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Abstract	1	

Colorectal	 cancer	 (CRC)	 diagnosis	 often	 occurs	 at	 late	 stages	 when	 tumour	 cells	 have	2	

already	disseminated.	Current	 therapies	are	poorly	effective	 for	metastatic	disease,	 the	main	3	

cause	of	death	in	CRC.	Despite	mounting	evidence	implicating	the	tumour	microenvironment	in	4	

CRC	progression	and	metastasis,	clinical	practice	remains	predominantly	focussed	on	targeting	5	

the	 epithelial	 compartment.	 As	 CRCs	 remain	 largely	 refractory	 to	 current	 therapies,	 we	 are	6	

compelled	 to	 devise	 alternative	 strategies.	 TGF-β	 has	 emerged	 as	 a	 key	 architect	 of	 the	7	

microenvironment	 in	 poor	 prognosis	 cancers.	 Disseminated	 tumour	 cells	 show	 a	 strong	8	

dependency	on	a	TGF-β-activated	stroma	during	the	establishment	and	subsequent	expansion	9	

of	 metastasis.	 Here,	 we	 will	 review	 and	 discuss	 the	 development	 of	 integrated	 approaches	10	

focused	on	targeting	the	ecosystem	of	poor	prognosis	CRCs.	11	

	12	

Trends	13	

• In	 the	 search	 for	 new	 paradigms	 on	 which	 to	 base	 novel	 therapeutic	 strategies	 for	14	

advanced	CRC,	focus	has	increasingly	been	centred	on	the	tumour	microenvironment.	15	

• There	is	an	emerging	notion	that	interactions	between	epithelial	cancer	cells	and	their	16	

environment	can	be	understood	applying	a	conceptual	framework	similar	to	that	used	17	

to	study	ecosystems.	18	

• In	 CRC	 patients,	 a	 stromal-expressed	 gene	 programme	 enriched	 for	 TGF-β	 and	19	

downstream	targets	has	been	linked	to	poor	prognosis	and	metastasis	formation.	20	

• TGF-β	 signalling	 plays	 key	 roles	 in	 instructing	 the	 tumour	 microenvironment	 of	 late	21	

stage	CRCs,	yet	inhibition	of	TGF-β	signalling	as	a	therapeutic	strategy	remains	scarcely	22	

explored	in	the	clinic.		23	
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The	tumour	epithelium	as	primary	target	of	standard	therapies	1	

Colorectal	 cancer	 (CRC)	 originates	 from	 benign	 lesions	 known	 as	 adenomas:	 localised	2	

glandular	overgrowths	 in	 the	epithelial	 lining	of	 the	 large	bowel.	Over	 time,	 some	adenomas	3	

accumulate	 mutations	 in	 signalling	 pathways	 critical	 to	 stem	 cell	 maintenance,	 cellular	4	

proliferation,	and	tumour	suppression	 [1,	2]	and	they	can	evolve	 into	 invasive	CRCs	 that	may	5	

ultimately	spread	to	distant	organs.	This	process	called	metastasis	(see	Box	1)	occurs	in	about	6	

40-50%	of	patients	and	confers	a	low	probability	of	survival.	7	

In	 the	 clinic,	 patients	 are	 classified	 in	 4	 stages	 (see	 Glossary).	 Treatment	 involves	8	

aggressive	 surgical	 resection	 of	 the	 primary	 tumour,	which	 cures	 a	 large	 proportion	 of	 early	9	

stage	patients.	However,	 some	stage	 II	 and	many	stage	 III	patients	will	 relapse,	 frequently	 in	10	

the	form	of	metastasis,	as	a	consequence	of	tumour	cells	that	disseminated	before	resection.	11	

Unlike	the	primary	tumour,	metastases	are	less	frequently	removed	by	surgery	unless	limited	in	12	

number	 and	 extent	 [3].	 Therefore	 patients	 that	 present	 with	 metastases	 at	 the	 time	 of	13	

diagnosis	 (stage	 IV)	and	those	at	perceived	risk	of	 relapse	receive	cytotoxic	chemotherapy:	 in	14	

most	 cases	 a	 combination	 of	 folinic	 acid,	 5-fluorouracil,	 and	 oxaliplatin	 or	 ironotecan.	 This	15	

strategy	aims	to	kill	highly	proliferative	cancer	cells	and	has	been	a	staple	in	the	treatment	of	16	

solid	cancers	for	decades	[4].	Although	adjuvant	chemotherapy	is	beneficial	to	stage	III	patients	17	

and	 has	 modest	 potential	 for	 improved	 survival	 in	 stage	 II	 [5,	 6],	 it	 performs	 poorly	 in	 the	18	

metastatic	setting,	almost	invariably	giving	rise	to	drug	resistance	and	disease	progression.		19	

In	 second-line	 treatment,	 chemotherapy	 is	 increasingly	 combined	with	 targeted	 therapy,	20	

designed	 to	 intervene	 with	 specific	 signalling	 pathways	 or	 cellular	 mechanisms	 [4].	 A	 key	21	

example	in	CRC	is	the	use	of	antibodies	targeting	the	epidermal	growth	factor	(EGF)	receptor,	22	
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often	exploited	by	cancer	cells	 to	 stimulate	proliferation.	Apart	 from	eventual	 resistance,	 the	1	

main	problem	with	targeted	therapies	 is	the	variable	responses	 in	patients,	requiring	a	better	2	

grip	on	predictive	biomarkers	[7].	For	instance,	mutations	that	activate	the	MAPK/ERK	pathway	3	

downstream	 of	 EGFR,	 such	 as	 those	 frequently	 occurring	 in	 the	 KRAS	 and	NRAS	 GTPases	 or	4	

BRAF,	can	render	anti-EGFR	therapy	ineffective	[8].		5	

A	 better	 understanding	 of	 advanced	 cancer	 may	 lead	 to	 more	 effective	 therapies	 for	6	

metastatic	CRC,	but	is	also	highly	relevant	to	improve	the	management	of	earlier	stages	of	the	7	

disease.	Arguably	the	most	important	question	for	stage	I-III	patients	is	whether	or	not	to	treat	8	

at	 all	 and	which	 therapeutic	 strategy	will	 be	beneficial	 to	prevent	 recurrence.	Assessment	of	9	

probability	 of	 relapse	 after	 therapy	 on	 the	 individual	 level	 remains	 a	 major	 challenge	 [9].	10	

Anatomical	and	histopathological	features	of	the	tumour	such	as	extent	of	invasion	(T),	number	11	

of	 lymph	 node	 metastases	 (N),	 bowel	 perforation	 or	 obstruction,	 the	 presence	 of	12	

lymphovascular	invasion,	and	a	poorly	differentiated	histology	are	used	to	identify	CRC	patients	13	

at	risk	of	recurrence.	However,	 these	parameters	only	hold	a	moderate	predictive	power	and	14	

do	not	help	select	optimal	treatment	options.	Furthermore,	with	the	exception	of	chromosomal	15	

or	 microsatellite	 instability	 (MSI)	 [10,	 11]	 and	 mutations	 in	 the	 BRAF	 oncogene	 [12],	 no	16	

molecular	feature	is	robustly	associated	with	prognosis	and	therefore	used	routinely	in	clinical	17	

practice	[9,	13].		18	

	19	

	20	
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Transcriptomics	redefining	CRC	classification	1	

To	improve	patient	stratification	and	identify	potential	molecular	targets	for	therapy,	the	2	

field	 has	 generated	 large	 collections	 of	 transcriptomic	 datasets	 from	 tumour	 samples,	which	3	

have	 enabled	 the	 identification	 of	 CRC	 subtypes	 based	 on	 distinctive	 global	 gene	 expression	4	

profiles	[14-19].	 In	an	attempt	to	consolidate	these	data,	a	recent	meta-analysis	divided	CRCs	5	

into	4	defined	consensus	molecular	 subtypes	 (CMS),	 representing	an	MSI-like	 class	 (CMS1),	 a	6	

canonical	 WNT/MYC	 class	 (CMS2),	 a	 metabolically	 dysregulated	 class	 (CMS3),	 and	 a	7	

mesenchymal	class	(CMS4)	[20].	The	latter	subtype,	to	which	about	1	in	every	4	CRCs	belongs,	is	8	

of	particular	interest	as	it	relapses	with	higher	frequency	than	the	others.		9	

The	elevated	expression	of	mesenchymal	genes	in	an	epithelial	cancer	led	to	the	proposal	10	

that	 epithelial-to-mesenchymal	 transition	 (EMT)	 characterizes	 poor	 prognosis	 in	 CRC	 [21].	11	

However,	the	transcriptome	of	a	tumour	sample	not	only	reflects	the	expression	programme	of	12	

epithelial	 cancer	 cells	 but	 also	 the	 profile	 of	 mesenchymal	 cells	 present	 in	 the	 tumour	13	

microenvironment	(TME).	Indeed,	our	group	and	the	group	of	Enzo	Medico	recently	discovered	14	

that	expression	of	mesenchymal	genes	in	transcriptomic	CRC	data	is	largely	contributed	by	cells	15	

of	the	TME,	mainly	by	cancer-associated	fibroblasts	(CAFs),	rather	than	by	cancer	cells	[22,	23].	16	

In	 agreement	 with	 these	 observations,	 CMS4	 cancers	 show	 a	 higher	 degree	 of	 stromal	17	

infiltration	 than	 the	 other	 subtypes	 [20].	 Furthermore,	 our	 analyses	 indicate	 that	 a	 large	18	

proportion	of	 these	CAF-expressed	 genes	 are	 strongly	 associated	 to	 cancer	 relapse	 and	poor	19	

prognosis	in	CRC	cohorts	[22,	23].	Of	note,	the	fact	that	the	expression	of	mesenchymal	genes,	20	

including	many	EMT	master	regulators	such	SNAI1,	TWIST	and	ZEB1,	is	contributed	by	stromal	21	
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cells	in	transcriptomic	profiles	does	not	rule	out	the	possibility	that	subsets	of	tumour	cells	may	1	

undergo	EMT,	particularly	at	invasion	fronts.				2	

	3	

Treating	Cancer	as	an	Ecosystem	4	

Focussing	 on	 the	 tumour	 stroma	 is	 not	 novel.	 At	 the	 end	 of	 the	 19th	 century,	 English	5	

physician	 Stephen	 Paget	 –	 observing	 preferential	 patterns	 of	 metastatic	 dissemination	 to	6	

particular	organs	–	proposed	the	‘seed	and	soil’	hypothesis	to	explain	this	phenomenon	as	the	7	

combination	of	 the	 colonizing	 cancer	 cells’	 adaptability	 and	a	 congenial	microenvironment	 in	8	

the	distant	organ	[24].	He	suggested	it	would	be	useful	to	study	the	properties	of	the	TME,	as	9	

well	as	its	crosstalk	with	cancer	cells.	Indeed,	the	role	of	the	TME	both	at	the	original	site	and	in	10	

the	distant	organ	has	become	a	topic	of	intense	investigation	in	recent	decades	[25].	Similar	to	11	

how	intestinal	crypt	stem	cells	are	regulated	by	a	specialized	stem	cell	microenvironment	called	12	

a	niche,	the	TME	can	foster	cancer	stem	cells	and	thus	drive	recurrence	and	metastasis	(Box	1)	13	

[26,	27],	as	well	as	provide	mechanisms	for	drug	resistance	[28,	29].	It	is	now	accepted	that	the	14	

TME	is	an	active	player	in	tumour	malignization	and	that	it	provides	a	fertile	ground	to	delve	for	15	

therapeutic	targets	[30,	31].	16	

The	 study	 of	 complex	 interactions	 between	 cancer	 cells	 and	 their	 environment	 inspires	17	

parallels	with	the	 interrelationships	recognized	 in	an	ecosystem.	The	application	of	ecological	18	

concepts	to	oncology	may	help	explain	why	a	rigid	focus	on	epithelial	cancer	cells	alone	has	led	19	

to	a	high	number	of	failed	new	drugs	and	clinical	strategies.	Just	as	ecology	is	the	framework	of	20	

choice	 for	 understanding	 the	mechanisms	 of	 organismal	 evolution	 through	 natural	 selection,	21	

ecology	working	 on	 the	 level	 of	 cellular	 populations	 serves	 to	 clarify	 the	 dynamics	 of	 cancer	22	

evolution.	 This	 includes	 natural	 selection	 due	 to	 limited	 resources	 as	 well	 as	 the	 artificial	23	
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selection	of	subclones	resistant	to	therapy.	Hence,	the	fitness	of	a	cellular	population	(or	of	a	1	

set	of	 cancer	mutations)	 should	be	considered	 in	 the	context	of	 its	 local	environment,	which	2	

consists	of	cellular	 interactions,	physical	parameters	(oxygen	levels,	pH,	mechanical	pressure),	3	

and	molecules	like	extracellular	matrix	components,	growth	factors	and	cytokines.		4	

Moreover,	ecological	types	of	interaction	can	describe	various	levels	of	crosstalk	in	tumour	5	

dynamics.	 Examples	 of	 competitive	 and	 cooperative	 interactions	 have	 been	 reported	 both	6	

between	different	epithelial	subclones	and	between	epithelial	cancer	cells	and	the	stroma	[32-7	

34].	Additionally,	the	immune	system	can	be	converted	from	a	predator	to	an	accomplice	(see	8	

Box	2).	Indeed,	the	stromal	environment	is	not	static	and	co-evolution	is	a	compelling	concept:	9	

parallel	 evolution	 of	 neoplastic	 epithelial	 cancer	 cells	 and	 cells	 in	 the	 microenvironment,	10	

subject	 to	 epigenetic	 and	 gene	 expression	 changes	 [35].	 Furthermore,	 the	 stromal	11	

compartment	 contributes	 significantly	 to	 intratumoral	 heterogeneity,	 with	 important	12	

implications	 for	 disease	 progression	 and	 therapeutic	 responses	 [36].	 Thus,	 cancer	 ecology	13	

integrates	 complex	 interactions	 between	 epithelial	 cancer	 cell	 populations	 and	 their	14	

environment	to	promise	a	deeper	understanding	of	the	biology	of	cancer	[37,	38].		15	

	16	

Modulating	the	CRC	ecosystem	for	therapeutic	purposes	17	

The	 composition	of	 the	 TME	during	 colorectal	 tumorigenesis	 and	 in	 advanced	 cancers	 is	18	

subject	 to	 intensifying	 inquiry	 (for	 a	 recent	 overview	 see	 refs:	 [39,	 40])	 and	 is	 found	 to	 be	19	

different	 from	 normal	 intestinal	 stroma	 (see	 Figure	 1,	 Key	 Figure).	 As	 recently	 reported,	 the	20	

majority	of	genes	that	predict	cancer	recurrence	in	CRC	patients	are	expressed	in	CAFs	and	not	21	

by	the	cancer	cells	[22,	41].	The	striking	prognostic	power	of	the	TME	raises	the	opportunity	to	22	

more	accurately	estimate	 the	 risk	of	 relapse	of	any	given	 stage	 I-III	patient.	 It	 also	paves	 the	23	
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way	for	the	development	of	additionally	refined	molecular	classifications	based	on	the	contents	1	

of	 the	 ecosystem.	 A	 relevant	 early	 example	 of	 such	 an	 ecological	 classification	 of	 CRC	 was	2	

established	by	Galon	and	others	[42-44],	who	observed	that	infiltration	of	particular	subsets	of	3	

T	cells	in	the	tumour	mass	predicts	longer	disease	free	survival	intervals	after	therapy.		4	

Moreover,	novel	CRC	classifications	based	on	the	type	and	features	of	stromal	cells	will	be	5	

key	 to	 stratify	patients	 for	 treatments	 that	 target	 the	TME.	Based	on	 the	 idea	 that	CRC	 cells	6	

depend	on	particular	stromal	factors	to	effectively	disseminate,	therapeutics	that	modulate	the	7	

CRC	ecosystem	may	be	effective	in	treating	or	preventing	metastasis.		An	additional	advantage	8	

of	 targeting	 the	 TME	 is	 its	 genetic	 stability,	 making	 drug	 resistance	 less	 likely	 to	 occur.	9	

Furthermore,	the	commonality	of	most	elements	in	the	stroma	across	cancer	types	suggests	a	10	

broad	applicability	of	effective	 therapies.	A	handful	of	 therapies	based	on	 the	above	concept	11	

have	 already	 been	 developed	 and	 are	 currently	 being	 applied.	 For	 instance,	 blood	 vessel	12	

formation	 and	 endothelial	 cells	 have	 been	 successfully	 targeted	 by	 anti-angiogenic	 therapy	13	

[45].	 Indeed,	 a	 monoclonal	 antibody	 against	 vascular	 endothelial	 growth	 factor	 (VEGF,	 i.e.	14	

bevacizumab)	 inhibits	 angiogenesis	 and	 has	 been	 shown	 to	 improve	 survival	 for	 stage	 IV	15	

patients	[46,	47].	Additionally,	metronomic	chemotherapy	–	aiming	to	forestall	drug	resistance	16	

and	 suppress	 neo-angiogenesis	 –	 has	 shown	 promise	 for	 prolonging	 survival	 and	 limiting	17	

metastasis	in	preclinical	models,	and	is	being	tested	in	clinical	trials	[48,	49].	18	

Another	prime	example	of	therapy	directed	to	the	TME	is	 immunotherapy	(Box	2).	 It	has	19	

been	proposed	that	several	(chemo-)	therapies	that	do	not	directly	target	immunity,	such	as	5-20	

fluorouracil	 and	 platinum	 compounds,	 in	 fact	 do	 rely	 on	 immune	 components.	 These	21	
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conventional	 treatments	 are	 effective	 at	 least	 in	 part	 by	 reinforcing	 tumour	1	

immunosurveillance,	especially	when	they	induce	immunogenic	cancer	cell	death	[50].		2	

	3	

TGF-β	as	a	main	organizer	of	the	metastatic	CRC	ecosystem	4	

TGF-β	 has	 a	 dual	 role	 in	 CRC,	 with	 tumour	 suppressive	 functions	 in	 early	 stages	 and	5	

promoting	disease	progression	in	advanced	disease	(see	Box	3).	Our	group	demonstrated	that	6	

elevated	TGF-β	signalling	in	the	TME	links	to	poor	prognosis	in	CRC	[22,	41].	The	stromal	TGF-β	7	

response	encodes	a	gene	programme	that	includes	a	plethora	of	cytokines,	growth	factors	and	8	

extracellular	matrix	proteins,	many	of	which	have	been	shown	to	play	key	roles	during	disease	9	

progression	and	metastasis	in	several	cancer	types.	Among	these	potential	therapeutic	targets	10	

is	 interleukin-11	(IL-11),	a	cytokine	secreted	by	TGF-β-stimulated	fibroblasts	 that	 induces	pro-11	

survival	 response	 in	CRC	cells	during	cancer	progression	and	metastatic	 colonization	 [41,	51].	12	

The	 picture	 that	 emerges	 is	 that	 key	 functions	 required	 to	 complete	 the	 formation	 of	13	

metastasis	are	provided	by	the	TGF-β-activated	microenvironment	(Figure	1).		14	

Because	 disseminated	 tumour	 cells	 thrive	 on	 a	 TGF-β-activated	 environment,	 this	15	

dependency	could	be	exploited	in	the	clinical	setting	to	improve	patient	treatment;	our	group	16	

showed	for	the	first	time	that	pharmacological	inhibition	of	stromal	TGF-β	signalling	is	effective	17	

in	 blocking	 metastatic	 colonization	 in	 mice	 [22,	 41].	 Besides	 activating	 a	 pro-metastatic	18	

programme	 in	 CAFs	 [52],	 stromal	 TGF-β	 signalling	 induces	 a	 pro-tumorigenic	 phenotype	 in	19	

neutrophils	 and	 macrophages	 [53-55].	 In	 addition,	 TGF-β	 directly	 suppresses	 the	 anticancer	20	

response	 of	 the	 adaptive	 immune	 system,	 including	 the	 deregulation	 of	 cytotoxic	 T	21	

lymphocytes	 [56-58].	Also,	neutralizing	the	TGF-β	pathway	 in	T	cells	 led	to	 immune-mediated	22	
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eradication	of	tumours	in	a	model	of	melanoma	[59].	That	the	dual	role	of	TGF-β	signalling	in	1	

instructing	 immune	 cells	 and	 CAFs	 might	 be	 more	 related	 than	 is	 immediately	 obvious,	 is	2	

suggested	by	report	in	which	CAFs	were	shown	to	have	immune	suppressive	effects	[60,	61].	3	

Thus,	 it	 will	 be	 interesting	 to	 assess	 the	 efficacy	 of	 pharmacological	 intervention	 in	 this	4	

pathway	on	 the	CRC	 ecosystem.	 Several	 therapeutic	 strategies	 targeting	 TGF-β	 are	 in	 clinical	5	

development	 (see	 Box	 4)	 [62-64].	 This	 spurs	 the	 hope	 that	 if	 we	 can	 block	 TGF-β	6	

pharmacologically,	 we	 may	 prevent	 a	 vicious	 cycle	 of	 stroma	 activation,	 expression	 of	 pro-7	

tumorigenic	 secreted	 factors,	 and	 the	 generation	 of	 an	 immunosuppressive	 environment	8	

(Figure	 1).	 Indeed,	 TGF-β	 inhibition	 may	 work	 as	 (or	 synergize	 with	 other	 types	 of)	9	

immunotherapy	(Box	2).	10	

	11	

Caveats	about	the	dual	role	of	TGF-β	signalling	in	CRC	12	

Due	to	the	tumour	suppressive	function	of	TGF-β	signalling	in	epithelial	component	of	CRC	13	

(see	 Box	 3),	 elevated	 TGF-β	 levels	 necessary	 to	 instruct	 the	 poor	 prognosis-associated	14	

microenvironment	might	not	be	compatible	with	tumour	growth.	We	speculate	that	the	loss	of	15	

TGF-β	response	in	the	epithelial	component	of	the	cancer	may	facilitate	the	elevation	of	TGF-β	16	

levels	 during	 tumour	 progression.	 A	 functional	 link	 between	 these	 two	 events	 has	 been	17	

observed	in	experimental	models	[65].	In	a	biobank	of	CRC	organoids,	independence	of	TGF-β-18	

mediated	growth	inhibition	was	associated	with	advanced	stages	of	the	disease	[66],	whereas	19	

loss	of	SMAD4	in	epithelial	CRC	cells	correlated	with	poor	prognosis	in	several	studies	[67,	68].	20	

Yet,	abrogation	of	the	cytostatic	TGF-β	response	in	CRC	cells	is	not	exclusively	explained	by	loss-21	

of-function	 mutation	 in	 pathway	 components	 suggesting	 additional	 mechanisms	 of	 TGF-β	22	
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resistance	 [66].	 Also,	 a	 proportion	 of	 TGF-β-reactive	 CRCs	 may	 respond	 to	 the	 cytokine	 by	1	

undergoing	 EMT	 while	 bypassing	 the	 cytostatic	 effect.	 Apparently,	 this	 effect	 is	 relevant	 to	2	

trigger	 invasion	of	a	particular	 subset	of	early	 lesions	named	sessile	 serrated	adenomas	 [69],	3	

which	might	therefore	benefit	from	anti-TGF-β	therapy.	Conversely,	it	remains	unclear	whether	4	

anti-TGF-β	 therapy	 would	 be	 safe	 for	 patients	 with	 cancer	 cells	 that	 have	 an	 intact	 TGF-β	5	

pathway	–	even	if	they	represent	a	subclone	–	and	are	kept	in	check	by	its	cytostatic	effects.	6	

Although	 the	 TGF-β	pathway	has	 emerged	 as	 a	 powerful	 architect	 of	 the	pro-metastatic	7	

poor	prognosis	TME,	 its	effect	on	 individual	stromal	cell	 types	 is	pleiotropic	and	 incompletely	8	

charted.	 Accordingly,	 we	 propose	 that,	 to	 treat	 the	 cancer	 ecosystem	with	more	 integrated	9	

approaches,	 we	 need	 to	 study	 and	 understand	 its	 complexity	 in	 greater	 detail.	 As	 such,	10	

manipulating	a	master	regulator	like	TGF-β	in	sufficiently	complex	model	systems	of	metastatic	11	

CRC	should	not	only	provide	the	needed	rationale	for	clinical	translation,	but	would	additionally	12	

give	us	relevant	parameters	to	help	map	the	crosstalk	in	the	cancer	ecosystem.		13	

	14	

Need	for	better	preclinical	models	moving	forward	15	

To	 study	 the	 efficacy	 of	 above-mentioned	 and	 other	 stroma-directed	 therapies	 in	 the	16	

preclinical	setting,	there	is	a	demand	for	more	comprehensive,	predictive	models.	Although	the	17	

field	has	moved	from	subcutaneously	 injecting	2D-cultured	human	CRC	cell	 lines	to	exploiting	18	

3D	organoid	culture	and	patient-derived	xenografts	(PDX)	–	approaches	that	promise	to	retain	19	

tumour	 heterogeneity	 in	 genetics,	 architecture	 and	 drug	 responses	 [70-72]	 –	 these	 in	 vivo	20	

models	 lack	 an	 intact	 TME.	 This	 is	 due	 to	 a	 mismatch	 between	 some	 murine	 and	 human	21	

signalling	molecules	and	because	of	the	absent	or	abrogated	immune	system	required	for	the	22	



	 12	

engraftment	 of	 human	 tumour	 tissue	 in	 murine	 hosts.	 To	 address	 these	 problems,	 mouse	1	

models	are	being	generated	that	correct	known	signalling	deficits	as	well	as	feature	humanized	2	

immune	 system	 components,	 potentially	 leading	 to	 patient-specific	 immune	 environments.	3	

These	advances	promise	to	strongly	enhance	current	models	for	cancer	biology	and	preclinical,	4	

personalized	oncology.		5	

An	alternative	approach	 to	 study	 the	CRC	TME	and	cancer	 immunity	 involves	genetically	6	

modified	 mouse	 models	 (GEMMs),	 which	 feature	 an	 intact,	 immunocompetent	 TME	 yet	7	

typically	fail	to	capture	advanced	CRC.	This	leaves	a	gap:	to	test	current	ideas	and	discover	and	8	

develop	 novel	 therapeutic	 strategies	 we	 are	 in	 need	 of	 CRC	 models	 that	 are	 humanlike	 in	9	

molecular	 characteristics,	 genetics	 and	 histopathology,	 and	 that	 are	 metastatic	 in	 a	 fully	10	

immunocompetent	environment.	The	ideal	scenario	would	include	a	transplantable	(organoid)	11	

system	 in	 the	 commonly	used	C57BL/6	 strain,	 so	 that	 it	 can	be	 leveraged	across	 a	wealth	of	12	

existing	genetic	models	to	dissect	specific	functions	of	stromal	pathways.	Furthermore,	such	a	13	

system	would	be	critical	to	testing	novel	therapies	that	target	the	tumour	ecosystem.	14	

	15	

Concluding	remarks	16	

The	 CRC	 oncology	 field	 has	 evolved	 in	 the	 past	 decades.	 From	 histological	 analyses	 to	17	

molecular	subtyping,	from	cytotoxic	chemotherapy	to	personalized	combinations	with	targeted	18	

therapy.	What	has	not	changed,	unfortunately,	is	that	besides	surgery	there	is	very	little	we	can	19	

do	to	improve	overall	survival	for	advanced	disease.	20	

However,	 the	 paradigm	 shift	 that	 points	 to	 the	 TME	 as	 a	 critical	 factor	 in	 determining	21	

metastatic	 success	 opens	 the	 door	 to	 a	 more	 integrated	 understanding	 of	 the	 biology	 of	22	
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metastasis.	 One	 that	 invites	 us	 to	 consider	 cancer	 as	 a	 complex	 ecosystem	 rather	 than	 as	 a	1	

tenacious	 weed.	 In	 this	 context,	 therapeutic	 targeting	 of	 stromal	 TGF-signalling	 might	 be	2	

expected	to	reprogramme	the	poor	prognosis	cancer	ecosystem	(Figure	1),	with	the	potential	3	

to	 make	 metastatic	 lesions	 unsustainable	 or	 to	 prevent	 metastatic	 initiation	 altogether.	We	4	

hope	that	this	emerging	concept	will	find	a	timely	translation	to	the	clinic.	Acknowledging	the	5	

many	 challenges	 ahead	 (see	 also	 Outstanding	 Questions),	 we	 need	 more	 sophisticated	 and	6	

predictive	 CRC	 models	 to	 show	 proof-of-principle	 results	 that	 may	 catalyse	 the	 effort	 of	7	

targeting	the	TME.	8	

	9	

Outstanding	Questions	10	

• What	triggers	the	upregulation	of	TGF-β	in	some	tumours	but	not	others?	11	

• What	cell	 type	 is	 (or	which	cell	 types	are)	 the	 source	of	 secreted	and	activated	TGF-β	12	

that	reprograms	the	CRC	ecosystem?	13	

• As	not	all	CRCs	have	known	mutations	 in	 the	TGF-β	pathway,	and	some	tumours	may	14	

have	co-existing	mutant	and	sensitive	subclones,	to	what	extent	is	the	responsiveness	of	15	

epithelial	 cells	 to	 TGF-β	 (mainly	 associated	 to	 early	 disease	 stages)	 still	 relevant	 in	16	

advanced	CRC?	17	

• And	within	this	context,	is	TGF-β	therapy	safe	for	all	patients?	18	

• Given	 the	dependency	of	metastatic	 initiation	on	a	TGF-β-activated	TME,	 is	 the	TGF-β	19	

therapeutic	window	limited	to	adjuvant	therapy	–	to	inhibit	metastatic	colonization	–	or	20	

could	TGF-β	therapy	also	treat	established	metastases,	e.g.	as	immunotherapy?	21	

	 	22	
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Box	1.	CRC	metastasis:	biology	and	therapeutic	scope	1	

Initial	 transformation	 of	 the	 colon	 epithelium	 and	 subsequent	 transitions	 through	 the	2	

adenoma-carcinoma	 sequence	 are	 thought	 to	 require	 successive	 genetic	 alterations	 in	 4	3	

signalling	 pathways:	WNT,	 EGFR,	 TGF-β	 and	 P53	 [1,	 2].	 In	 the	 healthy	 colonic	mucosa,	 these	4	

signalling	pathways	regulate	the	behaviour	of	intestinal	stem	cells	(ISCs).	Therefore,	during	CRC	5	

progression,	tumour	cells	become	independent	from	these	crypt	niche	signals	[66].	About	40%	6	

of	 all	 CRC	disseminate	 to	 other	 organs.	Metastasis	 can	 either	 be	present	 during	diagnosis	 or	7	

reveal	 itself	months	or	years	after	surgery	as	a	 recurrence.	 In	many	cases,	distant	 recurrence	8	

targets	 the	 liver,	 at	 least	 in	 part	 because	 intestinal	 blood	 vessels	 drain	 into	 the	 portal	 vein,	9	

which	connects	to	the	liver.	Metastasis	is	a	multistep	process	that	requires	cells	to	detach	from	10	

their	 epithelial	 neighbours,	 invade	 the	 submucosa,	 intravasate	and	 survive	 in	 the	vasculature	11	

(blood	or	lymphatic	vessels),	extravasate	and	survive	in	an	alien	organ,	to	eventually	reinitiate	a	12	

thriving	tumour	[73,	74].	There	is	much	of	the	biology	of	metastasis	that	we	don’t	understand,	13	

but	from	what	we	know,	it	is	a	very	harsh	and	inefficient	process	[75,	76].	Arguably,	the	process	14	

selects	for	the	fiercest	and	most	resilient	cancer	(stem)	cells	and	discovering	what	makes	them	15	

successful	might	uncover	therapeutic	targets.	Importantly,	the	metastatic	process	has	not	been	16	

linked	 to	 specific	 genetic	 alterations	within	 epithelial	 CRC	 cells	 [77].	 Therefore,	 studies	 have	17	

shifted	focus	onto	the	role	of	the	TME	and	the	mechanism	by	which	the	metastatic	cell	exploits	18	

the	 TME	 for	 survival,	 immune	 evasion,	 and	 growth	 stimuli	 [78,	 79].	 Perhaps,	 success	 in	19	

metastasis	is	defined	as	who	can	best	remodel	their	microenvironment.	20	

	21	
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Box	2.	Cancer	inflammation,	immunity	and	immunotherapy	1	

Inflammation	 is	 a	 well-described	 risk	 factor	 in	 gastrointestinal	 tumorigenesis	 [80],	 and	2	

encompasses	disparate	signalling	pathways	by	a	variety	of	immune	cells	that	impact	every	step	3	

of	 cancer	 progression	 and	metastasis	 [81].	 Although	 the	 immune	 system	 can	 be	 a	 powerful	4	

tumour	 suppressor	 by	 the	 coordinated	 elimination	 of	 aberrant	 cells,	 tumours	 find	 a	 way	 to	5	

survive	in	spite	of	immunosurveillance.	There	is	evidence	for	immunoselection	in	many	cancers,	6	

including	CRC	–	where	the	number	of	observed	neoantigens	(in	remaining	subclones)	 is	 lower	7	

than	expected	based	on	mutation	rates	–	and	cancer	cells	can	acquire	resistance	to	immunity	8	

by	e.g.	abrogating	antigen	presentation	[82,	83].		9	

Moreover,	it	has	become	increasingly	clear	that	inflammatory	mechanisms	in	tumours	can	10	

also	help	drive	cancer	progression	[81].	By	studying	how	progressing	cancers	suppress	the	anti-11	

tumour	 response	 and	 subvert	 immune	 regulation	 to	 foster	 immune	 suppressor	 cells	 and	12	

produce	 pro-tumorigenic	 factors	 that	 support	 cancer	 cells,	 the	 expansive	 field	 of	 cancer	13	

immunology	 has	 introduced	 a	 multitude	 of	 novel	 therapeutic	 strategies	 [84,	 85].	 On	 the	14	

conceptual	level,	many	such	therapies	aim	to	enhance	endogenous	anticancer	immunity	that	is	15	

somehow	insufficient	or	dysfunctional	[86].	To	achieve	this	effect,	a	therapy	can	reduce	cellular	16	

or	 molecular	 crosstalk	 mechanisms	 of	 immune	 suppression	 and/or	 increase	 T	 cell	 survival,	17	

proliferation,	infiltration,	and	activation	in	the	TME	[87].		18	

The	 promise	 of	 immuno-oncology	 has	 recently	 been	 demonstrated	 by	 long-lasting	19	

responses	to	immune	checkpoint	inhibitors.	These	proved	beneficial	in	various	types	of	cancer	20	

by	unleashing	T	cells	 that	were	crippled	by	signalling	either	 from	 immune	suppressor	cells	or	21	

cancer	cells	hijacking	anti-inflammatory	mechanisms	 [88,	89].	 It	 is	 still	unclear	whether	 these	22	
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therapies	will	broadly	benefit	CRC	patients.	However,	one	study	on	mismatch	repair-deficient	1	

(MSI)	 cancers,	 including	of	 the	 colon,	did	 show	 therapeutic	 responses	 [90].	 This	 supports	 the	2	

concept	 that	 tumour	 cells	 with	 higher	 frequency	 of	 neoantigens,	 such	 as	 in	 microsatellite	3	

instable	 cancers,	 are	 generally	 more	 vulnerable	 to	 T	 cell-mediated	 anti-tumour	 immunity,	4	

possibly	explaining	their	relatively	good	prognosis	[91,	92].	If	current	immunotherapies	turn	out	5	

not	to	have	a	broad	applicability	as	single	agents	in	CRC,	there	is	still	hope	that	a	combination	6	

of	 treatments	 that	 both	 enhances	 intratumoral	 immune	 infiltration	 as	well	 as	 activation	will	7	

fare	better	[93,	94].	8	

	9	

Box	3.	The	dual,	biphasic	role	of	TGF-β	in	CRC		10	

The	pro-metastatic	effects	of	TGF-β	signalling	on	the	tumour	microenvironment	can	occur	11	

independently	 of	 signalling	 in	 epithelial	 cancer	 cells,	 as	 many	 cancers	 silence	 the	 epithelial	12	

pathway	so	as	to	progress.	TGF-β	signalling	is	considered	a	tumour	suppressor	pathway	in	colon	13	

carcinogenesis	because	it	triggers	a	potent	cytostatic	response	in	epithelial	cells	[22,	65,	95-97].	14	

Indeed,	about	40%	of	CRCs	display	 loss-of-function	mutations	 in	TGF-β	pathway	components,	15	

which	 are	 acquired	 around	 the	 adenoma	 carcinoma	 transition	 [2,	 98].	 An	 early	 clue	 for	 a	16	

positive	 role	 for	 TGF-β	 signalling	 in	disease	progression	was	 found	by	Kawata	and	 colleagues	17	

who	reported	that	serum	levels	of	TGF-β1	predict	relapse	in	CRC	patients	[99].	Later,	our	group	18	

showed	that	TGFB1,	TGFB2	and	TGFB3	mRNA	levels	associate	with	shorter	disease	free	survival	19	

intervals	after	therapy	 in	stage	I-III	patients	[41].	Elevated	TGFB1-3	expression	correlates	with	20	

upregulation	of	TGF-β	response	gene	signatures	(TBRS)	in	cells	of	the	TME,	specifically	in	T	cells,	21	

macrophages,	 endothelial	 cells	 and	 most	 prominently	 CAFs.	 These	 TBRSs	 hold	 a	 striking	22	
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predictive	power	for	cancer	recurrence	in	CRC	[41]	and	detection	by	immunohistochemistry	of	1	

several	proteins	upregulated	in	TGF-β-activated	CAFs	identifies	patients	at	high	risk	of	relapse	2	

[22].	Furthermore,	comparison	of	the	molecular	subtypes	revealed	that	the	main	signalling	axis	3	

deregulated	 in	 the	 stromal/mesenchymal	 subtype	 (CMS4)	 is	 the	 TGF-β	 pathway	 [20].	 A	4	

significant	 proportion	 of	 the	 genes	 differentially	 expressed	 in	 CMS4	 cancers	 that	 predict	 a	5	

higher	probability	of	recurrence	are	included	in	the	TBRSs	and	correspond	to	genes	induced	by	6	

TGF-β	 in	 CAFs.	 The	 role	 of	 a	 TGF-β-activated	 ecosystem	 in	 disease	 progression	 has	 been	7	

confirmed	 in	 experimental	models	 of	 advanced	 CRC,	 where	 enforced	 TGF-β	 signalling	 in	 the	8	

TME	strongly	increases	metastatic	burden	[41].		9	

	10	

Box	4.	TGF-β	therapeutics	in	clinical	development	11	

Several	 methods	 of	 targeting	 the	 TGF-β	 pathway	 have	 been	 described.	 These	 include	12	

antisense	 oligonucleotides	 to	 TGF-β	 ligand	 mRNA,	 small	 molecule	 inhibitors	 of	 the	 receptor	13	

kinase	domains,	and	monoclonal	antibodies	against	ligands	or	receptors.	In	addition,	there	are	14	

vaccines	 and	 adoptive	 cell	 transfer	 strategies	 that	 target	 TGF-β	 signalling	 as	 part	 of	 their	15	

mechanism.	 For	 an	overview	of	 all	 (pre-)	 clinical	 strategies,	 see	 references	 [62-64].	Here,	we	16	

selected	TGF-β	targeting	therapies	that	are	currently	in	clinical	trials	for	CRC	(Table	I).	17	

	18	

	19	

	 	20	
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Table	I.	TGF-β	targeted	therapies	in	clinical	trials	for	CRC	1	
Type	 Drug	 MoA	 Setting	(Phase)	 Trial	Identifier	
Antisense	oligos	
	 Trebedersen	

(AP12009	 Antisense	
Pharma)	

ASO	 to	 TGF-β2	
mRNA	

Melanoma,	
pancreas,	CRC	(I)	

NCT00844064	
	

Receptor	inhibitors	
Kinase	
inhibitors	

Galunisertib	
(LY2157299	Eli	Lilly)	

TβRI	(ALK5)	kinase	
inhibitor	

Rectal	cancer	(II)		
	
Study	 cancer	
immunology	 in	 solid	
tumours	(I)		
	
Checkpoint	 inhibitor	
combination	 in	 solid	
tumours	(I/II)	

NCT02688712	
	
NTT02304419	
	
	
	
	
NCT02423343	

TEW-7197,	
MedPactor	

TβRI	(ALK5)	kinase	
inhibitor	

Solid	tumours	(I)	 NCT02160106	

MAbs	 IMC-TR1	
(LY3022859	Eli	Lilly)	

TβRII	 neutralizing	
MAb	

Solid	tumours	(I)	 NCT01646203	

PF-03446962	
(Pfizer)	

ALK-1	 neutralizing	
MAb		

Metastatic	 CRC	 (I)	
	
Solid	tumours	(I)	

NCT02116894	
	
NCT00557856	

Immunotherapy	
Vaccines	 FANG	 vaccine	

(Gradalis)	
shRNA	 against	
furin*	

Metastatic	CRC	(II)	
	

NCT01505166	
	

TAG	vaccine		 TGF-β2-antisense/	
GMCSF	 modified	
autologous	
tumour	cells	

Metastatic	 solid	
tumours	(I)	

NCT00684294	

MoA:	Mode	of	action.	ASO:	antisense	oligo.		ALK1:	Activin	receptor-like	kinase	1	(non-canonical	2	
TGF-β	receptor	type	 I	 in	endothelial	cells).	*As	part	of	 its	MoA,	autologous	tumour	cells	carry	3	
bifunctional	shRNA	blocking	furin,	leading	to	lower	TGF-β1	and	TGF-β2	levels.		4	
	5	

	6	

	 	7	
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Glossary	1	

Adjuvant	chemotherapy:	chemotherapy	given	after	primary	treatment	(surgery	in	CRC)	to	2	

lower	the	risk	of	the	cancer	coming	back.	3	

Cancer	 evolution:	 the	 theory	 that	 within	 a	 tumour,	 accumulating	 mutations	 and/or	4	

localized	selective	pressure	leads	to	the	generation	of	subclones	that	compete	with	each	other	5	

for	limited	resources.	Furthermore,	at	the	time	of	diagnosis	a	(minority)	subclone	may	already	6	

carry	a	mutation	that	renders	it	(partially)	resistant	to	chemotherapy.	Both	this	concept	and	the	7	

realization	 that	 this	 theory	 helps	 explain	 the	 unique	 nature	 of	 each	 individual	 tumour	make	8	

cancer	evolution	a	highly	relevant	concept	that	forms	the	basis	for	more	integrated	(ecological)	9	

therapeutic	strategies.	10	

CRC	 staging:	 The	 American	 Joint	 Committee	 on	 Cancer	 (AJCC)	 has	 established	 a	 general	11	

cancer	staging	protocol	called	the	TNM	Staging	System.	T	stands	for	tumour	and	evaluates	the	12	

original	 (primary)	 tumour	 in	 grades	of	 aggressiveness;	N	 stands	 for	 lymph	Node	 involvement	13	

and	qualifies	the	presence	of	cancer	cells	spreading	to	nearby	 lymph	nodes.	M	addresses	the	14	

presence	 or	 absence	 of	 distant	metastasis	 (spreading	 of	 cancer	 to	 distant	 organs).	 Based	 on	15	

these	3	categories,	patients	are	grouped	into	four	stages	indicated	by	Roman	numerals	(I,	II,	III	16	

and	 IV).	While	 statistically	 representing	 significantly	 different	 risk	 groups	 for	 recurrence	 and	17	

cancer-related	death,	the	staging	system	does	not	accurately	predict	on	the	level	of	individual	18	

patients.	19	

Cytokines:	 large	 class	 of	 small	 secreted	 signalling	 proteins	 involved	 in	 cellular	 crosstalk,	20	

especially	relevant	for	the	orchestration	of	immune	responses	and	cancer.	21	

Ecology:	 the	 comprehensive	 study	 of	 the	 distribution,	 abundance	 and	 dynamics	 of	22	

organisms,	 their	 interactions	 with	 others	 and	 with	 their	 physical	 environment.	 It	 is	 most	23	

frequently	 applied	 on	 the	 organism	 level,	where	 populations	 and	 their	 environment	 form	an	24	

ecosystem	and	the	largest	such	system	studied	is	the	ecosphere	earth,	yet	it	can	also	be	applied	25	

to	 cells	 in	 a	 tissue	 or	 in	 a	 cancer.	 Central	 concepts	 in	 ecology	 include	 cooperation	 and	26	

competition,	parasitism	and	predation,	and	evolution.	27	

Immunosurveillance:	the	process	by	which	malignant	cells	are	kept	in	check	by	anticancer	28	

immunity.	 Cancer	 immunity	 is	 understood	 to	 have	 an	 initial	 elimination	 phase	 before	 the	29	
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balance	 is	 tipped	 and	 tumour	 cells	 start	 escaping	 from	 immunosurveillance.	 Between	1	

elimination	and	escape,	there	may	be	a	prolonged	state	of	equilibrium	between	cancer	growth	2	

and	immunity-related	killing.	3	

Relapse/Recurrence:	the	return	of	a	tumour	after	surgical	removal	of	the	original	tumour	4	

(which	often	entailed	removal	of	parts	or	 the	whole	of	 the	colon).	The	tumour	can	reappear,	5	

often	as	a	distant	metastasis.	6	

Metronomic	chemotherapy:	frequent	or	continuous	administration	of	low	non-toxic	doses	7	

with	no	 interruptions	 for	 long	periods	 to	prevent	 resistance	and	target	both	epithelial	cancer	8	

cells	and	the	growing	tumour	vasculature.	9	

Microenvironment	or	Stroma:	supportive	connective	tissue	with	structural	and	functional	10	

roles	 both	 during	 homeostasis	 and	 in	 disruption	 such	 as	 wounding	 or	 disease.	 The	 stroma	11	

includes	fibroblasts,	blood	and	lymphatic	vessels,	immune	cells,	and	the	extracellular	matrix.	In	12	

the	context	of	cancer,	the	stroma	is	increasingly	understood	as	a	complex,	dynamic	entity	that	13	

is	transformed	by	and	co-evolves	with	cancer	cells	and	can	drive	malignant	progression.	14	

Microsatellite	 instability	 (MSI):	 due	 to	 a	 deficiency	 in	 DNA	mismatch-repair	 genes,	MSI	15	

patients	 accumulate	 spontaneous	 errors	 in	 regions	 of	 their	 genome	 that	 are	 repetitive	 and	16	

thereby	challenging	to	replicate.		17	

	 	18	
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Figure	legend	1	

Figure	 1	 (Key	 Figure).	 The	 CRC	 ecosystem	 and	 the	 progression-driving	 role	 of	 TGF-β.		2	

Besides	 fibroblasts	 (CAF),	 endothelial	 cells,	 pericytes	 and	 mesenchymal	 stem	 cells	 (MSC),	3	

colorectal	 cancers	 are	 infiltrated	 by	 a	 variety	 of	 innate	 and	 adaptive	 immune	 cells,	 including	4	

lymphocytes	 (T	 cells,	 B	 cells,	 natural	 killer	 cells),	 monocytes,	 macrophages,	 dendritic	 cells,	5	

granulocytes	 (neutrophils,	 basophils,	 eosinophils,	 and	 mast	 cells),	 and	 myeloid-derived	6	

suppressor	cells	(MDSC).		7	

TGF-β	 has	 emerged	 as	 a	 central	 architect	 that	 drives	malignization	 of	 the	 cancer	 ecosystem,	8	

activating	 stromal	 cells	 towards	 pro-tumorigenic	 differentiation,	 inducing	 the	 expression	 of	9	

secreted	factors,	and	facilitating	the	accumulation	of	immune	suppressive	and	drug	resistance	10	

functionalities.	Effective	ecological	 treatment	might	 include	a	combination	of	TGF-β	 inhibition	11	

with	other	stroma-directed	therapies,	such	as	chemotherapy	and	targeted	(immuno-)	therapy.	12	

	13	
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