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Prologue

This thesis represents my research trajectory at the Barcelona
Supercomputing Center, as part of the computational genomics group.
The computational genomics group main goal is the analysis of
biological data to understand the genetic and molecular causes and

consequences of the most frequent human diseases.

In particular I developed my studies in the analysis of cancer data. I
have combined the development of bioinformatic tools to analyze
genome information with their application on cancer genome data in
order to answer specific questions regarding the genomic basis of the
disease. Therefore, the present thesis focuses on the biological
aspects in the study of cancer patients, the capability to annotated
genomic regions using different sources of data and how all this
information can be integrated to help us to understand the basis of

the development and progression of the disease.

The study of cancer genomes has grown dramatically with the
production of thousands of sequenced samples from thousands of
patients. In parallel, many bioinformatic applications have been
developed to analyze the different sources of data: whole genome
sequencing, exome sequencing, RNAseq, SNP arrays, epigenomic data,
and others. Several databases and web portals are also publicly
available providing all types of information regarding these samples,
from raw data to preliminary results. Due to the vast amount of
programs, studies, consortiums and available genomic data the
introduction will focus on general technical and strategical aspects of
the field, using, as examples those, those activities that are related to

this thesis.



Finally, I would like to apologize to all the people and studies that, due
to extension constraints, are not cited in the thesis, despite their

relevant contribution to the field.
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Genetic disorders

The identification of the genetic and molecular basis of disease has
been one of the central interests of biology and biomedicine.
Uncovering the modifications in the genome associated to specific
pathological phenotypes allows the identification of the molecular
processes behind each disease. From the generation of specific gene
panels within the clinics, to the design of precise drugs targeting
specific proteins related to the pathology, this research activity is
fundamental to understand the mechanisms of the diseases and to

develop better and more precise diagnosis and therapeutic protocols.

Nowadays, the explosion of sequencing technologies has made the
analysis of genomic sequences cheap and accessible, expanding the
possibilities of finding disease markers in the genome. The availability
of complete genomic sequences for a large number of patients
complements the traditional genomic analysis of diseases in two
major ways: (1) by giving the possibility of generating richer and
more precise profiles of polymorphic variation (haplotypes) within
the population, which, in turn, increases the statistical power to find
disease associated risk variants. It impacts in the study of DNA
modifications that are heritable and affect multigenic diseases. They
usually confer a given risk or susceptibility of developing the disease
and are present in all the cells of the organism. These are commonly
named as germline variations or polymorphisms; and (2) by allowing
the search and direct analysis of disease mutations through the
gathering of significant amount of genomic data from patients. This
can be applied to the analysis of heritable mutations giving rise,

mostly, to monogenic or rare diseases, and to the analysis of somatic

11



variants, which occur during the life span of the individual and are
involved in several pathologies, including cancer. An important
fraction of this thesis is centred in the analysis of somatic mutations
(see below) and their potential implication in tumor development and

progression.

Somatic variants

Acquired during the lifetime, somatic variants appear de novo in
some cells of the organism. Most of them are expected to be harmless
but, in a few cases, those changes in the genome can give rise to
genetic disorders. If one single variant is enough to trigger the
disease, it is classified as a monogenic disorder (Weatherall 2001;
Erez and DeBerardinis 2015). When several somatic variants act
together altering different cell processes, it is considered that they are
involved in complex genetic diseases. Cancer is a challenging example
of this type of diseases due to its complexity in the number of somatic
variants involved and the different biological processes affected as

shown in figure 1(Kan et al. 2010).
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Figure 1. Distribution of mutation frequencies across 12 cancer types.
Dashed grey and solid white lines denote average across cancer types and
median for each type, respectively (Kandoth et al. 2013).

The somatic mutations arise from different endogenous and
exogenous factors. As part of the endogenous causes the replication
errors are common in all the different cells under division and in
some cases these errors are not repaired or it is done
incorrectly. Other inner causes are the DNA damage due to reactive
oxygen, malfunction of enzymes involved in DNA repair,
retrotransposons, other DNA binding proteins, and many more. The
list of external factors is large, including the most common potential
mutagens, such as tobacco, UV light and radiation. Clear examples can
be found in the substitutions of C>T and C>G produces by over-
activity of members of the APOBEC family (Alexandrov et al. 2013).
The somatic mutagenesis is the fundamental cornerstone of the

molecular basis of several disorders, such as cancer (Friedberg 2003).
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The role of sequencing technologies within the field

Sequencing technologies have been essential to help us
understanding the human genome and to uncover the genetic
variability within and among individuals, as well as its role in human
disease (Escaramis et al. 2015). The evolution of DNA sequencing
covers a wide range of possibilities and technologies. Each type of
sequencing technology has involved a particular range of use in a
particular moment on research and has also entailed specific

limitations.

Sanger sequencing technologies have contributed to biomedicine for
more than 20 years, and still do, by initially introducing molecular
genetics techniques into the research lines of nearly every bio-
research group (Sanger et al. 1977). For example, thousands of cDNAs
and millions of Expressed Sequenced Tags (ESTs) have been
sequenced using Sanger technology, which have been essential to
build the basis for almost all what we know about the molecular
biology of diseases. Mostly used for the sequencing of amplified DNA
targeting relatively small regions, Sanger sequencing was also later
used for deciphering complete bacterial and eukaryotic genomes. In
2001 the first draft of the human genome was finished by the public
consortium, setting up the basis of the new era of biomedical
genomics (International Human Genome Sequencing 2004). This
constituted a great effort involving more than 3 US$ billion, more than
10 years, and a large number of countries and research groups.
Despite late improvements in price and speed, the price and the

processing power of the Sanger technology did not allow a massive
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sequencing of different individuals of a given population or

phenotypic group, which posterior sequencing technologies could.

Next generation sequencing

Sanger sequencing technology was displaced by novel techniques that
bring sequencing closer to most of the researches groups, and
enabling large-scale sequencing. Pyrosequencing method was first
released in 1998 (Ronaghi et al. 1998) and the first commercial
product was the 454 Life Science in 2005. The new method had
several advantages. The main one was the use of DNA libraries
allowing the automatization because it no longer depends on specific
primers. The second is the capability to directly detect the read strand
without electrophoresis, eliminating the human intervention and
permitting the parallelization. 454 pyrosequencing triggered the next
generation sequencing (NGS). One year later Solexa platform was
commercialized and, in 2007, the SOLID system by Applied
Biosystems (Valouev et al. 2008). Nowadays Illumina Hiseq
technology can produce more than 3 Billion reads in less than 3 days
reducing the cost of analyze a human genome in less than $1000. All
NGS platforms have common traits: highly automated and
parallelized protocols, short read length (from tens to few hundred
nucleotides) and, most importantly, a reduced cost per sample run.
The fast evolution of sequencing technologies last 15 years has
produced a dramatically growth of sequenced data, as can be
observed in figure 2 with the number of new eukaryotic organisms

sequenced.
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Figure 2. Evolution of new eukaryotic sequenced species since 1998
according to NCBI data. Blue bars represent the total number of new
organisms. Red line corresponds to the total amount of storage information
regarding the sequenced genomes.

Major applications of Next Generation Sequencing technologies

The low costs combined with the sequencing speed revolutionized
genomics allowing medium and small laboratories to include even
large-scale sequencing within their projects and research plans. The
immediate profit was the access to the genomes of many individuals,
phenotypes and conditions, considering large targeted fragments
(single or multigenic panels), coding regions (Whole Exome
Sequencing, WES; (Ng et al. 2010; Kiezun et al. 2012)) or the entire
genome (Whole Genome Sequencing, WGS). Nowadays technologies
based on NGS are predominant in genomic scientific studies as can be
observed figure 3. With the availability of genome sequences we can

directly search for risk or causal disease mutations using massive

17



computational approaches to later link them with their functional

impact (Ciriello et al. 2013).

Studies in the EGA by technology
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Figure 3. Abundance of different studies group by technology in EGA
database. Epigenetics, exome sequencing, resequencing, single-cell
sequencing, transcriptome and whole genome sequencing are all techniques
partially or complete derived from NGS (Lappalainen et al. 2015).

In addition to DNA sequence, NGS technologies have also given access
to the entire transcriptome through RNAseq, also known as Whole
Transcriptome Shotgun Sequencing (WTSS), which is probably the
best example of novel techniques that use NGS not limited to genomic
DNA (Morin et al. 2008). The results are the sequencing of the entire
collection of mRNAs of a given sample, which can be then analyzed
quantitatively, to detect relative abundances of particular mRNAs
isoforms, and qualitatively, to identify new fusion/chimeric genes and

splicing aberrations. RNAseq is currently also included in the study of
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genetic diseases in combination with the analysis of the genome of the
same sample. At the end, this allows to correlate particular changes in
the genome with changes in the expression of particular genes (Wang

et al. 2009; Ren et al. 2012; Teles Alves et al. 2015).

NGS technologies have also permitted the massive sequencing of
short fragments of DNA, which has been key to setup complex
experiments involving the isolation and sequencing of particular
regions of the genomes that interact internally or with other
molecules. For example, methods based on chromatin
immunoprecipitation sequencing (ChIP-seq) have largely contributed
to the annotation of non-coding part of the genome (Johnson et al.
2007). Through a first step of purification of the protein of interest,
which is physically interacting with the DNA (chromatin
immunoprecipitation), followed by a massive parallel sequencing of
all these DNA fragments. This technique has already provided
extremely useful information, for example, thousands of bindings
sites for a given transcription factor protein, DNA polymerase binding
sites, histones positioning, and others (Gerstein et al. 2012; Wang et

al. 2012).

Another relevant example of NGS application is the chromosomal
conformation capture (3C) and their variants 4C, 5C and Hi-C (Dekker
et al. 2002). In exactly the same direction that previous methods it is
based on, they sequence cross-linked DNA regions that are proximal
in the space. Digestion of these compounds and forward sequencing
allows the detection of proximal DNA regions and the understanding
of the interactions and the spatial distribution of the genomic DNA

within the nucleus.

19



Analysis of NGS data

The recent and growing amount of sequencing data generated around
diseases using NGS is revolutionizing our understanding of genetic
disorders permitting the detection of driver (causal) variants in the
genome and, at the same time, the study of their potential impact in
the pathology, by combining it with the functional annotation of the
genome. The analysis of all this data has been a challenge at different
levels, conceptually, but also from the point of view of the methods
and technologies needed to process it. Currently, our capability to
generate sequencing data is growing faster than our power to analyze
and process it. The scientific community has to overcome enormous
computational challenges in order to store, manage and analyze all
this information (Eisenstein 2015; Marx 2015). The current thesis
describes our contribution in solving these limitations by providing
novel bioinformatic solutions that connect the generated information
with our understanding about the genetic causes and consequences in

disease.

All NGS approaches have in common the massive parallel
sequencing. As a result, the user obtains millions of short reads
containing the targeted information. These sequence reads cannot be
directly interpreted and it is necessary to process and analyze them
with complex bioinformatic protocols and applications. In contrast to
Sanger sequencing technology, NGS generates such amount of small
reads that the bioinformatic community had to invent new protocols
or adapt existing ones for the analysis of sequence data. For example,
the most common initial step for the analysis of NGS data in nearly all

its applications is to align all the reads against a reference genome,

20



which allows the user to study them grouped by regions of interest.
This has involved a redesign of the strategy and alignment algorithms,
for example BWA (Li and Durbin 2009) and GEM (Marco-Sola et al.
2012).

The mapping step is extremely sensitive to the uniqueness of the
target sequence within the genome and to the level of sequence
identity. To be able to align NGS reads in a reasonable timeframe,
these methods force a highly concordance between the sequenced
data and the reference genome (Li and Durbin 2009). While this does
not affect many of the applications, it does interfere with the analysis
of mutations, as, in these cases, the reads of interest, i.e. those
containing changes, are expected to have lower mapping scores. The
problem becomes much more complex if we include the thousands of
repetitive or low complexity region of the genome. To aid during the
mapping process most of the NGS techniques now incorporate what is
known as paired-end reads, which consists in the generation of pairs
of sequencing reads whose distance in the genome is known
(Fullwood et al. 2009). Although, this has not completely solved the
problem of aligning complex or mutated regions, it has reduced its

impact considerably.
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Cracking the genetic code

The next NGS allowed hundreds of different studies to analyze a large
number of patients in order to identify the variation associated to a
large number of genetic diseases (van Dijk et al. 2014) (Mardis 2008).
Promptly the scientific community needed to transform all these
information into real knowledge to interpret the genomic code and
understand the functional impact of each of the genomic changes
identified as associated to disease. This is an essential step, not only
to link a specific disease to a given single or group of variants, but also
to be able to understand the biological impact of the different variants

in the development and progression of the diseases.

Genome annotation

Right after a new variant is associated with a disease, the immediate
question to answer is how it is affecting the cell behavior and how
relevant might be for the development of the molecular mechanisms
suspected or known to be driving the disease. The impact that a
genetic variant can have within cell functionality is wide: from the
direct modification of a gene producing a malfunction of the encoded
RNA or protein, to changes in gene expression regulatory regions, in
the overall stability of the chromatin and others. Different large-scale
initiatives have been launched to complete the annotation of
functional elements within the human genome in order to, among
others, have better and more accurate possibilities of correlation

between genetic modification and functional impact.
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The ENCyclopedia Of Dna Elements (ENCODE) was the first
international project with the enormous challenge of elaborate a
comprehensive catalog of the structural and functional components
encoded in the human genome (Consortium 2004). The catalog
included protein-coding genes, non-protein-coding  genes,
transcriptional regulatory elements and sequences that mediate
chromosome structure and dynamics. To elaborate this catalog the
ENCODE consortium integrated thousands of different analysis that
could have not be done without the NGS technologies: ChIPseq, 3C,
DNasel, DNA sequencing, RNA sequencing, Methylations and others.
Figure 4 represents a briefing about some of the most relevant
techniques applied to the genome. In its first approach they planned
to comprehensibly annotate 1% of the human genome, but that first
objective was quickly overcome by the improvement of the analysis
techniques and finally most of their results were extended to the
annotation of the whole genome. Several international subconsortia
and subprojects have taken part within ENCODE annotation initiative.
For example, VEGA (Ashurst et al. 2005), GENCODE (Harrow et al.
2006) and EGASP (Guigo et al. 2006). The last, but still uncompleted,
frozen set of results were published in 30 different publications in

2012 (http://www.nature.com/encode/). Currently the collaboration

between UCSC and ENCODE gives access to 288 human cell and tissue
types, 32 different assays and mapping information about more than

300 DNA binding sites (Rosenbloom et al. 2013).
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Figure 4. Representation of different experimental techniques applied during
ENCODE analysis in order to provide functional information about the
different genomic regions.

Despite the new technologies have allowed us to obtain and interpret
all this annotation data, underlying methodologies and statistical
frames to transform all sequencing data into useful knowledge in
relation to a specific application (RNAseq, Chip-seq, for example) are
still under development and improvements, and often still generate
contradictory or inconsistent results. This is why part of this
information should be used as suggestive and supporting evidence

only.
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Finding and classifying functional elements in the genome

Several functional elements can be found in our genome and they are
responsible of gene regulation, signaling, DNA stabilization, etc.
Assuming that coding exons are the part of the genome with the
assignment to codify proteins, most of our DNA is involved in other
tasks. Figure 5 represents a distribution of what nowadays is known

about the distribution of functional elements in human genomes.

Distribution of funciontal elements

E Centromere
M Coding exons
i DNA binding

proteins
M Non-coding genes

Figure 5. Distribution of different functional elements across human genome
according to ENCODE data. Notice that percentages can exceed 100%
because some functional elements can overlap between them.

According to GENCODE, initially formed as part of the pilot phase of
the ENCODE project to identify and map all protein-coding genes, the
annotation of the coding genes is closed to be finished with a bit less
than 20.000 genes found in human. However, the RNA high

throughput techniques, supported by the new sequencing platforms,
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have increased the number of known non-coding genes. Different
categories have been created to classify the non-coding genes, for
example, into long non-coding RNA or small non-coding RNA. In total,
more than 30.000 non-coding genes have been described. Although
the biological function of most of them is still unknown, there are
several examples where they are involved in gene regulation, RNA
inactivation, signaling, and RNA post-processing (Huttenhofer et al.

2005) (Ziats and Rennert 2013; Palazzo and Lee 2015).

Among the functional elements that cannot be transcribed into RNA,
transposable elements are, by far, the most abundant. The definition
of the category is diffuse and includes all small pieces of DNA that
copy and translocate within the genome. In fact, that genomic
movement can be observed from an evolutionary point of view, not
only between different species, but also within individuals from the
same population. These repeats can be particularly important, as they
have been associated to several diseases (Xiao-Jie et al. 2015) and
other functionality of the genome, such as with retroviruses, DNA
stability and gene regulation (Callinan and Batzer 2006) and gene
duplication during evolution enabling in some cases speciation
processes (Wicker et al. 2007) (Kazazian and Moran 1998) (Kim et al.
1998)..These moving regions can include other functional elements,
even genes, dynamizing over time the combination of exons, complete

genes and regulatory elements.

Regulatory regions constitute more than 8% of the genome
(Consortium 2012). Their annotation is a huge challenge because
their function is dependent of cell and tissue type, as well as of
developmental stage. From the traditional view where a gene needs a

immediately upstream region, named proximal promoter, to start the

27



transcription, studies have later demonstrate a much more complex
genomic architecture that regulates the expression of our genes. The
gene regulation became possible thanks to the interaction between
the proximal upstream region to the gene (promoter) with one or
several distal regions (enhancers) in collaboration with several trans
elements known as transcription factors. Experimental
approximations, such as 3C, 5C and Hi-C allow us to widen our
understanding on how the genome adopts an structure that favors
these interactions, even between regions which are far away in terms
of DNA sequence but closely in the 3D structure of the nucleus (Belton

etal. 2012).

A large number of bioinformatic applications have been developed to
identify and classify gene regulatory regions (Hallikas et al. 2006)
(Sun et al. 2009) (Abeel et al. 2009) (Dubchak et al. 2013) (Palin et al.
2006). Due to the intrinsic difficulty in detecting these heterogeneous
regions, not a single method or approach seems to be powerful
enough to capture and characterize all the different regulatory
regions in the human genome. In the last years, novel methods have
focused in the combination of different sources of data in order to
obtain good balances between sensitivity and specificity (Fu et al.
2014) (Seumois et al. 2014). Currently, a large fraction of the
accompanying genomic data can be used to infer regulatory potential:
histone modification marks, ChIPseq of TFBSs, DNase [ accessibility,
evolutionary conservation, sequence motifs, relative distances to

known genes and the 3D organization of the DNA.

All these analyses have allowed to observe the high level of plasticity
of these regions. Different studies expanded their analysis to different

cell lines of specific tissues, development stages and pathological
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states. The results confirm how the accuracy in detecting regulatory
regions depends on the selection of the proper cells and conditions.
Several research consortiums are generating and offering a wide
range of different information about the most relevant aspects of
chromatin in a large number of cell lines that can be used to support
the potential functionality of non-coding regions: BLUEPRINT (Abbott
2011), FANTOM (Carninci et al. 2005) and ENCODE (Consortium
2004).

Finally, the results of nearly all the genome annotation efforts done in
the community can be accessed and easily interpreted through
powerful web platforms that organize all these results according to
their genomic position: UCSC genome browser (Kent et al. 2002),
ENSEMBL (Hubbard et al. 2002). Figure 6 shows a screenshot of UCSC

genome browser with several tracks associated with gene regulation.

UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly

move | <s< | << >> | 722 |200MiN| 15 [ 3x | W0 | base ZOOM OUE 15« | 3x | 10x | 100x

Chr19:30,299,933-30, 12,247 12315 bp ; gy o arch b =

Figure 6. UCSC genome browser representation of promoter region of CCNE1
gene. Highlighted region correspond to the promoter region according to the
most common marks that includes: DNase [ accessibility, conservation of
DNA across species, Histone marks associated with regulation and TFBSs
ChIP-seq.
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The cancer genome

Cancer can be considered as a model example of the use of NGS on
genomes to uncover the mutational spectrum underlying the disease
and, through the use of the genome annotation, infer its functional
consequences. Its impact in the society, in combination with the
complexity of its biology, has drawn important research efforts trying
to unveil the specific biology underneath the different types of cancer
processes. Figure 7 shows the number of independent studies
according the principal diseases where cancer studies are clearly

predominant.

Studies in the EGA by disease
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Figure 7. Distribution of studies by disease type on EGA database.
(Lappalainen et al. 2015)
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All tumor types are characterized by relatively unrestrained
proliferation of cells that can invade beyond normal tissue boundaries
and metastasize to distant organs (Stratton et al. 2009). These cells
escape from both the normal cell behavior and the exogenous
restraints of growth. Cancer has been described as an example of
positive selective evolution in which a given number of cells acquire
mutations that can confer an advantage, i.e. resistance to death and

continuous proliferation.

The processes of somatic mutagenesis allow the tumor cell to
gradually acquire a set of functional capabilities which are common in
most, if not all, of the cancer types (Hanahan and Weinberg 2000).
Firstly, the self-sufficiency in growth signals, or the capability to
activate proliferation states without the regulation of external
stimulus. Secondly, the insensitivity to antigrowth signals that
maintain the quiescence and tissue homeostasis in normal cells.
Thirdly, in most of the cases the tumor cell can evade the apoptosis
programmed in their code. Fourthly, instead of autonomously
regulated their replicative potential in tumors this limitations does
not exists. Fifthly, the sustained angiogenesis, or the potential to
constitute real functional tissues with the formation of new blood
vessels. Lastly, the competence to perform tissue invasions and
metastasis. Last few years different treatments and drugs have been
developed targeting those exclusive capabilities of tumor cells, some

examples are represented in figure 8.
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Figure 8. Therapeutic Targeting of the Hallmarks of Cancer. Drugs that
interfere with each of the acquired capabilities necessary for tumor growth
and progression have been developed and are in clinical trials or in some
cases approved for clinical use in treating certain forms of human cancer
(Hanahan and Weinberg 2011).

Because cancer is a category of probably hundreds of particular
diseases with multifactorial genetic causes and it implies several cell
mechanisms our comprehension strongly depends how much we can
understand the biology of the cell. At this point, please note (below) a
text written in 2000, which has become premonitory and at the same

time can be reused nowadays:

We anticipate otherwise: those researching the cancer problem will
be practicing a dramatically different type of science than we have
experienced over the past 25 years. Surely much of this change will
be apparent at the technical level. But ultimately, the more
fundamental change will be conceptual.

(Hanahan and Weinberg 2000)
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The overall complexity of tumorigenesis and its forms of progression
makes this field of research a challenge that needs, not only the
identification and characterization of all the mutations involved, but
at the same time, a deeper understanding about the specific
functionality of the different regions of the genome affected. It is in
this sense, and currently applied to cancer research, where NGS
technologies and the improvements in genome annotation allow a
clear shift in basic research strategies towards “from genetics to

function” approximations.

Previous to the wide accessibility to whole genome sequencing
technologies, and still very active, a large number of studies have
provided key genetic and molecular information about most
commonly affected oncogenes and tumor suppressor genes, mainly
by using the “from function to genetics” approach (Hanahan and
Weinberg 2000). Complementing these essential molecular studies,
large scale genomic analysis are providing to the entire community an
unprecedented amount of candidate novel cancer genes, together
with information about mechanism of structural genomic variation,
often taking place within the tumor cell. However, not all the somatic
mutations appearing in a particular cell that becomes immortal are
involved in this process of transformation. Only a small percentage of
them can be considered as tumor mutations, commonly named as
driver mutations. All the other, the passenger mutations, are not

directly associated with that selective growth advantage.

The amounts of cancer driver mutations, in combination with all the
different potential paths that can lead to the disease, add a new layer
of complexity in the study of cancer. Tumors originating in the same

organ or tissue can vary substantially in their alterations while
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similar patterns can be observed in tumors from different tissues
(Ciriello et al. 2013). This intracancer and intercancer heterogeneity
puts into question, and highlights the limitations, of the traditional
approach of treating all tumors of the same tissue as equal. On the
contrary, new diagnosis and therapeutic protocols should take into
account the nature of the genomic alterations of each tumor in
particular in order to make more precise and effective treatment
protocols. This is actually the basis of personalized medicine, where
patients will be treated according to specific genetic or molecular
markers. Cancer is one of the first diseases that benefits of this
molecular and genetic analysis of the patient. Ras mutation is a well-
known biomarker that defines different populations within colorectal

cancer to determine their treatment (Stintzing et al. 2015).

With this aim, a large international initiative was launched few years
ago that included the compromise of most of developed countries of
the world to sequence and analyze the genomic and molecular basis
of several types of cancer. This consortium, The International Cancer
Genome Consortium (ICGC; https://icgc.org), aimed at sequencing the
genome of at least 500 patients of particular cancer types, together
with generating accompanying functional data, such as gene
expression, epigenetic marks, and others. The research environment
and the strategies generated by this consortium have become
standard in the field of cancer genomics. The general protocol within

these analyses is summarized in Figure 9.

35


https://icgc.org/

The International Cancer
Genome Consortium

£ A |
-u._, | g |

Figure 9. Summary of ICGC protocol to analyze cancer patients. All the
involved countries sequence healthy and tumor cells from the same patient
and tissue. The objective is to determine groups of patients sharing the same
DNA faults to develop gene tests and drugs.

In order to favor the identification of the specific genetic and
molecular basis of tumors, normal and tumor cell samples (ideally
from the same tissue) are extracted from each patient and analyzed at
the level of genome and transcriptome sequencing, and of specific
chromatin states. All this data is then analyzed using computational
approaches that combine, among others, (i) the identification of all
the spectrum of somatic variations in the genome. It includes single
nucleotide variants (SNVs) to structural variants (SV) that involve
small or medium size insertion, deletions and inversions (commonly
known as indels) and large chromosomal rearrangements, viral
integration and other structural modifications of the genome. It is in
this particular frame that the present thesis had its major

contribution. Additionally, copy number variation (CNV) is also

36



explored within these tumor genomes; (ii) analysis of RNAseq data to
explore tumor specific expression profiles; and (iii) analysis of DNA

methylation and other chromatin modifications.

All these results are then interpreted and crossed with genome
annotation to identify what are the genomic and transcriptomic
modifications that are related to the development or progression of
the tumor, i.e. which are driver events. The distinction between driver
and passenger (non tumorigenic) events is still a challenge. Although
a number of methods (Ng and Henikoff 2003; Carter et al. 2009; Reva
et al. 2011; Gonzalez-Perez and Lopez-Bigas 2012) have been
generated within the community to prioritize, from the list of all
mutated genes found in a tumor, which are likely to have an impact in
the biology of the tumor. Together with the challenge of finding the
mutations within tumor genomes, the distinction between driver and
passenger variation events remains unsolved, being the frequency of
certain events or mutated genes the most reliable criteria to infer
association with the tumor. In other words, if a gene or any other
functional region is recurrently found to be mutated in tumor

genomes, it is then taken as potentially driving somehow the tumor.

The final goal of this general strategy of analysis of tumor genomes is
to translate all this knowledge into effective and specific clinical

protocols for treatment.
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Identification of somatic mutations in cancer research

An important challenge within cancer genomic studies is the
identification of somatic mutations, to ultimately isolate the causal
fraction that plays a role in the development or progression of the
tumor. A large number of studies are based on incomplete analysis of
genomic sequences: exome sequencing, point mutations, mutations
affecting coding genes, etc. They have only uncovered the tip of the
iceberg, leaving a large mutational space unexplored. A clear example
can be observed in the largest international cancer genome
consortium ICGC where the exome sequencing data represents one
order of magnitude more than that coming from whole genome
(Zhang et al. 2011). The easy access to exome sequencing compared
with whole genome has limited most of our knowledge to the coding
exons and, mostly to point mutations (Kandoth et al. 2013) (Ciriello et
al. 2013) (Kan et al. 2010) (Alexandrov et al. 2013). Additionally,
several methods to evaluate the biological impact of a somatic
mutation affecting coding regions have also been developed
(Gonzalez-Perez and Lopez-Bigas 2012) (Ng and Henikoff 2003)
(Reva et al. 2011) (Carter et al. 2009). All this leaves an important
fraction of causal mutations outside coding regions significantly less
studied. Regulatory variation, as well as the variation associated to
transposons, viruses, and with large chromosomal rearrangements is
still largely unexplored due to the general limitations of methods to
detect them, and only a limited number of examples exist (Puente et
al. 2015) (Kulis et al. 2012) (Huang et al. 2013) (Akhtar-Zaidi et al.
2012) (Herz et al. 2014).
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The process of variant calling requires both, complex algorithms and
efficient computational protocols to deal with massive amounts of
sequences, making it a “big data” challenge (Puckelwartz et al. 2014;
Eisenstein 2015; Marx 2015). Most of the available software to
identify somatic mutations emerges from the adaptation of the
methods originally developed to detect germline variation (Sudmant
et al. 2015). For the past years, we have experienced an explosion of
different methods for the identification of somatic mutations by
comparing normal and tumor genomes. Before this thesis, all existing
methods for somatic variant calling were based on the inspection of
the reads aligned to the reference genome, i.e. from a BAM format.
Each of these methods is usually restricted to the detection certain
types of somatic variation (Cibulskis et al. 2013) (Rausch et al. 2012b)
(Chen et al. 2009) (Ye et al. 2009) (Wang et al. 2011) (McKenna et al.
2010). Some methods are designed to detect point mutations and
small (of a few nucleotides) deletions or insertions, others are
focused on small size indels (less than sequencing read size) and the
least of them, on the detection of large structural variants (i.e.
chromosomal rearrangements). Each of these tools has been usually
developed in a different bioinformatics groups and, often, using

different programming models and languages.

All this makes that a comprehensive analysis of tumor genomes
require the development of complex computational pipelines, gluing
together many of these methods and adding extra filters to minimize
the rate of false positive calls. These pipelines, which require the
intervention of deep computing expertise, are not distributed within
the community, leaving most of the small and medium groups with
access to the sequencing of tumor genomes, with no possibilities of

analyzing properly the data that they generate. Figure 10 represents
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the filtering pipeline used by ICGC that must be applied to the
sequencing data previous to the different variant calling methods.
Novel approaches are trying to remove all these technical barriers
and at the same time improve our capability to detect the most
complex variants. Different strategies have been developed in these
direction, being the direct comparison of the sequenced reads and the

de novo assembly two of the most promising ones (Rimmer et al.

2014).

Sequencing Alignment Compression Merge Mark duplicates

ﬂ

BWA Samtools Picard

Figure 10. Filtering process applied to sequenced data. Top line represents
the different steps, for each file their current format is given (FastQ, SAM and
BAM), at the bottom the different programs used for produce each file. This
step graph represents the minimal 5 step filtering process currently applied
in ICGC-CLL studies previously to variant calling methods.
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Large structural rearrangements

From all the different types of somatic sequence variation, those that
constitute large chromosomal rearrangements are among the most
challenging. The range of large structural variants (LSV) includes
chromosomal translocations, but also copy number variants, mobile

elements, insertions of non-human DNA, such as viruses, and other

types.

The study of LSVs becomes essential in the study of the cancer
genome. All the possible functional alterations that these
rearrangements can cause are many. For example, (i) the breakage of
functional elements such as genes. The disruption of PTEN in prostate
cancer is an example (Baca et al. 2013); (ii) The complete deletion of
large genomic regions that including functional elements, such as the
deletion of part of the 13q chromosome arm, identified as recurrent
in leukemia, which involves specific microRNA genes. (Liu et al. 1995)
(Smonskey et al. 2012) (Klein et al. 2010); (iii) The modification of the
genomic context, for example rearrangements that translocate
regulatory regions close to other genes, resulting in the deregulation
of the expression of specific genes (Affer et al. 2014); (iv) The
generation of gene fusions are also the result of genomic
translocations. This category includes the inactivation of gene
transcription, the production of non-functional RNA that can interfere
with the normal allele, or even the production of new genes as a
combination of different functional domains that can be translated
into a protein with a new and fatal functionality (Mitelman et al.
2007); finally, (v) large structural variants can also produce large
reorganizations of the chromosomes affecting the stability of the

genome. When these LSVs occur several times within one single
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catastrophic event we face, what we call, mainly chromothripsis or
chromoplexy. (Korbel and Campbell 2013) (Rode et al. 2015) (Baca et
al. 2013) (Shen 2013) (Rausch et al. 2012a). Differences between
those processes are still vague and their causes are not completely

well understood.

In general, an aberrant event is considered chromothripsis when
multiple (sometimes hundreds) of rearrangements occur within a
restricted portion of the genome, involving one or two chromosome.
Figure 11 represent a chromothripsis event in a paediatric
medulloblastoma patient. In contrast, chromoplexy involves fewer
LSVs and multiple chromosomes. Other marks such as the level of
DNA gain and loss or the mutation of certain genes involved in DNA
stability have been proposed as intermediates of these large

reorganizations, but their role is not complete clear.
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Figure 11. Chromothripsis in paediatric medulloblastoma. Red lines
represents the different translocations between chromosome 17 and
chromosome 11, when those translocations affect a certain gene, it is
represented and the breakpoint highlighted.
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Final considerations

Taken altogether, the recent advances in the technologies related to
the production of biological data, primarily of DNA and RNA
sequences, is complementing the research in biomedicine in an
unprecedented way. The possibility of generating sequences from
thousands of patients allows the addition of novel approaches into
research, expanding the possibilities of finding the genetic and
molecular basis of disease. The possibility of going from the genetics
to the function using all the generated sequence data and the
annotation of the genome, is quickly contributing to widen our

understanding of disease in general, and of cancer in particular.

But these advances entail important technical and conceptual
challenges to a point that the capacities for the analysis of the genome
and the accuracy of the annotation of functional elements in the
genome become the bottleneck of this process and are not accessible
for most of the biomedical groups. This thesis focuses on overcoming
part of these limitations by contributing in three major aspects: (i) the
development of novel methods for the identification of somatic
mutations from tumor genomes; (ii) the generation of tools for the
annotation of gene regulatory regions; and (iii) the application of
these tools in order to answer questions related to the biology of the

cancer genome.
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II.

IL.

IV.

Objectives

To contribute to overcoming the limitations of the analysis of
big data in genomics through the development of novel
strategies and bioinformatics solutions for the massive
analysis of whole genome sequences and the identification of

somatic mutations in tumors.

To identify and classify the somatic variation landscape in
tumor genomes, focusing on the characterization of complex
chromosomal rearrangements, as to their underlying

mechanisms and potential functional impact.

To contribute to the annotation of regulatory regions in
genomes through the development of more efficient

bioinformatics tools.
To combine the developed tools in order to identify and

characterize the somatic variation of tumors with a potential

impact in the regulation of gene expression.
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software. Santi’s contribution to this work was crucial, as he
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other methods and the experimental validation of the results
obtained using in-silico and real tumor genomes. This task involved
the collaborations with the Hospital Clinic and the EMBL, which were
also coordinated at daily basis by Santi. Its role in this was not
restricted to particular specific tasks, but also involved the
coordination of other members of the group that performed
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Comprehensive characterization of complex structural
variations in cancer by directly comparing genome

sequence reads

Valenti Moncunill>1?, Santi Gonzalez!'10, Silvia BeaZ, Lise O Andrieux!, Itziar Salaverria2, Cristina Royoz,
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Josep L Gelpil-33, Ivo G Gut$, Carlos Lopez-Otin?, Modesto Orozcol»38, Jan O Korbel4, Elias Campo2?,

Xose S Puente” & David Torrents!?

The development of high-throughput sequencing technologies
has advanced our understanding of cancer. However,
characterizing somatic structural variants in tumor genomes

is still challenging because current strategies depend on the
initial alignment of reads to a reference genome. Here, we
describe SMUFIN (somatic mutation finder), a single program
that directly compares sequence reads from normal and tumor
genomes to accurately identify and characterize a range of
somatic sequence variation, from single-nucleotide variants
(SNV) to large structural variants at base pair resolution.
Performance tests on modeled tumor genomes showed
average sensitivity of 92% and 74% for SNVs and structural
variants, with specificities of 95% and 91%, respectively.
Analyses of aggressive forms of solid and hematological
tumors revealed that SMUFIN identifies breakpoints associated
with chromothripsis and chromoplexy with high specificity.
SMUFIN provides an integrated solution for the accurate,

fast and comprehensive characterization of somatic sequence
variation in cancer.

The recent development of high-throughput sequencing technologies
has made possible the sequencing of genomes at an unprecedented
speed, allowing the identification of the genetic basis of numerous dis-
cases. These advances have been particularly important in the study
of cancer, providing information on thousands of tumor genomes and
a large catalog of genomic alteration associated with oncogenesis!.
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The characterization of somatic variation in tumor samples is, there-
fore, rapidly becoming a standard practice in biomedicine?. In a
large fraction of biomedical studies that rely on high-throughput
sequencing, the production of genome sequence data exceeds avail-
able computer resources and the capabilities of analytic protocols.
This is particularly pertinent in the field of cancer genomics, where
the increasing sequencing of tumor genomes calls for faster and more
accurate ﬂﬂﬁlYSBS.

The identification of somatic variants associated with cancer typi-
cally requires sequencing tumor and normal genome samples from
the same patient, followed by multiple sequence comparisons. Normal
and pathological reads are aligned to a reference genome, and the
alignment is used to identify sequence changes to isolate the somatic
fraction of variants (i.e., those detected only in the tumor). In prin-
ciple, this simple strategy can be used to detect single-nucleotide
variants (SNVs) and structural variants. Existing methods for the
detection of somatic SNVs show high sensitivity and specificityg'i, but
identifying structural variants is still challenging and remains largely
unsolved. The need for a reference sequence is particularly limiting.
Reads carrying variations, such as those covering somatic changes in
the tumor, are more difficult to align to the reference gcnumcs, and
corresponding variants might become undetectable. Moreover,
reference-based methods also must discriminate germline changes
from somatic variants. In addition to these limitations at detection
level, this alignment step is also time consuming and requires a
considerable amount of computing resources.

To define the complete catalog of somatic variation (SNVs and
structural variants) for a given tumor still requires complex com-
putational pipelines with combinations of different methods, each
of them restricted to the detection of a particular type of variant
or structural variants of particular sizes. This restricts the general
usage of this methodology to centers and groups with considerable
amounts of computing resources and expertise. For example, widely
used programs, such as BreakDancer® or Delly7, can only identify
structural variants larger than 20 and 150 base pairs, respectively.
Each of the methods needed for a complete structural characterization
of somatic variation in tumor genomes further require complex scor-
ing and filtering schemes to achieve acceptable levels of speciicity, but
such procedures drastically lower the sensitivity, leaving a substantial
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fraction of structural variants undetected. Even experimental proce-
dures, such as those that use single-nucleotide polymorphism (SNP)
arrays, generate only a partial description of the rearranged tumor,
as they detect only the fraction of structural variation that generates
sequence imbalance. The fact that the most recent and complete cata-
log for signatures of somatic mutations in cancer® does not yetinclude
structural variants is a clear consequence of all these limitations.

To fill these gaps, we have developed SMUFIN (for somatic muta-
tion finder), a computational approach for the accurate and complete
characterization of somatic variation in cancer. SMUFIN searches for
SNVs and structural variants of all sizes by directly comparing normal
and tumor sequencing reads without the need of their initial mapping
onto a reference genome. Here, we evaluated its performance in the
context of existing strategies and the application to cancer genomics,
as well as its potential to define complex chromosomal rearrange-
ments in aggressive forms of mantle cell lymphomas and medullob-
lastoma. The implementation of SMUFIN, including latest releases,
documentation, example data sets and supplementary information is
freely available at http://cg.bsc.es/smufin/. Source code files are also
in Supplementary Source Code.

RESULTS

The SMUFIN algorithm

The underlying search algorithm of SMUFIN comprises two major
steps (Fig. 1). First, under the assumption that any somatic varia-
tion occurring in the tumor genome will generate a unique sequence,
tumor-specific reads are identified and isolated. This is achieved by
creating a quaternary sequence tree (implemented as a generalized
suffix array) using all tumor and normal reads (Fig. 1). In this tree,
genomic regions of unaltered sequence will generate identical tumor
and normal reads, and these will cluster together in common branches.
Reads covering sequence variations in one or both alleles of the tumor
are expected to form isolated branches without normal reads. These
unique reads are then grouped into read blocks, each expected to
cover a single sequence change or break in the tumor. By further
interrogating the tree for overlapping regions (of at least 30 bp),
each of these blocks is further expanded by adding and aligning the
corresponding normal reads.

Next, potential tumor variants are defined and classified on each
of the breakpoint blocks in two steps (Fig. 1). First, ‘small’ variants
are identified—that is, SN'Vs and structural variants that can be com-
pletely defined within the size of a read. Second, ‘large’ structural
rearrangements, which expand beyond the size of the input read,
are defined. We expect that each of these blocks will represent one of
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the breaks generated by large insertions, inversions or deletions in the
tumor genome, or to single translocation points. SMUFIN pruvides
to the user these large structural variants as single breakpoints along
with the corresponding surrounding sequence in the tumor. A simple
filtering scheme is also used to ensure a minimum of physical cover-
age of all detectable variants and to correct for potential contamina-
tion of tumor cells in normal samples. Although default parameters
have been adjusted in SMUFIN for common sequencing scenarios
(i.e., 230-fold coverage depth in Illumina sequencing platforms), the
user can also tune these filters to adapt the method to the particular
characteristics of the data.

In summary, distinct features of SMUFIN that are not available
in existing strategies for the detection of somatic variants include
(i) the direct comparison of normal and tumor reads without the need
to generate mapped BAM files; (ii) the detection, in a single execu-
tion, of SNVs and structural variants, such as inter- and intrachromo-
somal translocations, inversions, insertions and deletions of any size;
(iii) the identification of variants at base pair resolution; and (iv) the
reconstruction of exact changes in the tumor genome, including the
sequence at both sides of all breakpoints detected.

Furthermore, we have developed a Message Passing Interface (MPI)
implementation of SMUFIN that yields direct improvements of its
usability and execution times. Using 16 nodes (2xIntel SandyBridge,
8-core/2.6 GHz) SMUFIN was able to complete the analysis of a
tumor-normal, whole-genome pair in 4-8 h for samples with 30x of
sequencing coverage, and 9-15 h for 60x samples. These executions
showed discrete peaks of RAM usage of 8-10 Gb and 13-17 Gb per
node, respectively.

Assessment and comparison of SMUFIN with model genomes
To assess SMUFIN’s performance, we measured both the fraction
of somatic variants detected (sensitivity) and the precision of this
detection (specificity) using simulated and real cancer genome data
together with orthogonal experimental techniques.

We generated normal and tumor test genomes by first applying to
the human reference genome the sequence variation corresponding to
a random human haplotype” and to a predesigned catalog of somatic
changes, and then simulating whole-genome sequencing at differ-
ent depths of coverage (Online Methods, Supplementary Fig. 1 and
Supplementary Table 1). To assess the applicability of SMUFIN in
the current context of cancer genome analysis, we compared its per-
formance with a representative set of somatic variant callers that are
common parts of current pipelines for the analysis of tumor genomes:
Mutect for SNVs?, and BreakDancer®, Pindel!?, Delly7 and CREST!!

Figure 1 SMUFIN. (a) (Left) As input, SMUFIN takes high-quality read data (FASTQ) of normal and tumor genomes of the same individual. (Middle) Starting
and ending nucleotide sequences of representative example reads from tumor and normal samples. Reads containing no somatic mutations are
shown in blue. Somatic mutations and downstream sequences are red. Nucleotide positions are indicated at the bottom, where n corresponds to the

size of the read (Supplementary Fig. 4). Reads are numbered on the right side of the boxes. Pairs 1 and 1’, 3 and 3’, and 6 and 6" would cover the same
region in the nonmutated and mutated allele of the cancer genome, respectively. The other reads represent the two nonmutated alleles. (Right) These
reads have different properties inside the quaternary tree. Because nonmutated cancer reads are expected to have their counterpart among healthy
reads, they are also expected to share the same branches. Cancer reads that carry variations are expected to be unigue and, therefore, to be located in
isolated branches. These branches become cancer-specific exactly at the point where they differ, that is, in a breakpoint. SV, structural variation.

(b) SMUFIN collects all the reads expanding on these cancer-specific branches and takes them as reads containing potential somatic variant
breakpoints. Because any particular breakpoint is expected to be represented by several reads, we group all detectable reads that are overlapping and
complementary and construct breakpoint blocks (Supplementary Fig. 5), covered by only one (single orientation) or by two strands (double orientation).
This step, which includes filters for minimum overlap and coverage, removes a large fraction of false-positive variations, mostly derived from sequencing
errors. (¢) Each of the accepted blocks is then analyzed, as to the type of change detected. First, small variants, which can be defined within a single
block, are identified. These include SNVs and small insertions, deletions and inversions. The remaining unclassified blocks are then passed into the
next step where sequence translocations of large structural variants are defined. Here, for each of the breakpoints, we interrogated the tree and retrieved
up to 100 bp of overlapping normal and tumer reads at each side of the break. (d) Finally, small and large variants are unambiguously positioned onto
the reference genome by mapping!® the normal consensus region covering and flanking each of the variants. BWA, Burrows-Wheeler Aligner.
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for structural variants of different sizes (Supplementary Table 2). For
the present comparison, we ran them as described in their companies’
corresponding publication or website.

We first observed that the calling of somatic SNV's was nearly opti-
mal and within the same range in Mutect and SMUFIN, with sensitivi-
ties of 97% and 92%, and specificities of 93% and 99%, respectively
(Table 1 and Supplementary Table 3). On the other hand, the calling

Tumaor and normal genome sequencing

efficiency of somatic structural variants varied greatly between differ-
ent methods, revealing clear differences when compared to SMUFIN.,
Some methods reached reasonable levels of sensitivity when the eval-
uation was restricted to the range of structural variants they were
designed to detect (Pindel and Delly), but these dropped drastically
when compared against the complete catalog of structural variations
in the tumor (Supplementary Table 4). By contrast, SMUFIN was
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Table 1 In silico assessment of variant calling
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Type of variant2 Range of SV detection

Number of detectable variantsb

Variant calling

(sensitivity/specificity)® Deviation from target (nt}d

SMUFIN SNV - 8,240 92/99 0

sV =1 nt 1,798 74/91 1+1
Mutect SNV - 8,240 97/93 0
BreakDancer SV =20 nt 923 63/78 285+ 145
Pindel SV =1 nt 1,798 74/28 2+26
CREST SV =20 nt 923 42153 28+111
Delly SV =150 nt 448 89/63 52+77

3Variants are distributed as follows: 8,240 SNVs and 1,798 SVs (738 deletions, 715 insertions and 345 inversions). The table shows the number of breakpoints that define SVs.
YWariants that fall into the range of detection for each of the methods. “Performance values obtained counting only variants within the detection range of each of the methods.
See Supplementary Table 4 for a comparison against the complete SV catalog. “Expressed as average distance = s.d. from the breakpoint position. CREST!! has no size limit at
detection levelll. Nevertheless, among all the predictions obtained, none was below 20 nt.

SV, structural variant; nt, nuclectides.

able to identify somatic structural variants with a sensitivity of 74%
independently of the size of the structural variant, reaching >90%
sensitivity when only structural variants larger than the read size were
taken into account. SMUFIN's sensitivity for somatic SNV and struc-
tural variant calling is actually similar to that resulting from the com-
bination of all the methods above: 94% versus 89% for SMUFIN.
The downside of combining these methods as a strategy for vari-
ant calling is the low levels of specificity achieved. In fact, in terms of
specificity, the values for the external structural variant callers were
29-77%, whereas SMUFIN reached values of 91% across all structural
variants. We also tested for consistency at sensitivity level in the iden-
tification of medium structural variants (i.e., variant size of 5-500 bp),
which constitute a group of variants that have been particularly chal-
lenging for structural variant-calling methods that rely on pre-aligned
data. This analysis showed that only SMUFIN and Pindel, which has
been specifically designed also for small structural variants, kept a

a b
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Medulloblastoma (MB1)

similar sensitivity when compared with the identification of the total
of structural variants (Supplementary Table 4). When further testing
SMUFIN, Pindel and CREST using lower levels of in silico sequenc-
ing coverage, we observed an overall decrease in performance, both
at sensitivity and specificity levels, at physical sequencing coverage
below 20-fold (Supplementary Fig. 2).

Detection of small somatic variants in human tumors

To further investigate the performance of SMUFIN in real data, we cal-
culated and assessed the positive discovery rate of somatic SNVs and
structural variants calling using whole-genome sequence (WGS) data
from primary tumor and matched nontumor samples. We first tested
the detection of small variants by analyzing a previously described
sample (M004) of mantle cell lymphoma (MCL)'?, an aggressive
subtype of lymphoid neoplasia. SMUFIN identified 4,409 somatic
SNVs and 1,094 small structural variants (Supplementary Table 5).
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Figure 2 Large structural variation in pediatric medulloblastoma tumor MB1. (a) Circos representation of a genome-wide view of all the intra- and
interchromosomal translocations identified by SMUFIN in this tumor (chromosomes with no breakpoints are excluded). Novel breakpoints are displayed in
red, whereas those already reported are in gray. Breaks marked with “*" correspond to those that were tested and could be confirmed, resulting in a local
specificity of 100%. Shadowed area indicates the interconnection between two regions in chromosomes 11 and 17 with high density of DNA breakage
and rejoining events. (b) Circos map displaying all the breakpaints of chromosome 11 (within the 37-45 Mb region) and the interaction with chromosome
17 (15-19 Mb) in more detail. Genes affected by, at least one previously undescribed breakpoint are drawn, along with the exact position of the break.
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Figure 3 |dentification and validation of chromoplexy in mantle cell lymphoma tumor MOO3. (a) Three chimeric chromosomes formed by parts of
chromosomes 3, 4 and 12 and the primary hallmark MCL translocation t(11;14). These rearrangements were identified by SMUFIN and all were
experimentally verified by PCR. (b) A representative 24-color multicolor-FISH (mFISH) karyogram (top) that shows an unbalanced karyotype, with

the t(11;14)qgl13;932) (BKP 10 and 11), a centromeric deletion of 17p, and several rearrangements between chromosomes 3, 4 and 12, all of

them consistent with the breakpoints identified by SMUFIN. Bottom image shows a metaphase hybridized with whole-chromosome painting (WCP)

4 (green) and 12 (orange) probes showing four derivative chromosomes with material of these two chromosomes. Combination of mFISH and WCP
analysis confirmed the presence of two different derivative chromosomes der(3)t(3;4;12), one der(12)t(3;4;12), and identified a fourth, der(4)t{4;12),
which is not detectable by SMUFIN owing to the centromeric location of the breakpoint in chromosome 4. Scale bar, 10 pm. (c) Genes affected by
chromoplexy—a reciprocal fusion of two genes (ANKZ2, in green and S0OX5, in red) and a truncated chromatin remodeler (ARID2). Coding and noncoding

exons are displayed as taller and shorter boxes, respectively.

To evaluate the specificity of SMUFIN, we verified »94% of SNVs
(76 of 81) and >80% of structural variants (28 of 35) from a random
set of 111 of these somatic calls by Sanger sequencing using the same
DNA used for whole genome sequencing (Supplementary Table 6).
These specificity rates are in agreement with the corresponding values
obtained from the in silico analysis.

Complex structural variation in aggressive tumors

We next evaluated SMUFIN's accuracy in detecting large structural
variants invo]ving the somatic insertion, deletion, inversion or trans-
location of DNA fragments that are hundreds to millions of base pairs
in length. For this test, we analyzed whole-genome sequence data
from another mantle cell lymphoma sample (M003) and a sample
from a pediatric form of a medulloblastoma (MB1), both known to
present complex landscapes of chromosomal rcarrangcmt:lltsl:"j.
Because these representative examples corresponded to a hemato-
logical and a solid tumor, each sequenced in a different sequencing
facility, this analysis also measured SMUFIN’s consistency across
different types of data.
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Identification of chromothripsis

MB1 was previously described as presenting chromothripsis, a com-
plex structural alteration of the genome hypothesized to arise from a
single catastrophic event that generates multiple breakpoints, often
affecting one single chromosome!?. In this tumor sample, SMUFIN
uncovered a total of 102 breakpoints corresponding to large structural
variants (i.e., beyond the read size), covering 85 intra- and 17 inter-
chromosomal translocations (Supplementary Table 7). From the
assessment of a random set of 39 of these breaks through PCR ampli-
fication and Sanger sequencing, we verified 36 (92%). Among all the
breakpoints detected, 25 agreed with the intervals of chromosomal
translocations that previously led to the definition of chromoth-
ripsis in this tumor, including three of the four verified at base-
pair resolution.

In addition, we detected 65 previously unidentified breakpoints in
the same tumor, covering 53 intra- and 12 interchromosomal trans-
locations (Supplementary Fig. 3). From a random subset of 37 of
these translocations (16 intra- and 11 interchromosomal), we veri-
fied 25 (92.5%) using Sanger sequencing. Together with the clusters
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of breakpoints already reported for chromosomes three and four in
this tumor, new calls uncovered by SMUFIN enabled us to define a
third damaged region in chromosome 11, with a density of six DNA
breaks per Mb (between positions 39 and 45 Mb). Notably, many of
these breakpoints correspond to translocations with chromosome 17
(Fig. 2). Furthermore, and complementary to the previous functional
characterization of this tumor, we identified affected genes that were
not reported in the previous study (Supplementary Table 7), includ-
ing some that have been identified as possible driver genes, such as
NCOR-1, SIN3P, WDR52 and PALLD, in several types of tumors!>.
Of the 65 breakpoints, 54 were predicted (allowing up to 100-nt devia-
tion in the prediction) by at least one of the methods used above for
the comparative assessment of SMUFIN, with 44 found only by Delly.
This is not surprising considering the results of the in silico analysis,
as sensitivity is not the major limitation of the reference alignment-
dependent approaches.

Identification of chromoplexy
We also analyzed a sample from an aggressive form of mantle cell
lymphoma (M003), previously described to have undergone com-
plex chromosomal rearrangements'?. We used SMUFIN to iden-
tify 30 breakpoints corresponding to large structural variants
(Supplementary Table 8). Using PCR amplification followed by
Sanger sequencing, we verified 19 of the 22 breakpoints tested, involv-
ing 7 intra- and 15 interchromosomal translocations (Supplementary
Table 6). This not only confirms the correct location and the type of
translocation identified, but it also shows that SMUFIN was able to
reconstruct the correct sequence around the variants, as five of the
breakpoints (six inter- and one intrachromosomal; Supplementary
Table 8) included stretches of a new DNA insertion 5-30 nt long.
We next evaluated whether SMUFIN could be used to define the
chromosomal arrangement of this tumor. We compared all 30 break-
points identified, with 18 noncentromeric and nontelomeric regions
of chromosomal imbalances previously detected using Affymetrix
SNP6.0 array (Affymetrix, Santa Clara, CA)'2, SMUFIN could rede-
fine, at base pair resolution, 16 of these 18 regions. By manually
assembling the fragments between all the translocations detected,
we could model the landscape of this genome, which included three
derivative chromosomes formed by combinations of large fragments
of chromosomes 3 and 12 with smaller parts of chromosome 4. These
chimeric chromosomes were experimentally confirmed in the man-
tle cell lymphoma cells by a combination of multicolor fluorescence
in situ hybridization (FISH) and whole-chromosome painting analysis
(Fig. 3). Furthermore, the resolution provided by SMUFIN allowed
the identification of the fragmentation and fusion of genes not pre-
viously described in this sample. For example, we found that these
translocations caused the fusion of ANK2 and SOX5 genes. Notably,
these two rearrangement events did not appear to be independent as
the corresponding fragments generated after the double-strand break
were rejoined again reciprocally—that is, generating both, 12 to 4 and
4 to 12 translocations and two different forms of ANK2-S0X5 fusions
(Fig. 3). In fact, 8 out of the 18 breakpoints appeared to be rejoined
reciprocally, as recently described in prostate tumors!6:17, suggesting
an original organization of the chromatin where these regions were
physically proximal and somehow interacting. A third transloca-
tion identified in the M003 tumor implies the breakage and putative
inactivation of ARID2, a gene involved in chromatin remodeling.
By considering the number of rearrangements identified in this
tumor, their distribution and the number of chromosomes involved,
we classify this scenario as chromoplexy, a recently described pheno-
menon that, in contrast to chmmuthripsis“, is characterized by the
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presence of tens of unclustered chained rearrangements involving
two or more chromosomes!®!7, The high fraction of reciprocal
rejoining events found in this tumor, together with the fusion of
genes and the disruption of a chromatin remodeler gene, is also in
agreement with the results of the chromoplectic events identified in
prostate tumors.

CONCLUSIONS

We describe SMUFIN, a methodology for the identification of somatic
variation in tumor genomes from their direct comparison with their
corresponding normal samples. SMUFIN also provides an integrated
solution for the identification, in a single run, of somatic SNVs and
structural variants (insertions, deletions, inversions and translocations
of any size), which can currently be partially achieved only by com-
bining several independent programs and in-house filtering schemes
into complex computational pipelines. Our method defines, at base
pair resolution, complex scenarios of chromosomal rearrangements,
such as chromoplexy and chromothripsis. SMUFIN was able to iden-
tify the translocations defined before using other computational and
experimental methods, as well as novel breakpoints that complete the
corresponding landscapes of chromosomal rearrangements. Owing
to the underlying mechanism of the algorithm used in SMUFIN,
our method is not suitable to quantify copy number variations or
detect complete losses of chromosome arms or inversions flanked by
palindromic sequences.

Beyond the benefits of the detection capabilities of SMUFIN,
the current parallel implementation of the program also shows
substantial improvements at the level of usability and execution
time compared with available pipelines, as it can currently analyze a
pair of whole genome sequences with coverage of 30-60x in 4-15 h,
using 50-80 standard cores and requiring less than 17 Gb of RAM
memory per computing node. This, together with the scalability of
the program, will realistically allow a systematic and parallel analysis
of cancer samples, accessible to nonexpert users with standard
computing resources.

Taken together, the underlying search mechanism of SMUFIN
constitutes an alternative way of processing and analyzing genomic
data, which can inspire the development of new tools for other
types of genomic analyses. Because SMUFIN actually finds changes
in one sequence set relative to another, it could potentially be adjusted
to other types of biomedical and evolutionary studies that rely on
the comparative analysis of two genomes, even if they are from
different species.

METHODS
Methods and any associated references are available in the online
version of the paper.

Accession codes. For validation sequences produced in this
study (Supplementary Table 6), European Genome-phenome
Archive: EGAS00001000510.

Note: Any Supplementary Information and Source Data files are available in the online
version of the paper.
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ONLINE METHODS

The SMUFIN algorithm. The general structure and the internal mechanism
of SMUFIN is displayed in Figure 1. The complete variant identification and
characterization process comprises the following specific steps:

Input data. As input, SMUFIN takes high-quality sequencing data directly
from FASTQ files of tumor and normal samples of the same individual.
Alternatively, SMUFIN is also able to accept BAM files, from which it extracts
all the sequencing reads. Sequences having over 10% of its bases with a phred
quality score < q20 are discarded.

Construction of the quaternary sequence tree. A ‘quad-tree’-based structure
is first generated using all high-quality normal and tumor reads. All these
sequences are sequentially loaded into the tree on the basis of their sequence
(Fig. 1 and in Supplementary Fig. 4a). Each node of the tree has, at most, four
branches, each one representing one of the four nucleotides. To avoid sequence
ambiguity derived from the complexity of the genome, only fragments of at
least 30 bp are inserted into the tree. In the case of the presence of undefined
base pairs (“N”), these are removed and the original sequence is split forming
new shorter reads, which are inserted in the tree only if they are longer than
30 base pairs. Each of sequences accepted is inserted into the tree, from the
root, in original form (i.e., starting from nucleotide 1 to the end of the read),
together with all derived suffixes larger than 30 bp (recursively starting from
nucleotide 2 to the end, 3 to the end, etc...; Supplementary Fig. 4a). Because
posterior searches through the tree start from the root, the presence of read
suffixes allows a rapid identification of particular sequences and reads.

Selecting reads containing candidate variants. Once all the sequences and
derived suffixes are loaded into the tree, the next step consists in identifying
all tumor-specific reads. Because we expect that variants generate new and
distinct sequences in the mutated genome compared with the nonmutated
sample, SMUFIN first searches and collects sequences (reads) that are only
present in the tumor sample. These sequences are identified from the tree, as
nodes and branches with an unbalanced representation of normal (count nor-
mal reads; CNR) and tumor (count tumor reads; CTR) reads (Supplementary
Fig. 4b). We expect that nodes or branches covering a variation in the tumor
sequence will theoretically have no representation of normal reads. To favor
this condition, we start to search the tree from the level 30 toward the leafs.
We accepted only nodes and branches that have a CTR of at least 4. Internal
tests suggest that setting CTR > 4 improves specificity in a factor 1.4x with
a negligible loss of sensitivity (not shown). Additionally, nodes or branches
with a CNR to CTR ratio below a certain threshold (E_CONT) are selected.
This threshold can be adjusted by the user to account for expected levels of
contamination of tumor cells into the normal sample. Please, be aware that
an E_CONT of 0 implies no expected contamination, that is, no acceptance of
reads coming from the normal sample (CNR) on that candidate variant node
or branch, which implies lower final sensitivity but higher specificity. On the
other hand, an E_CONT larger than 0 always results in a higher sensitivity, but
at the cost of lower specificity. E_CONT was set to 0 for the in silico analysis
and to 0.05 for the real tumor samples analyzed here, where we assume a maxi-
mum of 5% contamination of tumor reads into the normal sample.

Grouping candidate reads. Alter all detectable tumor-specific reads have
been identified, the next step consists in grouping those that are suspected
to cover the same variant. For this, candidate sequences are organized by
identity: two sequences belong to the same group if they overlap by at least
30 bp. Reverse complementary sequences are also evaluated during this
grouping in order to be able to cover the variant in both orientations. Sequence
blocks (groups) with sequences in only one of the orientations or with less
than four tumor reads are discarded. Once these groups are generated, we
interrogate the tree, also on the 30-bp overlap basis, to extract the normal
(nonmutated) reads of the same region and add them to the block. Ideally,
each block will represent a region in the genome containing the mutated
and the nonmutated version (see a detailed example of a breakpoint block
in Supplementary Fig. 5). In order to classify and characterize the type of
variation identified, we extract the consensus mutated and normal sequences
from these blocks. Normal consensus sequences will be also used at the
end of the procedure and mapped onto the reference genome to obtain the
coordinates of the variant.

Identification and characterization of variants. Once all possible breakpoint
blocks are defined, the next step consists in identifying and classifying the variation
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included there. Normal and tumor consensus sequences derived from these
blocks (Supplementary Fig. 5) are recursively compared to identify differ-
ences. A first evaluation will search for small variants, which consist of those
that are completely included within the consensus sequences (SNV and small
structural variants: insertions, deletions and inversions). All the blocks that
do not match this criterion are then considered candidates for large structural
variants, that is, those likely to cover breakpoints of intra- or interchromo-
somal transitions, part of large deletions, insertions, inversions or transloca-
tions. In this case, each tumor consensus sequence is extended on both ends
(Fig. 1) by interrogating the tree for unambiguous tumor reads that over-
lap at least 30 bp with the tumor consensus, reconstructing a (maximum)
200-bp region around the break and allowing the detection of newly generated
sequence at the point of the break.

After small and large somatic variants are defined, we identify the coor-
dinates of the changes by mapping onto the reference genome the normal
consensus sequences corresponding to each of the variants, avoiding potential
mapping conflicts derived from the presence of the variant, as usually happens
when using reference-based approaches. Sequences mapping (with the same
scare) to several positions in the genome are discarded.

Calibration and default parameters for SMUFIN were adjusted using
a high-quality set of ~1,000 SNVs identified with the Sidrén software in a
chronic lymphocytic leukemia sample®.

SMUFIN’s pseudo-code.
SegReader normalReader = openSegReader (normal_
input_file);
SegReader tumorReader = openSegReader (tumor
input_£file);
Tree gtree = initTreel();
Foreach read in normalReader:
If quality_check(read):
insertIntoTree(gtree, read, as_normal);
Foreach read in tumorReader:
If guality_check(read):
insertIntoTree(gtree, read, as_tumor);
List candidate_reads = GenerateEmptyList();
Foreach node in gtree:

If depth{node) =>= 30 and CTR(node) =>= 4 and
CNR{node) /CTR (node) < E_CONT}:

reads = GetTumorReadsFromNode (node) ;
InsertReadsIntoList (candidate_reads, reads);

List breakpoint_blocks = GenerateEmptyList();
Foreach read in candidate_reads:

tumor_reads = GetOverlappingReadsFromCandidateRea
ds (read, candidate_reads);

normal_reads = GetOverlappingReadsFromTree (tumor_
reads, gtree, as_normal);

bp_block = GenerateBPBlock(normal_reads, tumor_
reads) ;

If Coverage(bp_block) == 4:

InsertIntolist (breakpoint blocks, bp_block);
List large_variant_candidates =
List();

Foreach bp_block in breakpoint_blocks
normal_consensus_sequence = GetNormalConsensus
SequenceFromBPBlock (bp_block) ;

GenerateEmpty

tumor_consensus_sequence = GetTumorConsensusSeguence
FromBPBlock (bp_block) ;

If HasSmallVariant (normal_consensus_seguence,
tumor_consensus_segquence)

align_info = MapSequenceToReference (normal_consensus_
sequence)

If (UnambiguousMapping(align_ info)
outputSmallsV(align_info, bp_block);

Else

InsertIntolist{large_variant_candidates, bp_block);
Foreach bp_block in large_variant_candidates

NATURE BIOTECHNOLOGY



© 2014 Nature America, Inc. All rights reserved.

pg

extended_sequence = ExtendTumorSequenceFromBFElock
(bp_block, agtree);

align info =
sequence) ;

If UnambiguousMapping(align_info)
OutputLargeSV(align info, extended sequence);

MapExtendedToReference (extended

Construction of the in silico genome. A personalized genome was simulated
using the hgl9 reference genome downloaded from UCSC (with no repeat-
masking), and modifying it to match a randomly chosen human haplotype
from the 1000 Genome database. These 7,194,026 variants consist of 4,745,917
SNPs and 2,447,367 deletions. The complete list of these germline events can
be found at http://cg.bsc.es/smufin/download. The catalog of somatic variants
further added to this personalized genome includes 8,240 SNVs (more than
100 bp apart), 20 known tumor translocations'®2%, 715 random insertions, 738
random deletions and 345 random inversions, all ranging from 1 bp to 100 Mbp
(Supplementary Fig. 4 and Supplementary Table 1). In silico sequencing was
simulated using ART Ilumina?!. For this, we first generated a profile using
the M004 sample to extract parameters, like sequence variation or read length.
We then run the program at different depths of coverage, using the resulting
parameters and a default error rate (0.00009).

Analysis of the in silico genome with external methods. Each of the external
methods for the comparison with SMUFIN was run on pooled libraries (normal
and tumoral) using default settings except for the following parameters:
BreakDancer was run with -q 10 (mapping quality) and score cutoff of =80,
as described before®?2; Pindel's results with less than five supporting reads
were not considered as recommended elsewhere to increase specificity;
predictions obtained with Delly were rejected if the number of supporting
reads were less than three and the mapping quality 20. For BreakDancer, Pindel
and Delly, somatic variants were obtained by filtering out all the structural var-
iants found in both normal and tumor libraries: we only kept those structural
variants with no unique supporting reads from the normal library. CREST
and Mutect already provided somatic variants as direct results. BreakDancer
and Pindel were used as complementary methods covering large and small
structural variants, respectively, as advised by the developers.

Data sets. M003, M004 and MB1 were obtained with informed consent
and an ethical vote (Institutional Review Board) following ICGC guidelines
(https:/ficge.org). M0O03, M004 and MBI were accessed through the European
Genome-phenome Archive (EGA, https://www.ebi.ac.uk/ega/) under access
numbers EGAS00001000510 and EGAS00001000085.

Identification and analysis of variant genes. Variants genes in tumor samples
were identified by analyzing all the changes identified with ANNOVAR?.
The analysis of the resulting genes potentially modified at coding or splicing
level were further analyzed with Intogen's in order to infer their potential
role in oncogenesis.

Experimental verification of variants. PCR primers were designed on
sequence blocks of 2,000 bp around the target variant using Primer 3 (http://
bivinfo.ut.ce/primer3-0.4.0/primer3/)?3. PCR reactions were performed for
tumor and control samples. Each target locus was amplified using 50 ng of
DNA. The amplification was performed using Qiagen Multiplex PCR Kit
(Qiagen), and the reaction mix contained 2x QIAGEN Multiplex PCR Master
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Mix, 10x primer mix (2 uM of each primer) and RNase-free water until a total
reaction volume of 25 pl. PCR conditions were as follows: 96 °C, 10 min; 2
cycles 0f 96 °C, 30 $/60 °C, 30 §/72 °C, 1 min 30's; 2 cycles of 96 °C, 30 s/58 °C,
30 s/72 °C, 1 min 30 5; 2 cycles of 96 °C, 30 s/56 °C, 30 s/72 °C, 1 min 30 s;
35 cycles of 96 °C, 30 s/54 °C, 30 $/72 °C, 1 min 30 s/70 °C, 10 min.
All the PCR products were run in a capillary electrophoresis gel (QIAxcel
Advanced System, Qiagen) with the QIAxcel DNA screening kit (Qiagen), and
the multiband PCR products were purified using NucleoSpin Gel and PCR
Clean-up (Mercherey-Nagel). Regarding the Sanger sequencing, PCR prod-
ucts were cleaned using ExoSAP-IT (USB) and sequenced using ABI Prism
BigDye terminator v3.1 (Applied Biosystems) with 5 pmol of each primer.
Sequencing reactions were run on an ABI-3730 Sanger sequencing platform
(Applied Biosystems). Sequences were examined with the Mutation Surveyor
DNA Variant Analysis Software (Softgenetics).

G-banding, FISH and M-FISH analysis. Conventional cytogenetics was per-
formed on Giemsa-banded chromosomes (G-banding) obtained after a 72-h
culture and stimulation with tetradecanoyl-phorbol-acetate. Results of the ten
metaphases analyzed were described according to the International System
for Human Cytogenetic Nomenclature?8. FISH studies for the presence of
the t(11;14) translocation and 17p deletions were performed using Vysis LSI
IGH/CCND1 Dual Color Dual Fusion and Vysis LSI TP53 (17p13.1) (Abbott
Molecular, Des Plaines, IL) on fixed cells according to the manufacturer’s
specifications. Two hundred nuclei were examined for each probe. To identify
the chromosomes involved in marker chromosomes and to disclose other pos-
sible structural balanced abnormalities, we performed 24-color karyotyping
using 24XCyte human multicolor FISH (mFISH) probe kit according to manu-
facturer’s instructions (MetaSystems, Altlussheim, Germany) consisting of 24
different chromosome painting probes (combinatorial labeling). Image capture
was done with Nikon Eclipse 50i equipped with a CCD-camera (CoolCubel,
MetaSystems) and appropriate filters using Isis software. Karyotyping was
done using the 24-color mFISH upgrade package. Additionally, whole chromo-
somal paintings (WCP) of chromosome 4 (spectrum green) and 12 (spectrum
orange) were performed simultaneously.
Figure 3 was done using CIRCOS software?”.
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Non-coding recurrent mutations in
chronic lymphocytic leukaemia
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Nuria Lopez- Bigas®, David Torrents®, Ivo Gut'3, Armando Lopez Guillermo?®, Carlos Lopeg Otin's & Elias Ca.mpo3§

Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the
clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic
landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the
number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARIDIA and PTPN11. We also identify novel
recurrent mutations in non-coding regions, including the 3’ region of NOTCHI1, which cause aberrant splicing events,
increase NOTCHLI activity and result in a more aggressive disease. In addition, mutations in an enhancer located on
chromosome 9pl3 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative
number of driver alterations (0 to =4) discriminated between patients with differences in clinical behaviour. This
study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the
disease, and suggests clinical interventions that may improve the management of this neoplasia.

CLLisa B-cell neoplasia that exhibits a very heterogeneous course, with
some patients following an indolent disease course, clearly contrasting
with others experiencing an aggressive disease' . Patients have been
classically categorized in two groups, depending on whether their
tumour B cells express B-cell receptor (BCR) immunoglobulin with
immunoglobulin heavy variable (IGHV) genes bearing somatic hyper-
mutation (IGHV-mutated) or not (IGHV-unmutated)®. Further stud-
ies have led to the identification of additional biological features with
prognostic value for CLL patients™". However, the molecular mechan-
isms responsible for the initiation and heterogeneous evolution of CLL
remain largely unknown.

Whole-genome sequencing (WGS) and whole-exome sequencing
(WES) studies in CLL patients have identified recurrently mutated
genes such as NOTCH], SF3BI, TP53, BIRC3and POT1, and delineated
clonal evolution events in this neoplasia®'". Moreover, recent works
have profiled the transcriptome and the DNA methylome of many CLL
cases'* ", Nevertheless, these studies have unveiled a high level of
molecular heterogeneity, thus creating the need for integrated analysis
of different genomic parameters in a larger number of patients. In this

work, and as part of the International Cancer Genome Consortium
(ICGC) project, we have performed a comprehensive analysis of the
genetic alterations driving the oncogenic transformation in 506 patients
with monoclonal B-lymphocytosis (MBL) or CLL. We have also carried
out additional genomic studies involving single nucleotide polymorph-
ism (SNP) arrays, DNA methylation arrays, RNA sequencing (RNA-seq)
analyses and gene expression arrays. Finally, we have performed clinical
studies aimed at translating the observed molecular alterations into clin-
ical applications for CLL patients.

Mutational signatures in CLL subtypes

We studied pre-treatment tumour and matched non-tumour
samples from 506 patients (452 CLL and 54 MBL): 317 (62%) were
IGHV-mutated (IGHV-MUT), 179 (35%) IGHV-unmutated (IGHV-
UNMUT), and 10 (2%) undetermined (Extended Data Table 1 and
Supplementary Table 1). We performed WGS of 150 tumour/normal
pairs, and WES of 440 cases (including 84 with both WGS and
WES data). Somatic mutations analysed using the Sidrén pipeline'®
revealed the presence of 359,456 substitutions and small indels in
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WGS analyses (240-5,416 per tumour), and an average mutation
burden of 0.87 mutations per megabase (Mb) (Extended Data Fig. 1
and Supplementary Table 2). CLL and MBL samples had a similar
mutation burden (0.87 versus 0.89 mutations Mb %, respectively,
P =10.8), and were considered together for WGS analysis. The num-
ber of somatic substitutions (excluding IG loci) was higher in IGHV-
MUT tumours than in IGHV-UNMUT cases (2,847 versus 1,975,
P< 3% 10" %) (Extended Data Fig. 1). Three main mutational signa-
tures were identified (Extended Data Fig. 1): an age-related signature
involving C-to-T transitions at CpG sites; signature 2, characterized
by T:A > G:C transversions; and an activation-induced cytidine dea-
minase (AID) signature™. This latter pattern was only detected on
IG loci, although we also confirmed AID-induced mutations in
some off-target genes highly expressed in the germinal centre® .
Signature 2 was almost exclusively present in IGHV-MUT tumours,
and its presence clearly separated IGHV-MUT from IGHV-UNMUT
tumours (Extended Data Fig. 1).

Landscape of somatic mutations

‘We combined somatic mutations from the 506 tumour/normal pairs
detected by either WGS or WES (excluding IG genes), resulting in a
total of 13,631 somatic mutations affecting protein-coding genes
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Figure 1| Significantly mutated genes and pathways. The outer layer
represents the number of truncating, non-synonymous and synonymous
mutations for 506 CLL (grey) and MBL (black) cases. Clinical classification as
well as [GHV-status is shown on the two outermost layers. Inner layers
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(average 26.9 per tumour) and 951 copy number alterations
(CNAs) (average 1.9) (Fig. 1 and Supplementary Table 3). We iden-
tified 36 genes (tier 1) as recurrently mutated in CLL (false discovery
rate (FDR) < 10%), and 23 additional genes (tier 2) were significantly
mutated in one subgroup (IGHV-MUT or IGHV-UNMUT), had
recurrent or truncating mutations, or had driver mutations described
in other malignancies (Extended Data Table 2). Two genes (BTG2and
DTX1) were excluded as they are known targets of the SHM
machinery”'. The remaining genes included most of the drivers prev-
iously described by different WES studies™' . The most frequently
mutated gene in CLL was NOTCH1 (57 cases, 12.6%), followed by
ATM (11%), SF3B1 (8.6%), BIRC3 (8.8%), CHD2 (6%), TP53 (5.3%)
and MYDB88 (4%). Furthermore, we identified 12 novel genes recur-
rently mutated in CLL and not previously linked to this disease,
including ZNF292, ARIDIA, ZMYM3 and PTPN11. Most CLL driver
genes were preferentially mutated in IGHV-UNMUT tumours and
had subclonal mutations'' (Supplementary Fig. 1). Notably, a similar
frequency of mutated drivers was found in CLL and MBL cases of
similar IGHV gene SHM status (Extended Data Table 2).

We also identified some genes (tier 3) that probably contain driver
mutations but were found in three or less CLL patients. This is the case
of activating mutations in the oncogenes KRAS and NRAS, truncating
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mutations in the tumour suppressors CDKNIB and CDKN2A, and
recurrent mutations in the transcription factor IKZF3. Mutations in
components of the BCR and Toll-like receptor pathway were exclu-
sively present in IGHV-MUT tumours. They included those in
MYD88, CD79A, CD79B, TLR2 and IRAKI, detected in 22 of the
278 IGHV-MUT cases, but in none of the 166 IGHV-UNMUT CLL
patients (P = 4.1 X 10~ ), confirming the importance of the BCR and
Toll-like receptor pathways both in CLL pathobiology and as thera-
peutic targets®. Collectively, eight main pathways are frequently
altered in CLL, including BCR signalling, cell cycle regulation, apop-
tosis, DNA damage response, chromatin remodelling, NF-xB signal-
ling, NOTCHI signalling, and RNA metabolism (Fig. 1).

DNA structural alterations

Analysis of structural variants confirmed the presence of known CNAs
such as loss of 13ql4, 11q22-q23, 17p, 6q15-q21 and trisomy 12
(Extended Data Fig. 2 and Supplementary Table 4). In addition, we
identified novel candidate CLL driver genes in regions of recurrent
chromosomal alterations (Fig. 1). They included deletions involving
ZNF292 at 6ql15 (2.4%), deletions of 2937 encompassing SP140 and
§P110, loss of 3p21 (2%) affecting SMARCCI and SETD2, and loss of
10924 (1.8%) involving NFKB2 (Supplementary Fig. 2).

Unlike other B-cell malignancies, translocations involving IG
genes were uncommon in CLL with the exception of BCL2 rearrange-
ments (10 cases). They occurred exclusively in IGHV-MUT cases,
and resulted in overexpression of BCL2 and recruitment of the
SHM machinery (Extended Data Fig. 3). Analysis of WGS data using
SMUFIN™ also revealed the presence of 147 interchromosomal trans-
locations in 43 out of 148 cases (Supplementary Table 5). Recurrent
translocations involving chromosome 13q14 with different chromo-
somal partners and associated with deletion or disruption of the
microRNA cluster miR-15a/miR-16 were identified in nine cases
(P<10"%). We also detected 15 non-recurrent chromosomal trans-
locations, one of them involving the IG locus (IGH-CBFA2T3), and
14 predicted to originate in chimaeric genes, five of which could be
confirmed by RNA-seq (Supplementary Table 5).

Complex rearrangements (chromothripsis/chromoplexy)** were
identified in 15 out of 452 CLL cases (Extended Data Fig. 3), being
more frequent in IGHV-UNMUT than in IGHV-MUT tumours
(6% versus 1.8%, P << 0.05). Although these complex alterations did
not result in any recurrent rearrangement, we observed involvement
of chromosome 13 in 4 out of 15 tumours, resulting in mir-15a/mir-16
loss. Similar to previous studies”, mutations in TP53 were more fre-
quent in tumours with chromothripsis (26% versus 4.6%, P < 0.006).
Furthermore, SETD2 inactivation was more frequent in CLL cases
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with chromothripsis than in non-chromothriptic cases (26% versus
14%, P<2% 10 %).

This analysis revealed significant relationships between several
alterations, including co-occurrence of NOTCHI mutations and
chromosome 12 trisomy™, trisomy 12 with trisomy 18 (g < 0.01),
and the mutually exclusive pattern of 13q14 deletion and trisomy
12 (g < 0.01). We also observed a higher co-occurrence of mutations
in NOTCHI with those in MGA (g << 0.01), BCOR (g << 0.01) and
BIRC3 (g << 0.05), or gain of 2p16 with loss of 18p (g < 0.01), among
others (Supplementary Fig. 3).

Mutations in non-coding regions

The presence of functional mutations outside of protein-coding
regions remains an open question in cancer research™. We observed
in one CLL case a previously described mutation in the TERT pro-
moter (C228T)*. Eight mutations in mir-142 were identified in five
cases (Supplementary Fig. 4), with seven of them within AID target
consensus (WRCY or WA), reinforcing it as a target of the SHM™.
We also identified 88 mutations in non-coding regions present in at
least two WGS cases (Supplementary Table 6). Most of them were
located either within hypermutated late-replication regions™, or
within the 5'-region of BACH2, BCL6, BTG2, CXCR4 and TCLIA,
genes known to undergo SHM during the germinal centre reac-
tion®*%. Most mutations were within the AID target sequence
(WRCY), probably reflecting the passage of the respective progenitor
cells through the germinal centre.

Notably, the most frequent recurrent non-coding mutation was
detected in the 3' UTR of NOTCH1 (chr9: 139390152T > C), present
in 4 of the 150 cases with WGS data (Fig. 2a). Sequencing of this
region in 356 cases with only WES data revealed seven additional
tumours with the same mutation, and two cases with a mutation seven
or nine bases downstream of the original one. RNA-seq from six of
these 3' UTR NOTCH I-mutated tumours confirmed the presence of a
novel splicing event within the last exon of NOTCH1 (Fig. 2a), which
was absent in 290 tumours without these mutations (Extended Data
Fig. 4). This splicing event occurred preferentially between a cryptic
donor site located in the coding region of the last exon of NOTCH1
and a newly created acceptor site in the 3' UTR, resulting in a deletion
that includes the last 158 coding bases. Nevertheless, some splicing
events occurred between the canonical donor site on exon 33 and the
newly created acceptor site in the 3" UTR of exon 34 (Fig. 2a). Reverse
transcription PCR (RT-PCR) analysis confirmed the presence of this
aberrant splicing only in cases with mutations in the 3" UTR (Fig. 2b).
This within-exon splicing is predicted to remove a PEST domain of
NOTCHI and to increase protein stability, as in the previously

Figure 2 | Activating mutations in the 3" UTR
non-coding region of NOTCHI. a, Mutant bases
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detected by RNA-seq (red) are shown below.

b, RT-PCR amplification shows the expected
177-base-pair (bp) band in tumours with the
recurrent 1393901527 > C mutation, and a smaller
one in cases with the 139390145 and 139390143
mutations. WT, wild type. ¢, Western blot analysis
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described p.P2514Rfs*4 NOTCHI mutation'”. Western blot analysis
confirmed the presence of a smaller molecular mass band in 3'-UTR-
and p.P2514Rfs*4-mutated cells, which was absent in cells without
mutations in NOTCHI (Fig. 2¢). Immunohistochemical analysis
showed a strong NOTCHI nuclear signal in tumour cells from
patients with 3° UTR or p.P2514Rfs*4 mutations (Extended Data
Fig. 4). All cases with mutations in the 3' UTR of NOTCH1 belonged
to the IGHV-UNMUT subgroup, accounting for up to 6.7% (12 out of
179) of all IGHV-UNMUT cases. Patients with 3" UTR NOTCH1
mutations had features of adverse prognosis (Extended Data Fig. 4)
and behaved similarly to patients with coding mutations in NOTCH!
in terms of the time to first treatment (TTT) and overall survival
(Fig. 2d, e).

We further explored the presence of genome regions with high
mutational density and found 24 loci enriched in somatic mutations
(Fig. 3a). Most of them correspond either to recurrently mutated
genes in CLL or to known targets of the SHM process. However, we
identified a densely mutated cluster in a small intergenic region of
chromosome 9p13, in which 17 different tumours had somatic
mutations (Fig. 3b). This region is enriched for both lymphocyte-
specific transcription factor binding sites and histone marks
related to enhancer elements only in a lymphoblastoid B-cell line
(Supplementary Fig. 5). DNase-seq and chromatin immunoprecipi-
tation sequencing (ChIP-seq) analysis in normal B cells and CLL cases
revealed that the region contains an active enhancer characterized by
a DNase I hypersensitive site and nucleosomes containing histone 3
Lys4 methylation (H3K4mel) and H3K27 acetylation (H3K27ac)
(Fig. 3b and Supplementary Fig. 5). Chromosome conformation cap-
ture sequencing (4C-seq) analysis™ in tumour cells from two CLL
patients revealed that this potential enhancer shows high three-
dimensional contact frequencies extending towards the telomere up
to the PAX5 locus, located 330 kilobases (kb) away (Fig. 3¢ and
Supplementary Fig. 5). Expression analysis of 15 genes located within
1 Mb of this element revealed that the only gene showing a significant

16K locus

Density score

BTGz

&

010

Histone mark @
hment
23
il

IGL Iozus

Wil

expression difference correlated with the presence of mutations
within the putative enhancer region was indeed PAX5 (average
expression 87 versus 131, P=1.9 X 10~ %) (Extended Data Fig. 5).
PAXS5 encodes a transcription factor that has an essential role in
B-cell differentiation™ and, based on the evidence provided above,
is the most likely target of the identified enhancer region. CRISPR/
Cas9-based genome editing of this region allowed us to demonstrate
that either the introduction of a specific point mutation, or the dele-
tion of this putative enhancer in a lymphoblastoid B-cell line or in
RAMOS cells, resulted in a 40% reduction in the expression of PAX5
(Extended Data Fig. 6).

Sequencing of this region in all CLL cases with WES data identified
25 new cases with somatic mutations. We also found somatic muta-
tions in this enhancer in diffuse large B-cell lymphomas (29%, 26
out of 89), follicular lymphomas (23%, 20 out of 86) and mantle-cell
lymphomas (5%, 3 out of 66) (Supplementary Table 7). Interestingly,
84% of CLL cases with mutations in this enhancer belong to the
IGHV-MUT subgroup, accounting for up to 13% of IGHV-MUT
CLL cases. Mutations in the PAX5 enhancer were the only recurrent
alteration observed in 7 cases, while in 11 tumours this alteration was
only combined with 13q14 deletion, raising the possibility that PAX5
enhancer mutations might constitute driver events contributing to the
development of these tumours.

Integrative analysis

We then integrated the standard genetic classification of CLL with
a recent patient categorization in three subgroups based on a DNA
methylation signature of naive and memory B cells'** (Supple-
mentary Table 1). The three epigenetic subgroups showed a distinct
distribution of genetic changes, [GHV gene repertoire and stereo-
typed B-cell receptors (Extended Data Fig. 7). The intermediate group
had moderate IGHV mutation levels, an intermediate contribution of
signature 2 mutations, higher frequencies of SF3BI and MYD38
mutations, biased usage of the IGHV-3-21 and IGHV-1-18 genes

Figure 3 | Identification of somatic mutations
in a PAXS5 enhancer. a, Regions with a high
density of somatic mutations in 150 WGS analyses.
Regions correspond to recurrently mutated genes
(green), targets of SHM (red/orange), and other
regions (blue). b, Detailed view of a 9p13 region
showing the accumulation of somatic mutations
(arrowheads) in CLL tumours as well as DNase [
hypersensitivity and histone H3K27ac, H3K4mel

and H3K4me3 enrichment from CLL tumour 110.

i . ¢, 4C-seq analysis in CLL cells showing the
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and increased frequency of stereotyped subset #2. These results
support the hypothesis that this group has a distinct genetic and
epigenetic makeup'”**. We also found a highly significant correla-
tion (r = 0.64, P < 0.001) between the number of WGS mutations per
case and the number of CpGs showing differential methylation as
compared to naive B cells (Extended Data Fig. 7). Similarly, the pro-
portion of signature 2 mutations was also correlated with differential
methylation in IGHV-MUT cases.

MBL cases were indistinguishable at the genomic, transcriptomic
and epigenomic level from CLL cases assigned to the same IGHV
subgroup (Extended Data Fig. 7 and Extended Data Table 2), in
accordance with the overlapping biological features of both processes.
Notably, the burden of driver alterations was significantly lower in
patients with MBL than with CLL (1.2 versus 1.7, for IGHV-MUT
cases, P=8 X 107 %), consistent with a model in which MBL/CLL
evolution is accomplished by the progressive accumulation of driver
alterations.

Clinical implications

Our data support the hypothesis that the observed genomic differ-
ences between the two major molecular subgroups of CLL might be in
part responsible for their different outcome. The average number of
driver mutations in IGHV-UNMUT tumours was higher than in
IGHV-MUT cases (3.5 versus 1.7, P<< 10 %), despite the 44% higher
mutational burden of IGHV-MUT tumours. We found that 88% of
cases had at least one driver mutation, with almost all IGHV-
UNMUT tumours containing at least one driver alteration, while a
smaller fraction was found in the IGHV-MUT subgroup (96% versus
83%, P<5X 10 7).

We evaluated the influence of the presence of each alteration on the
TTT and overall survival from the time of sampling. The mutation of
several drivers and CNAs was significantly correlated with an adverse
prognosis, in some cases independently from Binet stage and IGHV
mutational status (Fig. 4a, Extended Data Fig. 8 and Supplementary
Table 8). We confirmed the independent prognostic value of known
gene mutations (SF3B1 and TP53), and identified novel independent
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prognostic drivers for both shorter TTT (BRAF, ZMYM3, IRF4,
NFKB2, 20p deletion, and 2p16 and 5q34 gains), and overall survival
(ASXL1, POTI and 14q24 deletion). Remarkably, the accumulative
number of drivers (0 to =4) per tumour had a progressively worse
effect on outcome that could discriminate patient subsets differing by
more than 10 years in the median TTT, independently of IGHV
status and Binet stage. They also showed prognestic value for overall
survival, although not independent in the multivariate analysis
(Fig. 4b, c). Finally, we examined the potential druggability of the
alterations in genes and pathways identified in CLL patients”, finding
candidate drugs for 19 of the 59 driver genes in 42% of the CLL
cases (190 out of 452) (Supplementary Fig. 6 and Supplementary
Tables 9 and 10).

Discussion
In this work, we have provided a comprehensive and integrated
molecular characterization of CLL. We have also unveiled new bio-
logical aspects of this disease and identified novel driver genes pre-
sumably implicated in its pathogenesis. The large number of different
genomic alterations found in our cohort illustrates the enormous
biological heterogeneity of CLL. Notably, the use of WGS has allowed
us to identify recurrent mutations in non-coding regions, including
the 3' UTR of NOTCHI and a PAX5 enhancer, resulting in marked
alterations in the activity of these transcription factors of well-known
importance in leukaemia and other malignancies****. Previous studies
have shown the effect of NOTCHI mutations in CLL prognosis'**’.
However, these studies may seriously underestimate the true
incidence of NOTCHI deregulation in CLL, given our finding that
about 20% of NOTCHI-mutated tumours contain mutations in the 3’
non-coding region. These findings emphasize the value of large
genome-wide studies to discover new molecular alterations that
may have a profound effect on cancer development and progression.
The evaluation of putative associations between these molecular
alterations and the clinicopathological features of our cohort of CLL
patients has been challenging owing to the low frequency of many
significantly mutated genes. Patients in which no recurrent alterations
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Figure 4 | Prognostic effects of individual alterations and number of
drivers. a, Effect on overall survival (left) and time-to-treatment (right) for
each genomic alteration. Labels including genes and chromosomal regions
represent combined analysis of mutations and copy number alterations.
Hazard ratios and 95% confidence intervals are shown. Alterations conferring

statistically significant (adjusted P << 0.05) hazard ratios are shown in colour
(red for overall survival and blue for T'TT), and those in which the effect was
independent of Binet stage and IGHV -status are labelled with an asterisk.

b, ¢, Kaplan-Meier plots of TTT (b) or overall survival (c) of CLL patients
grouped by the number of driver mutations identified.
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were found had the best prognosis and near normal overall survival,
suggesting that this study has uncovered most driver alterations
involved in CLL evolution, opening new avenues to explore the clin-
ical impact of the heterogeneous molecular composition of the disease
in independent cohorts. Hopefully, this work will finally result in new
opportunities for improving the clinical management and persona-
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METHODS

Patients. The clinical and biological characteristics of the 506 patients are shown
in Extended Data Table 1. Among these patients, 452 were diagnosed with CLL
and 54 with MBL. Cases were defined as IGHV-MUT when the identity of
immunoglobulin genes was less than 98%. The tumour samples were obtained
before administration of any treatment. All patients gave informed consent for
their participation in the study following the International Cancer Genome
Consortium (ICGC) guidelines and the ICGC Ethics and Policy committee'®.
Collection and preparation of samples. Tumour samples were obtained from
fresh or cryopreserved mononuclear cells. To purify the CLL or MBL fraction,
samples were incubated with a cocktail of magnetically labelled antibodies direc-
ted against T cells, natural killer cells, monocytes and granulocytes (CD2, CD3,
CD11b, CD14, CD15 and CD56), adjusted to the percentage of each contaminat-
ing population (AutoMACS, Miltenyi Biotec). The degree of contamination by
non-CLL cells in the CLL fraction was assessed by immunophenotype and flow
cytometry. DNA was extracted from purified samples by using a Qiagen kit, and
the quality of purified DNA was assessed by SYBR-green staining on agarose gels
and quantified using a Nanodrop ND-100 spectrophotometer. The tumour DNA
and RNA samples for further genomic analysis contained =95% neoplastic cells
and the contamination by neoplastic cells in normal DNA was <2%.

WGS, WES and RNA-seq. For WGS, 2 pg of genomic DNA from each sample
was used for the construction of two short-insert paired-end sequencing libraries.
One library was prepared using a standard TruSeqDNA Sample Preparation Kit
v2 (Ilumina Inc.) with some modifications. In short, following the fragmentation
(CovarisE220) the libraries were size-selected on the agarose gel and processed
through end-repair, adenylation and indexed adaptor ligation. The gel eluate
was directly amplified by 10 PCR cycles. The second library was prepared fol-
lowing the same protocol as above, however, it included a heating step to 72°C
before adaptor ligation and was suddenly cooled down to 4°C. This resulted
in a biased proportion of high GC content reads and counterbalanced some
of Nlumina’s PCR sample preparation methods’ GC-bias, thus improving cov-
erage of increased GC-content regions of the genome. Both types of libraries were
sequenced in paired-end mode on Illumina GATIx (2 X 151 bp) using Sequencing
kit v4 or Illumina HiSeq2000 (2x101 bp) using TruSeq SBS Kit v3 (Illumina Inc.).

For other samples (Supplementary Table 1), the library preparation procedure
was modified to remove the PCR step during short-insert paired-end library
preparation. The TruSeq DNA Sample Preparation Kit v2 (Illumina Inc.) and
the KAPA Library Preparation kit (Kapa Biosystems) were used. In brief, 2 pg of
genomic DNA was sheared on a Covaris E220, size-selected and concentrated
using AMPure XP beads (Agencourt, Beckman Coulter) to reach the fragment
size 0f 220-480 bp. Fragmented DN A was end-repaired, adenylated and ligated to
Ilumina specific indexed paired-end adaptors. All libraries were quantified by
Library Quantification Kit (Kapa Biosystems). Each library was sequenced using
TruSeq SBS Kit v3-HS (Illumina Inc.), in paired-end mode, 2 X 101-bp, in three
sequencing lanes of HiSeq2000 flowcell v3 (Illumina Inc.) according to standard
Ilumina operation procedures with minimal yield of 85 Gb for each sample.
Primary data analysis was carried out with the standard Illumina software Real
Time Analysis (RTA 1.13.48) and followed by generation of FASTQ files.

For WES, 3 g of genomic DNA from each sample were sheared and used for
the construction of a paired-end sequencing library as described in the paired-end
sequencing sample preparation protocol provided by Illumina®. Enrichment of
exonic sequences was then performed for each library using either the Sure Select
Human All Exen 50 Mb or All Exon+UTRs v4 kits (Supplementary Table 1)
following the manufacturer’s instructions (Agilent Technologies). Exon-enriched
DNA was pulled down by magnetic beads coated with streptavidin (Invitrogen),
followed by washing, elution and 18 additional cycles of amplification of the
captured library. Enriched libraries were sequenced (2 X 76 bp) in one lane of
an Illumina GAIIx sequencer or in two lanes of a HiSeq2000 when using pools of
eight samples.

RNA was assayed for quantity and quality using Qubit RNA HS Assay (Life
Technologies) and RNA 6000 Nano Assay on a Bioanalyzer 2100. RNA-seq
libraries were prepared from total RNA using the TruSeq RNA Sample Prep
Kit v2 (Illumina Inc.) with minor modifications. In brief, 0.5 pg of total RNA
was used as the input material for poly-A-based messenger RNA enrichment with
oligo-dT magnetic beads. Selected mRNA was fragmented (resulting RNA frag-
ment size was 80-250 nucleotides, with the major peak at 130 nucleotides). After
first and second strand ¢DNA synthesis the double-stranded complementary
DNA was end-repaired, 3" adenylated and the 3’ ‘T’ nudleotide of the adaptor
was used for the Illumina indexed adapters ligation. The ligation product was
enriched by 10 cycles of PCR. Each library was sequenced using TruSeq SBS Kit
v3-HS, in paired-end mode with a read length of 2 X 76 bp. We generated more
than 20 million paired-end reads for each sample in a fraction of a sequencing
lane on HiSeq2000 (Illumina Inc.) following the manufacturer's protocol. Image
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analysis, base calling and quality scoring of the run were processed using the
manufacturer’s software Real Time Analysis (RTA 1.13.48) and followed by
generation of FASTQ sequence files.
Read mapping and processing. For WGS and WES, reads from each library were
mapped to the human reference genome (GRCh37) using BWA" with the same
option, and a BAM file was generated using SAMtools". Reads from the same
paired-end libraries were merged, and optical or PCR duplicates were flagged
using Picard (http://picard.sourceforge.net/index.shtml). For the identification of
somatic substitutions and indels, we used the Sidron algﬂrilhmg‘ " This algorithm
was adapted to identify subclonal mutations in which the mutant allele fraction
is low, but supported by at least three reads. Visual inspection of recurrent
mutational hotspots allowed the inclusion of some somatic mutations that were
originally discarded owing to the presence of an excess of mutant reads in the
non-tumour sample, or owing to low coverage, especially in the case of NOTCH1,
in which a high GC content on exon 34 usually resulted in very low coverage by
WES. In samples in which NOTCHI coverage was too low to make a call, muta-
tions were analysed by Sanger sequencing. A comparison of mutation calls by
Sidrén and by Sanger sequencing of some of the most frequently mutated genes in
CLL (SF3B1, TP53, MYDS88) revealed more than 97% specificity and at least 90%
sensitivity. Mutational signatures were extracted using the WTSI Mutational
Signature Framework". To estimate the presence of subclonal mutations in
recurrently mutated genes, the fraction of reads supporting a mutant allele was
calculated for those mutations in which the depth of coverage was at least 20
reads. Flow cytometry analysis confirmed that the percentage of tumour cells was
at least 98%. A case was considered as having a clonal mutation when at least 80%
of cells were estimated to contain the mutation, and the mutant allelic fraction
was within the 95% confidence interval.
Analysis of CNAs and structural variants. For the identification of CNAs,
tumour and normal DNA from 505 CLL patients were analysed using
Affymetrix SNP6.0 microarrays (Affymetrix) as previously described'®. SNP array
experiments were carried out at CeGen (http://www.cegen.org). Additionally, for
230 cases array-comparative genomic hybridization was performed in SurePrint
G3 Human aCGH Microarray 1M (Agilent Technologies). Array-comparative
genomic hybridizations were performed at qGenomics (http://www.qgenomics.
com). Nexus 6.0 Discovery Edition software (Biodiscovery) was used for global
analysis and visualization. Copy number neutral loss of heterozygosity was con-
sidered when the size of alteration was larger than 5 Mb. Acquired copy number
neutral loss of heterozygosity was observed in 28 regions, 16 of them affecting
known driver genes that already contained mutations, resulting in homozygous
deletion of mir-15a/mir-16 at 13ql4, or inactivation of ATM and TP53
(Supplementary Table 4). According to the literature, the presence of chromo-
thripsis was considered when at least seven switches between two or more copy
number states were detected on an individual chromosome in which LOH was
retained, and chromoplexy was defined when at least three chained chromosomal
rearrangements were detected in a tumour™*". In one case in which genotyping
data were not available, we used exome2cnv* to identify CNAs from WES data.
For the identification of breakpoints in WGS derived from structural variants,
we used SMUFIN™, a program that directly compares sequence reads from
normal and tumour samples, to identify chromosomal breakpoints correspond-
ing to large structural variants at base-pair resolution. We analysed 150 tumour/
normal whole-genome pairs setting the cross-sample contamination filter to 5%.
Two WGS tumours (019 and 029) showed an abnormal number of breakpoints
owing to the presence of sequence lanes with high error rates that interfere with
SMUFIN and were not considered for this analysis. All predicted breakpoints that
were not confirmed through the BAM file after manual inspection were systematic-
ally discarded. A total of 48 out of 53 (91%) selected predicted breakpoints could be
verified using PCR amplification followed by Sanger sequencing (Supplementary
Table 5). This verification rate is similar to the one observed in our initial description
of the method™". In addition, custom scripts were used to identify potential transloca-
tions involving immunoglobulin genes either in WGS or WES. This resulted in the
identification of ten cases (5 WGS and 5 WES) containing putative translocations
with the BCL2 locus (nine with the t(14;18)(q32;q21), and one with the
t(2;18)(p11:g21) translocation), all of which were confirmed by either Fluorescence
in situ hybridization (FISH), cytogenetics or PCR (Extended Data Fig. 3).
G-banding and FISH analysis. Conventional cytogenetics was performed on
Giemsa-banded chromosomes (G-banding) obtained after a 72-h culture and
stimulation with tetradecanoyl-phorbol-acetate. At least 20 G-banded meta-
phases per sample were analysed. Results were described according to the
International System for Human Cytogenetic Nomenclature. FISH analyses
on fixed cells were performed using probes that interrogated for 11q23/ATM,
13q14.3 and 17p13/TP53 deletions and trisomy 12 {Abbott Molecular). Two
hundred nuclei were examined for each probe. LSI IGH/BCL2 dual colour
fusion for the t(14;18)(q32;q21) (Abbot Molecular) was used to confirm BCL2
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rearrangements detected by WGS and WES. Additionally, in case 853, whole
chromosomal paintings of chromosomes 8, 11 and X were performed to deter-
mine the complex karyotype (with four derivative chromosomes), and rearrange-
ments predicted by SMUFIN algorithm.

Analysis of DNA methylation. DNA methylation was analysed using the 450k
Human Methylation Array (Ilumina). We used the EZ DNA Methylation Kit
(Zymo Research) for bisulphite conversion of 500 ng of genomic DNA, and the
Infinium methylation assay was carried out as described by the manufacturer™,
These array experiments were performed at CeGen (http://www.cegen.org). Data
from the 450k Human Methylation Array were analysed in R using the minfi
package (version: 1.6.0)", available through the Bioconductor open source soft-
ware, applying several custom filters. Unsupervised analyses were performed by
principal component analysis and differential methylation between individual
CLL/MBL samples and controls was detected using an absolute difference of 0.25.
Gene expression profiling. We studied the gene expression profiling of 468
cases using highly purified leukaemic CLL cells. Total RNA was extracted with
the TRIzol reagent following the recommendations of the manufacturer
(Invitrogen Life Technologies). RNA integrity was examined with the Agilent
2100 Bioanalyzer (Agilent Technologies) and only high-quality RNA samples
were hybridized to Affymetrix Human Genome Array U219 array plates accord-
ing to Affymetrix standard protocols. Summarized expression values were
computed using the robust multichip average approach implemented in the
Expression Console Software (Affymetrix Inc.).

RT-PCR. cDNA was synthesized from 500 ng of total RNA using High Capacity
RNA-to-cDNA kit (Life Technologies) following the manufacturer’s instructions.
Amplification was performed using 50 ng of DNA using Qiagen Multiplex PCR
Kit (Qiagen), and the reaction mix contained 1X Qiagen Multiplex PCR Master
Mix (12.5 pl), primer mix (0.4 pM of each primer) and RNase-free water for a
total reaction volume of 25 pl. For NOTCH1 within-intron splicing, primers used
were: forward 5'-CCTAACAGGCAGGTGATGCT-3" and reverse 5'-TACTC
CTCGCCTGTGGACAA-3". PCR amplification was performed for NOTCHI
3" UTR forward primer 5'-CCTAACAGGCAGGTGATGCT-3" and reverse
primer 5'-ATCTGGCCCCAGGTAGAAAC-3', PAX5 enhancer first region
forward 5"-TAGATTGTGCCGAATGCTGA-3" and primer 5'-ACAAGCTCT
CCTCCCAGGAA-3', and PAX5 enhancer second region forward primer
5'-AGGATGAGAACGGGCAAAC-3 and reverse primer 5'-GGAGCTTCCA
GCTGAACTGA-3". All PCR products were run on a capillary electrophoresis
gel (QIAxcel Advanced System, Qiagen) with the QIAxcel DNA screening
kit (Qiagen).

‘Western blot analysis. For western blot analysis, tumour cells were lysed for
30 min in Triton buffer (1% Triton X-100, 50 mM Tris-HCI, pH 7.6, 150 mM
NaCl, 1mM EDTA) supplemented with protease and phosphatase inhibitors
(1 mM PMSEF, 2 mM sodium pyrophosphate, 2 mM sodium p-glycerophosphate,
1 mM NaF, 1 mM sodium orthovanadate, 10 ug ml~" leupeptin and 10 pg ml ™"
aprotinin). Lysates were cleared by centrifugation at 15,000¢ at 4 °C for 15 min,
and protein concentrations determined using the Bradford method. Thirty
micrograms of protein was separated by SDS-PAGE and transferred onto
Immobilon-P membranes. Membranes were blocked with 2.5% phospho-
Blocker (Cell Biolabs) in TBS-Tween 20. For protein immunodetection, the spe-
cific primary antibodies were used: anti-cleaved NOTCH1 (Val1744) (D3BS8;
Cell Signaling Technology) and B-actin (Sigma). Anti-rabbit and anti-mouse
horseradish peroxidase-labelled IgG (Sigma) were used as secondary antibodies.
Chemiluminescence was detected by using ECL substrate (Pierce) on a mini-
LAS4000 Fujifilm device (GE Healthcare).

Immunohistochemical analysis. NOTCH1 immunohistochemical staining was
performed on a Leica Bond system using formalin-fixed paraffin-embedded tis-
sue sections™. Samples were pre-treated using heat-mediated antigen retrieval
with EDTA buffer (pH 9.0), epitope retrieval solution 2 (HIER2) for 30 min.
Then, sections were incubated with anti-cleaved NOTCH1 rabbit monoclonal
antibody (clone D3B8, catalogue number 4147, Cell Signaling Technology) at a
final concentration of 8.5 pg ml ™", for 60 min at room temperature and detected
using a horseradish peroxidase (HRP)-conjugated compact polymer system.
DAB was used as the chromogen. The section was then counterstained with
haematoxylin and mounted with DPX.

Sanger sequencing. PCR products were treated using ExoSap IT (USB
Corporation) and sequenced with ABI Prism BigDye terminator v3.1 {Applied
Biosystems) and 5 pmol of each primer. Sequencing reactions were run on an
ABI-3730 automated sequencer (Applied Biosystems). All sequences were exam-
ined with the Mutation Surveyor DNA Variant Analysis Software (Softgenetics).
ChIP-seq and DNase-seq. ChIP-seq was performed in normal B-cell subpopula-
tions and in cells (>90% tumour cell content) of a CLL patient with mutated
IGHV, and DNase-seq only in the latter following standard protocols generated
within the Blueprint Consortium. In brief, cells for ChIP-seq were fixed for

8-16min in 1% formaldehyde at 4 °C, and chromatin was sonicated for 15 min
with a Biorruptor (Diagenode). Chromatin fragments ranging from 50 to 500 bp
were selected and immunoprecipitation was carried out with antibodies from
Diagenode against H3K4me3 (pAb-003-050 lot:A5051-001P), H3K4mel (pAb-
194-050 lot:A1863-001P) and H3K27ac (pAb-196-050 lot: A1723-0041D) using
approximately 500,000 cells per antibody. DNase I digestion was performed using
60 units of the enzyme (Sigma) and 2.5 million cells. ChIP-seq and DNase-seq
libraries were constructed using the Kapa Hyper Prep Kit (Kapa Biosystems). For
each experiment, from 25 to 50 million reads were sequenced with an [llumina
HiSeq2000 sequencer. Detailed protocols can be obtained from the Blueprint
Consortium  (http://www.blueprint-epigenome.eu/index.cfm?p = 7BF8A4B6-
F4FE-861A-2AD57A08D63D0B5S).

4C-seq. 4C-seq template generation and amplification was performed as prev-
iously described™". In brief, 1 X 107 cells of two CLL patients were crosslinked
with 2% formaldehyde (Merck), chromatin was digested with Dpnll (New England
Biolabs) followed by ligation with T4 ligase (Roche). Next, chromatin was decross-
linked, DNA was digested with Csp6l (NEB) and re-ligated. PCR amplification of
viewpoint regions and their ligated fragments was performed using primers
5"-TGCCACACCTCCTTTTGATC-3' and 5'-CCTTGTGGAAAGAGTCTC
AC-3" (PAX5 putative enhancer, viewpoint fragment-end chr9:37,370,916-
37,371,635) or 5-CCGAGCTGGGGTAGCTGATC-3' and 5 -TTGTGTCCA
AAAGTTGTTTG-3" (PAXS promoter, viewpoint fragment-end chr9:37,033,
553-37,034,192). Samples were sequenced using a MiSeq instrument (Illumina)
using 50-bp single-end reads, and adding 5% PhiX control DNA. Data analysis
was performed using 4Cseqpipe version 0.7 (May 2012} (downloaded from
http://compgenomics.weizmann.ac.il/tanay/). Before mapping of the interacting
regions to the genome, reads that are a consequence of undigested templates or
self-ligation of the viewpoint fragment were removed.

Deletion and mutation of human PAXS5 enhancer in B-cell lines using
CRISPR/Cas9. Human PAXS5 enhancer was deleted or mutated in RAMOS cells
and in an Epstein-Barr virus (EBV)-transformed lymphoblastoid B-cell line
using CRISPR/Cas9 genome editing. Guide RNAs (gRNAs) were designed using
E-CRISP tool (http://www.e-crisp.org/E-CRISP/index.html)*. For the deletions,
four gRNAs were designed flanking the PAX5 enhancer, two at each side (L1/1.2
and R1/R2) to be used in combinations (L1+R1, L1+R2, L2+R1, and L2+R2).
In addition, two gRNAs were designed to target sites of mutations found in CLL
(M1/M2). gRNAs sequences are: L1, 5'-GGGAACCAGGGCGTGGGAGC-3";
L2, 5'-GTGAGGCAGAAACACCACAG-3; Rl, 5'-GGCAGCATGCGGGCG
TCATG-3", R2, 5"-GCCAGGACCTGCTCTCCCAA-3"; M1, 5'-GTGAAAATT
TACTCATGCTG-3"; and M2, 5'-GGTGGTACTCAGAGGCTGGG-3". The
gRNA oligonucleotides were cloned in pL-CRISPR.EFS.GFP vector (Addgene
plasmid 57818)%, and lentiviral particles were produced on HEK293T cells by
cotransfection with Gag-Pol and vesicular stomatitis virus G (VSV-G)-expressing
vectors using the JetPEI transfection reagent (Polyplus). Viral supernatants were
collected after 48 h and used for infection by spinoculation of Ramos and EBV-
transformed lymphoblastoid B cells. After infection, green fluorescent protein
(GFP)-positive cells were sorted (BD Influx, BD Bioscience) and grown for
1 week. Total RNA was extracted with TRIzol (Invitrogen) and converted into
c¢DNA with SuperSeript First-Strand Synthesis System (Invitrogen). Then,
human PAX5 expression was determined by quantitative real-time PCR
(FastStart Universal SYBR Green Master Mix, Roche) using a 7500 Real-Time
PCR system (Applied Biosystems). GAPDH was used as normalization control.
The following primers were used: PAXS5 forward, 5'-GAGCGGGTGTGT
GACAATGA-3"; PAXS5 reverse, 5-GCACCGGAGACTCCTGAATAC-3";
GAPDH forward, 5’ -GAAGGT GAAGGTCGGAGT-3'; and GAPDH reverse,
5"-GAAGATGGTGATGGGATTTC-3'.

To analyse the efficiency of the CRISPR/Cas9-induced deletions, DNA was
extracted and PAX5 enhancer was PCR-amplified using HotStarTag DNA
Polymerase (Qiagen) and PAX5 enhancer-flanking oligonucleotides (forward)
5 -GTTGTCTTGGAGGACTTTCAG-3', and (reverse) 5'- GTGTTATTGTGT
ATGTGGCAG-3'. To determine the presence of CRISPR/Cas9-induced muta-
tions we performed heteroduplex cleavage assays using the Guide-it Mutation
Detection Kit (Clontech) with primers (forward) 5'-AGGATGAGAACG
GGCAAAC-3" and (reverse) 5'-GGAGCTTCCAGCTGAACTGA-3".
Statistical analysis. Fisher's test or non-parametric tests were used to correlate
clinical and biological variables according to MBL or CLL, and the presence or
absence of the different drivers herein analysed. We evaluated the clinical effect
(TTT and overall survival) of all driver mutated genes and chromosomal regions
with recurrent CNAs in 5 (1%) or more patients. TTT was evaluated only in
patients with Binet A and B. TTT and overall survival curves from the date of
sampling were plotted by the Kaplan-Meier method and compared by the log-
rank test”. We examined separately the prognostic impact of point mutations in
driver genes (substitutions or small indels) and CNAs. The clinical impact (TTT)
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of TP53, ATM and BIRC3 mutations was relatively similar to that of the loss of
their respective chromosomal region, that is, del(17p) (TP53) and del(11q) (ATM
and BIRC3), respectively (Extended Data Fig. 8). Therefore, to evaluate the prog-
nostic impact for each gene/region, both types of alterations were combined.
Although the clinical effect of deletions and mutations was somehow different
for del(6q15)/ZNF292 (Extended Data Fig. 8), owing to the fact that most point
mutations in ZNF292 were truncating, we also combined these two alterations to
investigate the clinical effect. Finally, the number of cases with mutations or
CNAs in the respective chromosomal region of 6p21/NFKBIE, 10q24/NFKB2,
and 15q15/MGA was too small to perform a separate analysis and therefore we
also combined both types of alterations. Multivariate Cox regression analysis was
used to assess the independent prognostic impact from Binet stage and IGHV
mutational status of each driver in the outcome of the patients. Proportional
hazards were checked using Schoenfeld's test. We adjusted all the P values for
multiple comparisons using the Benjamini-Hochberg correction. All statistical
tests were two-sided and statistical significance was considered to be significant
with an adjusted P = 0.05. All the analyses were performed using the SPSS 20
software (http://www.ibm.com) or R software v3.1.3.

Recurrently mutated genes in CLL were defined considering number and type
of mutations, gene size and coverage, and local density of mutations derived from
the 150 CLL/MBL WGS studies. To test whether a gene was mutated more
frequently than expected by chance, we calculated the basal probability for each

My L
{rins + 11 )E

In this equation, #y. is the total number of possible non-synonymous muta-
tions for this gene, #, the total number of possible synonymous mutations, L is the
effective length of the gene open reading frame (ORF), defined as the sum of the
number of bases of the ORF for that gene which are callable at 10X coverage for
all exomes or whole genomes analysed, and E is the effective length of all coding
regions analysed, defined as the sum of the total lengths of the coding regions that
are callable at 10X coverage for all exomes or whaole genomes. Finally, d is the local
density of mutations for this locus, which is determined by dividing the number of
somatic mutations identified in the 150 WGS studies analysed in a 0.5-Mb region
centred on the gene of interest. Thus, the probability P to find M or more non-
synonymous mutations in a given gene from a set of N total number of somatic
mutations in all patients is:
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gene to suffer a non-synonymous mutation (P,) as: Py =

A score is computed by taking the base-10 logarithm of this probability (P).
Genes for which more than 10% of somatic mutations caused a synonymous
change were removed. Finally, 1,000 Monte-Carlo simulations were performed
to estimate the FDR based on the total number of mutations observed (N), and the
local mutational density for each gene. To identify genes that might be recurrently
mutated in an I[GHV subgroup, the same analysis was performed only with
tumours belonging to the same group (IGHV-MUT or IGHV-UNMUT), and
adjusting the local density of mutations for each subgroup according to the muta-
tions obtained from WGS data. Genes were classified in three different tiers
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(Extended Data Table 2). Tier 1 corresponds to those genes that were identified
as statistically mutated in CLL as described above. Tier 2 includes those genes that
are not statistically mutated when analysing CLL, but appeared significant when
only one subclass (IGHV-MUT or IGHV-UNMUT) was considered. In addition,
genes showing either recurrent mutations affecting the same residue, or resulting in
mainly loss-of-function mutations, were included in tier 2. Finally, genes classified
in tier 3 include those genes that were not in tiers 1 or 2, but containing somatic
mutations previously described as driver mutations in the literature.

A sample size of at least 500 tumours was selected during the ICGC study
design, as this will give enough power to detect driver genes mutated in at least 3%
of tumours',

In silico prescription. Drugs with potential therapeutic interactions with driver
oncogenic protein products were retrieved as described”.
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ABSTRACT

Motivation: The prediction and annotation of the genomic regions
involved in gene expression has been largely explored. Most of the
energy has been devoted to the development of approaches that
detect transcription start sites (TSS), leaving the identification of
regulatory regions and their functional transcription factor binding
sites (TFBSs) largely unexplored and with important quantitative
and qualitative methodological gaps.

Results: We have developed RelA (for REgulatory region Local
Alignment tool), a unigue tool optimized with the Smith-Waterman
algorithm that allows local searches of conserved TFBS clusters
and the detection of regulatory regions proximal to genes and
enhancer regions. RelLA's performance shows specificities of 81
and 50% when tested on experimentally validated proximal
regulatory regions and enhancers, respectively.

Availability: The source code of ReLA's is freely available and can
be remotely used through our web-server under
http://www.bsc.es/ca/rela.

Contact: David Torrents (david.torrents@bsc.es)

1 INTRODUCTION

The identification of the genomic regions that control the
transcription of genes still remains a challenge despite the recent
and continuous development of new experimental and
computational methodologies (Tompa, er al., 2005). Multiple
automatic approaches have been proposed, ranging from those
that search for phylogenetic conservation of sequence or
transcription factor binding motifs in non-transcribed DNA
regions (Blanchette and Tompa, 2003; Van Loo and Marynen,
2009) to the analysis of DNA physical properties characteristic of
regions expected to bind transcription factors (Abeel, et al., 2008;
Goni, ef al, 2007). However, the incorporation of novel
biological knowledge into these programs is not necessarily
improving the quality of their predictions, which still contain a
substantial fraction of false positives.

Currently, methods that de nove detect and characterize

© The Author(s) 2012. Published by Oxford University Press.

proximal regulatory regions show specificity levels below 50%
(Van Loo and Marynen, 2009). Even though phylogenetic
footprinting using pre-aligned homologous regulatory regions
offers promising results in the identification of Conserved
Regulatory Modules (CRMs) of TFBSs (Blanchette and Tompa,
2003; Blanco, et al., 2007; Pavesi, et al., 2007; Sebestyen, er al.,
2009; Tokovenko, er al., 2009; Tonon, et al., 2010), they cannot
define the regulatory region itself in most real scenarios because
they are based on global alignment strategies and require that all
matching binding sites across all compared sequences are located
in the same (or similar) position within each sequence, i.e. they
require predefined and pre-aligned regulatory regions. As a result,
in spite of the existing methodologies, still the most common and
reliable way to identify proximal regulatory regions in genomes is
the analysis of a few nucleotides (typically up to 1,000)
immediately upstream of annotated TSSs, which likely constitutes
the proximal promoter. But the annotation of gene starts is still
unsolved, particularly for non-human species. For example, a
simple search in the ENSEMBL database (Hubbard, et al., 2009)
identified substantial fractions of vertebrate genes without
annotated 5'UTR (from 17% in mouse to 91% in opossum, 42%
for human). This result is even more dramatic within
invertebrates. Other problems that constitute a barrier for the
automatic inference of promoters (even in human or mouse) are
the abundance and overprediction of alternative transcripts. Taken
together, most computational methods that detect or align
promoters strongly depend on or are coupled with the annotation
of untranslated gene regions, which is generally insufficient for
this purpose (Guigo, et al., 2006).

On the other hand, the computational identification of
enhancers is even more complex. These regulatory regions that
work in cooperation with promoters throughout multiple
structural constraints are, apparently, delocalized relative to the
genes that are controlling (Arnosti and Kulkarni, 2005).
Therefore, their identification through computational methods
requires strategies based on local alignments. Some existing

Table 1. Performance results on ABS promoters.
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ReLA TFM rVISTA" PromoterExplorer Eponine ARTS
Recall 0.81 0.6 0.37 0.51 0.2 0.14
Precision 0.81 0.61 0.46 0.69 0.21 0.14
Prediction Type | Defined regions with conserved TFBS Conserved TFBS TSS

methods, like rVISTA, look for conserved TFBS clusters between
regions that have been pre-aligned with local alignment tools,
such as BLASTz in rVISTA (Loots and Ovcharenko, 2004),
while others use directly local-alignment based search strategies,
like the Enhancer Element Locator (EEL) that uses the Smith-
Waterman algorithm (Palin, et al., 2006). These tools have shown
good prediction rates on enhancers, but also show important
limitations regarding the number of species that they can analyse,
the required parametization, and the accuracy of the prediction.

To overcome these limitations, and to provide novel and
improved solutions to the prediction of regulatory regions, we
have developed ReLA, a public local-based alignment tool that is
capable of detecting promoters and enhancers by identifying
clusters of regulatory motifs conserved in any position within
large homologous DNA regions (i.e. independently of gene
annotation). Considering the wide range of potential users of this
tool, we have also developed a user-friendly web server for
remote predictions. The source code of ReLA is distributed also
as a standalone program that can be used locally in Unix-based
computational platforms.

2 RESULTS
2.1 Rationale and underlying search strategy of
ReLA

The goal of this study is to develop a novel methodology that
would overcome the current limitations mentioned above by
focusing on: (i) the detection of conserved TFBS, (ii) the use of
local search strategies; (iii) simplicity of use, and (iv) a low
computational cost to perform genome-wide searches. For this,
we decided to use the same strategies that have been used for fast
local sequence comparisons of protein sequences. In particular,
we adapted the Smith-Waterman algorithm (Smith and
Waterman, 1981) to make it capable of comparing and detecting
the best optimal local alignment of regions with similar sequences
of TFBSs. In our procedure, each TFBS is internally transformed
into symbols of an arbitrary alphabet, as if they were amino acid
or nucleotides in traditional protein-protein and DNA-DNA
comparative searches. This search algorithm is the core of a
pipeline, referred from now on as ReLA (for REgulatory region
Local Alignment tool). The complete procedure can be divided
into three major steps. Firstly, input DNA sequences are
transformed into sequences of TFBSs by mapping with the
MATSCAN software (Blanco, et al., 2006b) all the position
frequency matrices (PFMs) provided; Next, the resulting TFBS
sequences are compared with each other to identify conserved
groups of TFBSs using the modified Smith-Waterman algorithm
under different scoring scenarios. Finally, all the resulting
preliminary alignments are evaluated to produce the final
prediction of the promoter region.

2.2 Evaluation of ReLA's performance

We first applied ReLA to a collection of experimentally validated
promoter and enhancer regions, both to define its internal search
parameters and to evaluate its performance. Despite ongoing
efforts of acquiring experimental data, on functional TFBS, still
the vast majority of detailed and reliable data can only be
retrieved from the literature. In this direction, the ABS database
(Blanco, et al., 2006a) is the result of one of the few initiatives to
gather, from the literature, promoters with two or more of their
TFBSs experimentally validated. For this reason we used this
database for ReLLA's evaluation. We selected the subsert of 73 (35
human and 38 mouse) promoters from this database that showed,
in ENSEMBL (Hubbard, et al., 2009), one-to-one orthologous
relationship with at least three out of seven chosen vertebrate
species (human or mouse, rat, horse, dog, cow, opossum and
chicken). By reproducing a common and realistic search scenario,
where the TSS and 5'UTRs of query homologous regions are not
known, we collected the putative upstream region of these genes
and their corresponding orthologous regions. These upstream
regions comprise 5,000 bp upstream DNA, from the first
annotated codon according to the encoded ENSEMBL protein.
From the measurement of the length of 5'UTRs regions of
"known" ENSEMBL genes, we previously had estimated that this
selection of 5,000 bp is sufficient to capture the proximal
promoters for more than 85% of known vertebrate genes (data not
shown). In addition, we have also compared the resulting
performance of ReLA with the prediction ratio of other reported
TFBS-based search tools: TEM (Tonon, et al., 2010) and rVISTA
(Loots and Ovcharenko, 2004), as well as with that of TSS
predictors: ARTS (Sonnenburg, er al., 2006); Eponine (Down and
Hubbard, 2002) and PromoterExplorer (Xie, er al., 2006), all of
them run on the same regions (Table 1).

Table 2. Performance results on EPD TSSs.

ReLA TFM (PromoterExplorer| Eponine ARTS

Recall 0.56 0.49 0.78 0.23 0.17

Precision 0.56 0.51 0.67 0.27 0.17

Following the same strategy we alternatively evaluated ReLA
using 740 regions derived from the Eukaryotic Promoter Database
(EPD; (Schmid, et al., 2006)), which, despite not being ideal for
this purpose, sets our tool into the context of previous evaluations
of these other existing search strategies: ARTS, Eponine and
PromoterExplorer against which we have also compared ReLA's
predictions (Table2).

From all resulting predictions, we calculated different
performance parameters, such as recall and precision by adapting
an evaluation protocol used for the comparison of a large number
of TSSs predicting methods (Abeel, er al., 2009). This adaptation
is necessary because the different methods we used provide
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different type of outputs, e.g. ARTS, Eponine, PromoterExplorer
provide single TSS positions, TFM and rVISTA lists of conserved
TFBS, and ReL A delimited regions of conserved TFBSs.

1]
Human — E )
" [y N
Rat 7
Gow L

=

Opossum

Chicken

B
Cyclin E1 gene (CCNE1)
annotated coding exons in ENSEMBL

Figure 1. Prediction of the proximal regulatory region of the Cyclin El
(CCNET) gene in seven vertebrate species. Typical search scenario where the TSS
for most of the species compared is not known or missannotated: no TSS
information was available for cow, dog and opossum, whereas in chicken is wrongly
placed. The predicted promoter for these species appears in different location within
the input sequence. Dashed lines show the distribution of all primary predictions
along these regions. Consensus predictions are delimited by the first and the last
colored box (each box corresponds to a conserved TFBS). Red horizontal lines
indicarte the experimentally characterized regulatory region. Initial fragments of each
transcript are shown on the right: non-coding regions in blue. and coding exons in
green. The numbers indicate the position of the coding exons in the human mRNA.
ENSEMBL Transcription Start Sites (TSSs) are indicated with arrows.

From the results of this evaluation, we observe that the overall
performance is different between the different methods and
databases: while ReLA's performance was the best on ABS
entries, PromoterExplorer on EPD regions outperformed it.
Interestingly, ReLA's precision values for EPD regions are lower
than those shown with ABS. To discard a possible bias in the
performance of ReLA towards specific promoter types that are
more abundant in the ABS database, we divided all EPD and ABS
regions in different promoter classes (see Methods) and calculated
the same precision values for each promoter type and each
prediction method separately (see Supplementary tables 1 and 2).
This analysis has shown that, despite ABS appears to be enriched
in TATA-box containing promoters (a 42% versus a 20% in
EPD), ReLLA's performance is not affected by this, as precision
values are similar among most of the promoter types present in
ABS and EPD. It is also worth noticing that predictors based on
TFBSs show a better performance on the ABS, which is also
based on TFBS, than with the TSS-based EPD entries, where TSS
predictors tent to do better. We did not find any significant
difference when comparing performance values for Human or
Mouse entries (data not shown).

In order to have a sense of the TFBS conservation levels, upon
which ReLA is able to build predictions, we have also analysed
the distribution of the number of conserved boxes detected within
all ABS and EPD results. This analysis shows that, indeed, there
is a wide range of TFBS conservation, both in number and in
composition (see Supplementary Figure 1). Similarly, from the
analysis of the contribution of each of the species in ReLA's
performance, we observe that all the other vertebrates used in this

study contribute substantially to the final prediction in human: for
example cow and dog contribute to around 60% of the predictions
while opossum and chicken to 36 and 32% respectively (see
Supplementary Table 3).

A detailed inspection of ReLA's results on ABS entries
uncovered some interesting features. Often, the promoters that we
identified on each of the species present different locations within
the input 5,000 bp region (Figure 1). This typical scenario, which
must be necessarily solved with local-based comparative
approaches, is observed when the annotation of orthologous gene
5"UTRs and first exons is practically absent, as occurs for most of
available genomes. These results highlight the potential of using
ReLA for the systematic identification and annotation of
regulatory regions in non-model organisms, such as chicken, cow,
dog, opossum, and any other that has incomplete gene and cDNA
data.

2.3 Prediction of multiple alternative promoters

During the evaluation of ReLA, we also observed that, in some
cases, the distribution of preliminary predictions along the
reference sequence highlighted two regions with similar scores,
which could correspond to alternative promoters. From these two
options, ReLA selects the one that generated more preliminary
predictions (see Material and Methods). Suboptimal solutions, i.e.
potential alternative promoters, can be obtained by simply
masking the previously predicted regions in the reference
sequence and running ReLA again. For a number of such cases,
we confirmed the presence of two TSSs through the analysis of
ESTs or known alternatively transcribed full-length mRNAs. For
this reason, we have implemented this option in the web server,
where the user can launch a second search run to find suboptimal
solutions. Figure 2 shows the best two predictions of regulatory
regions located upstream from SLC7A7, an amino acid transporter
gene, which has been experimentally proven to have two
alternative promoters (Puomila, ef al., 2007).

Human (reference sequence)
Chr 14 (-, )

o First
prediction
HFst Hun A 1
! E e g

first prediction

15,000 nt

masking SLCTA7
l Second coding exons
prediction _—
Second Aun -

Figure 2. Prediction of alternative known promoter regions of the solute carrier
family 7 member 7 (SLCTAT7). Searches were done on 15,000 bp region upstream
of the first amino acid annotated in the ENSEMBL database for the human SLCTA7
gene. Dashed lines show the distribution of preliminary predictions in the first and
second run. Final fist and second predictions are enclosed in a box and delimited by
the first and the last conserved TFBS (each designed by a colored box). Initial
fragments of each transcript are shown on the right: non-coding regions in blue, and
coding exons in green. The numbers indicate the position of the coding exons in the
mRNA. ENSEMBL transcription Start Sites (TS8s) are indicated with arrows.
Distances are not drawn at real scale.

The finding of two high scoring regions in any ReLA prediction
could suggest, instead of the presence of an alternative promoter,
the existence of highly conserved coding exons, which would
constitute a false positive prediction. Thus, the identification of
regulatory regions with ReLA would be based only on the level of
sequence conservation and the presence of highly conserved non-
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regulatory DNA, like coding exons, could negatively influence
the results. To discard this, we studied how this scenario can
affect ReLA predictions. The example in Figure 3 shows a
positive promoter prediction when all seven orthologous input
sequences include the complete region of the E2F] gene and the
additional upstream untranslated regions (a total of 15,000 nt
each). In this case, the distribution of hits along the human
sequence shows two high scoring regions that appear to share
similar conservation levels of nucleotides. One of these fragments
constitutes the third exon of this gene, while the other matches the
5'UTR, the TSS and the core promoter. ReLA is able to
successfully discriminate the correct promoter region, including
sites that have been experimentally proven (Blanco, et al., 2006a).
In particular, the two TFBS that ReLA scores highest in
conservation among input sequences are precisely described in
the ABS database as two E2F1 factor binding sites necessary for
self-regulation during the transition from G1 to S phase in the cell
cycle (Johnson, er al, 1994). Interestingly, the third TFBS
following the conservation ranking corresponds to ADF1, which
was located within the 5’UTR and is known to bind the same
motifs recognized by the E2F1 factor in mice (Hsiao, er al.,
1994). Despite these results, we cannot discard the possibility that
exons are wrongly predicted as promoters in certain situations.
Therefore, we recommend performing preliminary evaluations of
the coding potential within the input sequences, for example, by
comparing them against protein sequence databases with
BLASTX (Altschul, et al., 1997). Putative coding regions should
be preferentially masked from the input sequences to ensure the
correct prediction.

Human
Chr 20 (-, 32263489..32279210)

s Validated
ReLA prediction

Sequence
conservation

i II l In vertebrates

Figure 3. Prediction of the proximal regulatory region of the E2F transcription
factor 1 (E2F1) using the sequence of the whole gene. Predicted regulatory region
along a highly conserved region of 15,722 hp that includes the E2F1 complete gene
transcript and 5,000 bp upstream of the first amino acid annotated in ENSEMBL.
Dashed line shows the distribution of all preliminary predictions along this region. A
schematic representation of the structure of this gene is shown: non-coding regions
are in blue, and coding exons in green. The numbers designate the position of the
coding exons in the mRNA, according to human. Data related to DNA conservation
from UCSC is also included (htp://genome.uesc.edu: (Kent, et al., 2002)).

2.4 Identification of enhancers

The local nature of the underlying search engine and the capacity
to compare large DNA sequences makes ReLA a suitable tool for
the identification of enhancers, which are often located distant
from other functional elements. In order to test ReLA’s
capabilities in enhancer detection we have gathered a collection of
experimentally wvalidated human enhancers from the VISTA
database with activity assessed on transgenic mice (Visel, ef al.,
2007). To test ReLA, we selected 44 enhancers that are located
within the first 50,000 bp upstream of a known gene. In order to
search for each of these distal regulatory regions we extracted up

input sequences (50,000 nt)
o 30,000 40,000 50,000
L 1 1 ]
SALL1
gene orthologs T,SS
Chicken (—mmm ﬂ '
Mouse g}
Rat g "
Dog i} g ]
Cow Q L
r] e hsT6
Human o at

Alignment of conserved TFBSs within predicted enhancer regions

Chicken
Mouse

Figure 4. Prediction of the SALL1 enhancer in six vertebrate genomes. The
upper panel shows the SALL] gene and its corresponding 50kbp upstream region for
six vertebrate species. Coordinates and strand of these regions are: Chicken (chrll:
6,148,098 - 6,213,605, -), Mouse (chr8: 91,551,143 - 9L.618.06 ). Rat (chr19:
19,227,337 - 19,293,298, -), Dog (chr2: 67080056 - 67.144.5 . Cow (chri8:
18,688,671 - 18,752,78, +) and Human (chrl6: 51,169,886 - 51 215 181 ). In each
line we display the structure of the gene (green boxes are coding exons, while blue
are untranslated). Known and predicted TSSs are also shown. ReLA’s predictions
are shown for each species as groups of colored boxes. Please, note that these
regions are not drown to scale. ReLA’s predicted enhancer regions expanded from
223 and 233 bp for dog and mouse, 301bp for cow, to 359, 360 and 366 bp for rat,
human and chicken respectively. The locations of the experimentally proven regions
(as shown in rVISTA db) are displayed as green boxes. The bottom line of this panel
shows the sequence conservation profile (according to human coordinates:
http://genome.ucsc.edu). In the bottom panel we display the alignment of the
conserved TFBS detected within each of the predicted enhancer regions. TFBS are
labeled (in TRANSFAC format) and differentiated using arbitrary shapes and colors.
Coordinates shown here indicate the position of the predicted enhancer within the
50kbp input sequence.

to 50,000 bp from the most upstream TSS annotated for the
closest gene in human and from each of the corresponding one-to-
one orthologous genes in mouse, rat, horse, dog, cow, opossum
and chicken. The first run of ReLA on these 44 regions generated
40 predictions, from which 11 (28%) overlapped with the
annotated enhancer. Considering that the regions selected for the
search theoretically contains other unknown regulatory regions
(promoters, for instance) that could match with the first
prediction, we performed a second run on the remaining 29 cases,
which yielded 9 other positive hits. In total, with two iterative
runs, ReLA showed a positive predictive value of 50% of the
screened subset of annotated human enhancers. A similar
prediction rate (49%) is obtained over the same enhancer
benchmark set when using a specific enhancer locator tool, EEL
(Palin, et al., 2006) that also relies on local-search strategies (EEL
searches implied only human and mouse sequences, as it does not
accept more than two sequences per search). It is worth
mentioning that an important difference between both methods is
that ReLA provides more precise results, as the regions predicted
are shorter (up to 750 nt long, with an average of 485 nt) than
those coming from EEL (up to 11563 nt, with an average of 2644
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nt).

These results indicate that ReLA is capable of searching large
genomic DNA fragments and identifying multiple proximal and
distal regulatory regions, which makes this tool suitable for
genome-wide screenings and across several genomes (see an
example in Figure 4).

ReLA Results

Download Results.

Predicted Regulatory Regions

Distribution of preliminary predictions on the reference sequence

All results can
be downloaded

Distribution of all
preliminary predictions
used to determine

the final prediction.

suinber o proficties

0 o 200 00 an s
Final Prediction

of the regulatory
region on the
reference sequence

Reference Sequence Start  End
ENSGO0000101412 4488 4990

Region with optimal match with the propesed regulatory regions in the reference sequence

EMSCAPGNSOIOOTH IS 4625 4930
ENSRACE0SOIOELET0A 4731 4958
ERSBTAGOSOIO003STL {560 4950 Regians of non-reference
ENEMCDI0R0000028TE 1236 432 sequences matching the
ENSHIZGOS000ZTAS0 £943 9423

final prediction

Representation of
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sequences
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Conserved TFBSs
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Complete list a
species distribution
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of all TFBSs conserved
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5 dans a1
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Find altemative reguiatory ragions by running ReLA again, First pradiction will be masked and omitted from the
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Passibility of runnig
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alternative regulatory

( Run ReLA again! )

regions as suboptimal
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Figure 5. Snapshot of the ReLA web server output. Graphical representation of
the putative promoters and alignments of TFBSs of the human E2F1 gene, as well as
the lists of predicted regions and conserved binding motifs. See Methods and Results
sections for a complete interpretation of each of the results provided.

To further exemplify this feature, we also performed a genome-
wide analysis on a 109 kb long ENCODE region (ENmOI1;
chr11:1858751-1968592; (Birney, et al., 2007)) that includes 6
genes coding for, at least, 11 transcripts, with their corresponding
intergenic regions. By using SYT8 and MRPL23 flaking genes as
anchors, we identified and characterized the corresponding

orthologous regions for mouse, rat, dog cow and chicken. The
complete analysis consisted in ten iterative ReLA searches and
implied the screening of TFBS sequences in more than 600 Kb of
genomic DNA. In order to obtain an estimation of the
performance on these genome-wide conditions, we have taken as
positive predictions those that match ChIP-Seq transcription
evidences (Birney, efr al, 2007), as well as those falling
immediately upstream of annotated gene starts. This count shows
that 8 out of 10 predictions have evidence of expression or
regulation (see Supplementary Figure 2). Please note that we
cannot discard that additional runs would provide other
overlooked regulatory regions and, at some point, also false
positives.

3 DISCUSSION

Taking into account the available methods to in silico recognize
gene regulatory regions, a substantial improvement is necessary
to accurately annotate genes and promoter sequences in most
genomes. Here we report the development of ReLA, a
computational tool to identify such regulatory regions using
genome-wide comparisons. ReL A is distributed as a standalone
program and as a web server. Our approach is mostly based in an
adaptation of the popular Smith-Waterman algorithm that is able
to rapidly identify coincidences of TFBSs between two sequences
(conceptually similar to traditional protein-protein comparisons).
ReLA is able to efficiently process long sequences in standard
computational platforms (e.g. less than a minute to obtain the
results shown in Figure 5). We have evaluated the accuracy of
ReLA, first in a dataset of experimentally validated human and
mouse promoters, on an extensive collection of validated TSS
from the Eukaryotic Promoter Database, as well as on an
experimentally validated collection of rVISTA enhancers. We
have reached maximums of 0.81 of recall and precision levels on
ABS sequences On the other hand, and surprisingly, ReLA's
performance results lower when using EPD TSS entries. A
possible explanation for this observation could be that ReLA
performs better on certain types of promoter regions. But, after
we classified all ABS and EPD entries into different promoter
types according to their composition and evaluated their
associated performance obtained with all the methods used here
for the validation, we observed that ReLA's accuracy is similar
among most of the identified promoter types. We cannot discard
though that other uncontrolled biases present either inside the
underlying search methodology of each of the protocols used
here, or in the used databases could actually explain the different
behaviour observed. It is worth noticing that overall, TFBS-based
prediction methods perform better on the TFBS-based ABS
database than on the TSS-based EPD, where TSS predictors are
doing better. In any case, the levels of precision and recall
obtained with ReLA are sufficient to provide reliable predictions
that guide posterior experimental validation. This study also
demonstrates the benefits of using the Smith-Waterman algorithm
to directly search for conserved binding sites, as it outperforms
other methods, like rVISTA and TFM, that are based on pre-
aligned DNA and global search strategies. See the example in
figure 1, which cannot be solved using global alignment
approaches. Please note that other methods based on similar
strategies could not be included in the comparison, as they did not
provide results on our benchmark set because of limitations in the
size (MMETA) and on the number of sequences (Conreal;
(Berezikov, ef al., 20035)).
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Furthermore, we also show that ReLA is able of predicting
alternative promoters and even enhacer regions, dealing with
multiple suboptimal solutions in most cases. Our approach is
suitable for integrating a computational annotation pipeline in
which other predictive methods such as homology searches (e.g.
BLAST against protein databases) can assist in the improvement
of the final predictions.

In summary, we believe that the development of ReLA
constitutes a significant step forward in the field of the prediction
of regulatory regions, as it shows the highest predictive power
reported so far. ReLA is able to locally compare multiple large
genomic regions and identify non-alignable conservation events
across different genomes. This is relevant if we consider that the
limited information regarding regulatory regions in eukaryotes is
restricted to human and mouse, e.g. from 2540 vertebrate entries
in the Eukaryotic Promoter Database, (Schmid, et al., 2006) 2067
(81%) belong to these two species. Thus, with this tool in hand
we can now, not only fill missing gaps in the annotation of the
genomes of model organisms, mostly with the identification of
enhancers and alternative promoters, but also to start a reliable
and consistent annotation of conserved promoters throughout the
rest of genomes that have little or no information regarding
5'UTRs and often first coding exons (see Figure 1). Beyond the
current performance of ReLA and, as we are planning a genome-
wide search of regulatory regions across sequenced vertebrate
genomes, we are actively searching for ways of improving further
its predictive power by, for example, applying more sophisticated
scoring systems and accepting even larger DNA regions with low
additional computational costs.

4 MATERIALS AND METHODS

4.1 From DNA to TFBS sequences

The first step of our method consists on the mapping of putative
TFBSs sequences along the input sequences according to a certain
catalog of PFMs (in the documentation included with the program
and in the web-server, we provide guidance for selecting a set of
homologous sequences). Users locally running ReLA should
provide their own PFM files (information about accepted file
formats is also provided with the program and in the web-server).
It has been shown that the selection of particular collections of
matrices yields slightly different results (Blanco, et al., 2006b).
After evaluating different options (data not shown), we obtained
the optimal results by using PFMs from TRANSFAC (Matys, et
al., 2006). We classified this collection of models into three
subsets: whole collection of TRANSFAC PFM, the first 600 and
the first 400 PFMs ranked by their information content. These
three sets are included as the default option in the web server. The
identification of potential TFBSs is performed using the
MATSCAN software (Blanco, et al., 2006b) at high levels of
stringency: 80% of similarity threshold. For this study, we
calculate the similarity score using $S= ((current — min)/(max-
min)), where, “current” is the actual matching score, “min” is the
minimum possible matching score and “max”, the maximum
possible matching score of a particular PFM, as described
elsewhere (Kel, et al., 2003). Because the next Smith-Waterman
step requires a single sequence of TFBSs, and because
MATSCAN results usually contain PFM that overlap in all
possible ways, we next simplify this output. We remove this
overlap by sliding a window of n bp (r =3 or 5, both conditions

are included in the global search, see below). For each
overlapping PFM starting at the first position of each of the 3 or
Snt sliding window, we systematically kept the most informative
one, maximizing the overall information content of the sequence.
To preserve the relative distance between motifs during the
comparison, we insert a "spacer box" every n consecutive
nucleotides in regions free of predictions. In summary, we
convert each input DNA sequence into a sequence of highly
informative non-overlapping TFBS, which is used next in the
comparative searches.

4.2 Comparative searches

For our searches, we have modified the classical local alignment
Smith-Waterman algorithm (Smith and Waterman, 1981) to deal
with sequences of TFBSs (associating a unique three-letter
combination to each TFBS) and to provide the best scoring local
alignment (i.e with the highest density of conserved TFBSs) for
each of the comparisons performed between the reference
sequence with each of the others (see pseudocode in
supplementary information). The overall stringency of the
searches, the reliability of the resulting predictions and the
conservation of the TFBSs between the input sequences can
produce different predictions. Instead of selecting a universal and
fixed set of parameters for each of the searches, which would
yield one unique prediction, we chose to run recursively each
pairwise comparison (reference sequence against each of the other
input sequences) with a different set of parameters generating a
collection of preliminary predictions. A set of posterior selection
filters (see below) is then applied on these preliminary predictions
to come up with a final prediction of the promoter region.

Each of these pair-wise comparisons is carried out in two
different scoring scenarios (10/-1 and 20/-1 match/mismatch
scores, both with an open and extension gap penalties of -2 and
with two overlapping thresholds to remove redundant sites (using
a window of three or five nucleotides, see above); i.e. a total of
four comparisons are performed on each pair of sequences and
each set of matrices defined. These specific combinations of
parameters were determined by monitoring and maximizing the
relationship between sensitivity and specificity using a collection
of 10 known promoters of the ABS database (Blanco, et al.,
20064a), (see supplementary information and
www.bsc.es/cg/rela/downloads). These 10 regions were excluded
from the performance evaluation. We also observed that the best
predictions obtained during the benchmarking were those with
sizes between 200 and 600 nt. Preliminary predictions covering
shorter regions usually involved too few conserved TFBSs, while
larger predictions tend to connect distant and, apparently,
unrelated binding sites. For this reason, preliminary predictions
outside this range of sizes are not considered during the
generation of the final prediction.

4.3 Output generation

As part of the results, ReLA generates a graph showing the
distribution of all accepted preliminary predictions on the
reference sequence. From the analysis of the overlap among these
preliminary predictions we generate the final prediction by
selecting the region, between 200 and 1,000 nt long that contains
the highest number of preliminary candidate predictions. Together
with the final prediction on the reference sequence, additional
consensus regions are also defined in each of the other sequences,
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which correspond to those (if any) that match the final predicted
promoter region. We also provide the list of all conserved TFBSs.
From this list, a subset of the most conserved TFBSs (specifically,
those within the top 10% of conservation) is selected and used to
generate a multiple alignment in graphical format.

4.4 Web server

We have implemented ReLLA as a web server that can be accessed
at hup://'www.bsc.es/cg/rela. The underlying search engine is
distributed also as a standalone program. We have designed the
ReLLA web site to meet the requirements of non-expert users. The
web version provides a graphical representation of the putative
promoter region predicted in all the input sequences (see Figure
5) and a plain text description of the results. Up to two suboptimal
solutions can be provided through the web on each set of input
sequences to potentially predict alternative promoters.

4.5. Selection of databases for evaluation

To validate the results obtained and to compare our method
with other existing programs in similar searching conditions,
three different working subsets or reported regulatory regions
were generaled from three different databases: Annotated
regulatory Binding Sites database (ABS; (Blanco, ef al., 2006a)),
Eukaryotic Promoter Database (EPD; (Schmid, ef al., 2006)) and
Vista Enhancer Database Browser (VISTA; (Visel, et al., 2007)).
To follow common criteria and to be consistent with the
annotation of ABS (as 500nt promoters), we transformed these
TSS into regions by considering as promoter region 500 bp
upstream from the EPD TSS. VISTA Enhancer Browser is a
database of regions containing experimentally validated human
and mouse enhancers tested in transgenic mice.

The working subsets were generated according to three different
filters to facilitate the automation of the validation process and to
ensure reliability of the evaluation protocol: (1) genes associated
to selected regulatory regions must have at least 3 orthologous
one-to-one genes according to ENSEMBL orthology data, (2) the
promoter fragments selected should not overlap with coding
regions, and (3) they have to be in our scanned region: as
described in the results section, for ABS and EPD it is 5,000bp
upstream of the first codon of the gene, and for Vista, 50,000bp
upstream of the closest gene. (see below)

Applying these three filters we obtained 75 human and mouse
promoters {rom ABS, and 740 from EPD. In both cases, 5,000 bp
upstream from the first methionine were used to check and
compare the accuracy of the method. From VISTA Enhancer
Browser, we ended up with 44 enhancers laying in the 50,000bp
upstream of a known gene.

4.6 Evaluation protocol

For the evaluation of the promoter prediction programs, we
followed a modified version of the Distance-based validation
evaluation protocol from (Abeel, et al, 2009). Taking into
account that we were evaluating promoter genes and we were
considering distances, we calculated recall and precision values as
Precision = correct predictions / total predictions
Recall = discovered genes / total genes
For those programs that provide single positions as outputs
(TSS predictors, ARTS, Eponine and Promoter Explorer), we
considered the sequence + 500 from TSS for the evaluation. In the

case of TFM, we obtained conserved binding sites as result and
considered the fragment between the first and the last one for
evaluation. A correct prediction was considered if there was an
overlap between the prediction and the 500 bp upstream of the
defined TSS. For all programs we considered the unique or the
best prediction, except for Promoter Explorer that does not rank
the results. Since we were using already filtered promoter genes
instead of big DNA fragments, we did not discarded any
prediction further of 500 nt from the TSS as it is done elsewere
(Abeel, et al., 2009). For all programs of our evaluation, we used
default settings defined by the corresponding developers. For
EEL runs, we used the mouse and human sequences for each of
the orthologous groups and applied the parameters described for
this species pair elsewhere (Palin, et al., 2006). All the data used
for the validation procedure is available at
www.bsc.es/cg/rela/downloads.
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ABSTRACT

Although protein recognition of DNA motifs in
promoter regions has been traditionally considered
as a critical regulatory element in transcription, the
location of promoters, and in particular transcription
start sites (TSSs), still remains a challenge. Here we
perform a comprehensive analysis of putative core
promoter sequences relative to non-annotated pre-
dicted TSSs along the human genome, which were
defined by distinct DNA physical properties imple-
mented in our ProStar computational algorithm. A
representative sampling of predicted regions was
subjected to extensive experimental validation and
analyses. Interestingly, the vast majority proved to
be transcriptionally active despite the lack of spe-
cific sequence motifs, indicating that physical sig-
naling is indeed able to detect promoter activity
beyond conventional TSS prediction methods. Fur-
thermore, highly active regions displayed typical
chromatin features associated to promoters of
housekeeping genes. Our results enable to
redefine the promoter signatures and analyze the
diversity, evolutionary conservation and dynamic
regulation of human core promoters at large-scale.
Moreover, the present study strongly supports the
hypothesis of an ancient regulatory mechanism
encoded by the intrinsic physical properties of the
DNA that may contribute to the complexity of tran-
scription regulation in the human genome.

INTRODUCTION

Gene expression in eukaryotes is a complex process
regulated by a myriad of molecular mechanisms. The

protein recognition of specific DNA sequence motifs
located on promoter regions, upstream of transcription
start sites (TSSs), has been traditionally considered as
the most important regulatory element in transcription
(1,2). Nevertheless, after one decade of the postgenomic
era, the location of promoters and in particular TSSs still
remains surprisingly challenging (3—6). Classical assump-
tions such as their location 5" upstream of transcribed
regions or their one-to-one correlation with coding genes
might actually be oversimplistic. Indeed, sequence signals
like transcription factor—binding sites (TFBSs) show little
predictive power when applied at the entire genome level.
Furthermore, massive annotation projects (7-9) have
provided further evidence about the complexity of
promoter location and its occurrence in rather unusual
genomic regions. These difficulties illustrate that the
mechanisms regulating gene expression are not exclusively
based on specific interactions between nucleobases located
upstream TSSs and regulatory proteins, as they would
lead to detectable sequence signals otherwise. Conversely,
it seems that the world of DNA regulation is much more
intricate and probably involves a myriad of mechanisms,
such as the modulation of chromatin structure or epigen-
etic signatures (10,11).

We and others (12—-15) have suggested the existence of a
physical code imprinted onto the DNA fiber, which could
account for an ancient regulatory mechanism of basal
gene expression. Indeed, core promoters and associated
TSSs are DNA segments with an intrinsic ability to act
as regulatory regions, as they are depleted in nucleosomes
and need to bind to a large number of regulatory proteins,
which certainly require special physical properties of the
DNA fiber. According to this paradigm, we consider that
promoters can be defined as regions of unusual physical
deformability (13,15,16), which (even in the absence of
traditional sequence motifs) might favor either a suitable
nucleosome positioning pattern for protein recognition
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(17) or an effective binding of core promoter-binding
proteins and RNA polymerase (12,18). Notwithstanding,
genome-wide analysis of the DNA physical properties (13)
revealed that ‘promoter-like” physical signals appear in
regions without evidence for real promoters, challenging
the existence of a regulatory physical code in DNA, or
alternatively, suggesting the presence of many hidden
promoter regions in the human genome.

In this manuscript, we have revisited our presumptions
about the existence of a physical code involved in gene
activity regulation. To this end, we have evaluated de
novo promoter predictions arising from the location of
regions with unusual physical properties (13). A represen-
tative set of suggested (but not annotated) promoters have
been analyzed by applying a combination of medium and
high-throughput experimental techniques and analyses.
Our study demonstrates that a strikingly large number
of theoretical predictions, which were considered ‘false
positives” based on the 2007 knowledge, are indeed true
promoters. Therefore, we have been able to determine
many novel TSSs and core promoters, which were
neither detectable by alternative methods nor presenting
orthologous sequence signals with known promoters.
Most importantly, the present study enables us to
redefine promoter signatures and analyze the diversity.
evolutionary conservation and dynamic regulation of
human core promoters at large-scale. Overall, our
findings provide a solid support to the hypothesis that a
primitive physical code imprinted in the DNA fiber con-
stitutes a first level of regulation of gene activity.

MATERIALS AND METHODS
ProStar promoter predictor

Our ProStar promoter prediction program is able to
predict TSSs based on the presence of an unusual profile
of physical properties (particularly the DNA helical stiff-
ness) (13), simplifying previous algorithms that use a
variety of empirical descriptors with complex translation
to mechanistic models (12). As described elsewhere
(13,15), stiffness parameters were derived from atomistic
molecular dynamics simulations using model oligonucleo-
tides, annotated at the dinucleotide level, and averaged
linearly along 500 bp size windows. In short, we performed
a large number of molecular dynamics (MD) simulations,
computing then the covariance matrices in the helical
space at the dinucleotide step [d(X+Y)/d(Z+T)].
Inversion of such matrix yields a 6 x 6 stiffness matrix
for each dinucleotide step (13,15). To keep the model as
simple as possible, we only considered diagonal elements
of the matrix, i.e. the stiffness of DNA in front of pure
‘twist’, ‘roll’, “tilt’, ‘rise’, ‘slide” and ‘shift’ deformations.
The average physical property profiles were defined from
the analysis of two genomic sequence sets (NCBI36/hgl8
human genome release, March 2006), corresponding to
known promoters (positive set) or randomly selected se-
quences (negative set) according to the reference
GENCODE annotation (19). ProStar scores a given
DNA sequence as ‘promoter’ or as ‘background” depend-
ing on its similarity to the two reference profiles. This is
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computationally measured by the Mahalanobis distance —
a simple statistical metrics widely implemented in cluster-
ing and classification analyses (20)—to both promoter and
background reference profiles. Using ProStar default par-
ameters, 500 bp long DNA sequences were analyzed at the
genome-wide level to locate potential TSSs (13). In this
work, putative human core promoters were identified as
regions within a window of —1000/+200 bp relative to the
ProStar-predicted TSS locations.

Selection of TSS prediction sets

To be coherent with the ProStar training, we applied our
predictor using ENSEMBL (v47) (21) as a reference an-
notation to select TSSs located at least 1200 bp away from
any other annotated TSS. As a result, we obtained a set of
putative ‘false positive’, i.e. regions predicted as promoters
by their unusual physical properties but which were not
experimentally known. We then filtered out those regions
that presented =70% of repetitive elements according to
the RepeatMasker algorithm (http://www.repeatmasker.
org), or that did not allow unique polymerase chain
reaction (PCR) primer localization to the human
genome assembly by in silico PCR BLAT search (http://
genome.ucsc.edu). This process yielded 119 genomic
regions (1200 bp long) located around 72 putative TSS
(note that it was not always technically possible to study
promoters located in both directions).

As a negative prediction set, we randomly selected 100
positions, where ProStar suggested no TSS in a 1200 bp
window, and for which unique PCR primers could be
located. To make the test unbiased, we did not perform
any filtering based on the presence of 2006 known pro-
moters in these ProStar negative predictions. Both
ProStar-positive and ProStar-negative predicted pro-
moters were subjected to experimental validation.

The positive set was further compared against the latest
gene and transcript reference annotations GENCODE
(v7) (19) and ENSEMBL (v56) (21) to determine the
true positives.

Luciferase transcription activity assays

We designed hybridization primers suitable for high-GC
content regions. The presence of a unique hybridization
site was subsequently verified by a BLAT genome align-
ment (http://genome.ucsc.edu). Primers were ordered in
96-well plates to Sigma-Aldrich. PCR was performed in
a 96-well format using AccuPrime GC-rich DNA poly-
merase (Invitrogen) for the amplification of selected
regions. PCR products were analyzed in a 1% agarose
gel. Successfully amplified regions were inserted into the
promoterless pGL4.21 (luc2P/Puro) vector and ligated
through Sfi I restriction sites (Rapid DNA ligation Kit,
Roche) that enable directional cloning. Escherichia coli
competent cells (DHS5«, Invitrogen) were transformed
with the ligation products. Two independent colonies
were selected from each transformant and were verified
by sequencing from both the 5 and 3’ ends. The ex-
perimental approach for luciferase activity assays in a
high-throughput approach is outlined in Supplementary
Figure S1.
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Cos-7, Hek293, U208, MIA PACA and MDA231 cells
were cultured in Dulbeccdés Modified Eaglés Media
(DMEM) supplemented with 10% of fetal calf serum
(FBS). All cultures were grown as a monolayer in a
humidified incubator at 37°C in an atmosphere of 5%
CO,. One day before co-transfection, 2-6 x 10* cells per
well were plated in 96-well plates with 100 ul of DMEM
without antibiotics. Confluence of 90-95% was achieved
by the second day. Transient DNA co-transfections were
performed with 0.1 pg of the corresponding pGL4.21/con-
struct plasmid and 0.02 pg of the pGL4.74 (hRluc/TK)
vector (Promega) using TransFact reagent (Promega) ac-
cording to the instructions of the manufacturer. DMEM
supplemented with 10% FBS was added to the cells 1h
after co-transfection to allow correct growth and protein
expression. Dual Luciferase Reporter Assay (Promega)
was performed 36h after co-transfection using a
GloMax Multidetection Luminometer (Promega) with
dual injector system allowing rapid reagent addition.
Light emission was measured 2s after addition of each
of the substrates and integrated over a 10-s interval. The
firefly luciferase activity results were normalized with the
renilla luciferase activity from the pGL4.74 (hRluc/TK)
plasmid to account for differences in transfection effi-
ciency. The previously characterized SPG4 gene promoter
(22) was used to generate positive (S—621/—1) and negative
(S—1290/—424) promoter region controls, respectively.
Promoter activity was assessed in duplicates and was con-
sidered active if it exceeded 3-fold the score of negative
control sequences from the normalized threshold value.

After luciferase assays, 80 regions from both the positive
and negative promoter sets were further divided into four
subsets for further analysis: subset 1 contains 20 high-con-
fidence ProStar sequences with high luciferase activity
(PS+L+); subset 2 contains another 20 high-confidence
ProStar sequences with low luciferase activity (PS+L—);
subset 3. 20 low-scored ProStar sequences with luciferase
activity (PS—,L+); and subset 4, 20 low-scored ProStar
sequences with no luciferase activity (PS—L—).

CAGE analysis

To measure transcription initiation in the different
promoter subset regions, profiles of cap analysis gene ex-
pression (CAGE) 5-ends were computed. For this
purpose, ENCODE stranded CAGE data from polya-
denylated cytosolic RNA of seven different cell lines
(GM12878, HI-hESC, HUVEC, HelLa-S3, HepG2,
K562 and NHEK) and generated in two bio-replicates
were used (23-25). For each cell line, CAGE mappings
of quality =20 from each of the two bio-replicates were
merged, and their distinct 5-ends extracted (redundancy
was removed to avoid considering reverse transcriptase-
PCR artifacts as true signal). Every region was subjected
to two CAGE analyses, either considering the luciferase-
tested 1200 bp region or a 2000 bp equivalent expanded
region centered at the TSS. For every cell line, each time a
CAGE tag 5-end was located within and on the same
strand as one of the promoter regions, the distance
between the CAGE tag 5-end and the promoter region
S-end was computed, and the CAGE frequency

corresponding to this distance (further normalized using
percentage distance bins) was increased.

RNA-seq analysis

To measure transcription activity in the different
promoter subset regions, profiles of RNA-seq 5-ends
were computed. For this purpose. ENCODE CSHL
stranded paired-end RNA-seq data from polyadenylated
cytosolic RNA of seven different cell lines (GM 12878, H1-
hESC, HUVEC, HeLa-S3, HepG2, K362 and NHEK)
were used (25). For each cell line, all the mappings of the
second bio-replicate were considered, and their distinct
most 5-ends extracted. Every subset region was expanded
to a final length of 2000 bp centered at the TSS, similarly to
the CAGE analyzed sequences. For every cell line, each
time an RNA-seq mapping 5'-end was located within and
on the same strand as one of the promoter regions, the
distance between the RNA-seq 5'-end and the promoter
region 5'-end was computed, and the RNA-seq frequency
corresponding to this distance (further normalized using
percent distance bins) was increased.

Chromatin structure and epigenetic signals

The chromatin structure was inferred from DNase [ hyper-
sensitivity sites as reported in ENCODE through the UCSC
Table Browser data retrieval tool (26). From these data, we
calculated the average of Dnase I hypersensitiviy clusters
within 1200 bp regions of the different CAGE analyzed
subsets, considering a positive cluster when overlapped
with the reference promoter elements. We also explored po-
tential epigenctic markers in the suggested promoter regions
by looking at the occurrence of histone variants H3K Mel,
H3K27Ac and H3K4Me3 in seven different cell lines (GM,
H1.HSMM, HUVEC, K562, NHEK and NHLF). For each
CAGE analyzed subset of 1200bp regions, we calculated
the number of regions that overcome a certain average
alignment density (intensity signal) in any of the different
cell types. Using a threshold of 10-fold. 92% of PS+
sequences contained stronger signals compared with the
37% of PS—. Increasing the threshold, up to 50, produced
a reduction of the total number of regions, but increased the
difference between PS+ and PS— in the same direction.

TFBS enrichment evaluation

We investigated if different subsets, including the PS+ pre-
dictions (17909 in total), the experimentally tested PS+
predictions (119 sequences) and PS— predictions (100 se-
quences) or luciferase positive (49 sequences) and negative
(23 sequences) regions, were enriched within the 1200 bp in
any of the currently annotated 885 TFBSs. To this end, we
systematically compared them with a full list of transcripts
described in the BioMart database (http://www.biomart.
org) (76 905 transcripts) as a background control. To deter-
mine the significant enrichment, we used a Fisher’s exact
test and represented the magnitude of enrichment as odds
ratios, which is the ratio of enrichment for a given TFBS.
The corrected significant P-value after applying a Bonfer-
roni’s correction for all tests was 0.05/885 = 5.65 x 1075,
The analyses were performed using the R statistical envir-
onment (http://www.r-project.org).
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Core region DNA element conservation and
sequence-based signals

The conservation of the four different CAGE analyzed
1200 bp regions was evaluated by the comparison with
available wvertebrate genomes using the University of
California, Santa Cruz (UCSC) Table Browser data
retrieval tool (26). The level of conservation for each par-
ticular fragment was calculated according to Vertebrate
Basewise Conservation by PhyloP as the average of con-
servation of all nucleotides comprising the region. TFBS
conservation was determined from the comparison of
boxes among human, mouse and rat according to the
UCSC TFBS conservation track using matrices obtained
from TRANSFAC database (27). In addition, we used
Regulatory region Local Alignment (ReLA) algorithm
(28), a footprinting-based program for the detection of
conserved clusters of TFBSs, to determine whether the
regions predicted by ProStar would also be detectable as
sequence-based only promoter signals.

RESULTS

Selection of the TSS prediction sets based on DNA
physical properties

If physical signals were indeed significant in regulatory
regions, as we presume, we would expect a high propor-
tion of ProStar predictions to be promoters, despite the
lack of experimental annotation. As described elsewhere
(13), promoter sequences provide a distinct profile for six
descriptors of the DNA stiffness in front of “twist’, ‘roll’,
‘tilt’, ‘rise’, ‘slide” and ‘shift” deformations, particularly in
regions spanning —250/+900 bp relative to TSSs (that is.
covering core and proximal promoter distances).

Therefore, to validate our hypothesis, we first defined a
TSS prediction set for experimental screening from the
ProStar genome-wide calculations. To better validate the
prediction power, we used the original ProStar outcome
based on the 2006 release of the human genome (13),
without retraining the software with more recent releases
of genome data. We selected regions with unusual physical
properties suggested to be promoters albeit they were not
annotated in reference databases, i.e. ProStar ‘false posi-
tives’ (PS+, see ‘Materials and Methods’ section). Further-
more, even though the algorithm recognizes the
directionality of transcription, predictions might also
account for bidirectional regulatory elements. Thereby.
we selected 72 high-scored putative TSSs that allowed
unique PCR primer hybridization to the human genome
assembly on the sense-strand (16 TSSs), antisense (9 TSSs)
or in both senses (47 x 2 TSSs). yielding 119 different
putative promoter regions in total (Figure la,
Supplementary Table S1). We additionally defined a
negative set consisting of 100 sequences corresponding
to nonsignaled promoter regions by ProStar (PS—, 91 on
direct-sense and 9 anti-sense due to PCR constraints)
(Figure 1b, Supplementary Table S1).

Comparison of the physical deformability properties
between both sets revealed the distinct underlying
features that had allowed ProStar to recognize the
positive TSS set as putative promoter regions, as described
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above (15). When we further compared our positive set
against the latest t(ranscript reference annotations
GENCODE (v7) (19) and ENSEMBL (v56) (21). 24 pre-
dicted TSSs appeared to be functional (i.e. they are cer-
tainly true positives), giving an unexpected support to the
quality of our physical de novo predictions (Supplemen-
tary Table S1). Yet, up to 48 ProStar predicted regions are
not proximate (<l1.2kb) to any 2012-annotated TSS.
Intriguingly. the attempt of validating ProStar predicted
regions using methods based on interspecies sequence con-
servation, such as ReLA (28), yiclded a low success rate
(9%). providing further evidences that ProStar locates
putative promoters in genomic regions where phylogenetic
footprinting finds no signal.

Identification of functional promoters

We evaluated the ability of the selected putative regions to
activate transcription in mammalian cells by using
luciferase reporter gene expression assays (Supplementary
Figure S1). By applying a threshold of at least 3-fold
higher activity than the control vehicle, 85 putative pro-
moters regions were scored as functional, with a validation
rate of 71.4%, while only 34% of the analyzed regions in
the negative set displayed activity (Figure 1; Supple-
mentary Table S1). From those 85 positively active
sequences, 8 correspond to sense strand, 5 to antisense
and 72 to both directions (i.e. putative bidirectional pro-
moters or alternative regulatory elements), accounting for
49 distinct TSSs. Interestingly, a significantly large
number of the suggested promoters (37.8%) displayed
high activity (10-fold above the vehicle). Furthermore,
almost 98% of active promoters in one cell line also dis-
played activity in three additional cell lines, indicating that
the identified regions would mainly generate transcripts
involved in housekeeping activities, rather than in tissue-
specific processes. Taken together, these findings suggest
that physical properties would signal promoters of the
loosely regulated ‘housekeeping’ genes, whereas highly
specific sequence signals would be required for the activa-
tion of development or tissue-specific genes.

CAGE and RNA-Seq analyses in support of predicted
TSSs

Luciferase measurements showed that the vast majority of
ProStar TSS-derived regions function as promoters when
coupled to a reporter gene and transfected to mammalian
cells (Figure 1; Supplementary Table S1). Nevertheless, we
should also consider that the resulting activity could be an
artifact for some regions, as the activity measurements
were based on plasmid-inserted regions rather than on
their native structure like in  bulk chromatin.
Alternatively, the activity might result from the absence
of methylation or other posttranslational modifications of
a true cellular environment, which can modify the DNA
physical properties and ultimately lead to a transcription
repression in vive (29-31).

Consequently, we complemented our first validation
with a CAGE (7,32.33) to examine the transcription
start activity of the experimentally tested 1200 bp regions
in living cells (25). We selected 80 regions showing
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91TS5s
sense strand
(91 regions)

b
(b) <
100 TSSs
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(100 tested regions)
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(9 regions)

(32 regions) (2 regions)

=

347TSSs 66 TSSs
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(34 regions) (66 regions)

A
32T5SSs 2TSSs
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Figure 1. ldentification of functional promoters. Summary scheme of TSS selection for both positive (a) and negative (b) ProStar sets, classified
based on luciferase activity (3-fold) and directionality of tested regions: sense. antisense or both sense strands. (Asterisk) 24 out of 72 TSSs were
annotated on recent transcriptome reference annotations (21) based on the 2009 genome release (GRChR37/hgl9), i.e. true positives.

different levels of luciferase activity and classified them
into four representative categories. Subset | contains 20
ProStar high-scored sequences with high luciferase activity
(PS+L+); subset 2 contains another 20 ProStar high-
scored sequences with low luciferase activity (PS+L—);
subset 3. 20 low-scored ProStar sequences with luciferase
activity (PS—L+); and subset 4, 20 low-scored ProStar
sequences with no luciferase activity (PS—L-)
(Supplementary Table S1).

The results summarized in Figure 2 show that regions
from subsets | (PS+L+) and 2 (PS+L—) were dramatically
enriched for CAGE tags that could be confidently mapped
to single positions (Figure 2a and b), as compared with the
ProStar negative subsets 3 (PS—L+) and 4 (PS—L-)
(Figure 2¢ and d). Subset 1 displayed the highest propor-
tion of sequences with CAGE tagged 5'-ends around
750 bp, indicating that those regions contained reliable
TSS marks (Figure 2a, around 60th distance bin).
CAGE tags were detected in most of the human cell
type experiments, but a particular enrichment was found
for polyadenylated (polyA+) transcripts, suggesting that
active regions might correspond to promoter elements
regulating protein-coding genes.

Interestingly, subset 3 (PS—L+) regions contain few
cage tags, although they showed some activity in luciferase

expression assays (Figure 2¢). We could simply assume
that this subset contains luciferase-false positives.
However, it has been reported that the structure of pro-
moters on different chromosomes varies and these vari-
ations might not be well covered by whole-genome
promoter prediction algorithms (6). Thus, we cannot
rule out the possibility that promoters located in anomal-
ous positions, and hence harboring a divergent pattern of
physical properties, could have been overlooked by
ProStar (13.15). If these regulatory elements turn out to
be under tight regulation in bulk chromatin (which would
explain why no CAGE tags are detected), they could well
show transcriptional activity in luciferase assays, which
ignore activation or inhibition signals imprinted in the
native chromatin structure.

Even more intriguingly, subset 2 regions (PS+L—) did
show clear CAGE enrichment although they did not
provide a luciferase response (Figure 2b). These discre-
pancies could simply result from luciferase-false negatives.
However, the strength and the profile of CAGE signals
(Figure 2b) indicated that other factors could also
account for the low luciferase/high CAGE response.
Comparison of the CAGE profiles indicated that subset
1 peaks are located at the expected TSSs (i.e. around 60th
bin; Figure 2a), while subset 2 peaks are upstreamly
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Figure 2. Orthogonal support of predicted TSSs: CAGE analysis. Distribution of distinct 5"-ends of CAGE tags from several representative CAGE
experiments in HI-hESC, HepG2 and HeLa-S3 cell types based on cytosolic polyA+ transcripts. For every distinct most 5-end of CAGE tag
detected within and on the same strand as a particular promoter region, we increased the CAGE frequency of the percent distance bin corresponding
to the distance between the CAGE tag 5™-end and the promoter region 5'-end. As the predicted promoter regions were 1200 bp long, each % distance
bin includes 12bp, and thereby the TSS is expected to be located on the 84th distance bin (i.e. at 1000bp from the region 5-end). (a) PS+L+ subset
1. For most of the cell types, the major peak appears around the 63th bin (i.e. 750 bp), closely matching with the prediction (b) PS+L— subset 2. We
observe undefined peaks around the 30th-50th bins (350-600 bp). On the other hand, the number of CAGE tags is significantly higher than for subset
1 (e) PS—L+ for subset 3, (d) PS—L— for subset 4. ProStar negative PS— subsets clearly show an almost inexistent CAGE signal.

displaced from the original prediction (around 30th bin;
Figure 2b). These findings suggest that, under certain con-
ditions, physical properties are able to signal promoter
regions although the prediction of the TSS location can
be upstreamly displaced from the true site. In this
scenario, CAGE experiments would still detect transcript
5" in the —1000/+200bp analyzed genomic window. On
the other hand, this displacement would have led us to
amplify truncated promoter constructs undetectable by
the conservative luciferase test we initially applied in our
experimental workflow (Supplementary Figure S1).

To validate this hypothesis, we carried out RNA-
sequencing (RNA-seq) analysis to survey the transcription
profiles of the selected regions and to identify putative
exons near the suggested TSSs. We performed the
analysis of 2000bp regions centered on the predicted
TSSs, using RNA-seq data of subcellular-fractionated
RNAs from the ENCODE Consortium (Supplementary
Figure S2, see ‘Materials and Methods’ section for
details) (9,25). Interestingly, the profiles of subset 1 pre-
sented a sharp RNA-seq peak at 800 bp, which coincided
with the CAGE major peak around 750bp (Figure 3a,
around 40th bin, orange frames). Furthermore, this TSS
putative peak was corroborated with a downstream peak
corresponding to an exon (50-80th bins, i.e. from 1000 to
1400 bp) in most of the cell lines. Conversely, subset 2

profiles showed two sharp RNA-seq peaks at 200 and
400 bp, respectively, which matched CAGE major peaks
around 360 bp (Figure 3b, 10-20th bins, highlighted with
orange frames). Moreover, a downstream broad peak
likely corresponding to an exon (Figure 3b, 20-40th
bins, ie. from 400 to 800bp, highlighted with purple
frames) could further confirm the TSS displaced positions
at ~700-500 bp upstream relative to predictions.

We further interrogated this potential TSS displacement
in the prediction by analyzing new genomic fragments but
now centered on the observed CAGE peaks. To this end,
we picked up regions from subset 2 and placed the TSS
500 bp upstream to the original ProStar TSS prediction,
as indicated by the CAGE/RNA-seq profiles (Figure 4a).
As expected, CAGE profiles exhibited a major peak around
800-900 bp, resembling subset | sequences (Figure 4b,
around 45th bin). Similarly, RNA-seq profiles also pre-
sented a single peak at the expected position (Figure 4c,
around 50th bin, 1000 bp). We then re-amplified four of
these genomic regions by PCR, spanning 2000bp but
centered at the newly located TSS, as similarly done with
previous subsets (Figure 4a; see Supplementary Figure S1
for method details). Interestingly, luciferase assays
measured a 4-fold higher activity on average than the
original sequences (Figure 4d), providing further evidence
that subset 2 segments (PS+L—) do contain true TSSs.
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Figure 3. Orthogonal support of predicted TSSs: CAGE vs RNA-seq analyses. Distribution of 5-ends of CAGE/RNA-seq tags from representative
CAGE/RNA-seq experiments in HI-hESC, HepG2 and K562 cell types based on cytosolic polyA+ transcripts. The profiles were constructed
similarly to the 1200bp CAGE analysis. However, as the predicted promoter regions were now 2000 bp long, each % distance bin includes 20 bp
and hence the predicted TSS should be located on the 50th distance bin (i.e. 1000 bp). as it is indicated in the promoter region schematic repre-
sentations below the profiles (a) PS+L+ subset 1. The observed TSSs extrapolated from CAGE and RNA-seq profiles appear around the 40th bin
(i.e. 800 bp, highlighted with orange frames), and closely match the predictions (b) PS+L— subset 2. We observe two sharp RNA-seq peaks around
the 10th-20th bins (200-400 bp) that match with CAGE peaks around the 20th bin (highlighted with orange frames). Furthermore, a broad peak is
observed right after the observed TSSs, indicating that it may correspond to a transcription active region (i.e. an exon. highlighted in purple) but not
necessarily a transcription start region.
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(red).

Core promoter activity landscape

We subsequently analyzed the four subsets of ProStar pre-
dictions to seek for correlations between structural or epi-
genetic motifs and the promoter activity status. To this
end, we used data repositories publicly available from
the ENCODE Consortium (9) (See ‘Materials and
Methods™ section for details).

We first analyzed chromatin accessibility to DNase |
degradation profiles, as DNase | hypersensitive siles
(DHS) are expected to correlate with loosely packed
regions in bulk chromatin and hence with gene tran-
scriptional activity (34-36). Analysis of ENCODE data
(Figure 5a) highlighted a similar DHS density for
ProStar positive subsets (PS+L+ and PS+L-—), which
turned out to be much larger than the observed density
for the negative subsets (PS—L+ and PS—L—). These ob-
servations indicate that ProStar-predicted regions are
indeed open and thereby associated with transcriptionally
active chromatin. Of note, those predictions cannot be
simply explained on the basis of sequence-dependent
rules such as the presence of CpG islands, as the CG

content provides a disperse prediction signal and leads
to large number of false positives (13). It should also be
noted that ProStar is able to detect promoters located at a
large distance to any annotated CpG island (37), as this is
the case for 20% of the positive predictions analyzed by
CAGE (Supplementary Table S2).

We also evaluated the occurrence of histone modifica-
tions correlated with epigenetic modulation of gene tran-
scription, in  particular H3K4Mel, H3K27Ac and
H3K4Me3, which are specifically prevalent in regulatory
regions (38). The results shown in Figure 5b revealed that
these histone marks were actually more overrepresented in
ProStar positive regions (PS+L+ and PS+L-) than in
ProStar negative regions (PS—L+ and PS—L—), providing
accumulating evidence about the attainable implication of
ProStar regions in the regulation of gene activity.

Furthermore, as PS+ regions are located on regulatory
elements, we quested for potential associations to specific
functions by a TFBS enrichment evaluation, using the
Transfac database (27). To this end, we examined
diverse region subsets, including all PS high-scored predic-
tions (PS+, 17909 sequences), the experimentally tested
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regions (containing 119 PS+ predictions and 100 PS— pre-
dictions, respectively) and the CAGE-analyzed sets
(subsets 1 and 2 on the one hand, and subsets 3 and 4
on the other hand). The enrichment for a given TFBS was
considered to be significant when P<5.65x107°
(Supplementary Table 83). Again, PS— regions showed
little enrichment, whereas 17 human TFBSs were found
to be overrepresented in at least one of the PS+ groups,
the larger part being annotated as ubiquitous (Figure 5c.
left column in PS+ and PS— groups, respectively) and
mostly related to vital cellular functions (Supplementary
Table S3). Interestingly, TFBSs overrepresented in the
regions capable of driving luciferase transcription were
also enriched in PS+ predictions (Figure 5c, middle bars,
Luct) and CAGE tagged sequences (Figure 5c, right bars,
CAGE+). In addition, the identified TFBSs presented
high binding affinity to GC-rich sequences, representing

truly active TFBSs and thereby supporting our hypothesis
that ProStar accurately predicts promoters of housekeep-
ing genes.

Lastly, although the vast majority of the PS+ regions
were not detectable using phylogenetic footprinting-based
methods (as we previously discussed), we further
investigated the conservation of ProStar regions across
species. as biologically relevant sequences should display
some level of sequence conservation. As expected, PS+
regions were enriched for conserved DNA clements
(Figure 6a), particularly for TFBSs (Figure 6b), as
compared with PS— regions.

DISCUSSION

A comprehensive analysis of ProStar predicted TSSs has
enabled us to identify novel functional core promoters in
the human genome exclusively detected by their differen-
tial physical deformability pattern and not simply by
sequence-based signals such as the CG content alone. A
large percentage of ProStar seemingly ‘false positives’, i.e.
regions with unusual physical properties but not
associated to any annotated promoter, are indeed tran-
scriptionally active. In particular. highly active regions
containing a differential physical pattern display typical
chromatin features of housekeeping gene promoters
involved in cell survival and maintenance, as proven by
an overwhelming amount of direct (luciferase assays,
CAGE or RNA-seq mapping) and indirect evidence
(profile analysis such as DNasel sensitivity, epigenetic
markers, TFBS enrichment or DNA element conserva-
tion). Interestingly, physical signaling also appears to be
able to detect promoter activity even in cases where the
TSS is located 500 bp upstream of the prediction. Whether
this displacement is indicative of a particular feature of
genes with closely related alternative TSSs, as indicated
by massive CAGE and RNA-seq mappings (Figures 3b
and 4), will nevertheless require further investigation.
Taken together, these observations reinforce the
evidence that high-confidence ProStar predicted regions,
sharing a defined pattern of physical features, truly behave
like physiologically active TSSs.

We have also observed that most of the active core
regions signaled by physical properties do not exhibit dir-
ectionality in transcript initiation, indicating that physical
properties might signal zones where the binding of regu-
latory proteins and the deformation of DNA are less in-
tricate, as we had previously suggested (39-42). Yet, this
signaling might not be sufficient to determine the correct
sense of transcription. Intriguingly, more than half of all
human promoters are bidirectional, and hence direction-
ality of promoter activity may be regulated to some degree
in a cell type—specific manner (43).

On the whole, our study provides insights into the role
of DNA physical properties in ascertaining an ancestral
coarse regulatory mechanism. Thereby, regions with high
chance of undergoing spontaneous transcription would be
recognized by protein effectors and favor nucleosome de-
pletion aside from the purely sequence-based signals
encoded as H-bond patterns in the DNA major and
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the *Vetebrate PhyloP” algorithm within 1200 bp regions of the different CAGE analyzed subsets (b) Similarly. plot histograms showing the average

number of identified TFBSs that are conserved across species.

minor grooves. In fact, recent genome-wide nucleosome
mapping analyses from our group have revealed that
housekeeping genes display unique nucleosome architec-
tures, with large nucleosome refractory regions upstream
the TSS (unpublished data). In general then, the interplay
between DNA physical properties and regulatory regions
could be rationalized in terms of nucleosome positioning
(16), favoring the presence of sequences with unique de-
formation properties in promoter regions, although this
might not be the only underlving mechanism, and this
would probably vary from gene to gene.

Yet, the physical code type of mechanism could have
been evolutionary deactivated in specific genes where fine
regulation is required, but seems to be still active in many
other cases, where such a stringent regulation is not essen-
tial. This convoluted regulatory signaling present in
complex organisms could partially explain the failure of
traditional promoter location methods to identify a sig-
nificant number of TSSs, implying the presence of many
hidden promoter regions in the human genome.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1-3 and Supplementary Figures 1
and 2.
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Most mature B-cell lymphoid neoplasms are associated with specific
immunoglobulin chromosomal translocations, whereas comparable
rearrangements in chronic lymphocytic leukemia (CLL) detected by
conventional cytogenetics are rare and mainly involve BCLZ2, BCL3,
and BCL11A oncogenes albeit at low frequency!. Recently, two large
studies of whole-genome sequencing (WGS) of CLL cases? 3 reported
data on structural variants of 148 and 30 cases, respectively. The only
recurrent rearrangements involved BCLZ with inmunoglobulin (IG)
genes as well as 13ql14 rearrangements with different partners.
Additionally, other non-recurrent rearrangements with /G genes and
different chimeric genes were detected. Noteworthy, in both studies
one of the most rearranged chromosomes was chromosome 14,

mainly involving losses of different sizes.

B-cell malignancies, mainly CLL/small lymphocytic leukemia
(SLL) carrying del(14)(q24q32) deletions have been described in the
literature and the presence of 14q deletions in these cases was
related with shorter treatment-free survival time, NOTCHI-mutations
and trisomy 1247. Deletion del(14)(q24q32) occurs in around 2% of
CLLé 8 being rare compared to the most common cytogenetic
aberrations in this malignancy as 13q14-deletion (57%), trisomy 12
(14%), 11q-deletion (12%) and 17-pdeletion (7%)?% °. Notably, the
incidence of 13q14-deletions is only 15% in 14q-deleted CLL/SLL?
and the reason why 14q24-q32 and 13q14 deletions seem to be

mutually exclusive is still unknown.
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Most of the molecular breakpoints of 14q deletion have been
shown to cluster in a region around the ZFP36L1 gene in the 14q24
chromosomal band and within the immunoglobulin heavy chain (IGH)
locus in 14q327. However, the exact breakpoints of the
del(14)(q24q32) aberration, as well as the biological consequences of
the deletion have not been yet described. The involvement of the IGH-
locus, known as oncogene activator!® and the clustering of
breakpoints in 14q24 led to the hypothesis that the identified
del(14)(q24932) might activate an oncogene in 14q24 through
juxtaposition to the IGH enhancer. Nevertheless, Pospisilova et al.s
and Cosson et al.” failed to show an upregulation of ZFP36L1 or the
RAD51B gene, which is located centromeric to ZFP36L1. An
alternative hypothesis was an inactivation of putative tumor
suppressor gene/s in the deleted region del(14)(q24q32). In fact,
biallelic inactivation of the TRAF3 gene in chromosomal region 14q32
has been shown in 9/41 (22%) B-cell neoplasms with deletion
del(14)(q24q32).

In the present study, we have analyzed a total of 52 mature B-
cell malignancies, mainly CLL, with 14q-deletion/ZFP36L1-IGH fusion
by high-throughput genetic and transcriptomic sequencing, cloning or
fine-mapping of genomic breakpoints and we have identified fusion-
transcripts of this aberration. Moreover, we have comprehensively
characterized the secondary aberrations, gene expression profile

(GEP) and the clinical impact associated with 14q deletions.
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Results

Identification of del(14)(q24q32)-positive B-cell lymphoma by
SNP6.0 array, cytogenetics and fluorescence in situ hybridization
(FISH) analysis. Cases included in the study are summarized in
Supplementary Fig. 1. SNP6.0 array analysis depicted seven CLL
carrying a deletion 14q24.1-q32.33 (cohort 1) out of 637 CLL/SLL
cases. In five cases, centromeric breakpoint mapped within ZFP36L1
gene whereas in two cases (cases 382 and 793) breakpoints were
located 5' of the gene. In all seven cases telomeric breakpoint mapped
to the IGH locus (Fig. 1a, Supplementary Fig. 2a). The global profile of
copy number alterations (CNA) showed additional aberrations in all
cases except one (case 1431) (Fig. 1b, Supplementary Fig. 2b,
Supplementary Table 1). Screening of an additional subset of 98
lymphoma and leukemia cases harboring a cytogenetic 14q2
aberration or a loss of the proximal IGH signal by FISH revealed 45
cases (cohort 2) carrying a 14q-deletion with centromeric breakpoint
within the ZFP36L1 gene region and telomeric breakpoint within the
IGH locus (Supplementary Fig. 3 and 4). CLL was the prevalent
diagnosis in these cases (30/45; 67%) (SupplementaryTable 2).

Mapping of genomic ZFP36L1-IGH fusion breakpoints using
whole-genome sequencing (WGS), Sanger sequencing, and custom
array-comparative genomic hybridization (aCGH). Available WGS data
from four cases of cohort 12 were reanalyzed for structural variants
using SMUFIN?2 (Supplementary Table 3). Concordant with SNP6.0
data, the four cases presented the recurrent 37 Mb deletion (from
69 Mb to 106 Mb, Build GRCh37/hg19) in chromosome 14, which
connects the ZFP36L1 gene with the IGH gene (Fig. 1b-c, Fig. 2a). Fine-

mapping of the chromosomal breakpoints in 14q24 was performed by
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FISH in six cases from cohort 2 (Supplementary Fig.5). The FISH
pattern suggested recurrent involvement of the ZFP36L1 gene region.
Based on these findings and the knowledge about IGH involvement in
45 of the cases with deletion del(14)(q24q32), long distance (LD)-
PCR was performed on 34 cases with available genomic DNA. By this
strategy, deletion junctions could be amplified and sequenced in 17
cases, confirming the genomic fusion of ZFP36L1 and IGH loci

(Supplementary Table 4).

With the detailed analysis of both series, cohort 1 (4 cases,
fusion positive by WGS) and cohort 2 (17 cases, fusion positive by
long distance LD-PCR) we could determine the exact coordinates of
the 14q deletion for 21 patients (coordinates between
chr14:69256850 and chr14:69259241, Build GRCh37/hgl19). All
centromeric breakpoints were within the ZFP36L1 gene in a 2.4 kb
genomic window, 15 cases within the sole intron and six at the
beginning of the second exon of the gene (Fig. 1c). The telomeric
breakpoints affected different IGH segments (coordinates between
chr14:106212409 and chr14:106329876, Build GRCh37/hg19). All
IGH breakpoints clustered into the constant region, predominantly
switch p (16 cases) with the exception of case 3 showing a breakpoint
affecting the ] region. Two breaks arose in a switch y1 and two breaks

in a switch y3 segment (Supplementary Table 4).

In 16 cases from cohort 2 in which LD-PCR approach was not
successful, we mapped the breakpoints by high-resolution custom
aCGH for chromosomal region 14q24 (Supplementary Table 5). Again,
all breakpoints were located within the ZFP36L1 gene, 14 within the
intron and two within the second exon of ZFP36L1 (Fig. 1c). Finally,

FISH was performed using probes for the centromeric part of the
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14q24 breakpoint region and the IGH locus in cases with no
amplification by LD-PCR. Signal patterns indicating ZFP36L1-IGH
could be demonstrated in all 28 analyzed cases in which amplification
of junctional fragments by LD-PCR failed or with lack of available DNA
(Supplementary Fig. 6). In two of the three cases from cohort 1 with
no WGS available, ZFP36L1-1GH fusion could also be detected by FISH.
In the remaining case (813) there was no suitable material left for

FISH.

In total, we could demonstrate a genomic fusion of IGH and
ZFP36L1 in 37 cases using WGS, LD-PCR, custom aCGH and FISH
analysis. The 37 Mb deletion leads to a loss of the first exon and the
upstream cis-regulatory region of ZFP36L1, a gene encoding for the
AU-rich element (ARE)-binding protein that triggers the degradation

of several mRNAs.

Identification of chimeric ZFP36L1-IGH transcripts. We searched
for the presence of chimeric ZFP36L1-IGH mRNAs. The RNAseq data
of patients 802, 1169 and 1191 (cohort 1) revealed the existence of
potentially coding fusion mRNAs in all three cases (Fig. 2a). For each
of these patients, the second exon of ZFP36L1 was involved in the
chimeric transcripts, whereas the IGH-part varied in the 5’ end, in
agreement with the rearrangements observed at genomic level. The
predicted longest open reading frame (ORF) contained most of the
reading frame described for the ZFP36L1 mRNA. In the 10 cases of
cohort 2 with available RNA the search for the presence of ZFP36L1-
IGH fusion transcripts was based on the knowledge about published
IGH-oncogene fusion transcripts. In those cases, the transcripts
frequently initiate from the non-translatable I exons of IGH germline

transcripts, e.g. Ip upstream of IGHM!3-15, Indeed, using a reverse
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transcription (RT)-PCR approach with primers targeting Iu and
ZFP36L1 led to the amplification of fusion transcripts in 5 out of 10
cases. In two cases (cases 4 and 11), in which the genomic
breakpoints were within the ZFP36L1 intron, a fusion between the
Ipu exon and ZFP36L1 exon 2 was detected, indicating usage of the
regular splice sites. Similarly to cohort 1, the predicted longest ORF
contained most of the coding sequence of ZFP36L1 mRNA. In three
cases with genomic breakpoints within the ZFP36L1 exon 2 (cases 13,
15 and 17), the Iy exon fused with the 3’-terminal region of this exon
using an alternative acceptor splice site at genomic position
chr14:69256386; Build GRCh37/hg19 (Fig. 2a, Supplementary Table
6).

In order to assess the potential transcriptional effect of the
ZFP36L1-IGH fusion on the chimeric mRNAs, we analyzed the RNA-
seq data of samples 802, 1169, and 1191 from cohort 1 and compared
the levels of expression that could be unambiguously assigned to
either the rearranged allele or the wild type allele (Supplementary
Results). In all three cases we detected a fraction of reads (between
22 and 39%) covering the fused mRNA region compared to the
normal ZFP36L1 mRNA (Fig. 2b). Furthermore, the reconstruction of
the chimeric mRNAs in cases 802 and 1191 using read-clustering and
paired-end information predicted the existence of different ZFP36L1-
IGH isoforms derived either from the use of different transcription
start sites, or from alternative forms of splicing. The read count could
be specifically assigned to each of the isoforms detected in these two
cases and demonstrated the presence of one form clearly
predominant over the other mRNA species. In particular, case 802

showed two isoforms, one representing 90% of all ZFP36L1-IGH
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expression. In case 1191 we detected three isoforms with relative

abundances of 65, 22 and 13% (Fig. 2b).

Finally, in five out of eight cases with del(14)(q24q32) with
detected ZFP36L1-IGH fusion transcripts (cases 802, 1191 and 1169
from cohort 1 and patients 4 and 11 from cohort 2) we identified
chimeric mRNA forms with the potential to encode for a 316-385
amino acid (aa) truncated ZFP36L1 protein. These proteins lack 19-
22aa compared to the wildtype ZFP36L1 protein and, thereby, harbor
a truncated TIS11B domain. Interestingly, the physiological function
of TIS11B domain is to recruit mRNA decay enzymes!é (Fig. 2b). The
two zinc finger domains of ZFP36L1 would remain intact. The
isoforms detected involve different IGH gene fragments fused with
part of the ZFP36L1 mRNA. The IGH parts involved in these chimeric
mRNAs would probably have a minor contribution to the coding
potential, adding a maximum of 69 aa (isoform 2 of case 802). In the
three cases with Ip-fusion to the 3' terminal region of ZFP36L1 a
potential chimeric protein would consist of 18 aa from Iy and 44 aa

from ZFP36L1.

Aberrations accompanying del(14)(q24q32). In both cohorts with
14q-deletion affecting IGH and ZFP36L1 additional genetic
aberrations were identified using several methods (Supplementary
Table 2 and Table 7). The six patients with either WGS or WES were
screened for the presence of somatic mutations2. Overall, the mean
number of somatic mutations in coding regions was 29 (range 14-43)
(Supplementary Table 2). The only recurrently mutated gene in the
14q deleted region was TRAF3 in two cases. NOTCH1, CHD2, TYR,
PHYHIPL, MKLN1, and GALNTLZ were also found to be mutated in two

cases each affecting chromosomal regions outside the 14q-deleted
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region (Fig. 1b). Notably, the remaining allele of ZFP36L1 was not
mutated in any case analyzed. In cohort 2, NOTCH1 exon 34 (n = 27),
ZFP36L1 (n = 24) and TRAF3 (n = 30) were analyzed by Sanger
sequencing. NOTCH1 was mutated in eight cases (30%) (7 out of 24
(29%) CLL) (Supplementary Tables 2 and 7). ZFP36L1 was mutated in
one CLL (case 7), showing a deletion of twelve bp within the second
exon of ZFP36L1 (c.779_781del12) (Supplementary Fig. 7). In three
cases of cohort 2 (10%) we identified TRAF3 mutations by direct
sequencing. As alternative mechanism for TRAF3 inactivation we
detected homozygous deletion of TRAF3 in 6 out of 42 (14%) cases of
cohort 2 using FISH analysis 11. Overall, 12/35 (34%) and 5/38 (13%)
cases with ZFP36L1-IGH fusion have NOTCH1 (activating mutation)
and TRAF3 (biallelic inactivation) alterations, respectively

(Supplementary Fig. 7).

Because all seven cases of cohort 1 and most of the cases of
cohort 2 have a CLL diagnosis we determined the incidence of CLL
typical aberrations (13q14-deletion (13q-del), trisomy 12 (Tril2),
11g-deletion (11g-del) and TP53 deletion (TP53-del) by SNP6.0, FISH
and cytogenetics in cohort 1 and FISH and cytogenetics in cohort 2.
Results and applied technologies are shown in Supplementary Table
2. Trisomy 12 was enriched in ZFP36L1-IGH CLLs compared to CLL:
5/7 (71.4%) in cohort 1 and 13/33 (39.4%) CLLs in cohort 2
compared to 63/444 (14.2%) (P<0.001) considering the ICGC CLL
series. Conversely, 13q-del is depleted in ZFP36L1-IGH CLLs
compared to 14q-wild type CLL: 2/7 (28.6%) in cohort 1 and 3/33
(9.1%) in cohort 2 compared to 220/444 (49.6%) (P<0.001)
considering the ICGC CLL series.
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Translin motif enrichment in ZFP36L1-IGH fusion cases. We
explored the possible underlying mechanism for the generation of the
interstitial 14q deletion. First, we searched for short microhomologies
around the breakpoints, but could not detect them. Next, we searched
for recurrent sequence motifs around the junction breakpoints and
identified a single 13 bp motif significantly enriched within 200 bp
windows around the breakpoints (p =0.000005, see “Methods”) in
both genes (ZFP36L1 and IGH) compared to the genomic background
significantly enriched within 200 bp windows around. This 13 bp
motif matches with the sequence GCCC[A/T][G/C][G/C] known to be
recognized by the DNA-binding Translin protein (Fig. 2c), which has
been previously pointed as a potential mediator in the fusion of IGH

genes and the BCL1 (CCND1), BCL2, BCL6, IL3 and MYC genes 17.18,

Deregulated gene expression in cases with ZFP36L1-IGH fusion.
To identify candidate genes potentially deregulated through the
ZFP36L1-1GH fusion, we compared the ZFP36L1-IGH fusion cases vs all
14q-wild type CLL, and found a total of 571 differentially expressed
probe sets (405 wup-regulated and 166 down-regulated)
(Supplementary Table 8). Of note, 63% of the down-regulated probe
sets belong to 51 genes located in the commonly deleted region of
chromosome 14 (Supplementary Table 9; Fig. 2d). Only, eight genes
located in 14q were up-regulated, among them RAD51B and ZFP36L1,
the nearest genes to the fusion breakpoint in chromosomal region
14q24 (Fig. 2d). However, in the ZFP36L1-IGH cases of cohort 2 a
significant up-regulation of RAD51B or ZFP36L1 could not be
observed using quantitative RT-PCR in eight ZFP36L1-IGH cases,
compared to four CLLs without 14qg-aberration (Supplementary Fig.

8). Differential gene expression analysis in 14q-deleted CLL cases
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without ZFP36L1-IGH fusion (n = 6) is presented in Supplementary
Results and Supplementary Fig. 9).

Next, we performed differential expression analysis from
RNA-seq data from three ZFP36L1-IGH cases (cohort 1) compared to
cases with no chromosome 14 deletion. In the three ZFP36L1-IGH
cases we found 90/460 (19%) of the total downregulated genes
correspond to genes of chromosome 14. Of note, 81 out of 90 genes
(90%) were within the 14q deleted region (Supplementary Table 10).
Overall, these results suggest that the deletion itself seems to be the
main consequence of most of the downregulation observed. Forty-
seven genes located in the minimal deleted region were found

commonly downregulated by both microarray and RNA-seq analysis.

In a pathway enrichment analysis using the deregulated genes
(excluding the genes affected by the deletion) we found a five-fold
enrichment on mRNA processing gene ontology (GO) biological
processes, related with ZFP36L1 function as transcriptional regulator
at mRNA level'%-21 (Supplementary Table 11). Finally, we also
explored deregulation of the ZFP36L1 targets according to Zekavati et
al. publication?®. Only 3 out of the 69 genes were significantly

deregulated (SSX2IP, LSM11 downregulated and RAD1 upregulated).

Clinical characteristics of ZFP36L1-IGH cases. The seven CLL
patients with the ZFP36L1-IGH fusion from cohort 1 had a median age
of 62 years (range 44-85 years), were mainly female (71%), and
present with Binet Stage A (71%) and B (29%), but none was in stage
C. IGHV was unmutated in all cases except one. Only one of the
patients had died, and all of them had been treated, five cases had a
complete response whereas in two cases the response could not be

assessed. CLL patients with ZFP36L1-IGH fusion had significantly
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shorter time to first treatment (TTT) than patients without that
fusion (P< 0.001; Hazard Ratio [HR] = 4.52; 95% Confidence Interval
[CI] 2.00-10.24). Interestingly, CLL patients with 14q24 loss but no
ZFP36L1-IGH fusion have also a significantly shorter TTT than
patients with no alterations in chromosome 14, similar to cases
carrying ZFP36L1-IGH fusion (P = 0.64; HR = 1.33; 95% CI 0.43-4.16)
(Supplementary Fig. 10). In the 33 CLL from cohort 2, the median age
at diagnosis was 64 years (range 47-82 years) with a slight male
predominance (55%), and IGHV was unmutated in 76% CLL patients.
Since these patients were derived from multiple institutions with
different treatment regimens the clinical data cannot be compared

accurately.

Discussion

Deletions in the long arm of chromosome 14 are recurrent
events in B-cell malignancies, especially in CLL57. This study
describes a global genetic characterization of mainly CLL cases with
14q deletions focusing on cases with breakpoints in the ZFP36L1
region (149q24) and the IGH locus (14q32). Using several
experimental and computational techniques we have molecularly
characterized a deletion of 37 Mb within the long arm of chromosome
14 in 37 CLL patients and twelve other B-cell lymphomas. Through
independent approaches, such as LD-PCR and the analysis of WGS
using SMUFIN algorithm??, the exact coordinates of the ZFP36L1-IGH
fusion for 18 CLL as well as three other B-cell lymphomas were
determined. The resulting 37 Mb deletion in these cases brings
together different parts of IGH with the ZFP36L1 gene, which has lost

its first exon as well as any upstream cis-regulatory region.
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Additionally, SNP6.0, custom array and FISH analysis fine-mapped the
deletion breakpoints in 14q24 in 14 CLLs and five B-cell lymphomas
with deletion ZFP36L1-IGH. Taken together, 29 of the breakpoints are
located in the intron and nine in the second exon of the two exons-

comprising ZFP36L1 gene.

The recurrent occurrence of 14q-deletion breakpoints in the
ZFP36L1 gene region in 14q24 has been described by other groups
without determining the exact breakpoint position by sequencing57.
Even though 14q-deletions with breakpoints centromeric and
telomeric of the ZFP36L1 region are described in mature B-cell
neoplasms, the clustering of the centromeric breakpoints in the
ZFP36L1 gene region in 57-62% of the 14q-deletion cases is
remarkableé 7. The clustering of the breakpoints in the ZFP36L1 gene
could be due to either the presence of sequence motifs in the affected
chromosomal region or to biological mechanisms that lead to a gain of
the cells fitness. Notably, by translocation-capture sequencing in mice
it has been shown that the ZFP36L1 gene belongs to the 83 genes with
activation induced cytidine deaminase (AID) dependent hotspots for
translocations22. Furthermore, ChIP-Seq using anti-AID antibodies
revealed that AID associates with ZFP36L1 in human B-lymphocytes?3.
The susceptibility of ZFP36L1 for AID may also be due to the fact that
in diffuse large B-cell lymphoma ZFP36L1 is among the 44 targets of
somatic hypermutation, a process initiated by AID24 Given that AID is
absolutely required for class switch recombination (CSR) and the 20
out of the 21 sequenced del(14)(q24q32) breakpoints in our study
are located within the switch regions of IGH, one might assume that
the underlying mechanism of the del(14)(q24q32) could be an
illegitimate CSR.
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Interestingly, the precise fine-mapping of the breakpoints
allowed us to detect consensus recognition motifs of translin around
the breakpoints in the 17 cases tested. Translin is a single-stranded
DNA and RNA binding protein suggested to be involved in
chromosomal translocations, telomeres, mRNA transport and
translation!8 25-27, Translin and Translin-associated factor X (TRAX)
have a high homology and act together mediating several crucial
biological processes, such as chromosomal translocations, regulation
of genome stability28-30 and telomere metabolism?5. Initially, Translin
was isolated as a protein that binds to a consensus motif in the
breakpoints of 91 lymphoid malignancies, comprising 16 different
tumor types, involving IGH (with MYC, CCND1, BCL2, BCL6, IL3, etc.),
or TCR (with TAL1, TCL3, TTG2, TAN1 etc.), as well as different fusion
genes (BCR/ABL, HLF/E2F)18. Moreover, translin motifs have also
been found in solid tumors such as liposarcomas with the
t(12;16)(q13;p11)31, and alveolar rhabdomyosarcoma with the
t(2;13)(q35;q14)32.

Biologically the ZFP36L1 gene encodes for the ZFP36L1
protein which is a member of the TIS11 family of early response
genes. ZFP36L1 has been shown to mediate decay of AU-rich element
mRNAs (ARE-mRNAs) encoding proteins involved in proliferation
and apoptosis like BCL2, API2 (Apoptose inhibitor 2), BLIMP1,
CDKN1A (p21) and NOTCH1!% 3335, This occurs by binding of
ZFP36L1 to AU-rich elements (ARE) in the 3’ untranslated region of
the target-mRNAs, mediating its accumulation in processing (P-
)bodies, sites of mRNA decay, as well as their decay itself. A role of
ZFP36L1 as tumor suppressor is postulated, given that it is required
for Rituximab-mediated apoptosis of CLL cells?2! and expression of

ZFP36L1 increases after induction of anti-CD20 and B-cell receptor-
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mediated apoptosis in B-cell lymphoma cell lines36. Moreover,
Rapamycin, an inhibitor of mTOR, has a reduced ability to suppress
the senescence-associated secretory phenotype (SASP) in cells lacking
ZFP36L137. A dominant negative effect through truncation of the
ZFP36L1 protein as a result of the ZFP36L1-IGH fusion is conceivable
as it is composed of different domains mediating either the decay (N-
terminal domain), the ARE-mRNA-binding (zinc finger domains) or
the transport of the ARE-mRNAs to P-bodies (C-terminal domain).
The detection of ZFP36L1-IGH fusion transcripts with truncated
ZFP36L1 supports this hypothesis, whereas the fact that in three cases
with breakpoint within the second exon of ZFP36L1 the detected
fusion transcripts might merely encode for 44 amino acids makes it
questionable. Moreover, RNA-seq showed that the predominant
expressed ZFP36L1 transcript in CLL with ZFP36L1-IGH was the non-
rearranged wildtype allele. However, additional facts argue for a role
of ZFP36L1 in CLL with ZFP36L1-IGH. It is remarkable that in general
more than half of CLL patients show 13q14-deletions by FISH?, but in
the CLL with ZFP36L1-IGH described herein only in 12% of the cases
13q14 deletions have been detected. The genes in the 13q14 minimal
deleted region are the miRNAs miR-15 and miR-16, which are known
to be involved in mRNA-decay, particularly in AU-rich element
mediated mRNA decay38. It has been shown that miR-16 requires the
presence of ZFP36 (another TIS11 familiy member) and ZFP36L1 in
order to bind to ARE-containing mRNAS39. Deletion 13q14 and
ZFP36L1-IGH might represent alternative mechanisms for the
inhibition of ARE-mediated mRNA decay. In contrast to 13ql4
deletions, which are significantly underrepresented in CLL with
ZFP36L1-IGH, Cosson et al.” and our results have shown that NOTCH1
mutations are enriched in CLL with del(14)(q24932) (47% and 29%,
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respectively) compared to CLL in general (12%)2. Interestingly,
NOTCH1 mRNA is a target of ZFP36L135. The effect of the gain-of
function mutation of NOTCH1 might be enhanced by a putative
stabilizing effect of a truncated ZFP36L1 protein in ZFP36L1-IGH
cases. However, a significant deregulation of the ZFP36L1 targets
according to Zekavati et al.1® in ZFP36L1-IGH CLL compared to CLL
without 14q-aberration could not be stated based on RNA-seq data,
but the differentially expressed genes were enriched on genes related

with RNA and mRNA processing.

Interestingly, most genes located in the 14q deleted region in
ZPF36L1-IGH CLL cases were clearly downregulated, whereas
ZFP36L1 and RAD51B, the nearest non-truncated genes centromeric
to the 14q24-breakpoint,were significantly overexpressed. A
significant upregulation of ZFP36L1 and RAD51B in ZFP36L1-IGH CLL
compared to CLL without 14qg-aberration has not been seen in Cohort
2 of the present study neither in the studies of Cosson et al. and
Pospisilova et al.> 7. This might be due to contamination of non-B-cells
in the latter as they have not been sorted for B-cells. RAD51B protein
is as a member of the RAD51 family involved in the repair of double
strand breaks by homologous recombination0. In tumors like breast
or pancreatic cancer these proteins have been shown to be down
regulated due to deletion or truncation as well as upregulated by e.g.
amplification of the gene#! 42. The close proximity of the strong IGH
enhancers to the RAD51B locus through ZFP36L1-IGH fusion could
result in overexpression of RAD51B. Given that the genes in the
deleted region del(14)(q24q32) are downregulated, the biological
consequence of the del14q/ZFP36L1-1GH might be an inactivation of a
tumor suppressor. Indeed, mutations in the remaining allele of TRAF3

in chromosomal region 14q32 have been identified in 9/41 (22%)
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ZFP36L1-IGH cases from Cohort 211 and confirmed in two out of six
cases from Cohort 1. In some of the cases the biallelic inactivation of
TRAF3 was present in small sub clones arguing for a secondary event

in tumorigenesis.

Similar to previous studies, the ZFP36L1-IGH fusion CLL
presented herein are associated with Tril2 and unmutated IGHV>7.
Clinically, CLL cases with ZFP36L1-IGH as well as CLL with 14q-
deletion with different breakpoints showed shorter TTT. All patients

needed treatment, and most achieved complete response.

In summary, our data have shown that the recurrent deletion
del(14)(q24q32) with breakpoints within ZFP36L1 and IGH occurring
predominantly in CLL lead to ZFP36L1-Iu-fusion transcripts, reduced
expression of the genes in the deleted region and overexpression of
ZFP36L1 and RAD51B. Moreover, by cloning 17 ZFP36L1-IGH
breakpoints, consensus recognition motifs of translin around the
breakpoints have been identified giving a hint to an underlying
mechanism behind the ZFP36L1-IGH fusion. The biological
consequence of this recurrent deletion might be a truncated
ZFP36L1-protein that reduces AU-rich element mediated decay,
overexpression of RAD51B, and inactivation of tumor suppressors in
the deleted region in 14q24-q32, like TRAF3, all potentially promoting

cancer development.
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Methods

Patients and samples. Cohort 1: From 637 cases of the CLL -
International Cancer Genome Consortium (ICGC) analyzed by SNP6.0
arrays, fifteen cases (2.4%) displayed 14q deletions (Supplementary
Fig. 1A). Seven of them, diagnosed as CLL or SLL carrying breakpoints
at 14924 and 14q32 involving ZFP36L1 and IGH genes, were selected
as cohort 1243, Patient characteristics are described in Supplementary
Table 2. Two additional patients with a similar pattern of
chromosome 14q deletion (498 and 1193) were not included in the
analysis due to the lack of WGS or cytogenetic material to validate the
exact breakpoints. Whole-genome sequencing (WGS) and whole-
exome sequencing (WES) data were available from six of the seven
cases (WGS for cases 802, 1169, 1191 and 1431, and WES for cases
382,802, 813, 1169) (Supplementary Table 2-3)2. The tumor samples
were obtained before administration of any treatment. All patients
gave informed consent for their participation in the study following
the ICGC guidelines#4. Sequencing, expression and genotyping array
data have been deposited at the European Genome-Phenome Archive

(EGA, https://www.ebi.ac.uk/ega/), which is hosted at the

European Bioinformatics Institute (EBI), under accession number
EGAS00000000092. All patients from cohort 1 gave informed consent
according to International Cancer Genome Consortium (ICGC)

guidelines and ethics policy committee44.

Cohort 2: B-cell malignancies with cytogenetically identified
translocations, deletions or additions of material of unknown origin in
which chromosomal region 14q2 was affected (n = 73) were selected
from the cytogenetic databases of the laboratories involved in the

present study. The aberrations were detected by conventional G- or
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R-banding chromosomal analysis performed according to routine
methods in each of the institutions. Twenty-five B-cell neoplasms
with available cytogenetic pellets harboring a specific FISH-pattern
(loss of the proximal signal by using the LSI IGH Dual Color, Break
Apart-probe (Abbott/Vysis)) but lacking a clonally aberrant
karyotype were also included in the screening-cohort. Supplementary
Fig. 3 illustrates the selection of cases for cohort 2. Characteristics of
the 45 cases with FISH-proven break in the ZFP36L1- and IGH-gene
regions that make up cohort 2 are listed in Supplementary Table 2. All
cases analyzed and techniques applied are provided in

Supplementary Fig. 1 and Table 2).

Copy number arrays. SNP-array experiments on cohort 1 were

outsorced at CeGen (www.cegen.org). Nexus version 7.5 Discovery

Edition software (Biodiscovery, El Segundo, CA) was used for global
analysis and visualization of results. Array CGH on cohort 2 was
performed using the Human Genome CGH Microarray Kit 44A and a
44K-Custom-Array designed with the eArray Software 6.2 (Arrays
and software provided by Agilent) (Supplementary Methods).

Whole-exome and whole-genome sequencing. Whole-genome and
-exome sequencing (Agilent SureSelect Human All Exon 50 MB) were
performed as previously described? 45 46, Sequence data analysis was
performed using the Sidrén mutation caller4¢ and SMUFIN algorithm
for structural variants!2. The results were further verified by manual
inspection of the corresponding BAM files obtained, as described

elsewhere4é,
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Cloning of the del(14)(q24;q932) breakpoints. For cloning of
genomic breakpoints in cohort 2 different combinations of 18
forward primers in 14924 and 13 reverse primers in 14q32
(Supplementary Table 12) were used for LD-PCR. The polymerase
TaKaRa LA Taq (TAKARA BIO INC.) and a touchdown PCR program
was applied according to manufacturers instruction. A nested PCR
reaction using 1pl of 1:100-diluted amplicon was applied to enhance

specificity.

Molecular cytogenetic and cytogenetic analyses. Conventional
cytogenetics (CC) was performed on G-banded (cohort 1) or R-
banded (cohort 2) chromosomes obtained after short term culture
without stimulation or with stimulation with Phorbol 12-Myristate
13-Acetate. Results were described according to the International
System for Human Cytogenetic Nomenclature?’. FISH was performed
on cytogenetic suspensions according to standard protocols*s. The
bacterial artificial chromosome (BAC) and Fosmid clones selected
from the Human Genome Browser Gateway
(http://genome.ucsc.edu/cgi-bin/hgGateway) and used for FISH are
described in Supplementary Table 13. The commercial FISH probes
applied in the study are listed in Supplementary Table 14. For each
test, the signal constellations of a minimum of 100 nuclei were

counted. Slides were evaluated by two observers.

IGHV-, ZFP36L1-, TRAF3 and NOTCH1-mutation analysis. IGHV and
NOTCH1 exon 34 mutational analyses (cohorts 1-2) and TRAF3
(cohort 2) were performed using direct Sanger sequencing as
previously described!l 45 49, 50 In cohort 2, the coding region of

ZFP36L1 including exon/intron-boundaries were PCR amplified

122


http://genome.ucsc.edu/cgi-bin/hgGateway

(Supplementary Table 15) according to standard protocols and

subsequently sequenced.

Identifying translin motifs. Agnostic repetitive motif analysis was
performed using standard MEMES! parameters within 200 bp
windows of sequence fragments spanning the 14q breakpoints
junctions identified in 17 patients. The program was forced to provide
only those motifs present in all tested samples at least once. The motif
identified as recurrent in all samples was then mapped on all patients
by performing matrix-guided alignments on the corresponding

200 bp windows using MatScan with a threshold of 0.7552.

Identification of fusion transcripts using RT-PCR. Information on
the genomic breakpoints was used to choose primer pairs for the
detection of fusion transcripts (Supplementary Table 6). Depending
on the expected product size the Gold Star Taq Polymerase
(Eurogentec, Seraing, Belgium) or the Expand High Fidelity PCR
System (Roche Diagnostics, Mannheim, Germany) were used under
conditions recommended by the manufacturers. Depending on the
PCR-results the conditions have been modified and a touch-down-

PCR was done.

TOPO TA cloning. A subset of PCR products obtained from the
breakpoint PCR and the RT-PCR to detect fusion transcripts in Cohort
2 have been cloned using the TOPO TA cloning kit with the pCR 2.1-
TOPO Vector and chemically competent One Shot TOP10 E. coli cells
(Life Technologies). Clones were PCR amplified and Sanger

sequenced.
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Gene expression profiling. Total RNA was extracted with the TRIzol
reagent following the recommendations of the manufacturer
(Invitrogen Life Technologies) and hybridized to Affymetrix GeneChip
Human Genome U219 arrays, as previously describedS3. We studied
the GEP of CLL cases (802,1169,1191) with ZFP36L1-IGH fusion
compared to the remaining 14q-wildtype 458 CLL cases. To evaluate
the impact of ZFP36L1-IGH fusion/del(14)(q24g32) deletion on gene
expression, summarized expression values were computed using the
robust multichip average (RMA) approach implemented in the
Expression Console Software (Affymetrix Inc.). Limma was used to
detect probe sets differentially expressed between two or more
groups. P-values were adjusted for multiple comparisons using the
Benajmini-Hochberg method. Probe sets with an adjusted P-value

below 0.15 were considered significant.

RNA-seq analysis. RNA-seq libraries from 3 cases with ZFP36L1-IGH
fusion (802,1169,1191) and 129 CLL cases with no 14q deletions
were prepared from total RNA using the TruSeq™ RNA Sample Prep
Kit v2 (Illumina Inc.) as previously described53. RNA-seq data was
processed with the ENCODE pipeline for long RNAs vZ2.0.0
(https://github.com/ENCODE-DCC/long-rna-seq-pipeline). The 76-bp

paired-end reads were aligned to the reference genome (hs37d5) and
long transcriptome (subset of GENCODE v1954) corresponding to long
transcripts) with STAR 55. The mapping was performed using a sex-
specific reference sequence including the Y chromosome for males
but not for females. Gene and transcript expression levels were
quantified in FPKM (Fragments per Kb of exon per Million mapped

reads)s¢ from transcriptome mappings with RSEM package>’.
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Differential gene expression analysis of RNA-seq data. To evaluate
the impact of the ZFP36L1-IGH fusion/del(14)(q24q32) on global
gene expression, RNA-seq data of ZFP36L1-IGH fusion CLL cases
(n=3) vs CLL cases without 14qg-alterations (n=129) were
compared. RNA-seq differential expression analysis on normalized
FPKM data was performed using the limma packages8 59 using a P-
value <0.05 for significance. Enrichment analyses were done over
three categories: all significant differentially expressed genes,

significantly overexpressed and significantly down-regulated genes.

Allele- and isoform- specific expression. Allele-specific expression
(ASE) for ZFP36L1-IGH fusion and normal ZFP36L1 alleles was
computed. The ASE quantifies the contribution of each allele to the
global expression of ZFP36L1 gene. In order to count: (I) the number
of split-mapped reads spanning the chimeric splice-junctions for the
fusion mRNA isoforms (fusion junction reads) and (II) the number of
split-mapped reads spanning the splice-junction specific and common
for all the normal mRNA isoforms (normal junction reads), read-pairs
to the normal and chimeric mRNA isoforms were calculated. ASE
fusion was computed (ASEF) as the ratio between the fusion reads
and fusion reads plus normal reads. Finally, normal ASE (ASEN) was
calculated as 1-ASEF. The isoform- specific expression (ISE) for
normal ZFP36L1 and chimeric ZFP36L1-IGH isoforms was calculated
in normal B cells from 3 healthy individuals and the 3 CLL cases
(cohort 2). To compute the ISE, the number of split-mapped reads
spanning the splice-junction specific for each of the isoforms (junction
spanning reads) were counted. The ISE for each isoform was
calculated as the ratio between the number of junction spanning
reads for the isoform and the sum of junction spanning reads for all

the possible normal or chimeric isoforms (Supplementary Table 16).
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Statistical analysis. Fisher’s exact test was used to compare the
frequencies of trisomy 12 and 13q deletion in CLL with ZFP36L1-IGH
fusion (cohorts 1 and 2) with the general frequency of these
aberrations in the ICGC CLL series. TTT of cases with ZFP36L1-IGH
fusion, cases with del(14)(q24) and CLL cases without any 14q
abnormality was evaluated. TTT curves from date of sampling were
plotted by the Kaplan and Meier method and compared by the log-

rank test.

FIGURE LEGENDS

Figure 1. Genetic features of CLL/SLL and B-cell lymphomas with
14q-deletion. (a) Copy number profile of chr14 in the seven cases
with 14q-deletion identified by SNP array (cohort 1). (b) Circos plot
representation of seven samples analyzed by WGS and SNP6.0 array.
Blue inner lines represent intrachromosomic translocations and black
inner lines represent interchromosomic translocations. The
histogram depicts gains and losses of the seven samples colored in
blue and red respectively. Finally the outer dots represent all exonic
point mutations in the seven whole genomes. The size of the points
correlate with mutation frequency in this series. (c) ZFP36L1
representation showing all breakpoints obtained from different
platforms: breakpoints from SNP6.0 array in orange, from whole-
genome-sequencing in yellow, from LD-PCR sequencing in grey and
from 14q-custom array in red (Case 46 is not a ZFP36L1-IGH case as it
has its distal breakpoint centromeric to IGH). Blue squares depict

exons and the green one depicts an intron.
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Figure 2. Expression of IGH-ZFP36L1 transcripts and isoforms and
deregulated gene expression profile. (a) Recurrent deletion of
chromosome 14 produces chimeric IGH-ZFP36L.1 mRNAs. Recurrent
deletions between chromosomal regions 14q24 and 14q32 identified
in CLL/B-NHL and the corresponding chimeric mRNA products are
shown. For the sake of clarity, the involved 35 Mb region is shown in
reverse. Dashed blue lines indicate, for each of the deletions
characterized, the positions of the breakpoints in the immunoglobulin
heavy chain (IGH) gene region in 14q32 (left) and the ZFP36L1 gene
in 14q24 (right).The resulting chimeric mRNA forms (center) are
shown with the predicted protein underneath. Most abundant
isoform for each fusion gene is represented (see Figure 2b). The
truncated Tis11B domain, as well as downstream complete zinc finger
regions, are shown as they have been described for the normal
ZFP36L1 protein (top right panel). In patients 13, 15 and 17 the
predicted protein has no annotated functional domains to represent.
On the IGH locus, we indicate different immunoglobulin regions as
annotated in the IMGT database, above the 300 Kb black line, and the
genomic position of the exons (as grey boxes below), which are
incorporated into the spliced chimeric mRNAs forms. These regions
have been annotated according to the IMGT, GENCODE and UCSC
databases (see Methods). Regarding the ZFP36L1 region, we display
(in yellow) the genomic structure of two isoforms described in RefSeq
and as expressed in ZFP36L1-IGH cases according to our RNAseq
(802, 1169 and 1191) and RT-PCR-based sequencing data. (b)
Expression of different chimeric IGH-ZFP36L1 mRNA isoforms in CLL
patients. Representation of the identified isoforms deriving from the
different deletions and reconstructed using RNAseq read data for

three CLL samples. The chimeric mRNA isoforms and their
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corresponding predicted proteins are shown. Allele and isoform
specific expression levels were inferred from the relative count of
unambiguous read abundance across splice junctions and are
depicted as chart pies. The length for each of the resulting longest
potential coding regions is shown in number of amino acids,
indicating the fraction derived from the IGH and ZFP36L1 regions.
Protein domains are shown for each of the isoforms following the
colour code used in figure 1a. When the Tis11B domain is truncated
the percentage of the remaining fragment is specified. (c) Schematic
view of the distribution of the 13 bp motif sequence around the
breakpoint region in ZFP36L1 in cohorts 1 and 2. This 13bp motif is
overrepresented in the ZFP36L1 and IGH breakpoint regions and
matches with the sequence GCCC[A/T][G/C][G/C] known to be
recognized by the DNA-binding Translin protein. (d) Heatmap of the
expression of the genes (microarray data) of chromosome 14 in CLL
patients grouped on the basis of ZFP36L1-IGH fusion (red) and cases
with wild type chromosome 14 (14q- wt) (blue). In the group "14q
wt" only 40 random CLL cases (out of 458) were represented. Cases
with 14q deletion have downregulation of genes of the deleted region,
whereas the three cases with ZFP36L1-IGH fusion have upregulation
of a few genes, including RAD51B and ZFP36L1, juxtaposed to the IGH

due to the deletion.
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Suppl. Figure 53

Cytogenetics 1GH-locus ZFP36L1-break Number of cases
positive —_— 17
IGH prox < IGt
dist
negative —_— 7
positive —_— 28
IGH prox < IGH
dist
negative et 1
Cytogenetic
14q2~-aberrations
positive —_— 1
IGH prox = IGH — —
dist
negative  — 44
Suppl. Figure 54
a b
Centromers
= &
|||| RAD51L1
ZFP36L1 § RP11-17988
14q24.1
\ ACTNI RP11-65A20
14 Telomere

132



Suppl. Figure §5
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Results and discussion

This section contains a summary of the results of each of the studies
represented by the publications included in this thesis and other
unpublished results that are part of the work in progress. For the sake
of clarity, the results are not described in chronological order, but
instead, following the order of the work flow of the general protocols
for genome analysis: (i) development of bioinformatic tools for the
identification of somatic variation in tumor genomes; (ii) the
application of these protocols to large datasets of cancer genomes;
(iii) the development of new strategies for the annotation of gene
regulatory regions; and (iv) the characterization of chromosomal
rearrangements in cancer genomes, including the study of the
underlying mechanisms, as well as their potential functional and

clinical impacts.

Development of bioinformatic to identify somatic variation in
cancer genomes

This particular study (Moncunill et al. 2014) was carried out in the
context of our participation in the International Cancer genome
Consortium, in particular, within the Chronic Lymphocytic Leukemia
Spanish consortium. While the original participation and tasks of the
BSC within this consortium were in relation to the management and
primary analysis of all the generated CLL exomes and genomes, our
group took this collaboration as an opportunity to develop solutions
for the identification of somatic variants in cancer, which was a major
bottleneck within this type of studies. At that time, the available
analysis tools for identify somatic variants in tumors were restricted

to the use of different programs developed by different groups and
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focusing in the detection of specific type and range of somatic
variation. Some programs were restricted to point mutations of small
indels, others to specific size range of SVs, forcing their combination
into complex pipeline for the complete analysis of tumor genomes.
The overall specificity values for these programs, particularly those

centered in SVs were quite low (<60%).

To overcome these limitations and to generate solutions accessible to
all types of groups and computing environments, even those with no
specific expertise in bioinformatics, we generated SMUFIN.
Publication 1 describes the underlying search mechanism of SMUFIN,
as well as the results obtained using in-silico and real tumor data,
focusing on the reconstruction of complex chromosomal
rearrangements. All this work has been done in close collaboration
with the groups of Elias Campo (Hospital Clinics, IDIBAPS) and Jan
Korbel (EMBL), which have been involved in the experimental

validations of SMUFIN'’s findings.

In summary, compared with previous methods SMUFIN offers several
novelties and improvements: (i) because SMUFIN is based on direct
tumor and normal genome sequence comparison, the user can
analyze his data without previous preparation, either of alignhments or
filters. Just this simple improvement avoids the use of several
programs with different computational requirements, which
constitute an important barrier for non-experts in the computational
field. (ii) Furthermore, SMUFIN can detect different type of variants
(point mutations, insertions, deletions and translocations) without
size restriction and at base pair resolution, which allows a more
precise interpretation of the results and a better inference of the

potential functional impact of the variation. (iii) In terms of reliability,
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after experimental validation, our program has demonstrated better
specificity results than the other available methods, including those
specialized in particular mutation type, particularly on large

structural variation.

At the level of immediate use for research, this tool allows to easily
perform somatic analysis of any genome sequence, covering all
aspects of sequence modification, from point mutations to large
reorganizations within the genome. We demonstrate on mantle cell
lymphoma and paediatric medulloblastoma samples the potential of
this application for the detailed characterization of structural
variation often occurring in cancer genomes. In addition, considering
all the advantages that SMUFIN provides, it also appears, as a realistic
solution for the expected needs when the genomic analysis will
become a regular practice within healthcare systems and will be

extended to thousands and millions of individuals.

Application of SMUFIN for the analysis of large structural

variation in large datasets

From the development of SMUFIN and through a strong collaboration
generated with the ICGC-CLL consortium, in particular with the group
of Elias Campo (Hospital Clinic, UB), I was directly involved in the
aspects concerning the computational analysis of the structural
variation associated to whole genome sequences of 148 CLL tumors.
This study was part of a larger study with the aim of a wide
characterization of the CLL genome that comprises, in addition to

these 148 whole genome sequences, other 440 exome sequences,
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expression data (RNAseq), genome arrays, and other information
regarding the clinics of the pathology and the correlation with the

molecular aspects identified (Publication 2).

In collaboration with Marta Munar, a student that [ was guiding
within the group, and with the group of Elias Campo, we have
determined the landscape of chromosomal rearrangements in CLL
through the use of SMUFIN and further manual and detailed analysis
on the 148 whole CLL genomes. We can observe recurrent structural

events (Figure 12).

I o,
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Figure 12. Circular diagram representation of the distribution of structural
variants detected in 148 WGS CLL samples. Displayed in the outer layer we
show recurrence in Copy number Alterations (CNAs) below of each of the
represented chromosomes, followed by all the breakpoints derived from
large (> 100 bp) intra- and inter-chromosomal rearrangements (dark blue)
in the inner layer. For clarity, the scale of CNAs is set to 20%, as the
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maximum, showing sequence gains and losses, as positive (blue) and
negative (red) values, respectively. Rearrangements are displayed in
absolute counts, indicating that the values in each of the regions do not
reflect the recurrence among samples, as some regions with high values
derive from one or two cases, normally with complex karyotypes. We
highlighted with dashed squares those regions (3p21, 11923, 13q14, 14q32
and 18q21) with rearrangements observed in more than 5% of cases with
WGS. As to rearrangement events, of a total of 358 breakpoints were
detected across all 148 samples, 41% of them correspond to
interchromosomal translocations, while 59% occurred within chromosomes.
Chromosomes 11 and 13 appear as the most rearranged, entailing 25% of all
the breaks, followed by chromosomes 3 and 6 (with 8% each). Regarding
interchromosomal rearrangements chromosomes 6, 8, 13 and 14 appear as
the most translocated, being involved in 32% of all translocations observed.
Recurrent breakpoints are indicated by arrows: black arrows for
rearrangements affecting 18q21 and BCL2 (four cases with 14q32 and one
case with 2p11) and blue arrows for rearrangements affecting 13q14 (nine
cases with different chromosomes).

In six of the cases, we also detected recurrent patterns of
chromosomal reorganization, similar to those described before and
known as Chromoplexy and chromothripsis (Baca et al. 2013; Shen
2013; Moncunill et al. 2014; Rode et al. 2015). In these CLL cases, as
shown in figure 13, we observed that some restricted regions in the
genome (at least three) and different in each of the patients,
translocate with each other in an all-with-all way (see tumors 141
and 853). This is consistent with an scenario where all three regions
are close in the space, or physically interacting, further experiments

are required to validate this hypothesis.
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Figure 13. Circular representation of structural variants detected in three
CLL tumours with complex rearrangements including chromoplexia (sample
141), chromothripsis (sample 880) and combined (sample 853).
Chromosomes are represented in the outer layer, regions lost (red) and
gained (blue) detected by SNP arrays are shown in the inner layer. Inter and
intrachromosomal rearrangements are represented as black and blue lines,
respectively.

Interestingly, tumor 853 clearly presents these two kinds of events
simultaneously. By carefully organizing all the different breaks
identified in this patient, together with intensive manual inspection of
the sequence directly we could reconstruct the complex karyotype
resulting from the chromothripsis and chromoplexy events (figure 14
A). Using chromosome painting techniques (figure 14 B), we could
verify the existence of four derivative chromosomes, as we have
predicted organizing the different breaks identified. As far as we can
detect using SMUFIN and confirm by the chromosome painting, the
translocations identified in these genomes, both intra and
interchromosomal, appear to affect one allele only, leaving the other

one intact.
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der(11)

der(2)t(2;8)

CLL Tumour 853

Figure 14. A) Reconstruction at base pair resolution of the resulting
reorganized chromosomes in case 853 including der(X) in yellow, der(2) in
dark blue, der(8) in green, and der(11) in red. In these reconstructions, only
reorganized fragments larger than 100 bp are represented unless they
involve interchromosomal translocations. Rearranged regions are not drawn
to scale. Arrows denote inverted fragments relative to their normal and
original orientation. Flanking portions of the derivative chromosomes
without detected rearrangements are collapsed and shown as broken boxes.
Estimated sizes (in Mb) for the resulting derivative chromosomes are shown
on the left side, including the fraction (percentage) relative to the
corresponding normal chromosome size. Asterisks indicate breakpoints that
have been experimentally studied and verified. Genes disrupted by
breakpoints are displayed on the left side of each of the proposed derivative
chromosomes in purple. B) Whole-chromosome painting confirmed the
sequencing reconstruction proposed in b. Simultaneous painting of
chromosome 8 (green) and 11 (red) shows a normal chromosome 11 and a
shorter chromosome der(11) as well as a normal chromosome 8 and der(8)
that contains a fragment of chromosome 11 inserted below the centromeric
region. In addition, a small fragment of chromosome 8 is detected in the
telomeric region of derivative chromosome 2.
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Development of new strategies for the annotation of gene

regulatory regions

Following the annotation of all variants affecting a given genome, the
evaluation of their local impact helps us to determine which functions
of the cell are potentially affected. For this, it is necessary a good
annotation of the functionality of all the regions in the genomes. The
identification of regulatory regions in eukaryotic genomes has been
always a challenge, particularly before all the generation of epigenetic
data from the ENCODE project, for example. But, still the
identification of the regulatory regions and the functional binding
sites are not completely solved. | here describe the results we have
obtained for the development of ReLA (REgulatory region Local
Alignment tool; Publication 3), which also involved other members of
the group: Barbara Montserrat and Montserrat Puiggros. This study,
the first in which [ was involved in the group, was part of the
annotation efforts done in the group and follows its general interest
of correlating genome variation with functional impact and,

ultimately, with disease.

In summary, the underlying search mechanisms of ReLA is the
conservation of transcription factor binding sites (TFBS) among
orthologous regions from different genomes, in contrast to previous
bioinformatic methods that were based on sequence conservation to
infer functionality. ReLA maps known TFBS in different orthologous
regions and finds common patterns and sequences of motifs (not
nucleotides). Similarly as BLAST does with amino acids, or
nucleotides, ReLA uses the smith-waterman algorithm to find the best

combination of conserved binding sites among all target regions
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(Smith and Waterman 1981). We describe the possibilities of ReLA to
identify proximal promoter regions, even improving the annotation of
5’ gene regions and the potential transcription start site as well as
enhancers. Finally, we also generated a server

(http://www.bsc.es/cg/rela/), where the user can execute ReLA

remotely and infer the regulatory potential of a set of provided

orthologous regions.

Functional and mechanistic inference of somatic structural

variation in cancer

Beyond providing general descriptions of tumor related events
through the classification of recurrent rearrangements evens (see
Publication 2), the identification of the exact position of somatic
structural variation in cancer can also provide, in combination with
the annotation of the genome, insights into their mechanism of
formation, as well as into the potential functional consequences

within the cell.

One of the studies that fall into this section aim to understand the
potential mechanisms and consequences behind a recurrent and
already known 14q deletion observed in CLL patients. In close
collaboration with the groups of Silvia Bea (Hospital Clinic, IDIBAPS)
and Reiner Siebert (Institute of Human Genetics at Christian-
Albrechts-Universitat), we have characterized in detail the genomic
architecture of this 14q24.1-q32.33 deletion and determined the
formation of a gene fusion event between an IGH locus and the

ZFP36L1 gene (Manuscript 1). These patients develop a more
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aggressive form of the tumor. The detailed evaluation of the break
points identified with SMUFIN over the whole genome sequence of 50
CLL samples identified three clear cases that suffered a deletion
connecting different points of the 14q24.1 IGH region, with the first
intron of the ZFP36L1 gene. The analysis of transcription, done by
Bernanrdo Rodriguez in our group, showed actual expression of
different forms of chimeric transcripts containing a short 5’ segment
of the IGH region and a large portion of the ZFP36L1 coding sequence.
All these transcripts have been seen to potentially code for a fusion
protein with a disrupted TS11B domain within the ZFP36L1 protein
that is involved in the interaction with mRNAs and response to

growth factors (Bustin et al. 1994) .

In addition, and in order to uncover the potential molecular
mechanisms underlying this, and maybe other rearrangements in
cancer, we also searched for recurrent sequence patterns around the
break points of this 14q24.1-q32.33 deletion. The systematic
inspection of 200bp around the breaks has resulted in the detection
of a recurrent motive. Although the position of the motive is not fixed
relative to the position of the break, the conservation of the sequence
and its enrichment within these regions compared to random models
is significant (see Manuscript 1). This motive agrees with the
sequence recognized by the Translin protein, which is involved in

other known IGH translocations (Aoki et al. 1997).

This collaborative study is an example of the power of integrating
different data and expertise to uncover the biology behind

rearrangement events in cancer.
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Recurrent mutated regulatory regions in CLL

As a follow up of the general characterization of the structural
variation of the CLL genome, we also obtained preliminary results on
the potential impact of somatic variants in gene regulation that still
require further and more detail study. From the detailed study of all
the rearrangements identified in CLL tumors, we have clustered non-
coding variants from all the different patients and identified some
regions with a clear recurrence among samples that could indicate a

functional impact at the level of regulation.

Among all the regions identified, I here highlight one. It corresponds
to a recurrent mutated region upstream of the proto-oncogene BCL6
(figure 15). Mutations in this gene, even in their promoter region,
have been demonstrated to be a driver event in CLL (Pasqualucci et al.
2003). That is the reason why the presence of mutations in several
CLL patients 150kb upstream of BCL6 rapidly suggests a possible

interaction between this region and the oncogene.

Analyzing the region in more detail we can observe a peak on
H3K4Mel histone mark, usually associated with regulatory elements.
This specific region has been described as a candidate enhancer after
chromatin conformation capture assays demonstrated their
interaction with the promoter of BCL6 (Ramachandrareddy et al

2010).
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BCL6 distal region

100000

Figure 15. Overall representation of BCL6 upstream area. First row
corresponds to the different mutations annotated across 148 CLL patients,
both regions that cluster most of the variants are framed. Information of
histone marks associated with regulatory potential is also shown for
histones H3K4Me1l, H3K4Me3 and H3K27Ac.

These results are not published yet and together with other
promising candidate regions are currently being studied as new

driver regulatory regions involved in CLL.
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General Conclusions

This thesis has had the opportunity to experience the transformation
from the first large NGS studies to the establishment of these
techniques in many of the current genomic studies. Partly, the

developed tools and the obtained results reflect that evolution.

Nowadays seems obvious that in a close future the whole genome
sequencing will not be limited to research studies and it will take a
relevant role in health care systems. First initiatives have been
recently launched, such as the 100.000 genomes from Genomics
England, as a first step to integrate this analysis in the hospitals for a

personalized medicine solution.

To reach this objective a combination between technology
accessibility, analysis capabilities and knowledge about the different
diseases will be needed. This thesis covers somehow part of this
process that begins from the whole genome sequence of an individual
and goes throw the identification of their different variants and the

potential functional impact in the disease.

Although all the material and methods used to develop this thesis are
reflected in the different published papers, I would like to finish my
thesis with some considerations about their role and impact in my

research.

Often, the design of efficient software can improve the speed up of the
analysis, even more than the addition of more computing power. A
clear example was ReLA, originally designed using graphs

approximations. By using, instead, a Smith&Waterman dynamic
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programming algorithm (Smith and Waterman 1981) the efficiency
for the detection changed drastically, not only improving the
predictions, but also reducing the execution time from few days to

some minutes.

In a similar way and discussed in the previous sections, to select the
correct DNA alignment algorithm is key in order to obtain successful
results. While Smith&Waterman provides you with the most optimal
result, BLAST and other BLAST-like algorithms (Altschul et al. 1990;
Kent 2002) are suitable for high identity searches on large databases
such as through the human genome. An extreme adaptation of the
alignment algorithm must be used to perform millions of alignments
from sequencing data; these methods were introduced in the

“Analysis of NGS data” section.

The different available programming languages can also offer
plasticity for adapting to the final goals of the method. For the most
text oriented tasks (parsing) I have chosen to use Perl, as language
program. It allows the comparison of text files, such as genes or
pathways lists, as well as for other text and numerical data in a simple
and quick way. However, Perl shows some limitations when dealing
with large amount of data and with the management of objects. RELA,
for example, is developed in Perl because it has to deal with relatively
small pieces of the genome. C++ is the opposite program language in
terms of accessibility and optimization. Large datasets and costly
computing analysis are more successfully lead with C++ than with
Perl. C++ allows a more accurate memory management and a deeper
manipulation and understanding of the complete computational
process. SMUFIN uses this last programming language to deal with

the millions of reads obtained from NGS platforms.
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Lastly, despite the access to previous knowledge and studies
reinforces the research, the accessible data is large and complex, due
to the available formats and the weaknesses associated to each of the
datasets, usually generated using highthroughput approaches. The
proper use of this data requires the understanding of the underlying
strategies and their limitations. All these data can be accessed
through genome browser that collect and display data over the
genome. These datasets are by far the most used material in all the
work developed during this thesis. Public collector databases such as
ENSEMBL, UCSC and NCBI (Hubbard et al. 2002; Kent et al. 2002;
Cooper et al. 2010) offer an intuitive and value system to organize
and filter all this information. Most of the figures presented on this
thesis and their companion publications derive from the analysis and

interpretation of the data obtained from these public resources.
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Conclusions

Through the development of SMUFIN, we conclude that the
direct comparison of sequence reads from whole genomes
allows a more accurate identification of somatic variants in
the analysis of cancer genomes.

SMUFIN allows the identification and characterisation of
somatic chromosomal rearrangements in tumours, including
the complete reconstruction of complex karyotypes at base
pair resolution level.

Complex chromosomal reorganisation events, such as
chromothripsis and chromoplexy, are also found in blood
tumours, such as Mantle Cell Lymphomas and Chronic
Lymphocytic Leukaemia.

Chronic Lymphocytic Leukaemia shows several recurrent
structural variation, which, in part, correlate with a more
aggressive progression of the tumour.

A recurrent deletion identified in chromosome 14 produces a
potentially coding chimeric mRNA resulting from the
expression of the fusion between IGH parts and the ZFP36L1
gene.

Translin is a candidate effector triggering the recurrent
deletion observed in chromosome 14 of CLL patients.

The analysis of conservation of transcription factor binding
sites improves the prediction of regulatory regions in
eukaryotic genomes compared to classical approaches based

on direct sequence conservation.
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