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in the claims. Our main purpose is to develop an algorithm for calculating the finite time
ruin probabilities and the associated ruin severity distributions. The ruin probabilities
are shown to rely on an underlying algebraic structure of Appell type. That property
makes the computational method proposed quite simple and efficient. Its application is
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framework.
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1 A non-homogeneous discrete time risk model

The classical compound Poisson and binomial risk models assume that the premium
income is constant over time and the claim amounts form a sequence of independent
identically distributed (i.i.d.) random variables. These assumptions of homogeneity of
premiums and claim amounts can be too restrictive in reality, especially because of the
influence of the economic environment. For instance, inflation and interest can affect,
sometimes drastically, the evolution of the reserves of the company. Claim amounts and
premiums have often a tendency to increase for various socio-economic reasons (e.g. higher
loss levels and larger compensations or coverages).

In this section, we generalize the compound binomial risk model in order to account
for such factors of non-homogeneity. For that, it will be necessary to specify, inter alia,
the time when premiums are collected and how they are evaluated. To begin with, we are
going to consider a particular model which incorporates arbitrary fixed interest rates.

The influence of interest force. Risk theory with interest income has received
an increasing attention in the literature. A number of works are devoted to models
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in continuous-time; see the books by Rolski et al. (1999) and Asmussen (2000) and
the references therein. In comparison, papers on models in discrete time are much less
numerous; see e.g. Cheng et al. (2000). A discrete time formulation, however, may be
more appropriate for many applications in insurance.

Recently, different extensions have been proposed to include interest in the compound
binomial model. A case with fixed interest rates was studied by de Kok (2003) and Lefèvre
and Picard (2006). A variant with i.i.d. premiums and a given interest rate was examined
by Yang (1999) and Sun and Yang (2003). An extended version with i.i.d. interest rates
was investigated by Cai (2002a), Yang and Zhang (2006) and Wei and Hu (2008). A
model with heavy tailed risks was analyzed e.g. by Tang (2004). Cases with dependent
interest rates were discussed e.g. by Cai (2002b) and Yao and Wang (2010).

The discrete time model considered here assumes arbitrary fixed interest rates, i.i.d.
claim amounts and a non-uniform deterministic premium income. Let t ∈ IN denote the
time scale. The initial reserves of the company are of amount u ≥ 0. The rates of interest
per period (t − 1, t], t ∈ IN0, are given constants it ≥ 0, non-necessarily identical. The
total claim amounts that occur in the periods (t − 1, t] are i.i.d. non-negative random
variables Yt. Of course, these claim amounts are registered at the end of each period.
The premiums received for the periods (t− 1, t] are given by pt ≥ 0. These premiums are
collected in many cases at the beginning of each period, but not always (see below).

Let U(t), t ∈ IN0, be the discounted value, at time 0, of the surplus of the company up
to the end of the t-th period; put U(0) = u. If the premiums are received at the beginning
of the periods, the dynamic of the surplus is then given by

U(t) = u+ p1 −
Y1

1 + i1
+

[

p2 −
Y2

1 + i2

]

1

1 + i1
+ . . .+

[

pt −
Yt

1 + it

] t−1
∏

j=1

1

1 + ij
. (1.1)

In the rare cases where premiums are collected at the end of the periods,

U(t) = u+ (p1 − Y1)
1

1 + i1
+ (p2 − Y2)

1

(1 + i1)(1 + i2)
+ . . .+ (pt − Yt)

t
∏

j=1

1

1 + ij
. (1.2)

For premiums that are received at a uniform rate per time unit, one might consider that
they are registered at the middle of the periods, so that

U(t) = u+

[

p1 −
Y1

(1 + i1)1/2

]

1

(1 + i1)1/2
+

[

p2 −
Y2

(1 + i2)1/2

]

1

(1 + i2)1/2(1 + i1)
+

. . .+

[

pt −
Yt

(1 + it)1/2

]

1

(1 + it)1/2

t−1
∏

j=1

1

1 + ij
, t ∈ IN0. (1.3)

The premiums pt may be calculated through standard actuarial rules (e.g. Kaas et
al. (2008)). Being determined in function of the real risk to cover, they will thus depend
on the rates of interest and the exact time when they are received in the period. This
situation, although natural, is not always the one described in various works on the topic.
So, a frequent assumption is that the premiums form a sequence of given constants (e.g. de
Kok (2003)) or a sequence of i.i.d. random variables, independently of the claim amounts
(e.g. Cai (2002a)).
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Let us first consider the expected value principle, with a safety loading factor θt. By
definition, one has pt = (1 + θt)E[Yt/(1 + it)] for (1.1), pt = (1 + θt)E(Yt) for (1.2) and
pt = (1 + θt)E[Yt/(1 + it)

1/2] for (1.3). Inserting these premiums then yields the same
recurrence for the surplus in the three cases:

U(t) = u+

t
∑

j=1

[(1 + θj)E(Yj) − Yj]

j
∏

k=1

1

1 + ik
. (1.4)

The reason why the three models are identical is that the expected value satisfies the scale
invariance property. Thus, this is also true when using the standard deviation principle;
the model (1.4) then holds in which the term [. . .] is replaced by E(Yj) + θjσ(Yj) − Yj.

With the variance, exponential or Esscher principles, for instance, the three models
become distinct. So, in the former case, (1.1) becomes

U(t) = u+
t

∑

j=1

[

E(Yj) +
θj

1 + ij
σ2(Yj) − Yj

] j
∏

k=1

1

1 + ik
. (1.5)

For (1.2), the term [. . .] in (1.5) is replaced by E(Yj) + θjσ
2(Yj) − Yj, and for (1.3), by

E(Yj) + [θj/(1 + ij)
1/2]σ2(Yj) − Yj. The differences are evident too with the exponential

principle.

A general non-homogeneous environment. Under interest force, both premiums
and claim amounts are time-dependent through the discount factors. Let us now introduce
a more general non-homogeneous discrete time model in which premiums are non-uniform
and claim amounts have non-stationary independent distributions. This extension allows
us to cover other causes of non-homogeneity, in particular the time dependency of the
cost or dangerousness of the risks.

The surplus process under concern is defined by U(0) = u ≥ 0 and

U(t) = u+ c(t) − S(t), t ∈ IN0, (1.6)

where c(t) and S(t) denote the cumulated premiums and claim severities during the first
t periods, respectively. In a context of interest rates, c(t) and S(t) correspond to the
discounted values, at time 0, of these amounts.

By construction, c(t) = c1 + . . . + ct, where the premiums ct in period t are fixed
non-negative (discounted) amounts. They are collected at some given time in the period,
for example at the beginning, the end or the middle of the period. Thus, for the previous
models with interest, putting

a(0) = 1 and a(t) =
t

∏

j=1

(1 + ij), t ∈ IN0, (1.7)

these premiums are given by ct = pt/a(t− 1) for the model (1.1), by ct = pt/a(t) for (1.2)
and by ct = pt/a(t− 1)(1 + it)

1/2 for (1.3).
Moreover, S(t) = X1 + . . .+Xt, where the claim sizes Xt in period t are non-negative

independent and non-stationary (discounted) random variables. So, Xt = Yt/a(t) for the
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three models with interest (1.1), (1.2) and (1.3). Each Xt has a continuous distribution
function Ft on IR+

0 with, in addition, a positive probability mass at 0 (i.e. Ft(0) > 0).
The assumption of continuity seems to be reasonable, and the inclusion of a mass at 0
translates the possibility of no claim at all (as it is in the classical risk models). As usual,
the net profit condition and the no ripoff condition are expected to hold, i.e.

ct > E(Xt), and P (Xt > ct) > 0, t ∈ IN0. (1.8)

Our purpose is to investigate some questions raised by the eventual ruin of the com-
pany. Ruin occurs at time T when the surplus becomes negative, i.e.

T = inf{t ∈ IN0 : U(t) < 0}.

The paper is organized as follows. In Section 2, an algorithm is developed to evaluate the
ruin probabilities and the associated ruin severity distributions, on any finite time horizon.
Its application is illustrated, in Section 3, by means of several numerical examples. In
Section 4, the well-known Lundberg bound for ultimate ruin probabilities is reexamined
within a non-homogeneous framework.

2 An algorithm for finite time ruin probabilities

In this Section, we present an algorithm for calculating, in the model (1.6), the finite time
ruin probabilities and the associated ruin severity distribution. The ruin probabilities
are shown to rely on an underlying algebraic structure of Appell type. This makes the
computational method proposed quite simple and efficient. In particular, it will be more
easily applicable than an alternative method proposed by De Vylder and Goovaerts (1988)
for a simplified model.

Appell polynomials are standard in mathematics (e.g. Mullin and Rota (1970)). Pseu-
doplynomials of Appell form can be defined in an analogous way (Picard and Lefèvre
(1996)). These (pseudo)polynomials may be exhibit in the study of various first crossing
problems in probability and statistics. This is especially true in ruin theory for some
risk models, in discrete or continuous time; see e.g. Picard and Lefèvre (1997), Ignatov
and Kaishev (2000), (2004), Ignatov et al. (2004), Lefèvre and Picard (2006), Lefèvre
and Loisel (2009) and Dimitrova and Kaishev (2010). The assumptions made here of
continuous claims will lead us to point out, using a simple approach, the existence of an
algebraic structure of similar type with, this time, a continuous index.

2.1 An integral representation

The probability under study is

φ(t, x) ≡ P [T > t and U(t) ≥ x], t ∈ IN and 0 ≤ x ≤ u + c(t),

i.e. the probability that at time t, the company is not ruined and its reserves are at least
equal to x. Evidently, the non-ruin probability until t is simply φ(t) ≡ φ(t, 0) = P (T > t).
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Let us introduce the following sequence of (integer) times: for any s ∈ IR+,

vs = sup{t ∈ IN : u + c(t) < s} if s > u,

where c(0) ≡ 0, and let vs = 0 if s ≤ u. Thus, vs represents the last time where a global
claim amount equal to s would lead to ruin, if ever; otherwise, vs = 0. Observe that after
vs, the first time when a total claim amount of s > u would not cause ruin, depends on
the time when premiums are collected. Indeed, if premiums are received at the beginning
of the period, ruin would not arise at time vs + 0, while if premiums are received at the
end or the middle of the period, ruin would not occur at time vs + 1. Figure 1 shows the
graph of u+ c(t) (indicated by black points for t ∈ IN0) and the value of vs for some given
s, when the premiums are received at the beginning or the end of the period; Figure 2
gives the graph of vs in function of s (this is the same in both cases).

Figure 1: Cumulated premium function and some couple (s, vs) when premiums are re-
ceived at the beginning (left side) or the end (right side) of the period.
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Figure 2: Graph of vs in function of s (in both cases).

Proposition 2.1 φ(t, x) can be represented as

φ(t, x) = FS(t)(0) +

∫ u+c(t)−x

w=0

bw FS(t)(u+ c(t) − x− w) dw, (2.1)

where bw, w ∈ IR+, is a real function satisfying the equations

0 =

∫ s

w=0

bs−w dFS(vs)(w), s ∈ IR+. (2.2)

Proof. By definition,

φ(t, x) = P [T > t and S(t) ≤ u+ c(t) − x]

= P [S(t) = 0] +

∫ u+c(t)−x

s=0

φs(t) ds, (2.3)

where
φs(t) ds ≡ P [T > t and s < S(t) ≤ s+ ds], s ∈ IR+. (2.4)

Looking at the instant vs, one observes that φs(t) = 0 when t ≤ vs. On another hand,
for t > vs, the event [T > t, S(t) ∼ s] (using an obvious notation ∼) is equivalent to both
events [T > vs, S(vs) ∼ s− w] and [S(vs, t) ≡ S(t) − S(vs) ∼ w]. The reason here is that
ruin in the time interval (vs, t) is then impossible. In other words,

φs(t) =

∫ s

w=0

φs−w(vs) dFS(vs,t)(w), t > vs. (2.5)

Formula (2.5) provides a remarkable expansion of φs(t) in which the coefficients are
given by the previous functions φs−w evaluated at a same point vs. In fact, (2.5) looks
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like a generalized Taylor expansion for a function φs(t) that has an algebraic structure of
Appell type (so that φs−w is the w-th generalized derivative of φs); see e.g. Lefèvre and
Picard (2006), formula (4.9) and Lefèvre (2007), formula (5.12).

As a corollary, we are going to show that φs(t) can be reexpressed more simply as

φs(t) =

∫ s

w=0

bs−w dFS(t)(w), t ≥ vs, (2.6)

for appropriate coefficients bw, 0 ≤ w ≤ s. First, we note that since φs(vs) = 0, (2.6)
with t = vs implies that bw, w ∈ IR+, satisfies the integral relations (2.2). Now, consider
t > vs. The claim amounts per periods being independent, one has

P [S(t) ∼ w] =

∫ w

y=0−
P [S(vs) ∼ w − y] dFS(vs,t)(y). (2.7)

Substituting (2.7) in the right-hand side of (2.6) and permuting the two summations with
z ≡ w − y then yields

φs(t) =

∫ s

w=0

bs−w

{
∫ w

y=0−
P [S(vs) ∼ w − y] dFS(vs,t)(y)

}

dw

=

∫ s

y=0−

{
∫ s−y

z=0

bs−y−z P [S(vs) ∼ z] dz

}

dFS(vs,t)(y).

As vs ≥ vs−y, (2.6) is applicable to {. . .} and gives φs−y(vs). Therefore, φs(t) admits the
announced representation (2.5).

Finally, let us insert (2.6) (where w is substituted for s − w) inside (2.3) (note that
t ≥ vs). One then gets

φ(t, x) = FS(t)(0) +

∫ u+c(t)−x

s=0

{
∫ s

s−w=0

bw dFS(t)(s− w)

}

dw

= FS(t)(0) +

∫ u+c(t)−x

w=0

bw

{

∫ u+c(t)−x

s=w

dFS(t)(s− w)

}

dw,

which gives the other stated formula (2.1). �
Note that the coefficients bw in (2.1), (2.2) are independent of t, which can provide a

computational advantage. For instance, suppose that φ(t, x) has already been calculated.
If now φ(t + τ, x) is needed, it suffices to determine, using (2.2), new bw’s for w ∈ (u +
c(t) − x, u + c(t + τ) − x) and then to apply (2.1) with FS(t+τ)(. . .). For φ(t − τ, x), the
required bw’s are already known and it thus suffices to evaluate FS(t−τ)(. . .).

Remarks. De Vylder and Goovaerts (1988) developed a different algorithm to com-
pute finite time non-ruin probabilities in a classical discrete time risk model (i.e. with
no interest and i.i.d. claim amounts). The method mainly consists in conditioning on
the claim amount during the first period (0, 1). It was applied in several recent papers
including Cai (2002b), Sun and Yang (2003) and Yang and Zhang (2006).
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Let us first show how this algorithm can be easily extended to the present model. For
that, we introduce the shifted non-ruin probabilities

φj(t|u) = P (Xj ≤ u+ cj , Xj +Xj+1 ≤ u+ cj + cj+1, . . . , Xj + . . .+Xt ≤ u+ cj + . . .+ ct),

for j = 1, . . . , t. Evidently, j = 1 gives φ1(t|u) = P (T > t) = φ(t). Conditioning on Xj ,
we get

φj(t|u) =

∫ u+cj

y=0−
φj+1(t|u+ cj − y) dFj(y), j = 1, . . . , t− 1, (2.8)

together with
φt(t|u) = Ft(u+ ct). (2.9)

The relations (2.8), (2.9) allow the recursive computation of the probabilities φj for j =
t, . . . , 1, hence φ(t). A large number of calculations, however, is involved because the
initial reserves increases at each step j. Note also that changing t in τ yields a different
starting point in the recursion, which implies new calculations from the beginning.

Now, P (T = t) = φ(t − 1) − φ(t) follows from (2.1) (with φ(−1) ≡ 1). One can also
obtain the joint distribution with the ruin severity defined as |U(T )|. Let

χ(t, x) = P (T = t and |U(T )| ≤ x), t ∈ IN0 and x ∈ IR+
0 ,

i.e. the probability that ruin occurs at time t and the ruin severity stays under a level x.

Corollary 2.2

χ(t, x) = χ0(t, x)FS(t−1)(0) +

∫ u+c(t−1)

w=0

bw

{

∫ u+c(t−1)−w

s=0

χw+s(t, x) dFS(t−1)(s)

}

dw,

(2.10)
where

χw(t, x) = Ft(u+ c(t) + x− w) − Ft(u+ c(t) − w), w ∈ IR+.

Proof. One writes

χ(t, x) = P [S(t− 1) = 0]P [u+ c(t) < Xt ≤ u+ c(t) + x] +
∫ u+c(t−1)

s=0

P [T > t− 1, S(t− 1) ∼ s]P [u+ c(t) < s+Xt ≤ u+ c(t) + x] ds

= FS(t−1)(0)χ0(t, x) +

∫ u+c(t−1)

s=0

φs(t− 1)χs(t, x) ds,

where φs(t − 1) is defined as in (2.4). Using (2.6) and permuting the two integrals then
leads to (2.10). �
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2.2 A recursive method

In practice, the previous integrals (2.1), (2.2) and (2.10) are computed by discretizing
the continuous claim amount distributions. So, let us choose a span h. Using a suitable
procedure (see below), each claim Xj , j ∈ IN0, will be approximated by a discrete version

X
(h)
j with values nh, probabilities f

(h)
j (n) = P (X

(h)
j = nh) and distribution function

F
(h)
j (n), n ∈ IN. By construction, all the f

(h)
j (n)’s will be positive (especially for j = 0).

Then, every S(j) = X1 + . . . + Xj is approximated by a discrete S(h)(j) with values

nh, probabilities f
(h)
S(j)(n) = P (S(h)(j) = nh) and distribution function F

(h)
S(j)(n), n ∈ IN.

Introduce also j = 0 and put f
(h)
S(0)(n) = δn,0, n ∈ IN.

Let T (h) be the ruin time in this discretized risk model, i.e.

T (h) = inf{t ∈ IN0 : U(h)(t) ≡ u + c(t) − S(h)(t) < 0}.

The probability to be evaluated is now φ(h)(t, x) = P [T (h) > t, U (h)(t) ≥ x], for t ∈ IN,
0 ≤ x ≤ u+ c(t). Proposition 2.1 can be easily adapted as follows. Define the instants

v(h)
n = sup{t ∈ IN : u + c(t) < nh} for all n ∈ IN : nh > u,

with v
(h)
n = 0 when nh ≤ u. Let byc denote the integer part of y.

Corollary 2.3

φ(h)(t, x) =

b(u+c(t)−x)/hc
∑

n=0

b(h)
n F

(h)
S(t)(b(u+ c(t) − x)/hc − n), (2.11)

where the coefficients b
(h)
n , n ∈ IN, are determined recursively from

b
(h)
0 = 1, and 0 =

n
∑

k=0

b
(h)
n−k f

(h)

S(v
(h)
n )

(k), n ∈ IN0. (2.12)

Proof. By a similar argument, one first writes

φ(h)(t, x) =

b(u+c(t)−x)/hc
∑

n=0

φ(h)
n (t), t ∈ IN, (2.13)

where φ
(h)
n (t) = P [T (h) > t, S(h)(t) = nh], n ∈ IN. Obviously, φ

(h)
0 (t) = P (S(h)(t) = 0).

For n ≥ 1, one sees that φ
(h)
n (t) = 0 if t ≤ v

(h)
n , and otherwise,

φ(h)
n (t) =

n
∑

k=0

φ
(h)
n−k(v

(h)
n ) f

(h)

S(v
(h)
n ,t)

(k), t > v(h)
n , (2.14)

as in (2.5). For any n ∈ IN, a simpler expression is found to be

φ(h)
n (t) =

n
∑

k=0

b
(h)
n−k f

(h)
S(t)(k), t ≥ v(h)

n . (2.15)
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When n = 0, (2.15) gives P [S(h)(t) = 0] = b
(h)
0 f

(h)
S(t)(0), i.e. b

(h)
0 = 1 as f

(h)
j (0) > 0 by

assumption. Moreover, for n ≥ 1, taking t = v
(h)
n yields (2.12) as φ

(h)
n (v

(h)
n ) = 0. Finally,

substituting (2.15) in (2.13) then leads to (2.11). �
Let us underline that (2.12) will provide univoquely the b

(h)
n ’s for n = 0, 1, 2, . . . ,

because all the probabilities f
(h)
j (0) are positive. Note that for all n satisfying nh ≤ u+c1,

then v
(h)
n = 0 so that (2.12) yields b

(h)
n = 0.

Concerning the discretization itself, an appropriate method proposed e.g. by Panjer
(1986) (for a related problem) consists in approximating any claim amount Xj by both

lower and upper discrete bounds, X
(h)
j and X

(h)

j , whose probabilities are positive and
defined by

P (X
(h)
j = nh) = P [nh ≤ Xj ≤ (n + 1)h], n ∈ IN, (2.16)

P (X
(h)

j = nh) = P [(n− 1)h < Xj ≤ nh], n ∈ IN, (2.17)

with thus P (X
(h)

j = 0) = P (Xj = 0). Let φ(h)(t, x) and φ
(h)

(t, x) be the corresponding

probabilities of interest. As X
(h)
j ≤ Xj ≤ X

(h)

j in the stochastic sense, one knows that

φ
(h)

(t, x) ≤ φ(h)(t, x) ≤ φ(h)(t, x).

Remarks. If f
(h)
j (0) = 0 for some values of j, then b

(h)
0 might remain indetermined,

so that the system (2.12) will not yield the b
(h)
n ’s required in (2.11). For instance, if Xj

has a continuous distribution with no mass at 0, then the approximation (2.17) gives

P (X
(h)

j = 0) = 0. On the contrary, the approximation (2.16) gives P (X
(h)
j = 0) > 0; this

could be small, however, especially for very small h, hence a possible numerical instability
(met in certain applications).

Let us point out that even if f
(h)
j (0) = 0 for some j, the probability φ(h)(t, x) can still

be computed by using the formulas (2.13) and (2.14). In fact, these relations are valid
in all cases, but their structure is more complicated than (2.11) and (2.12). This was
confirmed numerically through several examples treated by both methods.

To close, the discretized version of Corollary 2.2 allows us to determine the distribution
of the ruin severity. Let χ(h)(t, x) = P [T (h) = t, |U (h)(T (h))| ≤ x], for t ∈ IN0, x ∈ IR+

0 .

Corollary 2.4

χ(h)(t, x) =

b(u+c(t−1))/hc
∑

n=0

b(h)
n

b(u+c(t−1))/hc−n
∑

k=0

χ
(h)
n+k(t, x) f

(h)
S(t−1)(k), (2.18)

where

χ(h)
n (t, x) = F

(h)
t (b(u+ c(t) + x)/hc − n) − F

(h)
t (b(u+ c(t))/hc − n), n ∈ IN.
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3 Numerical application to some ruin problems

For illustration, we now use the previous algorithm to treat some specific examples and
problems. The discrete time risk process considered below is the model with interest (1.4)
where the premiums are calculated under the expected value principle. We recall that
this model is independent of the moment when premiums are collected in the period.

Ruin probabilities. Let ψ(t) = 1 − φ(t) be the ruin probability until time t. Obvi-

ously, its lower and upper bounds are ψ(h)(t) = 1 − φ(h)(t, 0) and ψ
(h)

(t) = 1 − φ
(h)

(t, 0).

(1) Suppose that the claim amounts per period, Yt, have a compound Poisson distri-
bution with Poisson parameter λt = 1 and i.i.d. exponential individual claim amounts
Zt,j with mean 1. Wikstad (1971) provided values for finite time ruin probabilities in the
continuous (not discrete) time model, assuming a fixed premium rate equal to 1 + θ for
different values of the safety loading factor θ.

First, let us incorporate a fixed interest rate i per period. For the recursive procedure,
we choose to discretize the discounted individual claims Zt,j/(1 + i)t, which are exponen-
tially distributed with mean 1/(1+ i)t. The (discrete) distribution of the discounted total
claim amount per period, Xt = Yt/(1 + i)t, is then evaluated by means of the Panjer
recursion. Now, applying the algorithm of Section 2.2 yields the desired lower and upper
bounds for the ruin probabilities. Table 1 gives the results obtained when i = 0 and those
provided by Wikstad (1971). Our discrete time probabilities are smaller, of course, but
not so much. The bounds, here and later, can be rather distant because the discretization
is made on the individual (not total) claims per period. In most cases, however, only
the total claim amounts will be taken into account for discretization. Nevertheless, closer
bounds can still be obtained by taking the span h small enough.

θ Wikstad (1971) (ψ(h)(10), ψ
(h)

(10))

0.05 0.0367 (0.0209659, 0.0319452)
0.15 0.02770 (0.0144029, 0.0236300)
0.25 0.02090 (0.0097953, 0.0174395)

Table 1: Ruin probabilities until t = 10 for u = 10, i = 0 and different values of θ, when
using h = 0.01.

The influence of the interest rate and the time horizon is illustrated in Table 2. As ex-
pected, ruin probabilities increase quickly with the horizon. They decrease (rather slowly)
with the interest rate: intuitively, a higher interest yields lower discounted premiums and
claim amounts, with a stronger effect on the claim (because of its random nature).
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t i = 0 i = 0.01 i = 0.05 i = 0.1

1 (0.000250, 0.000257) (0.000234, 0.000240) (0.000170, 0.000175) (0.000115, 0.000119)
5 (0.006517, 0.008443) (0.005618, 0.007310) (0.003040, 0.004017) (0.001410, 0.001902)
10 (0.020966, 0.031945) (0.017651, 0.026139) (0.007194, 0.011316) (0.002472, 0.004000)
15 (0.036574, 0.060984) (0.028563, 0.047949) (0.009966, 0.017308) (0.002833, 0.005044)
20 (0.050951, 0.090313) (0.038450, 0.068756) (0.011492, 0.021428) (0.002907, 0.005489)

Table 2: Ruin probabilities until t = 1, . . . , 20 for u = 10, θ = 0.05 and different values of
i, when using h = 0.01.

Next, let us consider time varying interest rates it. Suppose, for instance, that it
increases linearly of 0.01 per period during the first ten periods, and then decreases linearly
at the same speed for the next ten periods. In other words, it = 0.01t for t = 1, . . . , 10
and it = 0.1−0.01(t−10) for t = 11, . . . , 20. A straigthforward adaptation of the previous
method leads to the results presented in Table 3. Note that the bounds are almost equal.
By comparing with Table 2, column 2, we see that this interest function decreases the
ruin probabilities in a significant way on a longer time horizon.

t (ψ(h)(t), ψ
(h)

(t))

1 (0.000234, 0.000241)
5 (0.005836, 0.005901)
10 (0.014603, 0.014722)
15 (0.019354, 0.019498)
20 (0.021932, 0.022697)

Table 3: Ruin probabilities until t = 1, . . . , 20 for u = 10, θ = 0.05 and a special interest
function, when using h = 0.01.

(2) A standard method to approximate a compound distribution is to have recouse
to a translated gamma distribution (see e.g. Bowers et al. (1997). Shortly, suppose
that the total claim amount in a given period, Y , has a compound distribution with
i.i.d. individual claims distributed as Z, say. Let G be a gamma random variable with
(positive) parameters (α, β); its distribution function is given by

P (G ≤ x) =
βα

Γ(α)

∫ x

0

yα−1e−βydy, x > 0.

Then, the total claim amount Y is approximated by a translated gamma random variable
G+ x0 such that the first three central moments coincide. This implies that

α = 4σ6(Z)/{E [Z − E(Z)]3}2,

β = 2σ2(Z)/E [Z −E(Z)]3 ,

x0 = E(Z) − α/β.

Recently, Afonso et al. (2009) used that approximation to estimate finite time ruin
probabilities in the continuous time model considered by Widstad (1971). We are going
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to proceed similarly with the previous discrete time model, in the case of a constant
interest rate i. Here, the total claim amount in period t, Yt, has a compound Poisson
distribution with parameter λt = 1 and exponential individual claims Zt,j of mean 1. So,
one directly sees that Yt is approximated by a gamma random variable with parameters
(α = 8/9, β = 2/3, x0 = −1/3). Note that if Y is a translated gamma with parameters
(α, β, x0), aY is a translated gamma with parameters (α, β/a, ax0). Thus, the discounted
total claim amount Xt = Yt/(1 + i)t is approximated by a translated gamma random
variable with parameters (α = 8/9, β = 2(1 + i)t/3, x0 = −1/3(1 + i)t). Now, to evaluate
the ruin probabilities, it suffices to discretize these gamma distributions and then apply
the algorithm of Section 2.2. Table 4 gives the two bounds obtained when i = 0 and the
approximated values provided in Afonso et al. (2009). Here too, the results are not so
different, although derived through discrete and continuous time scales respectively.

θ Afonso et al. (2009) (ψ(h)(10), ψ
(h)

(10))

0.05 0.03487 (0.0326677, 0.0335324)
0.15 0.02832 (0.0242231, 0.0248709)
0.25 0.02011 (0.0179559, 0.0184383)

Table 4: Approximated ruin probabilities until t = 10 for u = 10, i = 0 and different
values of θ, when using h = 0.01.

Table 5 illustrates how ruin probabilities are affected by the interest rate and the
time horizon. Observe that the lower and upper bounds are very close in that example
(because the discretization is made on the total claim amounts per period). Note also
that the bounds can be rather different from those obtained in Table 2, i.e. without using
the approximation.

t i = 0 i = 0.01 i = 0.05 i = 0.1

1 (0.000367, 0.000370) (0.000346, 0.000348) (0.000262, 0.000264) (0.000188, 0.000189)
5 (0.008695, 0.008862) (0.007557, 0.007707) (0.004234, 0.004328) (0.002071, 0.002122)
10 (0.032668, 0.033532) (0.026718, 0.027473) (0.011579, 0.011982) (0.004158, 0.004327)
15 (0.063583, 0.065521) (0.049845, 0.051521) (0.017767, 0.018569) (0.005190, 0.005466)
20 (0.095925, 0.099095) (0.072704, 0.075442) (0.022114, 0.023312) (0.005619, 0.005972)

Table 5: Approximated ruin probabilities until t = 1, . . . , 20 for u = 10, θ = 0.05 and
different values of i, when using h = 0.01.

Finally, Figure 3 points out that the choice of the span h is crucial to get reasonable
bounds on the ruin probabilities.
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Figure 3: Approximated ruin probabilities until t for u = 10, θ = 0.05, i = 0.03 and
different values of h.

Conditional surplus distribution in case of non-ruin. We now want to illustrate
the behaviour of the probability that the discounted reserves of the company at time t
are at least equal to x, x ∈ IR+

0 , given that ruin has not occurred until t. In the notation
of Proposition 2.1, this probability corresponds to the ratio φ(t, x)/φ(t).

Let us consider the latter example where the discounted claim amounts per period are
translated gamma distributed with the same parameters. The algorithm of Section 2.2
is of application and allow us to draw the three graphs of Figure 4, when t = 1, 4, 10.
Although continuous, the distributions are only given at points equidistant of 0.2. The
choice of u = 0 is just to have a better representation. Note that the reserves at t are
at most equal to the total premiums u + c(t). So, for the given parameters, φ(1, x) > 0
if x ≤ (1 + θ)/(1 + i) = 1.02 and φ(1, x) = 0 otherwise; φ(4, x) > 0 if x ≤ 3.90 and
φ(10, x) > 0 if x ≤ 8.95. As the lower and upper bounds for the discretized claim amounts
lead to close results, only the latter, i.e. φ(h)(t, x)/φ(h)(t), have been represented. It is
worth observing that the conditional surplus distribution tends to be stable after a few
periods only.
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Figure 4: Conditional surplus distributions for u = 0, θ = 0.05, i = 0.03 and t = 1, 4, 10,
when using h = 0.01.

Conditional deficit distribution in case of ruin. Let us pursue by examining the
distribution function of the discounted ruin severity at time t, given that ruin occurs at
t. This function is given by P (|U(t)| ≤ x | T = t], x ∈ IR+

0 . In the notation of Corollary
2.2, it corresponds to the ratio χ(t, x)/P (T = t), rewritten as χ(x|t).

The computations are made for the same example with translated gamma claim
amounts per period. Applying again the algorithm (see Corollary 2.2) provides the three
graphs, when t = 2, 5, 10, drawn in Figure 5, for points equidistant of 0.5. Only the
approximations based on the lower bounds, χ(h)(x|t) say, are represented. Notice that the
conditional deficit at ruin is stochastically smaller on a longer time horizon.

Figure 5: Conditional deficit distributions for u = 10, θ = 0.05, i = 0.1 and t = 2, 5, 10,
when using h = 0.01.

Table 6 gives the values of the 0.95 quantile of χ(h)(x|t), denoted by χ
(h)
0.95, for different

time horizons and interest rates. It also includes the probability χ(h)(10|t), which may be
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of special interest as it represents the probability that, given ruin occurs at t, the company
looses less than the double of its initial investment u = 10. We see that χ

(h)
0.95 decreases

for longer horizons or higher interest rates (this effect being more important for a larger
t). In all cases here, χ(h)(10|t) is almost equal to 1 (a good news for the company!).

t i χ
(h)
0.95 χ(h)(10|t)

1 0 4.45 0.998807
0.05 4.24 0.999145
0.1 4.05 0.999717

5 0 4.41 0.998866
0.05 3.45 0.999428
0.1 2.73 0.999979

10 0 4.39 0.998885
0.05 2.70 0.999977
0.1 1.70 0.999997

15 0 4.39 0.998872
0.05 2.11 0.999999
0.1 1.05 1

Table 6: Quantiles χ
(h)
0.95 and probabilities χ(h)(10|t) for u = 10, θ = 0.05 and different

values of t and i, when using h = 0.01.

4 Approximation by a Lundberg type bound

In the classical risk models, the Lundberg bound provides a first approximation (an upper
bound) to the ultimate ruin probabilities when the claim amounts have a light-tailed
distribution. Our purpose in this Section is to derive a Lundberg type bound for the
non-homogeneous model under concern.

To establish Proposition 4.1 below, we mainly adapt a method of proof followed in
Yang (1999) and Cai (2002a). Let ψ(t; u) (≡ 1−φ(t)) be the probability that ruin occurs
during the period (0, t], t ∈ IN0, given the initial reserves u. For each t, define the function

ft(r) = E[er(Xt−ct)], r ∈ IR+, (4.1)

and suppose that rt,∞ ≡ sup{r ∈ IR+ : E(erXt) <∞} > 0.

Proposition 4.1 Define R(t) = min{ρ1, . . . , ρt}, where ρt is the (positive) root, if it
exists, of the equation ft(r) = 1, and otherwise, ρt = rt,∞. Then,

ψ(t; u) ≤ e−R(t) u, t ∈ IN0. (4.2)

Proof. For each t, ft(r) is a convex function with ft(0) = 1 and f ′
t(0) = E(Xt) − ct < 0

by (1.8). Thus, there exists some r(t) > 0 satisfying

fj[r(t)] ≤ 1 for j = 1, . . . , t. (4.3)
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Given such a r(t), one sees that by the property (4.3), the finite sequence

V0 = 1 and Vj = er(t)[S(j)−c(j)], j = 1, . . . , t,

is a supermartingale with respect to Fj = σ{X1, . . . , Xj}. This is also the case for the
finite sequence Wj = VT∧j, j = 0, . . . , t. Applying the optional stopping theorem then
yields E(W0) = 1 ≥ E(Wt). Now, one has

E(Wt) ≥ E[VT∧t I(T ≤ t)] = E{er(t)[S(T )−c(T )] I(T ≤ t)} > er(t)u P (T ≤ t),

which implies ψ(t; u) ≤ e−r(t) u. Evidently, a larger value for r(t) is preferable, hence the
choice of R(t). �

Notice that the inequality (4.2) is given for any finite time horizon. So, the adjustment
coefficient, i.e. R(t), depends here on t. In practice, however, all the examples tested show
that the approximation may be useful only if t is extremely large (as with the classical
models). In such cases, computing the true ruin probability by an algorithmic method is
almost impossible, hence the interest of the bound.

We are now going to determine the explicit expression of the roots ρt in two special
situations. We will then close by commenting on a few numerical illustrations.

Poisson compound of exponential claims. Suppose that Xt, t ∈ IN0, are inde-
pendent compound Poisson distributed with Poisson parameter λt and i.i.d. individual
claim amounts Dt,j, j ∈ IN0, with finite moment generating function E(erDt). Then, ρt is
the positive solution, if it exists, of the equation

λt + rct = λtE(erDt). (4.4)

In particular, if the Dt,j ’s are exponentially distributed with mean µDt
, (4.4) gives

ρt = 1/µDt
− λt/ct. (4.5)

Let us come back to a model of Section 1(i), with interest rates it, premiums pt and
independent claim amounts Yt, here possibly non-stationary. As seen in Section 1(ii), this
is a special case of the model (1.6) where Xt = Yt/a(t), a(t) being given by (1.7), and ct
is defined accordingly in function of pt. Suppose that the Yt’s are independent compound
Poisson variables with parameter λt and i.i.d. exponential claims Zt,j. Of course, the Xt’s
are then independent compound Poisson random variables as above, with exponential
claims Dt,j = Zt,j/a(t).

Consider the case where premiums are collected at the beginning of the period. This
implies that ct = pt/a(t − 1) (see again Section 1(ii)). If the premiums are calculated
under the expected value principle, then pt = (1 + θt)E[Yt/(1 + it)]. As E(Yt) = λtµZt

,
one gets

ct = (1 + θt)E(Yt)/a(t) = λt(1 + θt)µZt
/a(t).

From (4.5) and since µDt
= µZt

/a(t), we deduce that

ρt =
θt

1 + θt

1

µZt

a(t). (4.6)
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As expected, a more dangerous exponential claim amount (i.e. with larger µZt
) decreases

ρt, and thus increases the (approximated) ruin probabilities. On the contrary, higher
interest rates yield lower ruin probabilities, meaning that they tend to decrease more
strongly the claim amount than the premium (this was already observed in Section 3).
Suppose, for instance, that the company desires to adjust the safety loading factors to
counterbalance the effects of the interest rates until time t. Thus, the objective is to have
ρj ≡ ρ for all j = 1, . . . , t, which will hold by choosing θj = ρµZj

/[a(j)−ρµZj
] (if positive).

In the same situation but under the standard deviation principle, pt = E[Yt/(1+ it)]+
θtσ[Yt/(1 + it)]. Since σ2(Yt) = λtE(Z2

t ) = 2λtµ
2
Zt

,

ct = [E(Yt) + θtσ(Yt)]/a(t) = (λtµZt
+

√

2λtθtµZt
)/a(t),

yielding by (4.5),

ρt =

√
2λtθt

λt +
√

2λtθt

1

µZt

a(t). (4.7)

Note that ρt here is decreasing in the claim arrival rate λt. It is larger than (4.6) (expected
value principle) when the standard deviation principle provides a higher premium, i.e.
when σ(Yt) > E(Yt), or equivalently, 2 > λt. Under the variance principle, pt = E[Yt/(1+
it)] + θtσ

2[Yt/(1 + it)], so that

ρt =
2µZt

θt

1 + it + 2µZt
θt

1

µZt

a(t). (4.8)

This time, ρt becomes independent of λt, as in (4.6) (expected value principle). It is larger
than (4.7) (standard deviation principle) when the variance principle provides a higher
premium, i.e. when σ(Yt)/(1 + it) > 1, or equivalently,

√
2λtµZt

> 1 + it.
By (4.6), (4.7) or (4.8), when all claim amounts, claim arrival rates and safety loading

factors are constant, ρ(t) will increase over time because of the interest rates. In such
a case, the adjustment coefficient R(t) = min{ρ1, . . . , ρt} is just given by ρ1, i.e. only
the root of f1(r) = 1 (for the first period) has to be retained. A root for a subsequent
period value may become relevant if at some time, ρt decreases and goes below the value
ρ1. For instance, suppose that by some effects of inflation, the average claim amount µZt

increases over time. Denote by lt, t ≥ 2, the rate of inflation during the period (t− 1, t];
thus, µZt

= µZt−1(1 + lt), t ≥ 2. The relation (4.6) then becomes

ρt =
θt

1 + θt

1

µZ1

a(t)

b(t− 1)
, (4.9)

where b(t− 1) =
∏t

j=2(1 + lj). When, for instance, θt ≡ θ, it ≡ i and lt ≡ l for all t, (4.9)

gives ρt = [θ/(1 + θ)µZ1 ](1 + i)t/(1 + l)t−1. Thus, if i < l, ρt is now a decreasing function,
hence R(t) = ρt, i.e. the root of ft(r) = 1 (for the last period). Of course, other scenarios
are possible.

If premiums are received at the end of the period, ct = pt/a(t) where pt = (1+θt)E(Yt)
under the expected value principle, pt = E(Yt) + θtσ(Yt) under the standard deviation
principle and pt = E(Yt)+θtσ

2(Yt) under the variance principle. One then finds that ρt is
still given by the formulas (4.6) and (4.7) in the two first cases, and in the third case, by
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a formula similar to (4.8) where the term 1+ it is replaced by 1. With premiums received
at the middle of the periods, (4.6) and (4.7) remain true, and for (4.8), the term 1 + it in
a(t) is replaced by (1 + it)

1/2.

Approximated normal claims. Suppose that Xt = max(0, Dt), t ∈ IN0, where
the Dt’s have independent continuous distributions on IR with finite moment generating
function. Then, ρt exists and is the positive root of the equation

erct = P (Dt ≤ 0) + E[erDtI(Dt > 0)]. (4.10)

In particular, let each Dt be normally distributed with finite mean µDt
and variance σ2

Dt
.

Simple approximations to ρ(t) can be obtained by bounding the right-hand side of (4.10).
Indeed, it is clear that

E(erDt) ≤ P (Dt ≤ 0) + E[erDtI(Dt > 0)] ≤ P (Dt ≤ 0) + E(erDt),

and remember that E(erDt) = exp(rµDt
+ r2σ2

Dt
/2). Thus, ρmin

t ≤ ρt ≤ ρmax
t , where ρmin

t

is solution of erct = E(erDt) i.e.

ρmin
t = 2(ct − µDt

)/σ2
Dt
, (4.11)

and ρmax
t is solution of

erct − erµDt
+r2σ2

Dt
/2 = P (Dt ≤ 0).

Clearly, ρmin
t will provide a very accurate approximation to ρt when P (Dt ≤ 0) is small

enough (if, for instance, µDt
≥ 3σ2

Dt
).

Let us reexamine the model with interest of Section 1(i). Thus, as before, one writes
Xt = Yt/a(t). Suppose that Yt = max(0, Zt), where the Zt’s are independent normal
random variables. The Xt’s then are independent random variables of the above type,
with Dt = Zt/a(t). For the sequel, we focus on the case where P (Dt ≤ 0) ≈ 0, meaning
that Xt and Dt are almost equidistributed (so, Yt and Zt too). Then, ρt ≈ ρmin

t .
Consider premiums that are collected at the beginning of the period. Under the

expected value principle, we obtain

ρmin
t = 2θt

µZt

σ2
Zt

a(t). (4.12)

Note that ρt decreases with the variance-to-mean ratio of Zt. This translates the intuitive
idea that a larger dispersion of the claim amounts increases the ruin probabilities. Under
the standard deviation principle, ρmin

t = 2θta(t)/σZt
, which does not depend on µZt

.
Under the variance principle, ρmin

t = 2θta(t− 1), independently of µZt
, σZt

and it.
Let Rmin(t) = min(ρmin

1 , . . . , ρmin
t ). If ρmin

t is increasing over time, then Rmin(t) =
ρmin

1 . Different situations could arise, however. A typical example is when the claim
amounts are subjected to inflation (as for (4.9)). Also, the relative dispersion of the
claim amounts can vary during the period (0, t]. Suppose, for instance, that it reaches a
maximum at some time τ ; then, Rmin(t) = ρmin

τ , in absence of interest.
If premiums are collected at the end or middle of the period, the value of ρmin

t is not
modified under the expected value or standard deviation principles. With the variance
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principle, ρmin
t = 2θta(t) for premiums at the end, and ρmin

t = 2θta(t − 1)(1 + it)
1/2 for

premiums at the middle.

Numerical illustrations. Let us consider the model with interest (1.1) where the
premiums are collected at the beginning of the period. The interest rates per period are
assumed to be constant, i say, and all the loading factors are fixed to θ = 0.05. Initially,
u = 10. As in case (i) above (and example (1) in Section 3), the claim amounts per period
Yt have a compound Poisson distribution, with λt = 1 and i.i.d. exponential claims Zt,j

of mean 1.
Let us calculate the premiums under the expected value, standard deviation and vari-

ance principles. Then, the roots ρt are given by (4.6), (4.7) and (4.8), respectively. In all
cases, ρt increases with t (through the factor a(t) = (1 + i)t), so that R(t) = ρ1 for all
t. With (4.6), ρ1 = 0.05(1 + i)/1.05; with (4.7), ρ1 = 0.05

√
2(1 + i)/(1 + 0.05

√
2); with

(4.8), ρ1 = 0.1(1 + i)/(1 + i+ 0.1). Here thus, the corresponding Lundberg type bounds
remain constant over time and are given by e−ρ1u. Table 7 provides these bounds for
different interest rates. As indicated earlier, they decrease with i. Note that the bounds
under the expected value principle are larger than under the standard deviation principle
(because 2 > λt = 1; see the explanation given just after (4.7)), and the latter are larger
than under the variance principle (because

√
2 > 1 + i; see above after (4.8)). Roughly

speaking, in the present situation, the variance principle yields the smallest approximated
ruin probabilities (as the premiums are the highest); in that sense, it is the safest principle
for the company.

i expected val. pr. std. deviation pr. variance principle

0 0.621145 0.516640 0.402890
0.01 0.618194 0.513239 0.402560
0.05 0.606531 0.499858 0.401301
0.1 0.592260 0.483622 0.399849

Table 7: Lundberg type bounds under the expected value, standard deviation and variance
principles, for u = 10, θ = 0.05 and different values of i.

Consider now the expected value principle, and let us suppose that the average claim
amount increases over time with a fixed inflation rate l = 0.025 per period. Then, by
(4.9), ρ(t) = (0.05/1.05)(1 + i)t/(1.025)t−1. Thus, if i < l = 0.025, ρt is decreasing with
t, hence R(t) = ρt; if i ≥ 0.025, ρt is nondecreasing with t, hence R(t) = ρ1. Table 8
gives the Lundberg type bounds for different horizons and interest rates. As the first two
interest rates are smaller than the inflation rate, these bounds increase over time and are
given by e−ρtu; the last two interest rates being greater than the inflation rate, the bounds
here are constant and equal to e−ρ1u.
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t i = 0 i = 0.01 i = 0.05 i = 0.1

5 0.649596 0.635451 0.606531 0.592260

10 0.682973 0.656264 0.606531 0.592260

15 0.713899 0.676203 0.606531 0.592260

20 0.742397 0.695268 0.606531 0.592260

Table 8: Lundberg type bounds under the expected value principle, for u = 10, θ = 0.05,
l = 0.025 and different values of t and i.
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