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Abstract: In this work we have developed a Fortran 77 subroutine package to solve numerically
the radial Schrödinger equation. We have also defined an adjustable radial grid with specific charac-
teristics that permit solving the radial Schrödinger equation. The numerical method implemented
is the Hamming predictor-corrector method that is started by expanding the solution at the first
four point as a power series. Furthermore, using that package, we have computed the mean-life for
spontaneous emissions between bound energy levels using a Coulomb potential with and without
screening.

I. INTRODUCTION

The solution of the radial Schrödinger equation during
the Physics degree was restricted to the use of Coulomb
potential and hydrogenic models because in this case the
radial Schrödinger equation can be solved analytically
and its expressions are tabulated. However, for poten-
tials different from the Coulomb potential, the solution of
the radial Schrödinger equation cannot be found analyti-
cally. Then it is necessary to solve the radial Schrödinger
equation numerically. In this work, we have developed a
Fortran subroutine package named schbnd, which imple-
ments the Hamming predictor-corrector method [1], to
solve numerically the radial Schrödinger equation. We
have validated its accuracy by comparing the energy
eingevalues calculated with schbnd with the ones gen-
erated by the subroutine package radial [2] which also
solves the radial Schrödinger equation to high accuracy
and it has been provided for my advisor. As an ap-
plication of schbnd, first, we expose a brief descrip-
tion of stimulated absorption, stimulated emission and
spontaneous emission for bound states. For spontaneous
emission, we have written a program which computes the
mean-lives for different screened Coulomb potentials and
energy levels. We consider the case of gross structure,
that is, non-relativistic electron for spin-less particles.

All the atoms, except hydrogen, are multi-electronic
atoms. Even though, we use the independent-particle
model which means that the interactions among the dif-
ferent electrons is non-existent or negligible, we just con-
sider the one-electron transitions. Hence, all the expres-
sions of this work apply to one-electron atoms.

We present the results of mean-lives calculated for dif-
ferent atomic numbers Z for a Coulomb potential and
for a Coulomb potential with the Thomas-Fermi-Moliere
(TFM) screening function. We also analyze the effect
of screening on the mean-lives. To evaluate the effect
of screening on the mean-life we consider the screened
Coulomb potential

V (r) =
−Ze2

r
φ(r), (1)

where φ is the TFM screening function.

φ(r) = 0.10e−6r/b + 0.55e−1.2r/b + 0.35e−0.3r/b (2a)

b = 0.88534a0Z
−1/3 (2b)

For high values of r, the charge of the nucleus is com-
pletely screened and the number of bound energy levels
is finite. This happens because the potential includes the
self-screening of the electron which suffers the transition.
We introduce the Latter’s tail correction [3] to eliminate
this self-screening,

rV (r) =

{
−Ze2φ(r) if rV (r) < −e,
−e otherwise.

(3)

The use of a Coulomb potential with a screening func-
tions conflicts with the use of the independent-particle
model. Despite this, we have use screened Coulomb po-
tentials to do a first estimation about how mean-lives are
modify by the inclusion of a screening.

II. NUMERICAL SOLUTION OF THE RADIAL
SCHRÖDINGER EQUATION

In this section all the expressions are in atomic
units. The schbnd subroutine package solves the ra-
dial Schrödinger equation for bound states for a central
potential V (r) such that the function V(r) = V (r)r is
finite for all the values of r and it tends to constant val-
ues when r → ∞ and r → 0. We consider central-field
orbitals of the form

ψn`m(r) =
Pn`(r)

r
Y`m(r), (4)

whose radial part satisfies the second-order differential
equation

P ′′n`(r) + 2

[
En` − V (r)− `(`+ 1)

2r2

]
Pn`(r) = 0, (5)

where Pn`(r) is the reduced radial wave with boundary
conditions Pn`(0) = 0 and Pn`(∞) = 0 and it is normal-
ized to unity. Pn`(r) has a number of zeros equal the
radial quantum number nr = n− (`+ 1).
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A. Defining the grid of points

In the numerical solution we consider a radial grid,
ri(i = 1, . . . , N), whose a spacing ∆i = ri+1 − ri should
increase monotonously to have a dense enough grid near
the origin where P (r) changes its value swiftly. Moreover,
the distance between two consecutive points has to be
smaller than the distance between two consecutive zeros
of P (r). The grid covers the interval (r = 0, rN ), for
r > rN the contribution of P (r) can be neglected. Other
parameters are r2 which determines the spacing for lower
radii and ∆N = rN − rN−1 which defines the spacing for
high radii. We introduce the transformation x = g(r) to
obtain a grid with uniform spacing with x = 1, . . . , N .

x = g(r) = ar + b ln(c+ r) + d. (6)

Then, the grid of radii is obtained by solving Eq.(7) using
the bisection method.

ari + b ln(c+ ri) + d = i i = 1, 2, . . . , N. (7)

The values of the parameters a, b, c and d are obtained
by solving the system of equations

b ln(c) + d = 1, a rN + b ln(c+ rN ) + d = N,

a +
b

c
=

1

r2
, a +

b

c+ rN
=

1

∆N
. (8)

When the value

Agrid ≡
rN − (N − 1)r2

rN

∆N

∆N − r2
. (9)

lies in the interval (0.5, 1) the system of equations Eq.(8)
has a unique solution given by

c = xrN , b =
x(c+ rN )(∆N − r2)

∆Nr2
,

a =
c− br2
cr2

, d = 1− b ln c, (10)

where x is the positive root of

(x+ 1)

[
1− x ln

(
x+ 1

x

)]
= Agrid (11)

which is solved again by the bisection method.

B. schbnd package

schbnd package solves the radial Schrödinger equation
as a system of first order equations in vector form using
the Hamming predictor-corrector method.

dY

dr
= F[r,Y], (12)

Y(r) =

(
P (r)

Q(r)

)
,

dY

dr
=

(
0 1

2(U` − E) 0

)
Y(r),

(13)

where

U`(r) = V (r) +
`(`+ 1)

2r2
. (14)

Hamming’s method assumes a uniform grid with spacing
H. To do that, Eq.(12) is subject to the change variable
x = g(r).

dY

dx
=

1

g′(r)
F[r,Y] ≡ F[x,Y]. (15)

Then, the solution at the next point xi+1 = xi +H is ob-
tained using Hamming predictor-corrector method which
consists in five stages:
1) Predictor:

Pi+1 = Yi−3 +
4H

3

(
2Y′i −Y′i−1 + 2Y′i−2

)
.

2) Modificator:

Mi+1 = Pi+1 −
112

121
(Pi −Ci) ,

M′i+1 = F(xi+1,Mi+1).

3) Corrector:

Ci+1 =
1

8

[
9Yi −Yi−2 + 3H

(
M′i+1 + 2Y′i −Y′i−1

)]
.

4) Final value:

Yi+1 = Ci+1 +
9

121
(Pi+1 −Ci+1) +O(H6).

Where Yi ≡ Y(ri) and Yi
′ ≡ F[xi,yi]. In this way we

can obtain the values of P (r) and Q(r) = P ′(r) in all the
points of the grid, the last step is to normalize P (r) and
Q(r).

The main advantage of that method is that is stable
and the error decreases in the direction in which Yi in-
creases in magnitude. However, this is not a self-starting
method. To start it are needed the first four point which
are obtained following the same procedure implemented
in radial package, section II C.

The solution can start from the grid point r = 0(r =
rN ) which is called the outward(inward) solution. In fact,
the inward solution starts in the practical infinity, r∞,
which is the point that fulfills the condition

r∞µ(r∞) > 60, (16)

where µ(r) is given by WKB approximation [4]

µ(r) ≡
√
V (r) +

`(`+ 1)

2r2
. (17)

Inward solution starts in r∞ instead of rN because P (rN )
could be quite small if rN is far enough from the origin.
The error introduced changing the start point of the in-
ward solution can be neglected and it is established that
P (r) = 0 for r > r∞. In the rest of this work we have
considered that rN = r∞.
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C. radial subroutine package

radial computes the values of P (r) and Q(r) in the
interval (ra, rb) where ra and rb are points of the grid
and the values of P (ra) and Q(ra) are already known.
The values of V(r) = V (r)r have been interpolated in
this interval by a cubic polynomial

V(r) = V (r)r = v0 + v1r + v2r
2 + v3r

3. (18)

To start the inward solution it is necessary to know the
value of P (rN ) and Q(rN ), we estimated them using the
WKB approximation.

P (rN ) = 1 and
Q(rN )

P (rN )
= − µ

′(rN )

2µ(rN )
− µ(rN ). (19)

Introducing the change of variables x ≡ (r − ra)/h and
h ≡ rb − ra, P (x) is expanded as a power series in x and
it is obtained the recurrence relation

P (x) =

∞∑
k=0

Akx
k, (20)

Ak =
h

k(k − 1)ra
[−2(k − 1)(k − 2)Ak−1

+
h

ra
{(u0 − (k − 2)(k − 3))Ak−2 + u1Ak−3

+ u2Ak−4 + u3Ak−5 + u4Ak−6} ] , (21)

where A0 = P (ra), A1 = hP ′(ra), Ak = 0 if k < 0 and
where

u0 = `(`+ 1) + 2v0ra + 2(v1 − E)r2a + 2v2r
3
a + 2v3r

4
a,

u1 = 2
[
v0 + 2(v1 − E)ra + 3v2r

2
a + 4v3r

3
a

]
h,

u2 = 2
[
(v1 − E) + 3v2ra + 6v3r

2
a

]
h2, (22)

u3 = 2 (v2 + 4v3ra)h3,

u4 = 2v3h
4.

For x = 1 the values of P (rb) and Q(rb) are,

P (rb) =

∞∑
k=0

Ak , Q(rb) = h−1
∞∑
k=0

kAk. (23)

The outward solution starts with the condition P (r1) = 0
and Q(r1) = 0, the outward solution begins with ra =
0, to avoid possible divergences the power expansion is
modified

P (x) = xs
∞∑
k=0

Akx
k, (24)

Ak =
u1Ak−1 + u2Ak−2 + u3Ak−3 + u4Ak−4

(s+ k)(s+ k − 1)− uo
, (25)

where s = (` + 1) and A0 = 1. The last step is to
normalize the values of P (r) and Q(r). The program
adds as many terms of the summation as needed to ensure
that the relative error in the sum is lower than a certain
value of tolerance ε ∼ 10−13.

D. The shooting method

The solution of the radial Schrödinger equation is
started by introducing an estimate of the energy eigen-
value E between the values

Einf ' min

{
V (r) +

`(`+ 1)

2r2

}
,

Esup ≡ V (rN ) +
`(`+ 1)

2r2N
. (26)

We consider a matching point rm that is larger than the
outer turning point and beyond the classical inflection
point of P (r). This means that all zeros of P (r) lie in
the interval (0, rm). This point is determined by the con-
dition

V (ri) > E − `(`+ 1)

2r2i
if i ≥ m. (27)

The outward solution starts computing the values of P (r)
and Q(r) = P ′(r) in the interval (0, rm) using a value of
the energy E = (Einf +Esup)/2. The numbers of zeros of
P (r) is equal to the number of times that P (r) changes
its sign. If the number of zeros is lower(greater) than nr
E replaces Einf(Esup). This process is repeated until it
is found a value of E with nr zeros. This strategy is con-
sistent provided that there is at most one zero between
two consecutive points of the grid, to ensure that, it is
necessary a dense enough grid. Then, the inward solu-
tion is computed from rN to rm. To connect the inward,
Pin, and the outward, Pout, solutions it is necessary to
re-normalize both solutions so that Pin(rm) = Pout(rm).
Then, P (r) is continuous in the interval (r1, rN ). Q(r)
should also be continuous in rm, otherwise the value of
the energy is corrected using the Mayer’s correction [5]

∆E = P (rm)[Qout(rm)−Qin(rm)]

[
2

∫ ∞
0

P 2(r)dr

]
(28)

Then, the value of the energy eigenvalue is modified,
En` = E + ∆E. The process is repeated until Q(r) is
continuous in rm. The last step is to normalize P (r).

E. Analysis of the schbnd results

To estimate the accuracy of schbnd, we have com-
puted energy eigenvalues for different energy levels for
atoms of Au, Al and Ag using a Coulomb potential with
a TFM screening function. We have compared that val-
ues with the ones provided by radial. The energy eigen-
values obtained using schbnd are slightly less accurate
than the ones given by radial. The relative difference
is smaller when the number of grid points is increased
and the relative difference reaches a constant value for a
determined number of grid points.
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Al(1s) Ag(1s) Au(1s) Al(3p) Ag(5s) Au(5d)

NGP ∆E(%) ∆E(%) ∆E(%) ∆E(%) ∆E(%) ∆E(%)

250 1E−3 2E−3 2E−3 1E−2 2E−1 5E−1

500 2E−6 2E−6 4E−6 1E−3 6E−3 1E−4

1000 1E−7 1E−6 4E−6 1E−3 2E−3 6E−5

5000 1E−7 1E−6 4E−6 8E−6 1E−4 3E−5

10000 1E−7 1E−6 4E−6 1E−7 1E−5 4E−6

20000 1E−7 1E−6 4E−6 1E−7 5E−6 1E−7

25000 1E−7 1E−6 4E−6 1E−7 5E−6 1E−7

TABLE I: Values of the relative difference between the energy
eigenvalue provided by radial and by schbnd package (∆E)
for Al, Ag and Au.

III. APPLICATION: ABSORPTION AND
EMISSION OF RADIATION

A. Semiclassical theory

We consider an atom with just one electron which in-
teracts with the electromagnetic radiation in a region free
of other charges. This atom can be in the quantum bound
state |ψb〉 with energy Eb or in |ψa〉 with energy Ea. The
pulse has a wave vector k, polarization ε̂ and density of
photons per unit volume and per unit frequency n(ω)
with ω = ck.

First, we consider the case of absorption. In a tran-
sition from |ψa〉 to another state |ψb〉 with Ea < Eb,
the atom absorbs a photon of the pulse with frequency
ωba = (Eb − Ea)/~. The transition rate for absorption
[6] is given by

Wba(k̂, ε̂) = n(ω)
(2πec)2

~ωba

∣∣∣Mba(k̂, ε̂)
∣∣∣2 δ(ωba − ω), (29)

where e is the electron charge, c is the speed of light and

Mba(k̂, ε̂) = 〈ψb |
1

mec
e(ik·r)ε̂[p + i

~
2
σ × k]|ψa〉 , (30)

where me is the mass of the electron, σ are the Pauli
matrices. Assuming that the radiation is incoherent,
the transition rate has to be integrated over all the fre-
quencies. Considering the case in which the wavelength
λ = 2π/k, is much longer than the atomic radius, the
exponential in Eq.(30) can be approximated by unity.
Moreover, we can neglect the effect of the spin term to
arrive at the dipole approximation:

Mba =
1

mec
ε̂ 〈ψb |p|ψa〉 = ikε̂ 〈ψb |r|ψa〉 , (31)

For isotropic and non-polarized radiation, the absorption
rate is

Wba = n(ωba)
4π2e2

3~
ωba |〈ψb |r|ψa〉|2 . (32)

This expression also give the transition rate for stim-
ulated emission from |ψa〉 to a lower state |ψb〉 with
Ea > Eb in which the atom emits a photon with ωba.

The transition rate for spontaneous emission from |ψa〉
(a = n`) to |ψb〉 (b = n′`′) with quantum numbers n` and
n′`′ respectively is [6]

W s
ba =

ω2
ba

π2c3
Wba

n(ωba)
=

4e2

3~c3
ω3
ba |〈ψb |r|ψa〉|2 . (33)

Instead of transitions between individual states, what is
observed are the transition between bound the energy
levels Ea and Eb. Within the dipole approximation it is
customary to introduce the oscillator strength, a dimen-
sionless quantity defined as

fba ≡
2me

3~
ωba |〈ψb |r|ψa〉|2 . (34)

The average oscillator strength is defined as

fba ≡
1

2`+ 1

∑̀
mL=−`

`′∑
m′

L=−`′
fba (35)

That is, as a sum of oscillator strengths over the degen-
erated states in the final level and an average over states
of the initial level.

From Eq.(34) and Eq.(35),

fba =
2me

3~
ωba

∣∣∣∣∫ +∞

0

Pn′`′rPn`dr

∣∣∣∣2 〈1`00|`′0〉2 , (36)

where 〈1`00|`′0〉 is the Clebsch-Gordan coefficient. Thus,
the transition rate for spontaneous emission is expressed
as

W s
ba =

2e2

mec3
ω2
ba|fba|. (37)

If we consider that we have an initial number of atoms,
N(0), in the exited level Ea. The number of atoms that
remain excited after a time t is

N(t) = N(0)exp

(
−t
τ

)
. (38)

The mean-life is the rate of decrease of the population
of that level to all the possible levels which lower energy
permitted by the selection rules.

τ =

(∑
b

W s
ba

)−1
=
(
W s

ba

)−1
. (39)

IV. VALUES OF MEAN-LIVES COMPUTED

A. Coulomb potential

We have calculated the mean-lives of hydrogen for dif-
ferent energy levels and we have seen that these values
are in good agreement with those in Ref.[7].
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nl 2s 2p 3s 3p 3d 4s 4p

(τ/s)× 108 ∞ 0.1596 15.839 0.5271 1.5467 22.657 1.2305

TABLE II: Mean-lives of energy levels for hydrogen for a
Coulomb potential.

Moreover, we have verified that the hydrogenic scaling
property

τ(Z) =
τ(Z = 1)

Z4
, (40)

is satisfied.

(τ/s)× 108

2p 3s 3p 3d 4s 4p

He 9.98E−3 9.90E−1 3.29E−2 9.67E−2 1.42E+0 7.69E−2

C 1.23E−4 1.22E−2 4.07E−4 1.19E−3 1.75E−2 9.49E−4

Ne 1.60E−5 1.58E−3 5.27E−5 1.55E−4 2.27E−3 1.23E−4

Al 5.59E−6 5.55E−4 1.85E−5 5.42E−5 7.93E−4 4.31E−5

Ar 1.52E−6 1.51E−4 5.02E−6 1.47E−5 2.16E−4 1.17E−5

Kr 9.50E−8 9.43E−6 3.14E−7 9.21E−7 1.35E−5 7.33E−7

TABLE III: Half-lives for different atoms and energy levels
for a Coulomb potential. The mean-life of energy level 2s is
infinite.

B. Screening Coulomb potential

We have introduce the TFM screening function to the
Coulomb potential and we have computed the mean-lives
for the same atoms and energy levels of Table III. The
screening reduces the energy |E| of the level. As a con-
sequence, there is a reduction of the frequency of the
emitted photon. Moreover, the oscillator strength also
suffers a variation because it depends on the frequency
of the photon. As a result, the transition rate is smaller,
this produces an increase of the mean-life of that level.

(τ/s)× 108

2p 3s 3p 3d 4s 4p

He 1.32E−1 7.21E+0 4.23E−1 1.55E+0 1.12E+1 9.78E−1

C 1.00E−2 4.21E+0 2.94E−2 1.38E+0 1.08E+1 6.85E−2

Ne 8.62E−5 1.79E−1 3.39E−3 2.36E+0 5.95E−1 1.03E−2

Al 1.85E−5 2.50E−2 2.11E−3 2.71E+0 1.13E−1 6.35E−3

Ar 3.54E−6 1.54E−3 9.74E−5 1.01E+0 2.51E−2 7.27E−4

Kr 1.46E−7 2.88E−5 9.76E−7 5.54E−6 1.69E−4 1.21E−5

TABLE IV: Mean-lives for different atoms and energy levels
using a Coulomb potential with a TFM screening function.
The mean-life of energy level 2s is infinite.

V. CONCLUSIONS

We have implemented the Hamming predictor-
corrector method to solve the radial Schrödinger equation
numerically. We have also seen how important is choos-
ing the radial grid to evaluate correctly the values of P (r)
and the energy eigenvalue, and to not skip any zero of
the function. Moreover, we have verified the values of
P (r) and En` developing a program which computes the
mean-lives for hydrogenic atoms and seeing that the val-
ues are compatible with the ones in [7] and verify Eq.(40).
Then, we have introduced the TFM screening function to
the Coulomb potential and we have seen that screening
produces a reduction of the transition rate and, as a con-
sequence, the mean-life of the level increases.
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