
Collective and emergent dynamics in active systems

Author: Elena Sesé Sansa
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Abstract: We study some non-equilibrium properties of active matter, such as self-propulsion,
that causes the emergence of phenomena not observed in equilibrium systems. By applying the
UCNA approximation we are able to derive a probability density function under stationary condi-
tions that enables us to study the behaviour of active particles in the presence of a perturbation such
as a hard wall modelled by a repulsive potential. From here, we calculate the adsorption near the
wall and we study the dependence it has on activity. We find that adsorption grows approximately
as the square root of the activity, regardless if the potential is strictly repulsive or repulsive and
attractive in different regions of space.

I. INTRODUCTION

Self-propelled or active particles are particles that take
energy from the environment an transform it into per-
sistent motion. The study of self-propulsion is of wide
interest because it is a characteristic that is found in
many biological systems, for example, molecular motors
or swimming bacteria. In recent years, extensive research
has been carried out focusing on finding a model to prop-
erly describe the dynamics of active systems.

Brownian motion describes the motion of particles sus-
pended in a fluid as a result of collisions with the fluid
particles due to thermal agitation. Systems perform-
ing Brownian motion are in thermodynamic equilibrium.
A characteristic of active systems, though, is the self-
propulsion of its particles which drives the system far
from equilibrium. Thus, Brownian motion fails to fully
the motion of active systems. Among the most standard
models which have emerged to describe active systems
we find the active Brownian model and the Run-and-
tumble model. In the active Brownian model, particles
swim at fixed speed and their direction of motion changes
gradually by angular diffusion. In the Run-and-tumble
(RnT) model, which was first introduced to describe the
motion of the Escherichia coli bacterium, particles move
along straight paths with speed v (run) and after a cer-
tain time, called the persistence time, they experiment
a random change in the direction of their motion (tum-
ble), after which they continue to move in a straight line.
Although these models are widely spread, they do not
provide an analytic expression for the many-particle dis-
tribution function of the system.

The Gaussian coloured-noise is another model which
describes the motion of active particles. Basically, it
models the motion of a Brownian particle using the
Langevin equation where a memory for the relaxation
of the velocity is introduced. Thus, there are velocity
correlations with time.
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An approximation to this model is the Unified Colored
Noise approximation (UCNA). The relevance of UCNA
is that, by eliminating the acceleration terms of the prob-
lem, it allows one to find an approximate probability dis-
tribution for many particles under stationary conditions
called Multidimensional unified coloured noise approxi-
mated stationary probability (MUCNASP) and developed
by Maggi, Marconi et al. in [4].

FIG. 1: Scheme of the effect of activity on the emergence of
aggregation. Activity can be understood as the time correla-
tions between the successive displacements that compose the
random motion of a particle. If there are no correlations be-
tween successive displacements (left-hand figure) the system
will not have a tendency to aggregate because the particle will
have the same probability of staying attached to the wall as
that of leaving it. However, if correlations exist it will take
a certain amount of time for the particle to detach from the
wall (right-hand figure) and so aggregation will appear. Full
arrows: Direction of the first step. Dotted arrows: Possible
directions of the next step.

The characteristic tendency of active particles to ag-
gregate in the presence of an obstacle, despite there be-
ing no attractive inter-particles forces, can be the cause
of different physical phenomena. Adsorption is a phe-
nomenon by which gas, liquid or dissolved solid particles
adhere to a certain surface. (Adhesion is the tendency for
two different particles to cling to one another). A related
phenomenon is wetting, which is the capacity of a liquid
to be in contact with a solid surface without spreading
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out.
In this project we study the aggregation of non-

interacting active particles when subjected to a repulsive
potential which models a hard wall. We also analyze the
adsorption of particles to the hard wall and the influence
that activity has in this phenomenon.

II. MODELLING A SYSTEM OF ACTIVE
PARTICLES. THE UCNA APPROXIMATION.

We base our study on the theory exposed by Marconi
et al. [1]. From the equations of motion of a system of
Brownian particles with memory they derive the prob-
ability density function for one particle. We are going
to work with this probability density function to study
the motion of active particles subjected to a repulsive
potential.

The Langevin equation describes a system of particles
immersed in a fluid that undergo Brownian motion due
to collisions induced by thermal agitation. Marconi et
al. [1] introduce a memory associated to the relaxation
of the velocity, modelled by a Gaussian coloured noise
force, ~vi. The result is two coupled equations which fully
describe the motion of active particles.
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~Fi(~r1, ..., ~rN ) is a conservative drag force proportional to

the particles’ velocity, ~̇ri, and represents the friction done

by the fluid. ~ξ simulates the thermal agitation of the fluid
and is characterized by diffusivity, Dt. It is a white Gaus-
sian noise vector, which means that it is a random vector
that follows a Gaussian probability distribution and it
is uncorrelated at different instants of time (Markovian),

〈~ξi(t)~ξj(t′)〉 = 2δijδ(t − t′). ~η is also a white gaussian
noise vector. ~vi models self-propulsion, it is character-
ized by τ and Da, and it is a coloured Gaussian noise
vector. Therefore, it has a correlation over time that de-

cays as 〈~vi(t)~vj(t′)〉 = 2
Da

τ
δijexp(−|t − t′|/τ), where τ

is the correlation time. In the limit τ → 0 we go back to
equilibrium and the vector will be uncorrelated at differ-
ent instants of time.

The Unified Colored Noise approximation (UCNA) [7]
introduces the condition of strong friction between the
particles and the fluid. This allows us to drop the ac-
celeration terms of the problem. The process is then
assumed to have no memory. From Eq. (1) and applying
the UCNA approximation we obtain
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where the friction matrix is

Γik = δik +
τ

γ

∂2U

∂xi∂xk
(4)

UCNA is valid for both small and large correlation
times, τ , and for values of the friction strictly positive.
Its accuracy improves for larger values of the friction.

By eliminating the fast degrees of freedom we obtain
a Markovian process (without memory) out of the non-
Markovian process we had at the beginning. It is impor-
tant to mention, though, that we are still out of equilib-
rium and so there are still velocity correlations captured
in the friction matrix, which now is not a constant but
depends on the positions of particles.

According to Hänggi and Jung [7], the probability dis-
tribution function, fN (x1, ..., xN , t), of a process with no
memory will evolve following a Focker-Planck equation,

∂fN (x1, ..., xN , t)

∂t
= −

∑
l

∂

∂xl
Jl(x1, ..., xN , t) (5)

In the case of vanishing probability currents,
Jl(x1, ..., xN , t) = 0, Marconi et al. [1] obtain an
expression for the stationary N-particle distribution
function,

PN (x1, ..., xN ) =
1

ZN
exp

(
− H(x1, ..., xN )

(Da +Dt)γ

)
(6)

which is very similar to the Boltzmann distribution. We
can identify (Dt + Da)γ with a temperature, Ts, which
is the particle’s energy due to diffusivity, taking into ac-
count that we are working with kB = 1.

Applying the BGY hierarchy, Barrat et al. [5], enables
us to trace out the dependence of the probability distri-
bution on the positions of N-1 particles so that PN only
depends on the position of one particle, obtaining the
equation for the single-particle density function. In the
case we study there are no pairwise interactions between
particles so the potential is due to the external field u(x),
which we choose to be a repulsive potential.

Ts
d

dx

(
ρ(1)(x)

1 + τ
γuxx(x)

)
= −ux(x)ρ(1)(x) (7)

where ux(x) and uxx(x) are the first and second deriva-
tives of u(x), respectively. Solving the differential equa-
tion,

ρ(1)(x) = ρ0 exp

(
−
u(x) + τ

2γ (ux(s))2

Ts

)[
1 +

τ

γ
uxx(x)

]
(8)

This is the single particle probability density function
in one dimension. ρ0 is the probability density of the
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volume and we have fixed its value to ρ0 =1. Considering
u(x) = u0f(x) we have rewritten the probabilty density,

ρ(1)(x) =

ρ0 exp

(
−u0
Ts

(
f(x) +

1

2
Pe

Fw
Fa

(fx(x))2
))[

1 + Pe
Fw
Fa

fxx(x)

]
(9)

We can identify three dimensionless parameters which

determine the collective behaviour of the system.
u0
Ts

relates the energy of the wall to the diffusive energy of

the particles. Consequently, the smaller
u0
Ts

is, the softer

the wall is to particles.
Fw
Fa

=
u0
γσv0

is the force that the

wall exerts on the particles compared to the particles’
force due to their velocity in a straight path, v0. σ is

the particles’ size. Pe =
τv0
σ

is the Péclet number and

compares the persistent distance (straight distance that a
particle travels before reorienting its direction of motion)
to the particles’ size. This is the dimensionless parameter
we use to measure the system’s activity. It is important
to notice that when there is no activity, that is Pe=0, the
system is at equilibrium.

To quantify the amount of particles that aggregate in a
region of space with respect to the particles in the volume
we calculate the adsorption,

Γ =

∫ ∞
0

(ρ(1)(x)− ρ0)dx (10)

III. RESULTS AND DISCUSSION

First of all we are going to show how the probability
density is modified when the system is subject to dif-
ferent potentials. After that, we will discuss how the
repulsive potential causes particles to aggregate and how
the adsorption depends on the activity of the system.

A. Probability densities

We need to numerically compute the accumulation of
particles when there is aggregation in the presence of a
repulsive potential. To do so, we have developed a code
implemented in Mathematica.

From the three parameters appearing in the density
profile, Eq. 9, we choose to study the dependence of the
adsorption with the Péclet because it is the parameter
that measures the activity, as we mentioned before. We

fix the other two parameters
u0
Ts

=
Fw
Fa

= 10. Therefore,

the energy of the wall is bigger than that of the particles
and we ensure that the repulsive potential really models
a hard wall which particles cannot penetrate.
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FIG. 2: Dashed lines: Density profiles for an activity value

Pe=8 for potentials (a) u(x) = u0
1

x12
; (b) u(x) = u0

e−x

x
; (c)

u(x) = u0(
1

x12
− 1

x6
). Full lines: Density profiles at equilib-

rium for the same potentials.

To model the repulsive wall we use three different po-
tentials. Two of them are completely repulsive, u(x) =

u0
1

x12
and u(x) = u0

e−x

x
, and the third one is the

Lennard-Jones potential, which has both a repulsive and
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an attractive region, u(x) = u0(
1

x12
− 1

x6
).

In Fig. 2 above we show the probability densities for
the three different potentials we have worked with. To
plot the profile densities in Fig. 2 we have chosen the
value of activity Pe=8. It can be seen that the behaviour
of particles under the presence of either a completely re-
pulsive potential or a repulsive and attractive potential
is considerably different. Common features in all three
representations are a region where there are no particles
due to the repulsiveness of the wall; a peak of the profile
density that shows an accumulation of particles in that
region of the space; a constant value of the profile density
that corresponds to the volume’s density, ρ0.

If we compare Fig. 2 (a) and (b) we notice that the
steeper the repulsive potential is, the more particles ag-
gregate for a given value of activity. Conversely, at equi-
librium particles do not aggregate. Thus, the probability
density is constant in all the space except in the area
where it decreases due to the repulsiveness of the wall.

Fig. 2 (c) shows that the probability density at a Pe=8
has negative values in a certain region of space. This is
due to the fact that the second derivative of the poten-
tial is negative in a certain domain of positions because
the potential has an attractive term. The attractive term
also causes the friction coefficient Eq. (4) to be negative
in certain region of space. There, the UCNA approxi-
mation we have used to derive the profile density is not
valid because it requires the friction to be strictly posi-
tive. Apart from that, a negative friction lacks physical
meaning. That is why the region where the profile is
negative has no physical meaning and is a consequence
of the type of potential which models the wall. We have
studied the region of space where the friction coefficient
is negative in order to clearly identify where UCNA is not
valid and therefore to know the limitations of the model.

The peak in Fig. 2 (c) is narrower and higher than
those in Fig. 2 (a) and (b). This is caused by the fact
that aggregation in the case of the Lennard-Jones poten-
tial is not only due to activity but also has a contribution
from the attractive part of the potential. Thus, particles
will tend to accumulate themselves in the minimum of
the well created by the attractive part of the potential.
The peak showing the aggregation of particles will be
narrower and higher than in the case of completely re-
pulsive potentials. Between the density’s peak and the
density’s negative region there is a domain where the
profile’s value is 0 and means that there are no particles.
This is also caused by the attractive part of the Lennard-
Jones potential which attracts particles to the minimum
of the potential well leaving a space empty of particles.
In this region the friction coefficient is positive, so the
UCNA approximation is valid. Finally, when particles
are subject to a Lennard-Jones potential they will tend
to aggregate despite there is no activity, as a result of the
attractive part of the potential. This is what shows the
peak at the equilibrium profile density in Fig. 2 (c).

B. Adsorption

Adsorption is obtained by integrating over all the space
the profile density of a system with a certain amount of
activity minus the profile density of the same system at
equilibrium, see Eq. (10). We have used Mathematica
to numerically compute the integrals and to plot them
as a function of activity. Hence, we have been able to
study the dependence of adsorption on activity in a sys-
tem subjected to a repulsive potential, Fig. 3 below.

In the case of the completely repulsive potentials, a
certain amount of activity is needed to make particles
aggregate, so there is no adsorption neither at equilib-
rium nor at small Péclet because repulsion due to the
hard wall wins. The steeper the repulsive potential is the
smaller the Péclet needs to be to produce adsorption. In
other words, when the potential wall is steeper particles
will find it easier to aggregate. This confirms what some
authors refer to as the ”attraction from repulsion”.
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FIG. 3: Adsorption as a function of activity (Péclet). Full

line: u(x) = u0
1

x12
; dashed-dotted line: u(x) = u0

e−x

x
;

dashed line: u(x) = u0(
1

x12
− 1

x6
).

In the case of the Lennard-Jones potential, adsorption
grows much faster than in the other two cases as a func-
tion of the Péclet, Fig. 3 above. This is due to the con-
tribution of the long-range attractive term that causes
particles to aggregate despite there is no activity. This
explains why at equilibrium particles will be able to ag-
gregate and adsorption will be positive. This phenomena
is in accordance with the peak of the profile density at
equilibrium, Fig. 2 (c).

In Fig. 4 below we plot the logarithm of the adsorption
caused by the three potentials as a function of the log-
arithm of activity and we compare it to the square root
of the activity. We observe that the adsorption presents
approximately the same dependence with the activity in

the three cases. The u(x) = u0
e−x

x
potential asymptoti-

cally grows with the
√

(Pe). In the case of the other two
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potentials, even though we cannot ensure that the ad-
sorption grows exactly as the

√
(Pe), it grows similarly

to
√

(Pe).
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FIG. 4: Logarithm of the adsorption minus the adsorption in
equilibrium as a function of the logarithm of activity (Péclet).

Full line: 10
√
Pe; dotted line: u(x) = u0

1

x12
; dashed-dotted

line: u(x) = u0
e−x

x
; dashed line: u(x) = u0(

1

x12
− 1

x6
).

IV. CONCLUSIONS

In this study we have analyzed the collective behaviour
of a system of self-propelled particles subjected to a re-
pulsive potential. In order to do so, we have worked
with the Gaussian coloured-noise model to describe the
active system. Applying the UCNA approximation we
have obtained an analytic expression for the probability
distribution function of the system under stationary con-
ditions. With this, we have been able to use the single-
particle distribution function to study the behaviour of
active particles around a repulsive wall modelled by a
repulsive potential.

We have seen that active particles tend to aggregate

around repulsive objects although there are no attrac-
tive forces. We have modelled the repulsive objects using
three different types of potential: two of them are strictly
positive and the third one is a Lennard-Jones potential,
which has a short-range repulsive term and a long-range
attractive term. We can conclude that the more repul-
sive the potential is, the more particles tend to aggregate.
In the case of the Lennard-Jones potential the attractive
term of the potential favours the aggregation of particles
near the repulsive wall.

The characteristic tendency of active systems to aggre-
gate can be the cause of different physical phenomena. In
this project, we have studied the adsorption as a func-
tion of activity. We can conclude that the more activity
a system has the more adsorption there will be. It is
important to mention that the type of potential applied
influences the amount of activity needed to produce ad-
sorption. For example, in the case of the Lennard-Jones
potential, as the attractive term favours aggregation, less
activity is needed to produce adsorption. Moreover, we
have found that adsorption approximately grows as the
square root of activity for the three potentials we have
studied.

A further continuation to this work would be to add
interactions between particles and study if under these
conditions there is wetting. The study of the problem
would be different in this case due to the fact that the
particles would not stick to the wall homogeneously. Con-
sequently, a different and more sophisticated treatment
of the problem should be applied.
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