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1. SUMMARY

The research presented in this work investigates the use of green solvents in the synthesis

of a new-class of hybrid porous materials, named metal-organic frameworks (MOFs), which are 

formed by the combination of metallic centres and organic linkers. The fluid technology based 

on supercritical carbon dioxide (scCO2) has been studied as a promising alternative for safer 

and cleaner synthesis over the conventional solvothermal conditions. In particular, the specific 

goal stablished for this research is to successfully synthesize two widely-known compounds with 

MOF structures denominated HKUST-1 and ZIF-8 that will demonstrate the applicability of the 

method. The reactions were carried out in a reactor vessel at the conditions of 200 bar, 70 ºC 

for 20 hours in a medium of scCO2 with selected additives. The reactant quantities were used in 

stoichiometric ratios according to the formula unit of each MOF. The physicochemical and 

textural properties of the prepared samples were measured and compared to those obtained 

from conventional methods. The two products have been successfully synthesized with a high-

degree of purity as demonstrated by the elemental analysis. The structure of HKUST-1 

corresponds to a face-centred cubic lattice with an observed surface area of 1290 m2·g-1, in 

accordance with previous reported data. ZIF-8 was also obtained with the same structure than 

the one described in the literature, but with outstanding values of surface area (1730 m2·g-1), 

which overpass most of the values reported with other synthetic approaches. In the last part of 

this report, an explanation based on the ultraviolet-visible (UV-Vis) spectra and the Crystal Field 

Theory is provided as a tool to understand the observed colour change in HKUST-1. 

Keywords:  Green chemistry, supercritical CO2, MOF, porous materials, hybrid products. 
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2. RESUMEN

Este trabajo recoge la investigación realizada con el fin de incorporar los disolventes verdes

en la síntesis de una nueva clase de materiales porosos híbridos llamados metal-organic 

frameworks (MOFs), cuya estructura se basa en centros metálicos unidos por ligandos 

orgánicos. Se ha estudiado como posible substituto a las actuales síntesis solvotermales, la 

tecnología basada en dióxido de carbono supercrítico (scCO2) como un método efectivo, limpio 

y seguro. Con el fin de demostrar su aplicabilidad, se ha fijado el objetivo de obtener utilizando 

scCO2 dos de los compuestos más conocidos con estructura tipo MOF, el HKUST-1 y el ZIF-8. 

Para ello se han llevado a cabo una serie de reacciones en un reactor presurizado. Las 

condiciones utilizadas son: presión de 200 bares a 70 ºC y durante 20 horas, en un medio de 

scCO2 y aditivos seleccionados. Las cantidades utilizadas de reactivos se corresponden con las 

que marca la relación estequiométrica de la estructura del MOF correspondiente. Las 

propiedades fisicoquímicas y texturales de los materiales obtenidos han sido comparadas con 

respecto a aquellas que se obtienen como resultado de utilizar métodos convencionales. 

Ambos compuestos se han sintetizado satisfactoriamente y con un alto grado de pureza, lo que 

queda demostrado por los resultados de los análisis elementales. La estructura del HKUST-1 

se corresponde con la de una celda cúbica centrada en las caras. El producto obtenido 

presenta un área superficial de 1290 m2·g-1, resultado que se encuentra en el rango de los 

previamente descritos en la literatura. El ZIF-8 se obtuvo también con la estructura esperada, 

pero con un valor de área superficial de 1730 m2·g-1, superior a la mayoría de fases preparadas 

utilizando métodos convencionales. La última parte de este informe desarrolla una posible 

explicación de los cambios de color observados en el HKUST-1 cuando se somete a 

tratamientos de vacío, basada en el análisis de los espectros de ultravioleta-visible (UV-Vis) y 

aplicando la Teoría del Campo Cristalino.  

Palabras clave: Química verde, CO2 supercrítico, MOF, materiales porosos, materiales 

híbridos. 
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3. INTRODUCTION

Industry is highly interested in controlling materials porosity, due to its importance in the

design of catalysts, adsorbents, membranes and ceramics. In this section, the basics about 

porous materials and their classification are introduced. Next, the focus is on metal-organic 

frameworks (MOFs). MOFs are nowadays one of the best examples in terms of designable 

porous materials at the molecular level. Developed over the last 20 years, MOFs have become 

an exciting and highly productive field of research due to their promising applications in 

hydrogen storage, CO2 capture and heterogeneous catalysis, for example. In the work 

presented here, two of the most representative members of the MOF family (HKUST-1 and ZIF-

8) have been studied. These two materials are currently available for purchase on different

vendors, including Sigma-Aldrich, highlighting their prospects for industrial applications. 

However, the industrial applicability and economic feasibility of MOFs are strongly related to 

their scale-up and production cost. Academia usually reports the synthesis of such materials 

with the use of expensive and non-environmentally friendly organic solvents at high temperature 

and for long reaction times. Supercritical carbon dioxide (scCO2), fluid described in the last part 

of this introductory section, has become a promising alternative to be used as a solvent in many 

industrial processes providing a safer replacement over organic solvents. A novel green 

synthetic route is explored in this work as a cheap and non-toxic alternative for the preparation 

of MOFs. 

3.1. POROUS MATERIALS 

A porous material is a solid with pores (voids), for example cavities, channels or interstices 

that are deeper than they are wide. Voids can be employed to store, sort by molecular size 

acting as molecular sieving, promote catalytically chemical transformations and transport active 

species. The physical properties and chemical reactivity are strongly dependent on the pore 

structure and therefore an accurate classification of porous systems is necessary. The 

International Union of Pure and Applied Chemistry (IUPAC) has developed a classification 

based on the following parameters: 1 
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 Availability to external fluid:

- Open pores if there is a continuous channel of communication with the external

surface of the solid. Some may be opened only by one end (blind, fig. 1 b, f) and

other at two ends (through pores, fig. 1 e).

- Closed pores, those totally isolated from the neighbours (fig. 1 a).

 Shape: cylindrical (fig. 1 c, f), ink-bottle (fig. b), funnel (fig. 1 d) and slit.

Figure 1. Schematic cross-section of a porous solid.1 

 Size:

- Micropores: pores smaller than 2 nm.

- Mesopores: in the range of 2 nm to 50 nm.

- Macropores: pores larger than 50 nm.

An alternative classification can be done attending to the chemical composition of the 

material: 

- Organic, like covalent organic frameworks.

- Inorganic, for example, zeolites, carbon nanotubes, activated carbon, etc.

- Hybrid, comprising metal-organic frameworks.

3.2. METAL-ORGANIC FRAMEWORKS 

MOFs are a class of solid materials formed by an extended network of metal ions (or 

clusters) coordinated to multidentate organic molecules. For a solid to be considered as metal-

organic framework should display strong bonding that provides robustness, linking units 

available for modification by organic synthesis and geometrically well-defined structures. The 
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later implies that MOFs should be highly crystalline, essential for understanding their structure 

and properties. 2  

MOFs are normally prepared by one-pot self-assembly of metal ions or clusters 

(coordination centres) and organic molecules resulting in 1D, 2D and 3D structures. MOFs can 

exhibit ultrahigh porosity (up to 90 % free volume) and enormous surfaces areas, even beyond 

6000 m2·g-1.3 MOFs are normally obtained under solvothermal conditions, which involve the use 

of organic solvents like dimethylformamide (DMF) or diethylformamide (DEF) under high 

temperatures and pressures. 

For classification, some metal-organic frameworks are identified by the word MOF followed 

by a number assigned in roughly chronological order (for example those discovered by Omar 

Yaghi’s group like MOF-5) while others contain the name of the institution who discovered it, like 

MIL-53 from the Materials of Institute Lavoisier.  

In this report the attention is drawn into HKUST-1 (reported first in 1999 by Chui et al.) and 

ZIF-8 (patented by Yaghui et al. in 2003); two of the most important metal-organic frameworks 

due to their structure and large number of applications. 

3.2.1. HKUST-1 

By far, Cu3(BTC)2·3H2O (BTC=1,3,5-benzenetricarboxylate) is one of the most popular and 

studied metal-organic frameworks. HKUST-1 is the widespread used name for this compound, 

an acronym for the Hong Kong University for Science and Technology, but can also be called 

MOF-199. The structure of HKUST-1 is based on the coordination of the organic ligand (BTC) to 

copper(II) ions. The obtained material has a face-centred cubic lattice with an intersecting three-

dimensional system of large square-shaped pores of size 9 x 9 Å (fig. 2). 

More specifically, copper (II) ions form dimers, with a short internuclear Cu···Cu separation 

of 2.682 Å. Four coordination sites of each metal atom are bound to four oxygen atoms from 

four different linker molecules. The remaining coordination site is normally filled by a weakly 

bound water molecule, and thus completing the pseudooctahedral coordination sphere of the 

metal unit. Upon dehydration, the water molecule is lost, changing the number of coordination of 

copper ions from six to five. The formation of these Lewis coordination sites in the interior of the 

pore walls, makes copper sites accessible for catalytic conversions. 4,5 
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The geometry of MOFs can also be understood by introducing the concept of Secondary 

Building Unit (SBU) developed by Yaghi and co-workers as an extension from the original use in 

zeolites. SBUs are small unities constructed from one or more metal ions and the donor atoms 

of multidentate linker creating well-defined entities which are repeated through the network. The 

arrangement in HKUST-1 is based on metal paddle-wheels (fig. 3), a SBU constructed from 

copper atoms bridged by four carboxylate groups from four BTC ligands. From the position of 

the carboxylate carbon atoms a squared shape can be defined. These atoms receive the name 

of points of extension as they connect to the rest of the linkers and therefore to neighbouring 

units. The axial positions correspond to oxygen atoms from water molecules. 6

Figure 2. HKUST-1 polymer framework 

showing nanochannels. 5 

Figure 3. Copper (blue) square paddle-wheel 
SBU. Oxygen atoms are in red while carbon is 
displayed in grey (Bosch M.et al., Advances in 
Chemistry, 2014, ID 18232). 

HKUST-1 is nowadays produced by BASF and marketed by Sigma-Aldrich under the name 

of Basolite© C300 

3.2.1. ZIF-8 

Zeolitic Imidazolate Frameworks (ZIF) are a subclass of MOFs with similar topologies to 

those found in aluminosilicate zeolites. In zeolites, the framework consists of tetrahedral silicon 

or aluminium atoms bridged by oxygen. In ZIFs, these atoms are replaced by a transition metal 

and connected by imidazolate-type ligands (fig. 4). In fact, the name of ZIF arises from the 
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experimental observed metal-imidazolate-metal angle that it is close to that reported on zeolites 

(see fig. 5). ZIFs exhibit permanent porosity and exceptional chemical and thermal stabilities. 7

Figure 4. Typical linkers used in the 

construction of ZIFs. 7 

Figure 5. Bridging angles in ZIF(1) and 

zeolites(2). 7 

ZIF-8 is the most representative ZIF compound with a sodalite zeolite-type topology. Each 

zinc(II) ion is tetrahedrally coordinated to four nitrogen atoms from the ditopic bridging 2-

methylimidazolate (2-mIm) to form a neutral framework with the formula unit Zn(2-mIm)2. The 

basic unit for ZIF-8 is a truncated octahedron (12.5 Å effective diameter, figure 6) accessible 

through hexagonal window openings of 3.3 Å in diameter. The octahedron also receives the 

name of cage, as the window size (pore aperture) is much smaller than the diameter of the 

cavity. One-dimensional channels are formed in the four directions of the cubic-lattice as a 

result of sharing those hexagonal faces with neighbouring cages. 7,8 

Figure 6. ZIF-8 structure shown as a stick diagram (Left), and as a tiling (Centre). (Right) The largest 

cage shown with ZnN4 tetrahedron in blue. H atoms are omitted for clarity. 9

ZIF-8 is currently produced by BASF and commercially available under the name of 

Basolite© Z1200. 

      1 2 
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3.3. SUPERCRITICAL CO2 AS A GREEN SOLVENT 

A supercritical fluid (SCF) is a single uniform phase obtained when a substance is 

pressurized and heated above its critical point. In the supercritical region, an isothermal 

pressure increase above the critical pressure or an isobaric temperature increase above the 

critical temperature maintains the fluid at supercritical conditions, without phase transition. The 

properties of SCF are between those of a gas and a liquid and can be tuneable with small 

pressure and temperature variations. Figure 7 provides the critical points for other selected 

fluids. 10 

Fig. 8 shows the phase diagram of carbon dioxide. The different displayed regions represent 

the conditions of pressure and temperature at which the various phases of CO2 are present. A 

black circle points the critical point, in this case situated at 31 ºC of temperature and 7.38 MPa 

(73.8 bar) of pressure.  

Figure 7. Critical point of some selected fluids. 10 Figure 8. Phase diagram of CO2. (Pieter Kuiper, 
25/05/15 via Wikimedia Commons, Creative 
Commons Attribution). 

 Carbon dioxide is by far the most common solvent used in supercritical fluid processes. Its 

applicability as a solvent has been investigated since the 1950s. Solvents are known to play a 

major role in the environmental assessment of any process in the chemical industry and also on 

its cost, safety and health issues. Green solvents summarize the idea of minimizing the 

environmental impact resulting from the use of solvents in chemical production. Carbon dioxide 

is one of these solvents considered as “green” and a great candidate for replacing conventional 
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volatile organic solvents due to its exceptional physicochemical characteristics. These include 

its non-flammability, relatively non-toxicity, inertness and a supercritical regime readily 

accessible in terms of cost and equipment.  

Up-to-date supercritical carbon dioxide is widely-known to be used in extraction processes, 

for instance the removal of caffeine from coffee beans, in Supercritical Fluid Chromatography, in 

nanoparticle formation, polymer processing, textile dyeing and many other examples. scCO2 is 

also used to eliminate the solvent in silica alcogels obtaining a barely-new material called 

aerogel with outstanding properties, like extremely low density, high specific surface area, high 

porosity, high thermal insulation values, ultra-low dielectric constant and low refraction 

index.511,12 
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4. CHARACTERIZATION TECHNIQUES

In this section of the report, the basics about all the characterization techniques used in this

investigation are summarized. Most significant information is provided by X-Ray diffraction that 

allows a preliminary distinction between ordered solids and amorphous materials. It also 

provides information about the synthesized phase and the presence of impurities by comparing 

the diffraction pattern from the synthesized materials with the one from the Cambridge 

Crystallographic Data Centre (CCDC). Once the solid has been adequately identified, a further 

study of its characteristics is performed with the rest of the successive techniques. 

The following description includes information about the special characteristics of each 

techniques and the experimental details.  

4.1. X-RAY POWDER DIFFRACTION 

Diffraction is the phenomenon caused by the interference of an object in the path of waves 

that conserves the kinetic energy of the beam but changes its direction due to elastic scattering. 

Diffraction occurs when the dimension of the diffracting object is comparable to the wavelength 

of the radiation.  

X-rays are electromagnetic radiation with wavelengths of the order of 10-10 meters. As this

length is about the size of an atom, information about the size and shape of the solid unit cell 

can be retrieved. X-rays are typically generated by bombarding a metal (usually copper or 

molybdenum) with a beam of high-energy electrons emitted from a hot filament (thermionic 

emission). The electrons decelerate as they hit the metal and generate a radiation with a 

continuous range of wavelengths called broad background. Superimposed there are few high-

energy sharp peaks arising from collision with electrons in the inner shells. That collision expels 

the electron of the inner shell, and an electron of higher energy drops into the vacancy emitting 

an X-ray photon. Particularly those falling in a K shell (a shell with principal quantum number, 

n=1) are classified as K-radiation. The X-rays are filtered to a single wavelength 

(monochromatic) and directed onto the sample.  

The use of monochromatic radiation allows diffraction to be treated geometrically like 

reflection. Bragg’s model of diffraction describes the condition of the incident angle for 
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constructive interference. Any other incident angle will result in waves out of phase and 

consequently a destructive interference. 

𝑛 = 2𝑑 𝑠𝑖𝑛(𝜃) 

Here n is a positive integer,  is the wavelength of the incident wave, d the distance 

between two planes of the crystal and  the scattering angle. 10 

During this work, powder X-ray Diffraction (PXRD) has been used for the characterization of 

the obtained materials. Powdered samples contain randomly orientated crystallites which 

produce a widening of the diffraction lines. The diffractogram is obtained by recording the 

intensity of detected X-rays (constructive interferences) as a function of the diffraction angle (θ) 

and is characteristic of the sample material.  

A Siemens D5000 instrument using Cu Kα incident radiation has been used for recording the 

diffracted X-rays from angles (2θ) in the range of 5º to 50º, with a step scan of 0.02º counting for 

1 second at each step.  

4.2. THERMAL ANALYSIS 

Thermal analysis includes a set of techniques that measure the properties of materials as 

temperature changes. More specifically, thermogravimetric analysis (TGA) monitors the weight 

of a sample as a function of temperature under controlled atmosphere. The temperature 

increases with a specifically heating rate in an atmosphere prepared with synthetic air, inert 

gases, oxygen or even mixtures. 

In MOF characterization, TGA allows the study of the stability of the synthesized phase with 

the possibility of locating any other thermal event that may happen during the measurement. 

The experimental profiles in this report were obtained with a NETZSCH-STA 449 F1 Jupiter 

equipment under a flow of synthetic air, with a heating rate of 10 ºC·min-1, from room 

temperature to 700 ºC. 
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4.3. SCANNING ELECTRON MICROSCOPY

Scanning electron microscopy is an imaging technique based on the interaction of a high-

energy electron beam with the sample. A QUANTA FEI 200 FEG-ESEM microscope was used 

in this work to analyse the different obtained materials. The beam is generated by applying a 

strong electric field to an extremely fine tungsten point (field emission). The electrons are 

accelerated by a voltage current between 1 and 30 kilovolts (in our case 20 kV) and focused 

onto the sample with electromagnetic lenses. The beam is scanned across the surface of the 

sample in a raster pattern. After interacting with the sample, the electrons are collected and 

converted into a signal that produces an image in black and white. Two kinds of electrons can 

be detected depending on the interaction with the sample:  

- Secondary electrons (SE, inelastic scattering) give information about the shape.

The yield of SE increases with decreasing the angle between the beam and the

sample surface, resulting in steep surfaces and edges seen brighter than flat

surfaces.

- Backscattered electrons (BSE, elastic scattering) are strongly dependent on the

atomic number and thus give information about the chemical composition. In BSE

images, heavy atom regions appear brighter.

In order to prevent accumulation of electrostatic charge at the surface, samples were 

previously coated with gold using a K550 Sputter Coater. 13,14 

4.4. TEXTURAL PROPERTIES - SURFACE AREA DETERMINATION

Specific surface area is calculated per unit of mass, and it is a significant parameter in 

characterizing porous materials. Surface area is commonly obtained by applying the Brunauer, 

Emmett and Teller (BET) theory to recorded nitrogen adsorption isotherms (changing curve of 

equilibrium adsorption capacity with pressure) measured at 77 K. The BET analysis relies on 

adsorption occurring by multilayer formation and implies that the number of adsorbed layers is 

infinite at the saturation pressure. BET method has been successfully proved to obtain accurate 

surface areas from metal-organic frameworks. 15 

Prior to the analysis, the sample is taken into a degasification process. The sample is 

heated under ultra-high vacuum to eliminate vapours and gases of the surface without altering 
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the solid. Once the instrument records all the required parameters, the analysis step starts. The 

instrument makes controlled additions of nitrogen into the sample tube at 77 K. Stabilized 

pressure (P) and adsorbed volume (V) at standard conditions (273.15 K, 1 bar) are registered. 

Using a rearranged BET equation, the experimental data can be plotted like a linear 

equation (y = a + b·x). 

Here Vmon indicates the volume of gas required for a monolayer, Ps the vapour pressure and C a 

constant. The range of fit for the BET equation is restricted to 0.05-0.35 for the value of P/Ps. 

By using least squares regression, values for the slope (b) and intercept (a) can be 

calculated. After substitution to each corresponding expressions, the constant C and the volume 

of a monolayer are obtained. Next, the number of moles that form a monolayer is calculated by:  

And consequently surface area is given as: 

The parameter ‘a’ stands in this case, for the nitrogen cross-sectional area (16.2·10-20 m2), 

‘m’ as the sample mass in grams and NA as the Avogadro’s number. 16 

In this work, nitrogen adsorption data were collected at 77 K (- 196 ºC) using an ASAP 2000 

surface area analyser from Micromeritics Instrument Corporation. Prior to the measurements, all 

samples were degassed at 60 ºC for 20 h. The determination of pore size distribution (not 

explained in this report), was calculated using the BJH method (name taken from Barrett, 

Joyner and Halenda) from the adsorption isotherm. 17 

a b 
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4.4. ELEMENTAL ANALYSIS 

Sample content of carbon, hydrogen and nitrogen can be determined by combustion 

analysis. The sample is qualitatively burned at 1200 ºC in an oxygen rich current and the 

resulting gases are separated by gas chromatography and quantified by comparison to well-

known standards. 

Elemental analyses were performed at the Servei d’Analisi Química-UAB with a Thermo 

Scientific Flash 2000 instrument. 
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5. OBJECTIVES

The research presented in this work has been focused on exploring an alternative synthetic 

method for the preparation of porous MOFs. The following specific objectives were taken into 

consideration: 

 To develop an effective and eco-friendly procedure for the synthesis of porous

MOFs by using supercritical carbon dioxide as solvent.

 To successfully synthesize HKUST-1 and ZIF-8.

 To characterize the obtained materials by:

- X-ray diffraction.

- BET Surface area.

- Thermogravimetric analysis.

- Scanning electron microscopy.

- Elemental analysis.

This work is subjected to a confidentiality agreement with the Institut de Ciència de 

Materials de Barcelona (ICMAB-CSIC) and for that reason no further information may be 

provided about the nature and characteristics of the used additives. 
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6. EXPERIMENTAL SECTION

6.1. SUPERCRITICAL CO2 PROCESSING EQUIPMENT 

Working with scCO2 requires equipment suitable for high pressures and moderate 

temperature operation. A reactor vessel, high-pressure pump, valves, tubing, cooler, controllers 

and safety elements compose a standard operating equipment. Stainless steel (AISI-316) is the 

common material used for manufacturing those components subjected to scCO2 conditions. 

The engineering scheme of the equipment used for the experiments carried out in scCO2 is 

represented in figures 9 and 10. 

Figure 9. Supercritical equipment, engineering diagram (extracted from García-González et al. J. Colloid 

Interface Sci. 2009, 338, 491-499). 

Figure 10. Supercritical equipment, picture. 
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The elements displayed correspond to the following devices: 

- Carbon dioxide cylinder supply (T1) which is at a pressure between 5-7 MPa and at

room temperature.

- Cooling system (EX1, Lauda Ecoline Staredition RE106) consisting of a bath device at

a temperature of -2 ºC prepared from a 6-litre mixture of ethylene glycol and water,

which had been used to liquefy the gas, so liquid CO2 was introduced in the high

pressure pump.

- A 260 mL high pressure pump (P1, Teledeyne Isco Model 260D) that pressurizes the

reactor vessel. Its mechanism is based on an electrical motor that drives the syringe

piston to control the outlet pressure.

- Reactor vessel (Re1) that consists of a 100 mL stainless-steel vessel (figure 11,

TharDesing) equipped with two sapphire windows in opposite positions, thus allowing

visual inspection of the process and the quality of stirring. The heating of the reactor is

achieved with four resistance heaters placed on its corresponding cylindrical cavities

made on the reactor wall.

Figure 11. High-pressure reactor from TharDesign.

- High pressure valves (V1, V2, V3, V4 and V5) controlling the flow of CO2 throughout

the system. In particular, V4 is the valve that controls the flow of CO2 entering the

reactor vessel, and V5 is the valve used for depressurizing the system.

Sample stirring is provided with a magnetic stirrer (P-Selecta Agimatic E) by placing a 

magnetic bar inside the reactor vessel. 
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6.2. SUPERCRITICAL METHOD. GENERAL CONSIDERATIONS 

In the general methodology used to perform an experiment under supercritical conditions, 

several factors and steps must be taken into account.   

Working at high pressure conditions involves a strict control of the pressure and 

temperature parameters, being the latter of crucial importance. A sudden change in this 

parameter may lead to a potentially dangerous overpressure event, since the pressure rapidly 

increases with the temperature. For that reason, temperature and pressure must be monitored 

through the pressurization process and controlled all over the reaction. In addition, and for 

security reasons, rupture discs are installed in those spaces where the gas is confined. A 

rupture disc is a pressure relief device that consists in a metal disk that breaks up at a pre-

determined pressure. 

The previous step before carrying any process in scCO2 is to chill the gas. Meanwhile, the 

sample is prepared by placing the reactants in a glass-vial and covering it with filter paper. Then 

the sample is introduced inside the reactor vessel. The reactor is then closed and connected to 

its corresponding pipes. The reactor is heated and pressurized to the required pressure and 

temperature in order to achieve the supercritical regime (all the reactions in this report are 

carried out at the following conditions: 20 MPa, 70 ºC). Once the reactor has been successfully 

pressurized and stabilized, it can be isolated from the rest of the system by closing valve V4 and 

leaving it overnight, so the reaction is performed in batch. Gentle agitation is used to facilitate 

the physical contact of the reagents.  

The residual volume of carbon dioxide in pipes and pump may be released by opening valve 

V3. At the end of each experiment, the system is slowly depressurized (V5) and allowed to cool 

down to room temperature.   

6.3. PREPARATION OF MOFS 

MOFs were prepared from the reaction of a metal salt, organic ligands and additives. 

Copper(II) nitrate trihydrate (Cu(NO3)2·3H2O, 99%) and zinc acetylacetonate (Zn(acac)2 ·xH2O) 

hydrate were chosen as the metal source. 1,3,5-Benzenetricarboxylic acid (H3BTC, 95%) and 2-

methylimidazole (H2(2-mIm), 99%) were used as the linkers. All reagents were purchased from 

Sigma-Aldrich and used without further purification. Liquid carbon dioxide (99.995%) was 

provided by Carburos Metalicos S.A., Air Products Group (Spain). 
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6.3.1. Preparation of HKUST-1 (Cu3(BTC)2·3H2O) 

1,3,5-Benzenetricarboxylic acid (200.0 mg, 0.83 mmol), copper nitrate trihydrate (115.9 mg, 

0.55 mmol) and an additive were placed in a 15 mL-glass vial and charged with a magnetic 

stirring bar. The sample was allowed to react for 20 h using the supercritical method mentioned 

above at 20 MPa and 70 ºC. After depressurization and cooling down to room temperature a 

blue slurry was obtained. In order to eliminate any possible by-products or starting materials, the 

sample was filtered under vacuum and rinsed with methanol and ethanol. The final product was 

obtained as a dry blue-turquoise fine powder. Yield: 64%. 

Elemental analysis calculation for HKUST-1 fits the formula (Cu3(BTC)2•3H2O)·3MeOH·H2O: 

Calculated: C, 35.08%; H, 2.80 %. Found: C, 34.90%; H, 2.80%.   

6.3.2. Preparation of ZIF-8 (Zn(2-mIm)2) 

2-Methylimidazole (150.7 mg, 1.8 mmol), zinc acetylacetonate hydrate (94.0 mg) and an

additive were deposited in a 15 mL-glass vial and allowed to react at 20 MPa, 70 ºC for 20 h 

following the same methodology as for HKUST-1. 

Once the experiment was completed the resulting white slurry was filtered under vacuum 

and rinsed with methanol and ethanol. A white dry powder was finally collected. Yield: 93%. 

Elemental analysis calculation for ZIF-8 corresponds to the formula Zn(2-mIm)2 ·0.5 MeOH: 

Calculated: C, 41.91%; H, 4.97%; N, 23.0%. Found: C, 41.40%; H, 4.48%; N, 22.48%. 
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7. RESULTS AND DISCUSSION

In this report a new procedure for the synthesis of three dimensional MOFs is presented.

Up-to-date the use of supercritical carbon dioxide in the field of MOFs has been limited to the 

post-synthesis activation, which consists in the removal of solvent molecules that remain in the 

MOF network after the synthesis, by treating the sample with a flow of scCO2.18 This procedure 

can exponentially increase the surface area of the obtained materials. 

The supercritical methodology applied in this research work represents the milestone of 

replacing organic solvents from conventional solvothermal synthesis by the use of supercritical 

carbon dioxide. Our approach consists on using scCO2 as reaction media for the preparation of 

previously reported and well-known MOFs, and represents a step-forward in the search for 

alternative green synthetic methods that do not rely on the use of hazardous organic solvents. 

7.1 CHARACTERIZATION OF HKUST-1 

7.1.1. X-ray diffraction 

Analysis of the synthesized material by X-ray powder diffraction (fig. 12) revealed that the 

solid was pure HKUST-1 by comparison with the simulated pattern. The former was based on 

the experimental crystal structure obtained via conventional solvothermal method by Chui et al.5 

In the samples prepared under scCO2, there was no evidence of the presence of crystalline 

starting materials or by-products. 

Figure 12. X-ray powder diffraction patterns of HKUST-1. Simulated pattern is in black, experimental 

pattern is in blue. 
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Although the overall agreement of the peaks is good, there are some deviations in the 

relative intensities of two peaks, 2θ = 5.7º and 2θ = 11.2º (see above in Fig.12, marked with red 

arrows) which are attributed to the degree of hydration of the material. 4 

7.1.2. Thermogravimetric analysis 

The thermal stability of this sample was studied using thermogravimetric analysis under air 

atmosphere (fig. 13).  

A gradual and continuous mass loss of 15 % up to a temperature of 300 ºC occurs, due to 

the evacuation of water and other solvent molecules. Then, between 300-315 ºC a sudden 

weight-loss step is related to the total decomposition of the material and the elimination of the 

organic part, confirming the stability of the framework at high temperatures. The remaining 

product has been reported as copper(II) oxide. 19 

Figure 13. TGA curve for the HKUST-1 MOF obtained under supercritical carbon dioxide. 
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7.1.3. Scanning electron microscopy 

SEM images were obtained to study the morphology and crystallinity. Figures 14 a) and b) 

correspond to the as-synthesized material (taken from the reactor vessel after the reaction 

came to an end, and without rinsing with methanol and ethanol) and to the washed product 

respectively. In fig. 14 a), unreacted chemicals and additives remain in the surface of the 

product, impeding the visualization of the crystal. The washing step removes such materials and 

therefore in fig. 14 b) the typical HKUST-1 octahedral shaped-crystals are presented with 

smooth surface (20.000x magnification). Some crystals have sizes 3-4 µm. Nevertheless, most 

of the crystals are much smaller, with sizes below 1 µm. 

Figure 14. SE-SEM images. a) As synthesized HKUST-1. b) Washed HKUST-1. 

The corresponding BSE-SEM images are presented in figures 15 a) and b). The washed 

HKUST-1 (fig. 15 b) presents a homogeneous phase that corresponds to the MOF structure due 

to the absence of contrast. The metallic centres and linkers cannot be differentiated for their 

atomic number due to the resolution of the microscope (would require the use of Scanning 

Transmission Electron Microscopy, STEM).  For analysing the as-synthesized material, the 

attention is drawn into the area marked with a red square. Different regions with brighter and 

darker contrast can be observed, which may be attributed to different phases presented on the 

sample, including starting materials. 

A B 
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Figure 15. BSE-SEM images. a) As synthesized HKUST-1. b) Washed HKUST-1. 

A B 
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7.1.4. Surface area and pore distribution 

Measured BET surface area was 1290 m2·g-1. This value is within the range of those 

reported previously in the literature. The observed isotherm (fig. 16) belongs to a Type I 

according to the IUPAC classification.16 This is characteristic of physisorption for microporous 

materials. This fact is confirmed by the pore size distribution diagram that shows how the major 

pore distribution lies within the micropore region (fig. 17). 

Figure 16. Nitrogen adsorption isotherm of HKUST-1 at 77 K. 

Figure 17. Adsorption pore volume plot for the HKUST-1 material. 
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7.2 CHARACTERIZATION OF ZIF-8 

7.2.1. X-ray diffraction 

Comparison of the XRD pattern for the sample (fig. 18) obtained using the supercritical 

method with the simulated pattern from the reported ZIF-8 single crystal structure, indicates that 

the obtained product is pure-phase ZIF-8 material. 

Figure 18. X-ray powder patterns of ZIF-8. Simulated pattern is in black, experimental pattern of 

synthesized ZIF-8 is in blue. 

experimental 

simulated 
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7.2.2. Thermogravimetric analysis 

Figure 19 represents the profile of the thermogravimetric analysis conducted under air 

atmosphere. From 25 ºC to 300 ºC, the curve exhibits a continuous weight loss of around 15 % 

corresponding to the removal of solvent molecules. The second event, taking place within the 

temperature range between 300-320 ºC, correlates with the decomposition of the bridging 

ligand and therefore the total decomposition of the MOF into zinc(II) oxide. 20 

Figure 19. TGA profile for the ZIF-8 MOF obtained under supercritical carbon dioxide. 
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7.2.3. Scanning electron microscopy 

The morphology and particle size of the ZIF-8 sample was evaluated by analysing the 

obtained SEM images. The sample is mainly constituted by ZIF-8 crystal aggregates like the 

ones shown in fig. 20. Although a close observation shows a set of different shapes, most of 

particles adopt a rhombic dodecahedron shape with an average particle size in the range of 500 

nm-1 µm. Other available morphologies can be related to the time of growth of the crystals. As 

shown in figure 21, ZIF-8 crystals are known to evolve from cubic-shaped on a first stage to the 

final rhombic dodecahedron observed in the SEM microphotograph.20  

Figure 20. SEM microphotograph of ZIF-8 material. 
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Figure 21. Evolution of ZIF-8 crystal morphology with time: cube (a), cube with truncated edges (b), 

rhombic dodecahedron with truncated corners (truncated rhombic dodecahedron) (c and d) and rhombic 

dodecahedron (e).20  

7.2.4. Surface area and pore distribution 

ZIF-8 exhibits a type I nitrogen adsorption isotherm (fig. 22), which reveals its microporous 

nature. This fact is confirmed by the BJH pore distribution (fig. 23), in which the maximum is 

located below 1.5 nm (upper limit of the microporous regime) A surface area of 1730 m2·g-1 was 

calculated using the BET model. This value surpasses most of other synthetic approaches for 

the synthesis of this material. 9,20 

Figure 22. Nitrogen adsorption isotherm of ZIF-8 at 77 K. 
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Figure 23. Adsorption pore volume plot for the ZIF-8 material. 

7.3 COLOUR CHANGE IN HKUST-1 

7.3.1. Experimental observations. Introduction 

After performing the BET analysis of HKUST-1, the collected sample presented a deep 

purple colour (fig. 24 A) contrasting to the original blue-turquoise (fig. 24 B), which returns to the 

initial coloration by exposing the sample to air. Powder XRD (fig. 25) confirmed that the after-

BET material was also HKUST-1, and therefore that removing solvents do not affect to the 

crystallinity of the material, something that indeed happens with the zinc analogue that 

collapses into an amorphous structure upon solvent removal.21 The observed behaviour has 

been previously reported in literature 22 but an accurate explanation remains necessary.  
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Figure 25. PXRD pattern of synthesized (black) 

and after-BET (blue) HKUST-1 material.

Figure 24. Colour of after-BET (A) and as-

synthesized (B) HKUST-1. 

The Crystal Field Theory (CFT) provides useful information to rationalize the spectrums, 

stability and magnetic properties of transition metal compounds. Here, it is presented an 

interpretation based on the analysis of literature UV-Vis spectrums and relating the colour shift 

to the mentioned theory. In brief, CFT is an electrostatic model that considers the ligands as 

punctual charges. The repulsion with the metal electrons results in a splitting diagram of the 

metal d orbitals into groups with different energies23, like the ones shown in fig. 27 B. The 

electronic transitions between those levels of energy are known as d-d transitions, which are 

responsible for the colour in most transition metal compounds. The required amount of energy 

depends on many factors as for example the metal ion, the geometry, the oxidation state and 

the nature of the ligands. However, these electronic transitions must obey in all cases to the 

following selection rules: 

- A change in the spin multiplicity is forbidden (Spin selection rule).

- If there is an inversion centre, the parity must be conserved through the transition

(Laporte selection rule).
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Figure 26 corresponds to the literature reported spectra22 of synthesized HKUST-1 (full 

curve) after outgassing at room temperature (dotted curve) and by vacuum treatment at 453 K 

(dashed curve). The latter would be the most similar situation to the after-BET material (fig. 24 

A), as the outgassing procedure includes heating at 60 ºC under high-vacuum for 20 hours. 

Figure 26. Literature UV-Vis spectrum of HKUST-1 material as-synthesized (full curve), after outgassing at 

room temperature (dotted curve) and with vacuum treatment at 453 K (dashed curve). 22 

7.3.1. Analyse of Crystal Field Splitting Diagrams 

The presented explanation is based on a first study of the crystal field splitting diagram from 

an octahedral geometry, followed by introducing the special characteristics of HKUST-1 and 

finalizing with the change in the close surrounding of the copper species as a result of solvent 

removal and its link to the observed change on colours. For clarity, the variations of the Crystal 

Field Splitting Diagram are related to d-orbitals, while the d-d transitions (marked with arrows in 

fig. 27 B) to its corresponding symmetry labels (e.g. a, b, e, t).  

The crystal field splitting diagram for a perfect octahedral geometry is represented on figure 

27 B.1. Only one d-d transition (egt2g) is expected due to the degeneracy of the orbitals. The 

absorption band should be relatively weak as it is forbidden by the Laporte selection rule.  



36 López Domínguez, Pedro

However, the experimental spectrum of the d9 octahedral ion hexaaquacopper(II) presents a 

total of two absorptions instead of the single band aforementioned. This is attributed to the 

Jahn-Teller distortion around the electronic surroundings of the Cu(II) ion that forms a system 

with lower symmetry. The loss in degeneracy results in the following transitions with the typical 

energy value given in brackets: 24  

 b1g  eg (12600 cm-1)

 b1g  b2g (9400 cm-1)

The wavelength range of a typical UV-Vis instrument does not register the electronic 

transition (b1ga1g) between the former eg orbitals from the perfect-octahedral high energy 

degenerated orbitals. 

Figure 27. A) Ball and stick model for the octahedral (A.1), distorted octahedral (A.2, which includes labels 

for some of the atoms) and square-based pyramidal shapes. B) The corresponding Crystal Field splitting 

diagrams including selected d-d transitions marked with blue arrows. 

Ow 

CuN

CuC
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In the HKUST-1 paddle-wheel environment, the local copper geometry is similar to the one 

explained in the case of a distorted octahedron. The number of coordination sites for Cu(II) ions 

has been assumed as six, considering that neighbouring metal atoms occupy one of the 

coordination sites due to its proximity (Table 1). 

Table 1. Selected distances of the local geometry corresponding to the labels in Fig. 26 A.2 

Distance5 [Å] 

CuC···CuN 2.628 

Cu-OCO 1.952 

Cu-OH2 2.165 

There are two special characteristics in HKUST-1 compared to the distorted octahedron: 

 The distance Cuc···CuN  is larger than the Cu-OH2 (Table 1)

 The oxygen atoms from the equatorial ligands do not seem to form a plane.21

This situation triggers a different splitting diagram, with the equatorial linkers causing a net 

stabilization of the dxy orbital and a destabilization of the dxz and dyz orbitals due to a variation of 

repulsions alongside the metal equatorial oxygen bond. As a result, the dxy, dxz, dyz orbitals lie 

closer in terms of energy and consequently the expected two absorption bands are seen as a 

single broad band in the spectrum of the hydrated compound, (figure 25). The great intensity of 

the band is ascribed to the loss of the inversion centre, and therefore the obligation to follow the 

Laporte selection rule. 

The removal of the coordinated water molecule emerges on a square pyramidal geometry 

around the metal ion (fig. 27 A.3) and with the internuclear Cu-Cu distance being significantly 

reduced.21 A possible crystal field splitting diagram is represented in figure 27 B.3.  

The new arrangement can be formally derived from the initial distorted situation. Removing 

a ligand that was lying along the z axis, results in a great stabilization of the dz2 orbital. On a 

smaller extent, the energies of the dyz and dxz orbitals are also lowered. The increase in the 

energy of the dx2-y2 is not as straightforward. The proximity of the neighbour copper atom results 

in more repulsions along the plane and therefore a destabilization of that orbital. As a result, the 

band gap involved in the b1e (fig. 27 B.3) transition has been significantly increased. This 

explains the appearances of a high-energy shoulder in the d-d band located at around 18400 
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cm-1 (dotted curve on figure 26). Also, the shift of the maximum to lower energy positions can be

explained from the rest of transitions from intermediate energy levels; b1b2 and b1a1 (fig. 

27 B.3). 

The macroscopic effect is a change on the colour of the product. To rationalize the effect of 

removing a coordinated water molecule, attention must be fixed on the colour of the absorbed 

light instead of the transmitted (the observed colour). The relation between them is easily 

stablished with the colour wheel (Table 2) as complementary colours lie opposite to each other 

across a circle diameter. 

 The change from blue to violet leads to transitions requiring radiation with greater 

wavenumbers and therefore more energy (wavenumber and energy are directly related by the 

Plank’s law). This is in accordance with the increase on the band gap as a result of a change in 

the local geometry of copper ions. 

Table 2. Visible part of the electromagnetic spectrum. 23 

Colour of 
absorbed 

light 

Approximate 
wavelengths 

[nm] 

Colour of 
transmitted 

light 

Colour wheel 
representation 

Red 700-620 Green 

Orange 620-580 Blue 

Yellow 580-490 Violet 

Green 560-490 Red 

Blue 490-430 Orange 

Violet 430-380 Yellow 
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8. CONCLUSIONS

The developed supercritical method has been successfully proven as an effective strategy 

for the synthesis of high-crystalline and porous materials, and therefore achieving the goal of 

introducing greener solvents in the preparation of MOFs. The use of scCO2 enables the 

establishment of a new, safe and environmentally-friendly route, which may be taken into 

account for the possible intensification and scale-up to industrial quantities.  

In relation to the obtained products, the following conclusions may be considered: 

- The materials are obtained as a one high-purity phase, with some solvent molecules

remaining in the pore structure.

- The removal of solvent molecules in HKUST-1 results in a colour change from blue to

violet, ascribed to an increase on the band gap of the involved d-d transitions.

- The crystal structure and morphology corresponds to that previously reported in

literature.

- The synthesized products require a washing step to remove unreacted chemicals.

- Both materials are stable up to temperatures of 300 ºC.

- The surface area values obtained with scCO2 are within the range of other previous

synthetic procedures or even overpass those values.
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10. ACRONYMS

2-mIm: 2-methylimidazolate.

a.u.: Arbitrary Units.

BET: Brunauer, Emmett and Teller. 

BSE: Backscattered Electrons. 

BTC: 1,3,5-bencenetricarboxylate. 

CCDC: Cambridge Crystallographic Data Centre. 

CFT: Crystal Field Theory. 

DEF: Diethylformamide. 

DMF: Dimethylformamide. 

IUPAC: International Union of Pure and Applied Chemistry. 

MOF: Metal-Organic Framework. 

PXRD: Powder X-ray diffraction 

SBU: Secondary Building Unit. 

scCO2: Supercritical carbon dioxide. 

SCF: Supercritical Fluid. 

SE: Secondary Electrons. 

SEM: Scanning Electron Microscopy. 

STEM: Scanning Transmission Electron Microscopy.  

TGA: Thermogravimetric analysis. 

UV-Vis: Ultraviolet-Visible. 

ZIF: Zeolitic Imidazole Framewoks. 




