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Abstract In this paper we present a threshold proportional reinsigratrategy and we an-
alyze the effect on some solvency measures: ruin probahitid time of ruin. This dynamic
reinsurance strategy assumes a retention level that instant and depends on the level of
the surplus. In a model with inter-occurrence times geimrdlErlangn)-distributed we ob-
tain the integro-differential equation for the Gerbertshinction. Then, we present the so-
lution for inter-occurrence times exponentially distriédi and claim amount phase-typg.
Some examples for exponential and phase{¥pelaim amount are presented. Finally, we
show some comparisons between threshold reinsurance epadrfional reinsurance.
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1 Introduction

Studies of the effect of a reinsurance strategy on solveregsores have concentrated their
attention on the ultimate ruin probability. A good numbettwdse studies analyze the effect
of reinsurance on the adjustment coefficient or Lundbergegpt as this coefficient de-
fines an upper bound for the ruin probability with infinite &morizon. Many authors have
considered the problem of determining the optimal level/antype of reinsurance with
the probability of ruin criterion (Water§979 1983 Gerber1979 Centenol986 2002
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Goovaerts et al1989 Hesselaged99Q Biuhimann1996 Bowers et al.1997 Schmidli
2001, 2002 Verlaak and Beirlan2003 Hipp and Vogt2003 Taksar and Markussez003.

The reinsurance strategy considered may be static or dgndmthe first case, it is
assumed that the level and type of reinsurance remain caristaughout the period con-
sidered, which in many cases is infinite (Wat&@83 Centenol986 2005 Dickson and
Waters1996. In the dynamic case, we can find papers which consider dhnat fixed type
of reinsurance the level of reinsurance can change conisty¢@Hojgaard and Taks4998
Schmidli2001 2002 Hipp and Vogt2003 Taksar and Markusse2D03. In these papers,
optimal stochastic control tools in continuous time areduggickson and Waters2006
assume that the insurer can change the type and/or levehstirance at the start of each
year, so they studied a discrete time stochastic contrdlleno.

In this paper we consider a Sparre Andersen model, and inteod dynamic reinsur-
ance strategy. We assume that the insurer considers a poo@breinsurance arrangement,
where the retention level is not constant and depends oevkedf the surplus. We then de-
fine a threshold proportional strategy: A retention lekiels applied whenever the reserves
are less than a specific threshbldnd a retention levés, is applied in the other case. Since,
for the insurer, reinsurance is a tool for controlling thévency of the portfolio, it seems
natural that the retention level could depend on the surghed at some point or instant.
The threshold proportional reinsurance strategy that wpgse in this paper is an easy and
clear way to include this dependence.

The objective of this paper is to analyze the effect of thie sérategy on solvency
measures of the insurer using the Gerber-Shiu functiorgiwédiows us to obtain ruin prob-
ability and some characteristics of time of ruin.

The introduction of this reinsurance policy bears certamilarities to the threshold
dividend strategy, introduced initially by Lin and Pavlo{@006. This dividend strategy
proposes that dividends should not be paid as long as thevesseemain below a certain
level b, and that when the reserves surpass this level a constansitytd of the premium
receivedg, should be paid out in the form of dividends. So, the intrdituncof the pay-out
means that two premium intensities are appl@dthe premium for levels of reserves below
b, andc, = (c—d) for levels of reserves abowe such that; > c;.

With the introduction of the threshold reinsurance poltbg claim amount paid by the
insurer is modified depending on the level of the reserves,if.the claim occurs when the
level of the reserves is greater thiarthe insurer pays a percentageof the claim amount,
and if it occurs when the reserves are belgva percentagk; of the claim amount is paid.
This is an important difference with Lin and Pavlova’s model

Also in our model, the fact of applying different percentagé cession of the risk to
the reinsurer causes different intensities of premiumgHerinsurer. The model does not
demand a relation of order between the percentages and roisheo need that; > ¢,
holds.

The paper is organized as follows: In Se2twe explain the assumptions and some
preliminaries. In Sect3, we obtain the integro-differential equation for the GefBhiu
function in a model with a threshold reinsurance strategy &ith inter-occurrence times
generalized Erlangj-distributed. In the rest of the paper we concentrate orPthisson
model, so we consider that inter-occurrence times are exaily distributed. In Sectt we
assume that the individual claim amount follows a phaseftyp Finally, in Sect5 some
comparisons between threshold reinsurance and propattieimsurance are presented.



2 Assumptions and preliminaries

In the Sparre Andersen model, the surplus procRfs, at a given timet € [0,) is de-
fined asR(t) = u+ ct— S(t), with u= R(0) > 0 being the insurer’s initial surplus§(t) the
aggregate claims araithe rate at which the premiums are received.

{S(t)} is modelled as a compound process where

N(t)
S(t) = le'

N (t) =min{k: T; + ... + Tkr1 > t}, the number of claims occurring until tinbgis an ordi-
nary renewal process, and the inter-occurrence times bemlaims,{'l'i}f;l, are modeled
as a sequence of i.i.d. random variables, wigmenotes the time until the first claim aid

, fori > 1, denotes the time between tfie- 1)th andith claim. Note that in a Poisson pro-
cess with parametey, Ti,i > 1 has an exponential distribution with meagM1 The claims
{X,i > 1} are i.i.d. random variables with density functi6x), and common expectation
E[X] < co.

Premiums are assumed to be payable continuously atrnaé unit time wheree =
(1+ p)E[X]/E[Ti] with p > 0 the relative security loading (net profit condition).

In this paper, we will assume that the random varialflgs> 1 are generalized Erlang¢
distributed, i.e. eacli is a sum ofindependent exponential random variables with possibly
different parametery, ..., An.

The time of ruin is defined @ = inf {t : R(t) < 0}, with T = if R(t) > 0 forallt > 0.
The ruin probability is defined as

Y (u) =P[T <o |R(0) = u] = E{I (T <) [R(0) =u},

wherel (A) = 1 if Aoccurs and (A) = 0 otherwise.

Let us first consider the effect of proportional reinsurafi¢es ceding company (insurer)
and the reinsurer agree on a cession percentage(1sa¥k), k being the retention level
applied to each claim.

We assume that insurance and reinsurance premiums inchsiive loading factors,
Pr > 0 being the reinsurer’s loading factor.

The premium income retained by the insuérdepends opg andk, where
E[X]

(1+p)—(1-K) (1+PR)ﬁ- (1)

E[X]

d= -2

E[T]

A new security loading for the insurepy, can be defined. Knowing that = k(1 +
pn)E[X]/E [T, from (1)

pN:pR_ka P vk o, (2)

If p = pRr, the premium paid by the policyholderis shared between insurer and rein-
surer in the same proportidq soc’ = kcandpy = p. It is normally assumed thak > p
because ifp > pr the insurer would simply cede his entire portfolio to thengeirers, a
situation which would be nonsensical.

LetR™ (T) be the surplus just before ruin, aRd (T) the surplus at ruin if ruin occurs.
Gerber and Shiul©98 2005 define the function

o(u) = E[eTw(R™(T), [R*(T)[) 1 (T < )|R(0) =u], ®)



whered > 0 is the discounted factor, amdx,y), x > 0,y > 0, is the penalty function, so that
@(u) is the expected discounted penalty payable at ruin. Thistimm is known to satisfy

a defective renewal equation (Gerber and St888 Lin and Garrida2004 Willmot 2007)

but easy explicit formulae fop(u) are only available for certain special cases for the claim
size distribution (Lin and Willmo1999 200Q Landriault and Willmot2008.

Letw(x,y) = 1; we then obtain the expression for the defective Laplagsform (LT)
of the time of ruing(u) = E [e°TI (T < »)|R(0) =u], and if in additiond = 0, then
@(u) =P[T < »|R(0) = u] = ¢ (u), i.e. the ruin probability.

In this paper, we consider a threshold proportional reisce strategy defined by a
thresholdb > 0. A retention levek; is applied whenever the reserves are less thamd a
retention levek; is applied otherwise. Then, the premium incomes retained;aandcy,
respectively. We consider that the retention levels giwe pesitive security loadings for the
insurer, i.e. the net profit condition is always fulfilled oRr (2), we can define

P1=Pr— ka;p,
1
P2 = Pr— kaip-
2
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Fig. 1 Threshold reinsurance strategy

3 Integro-differential equation for the Gerber-Shiu function

In this section, we will give the integro-differential edizgeas and boundary conditions sat-
isfied by the Gerber-Shiu discounted penalty function.

Letd- /dudenote the differentiation operator with respeai.tbloreover, definﬂjl:2~ =
1.

In a model with a threshold reinsurance strategy and withriatcurrence times ge-
neralized Erlangy)-distributed, the discounted penalty functigu) behaves differently,



depending on whether its initial surpluss below or above the levél Hence, for notational

convenience, we write
_[@(u)0<u<b
oo = { ADOTUTE @

The following theorem provides integro-differential etjaas for the functionp(u).

Theorem 1 The integro-differential equations for the Gerber-Shisodiunted penalty func-
tion defined in 8), in a model with a threshold reinsurance strategy with lirdgecurrence
times generalized Erlang(n)-distributed with parametg&ss.., An, taking into account4)
is, forO<u<b,

(]]ﬂll((SJr)\jCliJ))(pl(u) (,ﬁu)\j)/ok% o (u—xky)dF (X)
<W)/ (i = wdFb =0 ©

and foru>b
- (6+A~—ci) o ([ /'u*?bwz(u—xkz)dF(x)
JI:! J 2dU Jl:ll ] o
- (J]jm-) /; AU~ Xko)dF (¥ ©)
[

_( )\j)/:ow(u,xkz—u)dF(x)zo,
=1 ko

with boundary conditions,
P (UW)]y—p- = @2(D),
and fork=1,...,n

G (lli <5+Aj1—01(ij>> dq(;llgu)’u_b—l— (QAS) ak/okg1 @1 (b—xke)dF (x)
+ (QAS> a /gw(b,xkl—b)dF(x) )
:c2< - (5+Ail—czi]>) d"jﬁ”) o+ (ﬁ)\s) ak/:% @1(b—xke)dF ()
= u= s

(rl/\) /b w(b, xks — b)dF (X),

[0 k:, n—1
=11 k= :

Proof The proof, which follows Albrecher et al2009), is included in AppendiA. O

being



If the inter-occurrence time follows an exponential diattion with parametei, we
obtain the following integro-differential equations armlindary conditions, for & u< b

@ (u) = /\:;6(01(U) - % /071 @ (u—xkg )dF(x) — é—lfl(u), ®)
and foru>b
@h(u) = )\;;6 ( )—2—2 [/OTZ @ (u—xko)dF(x)
+ /fb (pl(u—xkz)dF(x)} — Cifz(u), (9)
Jub 2
with

E(t) = /:ow(t,xlq “H)dF(x), i=1,2,
K

with boundary conditions,
P(W]y=b- = @2(b),
and

c1q4(|o)+/\/0E (pl(b—xkl)dF(x)+)\/:W(b,xkl—b)dF(x)

:czqé(b)—k)\/orz @1 (b— xko)dF (%) + A /:W(b,xkz—b)dF(x). (10)
i

Expressions8) and @) can be obtained by replacing the claim size random variable
Theorem 3.1. in Lin and Pavlova@06 with xk; for 0 < u < b and withxk, for u > b.

In order to obtain the time of ruin and ruin probability, iretfollowing sections let
w(x,y) =11in (8), (9), and (LO)

o= [ gy xk)dF(g {1—F(£)], 0< u<b, (12)

C1 c1Jo o ky
B = ) - 2 [/O  p(u-xie)dF (0 (12)
T A u
+l/% fpl(u—xk;:)dF(x)} ~Sher(e)] ush

with boundary conditions,
(W]y=b- = @2(b),
and

c19,(b) + A /Ok% @1(b—xk)dF (x) + A [1— F (k%)]

zczqé(b)—i-)\(/(;k% 1(b—xko)dF (X) + A {1—F<k%>}. (13)



4 Ruin probability and time of ruin with individual claim amoun t Phase-type(N)

In this section we obtain the differential equations for thie probability and for the time
of ruin if ruin occurs, assuming that the individual claim@mt is distributed as a phase-
type(N). Consider thaf (x) is the density function of a phase-typ8 distribution satisfying
the differential equation of ordéy

N
Z)bi f0(x) =0, (14)

with bg =1, b, i > 1,...,N e O, f)(x) thei-th derivative off(x), being (@ (x) = f(x)
(Hipp 20086.

From (11) and (12), differentiatingN times with respect tai, the ordinal differential
equations of ordeN + 1 are obtained

Theorem 2 The ordinary differential equations for the Gerber-Shisatiunted penalty
function defined in3) in a model with a threshold reinsurance strategy with irdecurrence
time following an exponential distribution with paramefeand individual claim amounts
phase-typ@N) with density satisfyingl@), taking into account4) are,

(N+1) o A+d bn1) (N
R - LR e B

N-1 g b1 (A+3)b
—f N 1— S) O s—1 S 15
ZKNS<' @+ kibn Cibn (15)
" fhes1 (9
by, 1bhf<s><o>>cq (u),
=5+

whereq (u),i = 1,2beingi=1for0O<u<bandi=2foru>b.
Proof The proof is included in Appendii. O
As a particular case, fromlp), it is possible to obtain the equations if the individual

claim amount is a unitary exponential, knowing that it is aggtypél) distribution with
parameteb; =1

a- (222 1) dw- aw=o (16)

and if the individual claim amount is distributed as a phgge2),

" o A+5_£ // bl()‘+5)_i_i
a'w = (- o+ (P - e 1O )

1e)
+7b2k1-20i @(u), 17)

withi=1forO<u<bandi=2foru>h.



4.1 Ruin probability and time of ruin with individual claimreount exponential

In this subsection we consider the case when the individaghcamount is distributed as
an exponential with unitary meaf(x) = e
From (16), it is easy to obtain the characteristic equations,

2 A+0 1 o _
r<— TI_ITI r—m—o, 0§U<b, (18)
P2

A+ 1 o _
H_L)s- 8 =0  uxh

withry < 0,r2 > 0,5 < 0 ands, > 0 the real roots of the characteristic equations. The roots
ro ands, are equal to zero i® = 0 (the ruin probability case), and positivedf> 0 (the
defective LT of the time of ruin).

Then the defective LT of the time of ruip(u) = E [ °T1 (T < ) [R(0) = u] is

@(u) = D1e™Y + Dy u>b- (19)

u)=Ce"+Ce2", 0< u<b
(D(U) _ { (Pl( ) 1 2
From the conditior&imp(u) =0, we know thaD, = 0, from the continuity condition

@ (U)|,_p- = @(b) we obtainy2 , Ciei’ — D1€%P = 0, and substituting1©) in (13) and
rearranging terms, we obtain two additional conditigp,, ﬁ =landy?; S (1—

1 lgr 1
) 1 1
i)y 4 ﬁeb(sﬁ‘g) = 1, which allow us to obtain the coefficier@s i = 1,2 andD;.
SO, a2 b
az1a11 <(k251+1)r2(szkl)*al.zkz(fszi)efz )
Ci(0)=

W1 B3\
. 2y,
(kasp+1)(r1—r2) (ki —kz)—kz <al_1a2_2(31—f1)e—k? —agpap1(s1-T2)e k2. >

C2(8)=ay 2 — 222Gy (9),

apl

D1 (8) =ay el 4 (emfsl)b - %e(fzfsﬂb) C1(5),

wherea; j = (kirj+1),i,j =1,2.
To obtain the ruin probabilityp(u) = E[I (T < o) |R(0) = u] = ¢(u), letd =0in (19),
then,

(20)

_ P1
p(— ) B0 =1-(1+p)CL0)+C1(0)e AT, 0<u<h,
- P2 _
Wo(u) = g (b)eleiea O u>b,
where

C1(0) = h

__ P !

_b —HA__p
h(1+p1)+ (ki —k2) p1(1+p1)e %2 + (kppr —h)e k(e

with h= (kl +p1 (kl — kz)) P2.
From (19) and @O), it is easy to obtain the moments of the time of ruin. For eplamn
the expected time of ruin if ruin occurs is given by

E[T|T <o]=-—



Then for 0< u < b,

P1

9C4(3) o e Clue 0P | acy() (0
E[T|T <o]=— 90 |5_o+ Akyp1(1+p1) p<95 5—0+ = Akipr
_ A ’
1—(1+p1)C1(0) +Cy(0)e Maler]" (1)
and foru > b,
T3 1

E[T|T <o]=— =0? u. 22
TIT <<l D1(0) Akop2 (1+p2) (¢2)

We can observe that far> b the expression obtained f&[T | T < o] is a first degree
polynomial onu, similar to the model without reinsurance (see Ged$9.

The variance is
VIT|T <o) =

ForO<u<b

E[T2|T <] —(E[T|T < «))>.

E[T2(T <w)]

(23)

(24)

E[T?|T <] =

being

92Cy (3)
052

E[T?(T <o)] =

o
+C1(O)ue aten (

FEC)

062

Bsu_ 0C1(8)

pP1 u’

ki (T+p1)

—(1+p1)Ce(0)+C1(0)

ue k1(1+Pl)

e k(lte) _

0=0*

u

l%e)

5=0+ A I(lpl (1+ pl)

9C; (9)

(Akep1 (14 p1))?

L2
A%k p3

u

+2

5=0* 00

u 2
+C2(0)u — .
(0 (()\klpl)z /\zklpf)

Foru > b,

02Dy (9)

aD4(3) ‘

-0+ Akip1

(25)

0=0*

E[T?|T <o =

1

95° ‘570+ 1
ot o -
D:i(0) (AZksz Ds

2

(Akopa (14 p2))

being

92D4(3)
952

© )/\kzpz(1+02)) ut

(26)

2
(27)

V[T |T <] =

D1(0)

D1(0)

9D1(9) ’
5=0t _ ( 90 |5—0*

+ 2 u
A2kop3

From equations2l) to (27) we can obtain the expressions in a model with proportional

reinsurance (fok; = ko = k) and in a model without reinsurance (far= ko, = 1).
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Then, if we letk; = ko =k, the following expressions are obtained

1 1
E[T|T<m]:m+)\kPN(l+PN)u'
2 2
V[T|T <o) = AJQ%NJrAkaﬁu.
And fork; =k, =1,
E[T|T<oo]:m+7)‘p(ll+p)u,
VT |T<w]= 24P, 2

= 22p3 T zp3t
expressions that can also be found in Dicks2005), p.188.

Example 1Letp =0.15,pr = 0.25,A =1, 8 = 0.03 andb = 8, the limits for the retention
levels necessary to meet the “net profit” condition being O k; <1 and 04 < ko < 1.
The values chosen ake = 0.8, ko = 0.45, with k; > ky since, as we will see later, if we
consider the probability of ruin as a criterion of decisionthe optimal combinations d
andky, the retention level when the reserves are below the thi@shalways higher than
the retention level when the reserves are above the thigeshol

The defective LT of the time of ruin is,

@ (u) = 0.7940 02638 _0,007a"1%8% 0 < u < 8,
@(u) =
@ (u) = 1.462% 03774 u>8,

and the expression for the probability of ruin,

Y1(u) = 0.2906+ 0.6305 01388 0 < y< 8,
Y(u)=
Wa(u) = 0.80545 0060061 u>8.

Table 1 shows the results obtained for the probability of ruin, tleéedtive LT of the
time of ruin and the expectation, the variance and the vanaefficient of the moment of
ruin, for different values o#,

Table 1 @(u), Y(u), E[T | T < o], V[T | T < o] andCy for X ~ Exp(1)

U e g)  E[T|T<w] V[T|[T<e] O =
0 07870 09211 6500 230297 738
4 02634 06524 38917 130x 10° 2.93
8 0.0715 04981 71212 222x 10° 2.09
12 00158 Q3917 102347 305x 10° 1.70
16 00034 03081 133483 388x 108 1.47

20 00007 02423 164618 471x10° 131
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4.2 Ruin probability and time of ruin with individual claimmeount Phase-type(2)

From (17), the characteristic equation forQu < b

rg_(m_g)rz_(bl(/\ﬂs)_i_Lf(o))r_ 5 _0, (28)

c1 kibp Ccikiby Kb, ko bok2cy

and foru > b,

s3—(M—&)sz—(b1<“5>—i—if(0))s s _, (29)

C2 kabp Cokobp Kb,  kaCz " bk3e,

with ri,s,i = 1,2, 3 the real and distinct roots of the characteristic equatidhen

(pl(u):E Re', 0<u<hb,

P(u) = 5 (30)

@®u) =3 GeY, u>h.
i=1

In order to obtain these coefficients, six equations areegkethe first one is obtained
from the condition limp_. @(u) = 0. The second can be obtained considering {a?
must be continuousg, (u)|,_,- = @(b). The other four are obtained substitutir®P) in
(13) and rearranging terms. To obtain the ruin probability, @&ehto consided = 0, so

rg=s=0.

Example 2We analyze the particular case Erlé2g3), i.e. f (x) = B?xe P*. The Erlang2, B)
distribution is a phase-type(2) distribution whih= 2/8 andb, = 1/32 (Dickson and Dre-
kic 2004. Then, the characteristic equations are

3, (2B A+8)\,2., (B?> 2B(A+0)\, 8B _
r+(k1 )r+<k2 )I’ c1k2_0’ 0<u<hb,

cy c1kg g
2B A48 B 2B(A+0) _oB°
S?+(k7 Co )52+(k§ Coko )S kg 7 uz=b.

It is easy to demonstrate that two of the roots are negatiys < 0, i = 1,2) and thats,
s3>0if d >0orrz, s3=0if d =0. The system of equations that we need to find the
coefficients is

G3=0
3 2
y ReP— 5 GeiP=0
izl i=1
Ro_1
2, kB B
§ R 1
£ (ike+B)” B2 (1)
3 4B 2 b(*@
A (it Gel' 2/ _ 1
él kori+B (l € ( 2)> +i§l keS+P B
iy B
R (eb< 'ﬂg) (b(szi+B)k2)+k2> b<q+ B )
§ 3 § Gie \' 2/ (bllos+B)—ko) _ ky
i=1 (kori+B)? i=1 (o5 +6)* F

To obtain the ruin probability, the six equations to obtdie toefficients are3(), with
d=r3=s5=0.



12

Notation: As we mentioned above, the expressions in the maeitle a proportional
reinsurance can be obtained as a particular case of thédtihde®insurance. So, when the
claim size distribution is Erlan@, 8), from the example, if we lét; = k, = k the defective
LT of the time of ruin is

CrakntB) kB
B T u=0

r1 andry being the negative roots of the equation

r3+<2[3_/\+6>r2+<€22_2[3(/\ +6))r_532 .

k c ck 2

P(u) =

And the ruin probability is

_ 34 2pn + /94 8pn exp((—3—4pN +V9+8pN)ﬁu>
2(1+pn) vVI+8pn 4Kk (1+pn)

Y(u)

V9+8pn —3— 20N ( (3+4pn++/9+8pn) B )
+ exp| — u), u>0.
2(1+pn) V94 8pn 4k (1+pn)

Letk; = ko = 1; then, the defective LT of the time of ruin in a model withogihsurance
is obtained,
o(U) = _rz(r1+ﬁ)2 wu rl(r2+[3)2erzu
(re—r2)p? (ri—rz)B%"
r1 andr; being the negative roots of the equation

r3+(2[3—)‘+6)r2+<[32—23()‘c+6)>r—5[32_0.

C Cc

u>o0,

And the ruin probability,
_3+2p+ \/We(—s—élﬂfpe)fspw u

u) =
YW 2(1+p)/9+8p
(YT -3-20 empsme, o
2(1+p)\/9+8p -

Example 3We perform a numerical application with the same values urseéde case of
the unitary exponential amoun:= 0.15,pr = 0.25,A = 1,k; = 0.8, ky = 0.45,5 = 0.03,
B=2andb=38.

The mean claim amount for the distribution Erland{Ris 1, as in the numerical appli-
cation of the exponential. We analyze this case, to see wh#th change in the distribution
of the claim amount has any significant effect on the behavabthe magnitudes, even if
the mean claim is not altered.

The defective LT of the time of ruin is

{ @u(u) = —0.0225 369781 4 0 830303291 _ 00034”1711 0 < u< 8,
@(u) =

@ (u) = —2.85x 108 663921 | 1 ggpge 04501 u> 8.
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And the ruin probability,

Y1 (u) = —0.009% 370121 1 0,701 7% 01878 1 0.2213, 0< u < 8,
Y(u)=
Wo(u) = 2.38x 1018g 664641 4 0718200803 u>8.

Table 2 shows the results obtained for the probability of ruin, tleéedtive LT of the
time of ruin, the expectation, the variance and the vamatioefficient of the moment of
ruin for different values o,

Table 2 @(u), Y(u), E[T | T < o], V[T | T < ] andCy for X ~ Erlang(2,2)

U WU E[T[T<e] V[T|[T<a G =
0 08043 09134 4288 120387 09
4 02157 05526 34648 918753 76
8 00460 03777 67365 163x10° 189
12 00075 02739 98599 225x10° 152
16 00012 01986 129830 288x10°  1.30
20 00002 01440 161061 350x10F 116

Comparing the results obtained in TaBl&vith those in Tablel, the change in the dis-
tribution of the amount of the claims does not significantlgrathe results of the magni-
tudes analyzed. Considering a distribution Erlan@)2he probabilities of ruin, expectation
and the variance of the moment of ruin are lower than in the oishe amounExp(1).
Nonetheless, the behaviour with respect to the initialllefi¢he reserves of different mag-
nitudes is the same for the two distributions, i.e. whencreases, the ruin probability and
the variation coefficient decrease, and the expectatiorvaridnce of the moment of ruin
increase.

5 Comparison of reinsurance strategies

In this last section we present a series of numerical and acetipe analyzes of the new
threshold proportional reinsurance strategy.

In Subsect5.1 we obtain the optimal threshold reinsurance strategy fieenpoint of
view of the probability of ruin if the individual claim amours distributed as an exponen-
tial with unitary mean and an Erla(@ 3). In Subsect5.2, after obtaining the value of the
percentage of retention that minimizes the probabilityusfiin a model with proportional
reinsurance, we compare the two reinsurance strategisding the results for the expo-
nential claim amounts and Erlaf®y3), reaching the conclusion that the most interesting
strategy for the insurer is the threshold strategy.

The fact that the threshold reinsurance strategy obtamarlprobabilities of ruin means
that this strategy emerges as a tool for the insurer to mathegaitial investment that the
portfolio requires.

The values of the parameters used in this sectiomatel, p = 0.15, pr = 0.25 and

B=2.
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5.1 Optimal strategy with threshold proportional reinsioe

The objective of this subsection is to find the optimal strater minimizing the probability
of ruin. The insurer can decide on the decision variabletherfirst option, the insurer sets
the level of threshol®, and seeks the best combination of the retention percendgek,),
which allows him to minimize this probability. In the secooption, the decision variables
are the threshold level and the percentages of retentielogtimal strategy bein@, ki, kz);
this allows us to obtain the minimal probability of ruin, whiwe will termwr‘:}isz(u).

If we analyze the cas¥ ~ Exp(1), first we set the threshold valipe obtaining the op-
timal combination(k, k2) that the insurer should apply to minimize the probabilitywif.
Table3 shows the results calculated with the functddilinimizeof the softwaréviathemat-
ica for three different threshold levels,

Table 3 Optimal combinationgks, k) for different values ob if X ~ Exp(1)

b=2 b=8 b=15

u k ke P(u) ki ko () k1 ko ()

0 1 07806 08659 1 07602 (08666 1 07603 08684
4 1 07693 05001 1 07602 05053 08639 07584 (05086
8 1 07636 02865 091724 07590 02905 08105 07579 02923
12 1 Q7616 01641 091738 07585 (01664 Q7977 Q7578 01675
16 1 Q7607 00939 091736 07583 00953 Q07963 07578 00959
20 1 Q7601 00538 091735 07581 00545 07963 07578 00549

We now consider the optimal strategly, ki, k) for obtainingwr';lisz(u) if X ~Exp(1).
Table 4 presents the results obtained, and the expectation, thenearand the variation
coefficient for different values af,

Table 4 Optimal combinatior(b, ks, k) for different values ofiif X ~ Exp(1)

u b ko ko MA ) E[T|T<ow V[T|T<o G

0 32667 1 0760031 0864665 928326 15562 425029
4 32675 1 0759623 0498067 472008 778153 186889
8 32685 1 0758708 (285276 872039 142072 136684
12 32692 1 0758399 0163396 127205 20629 12911
16 32689 1 0758243 00935873 16205 27049 0.983632
20 32693 1 0758149 (00536035 207206 334704 0.882936

Therefore, the optimal strategy for the insurer is to chaokev threshold level (in this
example approximatelly = 3.27), not to reinsurekg = 1) when the reserves are below this
level and to reinsure with a retention level of approximaté6% when the reserves are
above the threshold. The result obtained is consistent thélones presented in Schmidli
(2001, 20009.

Assuming that the individual claim amount follows an Erléa@), in Table5we present
the optimal strategyb, ki, ko) for obtainingwklsz(u).

min
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Table 5 Optimal combinatior{b, ks, k) for different values ofiif X ~ Erlang(2,2)

u b k ke ke ()
0 198703 1 0760973 0864262
4 19871 1 0761572 0415635
8 198712 1 0761895 0195874
12 198712 1 0762009 00923087
16 198721 1 0762064 00435018
20 198711 1 0762098 00205009

With X ~Erlang2,2), the optimal strategy for the insurer in order to minimize th
probability of ruin is(b, ki, ko) ~ (1.987,1,0.76).

5.2 Comparison of proportional reinsurance strategies

The aim of this subsection is to compare the threshold reamse strategy with the propor-
tional reinsurance strategy from the point of view of thelyaaility of ruin.

If X ~ Exp(1), we first show the values of the retention ledelthat make it possible to
minimize the probability of ruin, and then compare the resswith the optimal probabilities
obtained in the above section with threshold reinsurance.

In a model with proportional reinsurance, Watet9&3 and Schmidli 2006 found
the value of the retention percentagehat maximizes the coefficient of fit as a way of
minimizing the Lundberg bound for the probability of ruirh@refore it is a value that does
not depend o, with

- (121) (1+\/11+79R>' 32)

Remembering that the probability of ruin in a model with pydjonal reinsurance is
(Dickson2005 p. 203),

K Rl a3
u) = g Mirprirp—pr "
v k(1+pr)+Pp— PR (33)

Dickson and Watersl@96 obtain numerically the values &fthat minimizey(u) for dif-
ferent values ofl. However, it is easy to obtain the analytical formula for te&ention level
, Kop (U), that minimizes 83),

— A2 2BAUHA\/ A2+ 4BL2 (1+p)A
Kop(u) = 2B(upr—A) ifu> P+P)—PRr 0 (34)
1 otherW|se

whereA= (pr— p) andB = (1+ pR).

The minimum values for the probability of ruin calculatediwk,p(u) andk = 0.7577,
(obtained from 82)), are shown in Tabl6, which shows the results for expectation, variance
and the variation coefficient of the moment of ruin wigp(u),
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Table 6 Minimum probabilities of ruin with proportional reinsuramwith kyp(u) andk if X ~ Exp(1)

u op(U) ko_p(u) Ymin(u) with  E[T|T <]  V[T|T <] Gy with
P min k=0.7577 with kop(u) with kop(u) Kop(u)
0o 1 08695 08944 6666 63703 378
4 0.8375 05094 05122 40004 524504 181
8 07955 02926 02934 80011 115810 134
12 07825 01677 01680 120008 17968 111
16 07761 00961 Q0962 160034 243804 097
20 Q7724 00550 Q0551 200011 307839 0.87

Observe that the probabilities of ruin obtained are lowethwgp(u) than withk =

0.7577. At higher levels ofi, the probabilities of ruin tend towards the same value;rilea
the exact value obtained with the minimization of expras¢g8) tends towards the upper
bound of the probability of ruin.

surance is shown in Table

If we assume that the amount is ErlgB¢R); the optimal policy with proportional rein-

Table 7 Minimal probability of ruin with proportional reinsurancetivkyp(u) if X ~ Erlang(2,2)

Kop

u kop(u) min(u)

0 1 0869565
4 0.81269 0425417
8 0.786636 0200804
12 0778327 00946819
16 077424 00446321
20 0771808 00210369

After considering the optimal strategy with proportionainsurance, we compare the
results obtained with the optimal strategy in thresholdserance. To do so, we calculate

d(u) = ¢ (u) -

ki ko
min

(u) as a function that allows us to comp

742 (1), the results

of which were shown in Tablesand5, with the optimal results in a strategy of proportional

reinsuranceiy

kop

mn(U), obtained in Table$ and7. Fig. 2 showsd(u) for X ~ Exp(1) and
X ~Erlang2,2),
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K ky#ky
Ve iy ()

0.012

0.010 === Erlang(2,2)

Exp()

5 10 15 20
Fig. 2 d(u) = r';"il'?](u) - rf}isz(u) for X ~ Exp(1) and X~Erlang(2,2)

Observe that for example fot ~ Exp(1), the difference between the minimum prob-
abilities of ruin with proportional reinsurance and threlshreinsurance respectively with
b = 3.27 increases for small values of reaching a maximum and then decreasing as the
initial value of the reserves increases. Therefore, thestiold reinsurance strategy always
produces better results in terms of probability of ruin th@proportional reinsurance strat-
egy for any initial level of the reserves. The behaviouX i-Erlang2,2) is similar.

With threshold proportional reinsurance, the insurer euce his probability of ruin
for some predetermined level of initial capital relativetie options of applying proportional
reinsurance. This optimality of threshold proportionahseirance also implies that, if the
manager wants to obtain this minimal probability of ruin fadth proportional reinsurance
more initial capital will be needed. The relative increasehie initial reserves to achieve
this optimal probability of ruin can be considered as the obshe options of proportional
reinsurance against threshold proportional reinsurance.

AssumingX ~ Exp(1), Table8 shows, for different values of the initial level of the
reserves, the minimal probability of ruin. As we have seeovabit is obtained with the
threshold reinsurance strategy. We calculate the indiadllof reserves needed to obtain this
probability in a model with proportional reinsurance ane thlative cost for the insurer of
choosing proportional reinsurance rather than threstaidurance,

Table 8 For X ~ Exp(1), relative cost iru if proportional reinsurance is chosen

threshold proportional
kizke reinsurance  reinsurance %1%
u(l) u(2)
0.864665 0 043
0.498067 4 4164 004091
0.285276 8 8182 002282
0.163396 12 12189 Q001575
0.093587 16 1692 001201

0.053603 20 20094 Q000971
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Observe, for example, that far= 4, if the manager chooses threshold proportional rein-
surance he achieves a probability of ruin o4®8. If he chooses proportional reinsurance,
always with 08375 as the retention percentage, to achieve this protyabflruin he will
need 4091% more initial capital.

Appendix
A Proof of Theorem 1

Let us decompose every inter-occurrence time with gerzedlErlangg)-distribution into
the independent sum afexponential random variables with parameters.. A, each caus-
ing a “sub-claim” of size 0. At the time of theth sub-claim an actual claim with distribution
function F occurs. This can be achieved by consideningtates of the risk process. Start-
ing at time O in state 1, every sub-claim causes a transitidhe next state and the time
of occurrence of thath sub-claim, an actual claim with distributiéghoccurs and the risk
process jumps into state 1 again.

This will allow us to use Markovian arguments due to the laékaemory property of
the exponential distribution.

Let qu)(u) denote the Gerber-Shiu functiod)(if the risk process is in statg¢ (j =
1,..,n).

Indeed, conditioning on the occurrence of a sub-claim, waiokfor 0 < u < b, for
j=1..,n-1

@’ (u) = (1-Ajdt) e %) (u+ Gdt) + Ajdte %% g Y (ut cdt) +o(dt)  (35)
beingi=1forO<u<bandi=2foru>bh.

From 35) we obtain, by Taylor expansion and collecting all terms mfevdt, for j =
1,...,n—-1,

~G+) ¢ W +ad” W20V =0, (36)
and following a similar process fgr=n,
d- @
(Claj —(An+ 5)> (pf>(u) +)\n/0 ' (pll)(u—xkl)dF (X)

g / " w(u,xky — U)dF (x) =0, 37)

(c2ge— n+8)) 020 | [ (- xie)dF 0

+/£b (pll)(u—xkz)dF (x) +/jw(u,xk2— u)dF(x)] =0. (38)

From (36),

) N4
(g”l)(u):qu')(u), j=1,..n—1 (39)
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so
nlo+Aj—ag
M) — i~ Gt | o 20
@ () (Du A )(q (u) (40)

and substituting40) in (37) and in 38) yields &) and ©).
By the continuity argumenlplj)(u)‘ . (pz”(b). Therefore, forj = 1,...,n—1, from
(36) B

u

el (b) = 208" (b), (41)
and forj = n, from (37) and @8),

b 00
cr” (b) + An / % g (b xky)dF (%) + An /b w(b,xk — b)dF (x)
JO T
. b "00
= 2@ (b) + An /E @ (b— xko)dF (X) + An /b wb,xko —b)dF (x).  (42)
JO I
From @1) and @2), and using 39) and @0), (7) is obtained.

B Proof of Theorem 2

From (14), it is easy to obtain

1 N-1 .
f(N) (x) = b Z) bi £ (x), (43)
N =
13 i
00 =~ 3 baf00), (44)
N =
1—byf(0) —byf’(0)—...— by fN"Y(0) =0, (45)
N .
F(x) = 1—_;bif<'*1)(x). (46)

For 0< u < b, we need some previous results,

Definition 1 INy, is theh-th integral,

IN, = /H @1 (u—xky) £ (x)dx,
0

beingh=0,...,N andf(© (x) = f(x).
Lemma 1 The derivative of INwith respect to u is

(0
iNg =1 @)+
ky

INhy1
kq

. (47)
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Proof From Definition1, using the Leibniz rule

|[\|"1 = /r dq’luiuxkl)d (48)
and solving by parts the |ntegral ofd),
(h) e
IN/ = MJri/kl @ (u—xky) MY (x)dx. (49)
ki ki Jo
Taking into account Definitiod and @9), the proof is completed. ad

Lemma 2 The h-th derivative of Iplwith respect to u is

h lNh h— l

- Zo kh W ti-1-9g), (50)

wherel < h<N.

Proof IN(()h) is the h-th derivative ofINg with respect tau. It can be proved by induction
expressiong0).
Forh=1, 0 N
1
o AW+
S0, using Lemma, the validity of Lemma2 for an initial integer is certain.
Forh+ 1, assuming validity foh,

ING =

(h+1) INh "o ho1—
INS + Z kh - f179(0),
and using Lemma we obtain,

(h) h-1 ,(s+1)
NG _1(f ) u)+|Nh+1>+ @ (W) hea 9(0)

Kk ky & K
1
_ () )+ N o #(h-1-9) ()
kf11+1 kh+1 % kh s
V0 iy 4 Nosa

_ h s)
- k?ﬂ u kh+1 + Zlkh s+1 )

and simplifying

(h+1) _ INhi1 f(h-
INg ™ = K + ijh+1 s %(0),

then, expressiorb() is valid forh+ 1. So, by mathematical inductioiNéh) from Lemma
2is certain for all integeh, 1 < h <N. O

Lemma 3 INy can be written as

1 N-1
Ny =5 hZobthh' (51)
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Proof From Definitionl

.U

INy = /Orl o1 (u—xka) TN (x)dlx, (52)

substituting 43) in (52)

|NN = _F/ U Xkl) Z}b.

LA

,_ﬂc

(u—xky) £ (x)dx. (53)

O

The integro-differential equatiorll) and its derivatives with respect tountil N + 1
depending on the derivatives Idfp can be written as

dw=""20w-2in-2 [14 (k%ﬂ ,

C1 C1 1
") = A2 g+ A0 (3) AN 1<hen,

C cik!! ky g 0
By Lemmaz,

A+0 A A u

AR | N FRA, [ -
A = *2w- T2 J1-F (). (54)

h+1 A+0 A e ( u)

ot 55
(pl (U) c ( ) C]_kII k]_ ( )

h—1 (S)
_i <|Nh+ % @ (U) f(hls)(o)) 1< hg N.
C1 &

Kkl ks

From (64) and 65),

INo = & (A;(S@(u),% [kF (k%)] wﬁ(u))

(56)
A+9d u C1
= ()—{1—F(k*l)]—x (),
Kl (A +6 A
= (% “’fm(””?kgf(“f” (%)
(57)

h— 1
b Z; kh = S(O)—ﬁﬂfhﬂ)(U)>,1<h<N.
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Substituting $6) and £7) in (51),

1 l N—-1
|NN——a|N thlNh

:_(Ab:)\d)"’l” oy {1 F(%)%b%%(“)

(58)
N—-1 h N—-1
_izbhkl()\—i-é)(pl(h)( 1behl u
by (& A by 4 ke
N—-1 — b k
(h—1-9) BnC1Ky (h+1)
z bhzorpl Wkt <0>+bN z e W),
Substituting 46) in (58) and rearranging terms,
INy = FN-D (”)+ S @ (D (59)
N = Sy
)2
with
B I bnf(b(0) - 42, s=0
s—1
Do={ AluG MO M 9N 1 by f(19(0), s=1,..,N-1
N—1
7CIbNb7’\ll)l‘(l , s=N.
Finally, substituting %9) in (55) and taking into account relatio#%),
(N+1) A48 ) Ao
= - D
A = e ) - e > AT (s (60)
A N— l N .
L3S
B A+0 bnoz (N)
_< C1 kle (pl (u)+C1ka? (Pl(U)

_ bs—l o ()\ + 5) bs A N-1
; kibn cibn Cibn %4

A 1
A £(N-1-s) (s)
+le (O)) k’l‘“s(pl (u).

b f(h 1- S(O)

For u > b, we can obtaing}™ ™ (u)

@1 (u) by ¢, ko and g, (u).

by an analogous process substitutmg k; and
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