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Abstract 

The effect of the addition of organic waste or biochar on the extractability of heavy metals 

(Cd, Cu, Ni, Pb and Zn) was assessed in five heavy metal-contaminated soils. The 

amendments studied were: municipal organic waste compost (MOW), green waste (GW), 

biochar derived from tree bark (BF) and biochar derived from vine shoots (BS). The 

amendments were added to the soil at 10% dose. A pHstat leaching test was applied to the soils 

and soil+amendment mixtures to assess the effects of the amendments on the extractable 

metal concentration at the initial pH and in the 2–12 pH range. MOW increased the DOC 

content in the mixtures for most soils, whereas the rest of amendments only increased the 

DOC content for the soil with the lowest DOC value. Moreover, in the mixtures obtained 

from soils with a low buffering capacity, the amendments increased pH (up to 3 units) and the 

acid neutralization capacity, thus decreasing the extractability of heavy metals at the initial pH 

of the mixtures. In a few cases, the amendments further decreased the concentrations of 

extractable metal due to an increase in the sorption capacity of the mixture, even though the 

soil had high initial pH and ANC values. MOW and GW generally led to larger decreases in 

metal extractability in the resulting mixtures than biochar, due to their higher sorption and 

acid neutralization capacities. 
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1. Introduction 

Soils are one of the major sinks for heavy metals released into the environment by 

anthropogenic activities. Unlike other contaminants, they do not generally undergo microbial 

or chemical degradation, and they persist in soils for a long time after their incorporation 

(Adriano, 2001). Regulations regarding the management of presumably metal contaminated 

soils are generally based on metal total concentration, but this information is usually not 

sufficient to assess the derived risk. Thus, information about metal interaction in soils and 

related mobility is required for decision making related to the management of contaminated 

soils and the selection of suitable remediation strategies.  

Soil remediation techniques are often aimed at decreasing the mobility and bioavailability of 

heavy metals in soils, by modifying their interaction mechanisms (Park et al., 2011). In this 

context, chemical immobilisation via the addition of amendments is an appealing option for 

diminishing the mobility of heavy metals in the resulting soil+amendment mixtures 

(Kumpiene et al., 2008). This approach is less disruptive to the soil and ecosystem than other 

remediation strategies and is usually less expensive when waste materials are employed 

(Lombi et al., 2002). The main factors governing the efficacy of the addition of an 

amendment to a contaminated soil are the effect on the soil pH, given the strong dependence 

of metal sorption mechanisms on this parameter, and the enhancement of specific metal-

amendment interactions that diminish the availability of heavy metals through sorption 

processes (Dijkstra et al., 2004). In this context, diverse amendments derived from biomass of 

natural origin (e.g. animal manure, compost and biochar) have been tested in remediation 

strategies, although differing conclusions about their efficiency have been reported (Clemente 

et al., 2007; Nwachukwu and Pulford, 2009; Beesley et al., 2010). For example, Beesley et al. 

(2010) assessed the effect of biochar and green-waste compost on the pore water 

concentration of Cd, Zn and Cu in a mildly acidic soil. The copper concentration in soil 

solution increased following the addition of amendments, due to an increase in the DOC 
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content, whereas Cd and Zn concentrations decreased, due to an increase in pH of the 

resulting soil mixture. Clemente et al. (2007) reported that cow manure had no effect on metal 

extractability, while an olive husk-derived amendment increased metal availability. The 

authors attributed this detrimental trend to the reduction in Mn oxides due to the degradation 

of phenolic compounds.  

The effect of the addition of amendments to contaminated soils on metal availability should 

be tested first at the laboratory level, in order to avoid expensive experimental work at the 

field level, to better monitor changes in metal availability and to control the variables 

affecting the efficiency of the candidate amendments. In this context, the pHstat leaching test 

has proven to be a valuable tool in the assessment of the available fraction of heavy metals in 

contaminated soils and in soil+amendment mixtures (Van der Sloot, 1990; Van der Sloot et 

al., 1996; Rigol et al., 2009; González-Núñez et al., 2012). This approach is appropriate for 

evaluating the dependence of contaminant release as a function of pH over a broad range of 

pH values, providing a complete assessment of metal availability in a given pH scenario 

(Kosson et al., 2002; Cappuyns and Swennen, 2008). 

The aim of this work was to evaluate the ability of four organic amendments to reduce heavy 

metal mobility, here estimated using a leaching test, in five soils contaminated with Cd, Cu, 

Ni, Pb and Zn. The amendments were selected based on previous complete physicochemical 

characterisation and sorption assays carried out at the laboratory level (Venegas et al., 2015). 

pHstat leaching tests were applied to the soil and soil+amendment samples within a broad pH 

range, and the acid neutralisation capacity in both untreated soils and soil+amendment 

mixtures was also determined to evaluate the effect of each amendment on the buffering 

capacity of the resulting mixtures. Comparison of the metal extractability curves obtained in 

the untreated soil and soil+amendment mixtures allowed assessment of the ability of the 

amendments to enhance heavy metal immobilisation depending on changes in pH. 
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2. Materials and methods 

2.1. Samples 

Five contaminated soils and four amendments of organic origin were used in this study. The 

contaminated soils were two agricultural soils originated from an area in the South of Spain 

affected by an accidental spill caused by a close mine exploitation (Aznalcóllar, Seville), thus 

being affected by pyritic sludge particles and acidic waste waters (RIB and QUE); a soil 

affected by mining activities (S15), also from the South of Spain; and two soils (ASCO and 

TENF) contaminated at laboratory level with a slightly acidic solution that contained Cd, Cu, 

Ni, Pb and Zn, and subsequently subjected to drying-wetting cycles to enhance the 

incorporation of the heavy metals and better simulate a real scenario. The drying-wetting 

cycles involved rewetting the samples at 100% of their field capacity and maintaining them in 

capped vessels at 40°C for 24 h. Later, the samples were dried in open vessels at 40°C for 48 

h. This procedure was repeated three times. 

The amendments included a compost derived from collected municipal organic waste 

(MOW), which was initially processed in wet treatment tanks and then anaerobically 

fermented generating slurry that was subjected to composting; a compost from green waste 

(GW) originated from vegetable and plant residues, also containing soil material; a biochar 

derived from tree bark (BF) and a biochar derived from vine shoots (BS), both produced by 

pyrolysis at 400ºC for 3 h. All samples were dried, sieved through a 2 mm mesh, 

homogenized and stored in bottles before analysis. 

 

2.2. Soil+amendment mixtures 

The soil+amendment mixtures were prepared at 10% w/w amendment dose: 30 g of 

amendment were homogeneously mixed with 270 g of soil. This dose represents a high 

application rate, probably difficult to be applied at field level, but within the dose ranges 

reported in previous works to test the efficacy of amendments at laboratory level (Beesley et 
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al., 2010; Houben et al., 2013). The mixtures were subjected to three drying-wetting cycles, in 

order to simulate field conditions. The mixtures were subsequently mixed in an end-over-end 

shaker for two days and stored in bottles before analysis. 

 

2.3. Soil characterisation 

The amendments had previously been fully characterised in terms of physicochemical 

parameters such as pH, cation exchange capacity (CEC), acid neutralisation capacity (ANC), 

dissolved organic carbon (DOC), total organic carbon (TOC), and organic matter content in 

extracts obtained according to the protocols for fulvic and humic acid determination. A 

detailed description of the amendment characteristics is presented in Venegas et al. (2015). 

Regarding soil characterisation, the pH of the soil samples was measured in Milli-Q water, 

using a solution-to-soil ratio of 1:2.5 mL g-1. The organic matter content was determined by 

the loss of weight on ignition (LOI) at 450°C for 16 h of 3 g of soil sample previously oven-

dried overnight at 110°C (Burt, 2004). CEC was determined after extraction with ammonium 

acetate (Bower et al., 1952) (see Supplementary Material for further details). The dissolved 

organic carbon (DOC) in the extracts was determined using a total organic carbon analyser 

(TOC-50000, Shimatzu). For the determination of DOC in those extracts obtained by addition 

of acid, it was necessary to carry out experiments in parallel substituting HNO3 with HCl. The 

particle size distribution was determined by the pipette method, based on the varying settling 

velocity in a fluid medium according to particle size (Burt, 2004). The carbonate content was 

determined using the calcimeter Bernard method (Mueller and Gastner, 1971). Field capacity 

(FC) was determined by wetting the samples until a saturated paste was obtained, and then 

centrifuging them at 0.33 bar (75 x g for 30 min). Later, the samples were dried at 105°C to 

constant weight and FC was derived from the weight lost. 

The total content of trace elements in soil samples was determined by soil digestion in a 

closed microwave digestion system (Milestone Ethos Touch Control) following an adaptation 
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of the EPA3052 method (USEPA, 2008). Trace elements were determined in the resulting 

solutions by ICP-OES and ICP-MS. Details can be found in the Supplementary Material.  

 

2.4. Acid neutralization capacity 

The neutralization capacity of the samples was examined by the CEN/TS 15364 pH titration 

test (CEN/TS, 2006a).  To obtain the titration curve, first the initial pH of each sample was 

measured in a 1:100 sample mass/volume of deionized water (2 g of soil: 200 mL of water). 

Next, consecutive volumes of 200 µL of 0.3–1 mol L-1 HNO3 or 0.5–1 mol L-1 NaOH were 

added, and the suspension was stirred. The resulting pH of the suspension was measured 30–

40 min after the addition of either acid or base. The acid and base additions were repeated to 

achieve pH values in the range between 2 and 12. pH titration curves of soil and 

soil+amendment mixtures were obtained in triplicate. The titration curves permitted the 

quantification of the acid neutralization capacity (ANC) of the untreated soils and 

soil+amendment mixtures. The ANC is the quantity of acid or base (meq kg-1) required to 

shift the initial pH of the sample to a pH of 4. Thus, the ANC parameter permits an estimation 

of the buffering capacity of the soils and resulting mixtures over external acidic stresses of 

samples with an initial pH higher than 4. 

 

2.5. pHstat leaching test 

The pHstat leaching test, based on the CEN/TS 14997 protocol (CEN/TS, 2006b), allowed the 

examination of metal release as a function of pH. Six grams of soil sample or 

soil+amendment mixtures were suspended in a given volume of deionised water to obtain a 

liquid–solid ratio of 10 mL g-1. Based on the information provided by the pH titration test, an 

appropriate amount of acid (HNO3) or base (NaOH) was added to modify the initial pH of the 

sample to achieve pH values between 2 and 12. A minimum of eight suspensions covering the 

pH range were prepared for each sample. Sample suspensions were stirred for 7 days, which 
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is the recommended contact time for the characterisation of samples with a particle size lower 

than 2 mm (Kosson et al., 2002). The pH was maintained by adding small quantities of acid 

(0.1–1 mol L-1 HNO3) or base (0.3–1mol L-1NaOH), in order to minimise changes in the 

solid:liquid ratio, using an automatic pH control device (Model pH-103 Adasa Sistemas). 

Finally, the suspensions were centrifuged and filtered through 0.45 μm pore size nylon 

membranes and stored until analysis. Experiments were performed in triplicates. The 

concentrations of trace elements in the extracts were determined by ICP-OES, or by ICP-MS 

when lower detection limits were required.  

 

2.6. Data treatment 

Results provided were presented as mean values of 2-3 replicates, depending of the 

parameters characterized and the test applied. When relevant, one standard deviation was also 

given. Statistical analyses to compare the average results of the different treatments (Figure 3) 

were performed using a multiple rank test based on Fisher’s least significance differences (at 

p = 0.05 significance). Analyses were carried out using Statgraphics software (version 

16.1.11). 

 

3. Results and discussion 

3.1. Main characteristics of untreated soils 

Table 1 summarises the main soil characteristics of the untreated soil samples, as well as the 

total and water-soluble concentrations of the target metals in the soils. Soils had low organic 

matter content, with LOI values within the 0.5–3.2% range, and a loamy texture. Field 

capacity values were similar in all soils tested, within the 24–35% range. The ASCO soil had 

neutral pH, low CEC and high carbonate content. The S15 soil had a slightly acidic pH, low 

CEC, and medium carbonate content. The RIB and QUE soils had a slightly acidic pH, low 
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CEC (6.9 and 13.3 cmolc kg-1, respectively), and a non-quantifiable carbonate content. 

Finally, the TENF soil had the most acidic pH and the highest CEC among the soils tested.  

Total metal concentrations were highest in the S15 soil, followed by the ASCO and TENF 

soils, whereas the QUE and RIB soils had the lowest values. Comparison of these data with 

the reference limits for heavy metal content for agricultural and industrial soils for two 

autonomous regions of Spain (see Table S1 in the Supplementary Material) showed that all 

soils exceeded the reference levels for agricultural use for Cd, Cu, Pb and Zn. ASCO, TENF 

and S15 also exceeded the maximum limits established for industrial soils for at least two 

metals. The water-soluble metal content was small with respect to the total content (<2%) in 

ASCO, QUE, S15 and RIB, with the exception of Ni and Zn in RIB (8% and 4%, 

respectively), and Cd in S15 (58%). On the contrary, water-soluble metal was proportionally 

higher in TENF, with yields generally over 15% for all metals. Due to the high total metal 

concentration, low extraction yields were not necessarily related to low extractable 

concentrations (expressed in mg kg-1). Therefore, the extractable concentrations were 

compared with the recommended limits for acceptance of waste at landfill sites according to 

the European Council Decision 2003/33/CE (European Council, 2003) for the management of 

waste (see Table S2). The water-soluble metal in ASCO, QUE and RIB exceeded the limits 

for inert waste for a few metals, and the soils could thus be classified as non-hazardous 

wastes, whereas S15 and TENF exceeded the thresholds for hazardous wastes for Cd and Zn 

in both soils and for Ni and Cu in TENF.  

 

3.2. Effect of amendment on pH and buffering capacity of soil 

Fig. 1 shows the pH titration curves for the untreated soils and soil+amendment mixtures, 

which represent the changes in sample pH when adding base (negative values) or acid 

(positive values). Table 2 presents the initial pH in the experimental conditions of the titration 

test, and related ANC values of soils and mixtures. ANC and pH values for the amendments 
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are also included for comparison purposes (Venegas et al., 2015). Note that the added 

acid/base is represented in meq g-1 in the titration curves, while the resulting ANC values are 

expressed in meq kg-1.  

TENF and RIB showed the smallest ANC values. The low ANC for the TENF soil was 

consistent with its initially acidic pH (4.6). The titration curves of these soils revealed a 

marked decrease in pH upon addition of a small aliquot of acid, which was attributed to their 

low buffering capacity, and consistent with the absence of carbonate phases in these soils. In 

contrast, the S15 and ASCO soils showed distinctive titration curves with an inflection point 

at around pH 8, attributed to the neutralisation of carbonates, which were relatively abundant 

in these two samples (see Table 1). Consequently, these soils showed the highest ANC values 

among the tested soils. In fact, the ANC of the ASCO soil was as high as the highest ANC of 

the examined amendments (GW, 7100 meq kg-1). Therefore, a greater effect on pH and ANC 

could be expected following the addition of amendments to TENF, RIB and QUE than to 

ASCO and S15 soils. 

This was confirmed when analysing the resulting mixtures, as summarized in Table 2. The 

largest changes were noticed for the TENF soil, with an increase in pH of around 2 units and 

related increases in ANC of one order of magnitude when the amendments with the highest 

ANC were added (mixtures containing MOW and GW). Therefore, a positive effect of the 

addition of the amendments can be anticipated in terms of shifting the pH of the soils with 

initial low ANC values (as here TENF, RIB, and QUE soils) to higher pH values in which the 

extractable fraction of metals could be decreased, as observed in previous works in which 

organic amendments were also used (Houben et al., 2013). This hypothesis will be examined 

in a following section. 
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3.3. Effect of amendment on DOC in the soil+amendment mixtures 

As suggested in a previous study (Clemente et al., 2007), organic matter, either in the solid 

phase or dissolved in the soil solution, might play a key role in the mobility of heavy metals 

in soils. Therefore, we tested the effect of the addition of the organic amendments on the 

changes in DOC content in soil+amendment mixtures. Table 2 shows the DOC values of 

amendments, soils and soil+amendment mixtures at the initial pH of the samples. The DOC 

content of the soils was low (within the 10–50 mg C L-1 range), which was consistent with 

their low organic matter content (Rigol et al., 2009; González-Núñez et al., 2012). The DOC 

content in the amendments was around one order of magnitude higher than in soils, with the 

exception of the BF biochar. At the doses assayed, it was expected that the MOW amendment 

would provoke the largest increases in DOC values of the soil+amendment mixtures, as 

confirmed by the results presented in Table 2, especially for the soils with the lowest DOC 

values (S15 and ASCO). The DOC values in the mixtures were within the 10-60 mg C L-1 

range, with values slightly higher for the mixtures with MOW (45-95 mg C L-1), generally 

lower than two-fold the initial DOC content in untreated soils. Thus, the effect of the increase 

in DOC in the mixtures on metal extractability at the initial pH could be expected to be minor 

and balanced out by the increase in the sorption capacity of the resulting mixture. 

Besides analysing the DOC status at initial pH, DOC was also quantified in selected extracts 

obtained from the application of the pHstat leaching test, thus permitting to examine changes 

in DOC at different pH values. DOC data within the 1.5-13 pH range for soils and 

amendments are shown in Fig. S1 of the Supplementary Material, whereas DOC data at the 

lowest and highest pH analysed for soils and mixtures are summarised in Table 3. The five 

studied soils followed a similar pattern with minimum DOC values around pH 6–8. Under 

more acidic conditions, all soils showed an increase in the DOC content in the extracts. At 

high pH (>10), all soils apart from S15 also exhibited an increase in DOC values in the 

extracts, with maximum values at around pH 12. This pattern was consistent with the pH-
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dependent solubilisation of humic and fulvic acids (Van der Sloot, 2002). Regarding 

amendments, the DOC curves also followed a U-shaped pattern, especially in the case of the 

MOW and GW amendments, except for the BF biochar that showed only a slight DOC 

increase at high pH. The maximum DOC content was 1200 mg C L-1 at pH 2 for MOW, 

which was 2-fold higher than at initial pH, and 1400 mg C L-1 at pH 12 for GW (around a 9-

fold increase with respect to the DOC content at initial pH). BS, and especially BF, showed 

DOC values similar to those obtained in soils (always lower than 300 mg C L-1 for BF). As 

observed in Table 3, DOC concentrations for soil+amendment mixtures at strong alkaline and 

acidic pH values were systematically higher than at the initial pH (4- and 7-fold higher at acid 

and basic pH on average, respectively), with DOC contents up to 20 times higher than at the 

initial pH, due to the simultaneous increase in DOC in soils and amendments. However, the 

direct comparison between the DOC content of soils and soil+amendment mixtures showed 

that addition of amendments resulted in more than a 2-fold rise in DOC concentrations in the 

mixtures with respect to the soils only for the S15 and for most soils when using the MOW 

material, under acidic conditions. At basic pH, the increase was only relevant for the S15 soil. 

As changes in DOC concentrations in the mixtures with respect to the untreated soils were 

only significant in a few cases (mainly for the S15 soil, which had the lowest DOC among the 

soils tested), it thus could be anticipated that DOC is not having a major effect on the 

extractable concentrations of heavy metals following the addition of amendments. 

 

3.4 Extractability pattern of heavy metals 

Fig. 2 shows the pH-dependent extractability curves of heavy metals (Cd, Cu, Ni, Pb and Zn) 

for untreated soils and soil+amendment mixtures. The extractability curves of the untreated 

soils were rescaled with a factor of 0.9 to correct for the dilution effect due to amendment 

addition at 10% dose, thus allowing a direct discussion of the effect of the addition of the 
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amendment without taking into consideration the dilution effect on extractable metal 

concentration. 

A strong dependence of the extractable metal concentrations with respect to pH was noticed 

in all cases. Curve patterns were similar for all metals in the RIB, QUE and TENF soils, in 

which larger extraction yields were generally observed at strongly acidic pH values, with 

much lower extractability at neutral and alkaline pH (generally lower than 2%). This pattern 

was consistent with the competitive effect of protons at acidic pH for the sorption sites, as 

well as with the positively charged surfaces at acidic pH, the slight increase in DOC and the 

partial dissolution of the mineral phases in soils (Dijkstra et al., 2004; Sastre et al., 2004). In 

the case of RIB soil, the curves also showed a significant increase in metal extractability at 

strongly alkaline pH, except for Ni. This increase was also observed for Pb and Zn in a few 

soils, probably due to the formation of soluble hydroxyl carbonate complexes, especially for 

those soils with a significant carbonate content (ASCO and S15), or of hydroxyl complexes 

(Dijkstra et al., 2006).  

The addition of amendments did not generally alter the curve patterns in the mixtures with 

respect to those of the untreated soils, as already reported for similar amendments (Houben et 

al., 2013). However, minor changes were noticed in a few cases, probably explained by an 

increase in the sorption sites following the addition of the amendments (e.g., see ASCO and 

S15 mixtures with MOW and GW for Cd and Zn in the acidic pH range, and for Pb at high 

pH).  As previously reported (Venegas et al., 2015), MOW showed high sorption capacity for 

Cd, GW for Pb and Zn, and BS for Cu, Zn and Pb, which partially explains minor changes 

observed in a few cases in the leaching pattern of the metals in the mixtures with respect to 

untreated soils. 
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3.5 Extractability of heavy metals at initial pH 

Besides examining the role of the amendments across the entire pH range, we also assessed 

the effect of the addition of the amendments at the initial pH of the mixtures. Fig. 3 displays 

the extractable metal concentrations at initial pH for soil and soil+amendment mixtures. 

European Council Decision threshold limits for “inert waste” (black line), “non-hazardous 

waste” (cyan dotted line) and “hazardous waste” (red dashed line) are also indicated. 

Regardless of the total and extractable metal concentrations, which were higher or lower 

depending on the particular soil and metal, extraction yields (%) were generally low (<2%) at the 

initial pH, with the exception of Cd, Cu, Ni and Zn in TENF, Ni and Zn in RIB and Cd in S15. 

However, for those cases in which total metal concentration was high, even low extraction yields 

could lead to extractable metal concentrations that exceed the recommended limits for the 

acceptance of inert or non-hazardous wastes (even the hazardous waste threshold for the TENF 

soil). 

In general, amendments reduced the extractable metal concentration at the initial pH of the 

resulting mixtures. The efficacy of the amendments varied according to the initial soil ANC 

and pH, metal extraction yield and sorption capacity of the materials (quantified through the 

solid-liquid distribution coefficient, Kd (Venegas et al., 2015)). In this sense, our observations 

consistently differed from those of previous studies that reported an increase in heavy metal 

extractability in soils upon addition of organic amendments, partially attributable to an 

increase in the DOC content, which formed soluble chelates with heavy metals in solution, 

competing with the binding sites in the solid phase (Schwab et al., 2007; van Herwijnen et al., 

2007). As the amendments examined here had a minor effect on the DOC, this detrimental 

effect of metal extractability could be disregarded. 

Although the ASCO soil already had a high buffer capacity and pH, the addition of GW, BF and 

BS led to a large reduction in the extractable Cu concentrations, which could be explained by a 
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significant increase in specific sorption sites in the resulting mixtures, consistent with the 

relatively high Kd values quantified for these amendments for Cu (Venegas et al., 2015). 

Significant reductions were also observed for extractable Cd, Pb and Zn concentrations in this soil 

(from 0.4 to 0.13 mg kg-1 for Cd, 9 to 2 mg kg-1 for Pb and 7.3 to 1.6 mg kg-1 for Zn) following 

addition of the MOW amendment, also consistent with the Kd values of this amendment (over 103 

L kg-1 in all cases (Venegas et al., 2015)). These results are consistent with reductions in 

extractable Cd and Zn concentrations observed when adding compost to contaminated soils 

(Beesley et al., 2010). The positive effect of the addition of MOW in terms of reducing the 

extractable metal concentration was also observed in S15 soil for Cd (5950 mg kg-1 to 1900 mg 

kg-1) and Zn (6650 mg kg-1 to 1910 mg kg-1), although this soil also had high initial ANC and pH 

values. However, the addition of the amendments did not change the ASCO and S15 waste 

categories. RIB soil showed a significant reduction in Ni (from 1.9 mg kg-1 to 0.02 mg kg-1), Zn 

(13.5 mg kg-1 to 1 mg kg-1) and Cd (0.1 mg kg-1 to 0.007 mg kg-1) extractability, likely because of 

the combination of an increase in pH and an increase in specific sorption due to the addition of 

amendment, although the pH effect is expected to be dominant (Sauvé et al., 1997). For this soil, 

the addition of the amendments would generally lead to extractable concentrations lower than the 

thresholds for inert waste. A similar pattern was also observed for Ni and Zn in the case of the 

QUE soil. 

TENF soil was originally over the threshold concentrations for hazardous wastes for all metals. 

Addition of the amendments significantly reduced the metal concentrations, often by almost two 

orders of magnitude depending on the amendment. These large reductions in metal extractability 

could be related to the large effect on pH caused by the addition of the amendments, and 

additionally to the high Kd of the MOW and GW amendments (Venegas et al., 2015). The 

observed pattern is consistent with previous studies that observed similar reductions in metal 

extractable concentrations following the addition of organic amendments to an acidic soil (Pardo 
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et al., 2014). These significant reductions in metal extractable concentrations modified the waste 

classification of the TENF soil, which subsequently fell below the hazardous waste threshold, and 

also under the non-hazardous waste threshold for all metals when using MOW and GW 

amendments. 

 

4. Conclusions 

Laboratory experiments identified the organic amendments that were most effective in 

reducing the extractable concentrations of heavy metals in contaminated soils. Besides an 

increase in the metal sorption capacity in the resulting mixtures, a beneficial effect that might 

be minor given the low doses at which the amendments are added to contaminated soils (and 

given that Kd values over 104 L kg-1 would be required to observe consistent effects), key 

aspects are how the DOC, ANC and pH status may vary in the resulting soil+amendment 

mixtures. Amendments can increase the pH and ANC values of acid soils and/or soils with 

low initial buffering capacity, whereas the effect in soils with high buffering capacity is 

smaller. The effect of pH and ANC modifications upon amendment was clearly observed here 

for the RIB and especially TENF soils, which had an acidic initial pH that was raised by 2–3 

pH units following amendment addition in all cases, and resulted in a general lowering of 

extractable heavy metal concentrations. Thus, the use of organic amendments in the 

remediation of soils is especially recommended for acid soils, but only after confirming that 

their addition would not increase the DOC in the resulting mixtures. However, as the increase 

in pH and ANC were the main driving mechanisms leading to the decrease in metal 

extractability, attention should be paid when applying these materials at field level to ensure 

that the increases in pH, which may be reversible, are maintained over time.  
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Table 1 

Soil characteristics 

Soil pH Moisture 

(%) 

FC 

(%) 

LOI             

(%) 

CaCO3          

(%) 

CEC 

(cmolc kg-1) 

Sand              

(%) 

Clay              

(%) 

Texture 

 

Cd           

(mg/kg) 

Cu        

(mg/kg) 

Ni      

(mg/kg) 

Pb      

(mg/kg) 

Zn      

(mg/kg) 

ASCO 7.0 2.1 24 0.5 36 4.1 28.5 8.2 Silty loam 
TC 

WS 

30 

0.4 

11040 

37 

230 

1.0 

5375 

8.9 

1835 

7.3 

QUE 6.2 3.4 32 3.2 <l.q 13.3 51.2 5.6 Sandy loam 
TC 

WS 

12 

0.1 

380 

0.9 

20 

0.7 

1580 

0.01 

2150 

33.5 

RIB 6.2 1.1 29 1.0 <l.q 6.9 76.5 7.2 Sandy loam 
TC 

WS 

4 

0.1 

120 

0.4 

25 

1.9 

265 

0.1 

350 

13.5 

S15 6.4 7.9 34 0.9 16 13.1 63.9 9.5 Sandy loam 
TC 

WS 

10200 

5950 

16430 

6.0 

150 

5.6 

91520 

36 

275500 

6650 

TENF 4.6 4.3 35 1.8 <l.q 48.3 38.3 25.1 Loam 
TC 

WS 

30 

7.8 

2105 

316 

225 

95 

5360 

16 

1810 

697 

TC: metal total content; WS: water-soluble metal content. 



Table 2 

pH, ANC and DOC (at initial pH) of the amendments, soils and mixtures 

  pH ANC (meq kg-1) DOC (mg C L-1) 

MOW 8.3 4280 (150) 530 

GW 8.4 7100 (190) 160 

BF 8.9 420 (10) 10 

BS 10.0 725 (9) 220 

ASCO 7.7 6950 (300) 15 

ASCO+MOW 7.8 6665 (150) 50 

ASCO+GW 7.7 6840 (170) 35 

ASCO+BF 7.8 6190 (200) 10 

ASCO+BS 7.8 6790 (120) 35 

QUE 6.9 300 (50) 30 

QUE+MOW 7.3 755 (30) 65 

QUE+GW 7.5 720 (15) 40 

QUE+BF 7.5 340 (8) 25 

QUE+BS 7.6 340(3) 35 

RIB 6.3 60 (17) 25 

RIB+MOW 7.7 290 (6) 55 

RIB+GW 7.8 305 (10) 40 

RIB+BF 7.6 90 (4) 20 

RIB+BS 7.7 95 (5) 25 

S15 6.8 1960 (150) 10 

S15+MOW 7.1 2260 (130) 45 

S15+GW 6.9 2140 (95) 20 

S15+BF 6.7 2070 (100) 5 

S15+BS 6.9 1740 (150) 30 

TENF 4.6 40 (3) 50 

TENF+MOW 7.0 365 (7) 95 

TENF+GW 7.6 440 (8) 60 

TENF+BF 7.4 75 (2) 50 

TENF+BS 6.3 195 (10) 55 

 

 

 

  



Table 3 

DOC content of the soils and mixtures at acidic and alkaline pH 

 Soil/mixtures pH DOC Soil/mixtures pH DOC 

ASCO 3.2 110 S15 1.5 45 

 12.4 105  12.1 10 

ASCO+MOW 3.0 290 S15+MOW 2.0 150 
 12.0 115  11.6 85 

ASCO+GW 4.9 225 S15+GW 2.0 110 
 12.0 240  11.4 150 

ASCO+BF 3.7 105 S15+BF 2.0 45 
 12.5 120  12.0 30 

ASCO+BS 2.7 140 S15+BS 2.0 120 

  12.0 180   11.6 95 

QUE 1.6 155 TENF 1.8 160 

 12.1 145  12.0 360 

QUE+MOW 2.0 255 TENF+MOW 2.3 265 
 12.2 195  12.0 370 

QUE+GW 1.7 180 TENF+GW 2.6 210 
 12.0 140  12.0 470 

QUE+BF 1.6 140 TENF+BF 4.5 90 
 11.5 160  12.0 440 

QUE+BS 4.0 60 TENF+BS 2.7 140 

  11.8 225   12.0 465 

RIB 1.6 50    

 12.8 250    

RIB+MOW 2.0 85    
 12.5 315    

RIB+GW 3.2 75    
 12.6 370    

RIB+BF 2.0 30    
 12.4 385    

RIB+BS 2.1 135    

  12.3 310    

 

 



 

Fig. 1. pH titration curves of soil and soil+amendments mixtures. 
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Fig. 2. Metal extractabilityleaching curves (extractable metal (mg kg-1) vs. pH) of soil and soil+amendment mixtures. 
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Fig. 3. Extractable metals in soils and soil+amendment mixtures at initial pH. Error bars 

indicate the standard deviation. 
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Soil characterization 

CEC was determined after extraction with ammonium acetate (Bower et al., 1952). In 

short, 5 g of the material was added to 30 mL of 95% ethanol, and the resulting 

suspension was stirred for 5 min and centrifuged. Then, the supernatant was discarded. 

This procedure was repeated three times to remove the soluble salts. Next, 30 mL of 1 

mol L-1 ammonium acetate was added to the remaining solid, and the suspension was 

stirred for 5 min and centrifuged. Then, the supernatant was collected in a volumetric 

flask. The extraction with ammonium acetate was repeated three times, and the 

supernatants were collected in the same flask. The flask was filled to the reference 

volume with 1 mol L-1 ammonium acetate. The exchangeable cations were determined 

in the supernatant by ICP-OES, and the CEC was calculated as the sum of the 

exchangeable cations.  

The total content of trace elements in soil samples was determined by soil digestion in a 

closed microwave digestion system (Milestone Ethos Touch Control) following an 

adaptation of the EPA3052 method (USEPA, 2008). In brief, 0.3 g of sample was 

weighed in a PTFE vessel and 6 mL 69% HNO3, 3 mL 40% HF and 2 mL 30% H2O2 

were added. The temperature was gradually increased from 25ºC to 190ºC over 15 min 

followed by a dwell time of 30 min. After a cooling time of 10 min, 16 mL 5% H3BO3 

was added to mask the free fluoride ions present in the solution and dissolve fluoride 

precipitates. The resulting suspension was submitted to the same digestion procedure as 

in the first stage. After cooling the extracts at room temperature, they were diluted with 

Milli-Q water to a final volume of 50 mL and stored in polyethylene bottles at 4ºC until 

analysis. The water-soluble metal concentrations were quantified by obtaining water 

extracts after equilibrating a known amount of the soil or amendment with Milli-Q 

water in a 1:10 solid:liquid ratio for 48 h at room temperature (DIN, 1984), Finally, the 



samples were centrifuged, and the water extracts were filtered through a 0.45 µm filter 

and stored at 4°C before analysis. Trace elements were determined in the solutions by 

ICP-OES using a Perkin-Elmer Model OPTIMA 3200RL ICP-OES. The emission lines 

employed for ICP-OES (Perkin–Elmer Model OPTIMA 3200RL) were (nm) Cd: 

214.440 and 228.802; Cu: 324.752 and 327.393; Pb: 220.353; Zn: 206.200 and 213.857; 

Ca: 315.887 and 317.933; Mg: 279.077 and 285.213; K: 766.490; Na: 330.237 and Ni: 

231.604. The detection limits using this technique were 0.01 mg L-1 Cd; 0.01 mg L-1 for 

Cu; 0.1 mg L-1 for Ni; 0.2 mg L-1 for Pb and 0.025 mg L-1 for Zn. For samples with 

lower metal concentrations, a Perkin–Elmer ELAN 6000 inductively coupled plasma 

mass spectrometer was used (ICP-MS). The detection limits of the ICP-MS 

measurements were 0.02 µg L-1 for Cd; 0.1 µg L-1 for Cu; 0.2 µg L-1 for Ni; 0.05 µg L-1 

for Pb and 0.2 µg L-1 for Zn.  



Table S1 

Reference limits (mg kg-1) of metal total concentration in soils (data gathered from 

regulations of Catalunya and Andalucía autonomous regions in Spain) 

Metal Agricultural use Industrial use  

Cd 2-3 55  

Cu 50-100 1000  

Ni 40-50 1000  

Pb 60-200 550  

Zn 170-300 1000  

 

 

 

 

  



Table S2 

Threshold limits (mg kg-1) of water soluble metal concentrations (European Council, 

2003) 

Metal Inert waste Non-hazardous waste Hazardous waste 

Cd 0.04 1 5 

Cu 2 50 100 

Ni 0.4 10 40 

Pb 0.5 10 50 

Zn 4 50 200 

 

 

 

 

 

 

 

 

 

 

  



 

 

Fig. S1. pHstat curves of DOC in a) untreated soils and b) amendments. 
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