et al., 2010; Shein-Idelson et al., 2011), and that appeared to be independent
of their size although a minimum number of cells was required (Shein Idelson
et al., 2010). In addition, the distribution of the inter–burst intervals was
qualitatively similar to homogeneous cultures.

However, the potential property that makes clustered cultures very appeal-
ing is that the activity between clusters, i.e. inter–cluster level, is markedly
modular, meaning that clusters fire in small groups much more often than
as an entire system (Segev et al., 2003a; Shein et al., 2009; Shein Idelson
et al., 2010; Shein-Idelson et al., 2011). Activation within a group is con-
catenated, with a delay from the activation of a cluster to the next one that
appears to depend on clusters’ size and their coupling strength (Shein-Idelson
et al., 2011; Tsai and Chang, 2008). Additionally, the inter–cluster delays
are larger than the ones observed between single neuron on homogeneous
cultures (Berdondini et al., 2006; Shein-Idelson et al., 2011; Tsai and Chang,
2008; Yvon et al., 2005).

The modular dynamics of these clustered networks is one of their most
fascinating properties, and reflect their dynamic repertoire (Raichman and
Ben-Jacob, 2008; Shein-Idelson et al., 2011; Tsai and Chang, 2008). (Tsai
and Chang, 2008) showed that there exist certain pathways of firing patterns
initiated by different master groups, although the dynamic patterns are also
conditioned by the spatial configuration of the network. The robustness and
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variability of these repeating pathways could be related to memory storage.
By decreasing the inter–clusters coupling or lowering their effective firing
threshold the repeating pathways remains robust, although the occurrence
rate and their temporal persistence varied (Tsai and Chang, 2008).

As outline before, an important aspect is the dynamics of the clustered
cultures is that activity can include all the culture or only a part of them. This
shapes a network that is not only modular, but also hierarchical (Berdondini
et al., 2006; Shein-Idelson et al., 2011; Tsai and Chang, 2008; Yvon et al.,
2005). Their investigation therefore provide an interesting insight on the
interaction between subnetworks, i.e. the integration–segregation balance.
This hierarchical topology further elevates the richness and complexity as
compared to homogeneous networks.

All these studies showed that clustered cultures are a powerful platforms
to investigate information processing at network–level, to study signal prop-
agation between population of cells, and to uncover plasticity and memory
mechanisms at mesoscopic scale. These investigations shaped a first powerful
reason to investigate these cultures as my thesis project.

From a complex networks perspective these clustered cultures have a
unique potential due to the existence of a two–level network, one within
a cluster and another between clusters, making them really appealing to
study dynamical and topological features of hierarchical as well as modular
networks. The possibility of using clustered cultures as network theory
laboratory shaped the second reason to study such a system.

Indeed, these clustered networks can be seen as a model system to study
in a more precise —and accessible— manner the connectivity among neu-
ronal populations, and address how these anatomical connections can shape
the repertoire of activity patterns that emerge in the system. Moreover, neu-
ronal cultures in general, and these clustered cultures in particular, are ideal
platforms to dive deeper not only in the understanding of the fundamental
traits that shape stable activity patterns in neuronal systems, but also in their
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resilience to perturbations, a fundamental topic in neuroscience and a very
attractive field of research for the physical and network science communities.
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Fig. 1.1 Complex network theory applied to the analysis of neuronal networks. A,
Schematic representation of a neuronal network where nodes represent different neuronal
entities (e.g. neurons or assemblies of them) and links represent different communication
methods (e.g. chemical synapses). Dynamics characterize the onsets/offsets of a given signal
measured for each node as a function of time, and can include action potentials or BOLD
signals observed with fMRI. B, ‘Scale–free’ topologies are particularly appealing models for
neuronal circuits at both the macroscopic (top) and microscopic (bottom) levels. Top panel:
fMRI data, allowing for the mapping of correlated activity between distant brain regions
from which a functional connectivity network is derived. Candidate hubs are those regions
with disproportionately high connectivity. Bottom panel: Multi–neuron calcium imaging
enables functional connectivity to be described at the scale of microcircuits. It also enables
the identification of hub neurons (red), which are functionally connected to many others
(functional links in gray). Adapted from Refs.(Feldt et al., 2011)
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Fig. 1.2 Neuronal cultures. A, Bright field image of a neuronal network where cover the
substrate in a homogeneous manner. Round white objects are neurons. B, Corresponding
fluorescence image. C, Clustered neuronal culture, formed by dense aggregates of neurons
(dark objects) interconnected through bundles of neurites (straight lines). D, Neurons plated
on multi–electrode arrays. Black spots are electrodes. E, Unidimensional neuronal culture,
formed by patterning neurons along a circuit 70 µm wide and 15 cm long. F, Patterned
culture in which aggregates of neurons occupy predefined locations. G, Alternative patterning
in which the aggregates sit over electrodes. H, Patterned culture in which neurons grow at
the top of a topographical mold. I, Patterned culture in which neurons occupy the bottom
of patterned formed by interconnected circular traps. Scale bars in all figures are 100 µm.
Panels F and G adapted from Ref. (Wheeler and Brewer, 2010).





Chapter 2

Experimental Setup and
Procedure

Neuronal cultures, despite their divergence from naturally formed neuronal
circuits such as the brain, constitute an advantageous, accessible and highly
manipulable neuronal system that have always fascinated the scientific com-
munity. They possibly shape one the simplest yet powerful experimental
systems to tackle fundamental questions in both neuroscience and physics.
This chapter aims at describing the experimental tools, strategies and proce-
dures that we developed to give rise, week after week along 4 years, to the
collection of experiments that shape this thesis.

2.1 Culture preparation

All the neuronal cultures used in our experiments were prepared at Jordi
Soriano’s Lab. This lab was a dusty, empty space in January 2009. It needed
more than a year and a gigantic effort to take shape, but by May of 2010 we
were able for the first time to dissect brains, incubate cultures and measure
spontaneous activity in our own space and with our own resources.
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The basic protocols and strategies to prepare the neuronal cultures, and
that we describe in the following, were ‘imported’ from the laboratory of
Elisha Moses at the Weizmann Institute of Science in Israel, the research
group where Jordi Soriano spent about 4 years as postdoc. We want to express
here our gratitude towards Moses’ group and the Weizmann Institute, whose
continuous assistance along 2009 facilitated the birth of our laboratory.

Moses’ group essentially worked with what we call homogeneous cultures,
and the corresponding original protocols can be found in Refs. (Breskin et al.,
2006; Cohen et al., 2010; Soriano et al., 2008). We used the same protocols
with minor modifications. The idea of using clustered cultures arose from
Soriano’s mind and the protocols that we finally used after some refinement
were published in Ref. (Teller et al., 2014).

All the experimental procedures were approved by the Ethical Committee
for Animal Experimentation of the University of Barcelona in 2010, under
order DMAH-5461, and were revised and updated periodically in accordance
to the regulations of the Generalitat de Catalunya.

2.1.1 Self organizing clustered cultures

The neurons that we used were dissected from Sprague-Dawley rat embryos
at 18− 19 days of development. In all experiments we used cortical neu-
rons given the relatively easy access and large size of such a brain region,
and that allowed us to prepare 24−48 cultures simultaneously every week.
Additionally, the majority of the cortical neurons are pyramidal cells and
therefore the formed networks can be considered homogeneous in neuronal
type. This homogeneity also facilitates similar activity patterns in cultures
prepared identically.

Neurons in tissues from 18−19 day old embryos are weakly connected
and therefore easy to dissociate. Gentle pipetting sufficed in all our prepa-
rations to isolate the neurons, ruling out the need for aggressive chemical
agents such as trypsin, as used regularly by others (Chen et al., 2008; Choi
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et al., 1987; Walicke et al., 1986). Pregnant rats were bred at the animal
farm of the University of Barcelona, ceased with CO2 at the same facil-
ity and swiftly transported to our laboratory for dissection. For clarity, the
different chemicals that we used for the preparation of our cultures are sum-
marized in Table 2.1. The embryonic brains were gently dissected in ice
cold L-15 medium. Neuronal cortices were then dissociated by repeated
pipetting with gradually narrower pipette tips, and the obtained suspension
of dissociated cortical neurons was finally seeded onto 13 mm glass cover-
slips (Marienfield-Superior) that incorporated 4 circular cavities in a mold
of polydimethylsiloxane (PDMS). Details of the preparation and treatment
of the PDMS molds are provided in Section 2.2. Cavities were 3 mm in
diameter and 1− 4 mm deep, depending on the experiment. The cavities
limited the size of the neuronal networks to convenient dimensions for our
imaging system, ultimately ensuring the visualization of neuronal activity in
the whole network and with optimum recording conditions. A sketch of the
cell culture preparation is provided in Figure 2.1A.

Neurons within each cavity connected to one another to constitute a new
network. The glass substrate was clean of impurities and did not contain
any adhesive protein, therefore facilitating cell motility and aggregation
(Figure 2.1B). This aspect is crucial to create the clustered cultures, a process
that arises naturally as a self–organizing mechanism. Indeed, neurons can
move freely on the glass substrate. In that condition, the neurites’ tension
between neurons overcomes the substrate friction, facilitating the neuron’s
motility and coalescence (de Santos-Sierra et al., 2014; Segev et al., 2003b).

For each dissection we used a multi–well plate of 24 wells containing in
each well the identical glass–PDMS structure. Then, each well contained 4
minicultures of 3 mm in diameter each, giving rise tp around 100 minicultures
per plate, and sharing similar conditions. Neurons were placed on the cavities
with a nominal density of 2500 neurons/mm2 and incubated in plating medium
at 37◦C, 5% CO2 and 95% humidity up to day in vitro (DIV) 5. After plating,
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Product Name Description Provider   Role

L15+2G
L15 enriched with 0.6% glucose and 

gentamicin
Sigma-Aldrich

Maintains physiological pH 

conditions before planting

MEM+3G

Essential Medium Eagle's-L-

glutamate enriched with gentamicin, 

glutamate and glucose

Sigma-Aldrich
Main buffer for cell culturing 

and development

Plating Medium

MEM+3G with 5% of foetal calf 

serum (FCS), 5% of horse serum 

(HS), and 0.1% B27

FCS and HS, 

Invitrogen      

B27, Sigma-

Aldrich

Neuronal growth

Chenging 

Medium

MEM+3G with 0.5% Uridine, and 

10% HS

FUDR and 

Uridine, Sigma-

Aldrich 

Limits glia cell division

Final medium MEM+3Gwith 10% HS HS Invitrogen

Maintains a proper 

enviroment to keep cultures 

healthy for long time

EM

500ml DDW with 128mM NaCl, 1mM 

CaCl2, 1mM MgCL2, 45 mM 

sucrose, 10mM glucose, and 0.01M 

Hepes; pH 7.4

-

Recording solutions i.e. pH-

stable buffer for actual 

experiments

Table 2.1 Cell culture and recording solutions. The table summarizes the different culture
media used for preparation and maintenance of the cultures, as well as for recording activity.
We also include the manufacturer of the product and the role of the different products.

the absence of adhesive proteins on the glass substrate rapidly favored cell–
cell attachment and, gradually, the formation of islands of highly compact
neuronal assemblies or clusters that minimized the surface contact with the
substrate. By DIV 2 the culture encompasses dozens of small aggregates that
coalesced and grew in size as the culture matured. By DIV 4−5, neuronal
clusters exhibited spontaneous activity and connections between them were
visible. At this stage of development, clusters also anchored at the surface of
the glass. Their number and position remained stable although they continued
growing and developing connections along the next 2 weeks (Figure 2.2).

Clustered cultures were maintained for about 3 weeks, as follows. At DIV
5 the plating medium was switched to changing medium to limit glial cell
division, and from DIV 8 onwards cultured in final medium with a periodic
fluid replacement every three days.
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Fig. 2.1 Culture preparation. A, Cortices from embryonic rat brains were dissected and
neurons dissociated by pipetting. Neurons were then suspended in plating medium and
seeded onto previously prepared PDMS–glass strctures 13 mm in diameter, and containing 4
cavities, each 3 mm in diameter. B, Each culture well contained 4 networks, which could
be neatly isolated by adjusting the height of the PDMS walls. Two main cultures could be
prepared. In the absence of the adhesive protein PLL (top), neurons moved and aggregated,
shaping the clustered configuration. The coating of the glasses with PLL (bottom) gave rise
to the homogeneous networks.

For sake of clarity, culture preparation and maintenance in homogeneous
cultures were identical as described for the clustered ones, i.e. we used the
same nominal neuronal density for plating, we included PDMS pierced molds
to restrict neuronal growth in cavities of 3 mm in diameter, and we refreshed
the culture medium in the same manner. The crucial difference resides in
the fact that, prior plating, the PMS–glass structure was treated overnight
with poly–L–lysine (PLL) to provide a coating of adhesive protein. Glasses
were then washed 3 times with double distilled water (DDW) to remove
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DIV2 DIV3 DIV5 DIV7

DIV8 DIV9 DIV12 DIV14

Fig. 2.2 Culture development. The images show different stages of a representative clus-
tered culture, from DIV= 2 to 14. By DIV= 2−4, the culture encompasses several dozens
of small, disconnected neuronal assemblies. Around DIV= 5− 7 these small assemblies
merge into one another shaping recognizable clusters, which grow in size and create pairwise
inter–connections. Clusters anchor to the substrate at this stage of development, remaining
at similar positions although along the next 2 weeks they continue growing and developing
connections.

residual PLL. The adhesive protein anchors the neurons onto the substrate,
restricting their motility and therefore preserving the initial homogeneous
neuronal spatial distribution.

2.2 Glass-PDMS structure preparation

PDMS is a silicon–based polymer that is transparent and non–toxic. At
the beginning of the thesis this polymer was used as a mold to control the
neuronal connectivity and later just to restrict the size of our cultures. The
glass–PDMS structure preparation used for the latter case is described below.

First, prior plating, glasses were treated in 70% nitric acid during 2 h,
later washed 2 times in DDW, sonicated in ethanol for 30 min, and finally
dried with a methane gas torch.
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In parallel, we prepared the PDMS mold. We used the PDMS Sylgard
184 Silicone Elastomer Kit provided by Dow Corning (Midland, MI, USA).
This kit has two components; a resin (base) and a hardener (curing agent).
Both components were briskly mixed in a small beaker in a concentration
10:1 (typically 30mg of the resin with 3mg of the hardener) until they were
completely merged. The viscous mixture was carefully spread over a 100
mm diameter petri dish to achieve a large area and a homogeneous layer. The
amount of PDMS poured depended on the desired thickness of the mold,
typically in the range 2−4 mm. The PDMS dish was either left overnight at
room temperature or heated at 80◦C during 2 h in a oven. Once the PDMS
film hardened, it was pierced with a stainless steel puncher of 13 mm in
diameter, and that corresponds to the same diameter as the cover glasses used
for culturing.

Cavities in the PDMS were next obtained by piercing the film with a
puncher (Integra-Miltex) of 3 mm in diameter. The reason to restrict the
cavities in diameters of 3 mm was primarly to fit 2−4 minicultures (depending
on the study) in the field of view under optimal recording conditions, as
described later. Finally, the PDMS molds were placed on the glass coverslips
and autoclaved at 105◦C C achieving a highly adhesion between the combined
structures. This process both sterilized the PDMS while strongly bonding it
to the glass.

The thickness of the PDMS film was set to satisfy specific experimental
conditions while balancing culture preparation efficiency, imaging quality,
and healthy neuronal network development. Two experimental conditions
shaped the work in this thesis:

• Standard biochemical environment experiments. Are those in which we
simply monitored spontaneous activity in the cavities. The buffer used
upon recording of activity was the same in all cavities and therefore
thin PDMS films sufficed.
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• Specific, perturbative biochemical environment experiments. Are those
in which different chemical agents were applied in each cavity during
recording of activity. This procedure required the cavities to be inde-
pendent, in order to prevent the spread of these chemical agents to other
mini-cultures, and therefore thick PDMS layers were required.

To fine tune the thicknesses H of the PDMS film, the options that we
finally explored and their use are the following:

• H < 1 mm. The PDMS attached firmly to the glass, but the neurons
on the top of the PDMS connected to the ones within the cavities,
effectively producing a single network in the 13 mm diameter PDMS-
glass structure. Although we tested the idea of peeling off the PDMS
from the glass before the actual measurements to isolate the networks
in the cavities, the procedure resulted in the damage of most of the
clusters. Hence, these thicknesses were excluded from the preparation
protocol.

• 1 < H < 2 mm. The PDMS attached firmly to the glass and, more
importantly, the neurons at the top of the PDMS and the ones at the
cavities evolved indepemdently, shaping independent networks. This
thickness range was therefore used as the optimum one for the standard
experiments. In these experiments, the PDMS film was left in the
culture during recording.

• 2 < H < 4 mm. Autoclaving was not sufficient to keep PDMS and glass
firmly bond,requiring an additional oxygen plasma treatment to ensure
firm attachment. Such thicknesses, however, were not necessary for
standard experiments, but were the basis for the specific, perturbative
biochemical environment ones.

• H ≃ 4 mm. Oxygen plasma treatment of the PDMS before autoclaving
significantly increased the binding strength with the glass. Treatment
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was carried out in the facilities of the Institute for Bioengineering
of Catalonia (IBEC). Plating was successful and networks within the
cavities neatly developed. This procedure was the one finally used
for the specific, perturbative biochemical environment experiments,
assuring that each cavity had walls sufficiently high to preserve its own
solution.

• H > 5 mm. PDMS-glass binding was strong upon oxygen plasma
treatment, but the neurons did not develop properly within the cavities,
possibly due to inefficient flow of nutrients in such a deep structure.
Cultures were inviable and typically died after 4 days in vitro. These
thicknesses also made difficult the recording of activity, since the walls
of the cavities not perfectly aligned with the objective masked the
neurons. We therefore excluded such heights from experiments.

2.3 Experimental setup

Spontaneous neuronal activity in our experiments was monitored using the
technique known as em Fluorescence Calcium Imaging (Rochefort et al.,
2008; Smetters et al., 1999). This experimental technique allows the detection
of neuronal firing by the indirect monitoring of calcium transients through a
calcium sensitive probe, as described in detail in the review of Ref. (Grien-
berger and Konnerth, 2012). This technique was the main activity monitoring
technique used in Moses’ lab (Breskin et al., 2006), and was implemented in
our lab upon the creation of Soriano’s group. The technique is very versatile,
and has been extensively used both in vitro (Breskin et al., 2006; Orlandi
et al., 2013) and in vivo (Ahrens et al., 2013).
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2.3.1 Calcium fluorescence imaging

Ca+2 ions are involved in important cell functions such as contraction, se-
cretion, neuronal activity and plasticity. In particular, when a neuron fires
there is a high intake of Ca+2 ions inside the cell (100 times higher compared
to the free calcium concentration at rest (Berridge et al., 2000)). By using
calcium sensitive indicators that binds to the intracellular free calcium ions
one can detect, through a properly tuned optical system, the onset of neuronal
firing. A typical fluorescence signal of neuronal firing is characterized by a
sharp increase of about few milliseconds upon neuronal depolarization (rapid
influx of calcium ions through the voltage–gated Ca+2 channels) followed
by a slower decay of about few seconds during hyperpolarization (outflow of
these ions through a slow pumping process).

Two kinds of calcium indicators have a widespread use, namely the chem-
ical indicators and the genetically encoded ones (GECI) (Knöpfel, 2012). The
former are small molecules that modify their fluorescent properties upon bind-
ing with calcium ions, ultimately emitting fluorescence light. The latter are
genetically modified molecules that incorporate a GFP (or its variants) with
other molecules that, at binding to calcium ions, experience conformational
changes that enable the fluorescence emission. In particular, throughout this
thesis we used the chemical calcium indicator Fluo-4-AM (Invitrogen) (Gee
et al., 2000; Paredes et al., 2008). Compared to others chemical indicators,
Fluo-4 presents a high light intensity that results into a high signal to noise ra-
tio (SNR). This overall quality makes Fluo-4 one of the most extensively used
probes to detect neuronal activity, both in neuronal cultures (Ganguly et al.,
2001; Orlandi et al., 2013; Tibau et al., 2013) and in brain slices (Carrillo-Reid
et al., 2008; Ikegaya et al., 2004). Figure 2.3 illustrates typical fluorescence
images from our experiments, together with representative activity traces.

In general, the binding of the indicators to the calcium ions is much
faster than the unbinding, a feature that makes relatively easy to capture the
onset time of firing, but not repeated activity events such as spike trains, as
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1min 5minburst burst

clustered cultures homogeneous cultures

200mm

A B

Fig. 2.3 Calcium Imaging in our neuronal cultures. A, Bright field image of a clustered
culture (top), its corresponding calcium fluorescence signal (center), and two representative
fluorescence traces (bottom) of the neuronal clusters marked with yellow and red arrows.
B, Equivalent representation for a homogeneous neuronal network. Scale bars apply to all
images.

illustrated in Figure 2.3. Then, by using a high speed camera, one can easily
distinguish those onset times by detecting the sharp rise in the fluorescence
signal.

2.3.2 Calcium Imaging versus MEAs

First, it is important to point out that there exist a number of techniques
—in addition to calcium imaging— to detect neuronal firing. All techniques
have their advantages and limitations, but the final choice for one or another
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depends on the experimental system and the particular aspect that one is
interest to explore. Here we briefly review the importance multi–electrode
arrays (MEAs) as alternative approach to calcium imaging in vitro.

We must remark first that fluorescence calcium imaging allows the vi-
sualization of calcium dynamics in a relatively simple and straightforward
manner, and subsequent data processing (e.g. to infer the onset of neuronal
activity events) is relatively simple. However, the temporal resolution of this
technique is limited by the calcium dynamics and the indicator kinetics, and
typically falls in the 5− 20 ms range. This rules out the fine detection of
single spikes.

MEAs, on the contrary, allow for a much finer temporal resolution, and
has been applied to both brain slices (Beggs and Plenz, 2003; Carmeli et al.,
2013) and dissociated neurons (Bettencourt et al., 2007; Downes et al., 2012;
Raichman and Ben-Jacob, 2008). A standard MEAs is constituted by 64
microelectrodes with 30µm in diameter that are spatially arranged in a 8×8
grid with a typically spacing of 200µm. This experimental system provides
extracellular electrical signals (local field potentials, LFP) from single neurons
or population of cells that have been plated on the microelectrodes substrate.
The main advantage of this technology is its high temporal resolution, in the
range 10−100 µs, that allows for accurate spike detection. MEAs also offer
long recordings, being ideal for monitoring network development. However,
compared to Calcium Imaging, the major drawback of MEAs is its poor
spatial resolution, which is limited by the number of recording electrodes. In
addition, it is difficult to ensure that a single neuron is precisely located at the
electrode. Indeed, several neurons often pack together and slightly far from
the electrode; or crossing neurites attach to the electrodes. Hence, MEAs data
requires strong data processing algorithms to unveil which neuron fired and
where it was located, a difficult problem known as ‘spike sorting’ (see review
(Lewicki, 1998)).
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The relevance of MEAs in producing fine data has motivated the devel-
opment of denser MEAs to overcome their poor spatial resolution. Two
remarkable examples are the high-density MEAs (Ito et al., 2014), with 512
recording sites and that can access about 100 neurons simultaneously; and the
multi-transistor arrays-based on complementary semiconductor–metal–oxide
(CMOS) technology, with about 10.000 recording sites (Hierlemann et al.,
2011). Nevertheless, these devices are not widely spread due to their difficult
fabrication, high cost, demanding data storage and challenging analysis.

Calcium Imaging is not absent of difficulties. Experiments may be af-
fected by both photo-damage, i.e. the damage of neuronal cells due to the
fluorescence light; and photobleaching, i.e. the gradual alteration and degra-
dation of the fluorescence probe to such a extend that it is unable to fluoresce.
Both aspects can be minimized by running short experiments or using a weak
light, but the quality of the measurements can be compromised. Additionally,
chemical indicators require the incubation of the culture in the presence of
the indicator and a solvent, typically DMSO, which deteriorates the health of
the culture at long term and, effectively, limits its use to only one experiment.
MEAs do not have these experimental limitations, making it very suitable for
long recordings.

In our case, it is clear that MEAs could have been advantageous, in partic-
ular to monitor the development of the clustered cultures from an ensemble of
independent neurons to the set of interconnected clusters. We could have also
used GECI instead of Fluo-4 to circumvent the toxicity of DMSO. GECI are
non–chemically invasive since, when binding to the calcium ions, the confor-
mational changes that they experience result into actual fluorescence. GECI
are typically incorporated into the cells through viral transduction shortly
after plating. No further treatment is required, and cultures can be measured
several times.

Our choice for chemical indicators was essentially economic and practical,
since the newly formed Soriano’s lab had very limited resources. Chemical
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indicators are cheap, simple to manipulate, and do not require extremely
sensitive optical systems to obtain good recordings. Additionally, Soriano’s
long expertise with these indicators ensured that we could obtain good quality
data and results in a reasonable time, ultimately making this thesis possible.
As we will see along this thesis, our measurements using these fluorescence
markers provided very interesting results whose many open questions can be
explored in the future using GECI or MEAs.

2.4 Experimental procedure

We here describe the experimental systems and the steps that we followed to
carry out the different sets of experiments. In all experiments we measured
spontaneous activity, i..e the default dynamics that neuronal cultures exhibit.
Spontaneous activity was typically measured at day in vitro (DIV) 5− 16,
i.e. covering about two weeks of development. Cultures started to degrade
by DIV 25, and therefore we did not use cultures older than 3 weeks in
our experiments. We performed typically two kinds of experiments, namely
standard experiments and resilience experiments. Standard experiments
consisted of recording the spontaneous activity of the clustered cultures
without any kind of perturbation, while in resilience experiments we applied
a physical or biochemical damage to prove the network resilience. Table 2.2
summarizes the procedures in these experiments.

Although most of the experiments were carried out in Soriano’s laboratory,
a number of specific experiments were carried at the nearby Institute for
Photonic Sciences (ICFO, Castelldefels). The experimental systems used, as
well as the goals of the research, were different in one or another facility, and
are described in the following when required.
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STANDARD EXPERIMENTS Experimental Procedure # exps fps

E + I / E
20 min recording (E+I) 40 min recording with 

[bic]=40uM (E only)
35 100-83 (2MNC)

E 50-60 min recording with [bic]=40uM  (E only) 25 100-83 (2MNC)

RESILIENCE EXPERIMENTS

Physical Damage

Physical Damage
20-30 min recording (E+I) 40 min recording after 

physical damage (E+I)
40 100-83 (2MNC)

Biochemical Damage 

CNQX Degradation

20 min recording with [bic]=40uM and [APV]=20uM 15 

min recording with increasing [CNQX] (30, 60, 120, 

300, 600, 1000, 2000 nM)

15 83 (2MNC)

Photodamage 3-4 h recording with high intensity light (E+I) 10 50 (4MNC)

Damaging chemical agents 

involved in Alzheimer Disease

20-30 min recording with [bic]=40uM   40 min recording 

after the application of the chemical agents
15 50 (4MNC)

Table 2.2 Performed experiments This Table classifies the kind of experiments and their
respective procedures performed along this thesis. (2MNC indicates 2-MINICULTURES
configuration; 4MNC indicates 4-MINICULTURES configuration.)

miniculture

glass

CMOS
camera

Hg ARC
lamp

PDMS mold

inverted microscope

CMOS camera 

BA observation chamber

Fig. 2.4 Experimental setup at Jordi Soriano’s Lab. A, Standard configuration used in
most of the experiments, showing the invered microscope and the attached CMOS camera.
The culture to be studied sits the in center of the x − y stage and appears blue due to
the excitation light for fluorescence. B, Detailed sketch of the experimental system. The
observation chamber contains 4 minicultures and is filled with EM. An arc lamp excites the
fluorescence with a wavelength of 485 nm (blue). Fluorescence light is emitted at 520 nm
(green), which is captured by the camera.
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2.4.1 Experiments at Jordi Soriano’s Lab

Figure 2.4 shows the optical system and the common procedures in Soriano¡s
laboratory. Prior to recording, the glass coverslip containing the 4 minicultures
within the PDMS cavities (Figure 2.5A) was transfered from the culture plate
to a 30 mm diameter petri dish (Corning) that contained a pH–stable medium
for the actual recordings (external medium, EM, see Table 2.1). The culture
was then incubated in the presence of Fluo–4. The chemical indicator came
as powder in stocks of 50 µg, and was dissolved in DMSO (1 µl of DMSO
per µg of Fluo-4) prior use. We used 3µl of Fluo4 solution in a volume of 2
ml EM (1µg/ml of Fluo4 per ml of EM), which was gently spread across the
culture using an orbital shaker (Termo-Fischer) at 40 rpm. After incubation,
the culture was moved to an observation chamber filled with 4 ml EM, and
consisting of a 30 mm diameter, special petri dish that contained at the bottom
a circular crevice 14 mm in diameter and 500 µm deep. The culture was
placed in the crevice in such a way that rested at its walls, hence remaining
stable for the subsequent recording. The chamber was finally moved to the
microscope, and left 5 min in darkness for stabilization. The PDMS pierced
mold was usually left in contact with the glass during both incubation and the
actual experiment to minimize accidental damage to the aggregates during
the manipulation of the cultures.

The observation chamber was mounted on Zeiss Axiovert inverted micro-
scope coupled with a high speed CMOS camera (Hamamatsu Orca Flash 2.8),
as illustrated in Figure 2.4. All experiments were carried out at 26◦C using a
thermostat (Scientifica). Depending on the objective of the experiment and
ultimately in the number of minicultures simultaneously recorded, we used
two optimized settings that are described below.

• 2-MINICULTURES

This configuration was typically used for recording at the highest cam-
era speeds. To simultaneously visualize two minicultures in the field of



2.4 Experimental procedure 43

A

B

C

Fig. 2.5 Observation chamber and imaging configurations. A, Picture of the observation
chamber compared to 1 euro coin. On the center one can observe the glass–PDMS mold
structure showing the 4 cavities, each 3 mm in diameter. B, Fluorescence image of 2 clustered
networks in the ‘2-MINICULTURES’ configuration. C, Bright filed image of 4 clustered
networks using ‘4-MINICULTURES’ configuration.

view we used an objective of 2.5X in the microscope combined with
a 0.32X optical zoom in the camera. By using this configuration we
were able to record at 83−100 frames per second (fps), i.e. 12−10 ms
between consecutive frames. These settings provided a field of view
of 7.6×3.4 (width x height) mm2. We note that high camera acquisi-
tion rates required the reduction of pixel lines, and therefore high fps
inevitable implied the access to only 2 minicultures. Each frame was
acquired as 8-bit grey-scale images, a size of 940× 400 pixels, and
a spatial resolution of 8,51µm/pixel. (Figure 2.5B). This configura-
tion shaped those experiments were the precise onset time was very
important for subsequent analysis. Concretely, we used these settings
to carry out the standard experiments and some resilience experiments.
This configuration was particularly appropriate for the physical damage
experiments, allowing the simultaneous recording (with high temporal
resolution) of the damaged culture and the control one one.

• 4-MINICULTURES
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This configuration involved an objective of 2.5X combined with a
0.32X optical zoom with acquisition speeds in the range 45−50 fps
(22−20 ms interval). These settings covered a field of view of 8.2×6.1
mm2 and allowed the simultaneous recording of 4 mini-cultures (Fig-
ure 2.5C). Individual frames were acquired as 8-bit grey-scale images, a
size of 960×720 pixels, and a spatial resolution of 8.51µm/pixel. This
configuration was tailored for the majority of the biochemical damage
experiments. Especially, in the experiments dedicated to study the
damaging role of biochemical agents involved in Alzheimer’s disease,
this configuration was ideal since one cavity (i.e. a miniculture) was left
as control while the others were dosed with specific chemical agents.

The settings in all these configurations were optimized to have a good
balance between three main factors: image quality, sufficient time resolution,
and minimum light intensity. The latter was particularly important to mini-
mize photo-damage and photo-bleaching, allowing recordings of about 2−3
h with the neuronal culture in healthy conditions. However, we normally
limited most of our experiments to about 1 h of recording since we had to
balance also the duration of the experiments with the amount of data to store
and process. The combination of high acquisition speeds, e.g. in the 83−100
fps range, and high resolution images (every single frame occupying about
0.5 MB) resulted in large data files of about 150 GB per hour. Data had to be
saved in a solid state disk of 500 GB during acquisition and then transferred
to other disks for analysis. The analysis itself required the conversion of the
acquired image sequences from the specific Hamamatsu format to individual
frames, which doubled the data in the hard drive. Hence, a single experiment
recorded for 1h required a total of 300 GB, which would increase to 900 GB
for a longer, 3 h recording for instance, totally beyond our possibilities.

Measurements in homogeneous cultures were carried out in the same
way, with the only difference that the recording speed was increased to
100−150 fps to take into account the fast propagation of activity fronts in
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these preparations, as observed for instance in the study of our partners in
Ref. (Orlandi et al., 2013).

2.5 Pharmacology

We applied different drugs to the neuronal cultures depending on the study to
be carried out, although in the majority of the cases we targeted excitatory
and inhibitory connections. All the pharmacological protocols described
here were used identically in clustered and homogeneous cultures. Table 2.3
summarizes the set of the basic neurotransmitter receptors present in our
neuronal cultures, the antagonists used in our experiments, and their major
action.

Neurotransmitter Antagonist Action

AMPA-glutamate CNQX Reduces exitation

NMDA APV Block non-glutamate excitation

GABAA Biscuculline Blocks inhibition

Table 2.3 Basic neurotransmitter receptors present in neuronal cultures, their respective
antagonists applied in our experiments, and their major action.

2.5.1 Blocking Inhibitory connections

Neuronal cultures encompass both excitatory and inhibitory connections, a
connectivity blueprint that we refer as ‘E+I’. Neurotransmitters bind to chem-
ical receptors at the post–synaptic neuron, exciting or inhibiting it depending
on the excitatory or inhibitory nature of the receptors. In our experiments we
typically left the excitatory NMDA 1 and AMPA 2 receptors active whereas
the inhibitory GABA 3 receptors were blocked. We denote this latter group

1N-methyl-D-aspartate
2α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
3γ-Aminobutyric acid
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as ‘E–only’ connectivity blueprint. We performed the experiments in such
excitation-only configuration for simplicity in analysis, since the inhibitory
connections play a complex role within neuronal dynamics that it is still
unknown.

For neuronal cultures above DIV 6 we applied 40 µl of the antagonist
bicuculline (Sigma) to block the inhibitory synapses. We left active in-
hibitory synapses for experiments with DIV< 6 since at this early stages of
development GABA has a depolarizing effect and therefore an excitatory
action (Ganguly et al., 2001; Soriano et al., 2008; Tibau et al., 2013). At
higher days in vitro a phenomenon known as ‘GABA swicth’ occurs, and
GABA takes its standard inhibitory role. As reference, in the cortex there are
80% excitatory neurons and 20% inhibitory ones (Soriano et al., 2008).

Once the drug was applied, we waited 5 min for the drug to take effect
before starting the recordings.

2.5.2 Blocking Excitatory connections

In other experiments we studied the decay in spontaneous activity as a result
of progressively weakening the neuronal network by blocking the NMDA
and AMPA excitatory receptors. We first blocked NMDA receptors, which
comprises about 20% of the excitatory receptors, with 20 µM of the antag-
onist APV4 (Sigma). Later on we gradually applied CNQX 5 (Sigma), an
AMPA-glutamate receptor antagonists in excitatory neurons. For [CNQX]
= 0 the connectivity strength between neurons is maximum. As [CNQX]
is administered, the efficacy of excitatory connections steadily diminishes,
which is accompanied by a reduction in spontaneous activity. High CNQX
concentrations lead to a complete halt in activity. In the measurements we
used CNQX concentrations in the range 0−2000 nM, in quasi-logarithmic

42-amino-5-phosphonovaleric acid
56-cyano-7-nitroquinoxaline-2,3-dione
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steps (see Table 2.2) . We left the culture unperturbed for 5 min after each
CNQX application for the drug to dissolve and act on the neurons.

2.5.3 Chemical preparation for Aβ and M-Aβ

The experiments of network affectation upon magnetite, amyloid–β (Aβ )
and magnetite-amyloid–β complex (M-Aβ ), oriented to study Alzheimer’s
disease in vitro, were carried out in collaboration with Prof. J. Samitier’s
group at IBEC. Their team prepared the chemicals (described next), while all
the experiments were conducted in our laboratory.

The synthesis of magnetite-Aβ42 complex was carried out by mixing 12.5
µmol iron (III) chloride hexahydrate (FeCl3-6H2O) (Sigma) and 6.25 µmol
Iron (II) chloride tetrahydrate (FeCl2-4H2O) (Sigma) in 10 µl of DDW and
added to 0.04 µmol of lyophilized Aβ42. The pH was adjusted afterwards to
physiological conditions with 2.6 µ l of 7.2 M ammonium hydroxide (Sigma).
The solution was sonicated at 37◦C for 30 min to minimize aggregation and
self-fibrilization of the Aβ42 Dahlgren et al. (2002a); Sato et al. (2006). To
remove side products from the magnetite-Aβ42 complex, the solution was
washed with consecutive cleaning steps with 1 ml ethanol and 1 ml DDW.
Between washing steps, unattached amyloid and other side products were
separated from the magnetite-Aβ42 complex using a neodymium magnet.
The sample was next mixed with 1 ml ethanol and centrifuged at 2400 rpm for
2 min. The liquid was next removed and the sample was kept redissolved in
RS for its use in the experiments. The final concentrations were 12.5 mM for
Fe3+, 6.25 mM for Fe2+, and 10 µM for the Aβ42 peptide. These values are
similar to the ones reported in brains of AD patients (Bishop and Robinson,
2003; Kuo et al., 1996).
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2.6 Experiments at ICFO’s Lab

By January 2012 we started a collaboration with the group of Pablo Loza at
the Institute for Photonic Sciences in Castelldefels, Barcelona. The goal of
the collaboration was to monitor the changes in spontaneous activity upon
physical damage, and using state of the art optical tools. However, at the
beginning of the collaboration we found important technical problems, most
notably the lack of a sufficiently sensitive camera for the recording of activity,
the lack of a dedicated computer for data acquisition and analysis, and the
difficulties in building an adequate culture chamber for the cultures to be
both monitored and damaged in a control manner. Initial experiments failed
and the collaboration was put at hold for two years to address all technical
aspects. Collaboration restarted by January 2014, and improvements included
a redesign of the experimental setup; a new, highly sensitive Hamamatsu
Orca Flash 4.0; a workstation; and an improved culture chamber with the
requirements that we needed, and that allowed both the monitoring of activity
for long time with neurons in healthy conditions and the possibility to act
neatly on the culture. The experimental setup and procedure describe here
corresponds to this final configuration. We note that all the process of the
design and setup of the experimental systems was developed together between
Soriano’s and Loza’s groups.

Fig. 2.6 Removal of connections through laser ablation. From left to right, different stages
of the operation to remove the bundle of connections between two clusters. The bright spot
is the laser beam. The entire procedure needs about 5 min.
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As we said, the main objective of these experiments was to physically
damage a neuronal culture to study the changes in spontaneous dynamics
after the physical attack. Although we initially considered as target the
cutting of connections between clusters of neurons, we experienced important
difficulties. First, the connections between clusters were not well defined
in most of the cases, with bundle of axons spreading everywhere or highly
tangled. This made difficult to ensure the full disconnection of two clusters
after the destruction of links (see Figure 2.6). And secondly, the physical
connectivity could be more complex than the one would initially assess
by visual inspection, e.g. connections could cross more than one cluster.
Conversely, to silence a given cluster is much easier for two reasons. First,
they are very clear morphologically (they appear as well defined spheres);
and second one can immediately ensure that they have become silent after
damage since they will be strongly bright in fluorescence and inactive.

Culture Preparation

In all the experiments at ICFO we used clustered cultures following the
identical culture preparation as described in Section 2.1. We performed all
the culture preparation in Soriano’s lab. Normally, about 14 PDMS–glass
combined structures were prepared, containing each 4 minicultures with a
diameter of 3 mm. By DIV 7−14 the best neuronal cultures were transported
from Soriano’s lab to ICFO in a portable incubator with appropriate phys-
iological conditions to maintain them healthy during the trip, which laster
about 30 min. At ICFO, neuronal cultures were immediately moved into an
incubator with identical settings as ours.

Experimental Setup

We used again the Calcium Imaging approach to monitor the spontaneous
activity of clustered cultures. In this case, the fluorescence signal was detected
using a multimodal microscope (developed by ICFO itself) coupled with a
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Fig. 2.7 Experimental setup at ICFO’s Lab. A, Multimodal microscope at ICFO’s lab,
highlighting its main components. B, Detailed sketch of the ‘top epi onfiguration’, suited
for spontaneous activity fluorescence recordings in 2 minicultures (yellow band). The
observation chamber is closed and sealed with a glass cover to prevent medium evaporation.

high speed CMOS camera (Hamamatsu Orca Flash 4, USB3 mode) providing
high quantum efficiency of collection and large field of view (see Figure 2.7).
The multimodal microscope is an extension of a confocal microscope (Nikon
C1) that allows two–photon fluorescence, and nonlinear photoablation allow-
ing accurate nano–surgery by optical manipulation and stimulation. To carry
out the experiments, we set the microscope in three different configurations
that we called ‘top EPI configuration’, ‘bottom EPI configuration’, and ‘laser
configuration’.

• ‘Top EPI configuration’. The multimodal microscope was modified to
implement an epifluorescence microscope in an upright configuration.
Mercury lamp (Nikon ND16) lamp was used guided by a liquid optical
fiber into the EPI-illumination port. The fluorescence filter set was a
dicroic mirror (FF 509 FDI) with a green filter and a blue bandpass filter
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(HQ470/40X). We used the top EPI configuration to record spontaneous
activity through calcium fluorescence imaging of 2-minicultures. The
frames were imaged with 254×534 pixels (3.5×6.5 mm2), at 16 bits
grey levels, allowing recordings at 83-100 fps acquisition.

• ‘Bottom transmission configuration’. The mercury lamps were used as
the upright bright field transmission lamp in the ’bottom transmission
configuration’. The optical fiber was moved from the top port for
the ’top EPI configuration’ to the standard EPI port for the ’bottom
transmission configuration’. In this case, we selected the TRITC filter
(green light). This configuration was used to acquire bright field images
of the 4 minicultures, which provided an evaluation of the clusters or
connections to be cut using the upright path.

• ‘Laser configuration’. The uniqueness of this setup lays in the use of a
Ti-sapphire laser (Mira Optima 900-F, Coherent) either to ablate some
connections between clusters or damage the clusters themselves. That
laser is an infrared ‘ultra short pulsed’ (in the order of the fs) with
400mW enabled for ablation (more details in the ’Laser adapted for ab-
lation’ section). In the ‘laser configuration’ we used a water immersion
objective of 25x (Olympus) with 1.05 NA (Numerical Aperture).

Experimental Procedure

The experimental procedure in these experiments was similar to the one pre-
viously described in Section 2.4, with only a modification in the observation
chamber. Thus, a combined PDMS–glass structure containing 4 minicultures
was selected and placed in a petri dish containing 1.5 ml of EM with 2µl of
Fluo4. After 25 min of incubation, the medium in the system was switched
to 2 ml of fresh EM, and finally placed into the ICFO–dedicated observation
chamber (see Figure 2.7).
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The observation chamber was built at the machine shop of the University
of Barcelona, following our design and guidelines (Figure 2.8). Different
configurations were tested until we achieved the most suitable one for our
experiments. The final one that we used was formed by two elements. The
top one was manufactured in Teflon and contained a wide circular aperture
in its center, creating a cylindric hole 15 mm in diameter and 5 mm deep.
The bottom one was a stainless steel structure that incorporated a 5 mm deep
cavity with a diameter of 15 mm except just at its basis, which was designed
as a 100 µm thick crevice with an opening of 11 mm in diameter. Such a
design provided a ring of of 3 mm in diameter where the culture sit, and
accompanied of a silicone ring to seal the chamber (Figure 2.8).

A B C

Fig. 2.8 Observation chamber at ICFO’s Lab. (A-B) Pictures of the device, showing the
Teflon part and the stainless steel one. C, Final configuration. The culture is place at the
bottom of the stainless steel structure and over a silicone ring. The device is then screwed
to the Teflon part, the central cavity filled with EM, and the top opening sealed with a glass
coverslip to prevent evaporation.

The glass with the PDMS was carefully placed over the silicone ring, the
whole metal structure rapidly screwed with the Teflon part, and finally the
chamber filled with 2 ml of EM. During the whole process we took special
care to maintain the culture always in contact with EM. Finally, we covered
the top hole with a glass coverslip 30 mm in diameter to prevent medium
evaporation.

Prior recording, the observation chamber was transferred to the micro-
scope and left in darkness for 5 minutes for stabilization. Then, we changed
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the microscope to the ‘bottom EPI configuration’ to capture a a high resolu-
tion, bright field snapshot of the 4 minicultures. The optical system was next
changed to prepare the ‘top EPI configuration’ that permitted to excite the
sample with fluorescence light. In this step, we selected the 2 most active
minicultures. We then adjusted the settings in the camera to image only 2
minicultures. One of the minicultures was left as control and the other was
the targeted one.

The next steps in the experiment depended on the special role of the
targeted cluster. We considered 3 distinct actions.

1. RANDOM ATTACK. We recorded spontaneous activity along 20−30
min in the 2 minicultures before destroying a neuronal cluster randomly
chosen.

2. INITIATOR ATTACK. In these experiments we were interested to
attack the cluster that most frequently initiated activity. To proceed,
we recorded in two blocks. First, during 10−15 min and immediately
after for another 15−10 min. During the second recording, we swiftly
analyzed the first one to rapidly identify which was the cluster that
more frequently initiated the spontaneous activity.

3. HUB ATTACK. In a similar manner we recorded in two blocks, 10−15
min each, and identified the clusters with a special connectivity feature
that we call ‘hub’. Then, again, during the second second measurement
we analyzed the initial data to identify the cluster to be targeted.

The third step of the experimental procedure consisted in destroying with
the laser the chosen cluster. In order to do that we changed the configuration of
the microscope to the ‘laser configuration’. In this part, while maintaining the
laser blocked, we located visually the target cluster and moved the stage (x-y
plane) and the z-plane until it is correctly focused. At this high magnification,
this step sometimes became complicated since the image seen in the ocular
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were inverted and rotated. We often needed to open the previously taken
bright field image to invert and rotate it, facilitating the search throughout
the culture for the target cluster. Once it located and on focus, we switched
from the ocular to a second camera. This camera was a DCC 1545M (Thor
Labs) coupled to the microscope and was used to observe the target cluster
together with the laser (as a point in the screen). Then, with the assistance of
a joystick, the laser was finely positioned in the x− y plane and z axis, and
the entire cluster gradually damaged. In order to compensate the chromatic
aberration of the objective, it was necessary to move the laser along the z axis,
to focus the laser in the sample plane ensuring full damage. We typically
needed about 10 min to complete the task.

Finally, we reconfigured the setup in the same manner as in the second
step (‘top EPI configuration’) and then both the damaged culture and the
control one were recorded for additional 30−40 min. All experiments were
carried out at room temperature (20◦C).

Laser adapted for ablation

The multiphoton microscope is used as ablation system. Basically, the laser
beam size is adapted to fit the steering galvanometric mirrors and then magni-
fied to overfill slightly the pupil of the 25x objective. A variable attenuator
controls the necessary power to switch between the imaging and the ablation
modes.The typical power in a two photon microscope is about 30-70mW,
whereas for ablation is used up to 700mW. The percentage of light transmit-
tance depends on the wavelength and the objectives used but it is typically in
the range of 35-40%. In that sense, when the measured power was about 600
mW the actual power in the sample plane was about 200mW. Between the
attenuators there was a shutter that allows the control of the exposure time of
the laser.

The advantages of using ultra short pulsed lasers is the significant light
intensity per time that provide per pulse. High irradiance (108W/mm2) in
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the focal volume produces local ablation and the apparition of plasma. The
infrared wavelength (800nm) provides high tissue penetration. The ultrashort
pulses reduces the energy on the sample in the order of nanojoules that mini-
mizes collateral damages and presents lower dependency with the material
absorption coefficient helping to a deeper penetration into the sample.





Chapter 3

Analysis tools and Methods

Once described the experimental preparation and procedure in the previous
chapter, we here focus on characterizing the neuronal dynamics of these
clustered networks. They generally present a modular dynamics in which
group of clusters are activated in a sequential manner. This behavior contrasts
with the one observed in more standard neuronal networks where neurons
cover uniformly the substrate, and whose dynamics is characterized by the
activation of all the neurons in a short time window (bursting).

In the present chapter we describe the algorithms to convert the raw fluo-
rescence images to time series of cluster’s activity, which are subsequently
processed to obtain the ignition times of each neuronal cluster. We then
describe our methodology to construct the functional connectivity of the net-
work and the mathematical resources to characterize its topological features.
Finally, we describe the tools to identify those group of clusters that shape the
dynamical modules (or communities) in the network, i.e. groups of clusters
that frequently fire together.

All these analysis tools shape the core resources to analyze and character-
ize the most prominent dynamics features of these self-organizing systems.
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3.1 Data analysis

The spontaneous activity of our neuronal cultures was monitored using fluo-
rescence calcium imaging, a technique that reveals neuronal firing events as
a sharp rise in the fluorescence signal, i.e. a sudden increase in the clusters’
brightness during recording. The collected fluorescence images were the
raw information from which individual clusters’ fluorescence traces were
computed and, finally, their train of firing episodes determined.

3.1.1 From fluorescence signal to data

To better understand the process of obtaining the fluorescence time series, we
first describe the methodology used in more standard homogeneous networks,
as illustrated in Figure 3.1. We note that although our research primarily
focused on the clustered networks, we often compared the dynamic behavior
of homogeneous and clustered ones, and therefore it is important to describe
the analysis tools in both systems.

The original recordings of fluorescence signal were first converted into
individual frames using the Hokawo 2.5 software (provided by the camera
vendor, Hamamatsu). As seen in Fig. 3.1A-C, single neurons were manually
identified and selected as Regions of Interest (ROIs) over the images to, later,
simply evaluated the gray intensity in the region along the entire collection
of frames using Matlab or C++ libraries. These libraries were part of the
resources already in use in Soriano’s lab. Each ROI covered an area of
typically 10×10 µm, i.e. a single neuron. In the culture of Fig. 3.1A, about
3000 neurons were monitored. A typical experiments contained on the order
of a hundred thousand images, and therefore the process of scanning all
neurons to evaluate their gray level, and extend it to all the images, required
about 4 hours.

An example of the obtained individual neuronal traces is shown in Fig. 3.1D.
This basic dataset was named raw fluorescence signal and was characterized
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Fig. 3.1 From fluorescence signal to data in homogeneous cultures. A, Highly contrasted
bright field image of a homogeneous culture (miniculture) 3 mm in diameter and containing
≃ 3000 neurons. Black spots are neurons. B, Zoom into of a small region. The black
circle marks an individual neuron. C, The same region in fluorescence. Bright spots are
firing neurons. The yellow circle depicts the same neuron is an bright field, and that would
correspond to a Region of Interest (ROI). D, Representative fluorescence traces from three
ROIs. The black box marks a single burst (train of spikes), whereas the bigger pink box
highlights a network burst, i..e the collective activation of the neurons in the network.

by a noisy baseline interrupted by sharp increases that corresponded to a fast
train of spikes termed burst. Upon activation, fluorescence rose and peaked in
about 10 ms, to slowly decay back to the baseline in few seconds. As can be
seen in the example of Fig. 3.1D, neurons in this homogeneous preparation
spontaneously activated together in a short time window, an event known as
network burst.

The raw fluorescence signal, F̃ , contained artifacts. The typical (though
not common) artifact was a small yet steady increase of the fluorescence
baseline due to photo-bleaching or neuronal deterioration. This artifact was
abundant in the first experiments in our laboratory, but it was gradually
reduced and minimized by recording the experiments with highly attenuated
light and by shortening the experiments as much as possible. This artifact was
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corrected by detrending the signal, i.e. by fitting a straight line to the baseline
and subtracting it from the data. The detrended signal was then normalized
as F(t)≡ ∆F̃/F0 = (F̃ −F0)/F0, with F0 the baseline fluorescence level, to
remove the background brightness of the neurons.

This procedure was identical for the clustered networks, with the differ-
ence that the number of ROIs was on the order of 40. An example of data
analysis for the clustered networks is provided later.

3.1.2 Determination of ignition firing times

The detection of firing events in neuronal networks from fluorescence record-
ings is a task that is routinely applied by many research groups. In our group
in particular, the work of Orlandi et al. (Orlandi et al., 2013) —focused on
the problem of understanding the generation of spontaneous activity in ho-
mogeneous neuronal cultures— already provided a series of analysis tools
that have served as basis for analyzing the experiments with clusters. In that
work, a custom–made software was developed in order to detect the precise
onset times of neuronal firings, and used the data to determine the propagation
velocity of activity fronts. Although we developed our own analysis algo-
rithms for this thesis, the methodology used in that work, and that is briefly
described next, was used as a benchmark to create our algorithm as well as to
crosscheck the reliability in resolving the clusters’ ignition times.

Ignition firing times in homogeneous cultures

The determination of the neurons’ ignition times was carried out by using
the sub–frame resolution method described in (Orlandi et al., 2013). In this
method, each bursting episode of a neuron was first coarsely detected by
identifying those data points in the fluorescence signal whose derivative and
amplitude are above a given threshold. Then, as illustrated in Figure 3.2A,
the finer analysis consisted of carrying out two linear fits on the data, one
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comprising the data points preceding the detected burst, and another one en-
compassing the points during the fast rise in fluorescence. The crossing point
of the two lines provided the onset time of neuronal activation. This process
was next extended to all neurons (Figure 3.2A). Since the position of the
ROIs was known, the analysis of the onset times unveiled the spatio–temporal
features of the network bursts. For the particular case of the experiments in
Ref. (Orlandi et al., 2013), it was observed that activity traveled in the form
of a circular wave at about 20 mm/s (Figure 3.2).

CA

B
D E

Fig. 3.2 Determination of ignition firing times and wave propagation in homogeneous
cultures. A, Example of a fluorescence signal of an individual neuron. The red circle marks
the ignition time detected applying the subframe resolution method, i.e. the crossing point
of linear fits before firing and during the high rise in fluorescence. B, Fluorescence traces
of three neurons. The thick blue line connects the measured onset times, and illustrates
the delay between neurons’ activations. C, Fluorescence signal averaged over 500 neurons,
where peaks correspond to network bursts. The symbols below each network burst identify
its initiation in a specific area over the culture. D-E, Example of the propagation of a
spontaneous network burst in a homogeneous minicultures 3 mm in diameter, ‘E-only’
conditions, and at different developmental stages. The analysis of the onset times of neuronal
firing provides the average velocity and the initiation point of the front (white circles). The
fronts advance as a circular wave at about 20 mm/s. E, Another example highlighting the
initiation points of the bursts shown in C. For clarity, nearby initiations are grouped defining
the nucleation sites. Three main initiation sites are identified. The size of the circles is
proportional to the relative occurrence of nucleation events at each site.
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Ignition firing times method in clustered cultures

Clustered networks presented bursting events that were different in compar-
ison to the typical homogeneous bursts, specifically a much a higher firing
amplitude given the large number of neurons in the clusters. Such a character-
istic greatly facilitated the analysis, and we developed our own algorithm but
following some of the guidelines used in the previous approach. First of all,
the raw fluorescence signal F̃ was detrended and next smoothed out using a
moving average window 500 ms wide. The fluorescence baseline F0 was then
evaluated by discarding the data points with an amplitude two times above
the SD of the signal. Fluorescence signal normalization was finally carried
out to obtain F(t). The onset times were calculated as those points of the
fluorescence signal that were 2 SD above the baseline and avoiding to take
two consecutive bursts within a narrow time window of 300 ms. Moreover,
those detected points that does not show a slower decay of a minimum 50ms
wide were also excluded (an example of the procedure is shown in Figure 3.3).

3.1.3 Reliability in detecting the clusters’ ignition times

Three major tests were carried out to assess the reliability of our experimental
procedure and detection algorithm. In a first one, we measured spontaneous
activity at 200 fps, i.e. twice the standard recording speed, but used stronger
light to compensate for the lower exposure time. We next analyzed the data,
re-sampled the image sequence down to 100 fps and compared the results
with the original acquisition. We observed that the accuracy in resolving the
onset times at 200 fps improved only by about 15% as compared to 100 fps,
which did not justify the excess of light and the associated damage to the
neurons.

In a second test, we measured spontaneous activity in a culture using
identical light settings but considering different acquisition rates, namely 100,
150, and 200 fps. We then selected trains of clusters’ activations that were
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Fig. 3.3 Fluorescence signal analysis and determination of onset times in clustered neu-
ronal cultures. A, Sketch illustrating the conversion of the recording into individual frames
using the Hokawo 2.5 software. Orange circles depict three distinct ROIs that correspond to
single neuronal clusters. B, Fluorescence traces of the three ROIs. Cluster #1 and #2 display
a similar activity, while cluster #3 only fires concurrently with the other in a small number of
occasions. This behavior is characteristic of modular dynamics. The green box encompasses
a cluster’s burst. C, Detail of the marked burst. D, Data analysis work flow. The first,
top panel, highlighted in an orange contour, is smoothed with the moving average method
using a window of 500 ms (second panel). The signal is then detrended and normalized as
F(t) ≡ ∆F̃/F0 = (F̃ −F0)/F0, with F0 the fluorescence at rest. The detected bursts (third
panel) fulfill the following three requirements: (a) the peaks are superior to 2SD of the mean
fluorescence signal (red line); (b) nearby wrong detections are avoided by considering a
window of 300 ms below which another firing is not accepted; and (c) the width of the burst
have to be at least 500 ms (blue boxes) to prevent camera errors to be taken as bursts. The
correct final onset time detections are marked as pink lines (fourth panel).
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as similar as possible in all three measurements, and compared the results.
We observed that only in the few cases where the clusters fired with strong
amplitudes the increased speed enhanced detection, and again by 15%. For
the rest of the cases, the higher speeds actually worsened the analysis due
to the poorer signal-to-noise ratio. We concluded that the balance between
acquisition speed, good signal–to–noise ratio and healthy neurons imposed
severe constraints in our experimental procedure, as illustrated in Figure 3.4.
Hence, most of the experiments were limited to 1 h acquisition at 83 fps with
the minimum light exposure.

33fps

200fps

Signals
at different
framerates

acquisition 
  velocity

 image
quality

  light 
intensity

Best SNR

Fig. 3.4 Experimental constraints. A, Fluorescence traces at three different frame rates and
identical camera settings. The optimum condition that satisfies good detection of onset times
and good signal are in the range 83−100 fps. B, Sketch illustrating the need for balancing
high frame rates, low light intensity and good image quality, altogether showing the very
small flexibility in tunning our experiments.

Finally, in a third test, we used the sub-frame resolution analysis intro-
duced above to evaluate the importance of finer ignition time values. Two
straight lines were fitted at the vicinity of each initially detected cluster’s
firing event. A first fit included the 100 points of the background signal that
preceded ignition, and a second one extended to the 10 points that correspond
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to the fast rise in fluorescence. The crossing value of the two lines provided
an onset time that refined the initially measured value. The better accuracy
increased the discrimination of co–activations that were initially identified as
simultaneous (which were actually rare, by 5%), but overall the additional
effort did not provide a significantly difference in the identification of the
ignition times of clusters’ activation.

3.2 Firing sequences

Homogeneous cultures display a nearly periodic episodes of collective neu-
ronal firing known as network bursts. As we have outlined before, these
network bursts are actually activity fronts that initiate in specific regions of
the network and propagate as a circular wave throughout the entire neuronal
network (Orlandi et al., 2013).

Clustered networks behave very differently. Indeed, events that one could
initially associate as network bursts actually corresponded to concatenated
activations of a fractions of the total number clusters. For this reason, and
to avoid confusion, we call firing sequences to these collective activation
events. As sketched in Fig. 3.5, these firing sequences involved a small
group of clusters that were activated sequentially in a short time window,
and with a pattern of activation that could often repeat along the entire
recording. However, one could also observe interesting variations, in both
the number of participating clusters and the timing within them, that made
the problem highly fascinating. The adequate identification and treatment of
these sequences is crucial for identifying the two key features of the networks,
namely the characteristic dynamical modules and the functional connectivity
map.
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Fig. 3.5 Conceptual representation of Functional Organization. A, The left panel shows
a typical raster plot, where every dot marks the firing events of each cluster. Rows of the
raster plot (blue outline) represent the activity history of every cluster, i.e. the temporal
structure of their firing events. Columns in the raster plot (pink outline) define the firing
sequences, i.e. the downstream clusters’ activations. The right panel sketches the group
of clusters that frequently fire together (green and orange dashed boxes), i.e. share similar
activity histories, and thus shape characteristic modules. B, The left panel details a firing
sequence, formed by five clusters that have fired together in a narrow time window. After
ordering the sequence as a function of time, the effective network (a directed and weighted
graph) is built by weighting the links according to the time delays in activation. The smaller
dt (blue bands), the higher the weight of the links in the network (arrows). The right panel
shows the concept of functional organization, picturing both links between clusters and their
presence into a given module.

3.2.1 Firing sequences’ identification

The identification of firing sequences can become a difficult task since dif-
ferent groups of clusters get activated at different times. Hence, two or more
groups could be treated as a single one if the time window for a firing se-
quence to occur was arbitrarily large. Hence, to prevent such a problem, we
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used a cut–off of 200 ms, and assumed that two clusters that had fired above
this value were not influenced by one another. This cut-off was determined
from measuring the time delay between clusters’ consecutive activations , tp,
in control experiments recorded at high acquisition rates (200 fps or higher).
We observed that tp varied in the range 10 . tp . 100 ms, and took as cut-off
two times the maximum time delay. Other studies in clustered networks
provided similar results (Tsai and Chang, 2008; Yvon et al., 2005). Inter-
estingly, these times are fairly large compared to the eventual scale of signal
integration–propagation between single neurons (on the order of few ms), and
therefore the observed delay times are related with the integration time of the
intra–clusters information processing.

On the other hand, we must note that for homogeneous cultures the typical
time delay between single neurons during the activity wave propagation (as
shown for instance in Figure 3.2D-E) is around 5 ms, a value that is in
agreement with other studies (Mason et al., 1991; Swadlow, 1994). Hence,
when analyzing the topological traits of homogeneous cultures as compared
with clustered ones, we used two times this value, 10ms, as a cut-off to
identify the corresponding sequences, i.e. network bursts.

3.3 Community detection

Groups of clusters that repeatedly participate in the same firing sequences
share the same history, i.e. they shape persistent, coherent activations that we
call dynamical modules or communities (Figure 3.5). The dynamics of the
clustered network was complex, shaping groups of active clusters that varied
in size, from two units to the entire network.

Two steps were considered to properly assess the neuronal clusters that
formed the characteristic communities. First, we performed the hierarchical
clustering algorithm (Fortunato, 2010; Kaufman and Rousseeuw, 2009) to
group together those clusters with high similarity in their activity history.
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Next, we applied a threshold using Variation of Information (Karrer et al.,
2007; Meilă, 2003) to establish the most representative communities in the
network.

We must note that several community detection methods have been pro-
posed in order to find the characteristic communities in a network (as reviewed
in Refs. (Fortunato, 2010; Newman, 2012)). These methods can consider
spectral properties of matrices, information-theoretic measures, random walks,
and many other approaches. Hence, the community concept (also known as
module or cluster in the literature) does not have a unique and well established
definition. For instance, one can talk about dynamical modules or topological
modules (as we will see later) and indeed the meaning of what these modules
represent, their calculation, and ultimately the units that integrate them (in our
case neuronal clusters) may be completely different in both cases. Thus, each
algorithm is good at finding communities according to its own definition, and
with the objective to fulfill necessary requirements or to fit specific problems.

For instance, well known strategies to data clustering based on principal
component analysis (PCA) or independent component analysis (ICA) are
difficult to implement in our study. They are indeed multidimensional scaling
approaches that work properly when the variables present a strong statistical
independence among them. Additionally, the hierarchy of modules that
present our neuronal clusters gives rise to complex dependencies, both within
and between modules, that makes difficult to correctly classify them with
this kind of algorithms. Other methodologies need ‘a priori’ the number of
modules to address them, as occurs with the K-mean algorithm (Kanungo
et al., 2002), and therefore we could not use such a construction since we did
not know them in advance.

Agglomerative hierarchical clustering

Hierarchical clustering encompasses an entire family of techniques that aim at
discovering the most natural group division. This algorithm is easily applied
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to a network where very little is known about its organizational community
structure (Fortunato, 2010). This methodology is agglomerative in the sense
that it begins from single elements (clusters in our case) that are iteratively
merged into composites, i.e. groups of clusters, depending on their similarity
until all the elements (the whole network) is grouped as a unique family. We
note that such a construction is a bottom–up evaluation.

The starting point of any hierarchical method is the definition of a matrix
that shows the distances or similarities between pairwise variables. Once
this distance matrix is set, the agglomerative clustering begins, joining in
each step the two closest elements (or composites) with the smallest distance
or high similarity. For instance, if we imagine that two elements A and B
are the most similar, then they would be the first to be grouped. Later, that
conjoined elements A and B would be removed from the total set of variables
N, and the process would be repeated by replacing them for a composite AB
that would represent them. The distances between this composite AB and
all other remaining variables (N-1) would be then computed. The algorithm
again would search the next most similar pairwise association that could
correspond in that example to two new elements or the composite AB with
a new element. In that way, the process would be repeated until just only
one element remains. The order of the grouping formation is important and
can be nicely represented as a hierarchical tree or dendrogram, whose depths
indicate the steps at which these objects have been combined.

Hierarchical clustering methods differ between them depending on the
particular measure of similarity used, and on the rules set to group simi-
lar elements (linkage criterion). There are indeed a variety of metrics (e.g.
Euclidean distance, cosine similarity, or Jaccard distance) to calculate the
distance matrix, and there also exists different linkage methods to evaluate
the ‘smallest’ distance (or‘highest’ similarity) between the objects (e.g. sin-
gle linkage, complete linkage, or average linkage). However, we observed
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that selecting one method or another did not change the final community
arrangement, as we will see in the Results chapter.

3.3.1 Applying hierarchical clustering to find the dynami-
cal modules

The hierarchical clustering method was applied to organize the neuronal clus-
ters that have fired in a similar way along time, i.e. they share similar activity
histories, to later differentiate the characteristic communities or dynamical
modules applying a threshold. An overview of the methodology is illustrated
in Figure 3.6. To proceed, we carried out the following steps. First, a coacti-
vation matrix X containing N ×M elements was initially considered, where
N accounted for the number of variables (neuronal clusters) and M for the
number of distinct observations (firing sequences). Once all the sequences
in a given measurement were established, the elements were set to Xi j = 1 if
cluster i had participated in the sequence j, and Xi j = 0 otherwise. At the end
of the construction, the rows of the matrix X (with length M) reflected the
activity history of a given cluster. A silent cluster contained all the elements
of its row equal to zero.

Jaccard metrics (Karrer et al., 2007; Kaufman and Rousseeuw, 2009) was
next used to calculate the pairwise similarity between the activity history of
the clusters in the network. If A and B are any two rows of the matrix X , the
Jaccard similarity J(A,B) provides a score that indicates the similarity in the
history of A and B.

J(A,B) =
|A∩B|
|A∪B|

(3.1)

In the sense used in this study, the Jaccard similarity calculates the number
of concurrent activations in the two clusters respect to all the occurrences
where at least one of the clusters had fired [see Equation (3.1). If A and B had
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Fig. 3.6 Communities’ analysis methodology. A, Schematic representation of spontaneous
activity traces for 5 clusters. All those clusters that fire concurrently in a short time window
define a sequence (pink bars). Clusters that fire independently are discarded. Sequences
shape the X matrix, where each column corresponds to a sequence, and each row represents
the activity history of a cluster. Two or more clusters that share a similar history are more
likely bound and would constitute a community. The degree of similarity between all pairs
of clusters (i, j) is established through the Jaccard’s similarity measure J(i, j), from which
the Jaccard’s matrix distance D = 1− JS is determined. Clusters #1 and #2 are identical
in history and provide J(1,2) = 1, but both are also similar to #5 (yellow bands), with
J(1,5) = JS(2,5) = 2/3. B, J is a symmetric matrix that reflects the relative closeness of all
pairs of clusters, which can be sketched as spatial groups or in the form of a dendrogram.
Clusters #3 and #4 have identical histories and form a unique community. Clusters #1 and #2
also shape a community, but they are sufficiently close to cluster #5 to constitute together a
higher, more representative group. The number of communities is formally set by selecting
a threshold in the dendrogram. Any threshold along the red arrow would maintain two
communities. Once a threshold is set, the similarity matrix is ordered to visually highlight
the communities in the network.

no common activations (i.e. A and B have all elements as 0), then J(A,B) = 0;
and if A = B (all elements equal) then J(A,B) = 1.

Using the Jaccard distance D = 1− J, which was evaluated through the
average linkage method (Statistical Toolbox package, Matlab), the arrange-
ment of the grouping of neuronal clusters is established. The procedure can
be better illustrated in the dendrogram form. At the bottom level we would
have the neuronal clusters forming a community by themselves. At gradually



72 Analysis tools and Methods

higher levels, several neuronal clusters could be combined forming higher–
order communities. Finally, at the top level, all neuronal clusters would be
grouped together forming a single community. Once the dendrogram was
completed, the matrix J was ordered according to the obtained index (found
along the bottom of the dendrogram). This matrix representation is conve-
nient, since it visually highlights those groups of clusters that shape distinct
communities in the network.

3.3.2 Optimum threshold for community detection

A variety of algorithmic methods have been developed to find the optimum
threshold that identify the relevant modules. The majority of them use the
optimization of the modularity function(Newman, 2006)), such as the simu-
lated annealing (Kirkpatrick, 1984), or the ‘Louvain method’ (Blondel et al.,
2008). These methodologies will be discussed later within the Results chapter.
In our work, we took advantage of the Variation of Information method, and
that is described in the next section, to identify this optimum threshold.

We should remark that have tested other community detections methods
with PCA and the Louvain methods, and observed a very similar structure in
the organization of the communities. Again, we refer to the Results chapter
for examples.

Community detection normalization

Despite the variety of methods, the selection of the best threshold is, in-
tuitively, a relatively straightforward task since one can easily appreciate
the characteristic communities by a visual inspection of the dendrogram.
However, since most of the cases we need to compare the changes in mod-
ules’ organization across measurements, it is a fundamental step to properly
normalize the distances of the hierarchical tree.
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Normalization of the Jaccard similarity matrix was established by analyz-
ing which pairwise similarities were statistically significant, i.e. by comparing
the similarity values with a null hypothesis using the z-score. This procedure
is important to neglect, for instance, those clusters that were frequently active
but that fired in an independent manner. The z-score measure calculates how
much the distance deviates from the random case, and in ‘standard deviation’
units.

Our null model consisted in a series of 500 surrogates of the matrix X in
which its rows were random reshuffles of the original data. We note that this
reshuffling preserved the number of firings of each cluster. Each surrogate
provided a corresponding Jaccard distance matrix S. The distance matrix of
z-score values, Z, was next computed as

Zi j =
Di j −⟨Si j⟩

σS
i j

, (3.2)

where σS
i j is the standard deviation of the family of surrogate values Si j.

Z̃ = Z/max{Z} was finally computed Z̃ ∈ [0,1].

Variation of Information as a threshold

The analysis of Z̃ in the form of a dendrogram gave a visual representation of
the arrangement of the clusters into communities. To provide representative
communities in the network a threshold d in this dendrogram was set. The
larger the threshold, the smaller the number of communities. The optimum
value for the threshold was obtained through the computation of the Varia-
tion of Information, and provided the minimum yet significant number of
communities in the system that was not the trivial case of a single community.

The variation of information, VI, is an information-theoretic measure that
compares the distance between two groups, i.e. classification of elements, X
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and Y ( (Karrer et al., 2007; Meilă, 2003)). It is computed as:

VI(X ,Y ) = H(X |Y )+H(Y |X) =−∑
N

P(x,y)log(P(x,y)/P(y))

−∑
N

P(x,y)log(P(x,y)/P(x)), (3.3)

where H(X |Y ) is the conditional entropy, the information needed to describe
X known Y . In our case, the two partitions X and Y correspond to the set of
communities that appear at different thresholds dX and dY of the Z̃ distance.
Hence, two partitions X and Y obtained at different thresholds and that have
the same set of communities would result in VI = 0. We scanned VI as a
function of the threshold d in steps of 0.01.

Each threshold provided a partition X containing n moduli, and con-
structed as a vector of integers where each value labels the module where
a cluster belongs to. For instance, in the example of Figure 3.6 a threshold
d = 0.75 provided n = 2 moduli and X = {2,2,1,1,2}. Labels ‘1’ and ‘2’
denote the community index, with clusters {3,4} shaping the community #1,
and clusters {1,2,5} the community #2.

For the actual experimental data, we computed VI between a partition at
a threshold di and all the other partitions at d ̸= di, and computed the average
value, MVIi.

Finally, to identify which threshold di provided the most significant parti-
tion, we plotted the difference ∆MVI = MVI(di+1)−MVI(di) for gradually
higher di. A jump in ∆MVI indicated that a small variation in the threshold
leaded to a significant change in the structure of communities. Our choice of
the optimum threshold dth was set as the highest jump in ∆MVI that provided
at least two communities.
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3.4 Complex Networks

A complex network is the representation of the interactions between the
elements of a system in terms of nodes (elements) and links (interactions) in
a graph (Boccaletti et al., 2006; Dorogovtsev and Mendes, 2002; Estrada,
2011b; Newman, 2010). The analysis of such resulting abstraction of the
system, the network, provides clues about regularities that can be connected
with certain functionalities, or even be related to organization mechanisms
that help to understand the rules behind the system’s complexity.

Neuronal circuits are particularly appealing to be represented in terms of
complex networks (Bullmore and Sporns, 2009; Sporns, 2011; Sporns et al.,
2004; Stam and Reijneveld, 2007). In this context, three major modalities
of complex networks can be defined. Structural connectivity corresponds
to the anatomical description of neuronal circuits; functional connectivity is
related to the statistical dependence between neuronal activity; and effective
(or directed functional) connectivity takes into account the causal interactions
between neuronal activities.

3.4.1 Basic concepts

A network or graph is usually defined by a connectivity (adjacency) matrix A
that contains n×n entries, where n corresponds to the number of nodes and
the entries denote links. The matrix is binary for most brain network studies,
with each element set as ai j = 1 if a link exists between the nodes i and j, or
ai j = 0 otherwise. The matrix is called weighted when a real number wi j is
associated to the link between the nodes (i, j) and that reflects their coupling
strength. Depending on the direction of the link, one can consider directed
networks for uni–directional links, e.g. information flow solely from i to j; or
undirected networks for bi–directional links. For the latter case, the matrix
would be symmetrical , ai j = a ji. Illustrative examples of different network
constructions are shown in Fig 6.10.
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Fig. 3.7 Basic concepts in complex networks. The panels show different network represen-
tations of networks and key concepts. A, An undirected and unweighted network. The node
degree ki is the number of links that possess a given node i. B, An undirected and weighted
network where every link has an specific weight. The weighted version of the degree is
termed strength S. C, A directed and weighted network. The connections here are not only
weighted but also have a direction. The nodal strength have two components: Sin is the sum
of the weights of the in–going links that receive a node; and Sout counts the weight of its
out–going links. D, The clustering coefficient of a given node counts the number of neighbors
of this node that also are neighbors between them (triangle), respect to all possible triangles.
The short path length di j is the minimum number of ‘steps’ (links) to navigate from nodes
i to j. E, The nodal betweenness Bi corresponds to the number of shortest paths that pass
through a given node i. (F) Modules are defined as the set of nodes that are more densely
connected among them (blue outline) than to other nodes in other modules. The participation
coefficient Pi of a node takes into account the number of links distributed to other modules
respect to the number total of links of such node i. A connector node is defined as a node
that presents high number of links connecting to different modules, while a provincial node
is ascribed to a node that has a high number of links within its own module.

Theoretical network studies to date have typically used symmetrical mea-
sures of statistical association between nodes i and j, most notably corre-
lation, covariance, spectral coherence or mutual information, to construct
undirected, functional networks. A recent extension of this construction
consists in considering asymmetrical measures of causal association to gen-
erate directed, effective networks. The latter requires the establishment of
a ‘cause and effect’ criterion to determine the direction of the interactions.
Hence, effective networks normally rely on information–theoretic approaches
such as Granger Causality (De Vico Fallani et al., 2014; Granger, 1969),
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Transfer Entropy (Schreiber, 2000), or are based on Bayesian constructions
(Mishchencko et al., 2011), as occurs for instance in the ‘dynamical causal
modeling’ (Mechelli et al., 2003)). The development of such methods in neu-
ronal circuits is nowadays a highly active area of research (Singh and Lesica,
2010; Stetter et al., 2012) that has even promoted international competitions
for the development of new mathematical frameworks.

In this spirit to introduce new measures for effective connectivity infer-
ence, in one of the flagship publications of this thesis (Teller et al., 2014)
we introduced a novel theoretical framework to render the corresponding
effective networks of our datasets using the propagation of activity between
clusters as a measure of ‘causality’. We note that ‘causality’ here has to be
understood as propagation of delayed activations.

3.4.2 Our effective connectivity inference method

The sequences of clusters’ activations, as analyzed in Section 3.2.1, convey
information on the degree of causal influence between any pair of clusters in
the network. Our realistic effective network construction takes into account
these possible influences from the upstream connected clusters, and where the
weight is established by the time delay in activation. This weighted treatment
of the interaction between clusters is the major novelty and the backbone of
our model (Teller et al., 2014).

Specifically, the interaction between any two neuronal clusters follows
the principle of causality, i.e. the firing of cluster j immediately after cluster i
eventually implies that cluster i has induced the activity of j at that particular
time. The likelihood of this relation between clusters is weighted according
to its frequency along the full observational time, allowing to an statistical
validation. Indeed, cluster i could induce the activity of various clusters, if all
of them activate in a physically plausible short time window after cluster i.
Such a construction is illustrated in Figure 3.8.
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3.4.3 Effective connectivity
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Fig. 3.8 Sketch of the construction of the effective network. A, Schematic representation
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to a Gaussian distribution f(∆t)∼ exp(−(∆t)2/c), finally providing the variance c that will
be specific for each culture. (3) Weighting procedure example for the first sequence. Cluster
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well by cluster #2, with w2→3 ≃ 0.2. (4) Schematic representation of the resulting effective
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To construct the effective networks for each studied culture we proceeded
as follows. As a first step, we defined the distinct firing sequences using the
cut–off of 200 ms (for clustered cultures) previously introduced in Section 3.2.
Once all the firing sequences were detected, we computed the frequency dis-
tribution f(∆t) of time lags ∆t between pairs of consecutive firings. This
frequency distribution presented a good fit to a universal Gaussian decay
(y ∼ e−x2/c) in all the analyzed cultures, although the variance c was specific
for each culture. More importantly, the distribution informs about the char-
acteristic times expected between two consecutive firings within the same
sequence, and hence it is a good proxy of the causal influence of a cluster
on another. We used this information to weight the causal influence of firing
propagation.

The second and last step in the construction of the effective networks con-
sisted in linking the interactions within each firing sequence, and weighting
them according to the previous frequency distribution (Figure 3.8B). We con-
sidered that every cluster influences other clusters (posterior in time) within
a firing sequence and, the larger the time after a cluster has fired the lower
the influence in the activation of another cluster. The weights were reinforced
every time the same pair of clusters’ sequence was observed. The analysis
was then extended to all observed firing sequences, and the final weight value
of the effective link wi j between clusters (i, j) was established as the sum of
all computed weights. We finally obtained a peer-to-peer activation map that
was our proxy of the effective network.

For homogeneous cultures we proceeded identically to construct the
effective networks, with the only difference that the cut–off time corresponded
to 10 ms.

Null model

Weak and non–significant links in the effective network may represent spuri-
ous connections that mask the topology of strong and significant connections.
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To overcome this problem, noisy and non–casual connectivity values can be
filtered out by thresholding and normalizing the drawn effective network with
respect to a random connectivity matrix. The resulting effective connectiv-
ity map exhibits a map of the significant connections, and with the weights
normalized to allow systematic comparisons between networks at different
experimental conditions.

Shuffling datasets (Beggs and Plenz, 2004; Rolston et al., 2007) are the
most common way to create a null model without the need of assumptions on
the behavior of the data. There exist different methods depending on which
features are randomly permuted and which ones are preserved. The higher
the number of statistical features that are maintained, the more stringent the
null model will be.

In the context of neuroscience, one of the typical null models consists
in reshuffling the timing of activity events, i.e. a random permutation of the
firing episodes of each neuron. We note that such a construction preserves
the index of the neurons and the firing rate, but breaks the firing structure. An
alternative randomization consists in swapping the neurons’ indexes while
maintaining the temporal structure. This null model retains both the structure
of firing events in the dataset and the number of firings per neuron, but alters
the firing rate of each neuron. This method is illustrated in Figures 3.9A-B
and is the method applied to create the surrogates in our study.

The procedure that we applied to create the null model is as follows. First,
we constructed a matrix of N ×2 elements, where N is the total number of
firings. The first column of the matrix stores the onset firing times values
detected in the recording, while the second one stores their corresponding
cluster index. The second column was then permuted without repetition,
effectively shaping a first surrogate. This process was then repeated to obtain
500 surrogates.

Once the surrogates were generated, we computed the z-score for the
weights wi j as
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Fig. 3.9 Construction of the null model. The left panel shows the original activity histories
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Zi j =
wi j −⟨wS

i j⟩
σS

i j
, (3.4)

where ⟨wS
i j⟩ is the mean weight between i and j provided for the 500 surrogates

of the null model, and σS
i j the corresponding standard deviation.

We note that the z-score effectively provided the normalized weights
between all the effective connected clusters in the network, and we therefore
used Wi j ≡ Zi j to refer to the matrix of normalized weights. Those links with
a high W score appeared frequently and therefore their clusters were strongly
connected. At the other extreme, negative W scores reflected those links that
were less connected than in a random configuration and therefore had to be
disregarded.

3.4.4 Comparison with alternative effective network con-
structions

Other metrics have been proposed besides our model to infer the functional or
effective connectivity in vitro (Bettencourt et al., 2007; Garofalo et al., 2009;
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Ito et al., 2011, 2014; Marconi et al., 2012; Salinas and Sejnowski, 2001;
Shimono and Beggs, 2014; Stetter et al., 2012). Widely used strategies include
cross correlation (CC), Mutual information (MI) and Transfer Entropy (TE).
In particular, MI and TE are information theoretic measures that are both
sensitive to linear and non–linear interactions between any pair of neuronal
activities. CC, on the contrary, just captures first order, linear interactions.
For instance, in the special case of a three–body system, where a neuron
i is driving the dynamics of a neuron j and k, which in principle are not
connected, the three methodologies would detect a relationship for (i, j) and
(i,k), but only TE and MI would also provide a relationship for ( j,k).

An additional important aspect, however, is that MI and CC are in principle
unable to detect the directionality of information flow, i.e. they are unable to
provide an effective connectivity. For this reason, TE has emerged as the most
useful tool to infer the causal interactions from neuronal time series (Garofalo
et al., 2009; Ito et al., 2011; Orlandi et al., 2014; Shimono and Beggs, 2014;
Stetter et al., 2012).

With these alternative constructions in mind, we found important to cross-
check the robustness of our computed effective networks. We therefore carried
out MI and TE reconstructions in our experimental datasets. We found that
the resulting networks were largely in agreement with the ones extracted using
our method, as we describe in detail in the Results chapter. For completeness,
we next describe the mathematical framework of MI and TE.

Time delayed mutual information

Mutual information (Hlavácková-Schindlera et al., 2007) is a particular case of
the Kullback-Leibler divergence (Kullback and Leibler, 1951), an information-
theoretic measure of the distance between two probability distributions. The
mutual information between two stochastic variables X and Y provides an
estimation of the amount of information gained about X when Y is known.
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Let us indicate by {s(i)ℓ } the time series corresponding to the i-th cluster,
with ℓ = 1,2, ...,L and L the total number of time frames involved in the
observation process. The time series adopted for the successive analysis are
obtained by mapping the observed train of cluster activations to another time
series termed walk1, defined as

x(i)ℓ =
ℓ

∑
l=1

[
s(i)l −⟨s(i)ℓ ⟩

]
. (3.5)

For the specific case of our analysis, the mutual information between two
time series X = {x(i)ℓ } and Y = {x( j)

ℓ }, corresponding to two different clusters,
is interpreted as the amount of correlation between the dynamics of cluster i
and j. In general, the time scale of the correlation between two time series is
not known a priori. Such a time scale corresponds to the time delay required
to maximize the gain of information. Therefore, in the spirit of Fraser and
Swinney (Fraser and Swinney, 1986), we define the time delayed mutual
cross information between {x(i)ℓ } and {x( j)

ℓ } as

I(x(i),x( j);τ) =−∑
µ,ν

p(i, j)µν (τ) log
p(i, j)µν (τ)

p(i)µ p( j)
ν

, (3.6)

where µ and ν are indices running over some partition of the observed
time series. In Equation. 3.6, p(i)µ indicates the probability to find a value of
time series {x(i)ℓ } in the µ-th interval, p( j)

ν is the probability to find a value
of time series {x( j)

ℓ } in the ν-th interval, whereas p(i, j)µν denotes the joint
probability to observe a firing from the i-th cluster falling in the µ-th interval
and a firing from the j-th cluster falling in the ν-th interval exactly τ time
frames later.

For the sake of simplicity, we adopt the more concise notation Ii j(τ) =

I(x(i),x( j);τ) to indicate the time delayed mutual cross information. In order
to gain the highest amount of information about the dynamics of cluster i by

1That procedure transforms the discret time series to a continuous one gaining in statistics



84 Analysis tools and Methods

observing cluster j, we consider only the maximum value Imax
i j = maxτ [Ii j(τ)]

of Ii j(τ) with respect to the time delay τ .

Generalized transfer entropy

Transfer Entropy (Hlavácková-Schindlera et al., 2007; Schreiber, 2000) is
an information theoretic measure that quantifies the statistical coherence
between different time series. Transfer entropy follows the principle of
Granger Causality, i.e. A causes B if A can be better predicted from past
values of A and B rather than A alone. Given two discrete time series X and
Y, the Transfer Entropy can be evaluated by computing the corresponding
Kullback entropy:

T EY→X = ∑ p(xn+1,x
(k)
n ,y(l)n )log

p(xn+1 | x(k)n ,y(l)n )

p(xn+1 | x(k)n )
, (3.7)

where p denotes the transition probability conditioned to the past k and l
observations of the temporal series X and Y.

Mathematically, TE can be interpreted as a measure of the deviation from
the generalized Markov property, expressed as

p(xn+1 | x(k)n ) = p(xn+1 | x(k)n ,y(l)n ). (3.8)

We note that the Markov property is only valid when transitions of X do not
depend statistically on past values of Y, i.e. the knowledge of the past values
of Y has no effect on the predictability of X . The fulfillment of this property
would therefore result in T E = 0. Higher T E scores indicate that the Markov
property does not hold and there is an information flow from Y to X , or a gain
in the information of X given the evolution of Y .

TE is a mathematical formalism with continuous expansion. For neuro-
cience applications, Stetter (Stetter et al., 2012) and coworkers introduced
an extension of TE, termed Generalized Transfer Entropy (GTE), aimed at
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reconstructing the connectivity in a neuronal network known solely the fluo-
rescence time series of their containing neurons. The authors used realistic
numerical simulations —inspired in homogeneous neuronal cultures— to gen-
erate neuronal fluorescence traces, assess the effective connectivity between
all pairs of neurons in the context of GTE, and then evaluate the accuracy of
the formalism in replicating the underlying network structure.

The novelty of GTE is the restriction of the TE analysis to a selected
dynamic regime. This restriction is achieved by establishing a threshold g in
the fluorescence signal that restricts the range of fluorescence values to study.
GTE is expressed as

GT EY→X =

= ∑ p(xn,x
(k)
n−1,y

(k)
n−1+S | gn < g) log

p(xn | x(k)n−1,y
(k)
n−1+S,gn < g)

p(xn | x(k)n−1,gn < g)
,

(3.9)

where gn < g indicates the restriction of the data points to only those that
fall within a range of fluorescence values. In our case we selected high
fluorescence levels and that correspond to strong clusters’ firing, i.e. we
selected those fluorescence levels above a threshold that is much higher than
the noisy fluorescence signal of the clusters at rest. The Markov order k is
related with the ‘causality’ time window, i.e. the maximum time bin to expect
the clusters to be influenced to one another. For the clustered networks we
set k = 10, a value that approximately corresponds to the cut–off time of 200
ms for clusters’ interactions previously inferred. S accounts for ‘same bin
interactions’, and can be set to either 1 or 0 to accept or reject the connectivity
between two clusters when they fire in the same time bin.

GTEi j scores of clusters (i, j) quantify the strength of an effective link
from a cluster i to cluster j, i.e. the future fluorescence of j is better predicted
by considering the past fluorescence of i in addition to the past of j itself.
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3.4.5 Network properties

There exist a wide range of network measures (Rubinov and Sporns, 2010b)
aim at characterizing the architecture of the network, i.e. its topology or
the way in which nodes are linked throughout the network. The majority of
these network topological descriptors have their binary, weighted, directed
and undirected extensions, depending on the characteristics of the links under
study. In this Section we describe the network attributes to our directed and
weighted functional networks. The definitions of all the measures used in
this thesis are provided in Table 3.1. Some of this network measures are
calculated using the ‘Radatools’ software package (http://deim.urv.cat/ ser-
gio.gomez/radatools.php), and others using the Brain Connectivity Toolbox
in Matlab (Rubinov and Sporns, 2010b). In order to compare these measures
across experiments, they were standardized using the z-score. The represen-
tation in terms of z-score allowed the values in each studied experimental
network realization to be properly scaled and therefore facilitated comparison
between experiments.

Degree and strength

Typically, the degree ki of a node is the number of neighbors (links) of the
node i. In directed graphs, ki is defined as the sum of ingoing (in-degree,
kin

i ) and outgoing (out-degree kout
i ) links in node i. The degree distribution,

P(k) includes the node degrees ki of all the nodes, which gives the probability
that a randomly selected node possesses exactly k links. The first moment of
the degree distribution < k > (mean degree) and the second moment < k2 >

(degree variance) are widely used to define important topological aspects of a
network. In particular, the mean degree of a network is commonly used as a
density measure, and is often interpreted as the ‘wiring cost’ of the network.
The second moment measures the fluctuation of the connectivity distribution.

The weighted variant of the degree is the strength S, which is defined
in a similar manner but taking into account the weight of the links. The
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Table 3.1 Summary of the definitions used for the calculation of the different network
properties along this thesis. All expressions use directed and weighted versions of graphs.

total strength of a node i, Si, is defined as the sum of all its neighboring link
weights (see Figure 6.10 and Table 3.1).
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Characteristic path length and global efficiency

The distance or shortest path, di j, is defined as the minimum number of
links that have to be crossed to travel from node i to node j in the network
(Figure 6.10). The characteristic path length , L, also known as average
short path length, is defined as the mean of shortest paths over all pair of
nodes, i.e the mean of geodesic lengths over all couple of nodes. Its average
inverse is called global efficiency. Global efficiency, Ge f f , is becoming more
successful to measure functional integration since it can be well evaluated in
disconnected networks, while the short path length in these cases diverges
(di j =∞) . Both measures indicate the global information flow (global network
communication) of a network, i.e. its traffic capacity.

Clustering and Local Efficiency

The clustering coefficient, Ci, corresponds to the number of triangles around
an individual node divided by the maximum possible triangles, which in
practice is equal to counting the number of neighbors of a node that are
also neighbors between them (Figure 6.10). High clustering implies high
segregation. The local efficiency, Le f f , is a good alternative measure of
the clustering coefficient. The local efficiency of a node i is the average
global efficiency of such node in the local subgraphs (graph formed by the
neighbors of node i). This topological descriptor shows how efficient is the
communication between neighbors.

Assortativity

One of the widely used measure to reflect network resilience is the assor-
tativity coefficient. Newman (Newman, 2002) defined that measure as the
Pearson correlation between the degrees of every pair linked nodes in the
network.
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Thus, networks with high positive assortativity coefficient would mean
that nodes with the same degree tend to be interconnected. Networks con-
taining many nodes with high degree are likely to present a resilient core,
i.e. high–degree nodes are interconnected. On the other hand, networks with
negative assortative mixing (disassortative) tend to show high–degree nodes
connected with low–degree ones, becoming more vulnerable networks.

Based on the weighted and directed nature of our networks, we proposed a
new measure of assortativity (Teller et al., 2014) that considers the strengths
instead of the degrees to carry out the correlation of every pair of linked nodes.
The measure also takes into account the weight of the link from node i to node
j, since links with higher weight have a large contribution to the correlation.

Generalization of assortativity to directed weighted networks

In directed unweighted networks, for every paired linked of nodes assorta-
tivity measures the degree-degree correlation between them. The directed
assortative coefficient, ρP, would be the Pearson correlation between kout

i of
node i and kin

j of node j, as defined in Ref. (Newman, 2003).

Incorporating the weight could be crucial since high-degree nodes can
be connected to a majority of low-degree ones (apparently a disassortative
network) but concentrating the largest fraction of their strength only on the
nodes with high degree. Then, the network could be considered assortative in
an effective way, just because the most relevant links in term of weights are
linking high-degree nodes.

Then the final directed and weighted assortativity measure, ρPW , is a
modification of the defined Newman (Newman, 2003) directed assortativity,
but using the strengths instead of the degrees and including the weight that
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carries each linked paired nodes.

pPW =
∑i, j wi j (sout

i −⟨sout⟩E)
(

sin
j −

〈
sin〉

E

)
√

∑i sout
i

(
sout

i −⟨sout⟩E
)2
√

∑ j sin
j

(
sin

j −⟨sin⟩E

)2
, (3.10)

where E scans all the links in the network, and ⟨sout⟩E = 1
∑(i, j)εE wi j

∑(i, j)εE wi jsout
i

and
〈
sin〉

E = 1
∑(i, j)εE wi j

∑(i, j)εE wi jsin
j .

Litvak et al. (Litvak and Van Der Hofstad, 2013) showed that in disas-
sortative networks the magnitude of the standard assortativity decreases with
network size, a difficulty that was solved by replacing the Pearson correla-
tion with the Spearman correlation, thus obtaining a Spearman assortativity,
ρS. Spearman rank correlation is calculated in the same way as the Pearson
correlation but substituting the values (in this case, the strength of the nodes)
by their respective ranks, i.e. their position when the values are sorted in
ascending order. This leads us to define the Spearman weighted assortativity
ρSW as the Spearman weighted correlation.

The estimation of the error in the assortativity value (for any of the pre-
vious variants) can be computed in several ways, for instance through the
jackknife method, the bootstrap algorithm, or by using the Fisher transfor-
mation (Efron; Newman, 2003). In our calculation, we used the bootstrap
algorithm, and considered 1000 random samples of the data.

Modularity index

A network can present topological modules or communities, as we have seen
in Section 3.3. These topological modules are defined as sets of nodes that are
more densely connected among each other than with nodes in other modules.
Hence, the modularity index (Newman, 2006), Q, is the most applied measure
to quantify how well the network can be subdivided in that non-overlapping
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modules, and by maximizing the number of links within the module while
minimizing the number of inter-modular links.

3.4.6 Hubs and Rich Club

Complex networks have been widely applied to uncover key organizational
features of network topology and to make predictions about the different roles
that the nodes can exhibit. In particular, in the past few years a great interest
has concentrated on nodes called hubs. However, there no exist a unified
definition of a hub, but it is commonly agreed that they play a crucial role in
fast transport and efficient integration of information across the network. In
the context of the brain, those hubs are likely to occupy a central position in
the organization of a network and to display a strong influence in neuronal
communication and integrative brain function (van den Heuvel and Sporns,
2013).

Centrality measures

In order to identify these hubs in a network, several centrality measures have
been proposed, that variously assess how important or influential a node is
within a network with different criteria. Here, we will focus on some of them.

The centrality degree is one of the most common and the simplest measure
of centrality. Nodes with high degree are nodes that interact, structurally or
functionally, with many others in the network. For instance, in some social
networks where nodes are referred to a person and the links to the relationships
(or acquaintances) among them, a hub (defined as the node with high degree)
would be a ‘politician’ or a ‘celebrity’. However, this measure does not take
into consideration the global structure of the network and just captures the
local behavior around a node.

The eigenvector centrality measure (also known as pagerank centrality) is
similar in meaning as the degree centrality, but it takes nto account the degree
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of the other nodes that are connected with a given node, therefore extending
to global features of the graph, and weighting the influence of their neighbors.
Following the social example, a person can be more influential when the
people that he or she knows is also more influential. Mathematically, the
eigenvector centrality is calculated as the first eigenvector of the adjacency
matrix that corresponds to the largest eigenvalue (Lohmann et al., 2010).

However, the eigenvector centrality has been recently seen (Martin et al.,
2014) to be problematic in small networks due to a bias that can appear around
central nodes, i.e. a localization effect. Qualitatively, that localization arises
because a hub with a high eigenvector centrality gives high centrality to its
neighbors, which in consequence turns it back again and inflate the hub’s
centrality.

In addition, although a node might be really important because it is
connected to many others, it might not be in a position where other nodes
can easily reach them. In such a case, the ‘important’ node would be unable
to access resources such as information or knowledge to the global network.
To capture this feature, other centrality approaches are based on the idea that
hubs are central nodes that participate in many short paths within the network,
and therefore are responsible for information flow.

One of these centrality measures is the closeness centrality which is
evaluated as the inverse of average shortest path lengths between a given
node and the rest of the network. A limitation of this measure is the lack
of applicability to networks with disconnected components since it diverges.
To overcome such limitation, the measure known as betweenness centrality
has been introduced, and corresponds to the number of shortest paths that
pass through a given node (see Figure 6.10). Then, nodes with high values
of betweenness centrality participate in a large number of shortest paths,
asserting a control over the flow information.

In modular networks, the idea of a hub can also be related with its role
in integrating communities or modules. In this line, Guimera and Amaral
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(Guimera and Amaral, 2005) defined the within-module degree z-score zi, a
measure that captures the node role within the module and the participation
coefficient Pi, a measure that expresses the distribution of links’ node across
all modules in a network. The nodes with high within-module degree and low
participation coefficient are known as provincial hubs. These nodes display
an important role within the communities helping to modular segregation.

On the other hand, nodes with high degree but also with high participation
coefficient are known as connector hubs and are likely to facilitate global
inter-modular integration. However, the participation coefficient defined by
Guimera and Amaral assumes that all communities are of the same size. For
this reason, in our study we evaluated the participation coefficient for every
possible partition in the network and averaged the final result. To proceed, we
carried out a thresholding (with steps of 0.1) in the Jaccard Similarity matrix,
a procedure simiar as ‘cutting’ the dendrogram. Thus, for every threshold, a
particular partition was obtained. In each partition the participation coefficient
(in the weighted version) wad calculated for every cluster. Finally, the final
nodal participation coefficient corresponded to the average of all the previous
participation coefficient values obtained in each partition. In this manner, the
size of the different communities was taken into account.

Overall, one can indeed notice that different meanings and descriptors
have been appeared to define a hub. Currently studies have been using a
combination of the centrality measures (like a ‘hubness’ score) to get a better
identification and interpretation of the nodes’ role in the network. Actually,
ranking the nodes according to the different criteria are often correlated, then
aggregating rankings is a powerful mechanism to improve the distinction of
the hubs. For instance, in (van den Heuvel et al., 2010) ascribed as hubs the
nodes that present high nodal strength, high nodal betweenness, low shortest
path length, and low clustering coefficient. In the same line, (Schroeter
et al., 2015), addressed as ‘hub score’ the average of the nodal strength,
betweenness centrality, local efficiency and the participation coefficient. Hubs
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in both cases were finally assigned to the nodes that presented scores above
of the 20% within each category, e.g. the top 20% of the ‘hubness’ ranking.
This latter definition has been the one applied in this thesis.

Rich Club Analysis

When nodes with high strength are more highly connected between them than
one would expect by chance then they create a backbone in the network that is
called Rich Club phenomenon. The rich–club analysis computes the degree–
degree (or weight–weight) correlation distributions respect to a null model of
non–correlated degrees (or weights). We first introduce the formulation for
the calculation of rich–club in weighted networks as presented in (Serrano,
2008), and afterwards we will extend it to the case of weighted directed
networks.

The rich-club score is calculated as follows

φ
unc
ST

=
WST

W unc
ST

(3.11)

where φsT is the rich–club score relative to the uncorrelated null case, WsT

is the sum of the weights of the links of the subgraph formed only by those
nodes whose strengths are higher than sT ,

WsT = ∑
iεvsT

∑
jεvsT

wi j (3.12)

and W unc
sT

is the corresponding value in the case of uncorrelated strengths,
being

W unc
ST

= ⟨s⟩
∑iεvST

∑ j ̸=iεvST
sis j

N ⟨s⟩2 −⟨s2⟩
(3.13)
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The term vsT designates the subset of nodes i such that si > sT . N is the
total number of nodes in the network, and ⟨s⟩ and ⟨s2⟩ are the first and second
moments of the strength distribution. The ratio φsT is calculated for all values
of sT , and ranges from the minimum value of strength in the network to the
maximum. This ratio indicates the presence or absence of a rich–club in the
network: a network shows a rich–club effect when the high values of sT give
a ratio above 1.

To calculate this ratio on our networks that not only are weighted but
also directed we need to adapt the former formulation considering the in–
strength, sin, and out–strength, sout , of each node. Indeed, in the directed
formulation, Equations (3.11) and (3.13) remain unchanged. However, vsT

must be redefined as

vsT =
{

i | sin
i + sout

i > 2sT
}

(3.14)

and the term W unc
ST

becomes

W unc
ST

= ⟨s⟩
∑iεvST

∑ jεvST
sout

i sin
j

N ⟨s⟩2 −⟨soutsin⟩
(3.15)

where the averages are calculated over the total N nodes in the network as
⟨s⟩= 1

N ∑i sout
i = 1

N ∑i sin
i and

〈
soutsin〉= 1

N ∑i sout
i sin

i .
This formulation allows us to calculate the rich–club coefficient for

weighted directed networks. Note that for an undirected network where
sout = sin we would recover the expression in (Serrano, 2008).

Statistical significance tests

We used along the thesis Student’s t-test for clustered cultures, and the
Kolmogorov-Smirnov test to compare homogeneous and clustered networks
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since the two culture types had different number of experimental realizations.
In all the statistical results, the p-value p is indicated as * for p < 0.05, and
** for p < 0.005.



Chapter 4

RESULTS I : Modular
Organization and Effective
Connectivity

As we have seen, clustered cultures display a self-sustained spontaneous
activity characterized by the fast activation of aggregates of neurons clusters
in a a sequential manner firing sequences. These neuronal clusters often
participate within the same firing sequences, shaping persistent coherent
activations that we called communities. As we have described in the Methods
Section, we unveiled the structure of these communities by comparing the
history of activations of a given cluster with all the other clusters’ histories,
finally grouping the clusters according to the most prominent categories. We
computed this analysis by considering a hierarchical clustering construction,
and using the ‘Jaccard similarity’ as a measure of the resemblance in cluster’s
histories. Typically, we observed that the emergent dynamics displays a
hierarchical modularity, where small communities appertain to higher ones.

We also introduced that the detailed analysis of the firing sequences in the
context of a novel mathematical framework forged the effective connectivity
of the clustered networks. Our framework naturally captured the intrinsic



98 RESULTS I : Modular Organization and Effective Connectivity

dynamics of our networks, and is based on the use of the time delays between
any two clusters’ activations —within a firing sequence— to ascribe and
weight the effective coupling between them. This framework gave similar
results to other approaches such as Mutual Information or Transfer Entropy,
was it was simpler to apply and computationally cheap.

In this chapter we will analyze in detail the functional organization of the
network in the context of our actual experiments. We will first deepen in the
characterization of the communities and the functional networks, and next we
will investigate the topological properties of the inferred networks.

4.1 Firing sequences

As described in Chapter 2, neurons were dissociated and seeded homoge-
neously on a glass substrate. Cultures were limited to circular areas 3 mm
in diameter for better control and full monitoring of network behavior (Fig-
ure 4.1A). The lack of adhesive proteins in the substrate rapidly favored
cell–to–cell attachment and aggregation, giving rise to clustered cultures
that evolved quickly. We measured dynamics already at DIV 5, and studied
cultures up to DIV 16. Inhibitory connections were blocked in most of the
experiments to operate in a biochemical scenario as simple as a possible.
Network dynamic behavior was therefore solely molded by excitation.

The clustered networks —at the developmental stage at which we investi-
gated them— contain around 30 clusters that display rich spontaneous activity.
Although the spatial arrangement of the clusters and their interconnectivity
varied from an experimental realization to another one, their dynamics pre-
sented similar features. The spontaneous activity was monitored through
fluorescence calcium imaging (Figure 4.1B) and recorded for typically 1 hour,
which provided sufficient statistics in firing events while minimizing culture
degradation due to photo-damage. The analysis of the images at the end of
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Fig. 4.1 Representative experiment in clustered neuronal networks. A, Bright field
image of a clustered culture at day in vitro 14. Dark circular objects are aggregates of neurons
(clusters), and filaments are visible physical connections between them. B, Corresponding
fluorescence image, integrated over 50 frames (≈ 0.5 s). Bright clusters at the top-left corner
are firing ones. A group of clusters that are active together in a short time window define a
firing sequence (yellow outline) C, Spontaneous activity in the network. The top plot shows
the average fluorescence signal of the clustered network shown in B, and along 40 min of
recording. The sharp peaks in fluorescence correspond to the fast sequential ignition of a
group of clusters. The bottom raster plot shows the clusters that ignite along the recording.
Different color bars remark repeated firing sequences, and highlights the tendency for the
clusters to activate in specific groups. D, Example of a particular firing sequence in a region
of the network containing 13 clusters. From left to right, the progress of cluster’s activation
is revealed by the increase in fluorescence signal of the downstream connected clusters. E,
Order of activation (black arrows) according to the analysis of the fluorescence signal. The
clusters marked in yellow are those that fire simultaneously within experimental resolution.
The ones in gray are clusters that do not participate in the firing sequence, and either fire
independently or remain silent. F, Detail of the fluorescence traces for the 9 participating
clusters along two different firing sequences, illustrating the accuracy in resolving the time
delay in the activation of the clusters. The two firing sequences contain the same clusters, but
the activation sequences are slightly different. Blue dots mark the ignition time, and yellow
dots signal the clusters that fired simultaneously. The bottom orange boxes depict the final
activation sequences. In the construction of the directed functional network, the influence
of a cluster on another is conditioned by the time span between their activations. Close
activations result in strong couplings (green arrows); far activations in weak ones (blue). Any
two clusters whose activations are above 200 ms are considered functionally uncoupled (red).
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the measurement provided the variations in fluorescence intensity for each
cluster and the corresponding onset times of firing (Figure 4.1C).

The spontaneous activity of these clustered neuronal cultures is character-
ized by the fast cascades of clusters’ activation that we call ‘firing sequences’.
An illustrative example is shown in Figure 4.1D-F, which depicts representa-
tive fluorescence images and the traces of 9 clusters along two consecutive
firing sequences. The first sequence corresponds to the images and sketch of
Figure 4.1E. The orange box at the bottom of the plot indicates the relative
activation time of each cluster within the window, with two clusters treated as
simultaneous.

To introduce the construction of the effective network that is described
later, we note that, intuitively, the firing of cluster #9 is most likely caused
by #8 and therefore both clusters are (functionally) strongly coupled. At
the other extreme, cluster #1 most likely did not trigger #9, and therefore
their mutual coupling is very weak. For the second burst, we note that
the activation sequence is very similar, but the relative delay times differ,
therefore modifying the cluster’s coupling strengths. Indeed, cluster #1 and
#9 are now functionally disconnected given their long temporal separation.
The above sequences of clusters’ activations, extended to all the clusters and
firing sequence episodes of the monitored culture, convey information on
the degree of causal influence between any pair of clusters in the network.
For instance, cluster #5 in Figures 4.1E-F can fire because of the first order
influence of clusters #3 and #4, but also because of the second and third order
influences of clusters #2 and #1, respectively. We observed that the time
spanned between two consecutively firing clusters typically ranged between
10 and 100ms (Figure 4.2A).Therefore, we used two times the maximum
value as a cut–off to separate a given firing sequence from the preceding one.
We considered that above this value there is no casual activation between
consecutive clusters’ firings.
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Fig. 4.2 Time delays and occurrence of firing sequences. A, Distribution of the cluster’s
activation delay times up to 500 ms. The arrow depicts the value of 200 ms used as cut–
off. The probability of consecutive clusters’ activations over this cut–off is about 1%.
B, Probability distribution of the time interval between firing sequences (IFI), which is
exponential–like. The temporal separation between consecutive firing sequences typically
occurs in the range 1−15 s. C, Probability distribution of the duration of the firing sequences,
which follows an exponential distribution as well, with the mean around 100−150 ms. D,
Distribution of the number of clusters that encompass a firing sequence. Although two–cluster
activations appear often, the typical size of a firing sequence is around 20 clusters.
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A typical recording provided on the order of 100−200 firing sequences
(≃ 3 firing sequences/min). Firing sequences are typically separated in time by
1−15 s. The probability distribution of the time intervals between these firing
sequences (inter–firing interval, IFI) follows an exponential distribution rather
than a Gaussian distribution as occurs in homogeneous cultures (Figure 4.2A).
Firing sequences in our clustered networks generally last 150 ms (Figure 4.2C)
and encompass between 2 and 20 clusters (Figure 4.2D).

4.1.1 Validity of firing sequences

Fig. 4.3 Sensitivity of the functional network construction to the cut–off times. The
plots show the Variation of Information (VI) between the grouping of bursts at a certain
cut–off value and the previous one, and for clustered networks (top) and homogeneous ones
(bottom). Each grouping is the set of bursts found at a certain value of the cut–off. The
cut-off values were investigated in the range 0−1000 ms. The analysis shows that 200 ms
for clustered cultures and 10 ms for homogeneous ones are values for which VI is already
stabilized.
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The cut-off determines the end of a sequence and therefore its variation
modifies the set of firing sequences chosen. The cut-off was set to 200 ms
for clustered cultures and to 10 ms for homogeneous ones. To assess the
sensitivity of the grouping of firing sequences to the cut–off, in (Teller et al.,
2014) we computed the Variation of Information (VI) between the grouping
of firing sequences at a certain cut-off value and the previous one.

The variation of information (Karrer et al., 2007; Meilă, 2003) is an
information–theoretic measure that compares the distance between two groups,
i.e. partitions of elements X and Y (see Section3.3.2). In our specific case,
each partition corresponds to the set of firing sequences (or network bursts for
homogeneous culttures) found at a certain value of the cut–off. We screened
the cut–off values from 0 to 1000ms and finally observed that 10ms for ho-
mogeneous and 200ms for clustered cultures are values for which VI was
already stabilized (Figure 4.3). Thus, the modification of the cut–off within
the stabilization region does not change the grouping of clusters in each burst,
and therefore the derived functional networks, as well as the corresponding
network measures, remain the same.

4.2 Functional organization

The observation that the firing sequences repeated along the recording in-
dicated that groups of clusters tended to participate in the same activity
sequence, although the precise sequence of activation could vary. One can
observe a typical raster plot of a representative experiment in Figure 4.4A.
Two firing sequences with similar pattern of clusters’ activation are indicated
with green and orange boxes. In addition, these small groups often also
participated within a major group that involved practically the entire network
(blue box).

By comparing the history of activations of each cluster (i.e. the rows
of the raster plot) one can assess which clusters exhibited a high degree of
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Fig. 4.4 Functional Organization. A, Raster plot of spontaneous activity in a typical
experiment with strong modular behavior, meaning that clusters tend to fire in groups
following a functional structure that frequently repeats (vertical color boxes). Dots in the
raster plot mark a cluster firing event. The green and orange boxes mark two characteristic
firing sequences that are repeated along the recording, whereas the blue box highlights a
firing sequence that almost comprises the entire network. Horizontal dotted lines indicate
clusters that fire independently. B, Corresponding dendrogram of the similarity between the
activity history of the clusters using the Jaccard metrics (as a similarity measure) and the
average linkage criterion (as a method to group the clusters depending on their similarity
values in the hierarchical construction). The dashed line indicates the threshold for the
optimal set of communities. Color boxes indicate the two most representative communities,
color coded as in the raster plot. C, Equivalent representation in the form of a distance matrix
Z̃, clearly depicting the two characteristic communities. The matrix was arranged according
to the clusters’ indexing inferred from the dendrogram. D, Mean difference ∆MVI between
pairwise consecutive partitions using VI as a function of the threshold di. The vertical dashed
line indicates the optimal threshold. E, Fraction of clusters that shape the characteristic
communities averaged over N = 18 experiments, showing that typically about 70% of the
clusters in a network the biggest community, followed by other 20% that configure a second
community.
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coherence and therefore shaped the characteristic dynamical communities in
the network. In a formal manner, we carried out the agglomerative hierarchical
construction using the ‘Jaccard’ metrics (see Section3.3.1). This measure
computes the number of common activations between two clusters respect
to all the occurrences where either one cluster or the other had fired. This
definition is convenient since it excludes those events where both clusters
have remained silent. Once the distance (or the similarity) matrix is obtained,
a z-score test is implemented with 500 surrogates. The final, normalized
Jaccard distance matrix Z̃ (Figure 4.4C) can be conveniently represented
using a dendrogram, a hierarchical tree representation (Figure 4.4B). This
construction shows the cluster index along the x–axis, while the y–axis shows
their dynamical similarity d. The cluster index can be used to sort the Z̃
matrix and visualize better which clusters are more similar (or have a shorter
distance). The value of d of the dendrogram depicts the depth in which
pairwise clusters have been grouped.

A threshold has to be applied in dendrogram to establish the number and
structure of the communities in the network. Such a ‘threshold’ effectively
means to set a particular value di. The optimal threshold was obtained by
computing the Variation of Information. We proceeded by evaluating the
mean of all pairwise VI, ∆MVI, scanned along all possible thresholds di, and
next identified the maximum value that marks the optimal partition. That
partition should give the minimum number of communities in the network
with the richest information content, and excluding the trivial case of a
single community. For instance, in the experiment shown in Figure 4.4D, a
sharp jump in ∆MVI was observed at di=0.93. By applying this threshold
in the dendrogram, we found two characteristic communities and that are
marked in orange and green (Figure 4.4B). Clusters that were not included
in any community were considered as ‘independent’ clusters —they are
indicated with a horizontal dotted line in the raster plot. These clusters might
be structurally disconnected and they just activate randomly. Additionally,
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we can notice in the grouping of clusters represented in the dendrogam of
Figure 4.4B that those clusters that fire together in a small community tend to
participate within a major community, giving rise to a hierarchical structure
of modules and submodules.

Indeed, the clusters presented a modular dynamics where the number of
communities could vary, for instance along the developmental day in vitro.
As we explained in the Chapter 2, these clustered cultures start displaying
spontaneous activity by DIV= 5. At this early stage of development, small
groups of typically 2−3 clusters (and that are physically close) tend to get
activated together; forming segregated small communities. At middle stages
of the development, 6 . DIV . 15, the culture is sufficiently mature for
all the connections to be established, giving rise to stable number of 2− 3
distinct communities. In general we observed that about 70% of the clusters
participated in a big community, other 20% shaped a second community, and
the remaining 10% comprised clusters that were either totally disconnected
from the rest of the network or cliques of 2−3 clusters that formed a third or
more communities (Figure 4.4E). At higher stages of development, DIV & 14,
the number of communities stabilized around 1−2, and it was even frequent
to observe a global coherent behavior where nearly all the clusters were
activated as a single community.

4.2.1 Robustness of the inferred functional organization

Comparison with other hierarchical constructions

We tested other metrics to evaluate the sensitivity of our approach to the defi-
nition of distance. We investigated the euclidean distance, cosine similarity
and cross correlation, and found very small differences as found compared to
the Jaccard metrics. More specifically, as we can observe in Figure 4.5A, the
Pearson correlation coefficient between the values of the Z̃ evaluated by the
Jaccard metrics and by the cosine similarity metrics provided r = 0.98 for the
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representative experiment of Figure 4.4. Nearly negligible variations were
detected in the similarity values using one metrics or the other. Additionally,
by evaluating the equation ψ = (Jacc−Cos)/(Jacc+Cos) (Figure 4.5B),
we can easily visualize that the small differences appeared at low similarity
distances, i.e. where the ’more similar clusters’ are grouped, and therefore
the arrangement of the established communities remained untouched. Indeed,
we computed the VI between our final partition, i.e. the clusters that form
the communities using the Jaccard metrics, with respect to the partitions
that resulted from applying the other metrics, and always obtained 0, i.e. no
difference.

We also analyzed the sensitivity of the results to other linkage criteria
different than our ‘average linkage’, and tested for instance the ‘single linkage’
one. This linkage joins two clusters or ‘composites’ that have the minimum
distance between them. We obtained similar results using the average linkage
or the single one. AS shown in Figure 4.5C, the Pearson correlation fit be-
tween the Z̃ values using one linkage criterion or the other for the experiment
of Figure 4.4 provided r = 0.98. Again, the small differences were found
at the first steps of the hierarchical construction (Figure 4.5D-E). Once the
threshold was applied, the clusters that formed the distinct communities were
identical independently of the linkage criterion taken.

Comparison with other community detection algorithms

We compared our clusters’ organization in communities, as obtained using
the VI for threshold selection, with other approaches such as the ‘Louvain’
method (Blondel et al., 2008) or the principal component analysis, PCA (Jol-
liffe, 2002).

The ‘Louvain’ methods proceeds as follows. In a first phase of compu-
tation, each neuronal cluster is assigned to be a community by itself, and
therefore there are initially as many communities as number of clusters. Then,
for each cluster i, the algorithm considers its neighbors j and evaluates the
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and highlight the small observed differences.
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gain in modularity that would result by removing the cluster i from its com-
munity and grafting it into the community of the cluster j. When the gain
is positive, the cluster i is then placed into the community of cluster j. This
process is iteratively repeated until no improvement in modularity is achieved,
giving rise to a set of communities. Then, in a second phase of computation,
the algorithm creates a network where the ‘nodes’ are the previously found
communities and the links between these ‘nodes’ are the sum of the weights
between connected clusters within the inferred communities. The first phase
is then called again, so that communities gradually contain more clusters.
The whole process is iteratively repeated until the community structure is
stabilized and the maximum of modularity is reached. A remarkable feature
of this algorithm is its hierarchical nature since, in every step, a hierarchy
of communities within communities is built. The resolution parameter γ

informs about the level within the hierarchy. In our experiments, for γ = 0 all
the clusters formed a single community, and for γ > 2 each cluster formed
isolated communities.

We next calculated the VI and the MI between each resulting partition
in the Louvain method (screening 0 ≤ γ ≤ 2) with our optimal partition. We
observed that there is always a well–defined range in γ values that minimizes
and maximizes the VI and the MI. The final γ used to identify the ‘Louvain’
characteristic modules belonged to that range. We observed slight differences
in the classification of modules by applying our method and the Louvain one
(VI ≃ 0.04, MI ≃ 0.93). These differences are associated to the classification
of the ‘independent’ clusters. These clusters tend to be grouped at the last
level in the hierarchical construction (the top values in the dendrogram). More
specifically, we calculated in Figure 4.6A the VI and the MI between the
partitions obtained by the Louvain approach and our method, and for diverse
Louvain resolution parameters γ of the representative experiment of Figure 4.4.
We observed that there was always a range (in this case, 0.6 ≃ γ ≃ 1) where
the difference is minimum. The clusters’ arrangement in this range was



110 RESULTS I : Modular Organization and Effective Connectivity

cluster index

c
lu

s
te

r 
in

d
e
x

cluster index

c
lu

s
te

r 
in

d
e
x

0

1

A

0 0.2 0.4 0.6 0.8 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

V
I

0
0

0.5

2g

V
.I

.C
i_

ja
c

c
_

lo
u

v
a

in

0 0.2 0.4 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gamma

M
I

20
0

1

M
.I

.C
i_

ja
c

c
_

lo
u

v
a

in

B

D E

# PC

v
a

ri
a

n
c

e
 e

x
p

la
in

e
d

 (
%

)

PC 1

P
C

 2

0 5 15 30
65

75

85

95

C

g

Fig. 4.6 Other community detection methods. A, VI between the optimal partition using
the Jaccard metrics (Figure 4.4) and Louvain partitions at gradually higher resolution limit
parameter γ . VI is minimum in the region 0.6 ≤ γ ≤ 1 and therefore in this interval the two
partitions practically coincide. B, Similar results can be found by evaluating the MI. For the
same γ range both partitions are very similar and MI is maximum. C, Comparison of the
derived similarity matrices. Left corresponds to the Jaccard construction shown in Figure 4.4,
with the two main communities outlined with color boxes together with independent clusters
(black). Right corresponds to the Louvain construction with γ = 1. Cluster indexing is the
same as the Jaccard one. The grouping of clusters into communities is practically the same
except for two independent clusters that appear as a third community (bottom–right yellow
outline). D, Cumulative distribution of the variance as a function of the number of principal
components (PCs). The first principal component by itself explains less than 80% of the
variance content, which is not sufficient. 85% can be reach by including the second principal
component (pink rectangle). The dashed lines mark the number of principal components
required to explain the 95% of the information, 6 in our case, which is impractical to
represent in a plot. E, Data contents of the two first principal components. The colored dots
are the coefficients of the main PCs into the projected PC space. The direction and length
of the vectors reflect the contribution of each cluster to the two PCs. The colors code the
distinct communities according to the classification found above. The derived arrangement
of communities differ from our method solely in the independent clusters, which are grouped
as a third community (black dots), and in a cluster that now appears as independent (yellow)



4.3 Effective connectivity characterization 111

similar (Figure 4.6C) to the obtained with our method (Figure 4.6B). In
particular, the clusters’ pattern in the first community (orange box in Figure
4.6B) was exactly the same (orange box in Figure 4.6C), and the arrangement
of clusters within the second community (green box in Figure 4.6B) was
nearly identical (purple box in Figure 4.6C). As we stressed before, the small
differences resided in the distribution of the ’independent clusters’ within the
communities (black boxes in Figure 4.6B).

Finally, concerning PCA analysis, we applied this algorithm to the simi-
larity matrix of the representative experiment, and plotted the values on the
principal component space (Figure 4.6E) to identify the different communities.
Although PCA did not allow to represent all the information in just in 2-3
principal components (Figure 4.6D), the final community structure of the two
main principal component slightly differs with respect to the functional orga-
nization achieved with our method. In particular we obtained similar grouping
of clusters in communities except n one (colored in yellow, Figure 4.6E).

We conclude that the final functional organization using these techniques
is practically the same as ours, with small differences that appear in the assign-
ment of the clusters with lower similarity values (the top of the dendrogram,
high di) and that correspond to the independent clusters. These clusters are
indeed the ones that have erratic behavior and exhibit poor firing.

4.3 Characterization of the effective connectiv-
ity

The effective connectivity matrix was constructed using the method based
on the analysis of the time delays between clusters’ activations. Briefly,
sequences were first identified by using a cut–off of 200 ms, ruling out any
causal influence between consecutive clusters’ activations above this threshold.
Then, all the clusters that participated within a firing sequence were pair–wise
linked with a weighting function that depended on the time delay between
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clusters’ activations. The shorter the time delay, the stronger the weight of
the link. Additionally, when the time delay between clusters’ activations was
either too short for detection or activation occurred simultaneously, clusters’
inter–relation was treated as a bi-directional link, since no ‘causality’ could
be inferred. This simultaneous events occurred rarely, by 5% of the cases.
Finally, the total weight of the link was established as the sum of all the
computed weights in all the observed firing sequences. The final connectivity
layout was both directed and weighted, i.e. shaping strictly speaking an
effective connectivity map.

4.3.1 Analysis of the effective networks

We carried out measurements in 15 different clustered networks, and labeled
them with capital letters as networks ‘A’− ‘O’. In order to compare their
properties with the ones from cultures with a distinct structure, we applied the
same analysis to 6 cultures characterized with a homogeneous distribution of
neurons, and labeled them as networks ‘P’− ‘U’. We computed the effective
networks of the 15 (‘A’ to ‘O’) realizations of clustered cultures, as well as
the 6 (‘P’ to ‘U’) homogeneous ones, and analyzed their major topological
traits. Firstly, for each culture we obtained the number of nodes, the number
of edges, the average degree of the networks, and its average strength. The
investigated networks and their main topological measures are summarized
in Table 4.1. Although young cultures display a richer activity, in general all
networks presented a similar number of nodes and a comparable effective
connectivity.

Three representative examples of the investigated effective networks for
the clustered configuration are shown in Figure 4.7. The position of the nodes
and their size are the same as the actual clusters for easier comparison. Edges
in the directed network are both color and thickness coded to highlight their
importance, with darker colors corresponding to the highest weights. This
representation revealed those pairs of clusters that maintained a persistent
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Culture type Network DIV burst rate Number Number Average Average Assortativity Assortativity
(min-1) of nodes of edges degree strength Pearson (wh) Spearman (wh)

Clustered 
A 5 7.35 38 544 14.32 33.71 0.642 ± 0.044 0.605 ± 0.036
B 6 6.80 34 1044 30.71 131.94 0.404 ± 0.040 0.449 ± 0.035
C 6 6.55 29 762 26.28 142.45 0.440 ± 0.036 0.425 ± 0.041
D 7 2.99 27 471 17.44 32.53 0.442 ± 0.064 0.414 ± 0.063
E 7 0.87 29 660 22.76 22.83 0.402 ± 0.043 0.396 ± 0.045
F 8 0.85 32 750 23.44 12.89 0.317 ± 0.064 0.287 ± 0.057
G 8 0.79 35 395 11.29 4.99 0.528 ± 0.086 0.553 ± 0.063
H 9 1.17 32 722 22.56 30.99 0.355 ± 0.061 0.377 ± 0.052
I 10 3.19 27 486 18.00 81.88 0.460 ± 0.046 0.478 ± 0.046
J 12 2.42 24 456 19.00 97.32 0.326 ± 0.049 0.322 ± 0.046
K 13 1.28 19 252 13.26 38.27 0.729 ± 0.062 0.699 ± 0.051
L 14 3.40 17 116 6.82 28.25 0.586 ± 0.076 0.552 ± 0.077

M 14 1.40 25 205 8.20 16.71 0.356 ± 0.084 0.309 ± 0.087
N 14 1.86 26 437 16.81 30.63 0.698 ± 0.060 0.664 ± 0.061
O 14 4.91 29 391 13.48 38.77 0.372 ± 0.069 0.364 ± 0.061

Homogeneous
P 6 3.30 814 453812 557.51 41.24 0.059 ± 0.005 0.055 ± 0.005
Q 8 4.10 589 243606 413.59 27.66 0.038 ± 0.007 0.036 ± 0.007
R 10 0.27 562 35379 62.95 2.46 0.112 ± 0.023 0.125 ± 0.023
S 15 1.05 1107 239517 216.37 9.47 0.111 ± 0.008 0.107 ± 0.008
T 16 0.47 694 274278 395.21 24.89 0.077 ± 0.007 0.067 ± 0.006
U 16 0.78 703 155643 221.40 10.34 0.040 ± 0.009 0.037 ± 0.009

Table 4.1 Network measures of clustered and homogeneous cultures. The table shows
the major topological descriptors of the functional networks investigated, 15 corresponding
to a clustered neuronal organization and 6 to a homogeneous one. Average degree refers to
the mean number of connections per node, and the average strength to the mean weight per
node. All the cultures were maintained and studied identically (see Methods). Experiments
covered almost 10 days of development in vitro (DIV). All clustered cultures were strongly
assortative, while the homogeneous ones tended to be weakly assortative, or neutral.
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causality relationship over time. Nodes are also color coded according to
their strength, i.e. the total weight of the in– and out–edges.

The effective networks exhibited some interesting features. First, there
were groups of nodes that formed tightly connected communities. These
topological communities actually reflected the most frequent firing sequences
or the dynamical modules (see Section4.3.6). Second, nodes preferentially
connected to neighboring ones with some additional long–range connectivity,
and often following paths that were not the major physical connections. As
an example, the network ’H’ in Figure 4.7 shows effective connectivity paths
that are very different from its major structural connections. This indicates
that the structural connectivity of the network cannot be assessed from just
an examination of the most perceivable processes. And third, we observed
that there was no correlation between the width of the physical connections
and their weight, or the size of the nodes and their strength, indicating that
the dynamical traits of the network cannot be inferred from its physical
configuration, stressing the importance of our functional study.

We also calculated the total strength distribution for all the clustered ex-
periments normalizing first the effective connectivity by its maximum weight
(Figure 4.8A). The distribution presents a group of clusters with nearly negli-
gible strengths, meaning that they frequency of participation was very low.
In principle, one can think that these clusters presented just low firing rates
and that they co–activated just few times with others.That is one possibility
but it could exist many others. Discarding possible ‘false detections’ in the
analysis of the data, which is rare given the generally good signal–to–noise
ratio, we conjecture two other explanations. First, these clusters could be
‘independent’ units, i.e. clusters that were structurally disconnected from the
network and that fired in an independent way, either randomly or periodically.
And, second, these clusters could operate as modules’ connectors, i.e. clusters
that were responsible for integrating different segregated modules. On the
other hand, the strength distribution also shows a high spectrum of nodes with
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min                         max
strength

500 mm

Fig. 4.7 Neuronal cultures and effective networks. Top: Bright field images of 3 represen-
tative neuronal cultures at different days in vitro. Bottom: Corresponding effective networks
obtained from the directed and weighed construction described in Methods. From left to right,
the pictures correspond to the cultures labeled D, H and O in Table 4.1. Only active clusters
are used in the construction of the functional network. The size of the nodes is similar to the
ones observed in the cultures, and facilitates the comparison of the functional network with
the real culture. In the functional networks, the edges are both color and thickness coded
according to their weight, while the nodes are only color coded according to their strength.
The darker the color, the higher the value.
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low and medium strength and few nodes with remarkable high strengths. The
latter could be related to the existence of hubs in the network.
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Fig. 4.8 Strength distribution and real distance pairwise distribution. A, Probability dis-
tribution function of strengths. They are calculated from the effective matrix and normalized
by the maximum. No null model is introduced in this calculation. B, Probability distribution
function of physical distances over the substrate (in pixels), as obtained from the analysis of
the ROIs.

Finally, another interesting observation arises from the examination of the
histogram of the physical distance between interacting clusters (Figure 4.8B).
The histogram is characterized by the presence of a number of peaks. Indeed,
the highest peak and that corresponds to short distances, is associated to the
large number of nodes that preferentially connect to their nearest neighbors.
However, other peaks at well established larger distances are also very clear.
This feature indicates that clusters connect to second and further neighbors,
and that the distance between connected units is maintained. Hence, we
conclude that the apparent random clusters’ configuration has some structural
order for which we do not have an explanation, but that clearly drives the
clusters to organize and develop following a characteristic distance over the
substrate.
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Significance test and normalization

As we commented before, independent clusters that fired randomly or peri-
odically within the time window of another sequence could inappropriately
be interpreted as ‘co–active’, therefore introducing artifacts to the inferred
effective connectivity. Although such events of accidental participation were
rare (by 2%), we carried out a statistical significance test to discard them in
a formal way. Additionally, this test provided an efficient way to normalize
the weights. Normalization is a fundamental step to compare for instance
different network conditions or experimental realizations. The significance
test was carried out by considering surrogates formed by a random reshuffling
of the time events of activation (see Section3.4.3) while preserving the total
number of firings per cluster. A total of 500 surrogates were considered
per network. The final weights were then normalized using the z-score test.
Since our first interest is to disregard linear correlations, this null model was
sufficient.

To better understand the implementation of the significance test, Fig-
ure 4.9 shows in detail that analysis for the clustered network ’B’. First of
all, we obtained its initial (raw) effective weights’ distribution (Figure 4.9A)
together with its respective random weights’ distribution from the 500 surro-
gates (red dashed line). We can first notice that the initial weights’ distribution
resembles an exponential-like or a power law, with a high number of links
with nearly negligible weights and few ones with high weights (inset of Fig-
ure 4.9A). The random model gives rise to a Gaussian weight distribution
with a mean corresponding to the one of the actual data. The z-score test
compares the random data with the actual one, and provides a new, normal-
ized dataset in units of standard deviation with respect to the null model
(Figure 4.9B). Those links with a high weight score appeared frequently
and therefore their clusters were strongly connected. At the other extreme,
negative weight scores reflected those links that were less connected than in
a random configuration and therefore had to be disregarded. By setting to
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Fig. 4.9 Effective and z-score weight distributions. A, Weights’ distribution of the links
from network ’B’ (black) compared to the distribution obtained after a reshuffling of the acti-
vation times of the clusters (500 surrogates, red). The inset shows the original dataset with the
y-axis in logarithmic scale. B, The same weights’ distribution after the z-score normalization.
The weights are now shown in standard deviation units. Negative weight values (pink region)
reflect those links that were less connected than in a random configuration and were therefore
not statistically significant. The inset shows the cumulative weight distribution. About
70% of the weights’ scores appeared negative after the z-score normalization and hence
disregarded. C, Correlation between the effective initial weights’ values and the normalized
ones. The relation is linear with r = 0.97. D, Top links (highlighted in green) are those above
1.95σ (95% confidence interval).
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zero solely these negative values we pruned around 75% of the connections
(Figure 4.9B). In general, weight scores before and after normalization scaled
linearly (Figure 4.9C), and indicates that normalization does not change
the structure of the effective connectivity. For the particular dataset shown,
Pearson correlation provided r = 0.97, and for all inferred networks it was
r = 0.95 on average. Those effective links with weight values above 1.95σ

(95% confidence, Figure 4.9C) were the top links of the network, shaped the
‘skeleton’ of the effective connectivity and comprised about 15−20% of all
normalized links (Figure 4.9D).

Effective networks in homogeneous cultures

As we described in Chapter 2, the seeding of neurons in cover glasses previ-
ously coated with poly–l–lysine gave rise to neuronal cultures with a quasi–
homogeneous distribution of neurons. Spontaneous activity in these homo-
geneous cultures was typically recorded at 100 frames/s, which sufficed to
extract the time delays between consecutive neuronal activations. The anal-
ysis of their spontaneous activity traces was analyzed in the context of our
effective connectivity model, finally procuring their map and topological prop-
erties. A representative homogeneous culture and its corresponding effective
network is shown in Figure 4.10.

Our interest to study homogeneous neuronal networks was to compare
clustered networks with others with a radically different network architecture.
As we will see in other parts of the thesis, topological measures such as
assortativiity, or the resilience of the networks to damage, highly contrasted
in the two kind of configurations.

4.3.2 Assortativity

Table 4.1 summarizes the major topological properties of the studied clustered
networks. We found of particular importance the assortativity measure given
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min maxstrenght

Fig. 4.10 Analysis of homogeneous cultures. A, A typical culture 3 mm in diameter
containing ≃ 3000 neurons, which that can be well identified either as bright spots in the
fluorescence recordings or as circular objects in bright–field images (small panel on the
right). The particular experiment shown here corresponds to network ‘P’ in Table 4.1, with
a total of 814 neurons manually selected over the images and monitored along 45 min.
B, Given the large number of nodes analyzed and the high average degree of the resulting
network (∼ 550 effective connections per neuron), a representation of the complete functional
network is unpractical. As an example of the obtained functional networks, we show only the
functional links within a small region at the center of the culture and containing 40 neurons.
Connections are both color and thickness coded according to their weight. Nodes are color
coded according to their strength. C, As an alternative representation, we show a 10% of the
population (81 neurons randomly chosen), each neuron showing the 10% of its links. Nodes
and links are color coded according to their strength and weight, respectively. D, A ring
graph of the same neurons shows that most of them display a similar connectivity, in contrast
to the strong modularity and variability in connectivity exhibited by the clustered networks.
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its importance in the context of network resilience. Since our networks are
directed and weighted, we extended the definition of assortativity to take into
account both characteristics, as described in Section 3.4.5).

Clustered

1 5 1.82 32 612 19.125 33.77 0.376±0.058 0.378±0.056

2 5 2.04 34 692 20.35 38.33 0.519±0.062 0.487±0.052

3 7 2.43 27 680 24.28 82.84 0.590±0.050 0.470±0.061

4 8 4.82 32 929 29.96 238.71 0.345±0.027 0.327±0.031

5 8 4.06 35 1214 31.11 196.69 0.365±0.040 0.341±0.041

6 9 1.79 31 772 24.90 64.57 0.332±0.041 0.286±0.044

7 9 2.93 28 562 20.07 95.24 0.636±0.045 0.531±0.049

8 14 0.50 26 36 5.23 5.43 0.690±0.082 0.720±0.060

Average 

degree

Average 

strength

Assortativity 

Pearson 

Assortativity 

Spearman 
Culture type E+I DIV

burst rate 

(min-1)

Number of 

nodes

Number of 

edges

Table 4.2 Network measures of ‘E+I’ clustered networks. The table shows the major
topological descriptors of 8 effective networks of clustered cultures recorded with both
excitation and inhibition active (‘E+I’ networks). 4 of the shown experiments, labeled with
capital letters, correspond to the same networks measured in ‘E-only’ conditions listed in
Table 4.1. Experiments covered almost 10 days of development in vitro. All ‘E+I’ networks
were also strongly assortative.

For our experiments, we computed the Pearson ρPW and the Spearman
ρSW correlations of the weight–to–weight data. Both correlations provide
values in the range [−1,1]. Positive values of the weighted assortativity
indicate that nodes with similar strength tend to connect to one another,
while negative values mean the preferred interconnectivity of nodes with
different strength. In Table 4.1 we can observe that all clustered networks
(labeled ‘A’-‘O’) exhibited a positive weighted assortativity, in the range
0.32 < ρPW < 0.73 for the Pearson construction and 0.29 < ρPW < 0.7 for
the Spearman one. Although the values fluctuate across different cultures, the
two assortativity measures provided the same value within statistical error,
and reflect that network size corrections provided by the Spearman’s treatment
have little influence in strongly assortative networks.

An example is provided in Figure 4.11. The data corresponds to the clus-
tered network ‘B’, and plots, for every functionally linked between clusters
(i, j), the relation between the out–strength of node i and the in–strength of
node j (Figure 4.11C). In the plot, the size of the dots is proportional to the
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A B C

Fig. 4.11 Assortativity measure in clustered networks. A, Bright field image of the
representative clustered network shown in Figure 4.4. B, The resulting effective network
using our method based on activation delays. Arrows in the links are not shown for simplicity.
Nodes and links are colored coded according to their encompassment in the communities
shown in Figure 4.4. C, The weighted assortativity measure accounts for the correlation
between the out– and in–strengths of every pair of linked nodes (i, j) in the network, and
taking into account the weight of the link w(i, j). For every pair of connected nodes, the
out–strength of node i and the in–strength of node j are plotted as a dot. Nodes belonging
to the same community are drawn with the same color as the community. Otherwise, they
appear black. The size of the dots is proportional to the weight of the link w(i, j).

weight of the corresponding link. By examining the plot one can easily ob-
serve a positive slope, i.e. an assortative connectivity mixing among clusters.
When both nodes i, j belong to the same module the corresponding dot in
the plot is colored coded according to their module color. This coding is
convenient and shows that the positive correlation mainly raised from the out–
and in– connections confined within the modules and with a wide spectrum
of strength values.

For completness, the above network measures were also analyzed in
experiments with a homogeneous distribution of neurons (labeled ‘P’− ‘U’).
The results are summarized in Table 4.1. Interestingly, the assortativity values
were much lower (by an order of magnitude on average) than the ones for
clustered cultures, in the range 0.04 < ρPW < 0.11 for the Pearson’s and
0.04 < ρPW < 0.12 for Spearman’s.

Finally, to investigate the generality of the assortative traits in the clustered
networks, we analyzed effective networks derived from experiments in which
both excitation and inhibition were present (‘E+I’ networks). We note that in
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our standard experiments we considered only excitation (‘E-only’ networks)
to simplify the biochemical complexity of the system, blocking inhibition
with bicuculine. Interestingly, the dynamics was qualitatively similar in either
condition, and the topological traits were also comparable. Table 4.2 shows
the major topological properties of 8 experiments in ‘E+I’ conditions. All
networks presented strongly assortative values.

4.3.3 Rich-Club properties

To assess the importance of the measured assortativity values, we also com-
puted the weighted rich–club (see Section 3.4.6). The rich–club phenomenon
refers to the tendency of nodes with high degree to form tightly interconnected
communities, compared to the connections that these nodes would have in a
null model that preserves the node’s degree but otherwise is totally random.
Given the positive assortativity found, we analyzed whether this finding was
also reinforced by the existence of rich–club structures.

The weighted formulation for the rich–club takes into account the node’s
strength instead of the degree. The evaluation of the rich–club φ unc(sT )

(relative to the uncorrelated null case) is performed by computing the ratio
between the connectivity strength of highly connected nodes and its random-
ized counterpart, and for gradually higher values of the strength threshold
sT . The detailed calculation is described in the Section3.4.6, and the results
of the analysis for representative networks are shown in Figure 4.12. Ratios
larger than 1 indicate that higher strength nodes are more interconnected to
each other than what one would expect in a random configuration. On the
contrary, a ratio less than 1 reveals an opposite organizing principle that leads
to a lack of interconnectivity among high–degree nodes. After the calculation
of the ratios for all the studied clustered networks, we found positive ratios
in a wide range of sT . values, reflecting a tendency towards the creation of
rich–clubs (Figure 4.12. On the contrary, homogeneous cultures exhibited a
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Fig. 4.12 ‘Rich–club’ analysis. The evaluation of the rich–club φ unc(sT ) is carried out by
computing the ratio between the connectivity strength of highly connected nodes and its
randomized counterpart, φ unc =WsT /W unc

sT
, and for gradually larger values of the strength

threshold sT . The figure shows the rich–club analysis for 4 representative clustered and
3 homogeneous cultures. Clustered networks exhibit values of φ unc systematically higher
than 1 for a wide range of values of the strength threshold sT , evidencing the existence of a
rich–club core of highly connected clusters in the network. On the contrary, homogeneous
cultures display a mixture of positive and negative values, and with an average around 0,
ruling out the existence of the rich–club property.
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neutral assortativity, with rations slightly increasing as sT grew, but rapidly
decreasing and fluctuating afterwards (Figure 4.12).

A B

Fig. 4.13 Identification of the ‘Rich Club’ in a clustered network. A, Effective network
of the ‘B’ culture, where nodes are color coded following the node total strength. The darker
the colors, the higher the strength. Arrows depict the in–, and the out–weights. The node with
the highest strength is encircled in black. B, The same effective network but highlighting in
purple the subset of highly connected clusters that shape the Rich Club core. Around 20% of
the clusters formed part of the Rich Club.

To illustrate the location of the Rich Club within a network, Figure 4.13
shows in detail the nodes that shape the Rich Club core for clustered culture
’B’. Figure 4.13A pictures the effective network where the nodes’ color is
associated to the node total strength. Darker colors correspond to higher
strengths, with the arrows depicting the in-, and the out- weights. By examin-
ing the data along the Rich Club analysis (Figure 4.12) one can extract the
subset of nodes that form it, which is actually obtained at the maximum value
of sT . The corresponding clusters are colored in purple in Figure 4.13B. The
fraction of clusters that shape the Rich Club is about 17% for this particular
example. These clusters are indeed linked with the majority of the other
clusters in the network. In general, all the clustered networks investigated
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presented the Rich Club phenomenon, and its core was encompassed the
15−30% of the clusters in the network.

4.3.4 Hubs

As we have commented in Chapter 3, different definitions exist regarding the
concept of hub. To assess whether they exist or not in our networks we used
the methodology followed in Refs. (Schroeter et al., 2015; van den Heuvel
et al., 2010) and that introduce the concept of hubness score. This score takes
into account 4 topological parameters: ‘nodal strength’, ‘betweenness’, ‘local
efficiency’ and the ‘participation coefficient’. The top 20% nodes within each
category receive 1 score. Then, we defined as hubs those clusters that have a
‘hubness score’ ≥ 3.

Such an analysis is complex. In general we observed that a node with the
highest value within a given category do not necessary scores well in other
categories. For instance, the node with the highest strength in culture ‘B’, and
that we used to illustrate the ‘Rich Club’ concept (Figure 4.13A), is neither the
node with the highest betweenness nor the one with the highest local efficiency.
On the other hand, the participation coefficient was calculated using the
Guimera and Amaral definition ((Guimera and Amaral, 2005)) but extended
to all possible moduli arrangement found. Figure 4.14 shows the difference
between applying the Guimera and Amaral method to the optimal partition
and screening all the possible partitions. By applying the first approach, the
difference in moduli sizes overestimates the participation coefficient for the
clusters that form part of smaller communities. It is precisely to overcome
this effect that we calculated the participation coefficient using the second
approach. Indeed, this approach reveals those clusters that both belong to an
important module and strongly participate in others.

For culture ‘B’, the detailed analysis of the four network properties and
their inter-relation is shown in Figure 4.15. One can notice that the different
measures can correlate to one another, but in general their mutual relation is
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Fig. 4.14 Participation coefficient. A, Dendrogram of culture ’B’. B, The effective network
of culture ‘B’, where nodes are colored according to their dynamical modules. C, The
nodes are colored following the participation coefficient value applying the Guimera and
Amaral method (for the final single partition). D, The participation coefficient was calculated
following also the Guimera and Amaral method but averaging fort the all possible partitions.
E, Illustrative dendrogram for another experiment where the size of the final modules were
more differentiated.
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obscure. However, and more importantly, there are very few nodes that score
particularly high, making them very attractive candidates to be hubs.

ST

Betw

Eloc

P

Fig. 4.15 Analysis of the different network measures for culture ‘B’. The plots show
the relative importance of four quantities used to define a hub: total strength of the node
(ST ), betweenness (Betw), local efficiency (Eloc) and the participation coefficient (P). The
diagonal shows the histograms of the normalized probability of these network properties,
while their corresponding pair–wise plots are shown outside the diagonal. Some of these
measures correlate to one another, e.g. the total strength and the local efficiency. Some
histograms, such as the betweenness or the local efficiency, exhibit a tail of low occurrence
probability at high scoring values, indicating that just few nodes score high. These “rare"
high scoring nodes are the most favorable candidates to be the hubs of the network, as shown
in Figure 4.16.

Top scoring nodes that coincide in the four categories are rare. Such a
dispersion in scoring is illustrated in Figures 4.17 and 4.16 for the represen-
tative clustered network‘’B’. Figure 4.17A shows all the four measures that
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set the ‘hubness score’, i.e. the strength, betweenness, local efficiency and
participation coefficient. The four quantities finally set the hubness score,
shown in Figure 4.17B at a network level. Two clusters (outline in boxes)
score similarly and therefore they are both considered hubs according to our
definition. The fact that the two hubs can be well characterized indicates that
such a study can be extended to all networks studied.

#
C
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u
n
ts

2 clusters

A B

Fig. 4.16 Hubness score. A Histogram of the umber of clusters with a given hubness score
(left), and cumulated probability distribution (right). The majority of the clusters have
hubness score equal to 0 indicating that these clusters do not have any relevant topological
trait. Clusters with ‘hubness score’ equal to 4 correspond to the ones that belong to the top
of the ranking within each category. In the experiment ‘B’, one cluster showed score = 3,
and one score = 4, totaling 3% of the network. The other 97% of the clusters did not exhibit
high values in three of these categories.

It is important to note that, to simplify these analyses, clusters that fired
independently and therefore formed a unique moduli were considered to have
a null participation.

4.3.5 Robustness of our effective connectivity inference method

Sensitivity of the results to the cut–off time

To examine whether the choice of the cut–off does or does not affect the
features of the generated effective network, we performed a sensitivity anal-
ysis on this parameter. As the process of generating the network from the
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betweenness local efficiency hubness score

A B C

Fig. 4.17 Summary of network measures for culture ‘B’. A, ‘betweenness’. B, ‘Local
efficiency’. C, ‘Hubness score’. The darker the color of a node, the higher the value of the
corresponding measure. Links are both color and thickness coded proportionally to the their
weight. Black circles indicate the cluster with the highest value of the measure. Squares
indicate those clusters that scored the highest and therefore identified as hubs.

sets of firing sequences is deterministic, we analyzed the influence of the
cut–off value on the formed groups of firings. To quantify the variation on
the firing sequences generated for different values of the cut–off, we calcu-
lated the variation of information between the grouping of bursts at a certain
cut–off value and the previous one as a measure to assess their difference.
We screened the cut–off values from 0 to 1000 ms (Figure 4.3) for the 15
clustered cultures (‘A’-‘0’) and for the homogeneous ones (‘P’-‘U’). In the
case of clustered cultures, we found that for our cut–off value of 200± 50
ms the variation of information was ∼ 10−2. In the homogeneous case, for
a cut–off value of 10±5 ms, the variation of information provided ∼ 10−3.
Hence, the modification of the cut–off values within these regions do not
substantially change the grouping of the bursts, and therefore the generated
networks are equivalent.

Dependence of the parameter c on cultures properties

The parameter c arises from the fitting of the delay times between consec-
utive clusters’ activations ∆t to a Gaussian decay, with ∆t ∼ e−x2/c (see
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Section3.4.2). Hence, different values of c would in principle affect the
weights between clusters and therefore an understanding of its dependence
on the culture properties is important. Although c was similar in cultures of
the same size and developmental time in vitro, we observed that c did vary in
cultures of different developmental stages. For this reason we used a specific
value of “c” for each culture.

Overall, as depicted in Figure 4.18, two major dependencies were iden-
tified, namely the day in vitro (DIV) and the number of clusters N in the
network. The plot c(DIV ) shows a very strong correlation that is caused
by the changes in network dynamics during maturation. We note that c is
obtained from the statistics of time delays between all pairs of clusters. Young
cultures (DIV 5−8) had a slightly higher time delays than maturer ones, and
therefore the ∆t distribution (and in turn c) shifted towards higher values in
young cultures (Figure 4.18). On the other hand, c had a tendency to increase
with the number of clusters N, although data is sparse and the significance of
the correlation is not very strong.

Sensitivity of the effective networks to random or periodic clusters

Random activation of isolated clusters within a culture can screen actual firing
sequences of the network and therefore alter the weights between clusters.
To analyze the importance of such an effect, we carried out a numerical test
in which we incorporated two clusters ‘ad hoc’ in culture ‘B’, a first one
firing randomly, and a second one firing periodically. Figure 4.19 shows
the implementation and results of the analysis. The cluster that fires with a
random distribution has the mean firing value equal to the mean firing rate
of all the clusters in the culture, while the cluster that activates periodically
follows the same mean inter–firing sequence as in the culture. The behavior of
these ‘fake’ clusters is shown in the raster plot of Figure 4.19A. In both cases,
the effect of the artificial activations was to alter the pattern of firing sequences
(Figure 4.19B) and that resulted in the emergence of weak links that connected
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Fig. 4.18 Variance c and culture properties. A, The variance c is obtained from the
Gaussian fit of the activation delays between pairs of clusters. The plot shows that c decreases
with the culture age in vitro, indicating that young cultures display a slower dynamics (larger
delay times and therefore larger variance) than mature cultures. B, The variance c increases
with the number of clusters in the culture, indicating a broader and richer distribution of time
delays as more clusters participate in the dynamics of the network. Errors bars in A show
standard deviation.

the artifical clusters with the rest of the network (Figures 4.19C and 4.19D–
left). The z–score test pruned the raw effective network and removed these
insignificant spurious connections (Figure 4.19D–right). Moreover, from the
detailed inspeciton of the dendrogram, we can observe that these clusters do
not appear in any of the characteristic dynamical modules (Figure 4.19C),
altogether reinforcing the importance of z–score test on the Jaccard similarity
matrix.

Comparison with other approaches for effective network inference

To assess the goodness of our construction in inferring the effective connectiv-
ity of the clustered networks, we compared our connectivity maps with those
procured by information theoretic measures, specifically Mutual Information
and Generalized Transfer Entropy, as described in Section 3.4.4. The analyses
were directly carried out on the original fluorescence signal. The obtained
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Fig. 4.19 Influence of periodic and random clusters on network functional organization.
A, Raster plot of the clustered culture ‘B’ with the last two clusters included ‘ad hoc’
(highlighted with a red box), one firing periodically and the other randomly. A zoom of the
red box can be seen at the top level of the figure. The first cluster fires periodically with an
inter burst interval equal to the mean inter firing sequence in the network. The second cluster
fires with a Gaussian distribution with the mean equal to the mean cluster firing rate in the
network. B, Representation of the total number of clusters that participate in different firing
sequences. Each row shows the activity history of each cluster (green for activation, blue for
silent). From this matrix one can calculate either the pairwise similarity between clusters’
activity (rows) to find the functional organization, or the effective connectivity network by
looking at the time delays between clusters within each firing sequence (columns). Some
activations of both ‘fake’ clusters form part of the firing sequences. C, Dendrogram of the
pairwise similarity distance using the Jaccard distance between the clusters’ activity histories.
Once the threshold is applied, the random (blue line) and the periodic (yellow line) clusters
appear independent from the main dynamical moduli. D, The raw effective network of the
representative experiment in to the left. We can notice few, weak links between the periodic
(yellow node) and the random (blue node) clusters with the other ones, which are color
codded according to their main characteristic modules. A z–score statistical test eliminates
these weak links, as shown in the right network where only the top links are mapped.
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Fig. 4.20 Effective connectivity inference using MI and GTE. A, On the left we show the
connectivity matrix of a typical experiment obtained using our time delays approach. On the
right, the network is inferred using MI. Since MI provides bi–directional links, both matrices
are symmetric and therefore the networks provide functional maps. The most important
functional links in the MI reconstruction appeared also in our construction. B, On the right,
another representative experiment in which we computed the effective connectivity using our
method. On the right, the same experiment analyzed through GTE. Again, both networks are
equivalent, and with few variations in the weight of the links.
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results were totally in agreement with the effective connectivity map obtained
through our time delays approach, as illustrated in Figure 4.20.

Robustness of network topology on the recording time

Fluorescence recordings in clustered networks typically lasted for 1 h and
contained between ≃ 50 bursts in the quietest networks and ≃ 450 bursts in
the most active ones. To quantify the robustness of our effective connectiv-
ity analysis and derived topological measures, we tested whether 50 bursts
sufficed to draw the effective networks. We carried out a control experiment
in which we monitored spontaneous activity along 2 h (in the limit of our
storage capabilities) in a clustered network at DIV 12 that containing 42 nodes
(Figure 4.21). We then analyzed the data using two different procedures. In
the first one we drew the effective connectivity using the data extracted from
the entire recording, and determined its assortativity value. In the second pro-
cedure, we separated the recorded sequence in three blocks, each 40 min long,
built the functional connectivity for each block, and computed the respective
assortative values. The studied culture fired in a sustained manner at a rate
of 1.12 bursts/min, and procured a total of 134 bursts. Thus, each data block
typically contained about 45 bursts.

The results are shown in Figure 4.21 and provided two major conclusions.
First, that the effective connectivity maps are very similar among the data
blocks, and between any of the blocks and the entire recording, giving rise to
assortativity values that are compatible within statistical error. And second,
that the first 40 min of recording (with 45 bursts only) sufficed to shape the
major traits of the effective network, therefore validating our strategy of using
1h of acquisition to procure a reliable estimate of the effective connectivity of
the network and its topological traits.
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Block 1: r = 0.44± 0.07

Block 2: r = 0.36± 0.07

Block 3: r = 0.56± 0.07

Entire recording (2h): r = 0.40 ± 0.07 B

CA

500 mm

Analysis of a 2h experiment in blocks of 40 min each

Fig. 4.21 Assortativity robustness experiment. A, Bright field image of a clustered network
whose spontaneous activity has been recorded for 2 h. The average firing rate of the network
is 1.12 activations/min. B, Corresponding functional network. The size of the nodes is
proportional to the size of the actual clusters, and their color is proportional to their strength.
The weights of the links are both color and thickness coded. The darker the color, the higher
the value of the observable. C, Analysis of the 2h recording in three blocks, 40 min in
duration each, and containing 45 sequences. The blocks show very similar traits between
them, as well as with the entire recording. The blocks exhibit similar assortativity values,
and share both the most important links and nodes’ strengths. ρW indicates the assortativity
value of the depicted network.
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4.3.6 Topological and dynamical modules

As we described in Chapter 3, the concept of modules, i.e. the grouping
of clusters according to some common traits, could be understood as either
dynamical modules or topological ones. Dynamical modules, on the one hand,
were inferred from the Jaccard similarity matrix, grouping those clusters that
systematically appeared in the same firing sequences, i.e. shared a similar
history. Topological modules, on the other, were derived from the effective
connectivity and therefore the communities were shaped by those clusters
that shared a similar distribution of links.

To clarify whether this definitions led to very different configurations
of communities, we analyzed the representative culture ‘B’ by computing
its topological modules using the ‘Louvain’ method (Figure 4.22A-B), and
next contrasted the inferred topological communities with the dynamical
ones. As shown in Figure 4.22C, the two communities constructions give
almost identical results. By evaluating in a similar manner several other
experiments, we concluded that the dynamical and topological communities
were in general very similar in organization, and with VI values between
them in the range 0− 0.25. Such a good agreement is somehow expected
since both the similarity the effective connectivity matrices are drawn from
the same dynamical information, i.e. the fluorescence traces, and both are
therefore ‘proxies’ of the dynamics of the network.

4.3.7 Top links mapping and small world properties

Here we analyze further the normalized effective matrices but taking solely
into account the top links, i.e. those with 95% confidence as compared to
a null model. In a first analysis, we calculated the total, Sout +Sin strength
distribution, and extended to all the 15 clustered networks. The results are rep-
resented in Figure 4.23A. The total strength distribution is more homogeneous
than the one obtained without normalization (Figure 4.8A). Additionally, here



138 RESULTS I : Modular Organization and Effective Connectivity

   g=1
Q=0.51

g=0
Q=1

2

VI(1,2)=0.03
Q=0.89

Q

g

0.48

0.05

g=0
Q=1

  g=0.1
 Q=0.94

1

g=0.5
Q=0.72

A

B

C

Fig. 4.22 Topological and dynamical modules. The plots show the ‘Louvain’ computation
of the number of communities and the modularity index Q for gradually higher thresholds
γ in the clustered network ‘B’. The index Q is a network property that quantifies the set of
nodes that more densely connected among each other than with nodes in other modules. A,
Derived communities (colored boxes on the effective connectivity matrices) and Q value for
three different γ values. For γ = 0, all clusters are comprised within the same community.
More communities appear as γ grows. For γ = 1 there is a large number of communities,
and for γ ≫ 1 each cluster would form a single community by itself. B, Dependence of the
number of communities and Q on γ .The optimal threshold γ = 0.1 provides the minimum
number of communities with the highest modularity index, and excluding the trivial case of
a single community (thick pink line). Thin dashed colored lines are a guide to the eye to
illustrate the location of the above inferred communities. The inset shows the evaluation of
VI between two consecutive partitions for gradually higher γ . The optimal threshold range
would correspond to 0.05 < γ < 0.5. C, Panel 1 shows the topological modules given by
the optimum threshold γ = 0.1 and that provides Q = 0.94; panel 2 shows the dynamical
modules previously obtained in Section4.2.1, which give Q = 0.89. The similar modularity
index quantifies the almost identical functional organization in the two constructions. Their
VI value is 0.03.
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we observed a tail that reflect the existence of a small fraction of clusters with
a very high strength. By considering the two strength distributions separately,
we observed that Sout and Sin have a similar trend (Figure 4.8B). Interestingly,
we computed the difference between them, δD = Sout −Sin, and, as observed
in the inset of Figure 4.8B, the distribution is centered at 0, but with a skew-
ness of 0.15. This observation indicates that a small fraction of the clusters
in the network exhibit more outputs than inputs, and therefore they have a
tendency to act as sources (Sout > Sin) rather than as a sinks (Sout < Sin) of
connectivity.

Since these clustered networks present a hierarchical modularity, they
should also show a balance between integration and segregation. Indeed,
this balance has become really crucial for network efficiency and robustness
(Downes et al., 2012). The networks that present this balance are called
‘small world’ networks. This architecture shows a short path length and a high
clustering coefficient. Based on this feature, one could hypothesize that the
rapid interaction between clusters is mediated by few links between locally
connected groups of clusters.

To quantify the degree of small–worldness in our clustered networks we
computed the clustering coefficient CC and the characteristic path length L. To
proceed, we should first note that the evaluation of these topological properties
requires the comparison with random models, and the weighted and directed
versions of the null models of both CC and L are not yet well established.
Hence, we used an undirected and binary versions of our networks, which
was achieved by symmetrizing and binarizing our effective matrices. As
shown in Figure 4.23C, despite the reduction of information (the weight and
the directionality of the links is lost) the total degree distribution in these
‘simplified’ networks retains fundamentally the same features as the total
strength distribution shown before in Figure 4.23A, and indicates that the
main information is preserved. Furthermore, our objective is not to deepen in
the study of small–worldness (Watts and Strogatz, 1998), but to evaluate the
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Fig. 4.23 Strength, degree distributions and small–world properties. A, Histogram of
the total strength (inset: the probability in logarithmic scale) for 15 experimental realizations.
The distribution shows a long tail and corresponds to a few number of clusters exhibiting high
strength. B, The in– and out– strengths distributions. The inset stresses the good symmetry
of the out–going and in–going connections, δD = Sout −Sin. C, The total degree distribution
once the directed and weighted networks are converted into an undirected and binary graphs
(inset: the probability in logarithmic scale). The networks considered for the small–world
evaluation are the giant component of the z-score pruned networks. D, The final directed
and binary network for the clustered culture ‘B’. E, The path length distance matrix, where
the distances are the number of links needed to navigate from one cluster to another. F
Ratio between randomized versions of CC, L and Geff and the actual measures, analyzed in
experiments at different days in vitro (DIV).
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present or not of this signature for the simplest scenario, i.e. undirected and
unweighted links, and the most significant network, i.e. top links only.

All our undirected and unweighted networks present a degree k that
verifies k > log(N) (with N the number of clusters), a condition that must be
satisfied in order to properly compute the small world feature (Bassett and
Bullmore, 2006; Bullmore and Bassett, 2011). Thus, density of links is within
the ideal cost range (approximately 0.01−0.30) where the sparseness of the
network is considered optimal, because within this range many graph theory
metrics, including the small–worldness, are maximal.

The characteristic path length L is calculated on the giant component
of a the network, , i.e. the sub–connected graph with the most significant
links and that represents the 80−90% of the network. The giant component
of the binary and symmetric connectivity network of the clustered culture
‘B’ is pictured in Figure 4.23D. We note that the ‘independent’ clusters are
disconnected from the network and therefore they do not form part of the
giant component. To finally calculate L in the network we define first a
distance matrix, which is taken as the inverse of the binary connectivity
network. Next, we calculate the path length distance matrix where each
element (i, j) corresponds to the required number of links to navigate from
i to j. Figure 4.23E shows the path length distance matrix for the clustered
culture ‘B’. Moreover, we also compute the clustering coefficient CC and
the global efficiency, Geff. The latter gives a similar information as the
characteristic path length. All these quantities are later compared to their
random counterparts, i.e. Lr and CCr.

In network theory, the necessary condition to ensure the existence of
small–worldness is CCr/CC ≪ 1, Lr/L . 1, and Gr

eff/Geff . 1. Our results,
however, shown in Figure 4.23F for cultures studied at different days in vitro,
do not completely fulfill these conditions. We can notice that the CCr/CC
is sufficiently small, i.e. there is more segregation in the actual networks
than one would expect at random. However, Lr/L is also very small rather
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than close to 1, meaning that the characteristic path length is higher than one
would expect at random.

Summarizing, our networks exhibit both a high segregation and high
characteristic path length. For small–worldness to fulfill the latter should be
smaller. Hence, we conclude that our networks are not small–world, although
they share some traits. We explain the lack of agreement to the important
loss of connections due to the z–score test for pruning and normalization.
The original, pre–pruned networks —and even the pruned with a less severe
reduction in connections— exhibit a higher characteristic path length L ands
therefore they a closer to be declared small–world. We would need several
more experiments and analyses to achieve more conclusions.

4.3.8 Identification of the clusters that initiate spontaneous
activity

In the experiments we observed that the spontaneous activity was predomi-
nantly initiated by one or two clusters. Interestingly, the number of clusters
that actually initiated the spontaneous activity seems to be conditioned by the
number of the characteristic dynamical modules. This feature can be seen in
two representative experiments, shown in Figures 4.24A–B, and where the
functional organization of the networks (left panels) is compared with the
ignition scoring of the clusters (right panels). The darker the color of a cluster,
the higher the number of times that its has triggered a clusters’ activation
sequence. While in Figures 4.24A there is only a predominant cluster initiat-
ing activity (encircled in black), in Figure 4.24B two clusters were identified,
and each of them clearly sitting in different modules. Hence, we hypothesize
that these initiators might be responsible for starting the activity in their own
modules. To make the problem more complex (and fascinating), we observed
that initiators had nothing particularly special. Thye were not the bigger
in size, and neither those with the highest strength nor highest clustering
coefficient. A deeper study would be needed in order to unravel not only the
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A

B

Fig. 4.24 Functional organization and initiation clusters. The graphs show two represen-
tative experiments with clear ‘initiator’ clusters, and comparing the functional organization
of the network (left panels) with the initiation score of the clusters (right). For the latter,
clusters are color coded according to their scoring. A, Example where only one cluster scored
markedly higher than the others. B, Example where two clusters scored similarly.
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biochemical and wiring hallmarks that make those clusters so special, but
also which are mechanisms that could shape different propagation patterns
of activity throughout the culture, e.g. wave propagation or avalanches in
addition to our observed sequential activations.
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Fig. 4.25 Structure of firing sequences. The plot shows the hierarchical construction for the
transpose of the co–activation matrix, and that corresponds to the arrangement of similarity
between firing sequences. Four different families of likely repeating sequence patterns are
found, highlighted with color boxes.

The existence of these ‘few’ initiators naturally implies that the upstream
clusters’ activations that we called firing sequences occur in a repeated,
patterned manner in which clusters at varied spatial locations fire with similar
delays relative to each other. Indeed, if we evaluate not only the similarity
between the activity histories (rows of the co–activation matrix A) but also the
similarity between the clusters that have participated in each firing sequences
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(columns of the matrix), we can unveil the set of characteristic firing sequences
patterns. This idea is shown in Figure 4.25. There, we show on the top the
hierarchical construction for the transpose of the co–activation matrix, and
that corresponds to the arrangement of similarity between firing sequences.
For the particular culture analyzed, the dynamics present 4 different families
of likely repeating sequence patterns, marked with color boxes. However, a
deeper study needs to be carried out in order to ensure that these families of
firing sequences always follow the same temporal structure of activations.
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Fig. 4.26 Presence of ‘initiator’ clusters for different experimental conditions. The
graphs show the probability that a cluster in the network initiated activity in a firing sequence.
Two representative experiments are shown, and comparing the behavior of the clusters in
the same network before (left panels) and after (right panels) a given action. A, Experiment
in which the connectivity of the network is modified by the blockade of inhibition, altering
connectivity from an initial ‘E+I’ condition to an ‘E-only’ one. The ‘initiators’ (clusters #1
and #16) remain the same. B, Experiment in which a culture is dosed with a chemical agent
that damages connections. The ‘initiator’ switches from #17 to #11.
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A final interesting observation is that the ‘initiation’ clusters are the same
in both ‘E+I’ and ‘E-only’ conditions, as shown in Figure 4.26A. Given
the robustness of the initiator to the presence or absence of inhibition, it is
enlightening to explore under which conditions the number and location of
the initiators in a network change. Addressing such exploration is challeng-
ing, but we started by considered two major scenarios, namely biochemical
perturbation and direct physical destruction of clusters through a laser beam.
These experiments are exposed in detail in Chapters 5 and 6, but we can here
delineate the two major conclusions. First, that initiators do change when
network connectivity is degraded. This is exemplified in Figure 4.26B. And,
second, that the destruction of a cluster that is far from the initiator has little
effect on the latter; whereas the destruction of the initiator itself causes that
another, nearby cluster takes its role.

4.4 Discussion of the Results

The set of experiments presented in this chapter show that clustered neu-
ronal cultures exhibit a unique self–organizing potential. Dissociated neurons
develop towards a clustered network, i.e. dense assemblies of neurons con-
nected between them, a structure that is formed in a few days and that is
preserved until the degradation of the culture. However, in our opinion, the
most remarkable feature of these cultures is that this self–organizing process
drives the network towards specific dynamic states, which shape a modular,
assortative effective connectivity with the presence of a rich club.

The exhibited modular behavior of all these clustered cultures seems to be
hierarchical, encompassing modules within modules, a characteristic property
also seen in the brain and many other complex systems. In general, modu-
larity (or hierarchical modularity) has been claimed to be advantageous for a
greater robustness, adaptivity, and development of network function (Meunier
et al., 2010). Modular networks also optimize time–scale separation, i.e.,
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combine fast intra–modular processes with slow inter–modular ones (Pan and
Sinha, 2009; Shein-Idelson et al., 2011). This feature helps maintaining a
fine balance between integration and segregation, ultimately promoting the
network’s dynamical complexity(Shanahan, 2008). An additional feature of
modular networks is the emergence of a master–slave relationship, and where
a module drives another one (Baruchi 2008, Shein 2008). Such a feature
may be useful to control propagation directionality in the network. On the
other hand, hierarchical modularity has been ascribed to enhance dynamical
re–connectability, i.e. marginally stable networks can be combined or divided
while preserving stability(Robinson et al., 2009). We believe that the rich and
flexible repertoire of activity patterns exhibited by the clustered networks is a
consequence of their modular nature.

Another important aspect to highlight is that modular networks tend to
present a high number of nodes densely connected within the module (leading
to high clustering), while the existence of a few links between nodes in differ-
ent modules plays the role of topological shortcuts in information processing
(leading to short path length). Thus, this modular architecture naturally tends
to shape a small–world configuration(Pan and Sinha, 2009). However, in our
preliminary findings we have found that these clustered networks present,
when compared to random networks, both a higher ‘clustering coefficient’ and
a higher ‘short path lengths’. Those concurrently high values make difficult to
conclude the existence of small world features in clustered networks. Such a
difficulty can be a consequence of our unweighted and undirected analysis to
find these small world features, since we operated with the top functional links
only (corresponding to a pruning of about 75% of the network) and therefore
our networks were excessively sparse. As a future work we could use an
optimal connectivity threshold for the weighted and directed calculations that
would likely lead to a decrease in the short path length, possibly matching the
observed modularity with a small–worldness trait.
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The inferred effective connectivity maps in our study are built upon the
use of time delays to provide a direct measure of causality,. This approach
naturally shapes effective networks that is both directed and weighted, with
the weights given by a decaying function that follows the frequency of the
delay between pairs of clusters. Our formulation is simple and derives from
the intrinsic dynamics of the network. Moreover, the comparison of our
method with other theoretic measures such as MI or TE showed that the
identified effective links were fundamentally the same, with small quantitative
differences associated to the particular weighting procedures.

The resulting effective networks consistently maintained high assortativity
values, along a wide range of days in vitro, and independently of the balance
between excitation and inhibition. We also observed that, by contrast, the
assortativity analysis in homogeneous cultures procured neutral values, a
result that is supported by other studies in homogeneous networks similar to
ours Bettencourt et al. (2007). Interestingly, the most fundamental dynamical
difference among these two cultures’ type resides in the modular activation in
clustered cultures that contrasts with the coherent activity in homogeneous
ones. Given the acute differences in assortativity between clustered and
homogeneous cultures, we hypothesize that the modular dynamics by itself
might be highly related to the increase or reinforcement of assortative traits
in the effective networks.

In conclusion, the measured positive assortative mixings and the presence
of rich clubs in clustered networks is highly remarkable observation, since
these traits may facilitate redundancy in the information processing that
ultimately reinforce and stabilize network activity. The concurrent presence
of these properties has indeed been hypothesizes to confer higher network
resilience upon damage compared to other configurations.

The importance of these results for network resilience motivated us to
devise and explore perturbative actions in clustered networks. As we will
in the next chapter, we used chemical action and physical damage to probe
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the resilience of clustered networks, and even investigate possible network
recovery mechanisms to cope with degradation.





Chapter 5

Results II: Network resilience

The rationale behind the experiments and results presented in this chapter is
the debate around the importance of assortativity and ‘rich club’ features on
network robustness. Indeed, several studies ascribed these features to network
resilience upon damage (Fornito et al., 2015; Rubinov and Sporns, 2010a). In
particular, it was shown numerically (Newman, 2002, 2003) that networks
exhibiting these features were more robust to random error (random node
deletion) and targeted attack (high–degree node deletion) than dissortative
or neutral networks. Hence, given the strong assortativity of our clustered
networks, we devoted a a substantial effort along the thesis to investigate
whether the clustered networks exhibited resilient traits, either in a global or
local manner.

We investigated network resilience in our networks using two different
experimental approaches, namely global damage and local injury. The first
category comprised experiments carried out in our laboratory, and we used
either chemical agents or photo–damage as main disrupting actions. The
second category comprised experiments in which a single cluster of the
network was destroyed through a laser beam.
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Both categories are described in Chapter 2, but for sake of clarity we
describe the main experimental procedure here for an easier comprehension
of the results.

For the global damage category, the two set of experiments were as fol-
lows. In the first one, we continuously exposed a culture to strong fluorescence
light, therefore inducing photo–damage to the neurons. This action resulted
in random neuronal death across the network and hence a progressive failure
of its spontaneous activity. In the second one, the excitatory network connec-
tivity was gradually weakened by means of the AMPA–glutamate receptor
antagonist CNQX. The weakening caused the silencing of connections and
therefore a progressive reduction of activity. Both actions were simultane-
ously carried out in clustered (assortative) and homogeneous (dissassortative
or neutral) networks, and the rate of spontaneous activity decay provided an
estimation of the resistance of the networks to global damage.

For the local damage category we used the experimental setup at the
Institute of Photonic Sciences (ICFO) to destroy clusters through laser damage.
These results are still preliminary, but they are presented here given the
enormous effort invested along two years to bring them to light. For clarity, we
only present three illustrative examples. In each experiment, a ‘target’ cluster
was selected for annihilation depending on its initial topological properties.
By comparing the activity before and after the physical damage we aimed at
assessing some important traits on network resilience and topology. By the
end of the chapter, and by considering a total of N = 12 experiments, we will
discuss which topological descriptor best described the ‘vulnerability’ of a
clustered network.

5.1 Global network damage

In this section we describe the results on the photo-damage experiments, to
later show the ones with CNQX. Finally, and for the latter group, we will show
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in more detail the changes in network functional organization as degradation
of neuronal circuitry progressed.
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Fig. 5.1 Photo–damage experiments. A, For each culture monitored in the photo-bleaching
experiment, we first converted the images to a black and white pattern by applying a threshold
to the acquired bright–field images, as illustrated in the figure. We next counted the ratio
between the black pixels and the total number of pixels within the 3 mm diameter circular
area. We repeated the analysis for all the 6 cultures of each type monitored, and observed that,
on average, homogeneous cultures covered (34±4)% of the available area, while clustered
ones covered (26± 5)%. Clustered cultures occupy a smaller area (1.9 mm2) than their
homogeneous counterparts (2.3 mm2). B, Spontaneous activity is measured in cultures that
are continuously exposed to strong fluorescence light, causing gradual neuronal degradation
and ultimately the death of the entire network. The total radiation received by the neurons is
calculated as the duration of the exposure times the area covered by the neurons in the culture.
The spontaneous activity in homogeneous cultures decays at a much faster rate than in the
clustered counterparts, pinpointing the general resistance of clustered cultures to structural
failure. Data is averaged over 6 network realization of each type. Error bars show standard
deviation.

Photo-damage

We first considered a clustered culture and measured its spontaneous activity
uninterruptedly along 2 hours, and with neurons continuously exposed to a
light radiation 4 times stronger than normal. We then divided the sequence
in blocks of 30 min, and determined, for each block, the average network
activity by counting the number of firing sequences within the block. Next,
we switched to a homogeneous culture from the same batch (i.e. identical
nominal density and age) and carried out the same protocol. In total we
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carried out 6 measurements for each kind of culture, and finally analyzed the
decay in activity as a function of time. Although the radiation over the culture
was homogeneous, the actual area occupied by the neurons was different
between homogeneous and clustered cultures. Neurons in homogeneous
cultures formed a monolayer that covered (34± 4)% of the available area,
corresponding to about 2.4 mm2 for the 3 mm diameter wells (Figure 5.1A
,left). In clustered cultures, neurons were tightly packed in slightly three–
dimensional structures, giving rise to a lower spatial coverage of (26±5)%,
i.e. about 1.8 mm2 (Figure 5.1A, right). Hence, homogeneous cultures were
effectively more exposed to light than their clustered counterparts. To take this
spatial variability into account, the ‘total radiation’ received by the neurons
in a given experiment was quantified as the duration of the light exposure
multiplied by the area occupied by the neurons in the studied culture. We
then averaged the results over the 6 different culture realizations of each type,
and binned nearby values for clarity. Figure 5.1 shows the data of activity
level as a function of radiation for the two network types, and evidences that
homogeneous cultures decayed in activity much faster than the clustered ones.
Overall, we concluded that the clustered architecture and its assortative traits
could increase its resistance to damage.

Chemical degradation

Here we compared the change in activity between a clustered and a ho-
mogeneous culture during gradual weakening of neuronal connectivity (Sec-
tion 2.5.2). The weakening was achieved by progressive application of CNQX,
an AMPA-glutamate receptor antagonist in excitatory neurons. We first mea-
sured the clustered network and thereafter the homogeneous one. In both
cases, we first recorded spontaneous activity at [CNQX] = 0 nM, measured
the activity γ0

i of each cluster i, and used the average firing rate of the network
Φ0 = ∑i γ0

i /N as reference for the subsequent steps. We then increased the
concentration of the drug to a preset value, waited 5 min for the drug to take
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Fig. 5.2 Chemical-degradation damage. Examples of the degradation of neuronal activity
in clustered and homogeneous cultures due to the gradual weakening of excitatory con-
nectivity. Both culture types were investigated at the same day in vitro 14 and contained
a similar density of neurons. The weakening of connections is achieved by gradually in-
creasing the concentration of CNQX, an AMPA-glutamate receptor antagonist in excitatory
neurons. Network response upon weakening is quantified through the relative change in
activity (γ − γ0)/γ0 between a given [CNQX] application and the unperturbed state. Activ-
ity variations are indicated separately for each cluster, and shown according to the cluster
labeling number. A, Clustered cultures show a mixed response upon weakening, with some
clusters increasing activity and others reducing it. Only for relatively high concentrations of
CNQX(& 600 nM) the activity systematically decays up to the full silencing of the network.
B, In homogeneous cultures, activity is analyzed in 30 regions that cover in a regular manner
the entire network. Activity decays almost equally in all regions. Relatively small drug
concentrations of [CNQX]≃ 400 nM practically suffice to fully stop activity.

effect and measured again for 15 min, computing the new firing rate γi for
each individual cluster. We next switched to a second preset values, and
repeated the procedure until activity ceased.

We first computed the relative changes in activity respect to the unper-
turbed case as Γi = (γi −Φ0)/Φ0 for each cluster individually, and provided
a network–average measure as Φ = ∑i Γi/N. Two illustrative examples of
the action of CNQX on network activity are provided in Figure 5.2. In a
clustered cultured and for weak CNQX applications (≃ 100nM) the activity
in some clusters increased, while in some other decreased, and on average the
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Fig. 5.3 Chemical-degradation damage. A, The degradation of neuronal activity, (γ −
γ0)/γ0, for gradually application of [CNQX]. (N = 10 clustered cultures). The error bars
correspond to the standard error. Both curves followed an exponential–like decay but the
progressive fall in activity was faster in homogeneous than in clustered cultures. The inset
shows three clustered experiments that exhibited an unexpected increase in the firing rate
at low range of [CNQX] in the range 60−300nM. B, The critical concentration [CNQX]C
at which activity complete ceased was 1.6µM for clustered and 0.5µM for homogeneous
networks.

network firing rate remained stable (Γ ≃ 0). As CNQX increased to 600nM,
we observed that most of the clusters reduced their activity, although there
were still some that maintained a high activity or even increased it. This
different behavior from cluster to cluster suggests that clustered networks
are highly flexible, and that they may have mechanisms to preserve activity
even with strong weakening of the connectivity. Conversely, homogeneous
cultures (Figure 5.2B) lose activity in a more regular and faster way. These
networks are characterized by a highly coherent dynamics, and therefore
all neurons in the network reduced activity similarly as CNQX was applied.
Interestingly, for [CNQX]≃ 400nM the shown homogeneous culture turned
almost completely silent (Γ ≃−1), while the clustered culture was still highly
active.

We repeated this study for 10 different realizations of each culture type.
On average, both network activities respect to the unperturbed case, Φ/Φ0,
followed an exponential–like decay under gradually higher applications of
CNQX, as shown in Figure 5.3A. The progressive fall in activity was again
much faster in homogeneous than in clustered networks. Indeed, the critical
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concentration [CNQX]C at which activity completely ceased was 1.6µM for
clustered and 0.5µM for homogeneous networks (Figure 5.3B).

An interesting observation is that some clustered networks experienced
an increase in their firing rate for 60 . [CNQX] . 300nM. The inset of
Figure 5.3A illustrates such an unexpected behavior for 3 networks. This
increase of activity upon weakening of the excitatory circuitry can be seen
as a compensatory effect, i.e. a network response to counterbalance the
perturbation.

To highlight the intricacy of this increased activity puzzle, we compared
the network changes that we observe experimentally with a ‘toy model’ based
on percolation in which the effective connections of the original, unperturbed
network were gradually suppressed by applying a progressive threshold to
the weights, mimicking a disintegration scenario. Interestingly, we observed
that the experimental and percolative disintegrations were very different,
indicating that the real process is much more complex than just a gradual and
homogeneous removal of effective connections.

To illustrate the changes in the network during disintegration and possible
network recovery response, we considered one of the cultures and analyzed its
functional organization. We studied the network marked as ‘1’ in Figure 5.3A
(shown in blue line) . Figure 5.4 shows the resulting networks for increasing
applications of CNQX. The effective connectivity is shown at the top of the
figure, with the nodes and links color coded according to their strength and
weight, respectively. The corresponding dynamical modules are drawn at
the bottom. The nodes are colored according to their belonging to a given
community. In general, we observe a disruption in strength and modularity
as connectivity fails. However, for [CNQX] = 60 and 120 nM, the weight
of the links among distant nodes slightly increased, giving rise to more
homogeneous values of total strength. This characteristic is also reflected
in the gain of global efficiency, Ge f f , as well as in the density of the links,
ρ(k). However, although at this stage the network appears to be more globally
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connected, we can also note that more communities emerged in the network
at those disintegration values.
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Fig. 5.5 Chemical real degradation compared with an artificial percolation process.
Comparison of some topological properties for the experiment of Figure 5.4A under real
chemical degradation and under simulated percolation. A, The global efficiency firstly
increases at lower [CNQX] whereas by applying the percolation method it does not appear
any peak in activity. The same results also appear calculating the total strength of the
nodes. On the other hand, the clustering coefficient using the percolation analysis is higher
at these low applications of CNQX than the clustering coefficient obtained in the actual
degradation, suggesting that inter–modular connections are not the first ones to be lost.
Recovery mechanisms related with continuous functional reorganization appeared in order
to preserve global network activity. At high concentrations of the chemical drug, the three
topological parameters fall at slower rate than in the percolation process, indicating that the
final network is more resilient than one would expect through a linear weight degradation.
B, The evaluation of the rich club for different CNQX applications (marked with different
colors). The subset of strongly interconnected clusters constantly changes as the excitatory
connections are being reduced.

In order to understand better these surprising changes, we compared the
topological properties of the actual connectivity matrices for distinct applica-
tions of [CNQX] with the thresholded ones using the ‘percolation’ approach.
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The results are shown in Figure 5.5. First, the global efficiency increases
during the initial [CNQX] applications as compared with the values obtained
by percolation (Figure 5.5A). The total strength of the nodes exhibit a similar
trend (Figure 5.5B). However, at a given CNQX concentration the global
efficiency and the total strength decay abruptly, and reach the same level as
the percolation case. Thus, we hypothesize that the real degradation may
sustain inter–module connections, which maintain the network more globally
connected, until a critical value of [CNQX]≃ 300 nM. Above this value, the
disruption is sufficiently high to impede any ‘recovery’, and the network
abruptly degrades, although at a lower pace as compared to percolation.

Another surprising result is the different behavior of the clustering coeffi-
cient between the real and the percolative scenarios, as shown in Figure 5.5C.
The clustering coefficient is lower than the expected from percolation at
low CNQX levels, stabilizes at the critical concentration and finally drops
again, though less abruptly than the percolative counterpart. Indeed, we note
that, in the percolation scenario, the linear decrease in weight causes the
network to quickly lose inter–modular links (i.e. a decay in integration) while
the underlaying sub-modular structures emerge (i.e. a gain in segregation).
Conversely, modules in the real network may reorganize in other modules,
altogether reinforcing not only the connections within the modules but also
among modules. These changes are reflected by a sudden increase in the
clustering coefficient and total strength, and that maintain the entire network
connected, i.e. exhibiting a higher global efficiency and link density. At
the end, one could think that the complex functional reorganization upon
disintegration is driven by an effort towards maintaining network’s global
activity, readapting network’s topological configuration up to a critical point
at which a significant breakdown in connectivity occurs, leading to a cease
in activity. This critical point could correspond to the moment in which the
clusters that acted as ‘integrators’ (inter–module connectors) are functionally
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disconnected from the network (see e.g. the gray cluster with a black square
in Figure 5.4B).

Another topological aspect that apparently continuously changes in every
application of CNQX is the subset of clusters that shape the ‘Rich Club’,
as shown in Figure 5.4. In normal conditions, [CNQX] = 0, closer strongly
connected clusters form a unique rich club, whereas at higher CNQX more
groups of clusters highly connected emerge at relatively large distances.
Hence, network degradation may lead to physically disconnected submodules,
and the presumably reinforcement of these submodules can derive into the
creation of other rich club backbones to preserve the global network activity.
Higher inspection of the evolution of the rich clubs is provided in Figure 5.5D.
First, we can observe that for [CNQX] = 60nM (blue line) the rich club is
formed by a very small subset of clusters. For [CNQX] = 120nM a high
number of clusters are noticeably strongly connected, appearing different rich
club cores in distance areas. For higher concentrations, the rich club remains
stable, disappearing solely at [CNQX] = 1000nM when activity ceases. We
should note that the subset of nodes that seems to form the Rich Club are
functionally changing and readapting at any step of disintegration, indicating
that they do not have an endogenous role, i.e. their behavior seems not to be
established biologically.

5.2 Local physical damage

As we described in Chapter 2, we developed experiments at ICFO and that
were inspired by the work of Albert and Barabasi on vulnerability, Ref.(Albert
et al., 2000). Experiments consisted in damaging a neuronal cluster with
an infrared ultrashort pulsed laser beam, finally comparing the dynamical
changes before and after the physical nodal insult.

Three different procedures were carried out depending on the topological
role of the neuronal cluster targeted. The first one consisted in destroying at
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random a neuronal cluster; the second one consisted in targeting the cluster
with the highest strength; and the third one resided in silencing the ‘initiator’,
i.e. the cluster that initiates the spontaneous activity in the network.

Experiments were carried out at DIV = 9−14, in networks with 30−40
clusters, rich spontaneous activity —about 2± 1 firing/min per cluster on
average—, and under ‘E+I’ conditions. We must note that in our experimental
system two or more cultures were placed on the same glass, and therefore
we could monitor with the same optical system the behavior of a control
culture while targeting a neighboring one. Indeed, in all the experiments a
control culture was always recorded in parallel with the targeted one. Good
experiments were those in which controls remained unaltered in behavior
after action on the target cultures.

5.2.1 Random cluster deletion

In these experiments the spontaneous activity of the control and target cultures
was first recorded along 30 min. Then, we randomly destroyed a cluster
by laser ablation and recorded again for another 30 min. The functional
connectivity matrices before and after the random cluster’ removal of a
representative experiment are pictured in Figure 5.6A-B. The targeted cluster
is shown in black. Before damage, two main modules (highlighted in green
and orange) governed the activity of the culture. After the injury, a small
group of clusters of the green module (contoured in yellow) were now part of
the other module, reflecting a functional reorganization. Figure 5.6B better
pictures this rearrangement, where the branches in the tree of the dendrogram
are colored according to the dynamical modules, and the black circle marks
the location of the deleted cluster. The new cluster’s distribution in the
modules slightly changed (yellow lines). Interestingly, the few clusters that
switched community were the ones weakly linked to the deleted cluster within
its community before damage. The VI between the two partitions before and
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after damage was around 25%, and the major variations in connectivity
weights occurred within the modules (Figure 5.6C).

The latter observation has two implications. First, the local damage affects
the network globally, since the changes affect not only the affected module,
but also its neighboring one. Second, variations are mostly intra–modular,
with little disruption of the inter-modular connectivity, i.e. integration is
preserved. This is illustrated in Figure 5.6D, which shows the distribution of
the weight differences δw = wafter −wbefore. The balance between reinforced
links (δw > 0) and weakened links (δw < 0) shapes an asymmetric distribu-
tion with negative skewness, i.e. a higher number of weakened connections.

In addition of the changes in functional organization, we studied the
possible leadership role of the affected cluster by calculating its main initial
topological properties. We evaluate its total strength Si, betweenness Bi, local
efficiency Loci, and participation coefficient Pi. These measures are the set
of relevant topological properties that configure our definition of ‘hub’. In
the diagonal of Figure 5.7 we plot the histograms of these quantities as well
as their corresponding pair–wise relations. The histograms include all the
clusters in the network, but the deleted cluster is shown in a different color to
highlight its properties. We can observe that the deleted node did not show
any noticeable topological trait (Si = 0.3,Bi = 0.4,Loci = 0.3,Pi = 0.5).

A general feature that can be extracted from these plots is that network
properties apparently do not correlate linearly to one another. For instance,
the cluster with the highest strength neither exhibits a higher participation
with other modules, nor shows a higher betweenness. If we also pay attention
to the strength–local efficiency plot we can see that for each dynamical
module (marked with its respective color module code) some exponential
distributions appear, and that can reflect the hierarchy within modules (Ravasz
and Barabási, 2003). Another interesting plot is the strength–participation
that exhibits in some way the distinct role nodes in the network. The nodes
encircled in light blue could be assigned as provincial hubs (i.e. nodes that
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participate mainly with nodes within its own module), whereas the dark
blue ones could presumably act as connector hubs (i.e. nodes that tend to
participate with nodes from other modules).
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Fig. 5.6 Random node deletion experiment. A, Functional connectivity matrices before
and after random silencing of a neuronal cluster (black circle). In the initial conditions two
modules (green and orange) regulate the spontaneous neuronal dynamics. After damage,
5 nodes of the green module (yellow outline) switched to the orange module, and two
independent clusters (gray) created a new module (purple). B, The functional reorganization
examined by the hierarchical tree construction. The cluster indexing is different before
and after the physical damage to highlight the new arrangement. The yellow boxes mark
the neuronal clusters that have changed their activity and are comprised within the other
community. C, The matrix difference between the link weights after and before damage.
Initial modular structure is shown in color boxes. The black dashed line shows the location
of the damaged cluster. The local damage mostly affected intra–modular connectivity. D,
Corresponding histogram of this weight differences. The values ranged from highly negative
to highly positive, highlighting the weakening and reinforcing of the connections. The
asymmetry towards negative values of the distribution (skewness sk =−0.14) indicates that
the network connections were weaker after the damage.

The strength before and after the cluster damaged, are shown in the form
of networks in Figure 5.8A. First, we can observe a rearrangement in strength
after the random node deletion together with a rearrangement of the rich club
core (black outline). We can notice that the targeted cluster is the biggest one
in physical size but not in strength, indicating that size and strength are in
principle unrelated.

Figure 5.8B illustrates the variation in betweenness, which naturally
depicts the crucial paths for activity to pass through. Since betweeness is a
measure of centrality, one would expect that the node with high betweeness
has a special location in the network, like in the center of it (i.e. physically
connected to the majority of nodes). However, in this experiment, the node
with the highest centrality (shown in dark green) appeared to be distant from
the spatial center. Thus, it is not possible to guess the functional role of a
node by its spatial location in the network. Figure 5.8C shows the paticipation
coefficient, and illustrates that the deleted node has indeed a score similar
to the average of the network. It therefore, in principle, has no role in the
integration of the network.

As a final remark, we note that the mean firing rate decreased by half
Γ/Γ0 ≃ 0.5 after damage, the link density fell by 10% and the global effi-
ciency declined by 24%. The only topological properties that were nearly
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the same before and after damage were the clustering coefficient and the
local efficiency, reflecting the maintenance of the modular behavior of the
network. Hence, although the damage inflicted a severe, 50% fall in activity,
the network seemed to remain globally connected by a reshaping its modular
structure.

Strength

Betweenness

Local efficiency

Part coefficient

Fig. 5.7 Major topological properties for the random damage experiment. The total
strength, betweenness, local efficiency and participation coefficient before the physical dam-
age are depicted in the diagonal, while their corresponding pair–wise plots are shown outside.
These quantities are normalized respect to the sum and quantify probability distributions. The
histograms comprise all the clusters in the network. The color bars highlight the properties
of the deleted cluster after damage, ruling out any ‘hub’ trait. The participation coefficient as
a function of the strength (top–right corner) provide the ‘provincial’ (encircled in light blue)
and ‘connector’ hubs (encircled in dark blue) in the network, which are not the future deleted
one. The dashed lines separate the regions with 20% highest scoring.
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Fig. 5.8 Changes in strength and betweenness of the random physical damage experi-
ment. A, Functional networks with the node and the connections colored according to
the total nodal strength before and after the random neuronal cluster removal (black spot)
of the illustrative experiment. B, The same functional networks, with the colors indicating
the scoring of node betweenness. C, The same functional networks, with the color coding
indicating the nodal participation coefficient.
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Fig. 5.9 Evaluation of the initial topological properties in the hub damage experiment.
The total strength, betweenness, local efficiency and participation coefficient histograms
before the physical damage are shown in the diagonal and their corresponding pair–wise
correlations outside of it. The colored bars indicate the location of the targeted neuronal
cluster. This neuronal cluster can be considered as a one of the hubs in the network, being
the second highest one in strength terms as well as in local efficiency, and with elevated
participation coefficient (the 6th). Considering these functional networks as modulars, in
the strength–participation coefficient plot we can observe that the actual damaged hub
(black arrow) has a high strength but also a high participation coefficient, taking part to the
integration-segregation game. Interestingly, here most of these network measures show linear
correlations.

5.2.2 ‘Hub’ deletion

In these experiments we proceeded in two steps. In the first one we recorded
activity for 30 min, but at the 10th minute we retrieved the corresponding
data and swiftly analyze it to identify the clusters with the highest strength.
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In the second step, we destroyed the candidate cluster with the laser beam
and recorded again for another 30 min. These top–strength scoring clusters
were good candidates to be hubs, and our aim was to inquiry whether a major
network failure could be triggered as a consequence of a such a targeted
attack.

Figure 5.10A shows the functional organization of the network before and
after the deletion of the hub candidate, and the corresponding dendrograms
are shown in Figure 5.10B. The dynamical community structure varied after
damage, with a breakdown of the major community (purple colored) in three
smaller ones (yellow, blue and purple). The dendrogram construction shows
that the destruction of the ‘hub’ did not severely altered the intra–module
organization of the new formed communities (e.g. the yellow one, marked
with a dashed outline). However, the widespread damage on network structure
is important, as reflected by a substantial decrease in global efficiency of 70%.
Additionally, the major variations in the weight of the links occurred within
the modules (Figure 5.10C) and a large number of connections increased
their weights after damage (Figure 5.10D). The latter result can be quantified
through the asymmetry of the weights’ differences distribution, which shows
a remarkably high skewness of sk= 3.8, and that can point at the emergence
of compensatory mechanisms of the clustered networks under hub deletion.

The decrease in firing rate after hub removal was about 50%, similar as
the random deletion experiment. Hence, we hypothesized that actual damage
occurred in integration terms, i..e a major disruption of the main community,
but still all clusters maintained activity within their modules.

The distributions of the main topological properties (in basis of our hub
definition) are shown in Figure 5.9. We note that the targeted cluster ranked
second in strength, with Sreli = 0.75. This cluster also was the second with the
highest local efficiency, Locreli = 0.98, presenting a high participation score
Preli = 0.81 and normal betweenness Breli = 0.48. Using our hubness score
measure, we firmly categorized the cluster as a hub, with a hubness score= 3,
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since it was within the top 20% of the clusters with high strength, local
efficiency and participation coefficient. Finally, by observing the pair–wise
topological relations of the figure, we can note that in this experiment some
of the network properties strongly correlate, facilitating the identification
of hubs. Such a different behavior illustrates the dynamic richness of our
cultures.

0

1

0

1

sk=3.8

A

B

C D

cluster index

cl
u

st
e

r 
in

d
e

x



5.2 Local physical damage 171

Fig. 5.10 Changes in functional organization in the targeted physical damage experi-
ment. An illustrative experiment where the physical damage was done in the neuronal
cluster that initially was second in high strength. A, Functional connectivity matrices before
and after the neuronal cluster was injured (black spot) where the colors correspond to the
functional communities and the dashed black curve pictures the submodule which shape one
of the rich clubs in the network (see next Figure 5.11A). Before the targeted attack a big
main community (purple depicted) governs the spontaneous neuronal dynamics. After the
impairment, a disruption of the global community occurs, arising a submodular dynamical
structure (yellow and blue colors). The gray clusters with a black square in the middle corre-
spond to ‘independent’ clusters that do not form part of any community; the white nodes are
inactive clusters. B, This strong functional reorganization is illustrated by the dendrograms.
The black dashed boxes mark the preservation of the module where the affected cluster
pertained (corresponding to the dashed black curves in A). C, The matrix difference between
the weight of the links after and before applying the local damage. The local damage (the
black lines indicate the injured cluster) was restricted to the modular functional structure
(marked as color boxes). ()D The corresponding weight difference distribution showing a
high asymmetry towards positive values (sk = 3.8) indicating the high reinforcement of the
connections after the physical insult to this ‘hub’.

The variations in total strength of every neuronal cluster from this experi-
ment can be examined in Figure 5.11A. First, it is interesting to point out the
existence of two rich clubs (black outlines). This trait tends to appear when
the network is fragmented into different submodules physically disconnected,
giving rise to high–strength interconnected clusters at distant locations. Inter-
estingly, we can observe that the initial subset of clusters that formed the rich
club was practically unaltered after damage.

Finally, Figure 5.11 B shows the ‘hubness score’ across the network. Just
four clusters appeared to be the hubs, three with Hubsc = 3 and one with
Hubsc = 4. Considering the modular architecture shown, one can qualitatively
assign these four hubs to the category of ‘connector’ and ‘provincial’ hubs.
Based on the participation coefficient and taking into account their higher
strength, one hub (highlighted with a star in Figure 5.11B) can be assigned
as a provincial hub since it is totally embedded within its own submodule,
i.e. all its connections are intra–submodular ones. We can also identify three
connector hubs (highlighted with diamonds) that present a number of out–
going connections within other submodules higher than in–going connections
within their submodules. Of these connectors hubs, one actually corresponds
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to the damaged cluster and formed part of the rich club. We remark that
these hubs indeed connect with other clusters within its submodule, but also
project strong connections to other submodules, being potential mediators
between segregation and integration. Therefore, their destruction can cause
—as we have observed— a severe disruption of the balance between these two
properties.

StrengthScore=0.75

A strength
B HubSc=3

connector hub provincial hub

HubSc=4

Fig. 5.11 Changes in strength and hubness score. A, Functional networks with the node
and the connections colored according to the total nodal strength before and after one of
the hubs was removed (dark spot). The black outline surrounds the subset of nodes that
participate in the rich club. Two rich clubs appear, pinpointing the high robustness of these
networks. B, The functional network before the attack (showing the top link connections)
colored according to the mean ‘hubness score’. Four nodes were identified as ‘hub’ following
the ‘hubness score’ evaluation. The square boxes mark the hubs with Hubsc = 4 whereas
circles stamp the hubs with Hubsc = 3. Two connector (dark blue within the diamond) and
one provincial hub (light blue within the diamond) are qualitatively identified taking into
account the internal modular hierarchy of the neuronal clustered dynamics. The attacked hub
is embedded within a ‘submodule’ resembling other provincial hub, but projecting few but
strong connections to other submodule, being therefore also important as integrator node.

5.2.3 Initiators damage

As we commented in Section refinitiators, spontaneous activity in the clus-
tered networks is typically initiated by few number of clusters, and whose
downstream activations shape the firing sequences. Given the clear impor-
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tance of these clusters, we studied the effect of permanently silencing them
through laser damage.

The experimental procedure that we carried out was similar to the previous
one. We recorded spontaneous activity in two steps, before and after damage,
and using a fraction of data from the first block to determine the initiators.
We found the detection of the initiator difficult. In the preliminary results that
we present in Figures 5.12 and 5.13 we observed that the damaged cluster
actually did not have the highest initiation score, it was just strongly linked to
it. We therefore used this experiment to shed light on the importance of the
neighboring clusters to understand and quantify the final damage effect.

The functional organization of a representative network before and after
the physical damage is shown in Figure 5.12A. Before damage, activity was
nearly coherent, and a big community shaped the structure of the network
(highlighted in orange). After damage, the community broke off and smaller
ones merged. Interestingly, not only the damaged cluster (black circle) be-
came silent, but also some of its neighbors (black circles with red outline),
while other nearby clusters started to fire in an independent manner (gray
circles with red outline). Altogether, theses changes indicate a highly local
connectivity disruption.

The corresponding dendrograms (Figure 5.12B) show these dynamical
changes in detail. An interesting feature is the emergence of a neat hierarchical
community structure after damage, which was not present before. The black
circles at the bottom of the dendrogram point out the clusters that became
silent or fired independently after damage. We note that, by inspecting the
arrangement of these clusters in the dendrogram, it is not possible to deduce
any relation with the final dynamical clusters’ arrangement. Simply, these
clusters are physically close to the damaged one, but they are not functionally
neighbors (as we can observe in the dendrogram). This observation highlights
the crucial role that the structural connectivity plays in shaping the functional
organization of the network. It also reveals that the structural connectivity is



174 Results II: Network resilience

strongly local, as evidenced by a 25% of network affectation —understood as
clusters either silenced or disconnected— after damage.
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Fig. 5.12 Changes in functional organization when the local damage affects the initiator
of activity. A, Functional structures before and after the neuronal cluster was injured (black
spot) where the color corresponds to the functional communities (orange, red and purple).
The gray nodes with a black square are the ‘independent’ clusters that do not belong to
any community, the dark cluster corresponds to the initial damaged cluster, the dark ones
encircled with red color are clusters that in consequence ceased completely their activity after
the cluster impairment, and the gray ones also encircled with red color kept on firing but in
an independent way that might have disconnected from the network. Again, after the lesion,
this global dynamics was disrupted and gave rise a more modular dynamics that shaped new
communities. B, This changes in dynamics are illustrated by the dendrograms, where the
circles depicted at the bottom are colored using the same node color pattern that appears
in the functional network after the cluster has been damaged. The died clusters does not
correspond to the clusters that were more similar in activity histories of the injured node. C,
Ratio of the firing rate of each cluster after and before the attack. Practically all the clusters
reduced their firings events indicating the high damaged received except few clusters (colored
following their community initial colors) that slightly increase their activity and especially
one neuronal cluster increased substantially its firing rate (red colored surrounded by a green
circle in A). D, The corresponding weight difference distribution showing a high asymmetry
towards negative values (sk =−1.74) indicating the high weakening of the connections when
the initiator cluster is affected.

In principle, network damage is widespread. By plotting, for each cluster,
the ratio between the activity after and before damage (Figure 5.12D) one can
observe that the firing rate notably decreased for most of the clusters, except
for one that boosted in activity. Moreover, this damage is also evidenced
by the distribution of links’ weight differences δw (Figure 5.12 E), which
exhibits a strong left–skewness with sk =−1.74. However, this general dete-
rioration does not affect the global integration of the network since the global
efficiency value remains similar with Geffafter/Geffbefore = 1.08. Apparently,
the damage is significant but mainly affects locally clearly exhibited by the
number of died or disconnected clusters closely in space.

By evaluating the topological properties of the targeted node before dam-
age we observed that it did not excel in any significant topological property,
with Sreli = 0.17,Breli = 0.12,Locreli = 0.35,Preli = 0.66. As an example of
the distribution of these properties across the network, Figure 5.13A-B shows
the total strength before and after damage. We note that the rich club was
relatively far from the damaged cluster and was largely unaffected. Addition-
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InitiationScore=0.6
InitiationScoreMax=0.98

StrengthScore=0.36
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Fig. 5.13 Changes in strength and initiator cluster scores. A, Functional networks with
the node and the connections colored according to the total nodal strength before and after the
cluster deletion (dark spot). The black curve surrounds the subset of nodes that form the rich
club. After the local damage, some cluster stopped firing or went on firing but disconnected
from the rest of the network (white nodes) highlighting the harmful consequences when the
damage affects to the initiator cluster. B, The same functional networks where here the color
coded depicts the number of times that one cluster has initiated the spontaneous activity
(initiator cluster scores). One can easily observe that the highest initiator cluster was spatially
closer to the initial damaged cluster. After the injury different clusters spatially distant started
to initiate the spontaneous activity.

ally, as commented before, the damaged cluster had a powerful initiator of
activity as neighbor, with InitScore = 0.98 (Figure 5.13C-D). Interestingly,
the initiator became silent after damage but others emerged to take its role,
and spread homogeneously across the network.
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5.3 Discussion

5.3.1 Assortativity, resilience, and network circuitry

Global network deterioration experiments through photo–damage and chemi-
cal degradation showed that the clustered cultures exhibit a higher resilience
to damage as compared to the homogeneous ones. We ascribe this contrast
in behavior to the difference in the functional architecture of both networks,
and that is mainly related with their structural topological configuration. In
particular, in the previous chapter we observed that clustered networks exhib-
ited assortative traits while homogeneous networks were nearly disassortative.
However, the link between assortativity and resilience in our experiments is
based on the comparison between the response of clustered and homogeneous
cultures upon the same perturbation. To obtain conclusive evidences that
assortativity confers resilience traits exclusively from topology, we would
require an experimental protocol in which we could ‘rewire’ at will the con-
nectivity between clusters, or shape in a control manner different circuitries
while preserving the number of nodes in the network. Although these strate-
gies are certainly enlightening, they are of difficult development and a major
experimental challenge that goes far beyond the scope of this thesis.

It is important to point out, however, that the shown resilience may re-
sult from other factors directly linked to biological aspects of the clustered
networks, for instance a larger number of gap junctions as compared to homo-
geneous networks or differences in CNQX perfusion into the neurons. Thus,
the best set of experiments would be those where cultures of a specific type
(i.e. homogeneous or clustered) could be prepared with very different con-
nectivity configurations, therefore giving rise to a broad range of assortativity
levels. The major experimental difficulty in developing such an idea in clus-
tered networks is that we lack the engineering resources to favor assortative or
dissasortative traits. Based on our experience along the last 5 years, we think
that the physical organization of the clusters (for instance self–organized net-
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works versus engineered ones) or their dynamics (coherent versus modular)
are parameters that may modulate assortativity. Such investigation is one of
our future research projects.

A B

Fig. 5.14 Aggregate culture. A, Example of an aggregated culture.The culture is 3 mm
in diameter. Image is highly contrasted to show the neurons as black pixels over a white
background. Note the strong aggregation and interconnectivity of a part of the network.
B, Critical concentration of CNQX at which activity ceased, comparing the behavior of
clustered cultures (strongly assortative), aggregated (assortative), and homogeneous (weakly
assortative or neutral). Each bar is an average over 4−6 cultures.

On the other hand, considering homogeneous cultures, we can use recent
theoretical developments (Schmeltzer et al., 2014) that show that assortativity
can be favored in spatial networks by combining areas of high density of
connections with areas of much lower density. Experimentally, this can be
achieved in homogeneous cultures by allowing aggregation in the culture,
resulting in areas of high density of neurons (and strongly interconnected)
with areas of relatively poor population. Despite aggregation, the culture
maintains a monolayer of neurons, so CNQX application or photo-damage
affects all neurons equally. An example of such a configuration is shown in
Figure 5.14A. The analysis of effective connectivity shows that this kind of
aggregated cultures exhibit higher assortativity values than standard homo-
geneous cultures. Additionally, by analyzing the activity in the aggregated
networks upon CNQX application, we observed a tendency for activity to
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cease at higher concentrations of CNQX compared to their homogenous
equivalents (Figure 5.14B). Interestingly, these aggregated networks present
positive assortativity values, in the range 0.18− 0.25, in between the ho-
mogeneous and clustered networks. These experiments strengthen the link
between assortativity and resistance to damage. However, more experiments
are required to confirm the drawn conclusions.

5.3.2 On recovery mechanisms upon CNQX degradation

The unexpected increase in firing rate at specific CNQX dosages may hint at
the emergence of some sort of network mechanism to compensate for damage.
In these experiments, and only upon blockade of a small fraction of the exci-
tatory connections, there was a characteristic increase in the global efficiency,
suggesting network compensation to preserve activity. However, above some
specific level, network damage took over and functional organization rapidly
deteriorated, disrupting the structure in multiple submodules until activity
finally ceased. By comparing these results with a percolation process in which
the first links to be lost were the inter–modules ones, one can hypothesize
that the actual network reorganized in a set of new, more robust communities
that resulted in a slower degradation.

These adaptive or recovery traits of the network upon weak damage, as
well as the particular damage level at which rapid disruption starts, may
strongly depend on how rapidly the rich club is compromised upon damage
progression. The integrity of the rich club is indeed our hypothesis to ex-
plain a higher resistance to damage. Such an idea has been also suggested
in Alzheimer’s disease, where acute brain’s deterioration occurs when the
affected regions are the ones associated to the rich club (Palop et al., 2006;
Stam, 2014).
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Fig. 5.15 Global damage versus initial topological properties of the impaired cluster
The global efficiency ratio is evaluated to distinct topological properties of the damaged
neuronal cluster for 10 experiments. The global damaged caused on the network after the
removal of the neuronal cluster in principle does not depend on its initial total nodal strength
or betweenness.

5.3.3 The importance of the hubs in our experiments

We have completed so far 10 experiments (including the random, hub and
initiator actions). Despite the relatively poor number of experiments we can
infer a set of interesting features on network resilience. Although only a node
is deleted in our experiments, we can quantify the extent of damage using the
‘global efficiency’ measure Geff for every damaging action.

The plots in Figure 5.15 show the relationship between Geff and some
topological measures of the targeted nodes before actual damage, namely
total strength, betweenness, local efficiency and participation coefficient. At a
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first look, the global extent of damage does not directly correlate on the initial
characteristics of the targeted cluster. However, if we inspect the hub–targeted
experiments (black outlines) we can observe some interesting patterns. First,
the four hubs have high strength and high local efficiency; two of them have a
high participation coefficient and can be assigned as connectors C„ while the
others have lower participation coefficient and are therefore can be ascribed
as provincial (P) hubs. Interestingly, we can observe that the connectors that
also form part of the Rich Club core (RC) caused more global disruption than
the provincial ones. Indeed, the nodal total strength correlates with the loss in
global efficiency except for these provincial hubs.

This analysis indicates that the connectivity surrounding the node can
be important. The hub can therefore be embedded within a module, be part
of the RC, or operate independently. This analysis also points out that not
only the hub with the highest strength will cause the highest damaging upon
failure, but also its position in the modular network.

5.3.4 Network performance upon random and targeted
damage

From our preliminary results on laser ablation, we can conclude that clus-
tered networks are presumably resilient to random failure. This is quan-
tified through the ratio of the global efficiency after and before damage,
Gratio

eff = Gafter
eff /Gbefore

eff ≃ 0.7, relatively high. However, under ‘hub’ destruc-
tion, the damage extended globally throughout the network, with Gratio

eff ≃ 0.3,
ultimately causing the fragmentation of the network in multiple submodules.
On the other hand, the damage of the ‘initiator’ did not cause a cascade of
global failure (in integration terms), with Gratio

eff ≃ 1, although the damage
inflicted at a local level was substantial and caused the silencing or discon-
nection of the clusters surrounding the targeted one.

Indeed, the set of damaging actions can be conceptualized in terms
integration–segregation. Integration deals with overall network functionality,
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whereas segregation deals with the functionality at a cluster or community
scale. It is important to note that both characteristics can be independent.
A network can decrease in segregation as a result of weaker communities,
but remain integrated since all communities are operational. Conversely, a
network can be less integrated as a consequence of inter–moduli failure, but
remain richly segregated as far as intra–moduli connectivity is maintained.

Hence, in the context of our experiments, global damage corresponds to a
decrease in integration, i.e. a loss in network performance as a whole; while
local damage corresponds to a reduction in segregation, i.e. a loss in the
performance of the communities. This integration–segregation interplay that
we observe is fascinating, and illustrates the complexity of clustered networks,
their organization, and the intricate role of recovery mechanisms.

5.3.5 Network damage and the brain

Studies on network resilience to insult in the brain have typically focused
on the global extent of damage upon network failure(Achard et al., 2006;
Alstott et al., 2009; Honey and Sporns, 2008). Computational models of
brain failure considered the Albert and Barabasi approach(Albert et al., 2000),
which quantifies the global damage using the global efficiency and the giant
component. With these two components, the studies evaluated the fall in
network performance upon progressive deletion of nodes, to later compare
different topological configurations, e.g. scale–free or random, to assess the
resilience degree of the network. The fact that these studies centered on the
global damage in integration terms is because specific circuit degradation in
the brain may ultimately affect whole brain processes such as behavior and
cognition. A failure in integration, hence, may gives rise to several neuro-
logical pathologies(Fornito et al., 2015; Stam, 2014). (Local damage, on the
contrary, seemed to produce specific deficits that do not have a prominent
effect in behavior). In particular, it has been shown that this global disin-
tegration is the first critical step towards an irreversible deterioration and
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death, as occurs in highly aggressive neurodegenerative disorders, such as
Alzheimer disease. For this reason, it is of vital importance to unveil as soon
as possible vulnerable brain regions that, once affected, initiate a cascade of
miscommunication and ultimately total failure.

The mechanisms that lead to widespread brain damage are complex and
highly non–linear, and strongly depend on the topological role of the affected
brain regions. Some studies have claimed that the the role of connector and
provincial hubs, and ultimately the participation coefficient, are extremely
correlated with the global impact of the focal lesion. In particular, it has
been hypothesized that damage on connector hubs is more harmful than on
provincial hubs, simply because the failure of the inter–modular connections
quickly triggers global network breakdown(Fornito et al., 2015; Gratton et al.,
2012; He et al., 2009; Honey and Sporns, 2008; Warren et al., 2014). On the
other hand, other studies Alstott et al. (2009); He et al. (2009) have pinpointed
a higher dramatic effect on the performance of brain’s functional network
when nodes that occupy a high central position on the network (i.e. high
betweenness) are removed.

These studies reflect the importance of the different hub categories, i.e.
high centrality, high strength, or high inter-modular participation. Clearly, the
role of these hubs is crucial since they govern network integration. A pending
issue, however, is the understanding of which category causes the highest
global network damage upon removal.

In this sense, our neuronal clustered networks offer an ideal platform to
study in an easy and accessible manner the effect of removing these hubs in
the functional connectivity, as well as procuring information on their role in
integration and segregation. Indeed, it would be very interesting to target all
kind of hubs (such as high strength, degree, provincial, connectors, or high
betweenness) in order to get pivotal information on their importance upon
removal.
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5.3.6 Network response upon attack and resilience

The degree of global damage is strongly linked to the local connectivity.
Hence, the ability of the network to maintain some sort of activity and func-
tional connectivity upon damage greatly depends on the location of the tar-
geted clusters. As observed for the random– and hub–targeted experiments,
the silencing of the cluster did not cause the loss of the module in which it
participated. This observation is somehow surprising since one could expect
that the removal of a high–strength node within a module could trigger the
collapse of the whole community, but the experiments show that this is not
the case.

The apparently general trend is that functional connectivity reorganizes
to retain the structure of the modules as much as possible. The weaker con-
nections within modules are typically the first to vanish, while the strongest
ones prevail. Experiments also show that when a cluster is removed from the
rich club core, the network exhibits a major reinforcement, as revealed by a
strongly positive skewness sk of the weight differences distribution, sk ≃ 3.8.

On the other hand, an interesting observation derived from our experi-
ments is that those networks lacking a modular structure are much less capable
to retain the integrity of the network, with sk ≃−1.8 in a typical experiment.
Hence, such a modular structure seems pivotal to resilience. Since modularity
and assortativity are related, this observation strengthens again the importance
of assortative traits for a resilient network. In this sense, it was suggested that
brain networks can confront the loss of nodes placed within modules much
better than in other configurations(Meunier et al., 2010). For instance, it has
been claimed that the recovery of function in the brain is higher when the
affected regions exhibit a high clustering coefficient; whereas the recovery is
less likely after damage of topological central areas with low clustering, such
as bridge nodes(Fornito et al., 2015).
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5.3.7 Potential descriptor of network damage

We have seen that the skewness, sk, of the distribution of weight differences
provides a quick evaluation of the presumably network’s ability to resist upon
attack. Thus, the skewness measure appears as an additional potential descrip-
tor to detect the effect of damage in local connectivity (loss of segregation) as
well as the global one (loss of integration).

Leff

r(k)

g

VI

Skew

dam rec

Fig. 5.16 Potential descriptors. The graphs show different descriptors used in the literature
to quantify the global damage, namely the global efficiency ratio, the ratio of density links
ρ(k), the ratio of mean firing rates, the variation of information of community structures, and
the skewness. Although some of these measures correlate to one another, the skewness is the
only measure that captures the recovery (‘rec’) and the damaging (‘dam’) effects.



186 Results II: Network resilience

To stress the interest of the skewness measure and other, we have studied
the relationship between five measures, namely the skewness itself, the ratio
between the global efficiency after and before damage Gratio

eff , the ratio in
density of the links ρ , the ratio between the mean firing rate (γ/γ0), and
the VI between the partitions after and before damage, considering the 10
experiments.

The results are shown in Figure 5.16. Interestingly, most of the mea-
sures correlate between them (highlighted in the figure with gray colored
background). For instance, a lower density of links after damage correlates
well with a lower global efficiency, a lower number of firings and higher VI.
The latter indicates a higher segregation in different modules. However, the
skewness has a more complex relationship with the other magnitudes and
interestingly, we can distinguish a double role, namely damaging (‘dam´) and
recovering (‘rec´) effect. This apparently double behavior can be easily seen
in the plot of the loss in density links a function of the skewness. This obser-
vation reinforces the idea that this skewness measure can identify the local
and global vision, i.e. the segregation–integration balance. It can therefore
distinguish the recovery or the deterioration on the network, becoming a pow-
erful estimator to predict the final damage, becoming useful for a ‘prognosis’
of the future network state.



Chapter 6

Results III: Clustered networks as
an in vitro model for Alzheimer

We here use the developed tools and experience from previous results to
apply our clustered neuronal networks to tackle specific medical problems.
Specifically, we aim at quantifying the damaging action of three major agents
observed in Alzheimer’s (AD) disease pathogenesis: magnetite (M), amyloid-
β (Aβ ), and magnetite-amyloid-β complex (M-Aβ ).

As we have seen in previous chapters, our neuronal network fire collec-
tively in small groups forming dynamical moduli or communities, and that
shape what we call the functional organization of the network. The coherence
within and between communities is tied to the clusters’ interconnectivity,
and therefore a loss in coherence can be ascribed to actual changes in the
network’s underpinned circuitry due to damage. Therefore, we simultane-
ously monitored networks dosed with each of the three agents (together with
a control network) and studied the variations in spontaneous activity and
functional organization. The results show first that, of the three chemical
actions studied, only the M-Aβ complex caused severe network deteriora-
tion; and, second, that the clustered networks offer a unique platform for
pharmacological studies.
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6.1 Biochemical context

AD is a neurodegenerative disorder characterized by a widespread functional
deterioration of the human brain. Among the diverse factors involved in
AD pathogenesis, it has been suggested that the high accumulations of Aβ

fibrils that constitute the observed senile plaques (Hardy and Selkoe, 2002;
Hardy and Higgins, 1992; Tsai et al., 2004), as well as the high levels of iron
concentration (Castellani et al., 2012; Goodman, 1953), are primary actors.
The origin of these abnormal overproductions, their interrelation and actual
action on brain’s circuitry are still unsettled questions and a major focus of
research.

Ab monomers Ab oligomers Ab protofibrils Ab fibrilsA B

Fig. 6.1 Different conformational states of Aβ , compared to in vitro complex M-Aβ .
(A) Qualitative representation of the different conformational states of Aβ . From left to right,
Aβ monomers, Aβ oligomers (comprising two, and three monomers), Aβ protofibrils (inter-
mediate state), Aβ fibrils (stable final configuration that form the Aβ senile plaques). (B),
The in vitro complex M-Aβ )prepared at IBEC. The white arrowheads mark Aβ protofibrils
attached to magnetite nanoparticles.

A high number of recent studies indeed showed that the intermediate
states of the final conformation of Aβ plaques, specifically Aβ protofibrils
(Lannfelt et al., 2014; Lashuel et al., 2002; Mucke, 2009), appear to be directly
related to neuronal damage (see Figure 6.1A). Indeed, several studies demon-
strated that these protofibrilar Aβ states alter signal-transduction cascades
and cause high neurotoxicity (Demuro et al., 2005, 2010; Kawahara et al.,
2011), while monomeric states of Aβ were considered non–toxic. On the
other hand, Fe2+, a redoxactive and highly damaging valence state of iron, has
been reported in abundant quantities in AD brains (Everett et al., 2014; Smith
et al., 1997). These abnormal quantities of iron have been linked in turn to
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magnetite, the only stable iron oxide that contains Fe2+ (Collingwood et al.,
2005; Hautot et al., 2003; Pankhurst et al., 2008). The concurrent presence
of magnetite and Aβ in AD brains raised the hypothesis that magnetite itself
could be non-toxic and even protective against Fe2+, but its formation in the
presence of Aβ could stabilize protofibrilar Aβ states, lethally reinforcing its
accumulation and damaging role.

Despite the advances towards an understanding of key molecular mech-
anisms in AD, the complexity of the pathology and the inherent difficulty
to study the progression of the disorder in vivo, have motivated the devel-
opment of more accessible in vitro approaches. Studies using cell cultures
have established a connection between fibrillar Aβ plaques and neurotoxic
effects (Dahlgren et al., 2002b; Hartley et al., 1999); and in slices from
mouse hippocampus it was reported local neuronal damage upon presence of
protofibrillar Aβ structures (O’Nuallain et al., 2010).

The experimental platform that we developed and the results that we
obtained follow this spirit of developing new in vitro, multidisciplinary ap-
proaches to tackle neurological disorders.

6.2 Experimental system

We studied the influence of the three chemical perturbations on the activity of
clustered networks, studied at DIV 5−15. As core experimental platform,
we used the Specific, perturbative biochemical environment experiments con-
figuration, i.e. the simultaneous monitoring of 4 mini–cultures as described in
Chapter 2. In summary, this experimental configuration consisted in an array
of 2×2 cavities pierced on a PDMS mold, each cavity 3.5 mm in diameter
and 4 mm deep. Figure 6.2A shows this experimental platform. Neurons were
seeded with identical nominal density in each cavity, and the entire system
cultured as a single unit in a multi–well culture plate to ensure identical
development. Although each cavity gave rise to different network designs
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—as also seen in previous chapters— the dynamics of these clustered networks
was qualitatively very similar. under identical biochemical conditions. In
total we investigated 15 networks, and all experiments were carried out at
room temperature.

Fig. 6.2 Experiments and data acquisition. (A), Sketch of the experimental setup and
procedure. A pierced PDMS layer was attached to a glass coverslip to shape a 2×2 grid of
cavities, each 3.5 mm in diameter and 4 mm deep. Neurons were plated on these cavities
forming independent, mm-sized neuronal networks, and cultured in identical conditions.
For measurements, one of the cavities was left as control, while the others were dosed with
specific chemical agents. (B), Left: Bright field image of a typical preparation at day in
vitro 8, showing the 4 cavities containing the neuronal networks. Dark circular objects are
the clusters connected to one another through bundles of neurites. Right: Fluorescence
image of the bottom-right culture. Firing clusters appear as bright spots on the images.
(C), Representative fluorescence traces of the 4 clusters highlighted in B, and along 15
min of recording. The yellow boxes illustrate different combinations of co-activations, that
ultimately shape the final communities.

Active clusters appeared as bright spots upon activation (Figure 6.2B,
right), and the monitoring of all the clusters for about 1 h provided the
main data for quantifying network activity. Typical fluorescence traces for 4
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representative clusters are shown in Figure 6.2C, and exhibit the distinctive
firing in groups that delineate the characteristic communities.

The novelty of the presented system is the ability to simultaneously mon-
itor the changes in spontaneous activity in all 4 cavities, and upon admin-
istration of a specific chemical agent in each of them. To proceed, we first
measured spontaneous activity on each cavity for 30 min before applying the
chemical perturbation. Then, one of the cavities was always left as control,
while the others were doped either with 2 µl of magnetic nanoparticles (M),
Aβ solution, or M-Aβ complex (see Section 2.5.3, for details on their prepa-
ration). The cavities were next left in darkness for 10 min for the compounds
to dissolve and take effect, and spontaneous activity resumed for another 30
min.

Changes in the temperature of the well or medium evaporation can cause
variations in the spontaneous activity of all cavities from the first to the second
recording. Such a drift is an artifact that masks actual chemical damage, and
is quantified as the ratio ΦP

C/Φ0
C, with Φ0

C and ΦP
C the average activity in the

control cavity along the first and second recordings, respectively. Of the 15
experiments studied, this ratio ranged between 0.9 and 1.2.

Data analysis in the context of activity variability, modular organiza-
tion and functional (effective) connectivity provided a quantification of the
influence of each chemical agent on network behavior.

6.3 Results

6.3.1 Spontaneous activity upon M-Aβ action

Examples of the collected data (in the form of raster plots) before and after the
chemical intervention are shown in Figure 6.3. The control case effectively
consisted in two identical, consecutive measurements, and its raster plots
indeed exhibit nearly the same features. The network is characterized by
rich spontaneous activity with the existence of two distinct firing sequences,
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Fig. 6.3 Analysis of the spontaneous activity. (A)-(B) Representative raster plots of spon-
taneous activity and average fluorescence signal, comparing the behavior of the clustered
neuronal networks in control conditions (top) and under perturbation with M-Aβ complex
(bottom). The left panels show the first 10 min of recording before perturbation, while
the right panels show the last 10 min of recording upon perturbation. For the control case,
the network activity and the structure of the different firing sequences (outlined boxes) are
preserved, while for the M-Aβ case both traits degrade, with a rupture of the biggest sequence
in sub-sequences and the silencing of clusters (dotted horizontal lines).
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highlighted as color boxes. Both network activity and the pattern of the
repeating firing sequences are well preserved along the two recordings.The
stability of the control measurement contrasts with the behavior of the M-
Aβ cavity. Spontaneous activity is rich before chemical application, with 3
distinct repeated firing sequences, but substantially decays after dosage, with
a rupture of the pattern of the firing sequences in smaller subsequences. For
instance, a firing sequence highlighted in blue on the left panel —and that
encompassed the majority of the clusters— broke off into 4 new, uncorrelated
subsequences. One can also observe that some clusters became completely
silent (dotted lines), while others boosted in activity.
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Fig. 6.4 Activity changes Variation of the mean clusters’ firing rate Φ̃ upon perturbation,
and comparing the action of M, Aβ and M-Aβ . The left panel shows the values before
and after application, and corrected by the control measurement; the right panel shows the
corresponding ratios. Each dataset is an average over 15 experimental realizations, and is
represented as mean +/- standard error of the mean. (*p<0.05, **p<0.005, Student’s t-test.)
The red horizontal line is a guide to the eye for the control condition.

A first, crude evaluation of the changes in the dynamics of these networks,
for the different actions and along the 15 experiment, was carried out by
computing the average clusters’ firing rate Φ̃. As shown in the left panel of
Figure 6.4A, Φ̃ significantly decayed by about a factor 2 upon M-Aβ action
(p-value p = 8×10−6), while it remained unaltered within statistical error
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for both M and Aβ perturbations. To compare the variability in behavior
between chemical actions, we computed the ratio between the spontaneous
activity after and before perturbation, Φ̃P/Φ̃0. As shown in the right panel of
Figure 6.4A, activity significantly dropped upon M-Aβ action when compared
with either the M or Aβ cases, but no significant differences were observed
between M and Aβ .
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Fig. 6.5 Cluster’s activity and network coherence. (A), Difference in cluster’s firing rate
between the perturbed (ϕP) and the unperturbed (ϕ0) activities, and comparing a control
cavity (left, 32 clusters) with one targeted with M-Aβ complex (right, 36 clusters). Data
corresponds to the experiments shown in Figure 6.3. Each bar represents a cluster of the
network. Clusters are color coded and ordered in the horizontal axis according to their
participation in a co-activated group. White bars depict clusters that fire independently. Bars
marked with asterisks indicate the clusters that became silent after perturbation, and the ones
marked with arrowheads highlight those that boosted in activity. The top horizontal color
boxes show the structure of co-activations before perturbation, and color coded according
to the sequences shown in Figure 6.3. Grey boxes are sequences that were not indicated
in Figure 6.3B. (B), Distributions of the firing rate differences ∆ϕ̃ for 15 experimental
realizations upon action of the different chemical agents. The red curve shows a Gaussian fit
to the distributions, with mean µ and standard deviation σ .
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To deepen in the understanding of the M-Aβ damage on network dynam-
ics we analyzed in detail the representative experiment of Figure 6.3B, and
computed the difference in spontaneous activity before and after perturbation
for each individual cluster, ∆ϕ = ϕP −ϕ0. As shown in Figure 6.5A, clusters
in the control case slightly varied in activity due to the natural fluctuations
in such a biological system, but the overall population activity along the two
measurements remained stable, with ⟨∆ϕ⟩ ≃ 0. The structure of clusters’
co-activations was characterized by the two major communities outlined in
the raster plot of Figure 6.3A together with few clusters that fired indepen-
dently. This dynamical organization was the same for both measurements,
and illustrates the stability of the clusters’ coherence in control conditions.

For the M-Aβ case, however, there was a remarkable drop in the activity of
most of the clusters together with a rupture of the initial co-activation patterns.
The biggest community of coherent clusters indeed divided into 5 smaller
groups upon perturbation. Some clusters also became totally silent (marked
with asterisks) while others boosted in activity (arrowheads). Although this
particular experiment exhibited two clusters with boosted activity, such a
feature was in general rare.

We extended this analysis to the M and Aβ cases, and included all the 15
experimental realizations. Figure 6.5B shows the distribution of normalized
clusters’ activity differences ∆ϕ̃ for all the data. For the Aβ case, all clusters
were active along the recording and their activity varied moderately, with
an overall symmetric distribution centered at 0 (mean µAβ ≃ 0, skewness
γAβ ≃ 0). The M case shared similar characteristics except for a higher
presence of boosted activations, as reflected by its right–skewed distribution
(γM = 1.02). Such a potentiation of activity by the magnetic nanoparticles
is an interesting observation that needs further studies to be understood.
Conversely, the M-Aβ case exhibited a prominent widespread loss in clusters’
activity (often caused by clusters that became silent), with a remarkable shift
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of the distribution towards negative values (µM-Aβ =−0.52, γM-Aβ =−1.48),
and the almost absent presence of clusters with boosted activity.

These results suggest that M-Aβ complex damaged the connectivity
between clusters, the clusters themselves, or both. Such an action caused
a deterioration of the individual clusters’ activity and the overall network
collective behavior.

6.3.2 Disruption of the structure of network communities
due to M-Aβ complex

We illustrate the damage in the collective dynamics of the network by con-
sidering another representative experiment in which all clusters displayed
activity after M-Aβ perturbation. Figure 6.6A shows the identification of
the network communities. By setting a threshold in the dendrogram (dotted
horizontal lines) the most representative communities in the network can be
established. For the control case we obtained 2 characteristic communities
that encompass around 15-20 clusters each. These communities are well
preserved along the two consecutive recordings, although with variations
in their internal structure due to fluctuations in clusters’ dynamics. For the
M-Aβ case, however, the structure of communities markedly changed, with
3 main communities separating into 6. Figure 6.6B shows an alternative
representation of the communities in the form of the similarity matrices JS.
The control experiment retained the main structure of the communities despite
fluctuations, while for the M-Aβ case the reorganization of the network in
smaller communities was well manifested.

We combined the analysis of the communities’ structure with the effective
connectivity of the network to better quantify the changes in the coupling be-
tween clusters upon perturbation. Figure 6.7A depicts the functional maps for
the control and M-Aβ experiments. Two levels of representation are shown.
In a first one, all functional connections between clusters are drawn as gray
links, effectively shaping a homogeneous area that evinces the widespread
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Fig. 6.7 Functional connectivity and damage. (A) Effective networks for the control and
M-Aβ experiments shown in Figure 6.6. Gray links show all functional connections, and
color links correspond to the top functional connections (z-score > 1.95, 500 surrogates).The
direction of the links is not shown for clarity. The control network reflects the stability of the
network in two consecutive measurements. The M-Aβ network exhibits strong connectivity
changes and reorganization of the network moduli, which are color coded according to the
hierarchical tree information of Figure 6.6. Grey clusters with a square in their center are
those that fired independently or that participated equally in different communities. (B)
Matrices of weight differences wd of the functional links. The clusters’ index order is the
same as in Figure 6.6, and corresponds to the unperturbed condition. The square boxes
outline the moduli before perturbation. (C) Corresponding distributions of weight differences
for the control and M-Aβ experiments. γ indicates the skewness of the distributions. The red
vertical line is a guide to the eye to show the symmetry of the distribution in the control case.

clusters’ functional interconnectivity. In a second one, only the top func-
tional links (z-score > 1.95, 500 surrogates) are shown, with clusters and
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their connections color coded according to their participation in the above
inferred communities. For the control case, we observed that the overall
structure of the network was well preserved along the two recordings, with
small variations in the effective links that reflect the fluctuations observed in
the dendrograms. For the M-Aβ case, the rupture of the 3 initial communities
into 6 smaller ones was clear, and the clusters that remained in a given com-
munity experienced important variations in functional connectivity. However,
a number of the strongest links were preserved, hinting at the maintenance
of some sort of internal organization in the network. Another example of a
M-Aβ perturbation is provided in Figure 6.8A, and corresponds to the data
shown in Figures 6.3B and 6.5A. In addition, representative experiments
for the M and Aβ cases are shown in Figures 6.8B-C, and highlight the
maintenance of the network features in both cases.

To quantify in more detail the changes in the functional connectivity we
computed the weights’ differences wd of the functional links between the
perturbed condition and the initial one. As shown in Figure 6.7B, the weights
fluctuated in the control case, but variations occurred within the communities
and with few extreme values. For the M-Aβ case, however, extreme variations
were abundant, and with a large presence of negative values outside the two
main original communities. This broad network weakening ultimately caused
the emergence of the smaller communities and the overall degradation of
network activity. Such a deterioration can also be illustrated by plotting the
distribution of weights’ differences. As shown in Figure 6.7C, the control
case led to a symmetric, narrow distribution centered at zero (skewness
γC = −0.10). Conversely, the M-Aβ displayed an asymmetric distribution
with two main features. First, the peak of the distribution appeared at negative
values, which signatures an overall network weakening; and second there was
an emergence of extreme positive differences (γM-Aβ = 1.41) that possibly
reflect the activation of network mechanisms to stop activity degradation
by reinforcing specific links. Such a behavior is also maintained across the
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Fig. 6.8 Comparison of the functional networks for M, Aβ and M-Aβ The graphs illus-
trate the stability of the network moduli and functional connectivity for the M and Aβ cases.
Although functional links change in strength and target, the variability is similar to the control
measurements. An additional M-Aβ experiment is shown for comparison. Links between
clusters correspond to the top functional connections (z− score > 1.95, 500 surrogates), with
the thickness proportional to the weight of the link. Their direction is not shown for clarity.
Clusters and links are color coded according to their participation in a given community, with
the thickness of links proportional to their importance. Grey clusters with a square in their
center are those that fired independently or that participated equally in different communities.
Clusters with thick outlines are those that ceased activity after chemical application.
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15 experimental realizations studied (Figure 6.9A). However, we must note
that network response to damage and functional reorganization is complex.
Remarkably, if we analyze in detail the M-Aβ distribution of Figure 6.9A, we
observed that a substantial number of positive weight differences (wd > 0)
correspond to intra–moduli reinforcement, as shown in Figure 6.9B). However,
as shown in the same figure, weights’ loss after M-Aβ action (wd < 0) are
more similar for both inter–moduli and intra–moduli links.

15 experiments

wd

control
M-Ab

1 2

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9 intra-moduli
inter-moduli

wd>0wd<0

P
(w

d
)

M-Ab
A B

0

0.5

0.9

Fig. 6.9 Intra and inter-moduli connections (A) Comparison of the weight difference
distributions between control and M-Aβ including all 15 experimental realizations. The
M-Aβ distribution is broader and contains both strongly weakened and strongly strengthened
functional links. (B) Probability of negative and positive weight differences for intra-moduli
and inter-moduli connections for all 15 M-Aβ experiments.

To complete the analysis of the functional organization of the network
upon M-Aβ action, we also analyzed high–order topological features such
as the efficiency, clustering, and assortativity. The results are summarized
in Figure 6.10, and are presented as the ratio between the condition of the
network after M-Aβ application and before it. The strength substantially
decayed after perturbation and reflects the widespread loss of connectivity
density seen in the effective maps. The global efficiency indicates that the
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perturbation affected the global integration among the communities. This
is supported by the increase of the local efficiency, overall pinpointing a
scenario where the information flow shifted towards local areas. The fall of
the clustering coefficient, on the other hand, indicated the emergence of a
sparser connectivity, i.e. a switch towards a more random network.
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Fig. 6.10 Changes in network topology upon M-Aβ perturbation. Ratio of five topologi-
cal descriptors, namely network strength, global and local efficiencies, clustering coefficient,
and assortativity, after and before the application of M-Aβ . The descriptors are computed
from the directed and weighted functional connectivity graphs, and averaged over 15 network
realizations. Error bars indicate mean +/- standard error of the mean. The red horizontal line
is a guide to the eye for the control condition.

The combination of a decreased global efficiency with an increased local
one strengthens the observation that M-Aβ action caused the partition of the
biggest moduli. This community disruption is also reflected by an increase
of the assortativity. We must note that modular networks are in general
assortative and, as we have seen, these clustered networks already exhibit
this property. Hence, the observed increase in assortativity indicates that the
networks maintain the modular organization despite deterioration, a feature
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that in turn favors the preservation of activity, though local, in the system (see
e.g. Figure 6.3B).

6.3.3 Loss of integration-segregation balance upon M-Aβ

damage

In order to better understand the decrease in global efficiency (associated
to the degree of integration) and clustering coefficient (associated to the
degree of segregation), we compared the networks deteriorated upon M-
Aβ , at the time point corresponding to the end of the experiment, with the
initial undamaged network but explored along gradually higher weakening
steps carried out through a percolation process. In principle, if M-Aβ action
acts equally in all connections, we would expect that at some ‘percolation
threshold’ both networks (the real and the percolated ones) reach a maximum
in similarity. To compare both networks (real and percolated at a given
threshold), we first binarized the weights of the connectivity matrices, so the
matrix reflects solely the presence or absence of links. Next, we computed the
correlation and the Jaccard distance between them along the progression of
‘percolative damage’. We used the two measures since correlation estimates
the ‘similarity’ using the entire connectivity matrix (i.e. ‘0’ for absence and ‘1’
for presence of connections), while the Jaccard distance quantifies the number
of links (i.e. ‘1’ values) that are present in both networks. Figure 6.11A shows
the results, which are averaged over 10 experiments in which most of the
clusters were active at the end of the measurement. The black curve depicts
the correlation distance and the red curve the Jaccard one. We can observe
that no peak appears. Instead, the similarity between both networks decreases
monotonically since the beginning of disintegration, meaning that the network
behavior after the chemical damage strongly differs from a percolation case.
The result implies that the M-Aβ action do not simply reduces the integration
of the network as a consequence of inter-modular failure of connectivity.
Rather, more complex mechanisms are at play.
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Fig. 6.11 Comparison of actual M-Aβ damage with a percolation model. (A) Compar-
ison of the functional connectivity matrices between the actual M-Aβ network and the
percolated one for different thresholds, averaged over 10 experimental realizations. No
maximum is observed for any ‘percolative threshold’. The shading around the curves marks
standard error. (B) Difference between two network properties (NP), namely global efficiency
and clustering, of the representative clustered network after M-Aβ application (denoted as
‘real’) and the initial network altered through a percolation process (‘perc’). The circles
mark the ‘percolation threshold’ at which the two network properties for the ‘real’ case are
equal to the ‘percolated’ one. The difference between the two thresholds imply that, after
global disintegration, the functional modules reorganize to new ones compared to the initial
ones. The pink box marks this range. (C) A 10% of the links need to be pruned from the
initial network to obtain the same decrease in the global disintegration as the network after
actual M-Aβ damage. On the other hand, both networks appear with the same clustering
coefficient when the 45% of the links (weights gradually removed) are taken off. (D) The
strength, the clustering coefficient and the global efficiency for the networks after the M-Aβ

application compared to the ‘percolated’ network, and averaging acroos the threshold range
that comprise the ‘pink’ range in B.
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To explore this difference in more detail, and for a particular experiment,
we compared the global efficiency Geff and the global clustering CC of the ini-
tial network percolated for different thresholds with the real, M-Aβ damaged
one. We note that, in this analysis, the weights of the links were included. We
used the data of the the experiment shown in Figures 6.6 and 6.7. The results
of this comparison are shown in Figure 6.11B, where we plotted the relative
difference of these network properties NP, i.e (NPreal−NPperc)/NPreal, where
NPreal corresponds to the measure for the M-Aβ network and NPperc for the
percolated one at different thresholds. First, one can observe that the relative
differences are initially negative, reflecting the damage of the M-Aβ network
with respect to its initial condition. As percolation commences, both measures
approach the corresponding value of the real network and, at some threshold,
they coincide and the relative difference is zero. Interestingly, this coincidence
occurs at different threshold for each measure. The ‘percolation threshold’ for
Geff is about 0.18, whereas for CC is about 0.42. The substantial difference
between both values indicates that the real network quickly disintegrates as a
whole, switching to a new scenario where the containing modules become
predominant, which in turn strongly reorganize as compared to the initial
modular structure.

Similar results were found for the rest of experiments. The averaged
results are shown in Figure 6.11C. The global efficiency of the real (Greal

eff )
and percolated (Gperc

eff ) networks coincide when the initial network is pruned
by about 10%, while a 45% of decimation is required in the original network
for the clustering measures CC to concert. This result implies, first, that
integration and segregation behave very differently in the real network, i.e.
M-Aβ damage is not equivalent to a percolative process of gradual failure
of connections. Indeed, in the percolation case, the links that disappear
first are the weakest ones and that mostly correspond to the inter–moduli
connections, causing a reduction in integration, the emergence of the sub–
modular structure, and an increase in integration. In the real case, however,
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integration is also reduced, but it is not followed by an immediate rise in
segregation, which requires more damage to be important. We hypothesize
that the positive weights’ differences wd for both the intra– and inter–modular
connections shown in Figure 6.9A, appear once integration starts to fail
in order to reorganize the functional modular structure of the network and
maintain it globally connected as much as possible.

An alternative approach for the above analysis consist in constructing an
‘average percolated network’, i.e. the disintegrated network averaged over
a range of thresholds. In our case, we average over the obtained networks
in the region that extends from the threshold in which Greal

eff ≃ Gperc
eff to the

threshold in which CCreal ≃CCperc. This averaged network is then compared
with the real, M-Aβ damaged one in terms of major topological properties.
The results, for the same experiment presented in Figure 6.11B, are shown
in Figure 6.11D. We can first observe that the strength is higher in the real
network than in the average–percolated one, suggesting that a reinforcement
of the connections takes place upon damage. The global efficiency is also
higher, revealing that this reinforcement helps preserving integration. Finally,
both networks exhibit a similar level of clustering, indicating that segregation
is maintained. This is reflected in the organization of the modules and the
emergence of new ones (e.g., Figure 6.7A).

6.3.4 Clustered networks exhibit higher resistance to M-
Aβ damage compared to homogeneous ones.

As a final analysis, we studied the sensitivity of homogeneous cultures to
damage. It was shown in the previous Chapter that while the assortative,
clustered networks were resilience to the weakening of connections, the
weakly dissassortative, homogeneous ones were not (Teller et al., 2014).
Thus, the rationale behind this comparison is the existence of these assortative
traits can mark difference in the resilience of the networks.
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Fig. 6.12 Homogeneous cultures. A Raster plots of spontaneous activity before (left) and
after (right) application of M-Aβ complex. Spontaneous activity fell by 65% on average. B
Ratio of the normalized firing rate for homogeneous (averaged over 5 experiments with the
respective standard error of the mean) and clustered cultures (15 experiments), and comparing
the behavior of the two kind of cultures for the M, Aβ and M-Aβ perturbations. Both culture
types behaved similarly except for the M-Aβ condition, where the homogeneous cultures
exhibited a significantly higher decay in activity. (*p < 0.05, Kolmogorov-Smirnov test.)
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Figure 6.12A shows a typical raster plot of activity before and after appli-
cation of M-Aβ . Network coherence was preserved upon perturbation, but the
frequency and regularity of bursting episodes were substantially reduced. The
number of bursting episodes kept decreasing as the damage progressed until
activity ceased. This behavior contrasted with the one observed in clustered
networks, where whole network activity switched to a modular yet highly
rich one that lasted for long time. In general we observed that homogeneous
cultures became silent much earlier than clustered ones, a result that provides
a qualitative evidence for a higher resistance of the latter to damage.

To quantify the differences between the two culture types, we analyzed
the ratio in the normalized spontaneous activity of either individual neurons
(for the homogeneous preparations) or clusters, Φ̃P/Φ̃0, and compared the
action of M-Aβ with the other perturbations. As shown in Figure 6.12B,
homogeneous cultures exhibited a significantly higher drop in spontaneous
activity than clustered ones (p = 0.04), while for the M and Aβ cases both
culture types behaved similarly within statistical error.

6.4 Discussion

Given the diverse hypothesis for AD, our work aimed at introducing a new
experimental platform and analysis tools for understanding the role of the
compounds that seem pivotal in neuronal damage. We centered our efforts
in the combined effect of magnetite and Aβ . Our results indicate that Aβ

manifests a damaging role only when acting in synergy with magnetite, which
possibly acts as a stabilizer for a protofibril M-Aβ complex. Although other
studies have shown that Aβ itself induces apoptosis in neuronal cultures
similar to ours, in the time frame and conditions of our study we could
not find evidences for neuronal damage due to the action of either Aβ or
magnetite. It may occur that long exposures to these agents induce neuronal
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damage and broad alterations in network function, but our results clearly show
the aggressiveness of M-Aβ , which acts quickly and broadly.

The paramount result that evince the M-Aβ damage is the combined loss
of neuronal activity and the deterioration of network’s functional organization.
This was quantified by an average fall of the spontaneous activity, a rupture
of the dynamic communities, and widespread changes in the functional con-
nectivity of the culture. Neuronal apoptosis was reflected in our networks
by the gradually higher presence of silent clusters. However, network func-
tional deterioration occurred much earlier than actual neuronal death, and
suggests that M-Aβ acts first on connections and, at longer stages, on the
cells themselves. Despite the degree of damage, the partition of the network
into smaller communities has two interesting features. First, the new moduli
are constituted by clusters that are spatially close (see e.g. Figure 6.7A), and
reveals that clusters tend to connect to their nearest neighbors rather than
establishing long–range paths. And second, the damage preserves most of
the intra-modular organization, picturing a network with a core of strongly
connected nodes. Altogether, the clustered networks effectively configure a
network of networks, a hierarchical organization that may explain their higher
resistance to damage as compared to homogeneous networks.

Clustered networks upon M-Aβ action switch from a global dynamics
to a local one and, as far as few modules are active, the network maintains
some degree of operation that can help activating response mechanisms. This
switching scenario has been also observed in AD (Delbeuck et al., 2003;
Wang et al., 2013) and mild cognitive impairment (Buldú et al., 2011).
Structural and functional neuroimaging techniques revealed that the first
clinical manifestations of AD were associated with a loss of the integration
capacity between brain regions, while the segregation, i.e. the reinforcement
within neuronal modules, increased (Bai et al., 2013; Shu et al., 2012).
In this direction, an enlightening result of our study is the capacity of the
clustered networks to respond to damage. Indeed, the functional connectivity
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analysis pinpoints a strong reorganization, with the reinforcement of existing
functional paths and the formation of new ones. This behavior shows the
intrinsic ability of the network to compensate or restore for damaged function.
We conjecture that this plasticity provides mechanisms for response and
adaptation against external attacks. Such a fast response is a well known
observation in brain recordings (Pascual-Leone et al., 2011). For instance,
along the intermediate stages of AD there have been observed episodes of
partial recovery of cognitive tasks and memory (Borge-Holthoefer et al.,
2011; Dickerson et al., 2005), and that possibly reflect broad neuronal circuit
response to damage.

Our work provides an innovative and versatile tool to unveil the action
of molecular agents in network activity and function. We believe that it is
a unique experimental model system for neurodegeneration that may help
uncovering universal processes for functional reorganization upon damage.
Our system can not only help understanding the role of magnetite, Aβ or
M-Aβ complex in Alzheimer’s, but can also help addressing the role of other
pivotal players such as the Tau protein. It can also help developing innovative
therapeutics for AD. Indeed, given the importance of the combined effect of
magnetite and Aβ , it has been suggested to use transcranial magnetic stimula-
tion to target magnetite accumulation, with promising advances. Magnetic
stimulation could be incorporated in our experimental system given its acces-
sibility and easy manipulation, and could help exploring in a control manner
the benefits of such an action. Also, our system could be useful to test specific
drugs at a network level, providing a valuable tool for pharmacological studies
focused on AD and other disorders.



Chapter 7

Work in progress

Along the previous chapters we studied the effective connectivity in the clus-
tered networks, and used a number of topological descriptors to characterize
it, both in standard conditions and upon perturbation or damage. Several
aspects were left unexplored during our investigations, or were underway at
the moment of writing this thesis. This chapter aims at introducing this major
unfinished studies and important ideas that were “left in the fridge” waiting
to be explored in detail.

One of the aspects to be comprehended is the relation between the anatom-
ical, physical connectivity between clusters and the effective one derived from
activity. Since we cannot extract the directionality of the anatomical links,
we have to disregard the directionality of the effective links if we want to
compare both networks. Hence we will use the term functional connectivity
all along this chapter instead of effective one.

7.1 Anatomical and functional connectivities

The interplay between the anatomical circuitry and the functional connectivity
is one of the most interesting questions in neuroscience. It is considered that
the anatomical connectivity shapes the different patterns of activity gener-
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ated by neuronal circuits, both in vitro and in vivo. These morphological
connections constraint the flow of activity throughout the culture, but in turn
the resulting activity can reciprocally affect the architecture of the structural
connectivity at long–term. Moreover, it has been seen that a specific anatomi-
cal circuit can give rise to a rich repertoire of activity patterns while a given
functional connectivity can arise from different underlying circuitries. This
rich spectrum of possibilities highlights the beautiful and complex activity–
connectivity relationship.

In particular, macroscopic studies in the resting state brain have suggested
that structural connections predict in great measure the functional ones(Deco
et al., 2011; Honey et al., 2007a, 2009). However, a number of functional
links are observed without a direct mapping to anatomical ones. Such indirect
connections can lead to discrepancies between anatomical and functional
connectivity, although wide evidence have demonstrated that the topological
organization in both networks are generally conserved.

7.2 Mapping structural connectivity in clustered
networks

In general, mapping the anatomical connections in neuronal cultures is ex-
tremely difficult despite the relative simplicity of small networks in vitro.
Indeed, the majority of the studies in neuronal cultures have focused on in-
ferring the functional or effective connectivity, but few ones have achieved
to unveil all the physical connections in these ‘simple’ microcircuits. In
particular, mapping the anatomical connections in our clustered networks
should be easy since the number of elements and connections are substantially
smaller than in other in vitro preparations. However, the connections among
these clusters present some features that highly increase their complexity.
First, these clusters are composed by a several hundred of neurons, meaning
that the connections between clusters are formed by axons and dendrites
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that arrive from —or exit towards— different neurons, making challenging
their examination. Moreover, in some cultures these connections are not well
defined at all. Instead of thiner, neat processes connecting pair–clusters in a
clean culture, they appear as a homogeneous tangle of connections that spread
throughout the culture, effectively connecting with several clusters. Finally,
even the neatest physical connections can travel across different clusters, mak-
ing very complicated to establish if a clustered has connected to its nearest
neighbor, its next–nearest one, or further away.

Different experimental techniques were applied along the course of this
thesis in order to identify the internal structure of the clusters and their con-
nections. Some of these procedures were carried out in collaboration with
Dr. Marta Nieto’s group in the Centro Nacional de Biotecnología (CNB,
Madrid) or with the group of Dr. Juan Mena Segovia at the Anatomical
Neuropharmacology Unit (Medical Research Council, Oxford University).
Later on, these protocols were incorporated to our laboratory, but without
reaching yet satisfactory results. Next, we briefly explain these techniques
and their adaption to our neuronal clustered networks.

1) Immunostaining techniques (Immunohistochemistry).

This method allows to label specific proteins of the cell tissue taking
advantage of the use of the antibody–antigen binding in the biological tissue.
By using primary and/or secondary antibodies one can stain, for instance,
neurons, axons or dendrites with high specificity. A wide spectrum of different
markers exists in the market.

In particular, we used a primary and a secondary antibodies to mark
neurons, their neurites and glial cells. First, we used the primary marker
anti-beta-Tubulin to target the neurons and their neuronal processes and anti-
GFAP to mark the glia cells. Afterwards, we introduced the secondary marker
Alexa to label neurons and glia in different colors. Representative examples
are shown in Figure 7.1, where neurons and their neurites are stained in green,
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A B
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Fig. 7.1 Immunostaining technique in clustered networks. A, Neuronal cluster, where
glia are marked in red, neurons and neurites in green. A neuronal cluster is composed by
an underlying glial layer with hundred of neurons on the top. The spatial resolution is
50µm. B, Two connected neuronal clusters where the connections between them appear as
a homogeneous tangle that spread throughout the culture, being difficult their examination.
The red color labels the glia, the green one stains the neurons and their connections, and the
blue color marks the soma cells. The spatial resolution is 200µm. C-D, Two representative
examples of clustered networks following the same color pattern. The spatial resolution is at
300µm.

while glial cells appear in red.

2) GFP transfection

Transfection enables the introduction the genetic material —a green flu-
orescence protein (GFP) in this case— within the targeted cells, ultimately
promoting the expression of the fluorescence protein. GFP has been widely
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used to visualize different elements of the neuronal tissue. We attempted
different methods to introduce the genetic material, for instance by means of
liposomes (lipofectamine transfection); or by viral infection, using promoters
with distinct efficiency such as hSyn, CAG or CamKIIa to label neurons
and/or their connections. Our results showed that lipofectamine is highly
aggressive for the neurons, whereas viral injection presents more satisfactory
viability and transfected efficiency (independently of the promoter).

3) Retrograde and anterograde tracing techniques

This method is based on the detection of biological processes that are
involved in the axonal transport, finally enabling the axonal path visualization.
Retrograde tracers mark the path from the axonal terminal (synapse) to the
soma of the neuron, while anterograde tracers acts in the reverse direction, i.e.
tracing from the neuron’s soma to the synaptic terminal. We adapted, with
the invaluable assistance of Segovia’s group at Oxford, the protocols used
for in vivo studies in rats to our in vitro clustered networks. In particular, we
used FluoroGold marker as retrograde tracer and BDA as anterograde tracer.
We investigated different methods to inject the retrograde tracer inside the
clusters, such as iontoforesis or electrophoresis, but without sufficient success.
In general, these injection techniques appeared to be very aggressive for the
neurons. On the other hand, the anterograde injection was carried out using
a virus, being this method less invasive for the clusters and then obtaining
better results. However, these protocols still needed intense tunning in our
cultures to achieve good results.

In general, the experimental preparation of all these methods is highly
complicated. These difficulties include not only to an expensive, extensive
and meticulous experimental procedure, but also a continuous control of
neuronal health conditions once the labeling markers have been introduced.
Regarding the last aspect, it is important to point out that the introduction of
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the fluorescent markers in techniques (2) and (3) is carried out at initial stages
of the culture development, whereas the first technique is implemented once
the culture has been previously fixated with paraformaldehyde. In addition,
these techniques are commonly combined with one another to achieve a richer
final connectivity labeling, although greatly increasing the complexity of the
entire experimental procedure.

These difficulties have indeed compromised the feasibility of these studies
in our laboratory. To date, the majority of collected data —including the one
shown here— comes from our collaborators. From these ‘few number’ of
results we have discovered interesting features on the internal organization of
the clusters, as well as about their interconnectivity.

Figure 7.1A shows a stained neuronal cluster using immunostaining tech-
niques. One can clearly appreciate the characteristic arrangement of neurons
and glia, i.e. glia cells arranged as a base layer with sparse neuronal network
on top. Two connected clusters are shown in Figure 7.1B, where the neurons’
soma were also marked in blue by using the fluorescent marker DAPI. This
picture, together with the images from Figures 7.1C-D, illustrate the com-
plex connectivity among the clusters, where one can observe well defined
connections in combination with a tangle of connections that spread over the
neuronal clusters. These fuzzy connections extremely complicate the extrac-
tion of the structural connectivity map. Moreover, from these immunostaining
results we calculated (by filtering the pictures and counting the number of
pixels) the number of glia and neurons within the neuronal clusters. First, the
number of neurons within a cluster typically ranges between 100 and 300,
and strongly linearly varies with cluster size (Pearson’s correlation r = 0.99).
In addition, the glia/neurons ratio was around 1.5, i.e. 60% glia and 40%
neurons in a cluster.

On the other hand, from the GFP transfection we observed that axons
projected from neurons within a cluster could extend several hundreds of
microns, easily crossing 3 or more clusters in their way. A representative
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Fig. 7.2 GFP transfection and anterograde tracing in clustered networks. A, Detail of
a GFP transfection in a clustered culture. Thin white filaments are axons. The picture reveals
a long projection of a single axon, which interconnects with 3 clusters along its way. The
arrow indicates the clusters that are interconnected by the same axon. B, Merging between
a cluster previously transfected with GFP (marked with an arrow) and a non–transfected
one. C, The left cluster shows the BDA anterograde, and connects with a non-transfected
cluster on the right. The white arrow highlights some ‘blurred’ connections labeled with the
anterograde tracer.

image is shown in Figure 7.2A. This observation indicates that clusters are
interconnected beyond a simple two–neighbors coupling. In this sense, im-
munostaining techniques are not able to draw this non–local connectivity
since all the culture is 100% stained. The advantage of using GFP is that we
can either completely mark all the culture or adjust the efficiency transfection
to label, for instance, just a 30% of the connections. Since this fluorescence
protein is transfected in alive neurons one can develop new strategies for
labeling, for instance just a 30% of the connections. A way of achieving that
is mixing in the same culture transfected clusters with non–transfected ones.
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To proceed, we took transfected neuronal cultures at DIV= 5−6 and very
gently broke their inter-connections off. Afterwards, the single–transfected
clusters were transferred onto a culture at DIV= 0, i.e. just plated neurons.
At DIV= 5−6 the two types of clusters connected to each other. An example
of this mixture can be seen in Figure 7.2B. The same procedure was applied
to retrotracers, but it was much for difficult (Figure 7.2C).

These preliminary results are not sufficient to get good statistics, and there-
fore we could not use them so far to extract the anatomical map. Nevertheless,
in parallel, we tried other options to gain knowledge on the structure–function
of these clustered cultures, as described next.

7.3 Functional vs. cluster–to–cluster structural
connectivity

As a general remark, we first note that in order to precisely map the entire
physical structure of the clustered networks, one would require the labeling
of all the synaptic connections, their weight and the corresponding pre– and
post–synaptic neurons. As we have seen in the previous section, that level
of identification is unfeasible with our current experimental knowledge (and
actually economical resources). Nevertheless, as a first attempt to relate the
anatomical and functional connections, we used the bright field images of our
networks and manually inferred the existence of physical connections from
cluster to cluster, ultimately building a binary connectivity matrix. Finally,
this matrix was compared with a symmetrized and binarized version of the
functional connectivity.

In the majority of the comparisons we found a 80% match between
the structural connections and the functional connections. A representative
example of this analysis is shown in Figure 7.3. In particular, Figure 7.3A–
top shows the bright field image of a clustered network. Red lines mark the
physical connections that one can easily visualize from the picture. Color
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Fig. 7.3 Functional vss cluster–to–cluster structural connectivity. A, On the top, the
bright field image of a clustered network (3mm in diameter). Red lines mark the seen
anatomical connections (cluster–to–cluster). The characteristic modules of this structural
connectivity are encircled in different colors. On the bottom, the matrix representation of
the cluster–to–cluster structural connectivity. It should be noted that the connectivity matrix
is undirected (symmetric) and unweighted (binary). B, The functional organization of the
same representative culture (top). The unweighted and undirected version of the functional
connectivity map (bottom). C, The same bright field image as in A illustrating in blue dashed
lines the functional links and in different colors the top functional links. In particular, links
with weight in the range of 0.4 < wi, j < 0.6 are drawn in yellow and links with weight,
w(i, j)> 0.6 are colored in green (with wmax(i, j) = 1). Some of these top links overlap with
the actual structural links, although others —particularly those linking distant clusters— do
not appear in the cluster–to–cluster structural map. D, The resulting sum of two matrices
(A,bottom and B, bottom). Values equal to 2 correspond to the concurrent existence of both
connection types (a match). The percentage of matching is about 82%.

outlines identify the major topological modules of this structural network
using the Louvain method. The structural connectivity matrix is shown in
Figure 7.3A–bottom. Figure 7.3B shows at the top the functional network
with the characteristic modules marked in different colors, and at the bottom
the binarized and symmetrized functional connectivity map.
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To compare both networks, the top image of Figure 7.3C marks both the
structural (in red) and the ‘top’ functional links in (blue dashed lines). The
thicker colored lines correspond to the strongest top links: 0.4 < w(i, j)< 0.6
(yellow), w(i, j) > 0.6 (green), with wmax(i, j) = 1. We observe that some
of these top links overlap with the actual structural links, although others
—particularly those linking distant clusters— do not appear in the cluster–to–
cluster structural map. On the other hand, there are also some structural links
that do not have its corresponding top functional connection (orange arrows).
Finally, clusters circled in blue correspond to presumably ‘independent’ or
‘connector’ nodes of the functional connectivity, and that could influence the
assessment of functional links among distant clusters since they fire randomly
or integrate different modules, respectively. At the bottom of Figure 7.3C
the structural and functional matrices are compared. Comparison is simply
carried out by summing up both matrices. Then, a value of 2 (red) corresponds
to the concurrent existence of both connection types, a coincidence of about
82% for the particular experiment shown.

To explore in more detail the overlap between structural and functional
connections, we repeated the same comparative analysis but using solely
the top functional links. Surprisingly, the matching between structural and
top–functional is only around 50%, substantially different as compared with
the previous analysis. Three examples of the these comparisons are shown in
Figure 7.4, the first one (Figure 7.4A) corresponding to the previous example
shown in Figure 7.3.

This finding suggests that neither the top functional links can predict the
direct (cluster–to–cluster) structural connectivity nor the cluster–to–cluster
connectivity is a good predictor of the functional one. Such a result is
interesting and cumbersome alike: strong functional links can appear without
sharing a direct structural path, and functionally weakly coupled clusters
appear to be linked by a thick structural connection.
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50% match 40% match 70% match

Fig. 7.4 Functional and structural connectivity. The matrices show three examples of
functional and structural connectivity matrices. Functional links are shown in green, and
structural ones in red.

The presence of functional links without an structural cluster–to–cluster
analogous can be ascribed to two main possibilities. The first, and simplest,
is that there are several physical connections that cannot be identified directly
in the bright field images. We can indeed on only see a minor fraction of
all the connections, and therefore such a ‘photographic inspection’ may not
suffice to dissect the real structural connectivity. As we have seen, the axons
projecting from the neurons within a cluster may extend several hundreds of
microns, establishing connections to distant clusters. The second possibility
is the existence of ‘spurious’ functional connections. These ‘spurious’ links
can be related to those connections associated to independent, randomly
firing clusters, or ‘connectors’ clusters. However, these links in principle
are infrequent and generally weak, and disappear when treating with the top,
z–score thresholded functional maps. Additionally, special cases may occur
when a cluster i is driving at the same time the dynamics of clusters j and
k and that are not connected to each other, giving rise to a functional link
between ( j,k). Such a relation can often take place since j and k are driven
by the same dynamics even if there is a lack of direct causality relationship
between them.

To further examine possible dependencies between functional and cluster–
to–cluster traits we computed the following correlations.
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A) Correlation between morphological and functional parameters

In this analysis, we considered experiments in which we first measured
spontaneous activity in a culture to obtain its functional network. We then took
high resolution images of the physical connections, and measured their weight
in microns. We then plotted the weight of functional links as a function of
the physical thickness for those pairs of clusters that exhibited a neat physical
connection. The results are shown in Figure 7.5A. For clarity, we binned
the data for similar physical widths. The plot shows the large dispersion in
functional weights, and the lack of correlation between neighbor–to–neighbor
structure and function (r = 0.040).
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Fig. 7.5 Correlation between morphological and functional parameters. The functional
connectivity of the clustered networks does not seem to depend on direct physical traits of
the culture. A, Dependence of the weight of the functional connections on the width of
physical connections between directly connected clusters. The sketch conceptually shows the
comparison between structural and functional links. The plot represents the analysis of 102
pairs of clusters, with data binned for similar widths. No significant correlation is observed.
B, The dependence of the nodal strength on cluster size shows no correlation, indicating that
the functional connectivity cannot be assessed from the size of the clusters. Data is based on
the analysis of 537 clusters. Error bars show standard deviation.

Similarly, we carried out an analysis in which we studied the correlation
between the nodal strength and the size of the physical cluster. The data was
binned to average over similar cluster sizes. The results are shown in Fig-
ure 7.5B. Again, we observed strong fluctuation in the values of the strength,
and no correlation between strength and cluster size (r = 0.072).
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B) Correlation between cluster’s activity and size

In addition of investigating the relation between physical traits and func-
tional ones, we studied the relation between the physical size of the clusters
and their dynamic characteristics. Thus, we investigated whether the activity
of the clusters is related to their size. We measured for all clusters their
average activity along the recordings and plotted it as a function of their
radius. We used all available data (537 measurements) and binned similar
sizes. We also observed that the size of the clusters did not correlate with
their average activity (r = 0.14), as shown in Figure 7.6A, i.e. small and
big clusters displayed similar firing frequencies, and of 1 firing/min on av-
erage. However, since some clusters are initiators of activity and others just
followers, we also computed the relative contribution of a given cluster size to
initiate activity in the network. We found no significant correlation between
initiation and cluster size (r = 0.38 Figure 7.6B). These results strengthen the
conclusion that one cannot predict the clusters that will initiate activity, or
the most persistent sequences, by just a visual inspection of cluster sizes and
their distribution over the network.

These analyses are important in the context of the work by Shein–Idelson
and coworkers (Shein Idelson et al., 2010), who studied the dynamics of
isolated clusters similar to ours, and observed that their firing rate increased
from 0.7 to 8 firings/min as the clusters’ radii escalated from 30 to 130 µm.
We also investigated isolated clusters as a control in our analysis and observed
a similar trend. Hence, the remarkable difference in behavior between isolated
and ‘networked’ clusters highlights the importance of the connectivity –rather
than the cluster’s themselves– in dictating the dynamics of the network.
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Dependence of node activity on cluster size

Fig. 7.6 Dependence of the clusters’ activity on their size. A, For the same clusters of
Figure 7.5B , this plot shows that the activity of a cluster is independent of its size. B,
Activity within a burst is always initiated by a particular cluster, which triggers the sequential
activation of all the downstream clusters. To quantify the importance of these ‘initiators of
activity’ in network dynamics we computed the number of times that a cluster of a given size
initiates a sequence of activations. The plot shows that there is no a significant correlation
between initiation and size. The analysis is based on the study of 1800 bursts. All these
results indicate that the functional connectivity cannot be drawn from a visual inspection of
the neuronal culture. Errors bars show standard deviation.

7.4 Towards engineering clustered neuronal net-
works

All our clustered networks are shaped solely by a self–organizing process. An
initial ensemble of isolated neurons evolves towards a network of clustered
neurons that, from culture to culture, varies both in layout and number of
clusters From an experimental prespective, two main questions arise: can
we design networks that are reproducible? How different are self–organized
networks from engineered ones?

To address these questions, we attempted several times in the last five
years to devise ‘patterned’ networks, i.e. physical designs to control both
the position of nodes and connections, and following a number of strategies
developed by others (Gabay et al., 2005; Macis et al., 2007; Shein et al., 2009;
Sorkin et al., 2006; Soussou et al., 2007; Wheeler and Brewer, 2010). Interest-
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ingly, the majority of these studies used also neuronal clusters as nodes of a
designed network given their easy manipulation and high viability. However,
the idea seems simple but its actual development very hard, and the majority
of these works describe the diverse problems and cumbersome strategies for
placing neuronal clusters in predefined locations. One therefore finds a large
of number of possibilities in this difficult field, but none of them really simple
or cheap. Nevertheless, the idea to force the underlying connectivity to follow,
for instance, well–known topologies such as random, scale–free or small–
world —and then study the resulting functional connectivity— makes these
studies fascinating. More importantly, they confer a powerful opportunity to
unveil important aspects of the structure–function relationship in an (ideally)
easy and systematic manner.

At the beginning of this thesis we tried very hard to create ‘patterned’
clustered networks, but the difficulties turned out to be important, and none
of the strategies provided satisfactory results. However, at the moment of
writing this thesis, we are still working hard to find a good strategy. Next, we
summarize the two attempted techniques, highlighting which one provided
the most promising results for future work.

The idea behind both techniques is the use of photolitography to design cir-
cuits where the clusters sit (Figure 7.7). These circuits were printed in PDMS
molds, and with assistance of the Technical Services from the Barcelona
Science Park. The two different techniques consisted in printing the circuit
either as topographical pattern in the mold or as a pierced layout, i.e. a
hollow mask.

The methodology used for topographical patterning is shown in Fig-
ure 7.7A, and illustrative printed patterns are shown in Figure 7.8B, This
technique provided top areas (‘mountains’ of the topographical pattern) com-
bined with down areas (‘valleys’) were neurons would ideally sit. Obviously,
in this approach neurons grow over a PDMS substrate, which turned out to be
not very favorable for healthy neuronal development. After several attempts,
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Fig. 7.7 Soft lithography and patterned networks. A, Detail of the soft-lithography pro-
cess. First, the photomask with the pattern prototype (typically printed on transparency film)
is placed on a glass with a photoresist resine above. Then, the photoresist resine is irradiated
with UV light through the photo–mask to engrave the desired pattern on the substrate (black
areas of the pattern are protected, while the transparent ones are exposed). This process
induces cross–linking in the irradiated parts, and after development one obtains a resin mold
with the negative relief of the photo–mask. PDMS is next poured over the relief and cured to
get the final mould, where the white areas of the original design correspond to the valleys of
the PDMS topography. One typically obtains topographical structures that are 50−100 µm
deep. In addition to topographical molds, one can also prepare resins 300−400 µm high and
pour the PDMS just below the resin level. In this way one can design pierced PDMS molds
with complex shapes. Neurons are then plated with the mold in contact with the substrate,
thus confining the neurons solely in the mold openings. B, An example of a photomask with
our desired patterns. C-D, One example of high resine mold (350 µm) resulted applying the
’pierced mold’ method. The diameter of the nodes in the pattern (adapted for clusters) is
around 200 µm and the connecting tunnels of 65 µm. E) Confinement of neurons using a
pierced PDMS mold.

we realized that clusters were not developing well. Moreover, the relatively
small difference in height between mountains and valleys in the PDMS mold
favored the creation of two networks, one at the top and one at the bottom,
that connected to one another.

For pierced patterns, our idea was to generate hollow masks to grow the
neurons over glass, with the masks containing very high walls to prevent
possible neurons growing in the top to connect with the bottom ones (Fig-
ure 7.7C-E). We used a new resine (SU8-2100) that just appeared in the
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topological mold

pierced mold

A

B

Fig. 7.8 Topographical and pierced mold examples. A, Representative examples using
the topographical mold. Neurons are above of the PDMS. In this surface neurons difficulty
survive and cannot create well defined sphere aggregation. Moreover, PDMS hight in this
method was around 100 µ leading to the neurons on the mountains and the valleys of the
PDMS to connect among them. B, Illustrative results using the pierced mold. Here, neurons
are in touch with the glass favoring the neuron-neuron attachment and ultimately the cluster
formation. Moreover, the height of the PDMS here was around 300 µm, avoiding two-level
network contact. However, the clusters’ motility (see cluster marked with a white arrow)
made highly difficult to achieve the final patterned networks.

market to achieve such goal. The final PDMS structure was around 300 µm
in height, drastically reducing the possibility for top–bottom interconnectivity.
Despite solving these two initial problems, the neurons’ and clusters’ natural
motility turned out to be a problem. Simply, the neurons at the bottom ag-
gregated as a giant cluster in a corner of the pattern, or clusters growing at
the top ´jump’ into the bottom structure. Although for the latter problem we
tried to cover the PDMS with a glass, such a strategy damaged all the circuits
by the turbulence created in the fluids. Hence, our best strategy at the end
was to transfer previously individual clusters from self–organizing cultures
at DIV= 5−6 to the patterns, and waiting next to re–connect to one another.
After few days, clusters created new connections —although not always—
and did not move significantly, obtaining better outcomes.

Illustrative examples of the results for both techniques are shown in
Figure 7.8. For the topographical pattern (Figure 7.8A) we can observe that
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neurons tend to form a giant cluster or a continuum of neurons, making the
pattern totally useless. For the pierced mold (Figure 7.8B) the results are
better, but clearly require more tunning. For the latter, it is worth mentioning
that we explored different ranges to optimize the structures, optimized the
width and length of the corridors and the diameter of the circular traps. In
some cases we even managaed to record spontaneous activity for 30 min, but
the richness and reproducibility of the experiments was poor. Overall, and
despite some successes, the balance between effort and good statistics was inb
general bad. Thus, we finally put aside this research line and concentrated our
efforts on the more rewarding self-organizing neuronal clustered networks.

As a final remark, and as we have seen, the rewarding aspect of working
with free self–organizing networks is that their structural as well as functional
organization is driven towards optimizing biological survival, a fundamental
reason by itself to characterize them.
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Conclusions

Clustered neuronal cultures arise from a self-organizing process. An initially
isotropic ensemble of individual neurons swiftly attach to one another to shape
a stable configuration of interconnected clusters of tightly packed neurons that
exhibit rich spontaneous activity. The formation of these clustered networks
seems to be driven by the neurites’ tension that overcomes the substrate
adhesion. Aggregation occurs even in the absence of glial cells and neuronal
activity (Segev et al., 2003b), and we observed that it is maintained up to the
degradation of the culture (de Santos-Sierra et al., 2014; Segev et al., 2003b;
Shefi et al., 2002). In this thesis we investigated in detail the dynamics of this
kind of neuronal networks and, by using tools from complex network theory,
we drew their effective connectivity maps and pictured their overall functional
organization.

These clustered cultures display a distinct spontaneous activity character-
ized by the cascaded activation of groups of clusters in a short time window,
an event that we termed firing sequence. Some clusters often fire together
along the entire measurement, shaping strong modules or communities. By
applying community detection tools we examined the modular structure of
the clustered networks. It appeared to be hierarchically modular, i.e. with big
modules containing other, smaller modules.
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We also inferred the effective connectivity of these clustered cultures from
the analysis of the firing sequences. Although different information–theoretic
methods could be applied to carry out such an analysis, we developed in
collaboration with Alex Arenas’ group (U. Rovira i Virgili, Tarragona) a
new approach that naturally captures the intrinsic dynamics of our clustered
cultures. Our method is based on the use of the time delays between clus-
ter’s activations to weight the connections among clusters as well as their
directions. Our results, in comparison to previous methods such a transfer
entropy, provided similar results, although our method is much simpler from
a computational perspective. Additionally, by deeply exploiting different
complex network theory tools, we unveiled that these clustered networks are
assortative, i.e. nodes with high strength tend to be connected, and that all
the studied networks presented a Rich Club core and hubs. All these network
features were observed along different days in vitro and independently of
the balance between excitation and inhibition. Conversely, when examining
the topological properties of homogeneous cultures, we observed that they
exhibited a nearly disassortative connectivity and without a rich club.

These results are important since, first, it has been claimed that a hi-
erarchical modularity can enhance robustness, adaptivity, and evolvability
of network function (Meunier et al., 2010). And, second, different studies
have highlighted the importance of assortativity and rich club traits to facili-
tate redundancy mechanisms that ultimately reinforce and stabilize network
activity.

We must note that the number of clusters and their distribution is initially
random. Therefore, a wide spectrum of physical circuitries and functional
topologies are in principle possible. However, in all the studied cultures, the
network drives itself towards a hierarchical modular configuration, assortative
connectivity traits and the presence of a rich club. Hence, we concluded in
the first part of the Results of this thesis that the self–organizing aggregation
of neurons and their interconnection, together with the resulting robust func-
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tional organization, could emerge as a survival mechanism to ensure a robust
architecture and a sustained network activity.

This first set of results were fascinating for us. These clustered cultures
indeed seem to exhibit key brain–related network features, particularly a
hierarchical modularity and the existence of assortativity traits and a rich club
core. Thus, in our view, these clusters shape networks with spatio–temporal
dynamics that truly resemble a ‘brain in a dish’, offering a great potential to
study not only major topological features, but also to tackle network resilience
and response to damage.

The presumably robust architecture of the clustered networks, together
with our interest in exploring resilience traits, launched us to study network
resilience upon different chemical and physical damages. In the second part
of the Results, we applied global and local damages to the clustered networks
and studied the changes in their functional organization. In particular, we
globally attacked neurons through photo–damage and by blocking their exci-
tatory connections. We always compared the resulting network degradation
with identical actions on homogeneous cultures, which are dissassortative. In
all these studies, clustered networks retained a higher network activity, and
therefore higher resilience to damage, than the homogeneous analogs. We
concluded that this difference in network response could ascribed to their
different functional organization, thus reinforcing the message that assortative
traits are related to resilience. Interestingly, depending on the level of network
deterioration, these clustered networks seem to present compensatory mecha-
nisms that tend to preserve the global network connectivity while reorganizing
the internal modular structure.

This rich interplay between integration and segregation was also seen
upon local damage. In particular, we applied local damage —and in a highly
controlled manner— into a single neuronal clusters by using a laser adapted
for ablation at the Institute for Photonic Sciences (ICFO). Substantial efforts
were poured into this idea, and we needed about two years to design and
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tune the experimental system before achieving good results. The results
were classified depending on the topological role of the targeted cluster
before damage. We observed that these clustered networks presented a high
resilience under random attack, but under hub attack the network globally
disintegrated. From these preliminary results, we concluded that depending
on the topological role in the modular architecture of the targeted neuronal
cluster, as well as on the position that it occupies in the network, the global
damage can be stronger or weaker. We also observed that topological role
and location are features that in turn can favor or not the presence of recovery
mechanisms to maintain network activity.

Once we exposed the potential of these clustered networks to link network
functional traits with resilience to damage, we used them as a platform to
study the damaging effects of different chemical compounds involved in
Alzheimer’s disease. In collaboration with the Institute for Bioengineering of
Catalonia (IBEC), the experiments showed that the concurrent presence of
magnetite and Amyloid–β leads to the formation of a biochemical complex
that causes a major disruption in the structure of the communities in the
network together with a decrease in the weight of its connections. In particular,
network upon biochemical damage lost their integration and an increase in
segregation, i.e. the emergence of a submodular structures. Interestingly,
depending on the level of damage in the network, compensatory effects
emerged in order to preserve network activity. Concretely, networks tended
to maintain global connectivity by reinforcing their inter–connections, but
also tended to preserve their modular structure by locally increasing their
intra–moduli connections. These findings suggest that the modular behavior
—that can be related in turn with their assortative traits— can be favorable
to prevent network degradation. This work confirms that these clustered
networks provide an innovative and versatile tool to unveil the action of
molecular agents in network activity and function. We believe that it is
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a unique experimental model system for neurodegeneration that may help
uncovering universal processes for functional reorganization upon damage.

A final study in this thesis, still in progress, was motivated by several
studies in brain networks which advocate that the functional connectivity
reflects the underlying structural organization Deco et al. (2011); Honey
et al. (2007a, 2009). To shed light on this interrelation in our cultures, we
would need the identification of all the physical links between clusters. From
bright field pictures some structural connections could be identified by simple
visual inspection. However, we observed that only a small fraction of the
entire structural layout were directly accessible, and therefore a complete
description of the physical circuitry must be carried out before comparing
the structural and functional networks. Such a detailed identification is
difficult, and requires the use of a number of connectivity–labeling techniques.
Nevertheless, for the connections that we could visualize, we draw two major
conclusions. First, that neither the width of the physical connections nor
the size of the clusters were related to a particular trait of the functional
links, such as the weight of the connections or the strength of the nodes.
And, second, that our construction inferred strong functional links between
clusters that were not directly connected in a physical manner, highlighting
the importance of indirect paths in the flow of activity.

Hence, for future work, the identification of the full set of structural
connections would certainly provide invaluable information to investigate
the interplay between structure and function in our networks. In this context,
the recent work by Santos–Sierra et al de Santos-Sierra et al. (2014) is
enlightening. They analyzed some major structural connectivity traits in
clustered networks similar to ours, and observed that the networks were also
strongly assortative. Assortativity emerged at early stages of development,
and was maintained throughout the life of the culture. Hence, in clustered
cultures, the combined evidences of this study and ours hints at the existence
of assortative properties in both structure and function.
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As an overall conclusion, we have presented in this thesis powerful con-
structions to draw the effective connectivity and delineate the functional
organization of clustered neuronal cultures. The construed networks exhibit
assortativity and ‘rich club’ features, which are present concurrently with
resilience traits. Our analysis has been based on spontaneous activity data,
and may certainly vary from evoked activity. Hence, the combined experi-
mental setup and functional construction can be viewed as a model system for
complex networks studies, specially to understand the interplay between struc-
ture and function, and the emergence of key topological traits from network
dynamics. Also, the spatial nature of our experiments have procure invaluable
data to understanding the role of short– and long–range connections in net-
work dynamics; or to investigate the targeted deletion of the hub nodes that
shape the backbone of the network. The latter is a powerful concept that may
assist in a detailed exploration of resilience in neuronal circuits, for instance
to model circuitry–activity damage in neurological disorders.
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Chapter 9

Resumen en castellano

9.1 Introducción

Desvelar el mapa de conexiones del cerebro, así como de todos los procesos
dinámicos que se dan en él, es una de los mayores objetivos de la neuro-
ciencia moderna (Bullmore and Sporns, 2009). Además, comprender como
funciona un cerebro sano, y asignar qué clase de deficiencias presenta un
cerebro con patologías neurológicas, es de vital importancia (Stam, 2014).
Sin embargo, alcanzar hoy en día dicho objetivo es sumamente difícil, y por
varias razones. Por un lado, la tecnología actual en imagen y electrofisiología
no permite medir con precisión y simultáneamente todas las neuronas del
cerebro, aparte de que se generaría tal volumen de datos cuyo tratamiento
sería extremadamente costoso y complejo. Y, por otro lado, los modelos
biofísicos y matemáticos para entender y contextualizar los datos aun están
en desarrollo o son poco eficientes.

Por estas razones, la neurociencia y biofísica han buscado alternativas que
permitan investigar las fenomenologías fundamentales de redes neuronales
a una escala más tratable, y tanto en sistemas sanos como enfermos. Así,
las escalas mesoscópicas (del orden del mm), han adquirido gradualmente
más protagonismo como un punto intermedio entre la escala microscópica
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(neurona y procesos moleculares) y la macroscópica (áreas funcionales del
cerebro o el propio cerebro). Esta escala mesoscópica permite el desarrollo
de modelos teóricos relativamente sencillos que describen correctamente
los procesos fundamentales, así como la preparación de experimentos de
fácil preparación y manipulación (Orlandi et al., 2013). Estos modelos más
sencillos no sólo facilitan la comprensión entre las conexiones físicas de
una red neuronal y la dinámica a la que puede dar lugar, sino que también
permiten explorar de manera accesible fenómenos colectivos importantes.
Estos fenómenos se generan a nivel de circuito neuronal mesoscópico y, en
general, se dan también a mayor escala en el cerebro.

Esta tesis doctoral se enmarca dentro del esfuerzo de usar sistemas
mesoscópicos para ayudar a entender fenómenos fundamentales que ocurren
en redes neuronales y el propio cerebro. La herramienta de trabajo princi-
pal de mi estudio ha sido neuronas cultivadas en pequeñas cavidades, una
herramienta experimental que se conoce como cultivos neuronales

Los cultivos neuronales son uno de los sistemas modelos más utilizados
por su gran versatilidad y fácil manipulación. Un cultivo neuronal no es más
que una red bidimensional de neuronas o agregaciones de neuronas inter-
conectadas, cultivadas sobre un sustrato de vidrio, y mantenidas en un medio
bioquímico adecuado. Estos cultivos presentan una actividad espontanea rica,
lo que permite estudiar una gran cantidad de fenomenologías. Los cultivos
utilizados son primarios, es decir derivados de neuronas de un tejido neuronal
específico. En nuestro caso hemos trabajado con tejido cortical, el cual ha
sido disociado en neuronas individuales y éstas sembradas en el vidrio. La
disociación lleva a tener un cultivo donde, inicialmente, las neuronas están to-
talmente desconectadas, formando conexiones y un circuito de novo a medida
que el cultivo madura.

Existen varios tipos de cultivos neuronales dependiendo de la preparación
del substrato previa a la siembra de neuronas. Cuando el substrato ha sido re-
cubierto con proteínas adhesivas, las neuronas quedan ancladas en su posición
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inicial, generando una red con neuronas homogéneamente distribuidas en el
espacio. Estos cultivos son llamados cultivos homogéneos y su utilización a
ayudado a entender aspectos tan importantes como el aprendizaje, la memoria,
o la transmisión de información a través de la red (Madhavan et al., 2006,
2007; Segev et al., 2004). Cuando la restricción de la motilidad de las neu-
ronas es específica, es decir siguiendo un patrón que guía las conexiones,
entonces se habla de cultivos dirigidos. Estudios con este tipo de cultivo
(Gabay et al., 2005; Macis et al., 2007; Shein et al., 2009; Shein-Idelson
et al., 2011; Sorkin et al., 2006) son clave para explorar de forma contro-
lada que tipo de patrones de actividad emergen en la red dependiendo del
mapa de conectividad o toplogía subyacente. Finalmente, cuando no existe
ningún tipo de restricción en las neuronas o su conectividad, éstas tienden
de forma natural a agregarse entre ellas, dando lugar a una red de agregados
de neuronas (clústeres) interconectados por grupos de axones. Estos cultivos
auto–organizados, que llamamos cultivos de neuronas clusterizadas (clus-
tered neuronal cultures en inglés) constituyen la preparación experimental
básica bajo la que se ha desarrollado esta tesis. Como veremos, nuestro
objetivo principal ha sido entender las propiedades de la actividad espontanea
que presentan estos cultivos, y como ésta se liga a la conectividad de la red.

Los principios organizativos a nivel de dinámica que exhiben estos cul-
tivos clusterizados son muy similares a los del cerebro. Muchos de estos
rasgos son presentes en redes que demuestran ser robustas a diferentes tipos
de ataques tanto químicos como físicos. En definitiva, estos cultivos clusteri-
zados representan un sistema modelo muy apropiado para estudiar aspectos
relacionados con la resistencia y/o vulnerabilidad en circuitos neuronales.

9.2 Métodos experimentales

Las neuronas que utilizamos son de la corteza cerebral de ratas embrionarias
con 17−18 días de gestación. Las neuronas una vez disgregadas mediante
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pipeteo son depositadas en vidrios circulares de 13 mm de grosor, y que tienen
acoplado un molde de plástico transparente conocido como PDMS. Dicho
molde presenta 4 cavidades circulares de 3 mm de diámetro, permitiendo
que las neuronas formen mini-redes encima del vidrio de tan sólo 3 mm de
diámetro. Las dimensiones de estos mini-cultivos fueron las ideales para
optimizar al máximo las condiciones experimentales.

La actividad espontanea de estas mini redes de neuronas es medida a los
7−16 días in vitro mediante la técnica de fluorescencia de calcio (Grienberger
and Konnerth, 2012). En concreto, utilizamos Fluo-4 como marcador, el cual
emite luz cada vez que la neurona se activa. Combinando esta técnica con un
microscopio y una cámara digital optimizada para fluorescencia, podemos
detectar las activaciones espontáneas (bursts) producidas por los clústeres
de neuronas. La cámara digital permite grabar a unas 80− 100 imágenes
por segundo y con una alta resolución espacial, lo que nos permite seguir la
dinámica de la red con gran calidad. Tras analizar estas imágenes con un
software propio programado en Matlab, podemos obtener de forma bastante
precisa el momento en que tienen lugar los eventos de actividad.

La actividad espontanea en estos clústeres viene caracterizada por una
activación consecutiva de disparos, que llamamos ‘secuencias de disparo’, y
en donde participan dos o más clústeres. Algunos clústeres siempre partici-
pan en las mismas secuencias, formando módulos dinámicos bien definidas,
mientras que otros clústeres participan a veces en una comunidad, a veces en
otra. Estas ‘secuencias de disparo’ se observan alrededor de un centenar de
veces en un experimento típico, lo que permite inferir los distintos módulos
dinámicos con buena precisión.

Durante la tesis se ha realizado diferentes tipos de experimentos. El exper-
imento estándar consiste en grabar el mini-cultivo en condiciones normales
a lo largo de 1h. En otros experimentos perturbamos químicamente el cul-
tivo añadiendo diferentes fármacos, o físicamente, destruyendo diferentes
clústeres de neuronas mediante un laser.
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9.3 Métodos teóricos

El conjunto de herramientas utilizadas para caracterizar la dinámica neuronal
son básicamente dos:‘teoría de redes’ (complex networks) y ‘algoritmos de
clusterización’ (community detection).

En teoría de redes, los elementos (nodos) y sus interacciones (conexiones)
son representadas en forma de red. En nuestro caso particular, los nodos cor-
responden a los agregados de neuronas, mientras que las conexiones pueden
definirse de distintas formas dependiendo de la naturaleza de las interacciones.
Existen tres tipos de conexiones: anatómicas, funcionales y efectivas. Las
conexiones anatómicas hacen referencia a las conexiones físicas de la red.
En nuestro caso, serían el conjunto de axones y dendritas que conectan a los
agregados de neuronas entre ellos. Las conexiones funcionales provienen de
las dependencias estadísticas entre actividades neuronales. Existen diferentes
métodos para obtener la red funcional, como la correlación cruzada (Garofalo
et al., 2009) o la información mútua (Hlavácková-Schindlera et al., 2007).
Por último las conexiones efectivas evalúan la influencia que un nodo tiene
sobre otro, es decir la relación de ‘causalidad’ en la actividad entre el par de
nodos. Existen pocas herramientas estadísticas para generar la red efectiva, ya
que es un campo aun en desarrollo. La más utilizada, aunque a nivel computa-
cional es muy costosa, se conoce como transferencia de entropía (Schreiber,
2000; Stetter et al., 2012). Determinar la conectividad efectiva de las redes
clusterizadas ha sido uno de los objetivos de la tesis.

Una vez definida la red se aplican parámetros topológicos (también cono-
cidos como descriptores estadísticos) que permiten la caracterización de la
red —en nuestro caso efectiva— en condiciones normales o bajo diferentes
acciones químicas o físicas.

La primera parte de mi tesis consistió en diseñar junto con el grupo
del Prof. Álex Arenas (Universidad Rovira i Virgili, Tarragona) un modelo
matemático para extraer la conectividad efectiva de la red. Este modelo utiliza
básicamente el retraso temporal entre los disparos dentro las secuencias de
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disparo para estimar la influencia de un clúster en otro. En otras palabras,
si dentro de la secuencia de disparo un clúster ha disparado antes que otro,
consideramos que el clúster que responde después ha sido causalmente ac-
tivado por el primero, viéndose conectados de manera efectiva el uno con
el otro, y con una fuerza de conexión que depende del retraso entre las dos
activaciones. Así, cuanto menor es el tiempo entre disparos, mayor es la
fuerza de la conexión. Por otro lado, utilizamos el método jerárquico de
clustering para mirar la similitud en la participación de los clústeres en estas
secuencias de disparo, y usando la ‘distancia de Jaccard’ como medida de tal
similitud, para finalmente detectar las comunidades o módulos dinámicos que
presenta la red.

9.4 Resultados y conclusiones

La tesis se compone de tres partes. La primera parte, y que dio fruto a una
primera publicación (Teller et al., 2014), explica la caracterización de la red
efectiva a partir del modelo matemático previamente explicado. El análisis de
estas redes efectivas mostró que existe asortatividad positiva en estas redes,
entendida como la tendencia que tienen los clústeres con número similar de
conexiones a conectarse entre ellos. Además, descubrimos que clústeres con
un gran número de conexiones —también llamados ‘hubs’— están interconec-
tados entre sí formando una estructura robusta en la red que se conoce como
‘rich club’. Estas dos propiedades topológicas parecen conferir resistencia a la
red y estabilidad en la actividad neuronal (Sporns, 2013; van den Heuvel and
Sporns, 2011). Por otro lado, también calculamos la red efectiva para cultivos
homogéneos, y observamos que presentan una asortatividad prácticamente
nula y sin ‘rich club’, evidenciando una configuración de red más vulnerable.

Una de las conclusiones que derivamos a partir de estos resultados es que
el proceso natural de auto-organización característico de las redes cluster-
izadas lleva al cultivo a conectarse de la manera más robusta posible para
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preservar su actividad, es decir se podría ver como un mecanismo de super-
vivencia. Por otro lado, también vimos a partir del análisis de comunidades,
que estos cultivos presentan una dinámica modular jerárquica, compuesta por
módulos y sub–módulos. La presencia de módulos bien definidos se asocia
a una segregación del sistema, mientras que la interconexión entre ellos se
asocia a una integración.

En la segunda parte de la tesis utilizamos estos cultivos como plataforma
para estudiar diferentes daños, globales y locales, en la actividad y conec-
tividad efectiva de la red, haciendo seguidamente un estudio detallado de la
resistencia de la misma a daño. Los daños globales fueron clasificados en dos
grupos que se describen seguidamente, y la significancia del daño en la red la
comparamos con los resultados obtenidos para cultivos homogéneos bajo las
mismas perturbaciones. Así, en el primer daño, dejamos el cultivo expuesto
a una intensa luz de fluorescencia hasta su degradación total. Midiendo el
nivel de actividad respecto el tiempo de exposición concluimos que los cul-
tivos homogéneos perdieron su actividad antes y a un ritmo mayor que los
cultivos con clústeres. En el segundo daño, se degradó la red con un fármaco
que bloquea las conexiones excitadoras. A mayores concentraciones la red
tiene menos conexiones, con lo que le cuesta más disparar, hasta que a una
concentración crítica el cultivo está totalmente silenciado. De nuevo vimos
que los cultivos homogéneos decaían en actividad mucho más rápidamente
que los clusterizados, y que por lo tanto la concentración critica para silenciar
los cultivos clusterizados era mucho mayor que para los homogéneos. Estos
experimentos de daño global evidenciaron la robustez de las redes clusteri-
zadas frente a las homogéneas. Como conclusión, lanzamos la hipótesis de
que las propiedades asortativas y de ‘rich club’ de estas redes son el pilar que
sustenta de su mayor resistencia.

En esta segunda parte de la tesis también realizamos un daño local a los
clusteres de neuronas mediante un laser. Este estudio, aún en un estadio
preliminar, se realizó en colaboración con el grupo del Prof. Pablo Loza



244 Resumen en castellano

(Instituto de Ciencias Fotonicas, Castelldefels). Tres diferentes experimentos
representativos son mostrados en la tesis, clasificados según el ’nodo’ dañado.
Hasta el momento concluimos que la repercusión del daño tanto global (pér-
dida de integración) como local (pérdida en segregación) en la red depende
fuertemente de las propiedades topológicas del nodo, es decir de su rol a nivel
global y en donde está embebido a nivel local. También pudimos comprobar
que las redes clusterizadas presentan diferentes mecanismos de compensación
para perseverar la actividad.

Finalmente, en la tercera parte de la tesis, se explica un estudio, pub-
licado recientemente, en el que utilizamos los cultivos clusterizados como
sistema in vitro para estudiar diversos agentes químicos involucrados en la
enfermedad de Alzheimer, en concreto un complejo formado por magnetita
y beta-amiloide. Estos cultivos mostraron una declinación importante de la
actividad, una desintegración de la red efectiva, y una notable pérdida de
conexiones. Además, esta desintegración afecta al equilibrio entre integración
y segregación, con una importante pérdida de la primera y un notable aumento
de la segunda con la presencia de nuevos sub-módulos. En estos experimen-
tos también se observaron mecanismos de recuperación ante la perdida en
conectividad, como por ejemplo el reforzamiento de conexiones, hecho que
remarca la robusteza y complejidad de estos cultivos.

La tesis, conjuntamente con todos los estudios y aplicaciones desarrolla-
dos, evidencia la gran utilidad de estos cultivos neuronales. La organización
dinámica que presentan —asortatividad positiva, ‘rich club’ y la modularidad
jerárquica— son características que también se han visto en el cerebro. Así,
nuestro sistema modelo biológico vivo presenta un gran potencial para ayudar
a entender mecanismos fundamentales que se generan también a otras escalas.
Además, en nuestros cultivos, el número de nodos y conexiones son tan
accesibles, que es un sistema ideal para mapear su conectividad anatómica,
compararla con la efectiva y, así, ampliar el conocimiento sobre la relación
estructura-función en circuitos neuronales.
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