
Mechanical properties of a two-filament bundle

Author: Laura Roman Canal
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

⇤

Advisor: M. del Carmen Miguel López

Abstract: In this work we study the interplay between elastic degrees of freedom and crosslink
binding dynamics of a two filament bundle slowly driven into a bent state. Using Monte Carlo
simulations, we will measure the crosslinks density as a function of crosslink sti↵ness and for given
bending amplitudes. The results show that only hard crosslinks present collective unbinding at a
certain bending amplitude, leading to a first order phase transition between unbound-bound states.

I. INTRODUCTION

Over the past decade, the study of polymers has raised
a great interest in the field of soft condensed matter due
to the key role bundles of filamentous polymers play in
biological processes, p.e. conforming extracellular and
intracellular structures. One example is the cytoskele-

ton (Fig. 1), which ensures the cell’s structural integrity
and mobility and also regulates intracellular organization
and transport [1]. Thanks to the accessibility to cellular
environments, many experimental studies have been per-
formed on biopolymers. The results obtained, sometimes
striking di↵erent to the behavior of synthetic and flexi-
ble polymers, have motivated the theoretical study and
characterization of these so called semiflexible polymers.

A semiflexible polymer is a filament with a bending
sti↵ness (resistance against bending deformation) large
enough for its bending energy term to compensate the
entropic contribution - that comes from the significant
thermal fluctuations of the system- so the straight con-
formation dominates over the tendency of the filament to
adopt a random coil conformation, [2]. This competition
between energetic and entropic e↵ects gives rise to behav-
iors unique of semiflexible polymers, mainly due to their
dimensions and mechanical properties, p.e. its bending
sti↵ness. To characterize the bending sti↵ness of a poly-
mer we introduce the persistence length or length over
which the polymer appears straight in the presence of
Brownian forces, i.e. thermal fluctuations. Experimental
studies show that most synthetic polymers have a per-
sistence length much smaller than the polymer relevant
length scale, so entropic term dominates over energetic
contributions thus leading to the random coil conforma-
tion. Biopolymers however, tend to be composed of large
globular proteins that make the polymer more rigid, so its
persistence length is much larger than the molecular scale
while it is comparable to the relevant length scale. So we
say biopolymers are semiflexible and present a compe-
tition between entropic and energetic e↵ects, with the
elastic strain energy stored in both stretching and bend-
ing deformation modes of filaments, [2, 3].
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Just like the composition of a polymer defines its per-
sistence length and therefore its mechanical behaviour, it
also dictaminates the interactions with other polymers.
Semi-flexible polymers show di�culty in entanglement -
since they cannot readily form knots- and so they are
more sensible to form crosslinked bundles. Moreover,
the properties of physiological crosslinkers, p.e nonlin-
ear elastic response and dynamic/transient nature, can
modify the viscoelastic properties of the bundle. In-vitro
experiments and modeling have showed that crosslink
sti↵ness mediates bundle mechanical properties and con-
versely, bundle conformational changes or the applica-
tion of a destabilizing forces change the binding state of
the crosslinks. On another note, motor proteins such as
myosin -which can actively generate stochastic forces by
pulling on F-actin filaments- can drive the filamentous
bundle into a non equilibrium state and therefore highly
modify the mechanics and dynamics of the system, [2].
The motivation of this work is to study the competi-

tion between energetic and entropic e↵ects in a simulated
biopolymer bundle at equilibrium. As explained above,
these polymers are weakly bound together by reversible
crosslinks but exhibit stability and strength in terms of
a bending rigidity that competes with thermal bending
or stretching fluctuations. In particular, we are inter-
ested in understanding the interplay between reversible
crosslink binding and bundle mechanical properties when
deforming our semi-flexible bundle.

II. THE MODEL

In this model we consider a two-filament bundle of
length L lying in a two-dimensional plane, [4]. These
semi-flexible filaments of bending sti↵ness k

f

are spaced
a distance b apart and are laterally interconnected by
reversible crosslinks, with crosslink shear sti↵ness k

x

,
that can bind and unbind the filament pair. We char-
acterize each of the filaments as a chain of j = 1, ..., N

x

beads (crosslink binding sites) with harmonic springs, of
spring constant k

s

, that laterally join nearest neighbor-
ing beads and that are spaced in equilibrium at regular
intervals a distance a apart. We will only allow the
beads to move along the contour (bundle shape), neglect-
ing the possibility of making any displace perpendicular
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FIG. 1: Fluorescence microscopy image of an eukaryotic cell
cytoskeleton: actin filaments (red), microtubules (green), [2].

FIG. 2: Representation of the bent state of the bundle char-
acterized by the tangent angle ✓(s) at each s site, [5].

to the bundle axis, thereby reducing the bead movement
to be one-dimensional. The bundle is driven into a bent
state characterized by the tangent angle ✓(s) at arclength
position s = 0, ..., L along the bundle contour (see Fig.
2). We characterize our bundle of i = 1, ..., N

i

filaments
and N

x

beads per filament as a N
i

⇥N
x

dimensional ar-
ray, where a (i, j) matrix’s site is the jth-bead on the
ith-filament, characterized by a lateral displacement u

ij

,
an imposed bending angle ✓

j

and a crosslink occupa-
tion number n

ij

= {0, 1}: n
ij

= 1 means a crosslink
exists between beads (i, j) and (i + 1, j) and n

ij

= 0
means nonexistence. We will consider the driving to the
bent state slow enough so the crosslink binding degrees
of freedom can equilibrate at such amplitude, i.e.bundle
shape is assumed constant in time. As we implement a
deformation-controlled virtual experiment the filaments
bending energy is constant and therefore irrelevant in our
simulations, in contrast with the worm-like chain (WLC)
model proposed by Kratky and Porod, for inextensible
biopolymers with finite resistance to bending, [2]:

H
b

= k
f

N

fX

i=1

N

xX

j=1

�
✓0
i,j

�2 ⇠ ct. (1)

There are two contributions to the elastic energy of the
bundle that can not be neglected. One is the stretching
energy of the filaments H

s

, due to the relative displace-
ment of consecutive beads j and j + 1 along the ith-
filament: (u

i,j+1 � u
i,j

). This energy is characterized by
the filament stretching sti↵ness k

s

related to the Young
modulus E by k

s

⇠ Eb2/a. From elemental knowledge of
continuum elasticity, we consider the discretized version
of the stretching energy term:

H
s

=
k
s

2

N

fX

i=1

N

xX

j=2

(u
i,j�1 � u

i,j

)2 . (2)

As a consequence of bringing the bundle into a bent sate,
filaments slip relative to each other and the anchoring of
crosslinks with filaments abandons its original perpen-
dicularity. The cost associated to this non-perpendicular
anchoring can only be compensated if one of the filaments
stretches out farther than the other and compensates the
b✓ bending mismatch, i.e. crosslink shear deformation be-
tween (i+1, j) and (i, j) beads, (u

i+1,j �u
i,j

+b✓
j

) takes
place. Moreover, the possibility of the (i, j) crosslink
to unbind (n

i,j

= 0) must be included in the crosslink
shearing energy term, as once it unbinds it decouples its
associated beads and reduces to zero its associated shear-
ing energy. The shear contribution to the elastic energy
of the bundle is characterized by the crosslink shear sti↵-
ness k

x

, related to the shear modulus µ by k
x

⇠ µa.

H
x

=
k
x

2

N

f

�1X

i=1

N

xX

j=1

n
i,j

(u
i+1,j � u

i,j

+ b✓
j

)2 . (3)

The expression for the local tangent angle of the bundle
at the j crosslink site comes from the much studied case
of and end-grafted bundle deformed by a tip-load at its
free end:

✓
j

= aCN
x

sin(⇡j/2N
x

). (4)

To sum up, in this model the crosslinks can remain un-
sheared only if filaments stretch out or, on the con-
trary, filaments can avoid to stretch only at expenses
of crosslink shearing. Because the crosslinks can bind
and unbind, this translates in saying that the number of
crosslinks present in the bundle (those that are bound,
n
ij

=1) fluctuates and is determined by:

N =

N

fX

i=1

N

xX

j=1

n
i,j

. (5)

So in this model where N is not constant, we are forced
to use the grand canonical ensemble. We must take into
account a crosslink chemical potential µ so a binding en-
thalpy �µN is introduced to the bundle model Hamilto-
nian, that is now defined by:

H = H
x

+H
s

� µN. (6)

We therefore consider that the bundle is more stable the
more crosslinks are bound.
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A. Setting of parameters

The variables of our model are the number of filaments
N

f

, the number of beads (or crosslink sites) N
x

, the fila-
ment stretching sti↵ness k

s

, the crosslink shear sti↵ness
k
x

, the lattice’s constants: bead to bead distance a and
filament to filament distance b, the bending amplitude
C, and the crosslink chemical potential µ. Our simu-
lated bundle consists of N

i

= 2 filaments and N
x

= 100
beads. We also set the lattice’s constants to a, b = 1
so the bundle length is defined by L = aN

x

is set to
L = 100 and we introduce an end-grafted bundle condi-
tion u

i,1 = 0. The temperature may play an important
role in our model and we will set � = 1/k

b

T to � = 100
and also �k

s

= 100. We will measure the crosslink den-
sity n = N/N

max

in terms of varying µ, C and the non-
dimensional parameter k

x

/k
s

. Here N
max

is the max-
imum number of crosslinks that can be bound in our
bundle, defined by N

max

= N
x

(N
f

�1). So in our model
it is N

max

=100.

III. THE METHOD

In order to perform our simulations we write a Monte
Carlo FORTRAN program in the Grand Canonical En-
semble, as the N number of crosslinks is a fluctuating
quantity. We proceed to give a few hints on how the pro-
gram was written to understand the method followed.
The system is represented by a (i = 1, ..., N

i

) ⇥ (j =
1, ..., N

x

) lattice. Each (i, j) lattice site has a u
i,j

rela-
tive displacement and a n

i,j

occupation variable associ-
ated, so we must construct two matrices; one per variable.
As the binding of a crosslink involves pairs of mirroring
beads, the occupation matrix is one dimension smaller
than the displacement matrix. So for our two-filament
bundle, of N

x

= 100 beads per filament, there is one sin-
gle row of paired beads and the occupation of crosslinks
is a vector: OCUP[j], (j = 1, ..., 100) while the relative
displacements matrix is: U[i, j], (i = 1, 2; j = 1, ..., 100).
Once setting initial conditions and defined values and
parameters of the model, a typical Monte Carlo routine
starts, [6]. However, this MC routine we have written has
two singularities: it works in the grand canonical ensem-
ble and at each Monte Carlo step both a displacement
move and a crosslink bind/unbind move is attempted.
The relative displacement proposed for the randomly se-
lected i, j-bead is u0

i,j

= u
i,j

+ �, with �0.1 < � < 0.1
drawn uniformly randomly . The (un)-bind move is spin
flip like, i.e. if the randomly selected j-bead pair (or lat-
tice site) is occupied by a crosslink it is proposed to be un-
occupied, (if n

ij

= 1 ! n0
ij

= 0) and vice versa. The ac-
ceptance of each movement follows MC acceptance laws
but using the Grand-Canonical Hamiltonian, Eq. (6).

At every MC-step the N number of crosslinks is ob-
tained by Eq. (5) so at the end of the MC loop we av-
erage N over all 2 · 107 MC-steps and obtain the average

crosslink density defined by:

hni = hNi
N

max

. (7)

In order to observe the interplay between reversible
crosslink binding and bundle mechanical properties for
a given k

x

/k
s

= 10�5, ..., 10�2, our program will explore
di↵erent bending amplitudes C = 0, ..., 0.4 and crosslink
potentials �µ = �3, ..., 4 for C = 0

IV. RESULTS

We now proceed to calculate the average crosslink den-
sity hni as a function of the control parameters. Since our
aim is to understand the relation between bundle elastic-
ity and crosslink (un)binding dynamics we will perform
Monte Carlo simulations, following the method described
above, with posterior theoretical analysis.
We are primarily interested in studying two situations.

Firstly, we will consider the crosslink occupation density
as a function of the crosslink potential µ for an unde-
formed bundle. Lastly, we will discuss the crosslink oc-
cupation as a function of bundle deformation at a given
crosslink potential.

A. Crosslink occupation as a function of binding
energy

We study the dependance of the crosslink occupation
density hni with the crosslink potential µ that character-
izes the binding energy (�µN) for an undeformed bundle
(c = 0) previously characterized. In this situation, there
is a competition between the crosslink binding energy and
the energetic terms of filament stretching, Eq. (2), and
crosslink shearing, Eq. (3). However, for this straight
initial configuration of the bundle, the shearing energetic
term comes merely from the fluctuations in the relative
displacement of beads because b✓

j

= 0 as there is no
global bending. Figure 3 displays the data obtained in
the MC simulations for di↵erent crosslink sti↵ness k

x

/k
s

,
where we see the binding of crosslinks in the bundle as
a continuous process with no phase transition from the
unbound to the bound state. Two main features are ob-
served: crosslink occupation increases with the chemical
potential value (µ �) and with decreasing crosslink sti↵-
ness (k

x

/k
s

� ). These results are in agreement with
what we expected for our system described by the hamil-
tonian at Eq. (5): the (�µN) term indicates a favor-
able situation to have crosslinks bound for µ > 0, and
the crosslink shear energetic term, Eq. (3), indicates the
greatest the crosslink sti↵ness is, the more energetically
expensive it is to maintain crosslinks bound. We study
in detail the crosslink occupation at �µ = 0. In this sit-
uation there is no longer the energetic term that benefits
crosslinks to be bound (binding enthalpy is null) and the
equilibrium density occupation is achieved by minimizing
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Helmholtz free energy. In soft systems (k
x

/k
s

= 10�2)
the entropy dominates its behavior over the elastic en-
ergy, and indeed we observe exactly half the number of
crosslinks in each one of the two possible states.

An analytical approach to this simulation would be to
compare these results with the crosslink occupation den-
sity expression for a two-filament non-deformed bundle
with only one site (N = n1). The generalized hamil-
tonian, Eq. (5), is then reduced to a three degrees of
freedom one: two relative displacement variables u1,u2

and the n occupation variable of the single crosslink.

H1(u1, u2, n) =
k
s

2

�
u2
1 + u2

2

�2
+

k
x

n

2
(u1 � u2)

2 � µn.

(8)
We can now obtain the analytical expression for the
crosslink occupation density using grand canonical en-
semble basic knowledge:

hni = 1

�Z

@Z

@µ
, (9)

being the grand-canonical partition function:

Z =
1X

n=0

Z Z
exp(��H1(u1, u2, n))du1du2. (10)

Applying Eq. (8) to Eq. (10) and to Eq. (9) we get:

hni =
✓
1 + e��µ

r
1 +

2k
x

k
s

◆�1

. (11)

The solutions of this one-crosslink model are shown with
the Monte Carlo results in Fig. 3. Both analytical expres-
sion (Eq. 11) and simulations data for hni agree in stat-
ing that the increase in crosslink occupation is driven by
the interplay between the configurational entropy stored
in axial displacements and the crosslink binding energy
characterized by µ.

B. Crosslink occupation as a function of bundle
deformation

Let us now discuss the dependance of crosslink occupa-
tion density hni with bundle deformation characterized
by the angle described in Eq. (4), and associated to a
clamped bundle loaded at its free end. We will charac-
terize the bundle deformation with the amplitude of the
imposed deformation (c) as in the limit of small deforma-
tions we obtain c from the bundle curvature by c ⇠ ✓0. In
this study we will not consider crosslink binding energy
so we set crosslink potential µ = 0.

In Fig. 4 we plot the average crosslink density hni as
function of the imposed bending amplitude c for di↵erent
values of k

x

/k
s

. In all cases, hni decreases with c denot-
ing that crosslinks unbind upon bending, the greater the
imposed bundle deformation, the lesser crosslinks remain
bound. The reason is that bundle deformation tends to

-2 0 2 4
βµ

0

0,5

1

<n
>

FIG. 3: Average crosslink occupation density as function of
control parameter �µ and for k

x

/k
s

= 10�2, ..., 103 (from left
to right) for a non-deformed two-filament bundle with �k

s

=
100. The solid lines are the solutions of the single crosslink
model, Eq. (11).

produce a mismatch between the crosslink binding sites,
and therefore an elastic energy cost for the binding as
introduced at Eq. (3). However, the striking feature
in Fig. 4 is the fact that for a crosslink sti↵ness high
enough (k

x

/k
s

= 10�2) the crosslink occupation density
drops extremely sharply at a determined value of bend-
ing amplitude c⇤ so it abandons the smooth and gradual
decrease that hni presents for lower values of k

x

/k
s

.
In Fig. (5) we plot the average energy of the bundle

as function of the imposed bending amplitude c for the
di↵erent values of k

x

/k
s

. We can observe that there is
a peak in the bundle energy of k

x

/k
s

= 10�2 at c = c⇤,
indicating that there is a characteristic energy barrier as-
sociated to the discontinuous drop of crosslink occupation
density, i.e. it is a first-order transition from the bound
to unbound state. This surprising mechanism cannot be
obtained with the one-crosslink model, which describes a
smooth decreasing occupation upon bundle deformation
governed by a renormalized potential that includes bun-
dle curvature, [5]. In fact, the existence of a discontinu-
ous transition is due to a cooperative e↵ect where many
crosslinks must be unbound to drive the bundle into a
weakly crosslinked state. Thus, soft crosslinks unbind
progressively leading to a smooth decrease of average
crosslink occupation upon bending while sti↵ crosslinks
tend to unbind cooperatively with a discontinuous tran-
sition. A theoretical approach to this phenomena should
be made in the mean-field approximation but it can also
be understood in terms of a competition between filament
stretch k

s

and crosslink shear k
x

energy scales, relevant
only for sti↵ crosslinks.
Soft crosslinks (k

x

� ) can not induce a stretching
in the filaments when deformed, so the force over the
crosslinks is governed by k

x

and it is small. Therefore
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FIG. 4: Average crosslink density as function of bun-
dle deformation c for di↵erent crosslink sti↵ness k

x

/k
s

=
10�5, ..., 10�2. For the largest crosslink sti↵ness (k

x

/k
s

=
10�2) the simulations display a discontinous drop at c⇤.

unbinding events are purely local and do not a↵ect the
rest of the bundle, and the decrease of crosslink occupa-
tion upon bending is smooth. On the other hand, sti↵
crosslinks (k

x �) induce stretching in filaments as a re-
sult of shearing-stretching competition. Thus, the force
over crosslinks is governed by k

s

and a crosslink unbind-
ing event modifies the force balance in the filaments. In
this limit, the force over crosslinks leads to collective un-
binding behavior potentially driving the whole bundle
into the unbound state, i.e. at a certain bending am-
plitude an unbundling first-order phase transition takes
place.

V. CONCLUSIONS

• First of all, we have seen that for an undeformed
two-filaments bundle the crosslink occupation is
controlled by the interplay between binding energy
and the configurational entropy stored in the axial
displacement modes, increasing with the crosslink
potential with no sudden transition.

• Secondly, we’ve realized that a two-filament

0 0,1 0,2 0,3 0,4
c

0,01

0,015

0,02

0,025

0,03

E

kx/ks=10-5

kx/ks=10-4

kx/ks=10-3

kx/ks=10-2

FIG. 5: Average bundle energy as function of bundle defor-
mation c for crosslink sti↵ness k

x

/k
s

= 10�5, ..., 10�2. The
energy peak at c⇤ for k

x

/k
s

= 10�2 indicates the presence of a
free-energy barrier and the first-order nature of the transition.

non-deformed bundle with a single crosslink model
can be solved analytically and its solutions for
the crosslink occupation reproduce the simulated
curves, the smaller the crosslink sti↵ness, the
greater the accuracy.

• Finally, we have studied the response of a re-
versibly crosslinked two-filament bundle for an im-
posed bundle deformation. We have concluded that
bundle deformation leads to a mismatch between
binding sites and therefore to an elastic energy cost
for binding that for sti↵ crosslinks leads to a collec-
tive unbind phenomena at a given bundle deforma-
tion amplitude, i.e. a first-order phase transition
between bind-unbind states.
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Miguel López, for all her immeasurable help, the time
dedicated to this work and the fruitful discussions held.
I’d also like to thank my family and colleagues for their
support during the time this work took place.

[1] Alberts, B. et al. ”Molecular Biology of the Cell”. Garland
Press. (1994)

[2] Broedersz, C.P. & MacKintosh, F.C.. ”Modeling semiflex-
ible polymer networks”. Rev. Mod. Phys. 86, 995 (2014)

[3] Hatami-Marbini, H. & Picu, R.C.. ”Heterogeneous long-
range correlated deformation of semiflexible random fiber
networks”. Physical Rev. E 80, 046703 (2009)

[4] Vink, Richard L.C. & Heussinger, C.. ”Crosslinked

biopolymer bundles: crosslink reversibility leads to coop-
erative binding/unbinding phenomena”. J. Chem. Phys.
136, 035102 (2012)

[5] Heussinger, C.. ”Cooperative crosslink (un)binding in
slowly driven bundles of semiflexible filaments”. Phys.
Rev. E. 83, 050902 (2011)

[6] Frenkel, D. & Smit, B..”Understanding molecular simu-
lation. From algorithms to applications”. A. press,(2001)

Treball de Fi de Grau 5 Barcelona, June 2016


