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INTRODUCTION 
 

1.1. Angiogenesis 

 

A continuous supply of oxygen and nutrients is imperative for every cell, tissue and organ in the 

body for their survival and development, in addition to disposing waste products. Hence a 

meticulously organized system of blood circulation ensures these vital processes. The process 

of formation of blood vessels from pre-existing ones is called angiogenesis. Over the course of 

adulthood the endothelial cells remain quiescent except in situations like wound healing, 

menstruation, pregnancy and in many pathological conditions when these cells are activated to 

form blood vessels [1,2]. Several pathologies have been identified due to the excessive blood 

vessel formation such as cancer [3,4], psoriasis [5,6], arthritis [7-9] and diabetic retinopathy 

[10]. At the same time, pathological conditions due to insufficient blood vessel growth have 

also been identified, such as, heart ischemia [11], stroke [12,13], osteoporosis [14,15] and hair 

loss [16,17]. Thus when a tissue has insufficient blood vessels its oxygen content lessens, 

leading to ischemia and degradation of its function, whereas when the vessels are over-grown it 

might encourage the malignant tissue growth or inflammatory disorders [18]. Hence 

angiogenesis is a powerful process in which the delicate balance of the factors responsible for 

its induction and regression should be maintained.  

 

Over years, understanding the mechanism of angiogenesis has led us to explain the defective 

blood vessel development in pathological conditions and it has given new hopes of utilizing this 

knowledge for therapeutic purposes. Pro-angiogenic factors responsible for the induction of 

angiogenesis have been tested for promoting revascularization of ischemic tissues and their 

inhibitors were tested for reducing vascular growth in diseases such as cancer [19]. Inducing 

angiogenesis is considered one of the hallmarks of cancer and is a key player in sustaining 

tumour tissues from dying and also aiding in their growth and metastasis [4]. Anti-angiogenic 

strategies for treating cancer have gained a huge importance in the recent years. Tumour cells 

are genetically unstable and develop resistance to anti-cancer therapies, in contrast to 

endothelial cells that are genetically stable and make them an ideal target for treatments 
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against cancer [20]. Today we have much more information on the molecular basis of 

angiogenesis and the angiogenic factors involved, upon which current anti-angiogenic therapies 

have been designed, although the metabolic studies are still nascent. Thus a deeper 

understanding of the endothelial cell metabolism can reveal new therapeutic targets for 

tumour angiogenesis that can be combined with conventional therapies for obtaining promising 

results. This thesis aims to throw some light on the metabolic adaptations of endothelial cells in 

the presence of angiogenic factors and cancer cells, highlighting the importance and regulation 

of certain pathways in endothelial cells, which has not been explored before. 

 

1.1.1. Endothelial cells, the protagonists of blood vessel formation 

 

Blood vessels are lined by a layer of endothelial cells that are supported by a protein-rich 

extracellular matrix (ECM) [21]. Endothelial cells are thin, plastic (can elongate) and are fragile 

but form strong and efficient channels to transport blood and withstand pressure due to blood 

flow differences in arteries and veins [22]. The vessels can remain robust for many years and 

when induced they can begin sprouting to form new vessels in an organized manner, thanks to 

the efficient cellular communication between themselves and other supporting cells [23]. 

Endothelial cells have been described to be heterogeneous and have been identified according 

to their function and location in the blood vessels during the process of angiogenesis [19]. 

During the vessel sprouting phase of blood vessel formation, certain endothelial cells are 

‘chosen’ as tip and stalk cells that differ both in morphology and function. Tip cells have been 

found to be enriched with filopodia and show a high rate of motility for migration. These tip 

cells guide the stalk cells which mainly proliferate and form the length of the new sprouts, show 

lower motility, connects the parent vessel with the migrating tip cells and maintain cellular 

junctions [22,24]. Another type of endothelial cells has also been identified, that forms a part of 

the mature and well-formed blood vessels. These endothelial cells, also called as phalanx cells, 

exist in a quiescent state and have shown to appear as streamlined and monolayered within the 

blood vessels, connected by junction proteins [25]. In addition to maintaining vessel barrier, 

these cells are important for blood vessel dynamicity, expressing oxygen sensing proteins like 
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the prolyl hydroxylase 2 (PHD2) that regulates the phalanx cell phenotype in turn allowing for 

dynamic reorganization of blood vessels for oxygen delivery [25].    

 

1.1.2. Molecular regulation of angiogenesis and the significance of VEGF 

 

Several factors and signalling molecules have been identified to be involved in the different 

steps of angiogenesis, from inducing ‘angiogenic switch’ to the formation of new blood vessels. 

Pro-angiogenic factors such as vascular endothelial growth factor (VEGF), fibroblast growth 

factor (FGF), angiopoietins (ANG), matrix metalloproteinases (MMPs),  and VE-cadherin aid in 

the process of angiogenesis [26]. Regulation of each step of the blood vessel formation such as 

pericyte detachment, ECM degradation, tip cell selection and migration, stalk cell division, 

vessel elongation, vessel lumen establishment and vessel maturation are carried out with the 

help of the combined efforts of these different signalling molecules and growth factors along 

the respective signalling pathways, as reviewed in Stapor et. al. and Welti et. al. [19,26]. In 

addition to several proteins, immune cell types, like the macrophages, are also found to help in 

the process of blood vessel formation by releasing VEGF and other pro-angiogenic factors to 

bridge the tip cells of the adjacent sprouting vessels and seal the new vessel formed [27,28].    

 

Among all the other pro-angiogenic growth factors and signalling molecules involved in the 

process of angiogenesis, VEGF has been identified as a predominant regulator of angiogenesis 

and lymphangiogenesis [29-31]. The family of VEGF consists of VEGF-A, placental growth factor 

(PGF), VEGF-B, VEGF-C, VEGF-D and two VEGF-like proteins encoded by two strains of 

parapoxvirus [32,33]. VEGF-A possesses further isoforms: VEGF121, VEGF145, VEGF165, VEGF189, 

VEGF206, derived by the alternative splicing of a single gene [34]. VEGF was originally thought as 

a mitogen only for vascular endothelial cells from arteries, veins and lymphatics, as suggested 

by its name [35]. But it was also found to influence other cell types such as retinal pigment 

epithelial cells [36], pancreatic duct cells [37] and Schwann cells [38,39]. Three types of VEGF 

receptor tyrosine kinases identified are VEGFR1, VEGFR2 and VEGFR3 with distinct signalling 

pathways mediating different functions, as reviewed in Koch et. al., [34]. VEGF has been found 

to be the key survival factor for many types of cells including retinal endothelial cells [40], 
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retinal neurons [41] and tumour cells [42,43] and coherently it was found to be protective 

against apoptosis in endothelial cells and cancer cells [44-46]. In addition VEGF has been 

identified to induce progression of tumours, for example, in oral cancer [47], gastric cancer [48] 

and prostate cancer, in which it is also found to aid metastasis [49,50]. VEGF-A, often referred 

to as VEGF, is the main stimulating factor for angiogenesis in health and disease and binds to 

and activates the receptors VEGFR1 and VEGFR2 [34]. While VEGFR2 has been identified as the 

mainstream receptor for active angiogenesis in both normal and pathological conditions like 

cancer [51-53], VEGFR1 with a weak tyrosine kinase activity is suspected to act as a decoy for 

VEGF, ‘playing’ with its availability to bind VEGFR2 [34,54]. Also VEGFR1 signalling in 

endothelial, stromal and myeloid cells stimulates pathological angiogenesis [55] and growth of 

tumour cells [56]. VEGF is found to be regulated by the hypoxia-inducible factor 1 (HIF1) which 

upregulates its expression in both cancer and non-cancer cells [57-60]. VEGF alone, as a pro-

angiogenic factor, is strongly shown to promote abnormal vessel branching, fluid leakage, high 

interstitial pressures and gaps within vessels [31]. Due to its predominant part as a key player in 

angiogenesis VEGF is still under study, even after decades of its discovery.  

 

1.1.3. Angiogenesis and cancer 

1.1.3.1. Tumour microenvironment 

 

Tumour microenvironment is a milieu of tumours interacting with stromal cell population, 

aiding for tumour survival and progression [61]. This specialized environment, which is like an 

organ by itself with respect to the coordinated activities of several other cell types, also has 

supporting environmental factors set up like the oxygen tension and blood pressure [62] within 

its milieu that assists tumours in their growth and metastasis. Tumour cells have been 

speculated to survive by simple diffusion of oxygen and nutrients up to 2 mm diameter [63]. 

Once they start growing, their needs to survive and propagate increases and hence recruits 

other stromal cells for the construction of blood vessels and form their own microenvironment. 

Stromal cells are non-transformed, genetically stable cells and targeting them will not make 

them resistant to treatments like in the case of tumour cells [20]. The first mark of interaction 
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between stromal and tumour cells was found in 1863 by Rudolf Virchow when the leukocytes 

were found infiltrated in tumour tissue (reviewed in [64]). Tumour microenvironment is 

dynamic, continuously keeps changing and evolving to support the progression of tumours by 

stromal cell signalling between themselves and the tumours.     

 

Endothelial cells, associated with tumours are one of the main stromal cell populations in the 

tumour microenvironment and are essential for tumour angiogenesis, as Judah Folkman first 

proposed in 1971 [65]. Two types of angiogenesis occur in tumour microenvironment – the 

blood vessel formation and lymphangiogenesis [66].  Tumour vasculature is formed from the 

endothelial cells, but also with the support of other stromal cells like pericytes, mesenchymal 

cells, myeloids, macrophages and CAFs, while some of them even release pro-angiogenic 

factors. Formation of vasculature system is imperative not only for the growth and survival of 

tumours in the primary tumour environment, but also serves for cancer cell dissemination 

during metastasis and seeding at secondary sites, with the help of other stromal cells and pro-

angiogenic factors, controlled by the tumours themselves [67]. Thus it is important to 

understand the mechanism and cellular regulations underlying the induction of angiogenesis in 

order to look for therapeutic strategies targeting both stromal and tumour cells.       

 

1.1.3.2. Tumour angiogenesis 

 

During the process of tumour angiogenesis the delicate balance of pro- and anti-angiogenic 

factors, which maintains a mature blood vessel network, is disturbed, enabling over-production 

of pro-angiogenic factors. Moreover the tumour blood vessels formed appear tortuous, leaky 

and are unorganized [68,69]. Pericytes, that maintain vessel integrity, are not well attached to 

the tumour vessels, resulting in irregular and even reverse blood flow. Furthermore the 

changes have been noted even in the cellular phenotype, where unlike normal endothelial cells, 

tumour endothelial cells are irregular in size and shape, with ruffled margins, long and fragile 

cytoplasm that projects across vessel lumen leaving intercellular gaps where erythrocytes pool 

up making ‘blood lakes’ [70]. Tumours expressing VE-cadherin are found to be capable of filling 

these cellular gaps and mimicking as endothelium [71]. Metastasis incidence is found higher in 
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leaky vessels and anti-VEGF treatment has shown to normalize the tumour vessels, improving 

oxygen flow and reducing metastasis [25], in addition to aiding proper delivery of 

chemotherapeutic drugs [72]. The formation of blood vessels is induced by the angiogenic 

factors like VEGF, FGF, ANG1 and ANG2 released by the tumour and stromal cells, mediated by 

the hypoxic microenvironment [73] which is also a key regulator of angiogenesis.  

 

1.1.3.2.1. Hypoxia, the key regulator of tumour angiogenesis 

 

Hypoxia is an environment of low oxygen tension prevalent within the milieu of tumour 

microenvironment [62]. The oxygen partial pressure (pO2) levels across the body ranges from 

21% in the upper airway to 1% in the retina [74]. Though it is widely believed that endothelial 

cells are always in close contact with oxygen during blood flow, it must be noted that they can 

also become hypoxic during events, like the vessel formation through hypoxic regions of 

tumours, tissue ischemia and in veins that predominantly carry non-oxygenated blood [25,75]. 

The hypoxia regulating proteins, the hypoxia inducible factors – HIF1α and HIF2α are DNA-

binding factors that heterodimerise with HIF1β and bind to the hypoxia response element in 

the promoter of certain genes under hypoxia [76,77]. While these HIF proteins are expressed 

under hypoxia, they are degraded in the presence of oxygen by the process of hydroxylation by 

PHD’s (PHD1, PHD2 and PHD3 – the three isoforms expressed in endothelial cells) and 

asparagine-hydroxylase factor inhibiting HIF1α (FIH) which then interacts with the Von-Hippel 

Lindau (VHL) tumour suppressor protein that mediates HIF ubiquitination and degradation [78]. 

The HIF proteins are also regulated by the signalling cascades such as the PI3K/AKT/mTOR cell 

cycle regulating pathway and the MAPK cell surface receptor to DNA signalling pathway [79]. 

The HIF-regulated genes related to tumour growth are involved in metabolism, angiogenesis 

and metastasis. These include the genes expressed by tumours under hypoxia such as the 

glycolytic genes, GLUT1, GLUT3, PDK1, PKM2, PFKFB3, GYS1, ENO1, LDHA, HK2 and GAPDH [80], 

angiogenic genes, VEGF, FLT-1, ANG1, ANG2, TIE2, PDGF, MMP2, MMP9 and FLK1 [80,81] and 

tumour invasion and metastasis related genes such as c-Met, CXCR4, RIOK3 and LOX [82]. In the 

tumour microenvironment, hypoxia not only attracts endothelial cells but also other stromal 
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cells by the over-expression of monocytic chemotactic proteins, VEGF, semaphoring 3A and 

interleukin 1 [83].   

 

Under hypoxia HIF1α is stabilized and is essential for angiogenesis and tumour re-oxygenation 

[84], while HIF2α can activate transcription at normoxia also and is important for vessel 

maturation [85]. Hypoxia induces the VEGF production by tumours and other stromal cells, 

which in turn activates the VEGF receptor VEGFR2 in endothelial cells following the activation of 

tip and stalk cells and related signalling pathways, for angiogenesis. As the tip cells migrate 

towards the hypoxic regions HIF1α remains stabilized while the PHDs and FIH are inactivated, 

necessary for inducing VEGF and VEGFR2 [84]. As slowly the oxygen tension rises, HIF2α 

mediates the transcription of VE-cadherin and VEGFR1 for vessel stability [86]. These PHDs, 

FIH1 and HIF hypoxia regulatory proteins are also regulated by other factors like FGF and EGF 

that stabilize HIF2 [87]. It was shown that targeting the gene PHD2, stabilized HIF2 protein and 

inhibited cancer cell intravasation, reduced vessel permeability and hypoxia while increasing 

perfusion and improved the delivery of chemotherapeutic drugs through the blood flow [88]. 

Thus hypoxia, being a promoter of tumour angiogenesis, can be an efficient therapeutic target 

for inducing HIF-stabilized vessel maturity, reducing the hypoxic areas in tumours and in turn 

reducing acidic environment, as well as reducing metastasis of cancer cells.  

 

1.1.4. Anti-cancer therapies targeting angiogenesis 

 

Until date, anti-cancer therapies based on anti-angiogenic strategies, that have been clinically 

approved and in use, are focussed on targeting angiogenic receptor ligands and inhibiting the 

signalling pathways that are involved in inducing angiogenesis [89-92]. One of the first anti-

angiogenic treatments developed was bevacizumab, which is a monoclonal antibody targeting 

VEGF-A against binding with receptors VEGFR1 and VEGFR2, that was clinically approved for 

metastatic colorectal cancer in combination with chemotherapy, [93-95]. Bevacizumab was 

approved further for the treatments of non-squamous non-small cell lung cancer, metastatic 

renal cell carcinoma, glioblastoma multiforme and advanced cervical cancer [95]. Although it 

showed an improvement in progression free survival, it had not elevated the overall survival 



10 
 

rate and in addition caused many adverse effects such as hypertension, nosebleed and rectal 

haemorrhage [96]. Similarly, other angiogenic inhibitors under light are aflibercept that targets 

VEGF-A, -B and PIGF ligands, and showed improvement in overall survival rate in phase III 

clinical trials of metastatic colorectal cancer patients [97], and ramucirumab targeting VEGFR2 

and approved as monotherapy or in combination with paclitaxel for advanced gastric cancer or 

gastro-oesophageal junction adenocarcinoma [98,99]. Treatments targeting multiple signalling 

pathways and angiogenic receptor ligands were also developed and clinically approved because 

of the resistance developed for treatments targeting single angiogenic factors or receptors, in 

addition to the resulting adverse effects [100-102]. Some of the multi-targeting drugs approved 

are sorafenib, sunitinib, axitinib, pazopanib, cabozanitinib, vandetanib, regorafenib and 

nintedanib, focussed on simultaneously targeting multiple signalling pathways belonging to 

VEGF family, FGF and other proteins, receptors and oncogenes such as c-Met, RET, c-Kit, TrkB, 

etc [92,103,104]. This multiple target strategy has shown effective anti-angiogenic and anti-

tumour effects by mechanisms such as endothelial apoptosis, reduction of vessel density, vessel 

permeability and integrity and delaying tumour growth and preventing metastasis. The multi-

target strategy has shown positive effects for improving progression-free survival of cancer 

patients, but they have not shown effective improvements in overall survival rates and are not 

completely free from adverse side effects. Moreover, these treatments vary according to the 

types of cancers being tested and have shown effective response only for those types like the 

renal cell carcinoma, hepatocellular carcinoma, non-small cell lung cancer and ovarian cancer 

which were used for developing these drugs [103]. Whereas some other types of cancers like 

the breast, pancreatic and prostate cancers have either shown resistance or much more 

adverse effects to the anti-angiogenic treatments targeting molecular signalling pathways 

[103,105]. Anti-angiogenic therapy based on vascular disrupting agents such as combretastatin 

A-4 phosphate (zybrestat), which work by reducing revascularization by targeting highly 

proliferating endothelial cells and reducing tumour perfusion, was tested alone and in 

combination with bevacizumab in pre-clinical and clinical studies, but also had considerable 

side-effects [106,107]. 

 

One of the anti-angiogenic therapeutic responses identified was the induction of hypoxia within 
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the tumours due to the blood vessel decrease [108-110], which in turn induces an adaptive 

resistance of upregulating pro-angiogenic molecules and increasing blood vessel formation 

[111]. Hypoxia increases acidity in the tumour microenvironment by upregulating lactate 

production, forcing a metabolic shift towards glycolysis [112]. In addition significant metabolic 

changes have been associated as responses to anti-angiogenic treatments [113]. In a xenograft 

glioblastoma tumour model with bevacizumab treatment, an upregulation of glycolytic and 

pentose phosphate pathway (PPP) genes and downregulation of those that regulate oxidative 

phosphorylation (OXPHOS) were observed [114]. In a similar study, an increase in the 

expression of fatty acid binding proteins, FABP3 and FABP7, that are responsible to accumulate 

lipids during hypoxia, were observed in the in vivo model of human U87 glioblastoma cells 

[115]. Increase in lipid metabolism and tricarboxylic acid cycle (TCA cycle) in the tumour models 

were attributed to the post-treatment response of anti-angiogenic therapy [114,116]. These 

studies show that the metabolic responses to the existing anti-angiogenic or anti-cancer 

treatments can be explored as alternative therapeutic strategies to use in combination for 

targeting tumour angiogenesis. In fact, some studies have proven the effectiveness of 

metabolic targets in reducing angiogenesis and tumour growth. The use of dichloroacetate 

(DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), along with bevacizumab in 

glioblastoma increased OXPHOS [114]. In addition DCA with sorafenib treatment of 

hepatocellular carcinoma reduced lactate, increasing reactive oxygen species (ROS) and ATP 

levels while overcoming the resistance to sorafenib [117]. Successful therapeutic studies based 

on metabolic targets against tumour angiogenesis has been shown by metformin, which is a 

metabolic drug used for treating type 2 diabetes and is under phase II clinical trials in 

combination with bevacizumab for metastatic pulmonary adenocarcinoma and other types of 

cancers [111]. These studies show that anti-angiogenic treatments are still a long way from 

reducing tumour growth without much adverse effects or reaching treatment resistances. 

Exploring alternative strategies like the direct metabolic adaptations of tumours and associated 

blood vessels and metabolic adaptations in response to anti-angiogenic or anti-cancer 

treatments can further help in developing stronger combination therapies. To achieve that it is 

imperative to understand the endothelial cell and tumour cell metabolisms and explore their 

similarities and differences. 
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1.2. Endothelial cell metabolism 

 

Many studies have shown sufficient understanding about the molecular mechanisms and the 

cell signalling pathways during the induction and process of angiogenesis, while metabolic 

pathway responses in endothelial cells to angiogenic signals and tumour microenvironmental 

cues are yet to be completely understood. In this section recent studies on endothelial cell 

metabolism has been covered (as illustrated in Figure 1.1), relating the metabolic pathways as 

driving factors or responses to angiogenic processes. 

 

Endothelial cells are reported to be highly glycolytic, especially when activated for proliferation 

and migration [118,119]. The importance of glycolytic pathway for endothelial cell survival and 

function is highlighted by reducing this flux with 2-deoxy-D-glucose by 80% which in turn 

reduced endothelial cell viability [119]. In addition VEGF activation has shown to increase the 

expressions of glucose transporter GLUT-1 under hypoxia [120] and of glycolytic enzymes like 

lactate dehydrogenase-A (LDH-A) and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 

(PFKFB3) [119,121]. It is also shown that silencing PFKFB3 impairs in vitro proliferation, 

migration and sprouting of endothelial cells and causes impaired angiogenesis in vivo in mice 

[119]. The preference to glycolysis for the ATP production is shown to be relevant especially in 

endothelial cells with filopodia as they need quicker form of energy needs for migration [119].  

 

Although it is shown that the mitochondria in endothelial cells take up only 4% of the 

intracellular space, while this amounts to 28% in hepatocytes [122] and endothelial cells have 

been reported to be glycolytic for ATP production, there are evidences that suggest 

mitochondrial oxidation could be valuable for these cells in a number of ways. First of all, during 

conditions of laminar sheer stress due to the frictional force created by the blood flow in blood 

brain barrier, or when glycolysis is impaired [123,124]. In addition the mitochondrial ROS in 

endothelial cells, at non-toxic levels have shown to stimulate angiogenesis by upregulating 

VEGF and VEGFR2 signalling [125,126]. Mitochondrial release of cytochrome c for inducing 

apoptosis during vessel regression has also been reported in endothelial cells [127,128]. VEGF 

has also shown activation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-
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1α), a master regulator of mitochondrial biogenesis and OXPHOS, in endothelial and other cell 

types [129], while PGC-1α expression stimulates vascularisation in heart and muscle cells [130]. 

 

  

 

Figure 1.1: Metabolic pathways of endothelial cell. An illustration of the metabolic pathways studied so far in 

endothelial cells, with influx and efflux of metabolites and cellular responses. The metabolic changes studied in 

endothelial cells mainly covers pathways such as glycolysis, mitochondrial oxidation and ROS production, fatty acid 

uptake and oxidation, PPP covering the oxidative and non-oxidative branches, glycogen metabolism, amino acid 

metabolism, hexosamine biosynthesis and polyol pathway. α-KG - α-ketoglutarate; Ac-CoA - acetyl coenzyme A; AR 

- aldolase reductase; CPT - carnitine palmitoyltransferase; ETC - electron transport chain; F1,6P2 - fructose-1,6-

bisphosphate; F2,6P2 - fructose-2,6-bisphosphate; F6P - fructose-6-phosphate; FABP - fatty acid binding protein; 

FATP - fatty acid transport protein; G1P - glucose-1-phosphate; G3P - glyceraldehyde-3-phosphate; G6P - glucose-

6-phosphate; G6PD - glucose-6-phosphate dehydrogenase; GFAT - glutamine fructose-6-phosphate amino-

transaminase; Glc6P - glucosamine-6-phosphate; Gln - glutamine; GLS - glutaminase; Glu - glutamate; GP - 

glycogen phosphorylase; GLUT - glucose transporter; GS - glutamine synthetase; GSH - glutathione; GSSG - 

glutathione disulfite; GYS - glycogen synthase; LDH - lactate dehydrogenase; OXPHOS - oxidative phosphorylation; 

PFK - phosphofructokinase; PFKFB3 - phosphofructokinase-2/fructose-2,6-bisphosphatase isoform 3; PGM - 

phosphoglucomutase; Pyr - pyruvate; R5P - ribose-5-phosphate; ROS - reactive oxygen species; TKT - transketolase; 

TCA - tricarboxylic acid; UDP-GlcNAc - uridine diphosphate-N-acetylglucosamine; UDP-glucose - uridine 

diphosphate glucose; UGP - UDP-glucose phosphorylase. Copyrights: Stapor et. al., 2014, licensee: Company of 

Biologists Ltd.  
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The PPP has two main branches, the oxidative branch for generating NADPH to maintain redox 

homeostasis and non-oxidative branch to generate macromolecules for supporting cellular 

proliferation. The PPP in endothelial cells have mostly been reported to play a protective role 

against oxidative stress. They have shown to upregulate the enzyme glucose-6-phosphate 

dehydrogenase (G6PD) that catalyzes the oxidative branch of PPP and in turn increasing NADPH 

and nitric oxide (NO) that protect the cells from ROS damage [131]. In diabetes-related vascular 

endothelial cells the high glucose-mediated impediment of G6PD activity and the resulting cell 

death due to increased ROS levels has shown to be reversed by restoring G6PD activity 

[132,133]. While G6PD increase has shown to promote VEGF-induced angiogenesis, contrarily 

VEGF stimulation has been reported to increase G6PD activity in endothelial cells [134]. 

Interfering either the oxidative or non-oxidative pathways, by inhibiting G6PD or transketolase 

(TKT) has shown reduced in vitro endothelial cell proliferation and migration [135].  

 

Fatty acids can be efficient energy storage compounds and endothelial cells have been 

reportedly taking up free fatty acids circulating in the blood [136]. In addition VEGF-A has 

shown to induce fatty acid uptake [137] and VEGF-B upregulates fatty acid transport proteins 3 

and 4 in endothelial cells [138,139]. On the other hand, fatty acid oxidation is shown to be 

favoured by endothelial cells in the absence of glucose [140], in contrast high glucose levels 

have also shown to increase fatty acid oxidation [141]. While the purpose of fatty acid oxidation 

in endothelial cells was not known for a long time, a recent study showed that this metabolism 

is used for DNA synthesis and cellular proliferation during angiogenesis and not preferably for 

redox homeostasis or energy production [142]. When the enzyme carnitine 

palmitoyltransferase-1 (CPT1), that transports fatty acids to mitochondria for oxidation, was 

silenced in endothelial cells it showed reduction in cell proliferation in vitro and higher 

permeability of endothelial cell monolayers causing leaky blood vessels in vivo [143]. Also 

studies using 13C tracer-based experiments in endothelial cells showed that fatty acids were 

used for generating nucleotides through salvage pathways [142].   

 

Amino acid metabolism is still not very well studied and remains unclear in its role in 

angiogenesis. Endothelial cells have shown to take up glutamine through the amino acid 
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transporter SLC1A5 and system N family of amino acid transporters [144] and have shown to 

produce glutamine from glutamate during nutrient starvation [145]. Knocking down of 

glutaminase activity, that converts glutamine to glutamate in endothelial cells, has shown to 

inhibit endothelial cell proliferation and induction of senescence-like cellular state [146]. On the 

other hand, smaller changes in additional metabolic pathways of endothelial cells have been 

recognized. In the hexosamine biosynthesis pathway, another branch of glycolysis, the 

conversion of fructose 6-phosphate into glucosamine 6-phosphate which is then metabolized to 

uridine diphosphate N-acetylglucosamine, a substrate for glycosylation reactions, has been 

found to be important for cell signaling aspects in endothelial cells [147]. In the polyol pathway 

aldose reductase produces sorbitol from glucose utilizing NADPH. Deficiency of aldose 

reductase has shown to reduce the excess angiogenesis in vascular retinopathy [148] and 

decrease VEGF-induced angiogenesis [149]. 

 

Metabolism of glycogen in endothelial cells is yet to be explored and the presence of glycogen 

have been reported in very few studies [150-152]. Some evidences have been observed from 

preliminary studies with human umbilical vein endothelial cells (HUVECs) in our laboratory, 

showing that glycogen reserve and metabolism may be important for angiogenic processes of 

the endothelial cells. Glycogen is found completely utilized when glucose is depleted under 

normoxia but is found to be conserved under hypoxia. In addition, flux analysis of the 13C 

labelling patterns in glucose-derived glycogen in endothelial cells have shown that there could 

be an active turnover of glycogen and could be related to endothelial cell survival observed 

from the in vitro experiments with glycogen phosphorylase (GP) enzyme inhibitor [135].  

While it is important to understand the metabolic pathways in endothelial cells and changes 

caused during angiogenesis, comparing them with the metabolic pathways in tumours can 

provide us with common pathways that could be explored as therapeutic strategies against 

cancer and tumour angiogenesis.  
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1.3. Endothelial cell metabolism vs. cancer cell metabolism 

 

Our understanding of the signalling pathways in blood vessel formation have shown some 

powerful targets, based on targeting pro-angiogenic factors like VEGF, to reduce tumour 

angiogenesis and cause cancer regression. But eventually these therapies have proven 

inefficient in completely stopping the tumour growth due to development of therapeutic 

resistance and causing cancer relapse [20], probably switching to alternative mechanisms for 

blood vessel formation. Even if pro-angiogenic pathways other than those related to VEGF may 

be upregulated by cancer cells with anti-VEGF therapy, all angiogenic regulations end up in 

metabolic changes which are the downstream responses to such signalling pathways. Thus in 

the recent years endothelial cell metabolism has been explored in finding alternative targets for 

reducing endothelial proliferation and angiogenesis [153]. Figure 1.2 shows the general 

metabolic pathways of cancer cells and endothelial cells, illustrating the similarities between 

the metabolic characteristics in both the cells, in order to explore therapeutic clues for 

targeting both types of cells as an anti-cancer strategy.  

 

Cancer cells are known to be highly glycolytic, displaying Warburg effect even in the presence 

of oxygen and producing high lactate in its environment [154]. They show elevated expression 

of PFKFB3, inducing PFKFB3-driven glycolysis for proliferation [155,156]. As discussed in the 

previous section, endothelial cells are also reported to be highly glycolytic, especially in the 

migratory tip cells [157] and VEGF stimulation has shown to upregulate the expression of 

PFKFB3 whose inhibition causes decreased vessel sprouting and branching [119,158]. In the 

highly glycolytic tumour microenvironment cancer cells competitively utilize glucose, producing 

a huge amount of exogenous lactate and leaving the stromal cells to exploit the lactate or other 

sources of energy. Endothelial cells reportedly showed higher expression of monocarboxylate 

transporter 1 (MCT1) which enables lactate influx into the cells [159] and an upregulation of 

LDH-B, that enables exogenous lactate to enter into cellular metabolism, by tumour endothelial 

cells [160]. In some cases lactate is shown to be pro-angiogenic, where lactate-induced 

angiogenesis through endothelial MCT1 was observed in tumours [161]. 
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Figure 1.2: Endothelial and cancer cell metabolism. The metabolic pathways that show similarities between 

endothelial and cancer cells are illustrated, in addition to the known cellular functions linking each of these 

pathways. Glycolysis is upregulated both in endothelial and cancer cells, especially in the migratory endothelial 

cells. Glycogen degradation is important for both endothelial and cancer cell survival, especially during hypoxia and 

low glucose conditions in cancer cells. PPP aids in redox homeostasis in both endothelial and cancer cells, while 

also promoting angiogenesis. Mitochondrial activity is upregulated in endothelial cells during cellular mechanical 

stress and defective glycolysis and helps in endothelial apoptosis during vessel regression, while low levels of 

mitochondrial ROS induces angiogenic signalling. In the case of cancer cells though mitochondrial activity is found 

to be generally lower, it is found to change depending on the type of tumour and environmental conditions. The 

conversion of glutamine to glutamate is important for both endothelial and cancer cell survival and proliferation. 

Fatty acid oxidation was found to contribute to nucleotide synthesis and cell proliferation in the case of endothelial 

cells, while it aids in redox homeostasis and ATP generation for cancer cell survival. For clarity purposes only the 

main reactions and metabolites that have shown commonalities between the cell types are shown in this figure 

and enzymes are highlighted in blue. αKG – α-ketoglutarate, Ac-CoA – acetyl-CoA, F1,6P2 -  fructose 1,6 

bisphosphate, F2,6P2 - fructose 2,6 bisphosphate, F6P - fructose 6-phosphate, FA - fatty acid, FAO – fatty acid 

oxidation, G1P – glucose-1-phosphate, G3P – glyceraldehydes-3-phosphate, G6P – glucose-6-phosphate, G6PD -

 glucose-6-phosphate dehydrogenase,  glc – glucose, GLS - glutaminase, GP – glycogen phosphorylase, GS – 

glycogen synthase, GSn - glutamine synthetase, hyp – hypoxia, Lactate Ex. – extracellular lactate, NADH – 

nicotinamide adenine dinucleotide (reduced), NADP+/NADPH – nicotinamide adenine dinucleotide phosphate 

(oxidised/reduced), Non-Ox. PPP – non-oxidative branch of PPP, Ox. PPP – oxidative branch of PPP, PFKFB3 - 6-

phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3, PPP - pentose phosphate pathway, R5P - ribose 5-

phosphate, Ru5P - ribulose 5-phosphate, TCA - tricarboxylic acid, TKT -  transketolase.  

 

On the other hand, mitochondrial respiration and its preference for ATP production is, in 

general, less active in cancer cells [81], though in some cases the mitochondrial activity is found 
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upregulated [162], while in endothelial cells mitochondrial respiration has shown to be 

favoured during sheer cellular stress and when glycolysis is compromised [123,124], as 

discussed in the previous section. Oxidative PPP is found important for both cancer cells and 

endothelial cells for redox control during stressful conditions in both the cell types while in 

endothelial cells PPP is also used to promote angiogenesis [135,163]. Fatty acid metabolism is 

also found important in both the cell types where cancer cells have shown to use fatty acid 

oxidation for redox homeostasis under stressful conditions and for generating ATP for survival 

[164], while in contrast the endothelial cells have shown to use fatty acids for nucleotide 

synthesis, for cell proliferation, and not significantly for redox homeostasis [142] and they have 

not been reported to rely on fatty acid oxidation for ATP production [119]. On the other hand, 

glutamine is necessary for cancer cell survival and proliferation [165], while in endothelial cells 

glutaminase inhibition and thus inhibiting the conversion of glutamine to glutamate inhibits its 

proliferation and induces senescence [146].  

 

In the case of glycogen metabolism, cancers related to breast, kidney, uterus, bladder, ovary, 

skin and brain were found to accumulate varying and high amounts of glycogen [166]. A type of 

clear cell carcinoma (neoplasms having clear cytoplasm) of the breast cancer was found to be 

rich in glycogen granules and have shown high lymphangiogenesis and extremely aggressive 

behaviour [167]. In addition it was reported in many studies that hypoxia induces glycogen 

accumulation in cancer cells. Upregulation of glycogen synthesis was found to be regulated by 

HIF1α/HIF2α activation and stabilisation in cancer cells [168,169] and upregulates muscle 

isoform of glycogen synthase (GS) enzyme [169-171]. In the case of endothelial cells, glycogen 

was found to be conserved during hypoxia more than under normoxia and it was speculated 

that glycogen metabolism could be important for cellular survival [135]. The similarity of the 

higher glycogen content under hypoxia by both cancer and endothelial cells show that glycogen 

synthesis under hypoxia could be an important therapeutic target to be explored for tumour 

angiogenesis.  

 

These studies show that many metabolic pathways and responses in endothelial cells are 

common to those of cancer cells and some pathways such as the glycogen metabolism that has 
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shown significant changes in angiogenic functions and cancer cell survival remain 

uncharacterized. In order to study further on the unexplored area of glycogen metabolism, we 

intend to understand general characteristics and regulations existing in this pathway.  

 

1.4. Glycogen metabolism as a key target for cancer therapy? 

 

In the cancer cells glycogen content and proliferation rates are found inversely correlated to 

each other and glycogen breakdown is used for sustaining cancer cell growth [166,172]. In 

addition glycogen metabolism in cancer cells has been reported to play an important role to 

overcome stressful conditions like hypoxia and glucose deprivation and to maintain cellular 

proliferation [170]. Cancer cells have also been found to respond to hypoxic condition by 

increasing their glycogen levels and inducing a glycogen turnover [171,173,174]. Moreover, 

glucose deprivation in cancer cells have shown to deplete rapidly the glycogen accumulated by 

hypoxic-induction, while normoxic cells were found to lose viability upon glucose removal 

[174].  Glycogen metabolism has also been implicated to play a protective role during nutrient 

starvation in cancer cells and the importance of targeting GP, the key enzyme catalyzing the 

glycogen degradation pathway has also been reported in many studies. When pancreatic cell 

lines, with GP brain isoform gene knocked down, were treated with 2-deoxy glucose, an 

inhibitor of glycolysis and glucose utilization, it resulted in cell death, reiterating the importance 

of glycogen utilization and also the brain isoform of GP during glucose starvation [175]. In 

addition, depletion of GP enzyme in cancer cells is found to reduce cell proliferation with 

concomitant reduction in PPP flux and increase in ROS production [170,176]. In gastric cancer 

cell line increased activity of brain isoform of GP and glycogen breakdown was observed to 

reduce cancer cell apoptosis upon serum starvation [177].  

 

Multiple uses of glycogen metabolism in cancer cells have been proposed, in account of 

previous studies, in Zois et. al., where it can be used for generating ATP, biosynthesis of 

macromolecules for cell proliferation or ROS scavenging through PPP. On the other hand, while 

acute hypoxia can increase glycogen accumulation, prolonged hypoxia and/or starvation can 
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induce glycogen degradation through increased GP expression which provides energy to the 

cells and protects from ROS [170,178,179]. Thus under hypoxia, glycogen reserves in cancer 

cells seem to play an important role for cellular protection. Furthermore it was shown that 

while hypoxia markedly increased glycogen levels of cancer cells in vitro, treatment with the 

anti-angiogenic drug bevacizumab [180], in an in vivo glioblastoma xenograft model 

upregulated the glycogen regulating genes and the hypoxia marker CA9 [170]. It has to be 

noted that anti-angiogenesis treatment indeed would create a hypoxic microenvironment 

within the tumour by disrupting the blood vessels and oxygen delivery to cancer tissues, and 

when this event is correlated with the upregulation of glycogen levels it opens a therapeutic 

window of targeting glycogen metabolism in combination with anti-angiogenic therapy in 

treating cancer. Thus the reported studies also show that glycogen accumulation and 

metabolism in cancer could be related to the hostile environment it is exposed to. The tumour 

microenvironment is mostly deprived of oxygen and nutrients and the cancer cells are 

subjected to constant stressful conditions. Rapid ATP production by glycolysis and a readily-

available source like glycogen could be an immediate resolution for cellular survival [178], 

which could be an important anti-cancer strategy to exploit in the future. 

 

Interestingly some anti-cancer therapies that are under clinical trials have either shown 

apparent changes in glycogen metabolism within the tumour or have had a history of glycogen 

metabolic changes reported in other cell types. For example, lithium which has shown changes 

in glycogen metabolism in several cell types like astrocytes, rat liver and salivary glands [181-

183], is under clinical trials for testing against prostate cancer (NCT02198859). In addition to its 

effects on glycogen metabolism in normal cells, lithium has shown to inhibit glycogen synthase 

kinase - 3β (GSK-3β) and affect growth in tumours such as ovarian cancer [184,185], 

endometrial cancer [186], gliomas [187], neuroendocrine tumours [188], leukemia cells [189], 

colorectal cancer cells [190] and prostate cancer [191,192]. Another drug valproate is under 

clinical trials in combination with bevacizumab for advanced cancers (NCT01552434) and it was 

implicated for the upregulation of PYGB, the brain isoform of GP, and decrease in glycogen 

accumulation in the skeletal muscles in McArdle’s disease, a glycogen storage disorder [193]. In 

addition, the type 2 diabetes drug metformin, as discussed in the section 1.1.4, is under clinical 
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trials for cancer therapy in combination with other anti-cancer and anti-angiogenic drugs and it 

has been observed that this drug stimulates the glycogen utilization in myeloid leukaemia cells 

and in lung, prostate and breast cancer cell lines [194,195]. These studies prove that anti-cancer 

therapies influence the glycogen metabolism, and in turn targeting glycogen metabolism can 

affect the cancer cell viability especially when combined with other strategies like inducing 

hypoxia and depleting nutrient sources. Thus glycogen metabolism can be a novel therapeutic 

target for treating cancers and can prove to be an effective strategy when combined with anti-

angiogenic or other conventional anti-cancer treatments. 

 

1.5. Glycogen metabolism and its regulation 

 

Glycogen is a glucose storage form in animals, which is made of polymers of glucose attached 

to the protein glycogenin and is primarily cytosolic. An equivalent form of glucose polymer is 

stored in plants in the form of starch [196]. Liver and muscle are the major glycogen storage 

tissues in the body and their metabolisms have been studied extensively, while research has 

also revealed the importance of glycogen metabolism in brain function and survival during 

stressful conditions [197-199]. Other cells that are known to metabolize glycogen are kidney, 

heart and fat tissues [200-203]. It is reported that the first discovery of glycogen, in liver tissues, 

was around 160 years ago in 1857 by Claude Bernard [204]. Liver uses its glycogen to maintain 

blood glucose homeostasis, that is, it mainly stores glucose to release it to the neighbouring 

tissues when glucose is deprived, while skeletal muscle uses glycogen for its own energy 

requirements during extreme activities or ‘fight or flight’ response. In the brain tissues both 

astrocytes and neurons have been found to store little glycogen but possess an active 

metabolism, the former has been speculated to use the metabolism as an altruistic purpose to 

provide substrates for neurons, while the latter uses it to protect brain function from hypoxic 

damage [197,205,206].  

 

The structure of glycogen consists of a central glycogenin protein to which glucose units are 

attached linearly by α(1-4)-glycosidic bonds and the branches are attached by α(1-6)-glycosidic 



22 
 

bonds, as shown in Figure 1.3a. An accepted model of glycogen molecule consists of inner B-

chains with two branch points each and outer A-chains with no branches (Figure 1.3b). 

Mathematical modelling suggested that the observed average length of about 13 glucose 

residues per branch in mammalian glycogen is optimal for glucose storage and mobilization 

[207-209]. The molecule is not just composed of glucose moieties but also associated with 

various proteins like glycogenin, the enzymes GS, GP and the debranching enzyme (DBE), 

regulatory proteins such as phosphorylase kinase, protein phosphatase IG family and the β-

subunit of AMP-activated protein kinase (AMPK) [210,211]. 

 

 

Figure 1.3: Structure of glycogen. (a) Glucose moieties are linked by α-1,4-glycosidic bonds linearly and by α-1,6-

glycosidic bonds at the branching points. (b) The glycogen structure showing a tiered model of inner B-chain, 

connected to glycogenin (black circle) and outer A-chains, with B-chain proposed to carry two branches on an 

average and the outer A-chains remain unbranched. Copyrights: Roach et al., 2012, licensee: Portland press Ltd. 

 

The metabolism of glycogen, illustrated in Figure 1.4, is mainly regulated by the rate-limiting 

enzymes – glycogen synthase and glycogen phosphorylase. GS catalyzes the formation of 

glycogen by the addition of UDP-glucose molecules to the glucose polymer and GP induces the 

breakdown of glycogen to glucose-1-phosphate (G1P). These enzymes are controlled by 

mechanisms such as covalent modification (phosphorylation/dephosphorylation) and allosteric 

regulation. The addition or removal of phosphate group can activate/deactivate the key 

enzymes, while the allosteric regulators regulate the phosphorylated/dephosphorylated forms 

of the enzymes [212-214]. Glycogen degradation is mediated by two other enzymes in addition 

to GP, where glycogen DBE removes the branches of the glucose moieties and makes way for 

 

 
a b 
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GP to act on the main chains and phosphoglucomutase (PGM) converts G1P generated by 

breaking down of glycogen to glucose-6-phosphate (G6P) [215] to enable it to enter glycolysis, 

PPP or gluconeogenesis. Also along the glycogen synthesis there are other enzymes involved in 

addition to GS, where UDP-glucose pyrophosphorylase converts UTP to UDP-glucose for use in 

glycogen synthesis and glycogen branching enzyme (GBE) mediates the formation of α(1-6)-

glycosidic bonds at the branches [216]. Co-ordinated action of GS and GBE generates spherical 

forms of granular glycogen called β-particles that are ~20-50 nm in diameter and can have up to 

55000 glucose units. β-particles can aggregate to form larger α-rosettes that are ~200 nm in 

diameter as seen in liver cells. This highly branched structure facilitates solubility in cytosol, 

providing many docking sites for the glycogen-binding proteins [178]. The rates of glycogen 

formation and breakdown depends on the rates of phosphorylation/dephosporylation of the 

key enzymes and in turn are controlled by hormones like glucagon, insulin and epinephrin in 

liver and muscle tissues [217]. 

 

1.5.1. Regulation of glycogen phosphorylase  

 

In mammals three isoforms of GP enzyme have been discovered – the liver isoform (molecular 

weight, 97 kDa) which mediates glycogen degradation for the glycaemic needs of the other 

neighboring cells, muscle isoform (97 kDa) and brain isoform (96.6 kDa) mediating glycogen 

utilization by the respective tissues for their own energy requirements. Many types of cells 

have been reported to express a variation of these isoforms of GP [218-220]. On the other 

hand, the function of GP enzyme depends on its activation state and as mentioned in the 

section 1.5, the GP enzyme is activated or inactivated by the mechanism of reversible 

phosphorylation, at a single site of phosphorylation at the N-terminus serine residue 14, and 

regulated allosterically at several GP sites [221]. The active or phosphorylated form of GP is 

represented as GPa and the inactive or dephosphorylated form as GPb. This reversible 

phosphorylation process involves a bicycle enzyme cascade system in which GP is 

phosphorylated to active GPa form by the enzyme phosphorylase kinase, which is 

phosphorylated and activated by protein kinase A (PKA), also with Ca2+, where PKA is activated 
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in the presence of the intracellular signalling molecule cyclic-AMP (cAMP). While the 

dephosphorylation and inactivation to GPb form occurs by protein phosphatase 1 (PP1) [212].  

 

 

 

Figure 1.4: Glycogen metabolism. An illustration of the general metabolic pathways related to glycogen shows, the 

uptake of extracellular Glcout by the cells by GLUT receptors, which in turn is converted to Glc-6-P and is subjected 

to a reversible conversion to Glc-1-P and then synthesis of glycogen is achieved by forming the intermediary UDP-

Glc. Glycogen is degraded to Glc-1-P, which is converted to Glc-6-P either for generating ATP by further glycolysis 

or mitochondrial oxidation, or could be converted to Glc in the case of liver cells, which can also generate Glc from 

lactate or pyruvate by gluconeogenesis. Glycogen can also be degraded by lysosomal activity. BE - branching 

enzyme, DBE - debranching enzyme, GAA - lysosomal α-glucosidase, GNG – gluconeogenesis, Glcout - extracellular 

glucose, Glcin - intracellular glucose, GN – glycogenin, GS - glycogen synthase, G6Pase – glucose-6-phosphatase, HK 

– hexokinase, PH - glycogen phosphorylase, PGM – phosphoglucomutase, UGPPase - UDP-glucose 

pyrophosphatase, UP - UDP-glucose pyrophosphorylase. Copyrights: Roach et al., 2012, licensee: Portland press 

Ltd. 

 

Apart from the covalent modification, the GP enzyme is subjected to allosteric regulation by 

the effectors like ATP, AMP and G6P which are the intracellular sensors of the cellular 

metabolic state and cause conformational changes to GPa or GPb, thus converting them into 

more or less active states. The allosteric effectors can bind to several regulatory sites in GP 

such as the catalytic site, purine nucleotide inhibitor site, AMP site, glycogen storage site and 

the indole inhibitor site [221]. Both GPa and GPb exist in T (tense) and R (relaxed) states and 

switch from one form to another by the binding of the allosteric ligands. Normally the 



25 
 

equilibrium of GPa favours the R-state and so it is usually active, and that of GPb favours the T-

state and is inactive. T-state is the less active form of GP having low affinity for the substrate, 

on the other hand, R-state is the active form of GP having greater substrate affinity [212].  

 

Figure 1.5 illustrates the activation/inactivation of GP and GS, affected by 

phosphorylation/dephosphorylation mechanisms and allosteric effector binding regulating GP 

enzyme activity. The allosteric effectors induce the shift to T- or R-states of the GP depending 

on the enzyme isoform and the metabolic state of the tissues concerned. In the case of muscle 

isoform of GP, the GPb is the most responsive form for inter-conversion between T- and R-

states. Since the glycogen utilization in muscles is mainly for its own energy production, the 

transition between T- and R-states of the GPb form depends on the levels of the energy 

substrates - AMP and ATP. AMP is found to be a potent activator of muscle and brain isoforms 

of GP, by favouring the R-state of GPb and hence inducing the conversion of GPb to GPa form, 

increasing the activity of GP [221,222]. On the other hand, the GPb form is shifted to a less 

active T-state in the presence of ATP which makes it completely inactive, while G6P also shows 

a feedback inhibition of GPb by shifting it to the T-state. Glucose and caffeine are also found to 

stabilize the T-state of the enzyme [212,222,223]. While in the liver, since the glycogen 

metabolism is important for producing glucose for the neighbouring cells when blood glucose 

levels are low, and does not depend on its own energy requirements, the GP activation is not 

effective in the presence of AMP but reacts to the levels of glucose [223,224]. Glucose can shift 

the GPa form of the liver isoform towards the T-state thus making it less active and conserving 

the glycogen content to utilize during starvation. Also caffeine has shown to act synergistic 

with glucose, and stabilize the T-state of the liver isoform of the enzyme [223]. In the case of 

brain GP, AMP has shown to be a potent activator like in the muscle isoform, while G6P has 

shown to be a weak inhibitor of GPb, suggesting that brain isoform favours activators than 

inhibitors at the AMP catalytic site which normally binds both AMP and G6P [222,225]. In 

addition, while astrocytes co-express muscle and brain isoforms of GP [220], a recent study 

showed that the muscle isoform of GP responded to hormonal stimulation such as 

norepinephrine, whereas the brain isoform responded to an increase in AMP levels during 

glucose starvation, reporting the importance of GP regulation in astrocytes in brain [226]. 
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Figure 1.5: Glycogen phosphorylase and glycogen synthase enzyme regulation. The regulation of glycogen 

metabolism by GP and GS enzymes and by phosphorylation/dephosphorylation and allosteric regulators is shown. 

(a) The GP enzyme is converted to the active GPa form by active PK phosphorylation and is converted back to GPb 

inactive form by PP1 mediated dephosphorylation of the enzyme. GPa and GPb forms exist in equilibrium between 

the more active R-state and less active T-state. Allosteric effectors like AMP converts the T-state GPa and GPb to R-

state GPa and GPb, respectively, thus activating them. Other effectors like glucose, caffeine, ATP and G6P convert 

the GPa and GPb forms to the less active T-state. (b) The GS enzyme activated to GSa form by dephosphorylation 

with PP1, favoured by the allosteric effectors like ATP, glucose, G6P and caffeine. The conversion to inactive GSb 

form is achieved by phosphorylation of GS involving GSK3, PKA, AMPK, CK1 and CK2 and GPK, while cAMP and Ca2+ 

favour the inactive GSb form. (c) Major classes of GP inhibitors developed based on the binding sites in GP. AMP – 

adenosine monophosphate, AMPK – AMP-activated protein kinase, ATP – adenosine triphosphate, cAMP – cyclic-

AMP, CK1 and CK2 – protein kinases, DAB - 1,4-dideoxy-1,4-imino-d-arabinitol, G6P – glucose-6-phosphate, GSK3 – 

glycogen synthase kinase 3, GP – glycogen phosphorylase, GPK – phosphorylase kinase, GS – glycogen synthase, PK 

– phosphorylase kinase, PP1 – protein phosphatase 1, PKA – protein kinase A, R-state – relaxed state, T-state – 

tense state. Copyrights: Zois et. al., 2014, licensee: Elsevier. 

 

 

1.5.2. Regulation of glycogen synthase 

 

Two kinds of isoforms of GS have been identified – the liver isoform (molecular weight, 81 kDa) 

expressed predominantly in liver and the muscle isoform (84 kDa) expressed in many other cell 

types in addition to skeletal muscle. In contrast to GP, the enzyme GS has multiple 

phosphorylation sites, in which 9 different sites have been identified in muscle isoform near    
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N- and C-terminus out of which Ser7 (site 2), Ser641 (site 3a) and Ser645 (site 3b) are confirmed as 

key regulators of the GS activity [227,228]. The liver isoform of GS has been reported to possess 

seven phosphorylation sites, homologous to that of the muscle isoform [229]. The 

phosphorylation takes place in a hierarchical manner [230] by kinases such as PKA, protein 

kinase C (PKC), protein kinases CK1 and CK2, phosphorylase kinase, GSK-3 and cAMP-dependent 

protein kinase (cAMPK) [231]. 

 

In the case of GS the cAMP cascade phosphorylates and inactivates the enzyme (GSb form), 

where either PKA or phosphorylase kinase can phosphorylate GS, whereas PP1 

dephosphorylates, in turn activating the GS enzyme (GSa form) [217]. The 

phosphorylated/inactive GSb loses the affinity for the substrate UDP-glucose, while the 

allosteric activator G6P can make conformational changes to GS to make it a better substrate 

for PP1 to covalently dephosphorylate and convert the inactive GPb to the active GSa form 

(Figure 1.5) [232]. Insulin plays a role in inducing the activation of GS by activating the insulin 

receptor tyrosine kinase, which in turn activates PI3K and Akt pathway inhibiting GSK3 and 

activating PP1 that causes the dephosphorylation of GS [214]. 

 

1.5.3. Existing therapies targeting glycogen metabolism 

 

Glycogen metabolism has been traditionally targeted for the metabolic disorder type 2 diabetes 

[233] using inhibitors developed for the enzymes regulating this metabolism such as GP or 

GSK3β [233,234]. Many studies have indicated that targeting the enzymes regulating glycogen 

metabolism can also have beneficial effects in diseases other than diabetes, such as cancer 

[235,236], Alzheimer’s disease [237] and stroke [238]. 

 

The two key enzymes modulating glycogen synthesis and degradation, GS and GP, respectively, 

can be efficient therapeutic targets that can directly affect the abnormal glycogen accumulation 

or utilization. No specific inhibitors for GS have been identified, speculated due to the 

complicated regulatory mechanism involved [178]. On the other hand, he enzymes GSK3β and 
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AMPK, that indirectly affect the glycogen synthesis pathway by phosphorylating and 

inactivating GS, are studied extensively as therapeutic targets in diseases such as diabetes, 

obesity, cancer and neurological disorders, where GSK3β plays an important role in many 

cellular functions like proliferation, differentiation, motility and survival [239] and AMPK has 

been shown to regulate cellular energy homeostasis [240]. Lithium, like valproate, is a drug 

which is already in use for bipolar disorders [241], has been found to inhibit other types of 

enzymes in the glycogen metabolism, such as  PGM, that catalyzes the reversible conversion of 

G1P to G6P, in rat brain and increases the phosphorylation of GS in astrocytes inhibiting 

glycogen synthesis [181-183]. Additionally this compound has been found to inhibit GSK3β in 

cancer cells thus compromising cancer cell survival [189,190] and have led to the clinical trials 

for different types of cancers, as discussed in the section 1.4. 

 

The enzyme GP has been extensively studied as a target for inhibiting glycogen degradation and 

control of hyperglycaemic condition, as it is responsible for the excessive glucose production by 

glycogenolysis in type 2 diabetes [242,243]. In addition it is speculated that GP could make a 

good target for anti-cancer therapy, as a significant glycogen metabolism reprogramming was 

observed in cancer cells under hypoxia and serum starvation conditions that was associated 

with cancer cell survival [170,175,177]. A wide array of GP inhibitors have been developed, 

targeting the effector binding sites such as the allosteric site that binds AMP [244], the inhibitor 

site that binds purines, nucleosides, nucleotides and other heterocyclic compounds [245], 

catalytic site that binds glucose, G1P and inorganic phosphate [246] and a novel inhibitor site 

binding to the indole inhibitors [247], as illustrated in Figure 1.5. AMP-site inhibitors like 

BAY3401 that is metabolized to BAY1807 works by converting GPa to GPb in liver and skeletal 

muscle [248]. The inhibitor site compounds are those that include purines like caffeine and 

adenine, nucleosides and nucleotides like adenosine, AMP, ATP and flavopiridinol which is an 

anti-tumour drug, and these inhibitors block the catalytic site favouring the T-state (reviewed in 

[221,233]). The glucose analogue 4-dideoxy-1,4-amino-D-arabinitol (DAB) is an active-site 

potent liver GPa inhibitor showing greater than 80% inhibition of GP at 5-20 µM [249] and it 

concomitantly inactivates the GS enzyme [250]. The indole carboxamide inhibitors bind to the 

special indole site, thus stabilizing the T-state of GPa [251], which then releases the GPa from 
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inhibition of PP1-GL (the complex of PP1 and glycogen targeting protein GL), in turn activating 

GS and promoting glycogenesis [221,252]. Several indole carboxamides for GP inhibition in type 

2 diabetes have been developed by Pfizer and Astrazeneca (as reviewed in [233,253]). These 

indole inhibitors, such as the commercially available CP-91149 and CP-316819 have been found 

to inhibit GPa synergistically with high glucose or caffeine [242,254,255] and have been studied 

not only in liver but also extensively in brain glycogen metabolism to observe the effects of 

hypoglycaemia and hypoxic ischemia [255-257]. Thus these GP inhibitors targeting the different 

binding sites of GP have proven to be effective in the direct inhibition of glycogen degradation 

and can be useful for studying the effect of blocking glycogen metabolism in various disease 

models.  

 

1.5.4. Exploring glycogen metabolism in endothelial cells as a key target in 

angiogenesis 

 

Glycogen metabolism in endothelial cells has not been studied in detail and limited information 

is available on the regulation of enzymes modulating the GS and GP enzymes, as reported in the 

section 1.2. Hence the therapeutic importance of targeting glycogen metabolism in endothelial 

cells as an anti-angiogenic strategy is still yet to be uncovered. Some in vitro studies on diabetic 

endothelial progenitor cells, where the inhibition of GSK-3β, have shown to reduce their 

apoptosis, improving the cell yield, attributing to the therapeutic improvement of the 

progenitor cell therapy in diabetes mellitus [258]. A preliminary study from our laboratory has 

shown a significant accumulation of glycogen in HUVECs under normoxia and a higher 

accumulation under hypoxia, similar to the case of cancer cells [135,169]. The process of 

angiogenesis begins with angiogenic signalling by factors such as VEGF, FGF, etc., as discussed 

in the section 1.1.2, and hypoxia further induces the expression of these factors (section 

1.1.3.2.1). Thus the accumulation of glycogen or its active metabolism by endothelial cells 

under hypoxia might be related to a protective role, as in the case of cancer cells and neurons 

[174,256]. Also, as discussed in the section 1.4, the anti-angiogenesis treatment in an in vivo 

tumour model showed that targeting blood vessel formation accompanies reprogramming of 
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glycogen metabolism, upregulating hypoxia in the tumour microenvironment [170]. Hence a 

combined therapy targeting glycogen metabolism and inducing hypoxia could have an effective 

response against endothelial cell survival and angiogenesis. In addition the utilization of 

glycogen under glucose depletion in endothelial cells [135] shows that glycogen could be an 

important alternative fuel in needs of emergency, which can also be explored as a target 

accompanying hypoglycaemic condition. 

 

Furthermore, the preliminary in vitro study conducted in our laboratory on the inhibition of the 

endothelial GP enzyme showed that it compromised the cell viability [135], which indicates that 

glycogen metabolism could be important to sustain endothelial cell survival. Thus from these 

studies it is clear that glycogen metabolism is important for endothelial cells and eventually for 

angiogenesis, but we do not have sufficient information as to how it influences the endothelial 

cell activities. Thus a complete characterization of the endothelial glycogen metabolism is the 

need of the hour to understand the key regulatory pathways and further studies on targeting 

the key enzymes of glycogen metabolism could help in recognizing the key roles of glycogen 

reserves in endothelial cell survival and angiogenic activities. 

 

1.6. Omics-based methods for studying cellular metabolism 

 

For many years biological research has been focused on reductionist approach, where studies 

on single gene, protein and its function or a pathway are explored. Yet this approach cannot aid 

in comprehending the complexity of biological systems, in which individual biological 

components are connected together in a network [259]. This prompted to develop methods 

based on holistic approach where studies of biological components using different methods are 

integrated together and a holistic response to certain perturbations are studied, which is 

termed as Systems Biology [260]. Since the beginning of mapping of the genomes a number of 

omics-based research has been developed, such as proteomics, transcriptomics, genomics, 

metabolomics, lipidomics and epigenomics, that involve the global analysis of proteins, RNA, 

genes, metabolites, lipids and modified histone proteins in chromosomes, respectively [261]. 
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The data sets generated from these studies are so huge and they encompass high-throughput 

techniques and strong methodologies to support the global biological study [262] that the 

omics can be rightly termed as a scientific field, rather than a method. 

 

Metabolome is the complete set of metabolites in a cellular system and metabolomics is the 

study of the metabolome and its interactions via metabolic pathways and enzymes involved 

[263]. Biological systems have been studied using genomics, proteomics and transcriptomics 

approaches for a number of years, and according to Medline statistics the studies published up 

to the year 2013 are about 120036 for genomics and 50810 for proteomics alone and only 7613 

studies have been published on metabolomics (Statistics retrieved on 9 Jan 2016, 

http://dan.corlan.net/medline-trend.html). Metabolomics is emerging as a powerful approach 

and gives much deeper information of a biological system as the metabolites and their 

variations directly reflect the underlying biochemical state of the cells and hence best 

represents a molecular phenotype [263]. Different strategies have been used to perform 

metabolomics studies, such as the non-targeted metabolomics involving global metabolic 

profiling and the targeted metabolomics approach where concentrations of known metabolites 

are measured [263]. Fluxomics is a different approach of metabolomics in which a dynamic 

picture of the phenotype is generated using labelled metabolites as tracers and this can 

complement the metabolomics study that provides a static view of a cellular metabolic profile 

[264]. Nuclear magnetic resonance (NMR) and mass spectrometry (MS) based analytical 

techniques are most widely used for metabolomics measurements. While NMR is advantageous 

over MS in the context of simple sample preparation techniques and has a high analytical 

reproducibility, it lacks the sensitivity that the MS-based techniques can provide [263]. 

 

1.6.1. Fluxomics 

 

A quantitative metabolomics study of the upregulation or downregulation of metabolite 

contents can provide information about the metabolic footprint, which is only a snapshot of the 

biological system. However, a 13C tracer-based metabolomics study can provide a descriptive 
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map of the changes in the metabolic network, showing pathways that are most affected by a 

treatment and the contribution of nutrients for the production of other metabolites. The rates 

of transformation of metabolites by the enzymes can be associated with the genetic control of 

the enzymes and these can aid in identifying therapeutic targets in diseased cells [265]. Isotopic 

tracers are powerful in following the metabolic reactions to determine the origin and fate of a 

metabolite within cells, together with the magnitude of the reaction fluxes [266]. Although the 

consumption and production of extracellular metabolites can be assessed by measuring the 

concentrations in the spent medium in time-dependent manner, intracellular metabolites are 

maintained under dynamic balance between production and consumption and the reaction 

fluxes can be assessed by using metabolites labelled with isotopes such as 13C or 2H [267,268]. 

The fate of the heavy isotopes through the metabolic network can be experimentally assessed, 

which provides information on the use of alternative pathways and the relative magnitudes of 

the associated fluxes [269]. 

 

Flux analysis can imply stationary and non-stationary experiments according to the kind of final 

result anticipated. On the one hand, stationary experiments involve measuring the labelling 

patterns at the end-points when they become invariant with respect to time, that is when 

isotopic equilibrium is reached [270]. In this case, the measurement of these labelling patterns 

are completely independent of metabolite levels and can be useful to compare the relative 

contributions of different pathways for the change of an intermediate. On the other hand, in 

the non-stationary experiments kinetics of tracer flow through the pathways are measured 

before the isotopic equilibrium is reached [271,272] and needs more than one experimental 

time point and metabolite levels. 

 

The estimation of fluxes based on 13C tracer-based metabolomics experiments can use a 

combination of different methods, such as the direct interpretation of the labeling patterns and 

computational model-based approaches [273,274], that are described in the section 1.6.1.2. In 

our study, described in Chapter 4.1, we have applied a combination of both the approaches 

mentioned above, in order to estimate the fluxes in the central carbon metabolic network and 



33 
 

to observe the relative contributions of the metabolic pathways, induced by different cellular 

treatments. 

 

1.6.1.1. 13
C tracer-based metabolomics experiments 

 

Tracking the flow of changes along a metabolic pathway is made possible by using stable 

isotopes such as 13C, incorporated in the substrate that can enter into the pathway of interest. 

The 13C tracer-based metabolomics experiments involve the incubation of a cell culture with 

labelled substrates like 13C-glucose or 13C-glutamine and measuring the percentage of the 

labelled carbons in the downstream products. The measured metabolites are chosen from the 

pathways of interest and the labelled carbons are incorporated in unique numbers and 

positions in the metabolites depending on the cellular condition [275]. In the context of 13C 

labeling for a specific metabolite, there is a possibility of 2n number of isotopomers, which are 

the isotopic isomers depending on the position of labelled carbons. In addition, there can be 

n+1 possible number of isotopologues (or mass isotopomers) which are the isotopic isomers of 

different masses depending on the different number of 13C substitutions and are irrelevant of 

the position of the labeled carbons [275]. For example, in the case of a three carbon metabolite 

such as lactate, the possible numbers of isotopomers are 2n, i.e., 23 = 8, where the 13C labels can 

be incorporated in the positions C1, C2 and C3, while the labeled lactate isotopologues can be of 

n+1, i.e., 3+1=4 numbers, depending on the number of carbons labeled (m0: 12C1-12C2-12C3; m1: 

13
C1-12C2-12C3, 

12C1-13
C2-12C3, 

12C1-12C2-13
C3; m2: 13

C1-13
C2-12C3, 12C1-13

C2-13
C3, 13

C1-12C2-13
C3; m3: 

13
C1-13

C2-13
C3). 

 

While MS based techniques can distinguish between isotopologues [276-278], NMR can deduce 

positional information or the isotopomers [279,280]. Different label choices are present for 

performing 13C tracer-based metabolomics and they can be chosen according to the outcome 

that is needed, in case if a global picture of all reaction fluxes involved in central carbon 

metabolism is necessary or just those fluxes of some chosen pathways are sufficient. It is also 

taken into account that a single tracer might not give all the necessary flux distributions in all 
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the interested pathways. In these cases parallel experiments can be performed with different 

tracers and the flux analysis can later be combined and incorporated into the flux model [281]. 

The most widely used tracers are based on 13C-glucose and 13C-glutamine as they are the main 

substrates for most of the cell types. The tracer [1,2-13C2]-glucose is considered one of the most 

useful ones and allows for studying the overall central carbon metabolism including glycolysis, 

PPP, glycogen metabolism, fatty acid synthesis and TCA cycle, at the expense of glucose 

metabolism (Figure 1.6 shows part of the analysis that can be done using [1,2-13C2]-glucose 

tracer) [282]. 

 

 

 

Figure 1.6: 
13

C-mediated metabolomics experiment using [1,2-
13

C2]-glucose. Illustration of 13C label flow through 

possible metabolic pathways in the central carbon metabolism [275]. Use of [1,2-13C2]-glucose as a tracer allows us 

to estimate the fluxes through majority of the pathways such as glycolysis, PPP, glycogen synthesis and 

degradation and fatty acid synthesis. The measurement of isotopologue distribution of RNA ribose in R5P 

molecules can help in quantifying the percentage of m1-ribose ([1-13C1]-R5P) with respect to that of m2-ribose 

([1,2-13C2]-R5P) which helps in identifying the relative contribution of oxidative to non-oxidative branches of PPP, 

respectively, for the production of R5P, needed for nucleotide synthesis. On the other hand, the measurement of 
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1.6.1.2. Estimation of metabolic fluxes based on 
13

C labelling patterns 

 

Intracellular fluxes in central carbon metabolism are not directly measurable, but they can be 

deduced by using 13C labelled nutrients as cellular substrates. When these labelled nutrients 

metabolize, the unique rearrangement pattern of the 13C tracers through the metabolic 

pathways can give us an idea of the flux pattern through the central carbon metabolism [283]. 

The estimation of metabolic fluxes and the relative contributions of certain metabolic pathways 

based on 13C labelling patterns can be performed using a variety of methods, from direct 

interpretation to computational modelling methods, which are described below. 

 

1.6.1.2.1. Direct interpretation of fluxes or 
13

C tracer analysis 

 

Direct interpretation of 13C labelling patterns, termed as “13
C tracer analysis”, is a simple 

approach that allows the understanding of the relative pathway activities, pathway 

  

 

isotopologue distribution in glucose derived from the cellular glycogen gives the contribution of glycolysis (direct 

from glucose) and the combination of glycolysis and PPP pathways to the synthesis of glycogen from the 

percentages of m2-glucose ([1,2-13C2]-glucose) and m1-glucose ([1-13C1]-glucose/[3-13C1]-glucose), respectively. In 

the case of m1-glucose ([1-13C1]-glucose/[3-13C1]-glucose) for glycogen, this labelled molecule is re-introduced into 

glycolysis to F6P from the non-oxidative branch of PPP and which in turn by the reversible conversion of F6P into 

G6P, enters into the glycogen synthesis.  The relative contributions of glycolysis and the combination of glycolysis 

and PPP pathways to the production of lactate is estimated by quantifying m2-lactate ([2,3-13C2]-lactate) and m1-

lactate ([3-13C1]-lactate), where [3-13C1]-lactate is produced when m1-ribose ([1-13C1]-ribose) produced from 

oxidative PPP is re-introduced into glycolysis through the non-oxidative PPP. The tracer incorporation in fatty acids 

palmitate and stearate are measured by quantifying 13C in even-numbered masses m2, m4, m6.., of these 

metabolites which are synthesized either by the addition of [1,2-13C2]-ACoA from m2-glucose ([1,2-13C2]-glucose) 

through glycolysis. Only the isotopologue distributions of main metabolites are shown for clarity purpose. The 

procedures used for the measurements and analysis of the isotopologue distributions are detailed in the Methods 

sections 3.12 and 3.14. 6PG – 6-phosphogluconate, 6PGDH – 6-phosphogluconate dehydrogenase, ACoA – acetyl-

CoA, Cit – citrate, F16BP – fructose-1,6-bisphosphate, F6P – fructose-6-phosphate, G1P – glucose-1-phosphate, 

G3P – glyceraldehydes-3-phosphate, G6P – glucose-6-phosphate, G6PD – glucose-6-phosphate dehydrogenase, GS 

– glycogen synthase, GP – glycogen phosphorylase, PPP – pentose phosphate pathway, Pyr – pyruvate, R5P – 

ribose-5-phosphate, Ri5P – ribulose-5-phosphate, TALDO – transaldolase, TKT – transketolase, X5P – xylulose-5-

phosphate.
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contributions via alternative metabolic routes and the contributions of nutrients for the 

production of different metabolites [269]. For this purpose we apply simple analytical formulas  

based on the previous knowledge of the metabolic pathways to perform this direct 

interpretation of 13C labelling patterns [275]. Flux ratios within the main biochemical 

pathways, as shown in Figure 1.6, can be estimated using simple calculations. For example in 

PPP, the relative contribution of fluxes in oxidative to non-oxidative pathways can be estimated 

from the measurement of labels in ribose, where oxidative branch yields m1 ribose and non-

oxidative branch yields m2 ribose. In the case of glycogen, the measurement of labelled glucose 

from glycogen yields the percentage of m2-glucose that is produced directly from glucose 

(glycolysis) and m1-glucose is produced via PPP and glycogenesis combined together, as 

detailed in Figure 1.6. The percentage of glucose metabolism for the contribution of fatty acid 

synthesis can be estimated by measuring the even-numbered masses, m2, m4, m6... of the 

fatty acids palmitate and stearate. In addition, the measurement of isotopologue distribution in 

lactate combined with lactate concentrations can estimate the flux ratio of 13C from glucose 

through glycolysis and PPP. 

 

1.6.1.2.2. Computational modelling based flux estimation or 
13

C metabolic flux 

analysis 

 

In contrast to the direct interpretation of fluxes or 13C tracer analysis, mentioned above, in the 

13C metabolic flux analysis approach the metabolic fluxes are computationally estimated using 

more descriptive methods, by combining the labelling patterns in intracellular metabolites, the 

rate of consumption and production of metabolites by the cells and a prior knowledge of the 

biochemical reaction network [269]. Together with the direct interpretation of fluxes through 

simple formulas, we apply a 13C metabolic flux analysis strategy that intends to reduce the 

solution space for fluxes by using the data from the cellular uptake and secretion rates of 

metabolites and biochemical reactions from prior knowledge as constraints that impose system 

boundaries [269]. In addition, by an iterative procedure, the propagation of labels measured as 

the isotopologue distributions in metabolites representative of the pathways under study, are 
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used to additionally reduce the solution space. Although the 13C metabolic flux analysis 

approach has the disadvantage of the necessity of computational tools to be developed, it is 

highly advantageous over direct interpretation method. The computational method helps to get 

a holistic information by constructing metabolic networks and validating the 13C tracer analysis 

conclusions with a more detailed model, which can take into account the fundamental 

metabolic constraints such as the conservations affecting NAD/NADH or acetyl-CoA/CoA. This 

can provide a simple biochemical model with fewer number of measured rates of metabolites 

sufficient to estimate the fluxes in the model [284]. 

 

1.6.2. Targeted and untargeted metabolomics 

 

The tracer-based metabolomics, or in other words fluxomics discussed in the previous section, 

is a targeted analysis using labelled nutrient sources in which the relative contributions of 

metabolic pathways for the production of certain metabolites are studied. Whereas, 

metabolomics is the study of a set of metabolites and their concentration changes in a 

biological system [263,285]. Relative quantitative changes of metabolites (their upregulations 

or downregulations), without requiring an in-depth knowledge of pathway contributions, is 

sufficient to discover biomarkers [286,287] and are widely used in clinical studies and also have 

been adopted in other fields such as food safety and environmental contaminant analysis [288-

290]. The metabolomics study can typically be classified into two categories: targeted 

metabolomics and untargeted metabolomics based on the outcome expected and the 

methodology used [263,291,292], as shown in Figure 1.7. Targeted metabolomics is used to 

study the changes of already known metabolites that are associated with a specific pathway, 

chemical or biological activity [263]. Untargeted metabolomics is a relatively more 

comprehensive analysis of metabolites which aims to analyze all the detectable metabolites in a 

biological sample [263,285]. The experiments involving untargeted analysis are mostly 

hypothesis generating rather than hypothesis driven as in the case of targeted analysis [293]. 

The untargeted analysis typically involves a generic extraction, chromatographic separation and 

detection of analyte ions, data pre-processing and analysis, followed by identification of 
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Figure 1.7: Two types of quantitative metabolomics. The changing metabolome in a biological system can be 

quantified using two types of approaches, (a) targeted and (b) untargeted metabolomics. Both kinds of approaches 

differ in the aim of the study and the methodologies used. In the case of targeted analysis levels of known 

metabolites are analyzed and it needs the use of analytical standards for method development and setting the 

retention time and m/z parameters and to set up calibration curve for quantification. The experimental samples 

are then analyzed using this prior information, to find the concentrations and changes among the control and 

treated samples. In the case of untargeted analysis the aim is to explore the global metabolic profile of the samples 

and if possible also validate the metabolites that could be identified from the untargeted data. The sample extracts 

are simply passed through the LC-MS with a generic method for LC separation, MS ionization and detection and 

the full scan data are subjected to basic data analysis tools for peak alignment and filtering. Then selected ion may 

be subjected to MS/MS fragmention and fragment match could be found using several online tools and databases 

available in recent times for the untargeted data analysis for metabolite identification. Figure acquired with 

permission from NPG (Patti et. al., 2012). 

 

interested metabolites without a priori information [294]. A targeted metabolomics analysis is 

carried out according to a specific scientific problem and needs a thorough design of the 

methodology including the knowledge of all the metabolites analyzed. In addition it has the 

disadvantage of the need for the use of analytical standards for all the metabolites under study 

for quantification purpose, which can sometimes increase the expenses of the study, and a 

prior knowledge of the properties of the metabolites analyzed is required [263]. On the other 

hand, untargeted metabolomics can be very useful to characterize an unknown biological 

system. Hence, a global methodology for sample extraction and sample analysis can be carried 

out and the outcome can provide a preliminary view of metabolite changes in the system [295]. 

The suspected metabolites can further be validated using fragmentation of selected masses and 
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comparing with the fragmentation information in online databases [263,296] and if needed, 

standards can be used for comparing the fragmentation information of the expected 

metabolites [295]. Typically, sample analysis for untargeted metabolomics experiments are 

carried out with high resolution mass spectrometers (HRMS) like the Time of Flight (TOF) or 

Orbitrap-based instruments. These provide high resolution and mass accuracy with full scan 

capability, which will aid in resolving metabolites having close range molecular masses 

[263,297-299]. This type of study does not require extensive planning like in the case of 

targeted analysis, and can be a good starting point to continue the study for further targeted 

analyses, if required [296]. Typically, liquid chromatography coupled to mass spectrometry (LC-

MS) has been widely used for untargeted analysis due to its wide coverage of metabolites 

studied, according to their physical properties such as volatility, thermal stability and polarity 

[292], while in some cases gas chromatography coupled to MS (GC-MS) and NMR have also 

been under use [295,296]. 

 

1.6.2.1. LC-MS-based untargeted metabolomics 

 

Mass spectrometry based untargeted analysis is one of the techniques, more powerful when 

used with a high resolution detector like an Orbitrap-based mass spectrometer, that is widely 

used for metabolite identifications in recent times [300,301]. In short, MS based untargeted 

analysis can be described as a holistic study of the entire metabolome of the system that 

consists of combining the accurate mass measurements and MS/MS fragmentation patterns to 

search for similar structures in databases for identifying the metabolites [285,300]. It is a large-

scale analysis and encompasses step-by-step procedures, as described in the Figure 1.8, for 

sample preparation, sample analysis through the chromatography-mass spectrometer, 

comprehensive data analysis to filter the unwanted features and select those that are relevant, 

fragmentation of the selected ions and comparison with database [302]. These steps can be 

customized according to the goals and outcomes of the study and several tools have been 

developed for data analysis purpose [286], which is one of the main steps of this procedure.
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Figure 1.8: A general methodology for untargeted analysis. This figure illustrates a step-by-step procedure for 

carrying out the untargeted analysis and can be customized according to the types of samples studied and the 

outcome of the results expected. The general methodology involves biological sample collection, sample 

preparation according to the type of metabolites to be extracted and the instruments used, then sample run and 

data acquisition using LC-MS or GC-MS based instruments. Then spectral data collection and pre-data analysis 

which involves preparation of the raw data for further analysis and once the raw data is corrected for baseline, 

peak aligned and noise filtered, the main data analysis is carried out for detecting metabolites from the features of 

the raw data. The data analysis part can encompass some chemometric tools for performing univariate or 

multivariate analyses, in which classification of the experimental groups can be done and the most changing 

features can be extracted. Then for the metabolite identification part, the masses of the interesting features can 

be fragmented and the fragmentation pattern can either be confirmed using online database tools or using 

fragmentation patterns of reference standards, at which point biomarkers can be identified. Then according to the 

outcome of the results required, biological interpretation can be done by pathway analysis or metabolite set 

enrichment analysis. 

 

A typical untargeted analysis involves generic extraction of metabolites from the biological 

specimen, followed by data acquisition in full scan HRMS instrument, data pre-processing and 

data analysis. In order to aid identification, HRMS with faster scan times, high mass resolution 

and accuracy combined with a full scan capability and fragmentation in a dedicated cell is 

preferred [303]. Reverse phase or hydrophilic interaction chromatography coupled with HRMS 

provides a robust platform to analyze diverse group of metabolites and 

therefore is widely used for metabolomics [263,304]. In LC-MS based untargeted metabolomics, 

thousands of peaks can be detected from biological specimens and they correspond to unique 

mass-to-charge ratios (m/z) and retention times (RT), which are termed as features [263]. 
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However, it has to be noted that the number of metabolites that can be analyzed is dictated by 

the number of metabolites that can be extracted and ionized in the ion source. Data pre-

processing include baseline correction, noise filtering, peak detection, RT alignment and 

deconvolution procedures. Untargeted data analysis typically involves chemometric tools like 

the univariate or multivariate statistics to observe if there is really a difference between the 

control and treated groups, from the global metabolic features extracted [286,295]. A major 

bottleneck in untargeted metabolomics is the identification of unknown features and relating it 

to the suspected metabolites. Orthogonal data from HRMS like accurate mass of precursor ion 

match, fragmentation pattern match and isotopic pattern match are normally used for aiding 

the identification of the metabolites [300,302]. A common way for metabolite identification is 

to query the high resolution spectral libraries with m/z values of precursor ions and matching 

them with the fragmentation patterns. However, the number of metabolites available in high 

resolution spectral libraries is low [305].  

 

Metabolite identification is a key step to get any biological meaning from the acquired data. 

There are some useful online tools developed for the purpose of analyzing targeted and 

untargeted metabolomics data which have embedded database search tools and can also 

provide a list of the possible metabolite identifications of the aligned features [300]. For 

example XCMS Online is one such web-based untargeted metabolomics data analysis tool 

which detects and aligns features, performs statistical analysis of the raw data and provides 

cloud plots, heat maps and principal component analysis (PCA) plots of the control vs. 

treatments groups in the system and in addition provides tentative metabolite identifications 

and pathway interpretations [306]. 

 

The identified metabolites could further be associated with corresponding metabolic pathways 

and pathway analysis is a method that has been adopted in recent years to achieve this, which 

provides an additional insight into the metabolism of the biological system [307]. 

MetaboAnalyst 3.0 is a web server that was developed for metabolomic data processing, 

statistical analysis and find biologically meaningful patterns using metabolite set enrichment 

analysis (MSEA) [308]. Their pathway analysis and enrichment analysis tools are based on 
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databases such as the specialized metabolic pathway databases (SMPDB) and richly annotated 

metabolite databases like the human metabolome database (HMDB) [308,309]. They were 

developed especially for metabolomics studies and they use the high-quality Kyoto 

Encyclopedia of Genes and Genomes (KEGG) metabolic pathways as a background knowledge 

base [309].  Overall these tools aid in a reliable identification of the most changing metabolites 

using the untargeted method and even without further validations this analysis can be powerful 

in identifying the overall metabolome changes. Although further targeted analysis could be 

performed to validate the identified metabolites, untargeted analysis is the first step necessary 

to understand the unknown metabolome in a biological system using the holistic approach 

which will give huge insights for narrowing down the study further to achieve the expected and 

unexpected outcomes [296]. 
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OBJECTIVES 

 

 

The main objective of this thesis is to explore the metabolic plasticity of endothelial cells, using 

HUVECs as a model cell line, and probe into alternative strategies targeting tumour 

angiogenesis. Accordingly, we have studied the metabolic adaptation of endothelial cells in the 

presence of different microenvironmental stimulants, exploring therapeutic targets based on 

the altered metabolic pathways and have characterized the endothelial glycogen metabolism 

which has not been explored before. The main objective of the thesis is sub-divided into the 

following specific objectives:  

 

1. Characterization of HUVEC metabolism using fluxomics and untargeted metabolomics to 

reveal its metabolic reprogramming in the presence of VEGF, hypoxia and the 

metastatically different sub-populations of prostate cancer cells. 

 

2. Investigation of the inhibition of glycogen phosphorylase as a therapeutic target against 

tumour angiogenesis.  

 
3. Characterization of the glycogen metabolism in HUVECs under normoxia and hypoxia 

and exploring the enzyme isoforms expressed in HUVECs.    

 
The successful outcome of these studies will help in understanding metabolic pathway changes 

that have not been explored before in endothelial cells and enable us to find therapeutic 

relevance of key metabolic pathways as targets against pathological angiogenesis. 
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MATERIALS AND METHODS  

 

3.1. Cell culture conditions 

 

Human Umbilical Vein Endothelial Cells (HUVECs-pooled, Lonza) were maintained on 1% 

gelatine-coated flasks at 37°C in a humidified atmosphere of 5 % CO2 and 95 % air in MCDB131 

(Gibco, Life Technologies) medium, supplemented with recommended quantity of endothelial 

growth medium SingleQuots (EGM, Lonza), 10 % fetal bovine serum (FBS) (Gibco, Life 

Technologies) and 2 mM glutamine (Gibco, Life Technologies). The normoxia experiments were 

carried out at humidified atmosphere with 5 % CO2 at 37°C for the indicated time periods and 

hypoxia experiments were carried out in the same conditions but with 1 % O2. For all the 

experiments, unless otherwise specified, the cells were seeded in 1% gelatine-coated cell 

culture plates and kept for attachment to plate surface for 6h and then the medium was 

replaced to the MCDB131 basal medium, supplemented with 2 % FBS, 2 mM glutamine and 0.1 

% Streptomycin (100 µg/mL)/Penicillin (100 units/mL) (Gibco, Life Technologies), incubating 

overnight for nutrient deprivation, before starting the experiment with a specifically-modified 

medium. The nomenclatures used for the experimental substrate conditions for growing cells 

or for reporting the cells themselves in these conditions, throughout this thesis, are given as, 

CM – complete medium, which contains a basal medium supplemented with 10 % FBS, Lonza 

EGM SingleQuots, 2 mM or 4 mM glutamine, with or without glucose and 0.1 % 

streptomycin/penicillin mixture; RM – restricted medium containing a basal medium 

supplemented with 2 % FBS, 2 mM or 4 mM glutamine, with or without glucose and 0.1 % 

streptomycin/penicillin mixture; RMV – restricted medium with VEGF containing a basal 

medium supplemented with 30 ng/mL human recombinant VEGF165 (Miltenyi Biotec), 2 % FBS, 

2 mM or 4 mM glutamine, with or without glucose and 0.1 % streptomycin/penicillin mixture. 

 

For the 13C metabolomics and fluxomics experiments (Chapter 4.1), 2 × 105 cells were seeded 

for normoxia and 1 × 106 cells for hypoxia. After nutrient deprivation (represented as time 0h), 

the medium in the cells were replaced with fresh MCDB131 RM (control condition) and 
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MCDB131 RMV, both media supplemented with 10 mM of 50 % [1,2-13C2]-glucose (Sigma-

Aldrich) and were incubated for 40h. For the glycogen time course experiment the cells were 

processed at time periods of 3h, 7h, 24h, 40h and 72h. The media and cells at initial (t = 0h) and 

final time points were collected. Cells generated for RNA-ribose and fatty acids assays were 

trypsinized and counted using a ScepterTM Handheld Automated Cell Counter (Merck Millipore, 

Billerica, MA, USA), and both cell pellets and media were kept frozen (at -80°C and -20°C, 

respectively) for further processing. Cells generated for glycogen content and label estimation 

were processed as mentioned in glycogen processing for 13C tracer experiments in the section 

3.12.7. 

 

For the untargeted metabolomics experiments (Chapter 4.2), the PC-3/M and PC-3/S cell sub-

populations, derived clonally from the human prostate cancer cell line PC-3 as described in 

Celia-Terrassa et. al. [310], were co-cultured with HUVECs. Both PC-3 sub-populations were 

maintained at 37°C in a 5 % CO2 atmosphere in RPMI 1640 (Sigma-Aldrich or Biowest) medium 

supplemented with 10 mM glucose, 2 mM glutamine, 10% FBS (PAA Laboratories), 1% pyruvate 

(1 mM) (Biological Industries), 1% streptomycin (100 µg/mL)/penicillin (100 units/mL) and 1% 

nonessential amino acids (Biological Industries). HUVECs were seeded in 6-well plates (Falcon) 

coated with gelatin and after 6h they were deprived of nutrients/hormones with DMEM 

(Sigma) RM overnight. Simultaneously, PC-3/M and PC-3/S cells were seeded in cell culture 

inserts supported in separate 6-well plates (Falcon) in RPMI complete medium. After 24h all the 

cells were washed with PBS and DMEM RM was added to all the cells, specifically 1.5 mL to the 

lower wells containing HUVECs and 1 mL to the upper inserts containing PC-3/M or PC-3/S cells. 

The inserts were placed over the wells, ensuring that the insert membranes with PC-3/M and 

PC-3/S cells were in contact with the medium in the wells with HUVECs. For the control cells, 

2.5 mL of only DMEM RM was added to the wells containing HUVECs without inserts. For VEGF 

treatment the negative control medium was supplemented with 30 ng/mL of VEGF and added 

to HUVECs in wells without inserts. Following a 24h incubation under normoxia, the inserts with 

PC-3/M and PC-3/S cells were discarded, HUVECs trypsinized, and cells from 3 wells were 

combined for each sample replicate and counted. Then the pellets were frozen with liquid 

nitrogen, to be stored at -80°C until extraction. 
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For the glycogen characterization experiments (Chapter 4.4), DMEM-based media (no glucose, 

Gibco) was used and 3 set of samples – corresponding to cells incubated in  RM, RMV and CM, 

were generated. HUVECs for all sample sets were seeded (4 × 105 cells for RM/RMV and 2 × 105 

for CM conditions) initially in complete medium with 15 mM glucose. The HUVECs under CM 

condition were maintained with complete medium and 15 mM glucose for 24h and then 

complete medium without glucose was replaced to the cells. HUVECs under RM condition were 

deprived with restricted medium and 15 mM glucose, overnight, and then restricted medium 

without glucose was replaced to the cells. HUVECs under RMV were first deprived off nutrients 

overnight, like in the case of HUVECs in RM, and then restricted medium with VEGF and 15 mM 

glucose was added and incubated for 3h for the cells to adapt to the VEGF condition. Then the 

medium was changed to restricted medium with VEGF, without glucose. From all the three 

substrate conditions, HUVEC samples were extracted before (0h) and after 1h, 5h and 24h of 

replacing the media without glucose. The above experimental design was carried out for 

normoxia experiment. In the case of hypoxia experiment, HUVECs with CM, and those with RM 

and RMV after nutrient deprivation and 30 ng/mL VEGF added to the RMV cells, were pre-

conditioned in hypoxia for 3h with glucose for the cells to adapt to the low oxygen environment 

and then kept incubated for 5h without glucose in hypoxia. The cells at initial time point with 

glucose (t = 0h) and at final time points without glucose (1h, 5h, 24h for normoxia and 5h for 

hypoxia) were collected and processed for glycogen extraction, as described in the section 

3.12.7. 

 

3.2. Cell viability assay 

 

Cell viability assay was performed using a modified method described by Mosmann [311]. 5 × 

103 HUVECs per well were seeded in triplicate cultures in CM, in 96-well flat-bottom plates. 

After 24h the medium was replaced with fresh media containing increasing concentrations of 

each of the tested compounds - CP316819 (Sigma), CP-320626 (kindly provided by Dr. Loranne 

Agius, Newcastle, UK), CP-91149 (Sigma), Isofagomine (Santa Cruz Biotechnology), BAYU6751 

(Sigma), 1,4-dideoxy-1,4-imino-d-arabinitol (DAB, Sigma) and Ketoconazole (Sigma). After 72h 

of incubation, the cell culture medium was removed and 100 µL of a mixture of fresh cell 
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culture medium and 1 mg/mL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) in PBS was added to each well. After 1h incubation the MTT solution was removed and 

100 µL of dimethyl sulfoxide (DMSO) was added to each well in order to dissolve the formazan 

product. Absorbance of the formazan solution in each well, which is proportional to initial cell 

number, was measured at 550 nm using an ELISA plate reader (Tecan Sunrise MR20-301, 

TECAN, Austria). From the results, the concentrations of each compound, needed to inhibit 50% 

of cell viability with regards to the control condition, were estimated. 

 

3.3. Cell migration assay 

 

For this cell migration assay, transwell HTS FluoroBlokTM Multiwell Insert System with 8 µm 

pores (Becton Dickinson) was used with 24-well cell culture plates (Falcon). The upper and 

lower surfaces of the insert membranes were coated with 15 µg/mL of Type I Collagen for a 

minimum of 30 min at 37°C and then 5 × 104 HUVECs were seeded on the upper surface of the 

inserts in 100 µL of non-supplemented endothelial basal medium (EBM, Lonza) without serum 

and incubated for 4h at 37°C. Then 500 µL of EGM with 10% FBS and SingleQuots supplements 

(Lonza) containing the inhibitors at varying concentrations (10, 40 and 100 µM of CP-316819, 

BAYU6751, Isofagomine and 40 and 100 µM of DAB) was added to the lower wells of the 24-

well plates. For the negative control 500 µL of only EBM and for positive control 500 µL of only 

EGM were added to the lower wells. After 24h of incubation at 37°C the cells that had migrated 

to the lower surface of the inserts were stained with Calcein-AM (Calciochem, Merck) at a 

concentration of 5 µM in EBM with 0.1% FBS for 30 min at 37°C under dark conditions and then 

the migrated cells were counted under a light microscope at a magnification of X10. All samples 

were normalized with respect to the positive control, which shows the maximum possible 

migration and is assumed to be 100%. 
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3.4. In vitro wound healing assay 

 

The in vitro wound healing assay (or scratch assay) was performed based on a modification of 

previously described protocols [312,313]. Before beginning the experiment the outer bottoms 

of the wells of 12-well plates were cross-marked with a razor blade or an ultra-fine marker as 

reference for the scratch to be created. 2 × 104 HUVECs were then seeded in gelatin-coated 

wells with CM and incubated for 24h at 37°C until a confluent monolayer is formed. Then 

scratches were created on the cellular monolayer using a p200 pipette tip and the debris were 

removed by washing the wells with cell culture medium without FBS or supplements. Cell 

culture media was then replaced with 1 mL of fresh media (CM for positive control, only 

MCDB131 medium without any factors for negative control, and 40 and 100 µM of CP-316819 

in CM) and incubated for 14h and 21h at 37°C. Images before scratching and after scratching at 

0h and at 14h and 21h of incubation were captured using phase-contrast microscope, and the 

capacity of the compounds to alter wound healing capacity was assessed visually in the treated 

samples with respect to the positive control which is assumed to have the maximum wound 

healing capacity. 

 

3.5. In vivo matrigel plug assay 

 

This procedure involving animal experimentation was carried out in collaboration with the 

Leitat Technological Center (Barcelona). Five groups of male C57BL6 10-week-old mice were 

supplied by Harlan Iberica (Barcelona). Each group containing 10 animals were used for this 

experiment. A matrigel mix was prepared for each group of animals: for the negative controls, 

5.5 mL of growth factor reduced matrigel without phenol red (Becton Dickinson) was mixed 

with 64 U/mL of heparin (Sigma); for positive controls, 250 ng/mL VEGF (Isokine) was mixed 

with the matrigel-heparin mix; for the treatment groups, either 10 µM or 50 µM of CP-316819, 

or 50 µM of Ketoconazole was mixed with the matrigel-heparin-VEGF mix. 500 µL of each of the 

matrigel mix was injected subcutaneously in the abdominal part of each of the mice in their 

respective groups. After 7 days the mice were sacrificed, then the matrigel was removed and 
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the haemoglobin content from the blood vessels formed in the matrigel was measured using 

Drabkin reagent (Sigma), according to supplier recommendations. The haemoglobin quantified 

was normalized with the respective mg matrigel. 

 

3.6. In vivo tumour efficacy assay 

 

This in vivo assay was carried out in collaboration with the Leitat Technological Center, 

Barcelona. Two groups of 6-weeks old female nude mice (Hsd:Athymic Nude-Foxn1nu nu/nu 

strain), supplied by Harlan Iberica (Barcelona), were used in this study. A volume of 100 µL of 

PBS/Matrigel (1/1) containing about 5 × 106 human myelomonocytic leukemia MV(4;11) cells 

(DSMZ) was injected subcutaneously in each mice. After cell injection, the tumour growth was 

monitored by measuring the weight of the animals and the volume of tumours with a caliper 

three times a week, until it reached an inferred mean tumour volume of approximately 150 

mm3. Then the animals were sorted to select those with the most homogenous tumour values 

and divided into two groups with 7 animals each. The mice in one group were treated with 25 

mg/Kg of the compound CP-316819 orally, while the mice in the control group were treated 

with only the vehicle (DMSO 10%/(2-Hydroxypropyl)-β-cyclodextrin 20 %), every alternate day 

for 2 weeks. The tumour volume and weight of the mice were monitored simultaneously. 

Tumour growth was calculated using the formula, V = (Dxd2)/2, where V = volume, D and d are 

the longest and shortest axes of the tumour, respectively. The relative tumour volume (RTV) 

was calculated based on the formula: 

RTV	�%� = 100	 ×	
median	of	tumour	volume	at	the	end	of	treatment	

median	of	tumour	volume	before	treatment	
 

The results were analyzed using GraphPad Prism 3.02 software. After two weeks of treatment 

the mice were sacrificed, their blood was extracted by cardiac puncture, and the tumours were 

excised and weighed. The tumours were embedded in optimum cutting temperature (O.C.T) 

compound (Tissue-Tek®, Sakura) and paraffin for immunostaining analysis. For assessing the 

tumour microvessel density, the cryosections of the central part of each tumour were fixed 

with acetone/chloroform (1:1), treated with H2O2 and after blocking with 2% PBS-BSA / 5% 
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rabbit serum (Vector) and Avidin-biotin blocking solution (Dako) they were incubated with a rat 

anti-mouse monoclonal antibody against CD31 (dilution 1;200, BD PharMingen). After 

incubation with a biotinylated polyclonal anti-rat secondary antibody (dilution 1:500, Vector) 

and avidin-biotin complex (ABC) reagent (Pierce), the sections were then incubated with 

NovaRed (Vector) and stained with hematoxilin Harris (Sigma) and mounted using DPX non-

aqueous mounting system (Sigma). The quantification of angiogenesis was done based on the 

following two calculations: 

M.V. D	�Microvessel	density�

= 	10! 					× 	
Sum	of	vessels	of	each	tumour	�image	A + image	B + ⋯+ image	N�

Area	of	one	tumour	in	µm)	�area	A + area	B + ⋯+ area	N�
 

A.A	�fractional	area	of	vessels�

= 	
Area	of	vessels	of	each	tumour	�image	A + image	B + ⋯+ image	N�

Area	of	one	tumour	in	µm)	�area	A + area	B + ⋯+ area	N�	
 

The surface areas of the images were expressed in µm2 and the unit of the M.V.D formula was 

expressed in mm2. The image analysis was done using NIH ImageJ software. 

 

3.7. Biochemical measurement of extracellular metabolites 

 

Extracellular metabolites such as glucose, lactate, glutamine and glutamate were quantified 

from cell culture media using COBAS MIRA plus spectral analyzer (Horiba ABX, Japan), by 

monitoring at 340 nm wavelength the production of NADPH in specific reactions involving the 

respective metabolites. The concentration of glucose was measured using hexokinase (HK) and 

G6PD coupled enzymatic reactions (ABX Pentra Glucose HK CP, HORIBA ABX, France). The 

concentration of lactate was measured by LDH reaction carried out at 37°C by mixing the media 

samples with 1.55 mg/mL NAD+ and 87.7 U/mL LDH (Roche) in 0.2 M hydrazine, 12 mM EDTA 

buffer (final buffer pH 9.0). The glutamate concentration is determined by the conversion of 

glutamate in the media samples to α-ketoglutarate by glutamate dehydrogenase (GDH) in the 

presence of ADP. For this purpose, 2.41 mM ADP, 3.9 mM NAD+ and 39 U/mL of GDH (Roche) in 

0.5 M glycine/0.5 M hydrazine buffer (pH 9) were added to the media samples and the reaction 
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was carried out at 37°C. Glutamine concentration was determined by first converting it to 

glutamate through glutaminase (GLS) reaction, incubating the media with 125 mU/mL GLS in 

125 mM acetate buffer (pH 5) for 30 min at 37°C in agitation and then the glutamate obtained 

was quantified by the method described above. The actual glutamate measured was subtracted 

from the total glutamate concentration (obtained by converting glutamine to glutamate) to 

obtain the concentration equivalent to the actual glutamine concentration in the cell culture 

media. 

 

The consumption/production rates of the metabolites were calculated by measuring the 

metabolite concentrations in cell culture media, at initial and final time points, and were 

normalized with respect to both cell numbers and incubation time (h). Results were expressed 

in micromols of metabolite consumed or produced per hour per million cells. 

 

3.8. Protein extraction and determination 

 

The total protein was extracted from the cell cultures at the end of the experiment by washing 

the cells twice with ice-cold PBS and scrapping them from the plates with a lysis buffer 

containing 20 mM Tris HCl (pH 7.5), 1 mM dithiothreitol (DTT), 1 mM EDTA, 0.2 g/L Triton X-

100, 0.2 g/L sodium deoxycholate, 0.4 mM phenylmethylsulfonyl fluoride (PMSF), 1% protease 

inhibitor cocktail and 1% phosphatase inhibitor cocktail (Thermo Fisher Scientific Inc.). Then the 

scrapped extract was incubated in ice for 20 min before the cell lysates were disrupted by 

sonication using a titanium probe (VibraCell, Sonics & Materials Inc, USA) and centrifuged at 4°C 

for 20 min at 12000 g. The resulting supernatant was recovered for protein content estimation, 

which was determined according to BCA kit (Pierce Biotechnology) instructions. 

 

3.9. Enzyme activities 

 

Fresh cell cultures were washed with ice-cold PBS and the cells were lysed using the method 

mentioned in the previous section 3.8. Enzyme activities were performed using COBAS MIRA 
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spectrophotometer, monitoring the increment or decrement of NADPH at 340 nm wavelength. 

The enzyme activity results were normalized using proteins estimated from the supernatant of 

the cell lysates. 

 

3.9.1. Glucose 6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) 

 

G6PD specific activity was measured by incubating the protein extracts with 0.5 mM NADP+ in 

50 mM Tris-HCl (pH 7.6) at 37°C and the reaction initiated by adding glucose 6-phosphate at a 

final concentration of 2 mM. 

 

3.9.2. Glycogen synthase (GS, EC 2.4.1.11) 

 

For this enzyme activity 1.2 × 106 HUVECs were seeded in p60 plates and after the glucose 

deprivation experiment explained in section 3.1 for glycogen characterization, the fresh cell 

cultures were used for measuring GS activity. The GS enzyme activity was measured by 

determining the incorporation of radioactive UDP-[14C]-glucose in glycogen (Thomas, Schlender, 

1968). The cells were homogenized by adding ice-cold buffer containing 10 mM Tris-HCl (pH 7), 

150 mM KF, 15 mM EDTA, 15 mM 2-mercaptoethanol, 0.6 M sucrose, 1 mM benzamidine, 1 

mM PMSF, 1% protease inhibitor cocktail and 1% phosphatase inhibitor cocktail. The scrapped 

cell lysates were incubated in ice for 20 min and then sonicated and centrifuged as described in 

section 3.8. The supernatants were collected for GS enzyme activity measurement. 

 

In this method the enzyme activity was measured in the presence and absence of the allosteric 

activator G6P. The GS activity measured in the presence of G6P (+ G6P) corresponds to the total 

amount of enzyme and that measured in its absence (– G6P) corresponds to the active 

(unphosphorylated) GS form. The ratio of the activities (– G6P / + G6P) gives the estimation of 

the active states of the enzyme and is independent of the total enzyme levels and thus can be 

compared among different cellular conditions and their corresponding GS expressions. To 

measure the GS activity in absence of G6P, 4000 cpm/µL of UDP-[14C]-glucose (PerkinElmer) 
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was used in a solution containing 6.7 mM UDP-glucose, 10 mg/mL glycogen, 50 mM Tris-HCl 

(pH 7.8), 20 mM EDTA and 25 mM KF. Enzyme activity was measured in the presence of G6P 

using 2000 cpm/µL of UDP-[14C]-glucose and 10.8 mM G6P with the rest of the above 

mentioned solution mix. The ratio of the activities – G6P / + G6P gave the normalized value of 

the proportion of active GS in the samples. 

 

The assay was carried out by mixing 20 µL of the samples with 40 µL of the reaction mix, 

prepared as mentioned above, and kept incubated in a 30°C hot bath for 30 min. After 30 min 

50 µL of the sample-reaction mix, for each sample, was deposited on a small piece of 31-ET 

paper (Whatmann) and quickly dropped into 66% ice-cold ethanol, to stop the reaction by 

glycogen precipitation.  The pieces of papers were washed for 10 min with 66% ice-cold ethanol 

and then replaced with fresh 66% ethanol and washed twice at room temperature for 20 min 

each. Then the papers were immediately washed with acetone to remove the residual ethanol 

and dried. After the papers were completely dry they were kept in separate vials containing 

scintillation liquid Ecolite (MP Biomedicals). The radioactivity was measured using a scintillation 

counter, Rack BETA 1217 (LKB). The GS activity was expressed in mU/mg protein. 

 

3.9.3. Glycogen phosphorylase (GP, EC 2.4.1.1) 

 

For the GP enzyme activity the samples were prepared in the same way as mentioned in the 

previous section 3.9.2. This enzyme activity was based on the incubation of GP in conditions 

that force the synthesis of glycogen than its degradation. The activity was carried out by 

measuring the incorporation of [14C]-glucose-1-phosphate ([14C]-G1P), based on a previously 

described technique [314].  

 

This assay was carried out in the presence of 2000 cpm/µL of [14C]-G1P with a reaction mix 

containing 100 mM G1P, 200 mM KF, 1% glycogen and caffeine to a final concentration of 

1mM. In the presence of caffeine, which is an inhibitor of the inactive GPb form, we measure 

the active form of GP (GPa). Same procedure as GS (in section 3.9.2) was carried out for 

processing the samples, beginning with the incubation of samples with GP reaction mix for 30 
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min at 30°C. The GP enzyme activity measured in the presence of caffeine was assumed as a 

representative measurement of active GP in the samples. 

 

3.10. Western blot 

 

Proteins were extracted from the cells contained in fresh or frozen plates using homogenization 

buffer (10 mM Tris-HCl (pH 7), 150 mM KF, 15 mM EDTA, 15 mM 2-mercaptoethanol, 0.6 M 

sucrose, 1 mM benzamidine, 1 mM PMSF, 1% protease inhibitor cocktail and 1% phosphatase 

inhibitor cocktail), following the same method described in section 3.8. Then 50 µg of protein 

for each condition were loaded onto SDS-polyacrylamide gels, separated according to their 

molecular weights using electrophoresis and transferred to polyvinylidene difluoride (PVDF) 

membranes (Bio-Rad). The membranes were then blocked with 3% BSA in 0.1% PBS-Tween 

solution for 1h and subsequently incubated with the different specific primary antibodies 

overnight at 4°C. The membranes were then washed with 0.1% PBS-Tween and incubated with 

appropriate secondary antibodies for 1h in room temperature. The membranes were then 

washed again, treated with Immobilon ECL Western Blotting Detection Kit Reagent (EMD 

Millipore) and exposed to autoradiography films (VWR International), which were then 

developed. The primary antibodies used were: anti-muscle/liver glycogen synthase (MGS/LGS, 

#3886, Cell Signalling Technology), anti-brain glycogen phosphorylase (GPB1, produced by 

Eurogentec, Köln, Germany), anti-liver glycogen phosphorylase (GP2, kindly provided by          

Dr. J.J.Guinovart, IRB, Barcelona) and anti-phospho glycogen synthase, PSer-641/645 (#44-

1092G, BioSource). The secondary antibodies used were: anti-rabbit (NA934V, Amersham 

Biosciences) and anti-chicken (Jackson ImmunoResearch). 

 

3.11. RNA isolation and quantitative reverse transcription-polymerase chain 

reaction (qRT-PCR) 

 

Fresh or frozen plates of HUVECs grown in the CM condition under normoxia were processed 

for RNA isolation using Trizol reagent (Invitrogen) following manufacturer’s instructions. The 
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Trizol lysates were mixed with chloroform and centrifuged in RNAase-free eppendorfs so that 

they would separate into organic and aqueous phases. The aqueous phase was carefully 

collected into another RNAase-free eppendorf containing cold isopropanol and then 

centrifuged at 12000 g for 15 min at 4°C in order to precipitate RNA. The supernatant was 

removed and the pellet was washed with 75% cold ethanol several times, before being dried 

and resuspended in RNAase-free water. Total RNA was quantified using Nanodrop 

spectrophotometer (ND 1000 V3.1.0, ThermoFisher Scientific Inc.). Reverse transcription to 

cDNA was carried out at 37°C for 1h by mixing 1µg of RNA with the kit reagents: 5X Buffer 

(Invitrogen), 0.1 M DTT (Invitrogen), Random Hexamers (Roche), 40 U/mL RNAsin (Promega, 

Fitchburg, USA), 40 mM dNTPs (Bioline, UK) and 200 U/mL and M-MLV-RT (Invitrogen). Then 

gene expression analysis was performed through Applied Biosystems 7500 Real-Time PCR 

System according to manufacturer’s protocol, using the following Taqman gene specific 

sequences: GYS1 (Hs00157863_m1), GYS2  (Hs00608677_m1), PYGL (Hs00958087_m1), PYGB 

(Hs00765686_m1) and PYGM (Hs00989942_m1) (Applied Biosystems, ThermoFisher Scientific 

Inc.). The reaction mixture was prepared with 9 µL of cDNA mixture and 11 µL of the 

corresponding Taqman in Master Mix (Applied Biosystems). The parameters used for carrying 

out the Real-Time PCR were: initial incubation for 2 min at 50°C, denaturing at 95°C for 10 min 

and then 40 cycles at 95°C and 60°C for 15s and 1 min, respectively. The reference gene used 

was Cyclophilin A (PPIA, Hs99999904_m1, Applied Biosystems). Assuming an amplification 

efficiency of 2 the relative abundance of the GS and GP genes with respect to the PPIA gene 

was calculated as 2-ΔC
T, where ΔCT is the difference between the cycle thresholds of the gene of 

interest and the PPIA reference gene. 

 

3.12. 13
C tracer-based metabolomics using GC-MS 

 

For the 13C tracer-based metabolomics analysis, the experiments were carried out with 50% 

[1,2-13C2]-glucose and the samples were collected and stored as described in the section 3.1 for 

fluxomics experiments. Media samples were used for measuring concentrations of the 

extracellular metabolites such as glucose, lactate, glutamine and glutamate, as described in the 

section 3.7, and for analysing the isotopologue enrichment in glucose, lactate, glutamate, 
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alanine, glycine, methionine, aspartate/asparagine, proline and serine. Cell culture plates were 

used for analysing isotopologue distribution pattern in RNA ribose, fatty acids and glycogen.  

 

This isotopologue distribution analysis is carried out using GC-MS from Agilent 7890A GC 

equipped with a HP-5 capillary column and connected to an Agilent 5975C MS (Agilent 

Technologies, USA). Isotopologue distribution pattern in fatty acids were measured using 

GCMS-QP 2012 Shimadzu (Shimadzu Corporation, Japan) equipped with a BPX70 column (SGE 

Analytical Science, Australia). In both cases 1 µL of sample injection at 250°C was carried out, 

with helium as the carrier gas at a flow rate of 1 mL/min. The procedures for metabolite 

isolation, derivatization and GC/MS detection for each of the metabolites are described below. 

 

3.12.1. Glucose 

 

Glucose from cell culture media was isolated using a tandem Dowex column containing Dowex-

1X8/Dowex-50WX8 ion-exchange columns by eluting the metabolite with water. The liquid 

collected from elution was evaporated to dryness with air flow, overnight. Then the isolated 

metabolite was derivatized by first heating it to 100°C with 2% (v/v) hydroxylamine 

hydrochloride in pyridine for 30 min and then with acetic anhydride for 60 min. Then the 

mixture was evaporated with N2 gas flow and the final derivative was dissolved with ethyl 

acetate and injected into GC/MS for analysis under chemical ionisation mode. Sample injection 

was done at 250°C and the oven temperature parameters were programmed to be: 230°C for 2 

min, then increased to 260°C at the rate of 10°C/min, followed by an increase to 270°C at the 

rate of 25°C/min and held for 2 min. The retention time (RT) of the chromatographic peak was 

3.7 min. The detector monitoring was carried out using single ion monitoring (SIM) where the 

ions were monitored in the range of 327-334 m/z for the C1-C6 molecule. 

 

3.12.2. Lactate 

 

For this metabolite, first HCl was added to the cell culture media and the lactic acid formed was 
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extracted with ethyl acetate and the mixture evaporated to dryness under N2 gas flow. The 

lactic acid isolated was derivatized to its lactic acid n-propylamide-heptafluorobutyric ester by 

incubating with 2,2-dimethoxypropane and 0.5N methanolic HCl 75°C for 1h. Then n-

propylamine was added to the mixture and heated for 1h at 100°C and then the samples dried 

under N2 gas flow. The precipitate was then resuspended in ethyl acetate and then filtered 

through a glass wool packed Pasteur pipette. The filtered solution was then dried under a 

stream of N2 gas and then the precipitate resuspended with dichloromethane and 

heptafluorobutyric anhydride and incubated at room temperature for 10 min. The samples 

were again dried with N2 gas flow and resuspended with dichloromethane for GC/MS analysis 

under chemical ionisation mode. Samples were injected at 200°C and the oven temperature 

was programmed as: 100°C for 3 min, increase to 160°C at the rate of 20°C/min and held for 2 

min. The RT of the chromatographic peak was 5.4 min. Ions were monitored by SIM recording 

the ion abundance of C1-C3 molecule in the range of 327-332 m/z. 

 

3.12.3. Glutamate 

 

In this case the cell culture medium was first passed through a Dowex-50WX8 column and then 

the amino acids in the Dowex mesh were eluted with 2N ammonium hydroxide and collected in 

glass tubes and were then dried under airflow overnight. For glutamate derivatization the dried 

precipitate was incubated with butanolic HCl at 100°C for 1h and then was dried under N2 gas 

flow. Then the dried precipitate was dissolved with dichloromethane and trifluoroacetic 

anhydride and incubated at room temperature for 20 min. Then the mixture was dried under N2 

flow and the derivative dissolved with dichloromethane for GC/MS analysis under electron 

impact ionization mode that yields C2-C4 and C2-C5 glutamate fragments. Samples were 

injected at 250°C and the oven temperature was programmed as: 215°C for 2 min, increase to 

224°C at the rate of 9°C/min, then to 233°C at the rate of 3°C/min and held for 2 min. The RT of 

the chromatographic peak was 3.9 min. Ions were monitored by SIM recording the ion 

abundance of C2-C4 fragment in the range of 151-157 m/z and C2-C5 fragment in 197-203 m/z. 
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3.12.4. Amino acids 

 

For amino acids the cell culture medium was treated as in glutamate in the previous section 

3.12.3, by passing through Dowex-50WX8 column and eluting with 2N ammonium hydroxide. 

After drying the solution under airflow overnight the derivatization process was carried out 

with butanolic HCl, dichloromethane and trifluoroacetic anhydride in the same manner as 

described in section 3.12.3. Then the derivative dissolved in dichloromethane was analysed by 

GC/MS under chemical ionisation mode. Samples were injected at 250°C and the oven 

temperature was programmed as: 110°C for 1 min, increase to 125°C at the rate of 10°C/min, 

then to 153°C at the rate of 5°C/min, then to 200°C at the rate of 50°C/min, to 216°C at the rate 

of 5°C/min and held for 1 min and finally to 250°C at the rate of 25°C/min and held for 2 min. 

Ions were monitored by SIM recording the ion abundance for C1-C3 alanine in the range of 241-

246 m/z (RT: 5.3 min), C1-C4 aspartate/asparagines within 341-348 m/z (RT: 11.5 min), C1-C5 

glutamate/glutamine within 383-390 m/z (RT: 12.8 min), C1-C2 glycine within 227-231 m/z (RT: 

5.7 min), C1-C4SC5 methionine within 329-336 m/z (RT: 10.8 min), C1-C4 methionine within 

253-259 m/z (RT: 10.8 min), C1-C5 proline within 295-302 m/z (RT: 9.6 min) and C1-C3 serine 

within 353-358 m/z (RT: 6.6 min). 

 

3.12.5. Ribose 

 

RNA ribose was isolated by treating the cell cultures with Trizol reagent, as described in the 

section 3.11. The purified RNA was then hydrolysed in 2 mL of 2N HCl at 100°C for 2h and the 

solution was evaporated to dryness under airflow overnight. Ribose was then derivatized using 

the same procedure as described for glucose in the section 3.12.1. The GC/MS analysis was 

carried out under chemical ionisation mode. Samples were injected at 250°C and the oven 

temperature was programmed as: 150°C for 1 min, increase to 275°C at the rate of 15°C/min 

and then to 300°C at the rate of 40°C/min. The RT of the chromatographic peak was 5.3 min. 

Ions were monitored by SIM recording the ion abundance of C1-C5 molecule in the range of 

256-262 m/z. 
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3.12.6. Fatty acids 

 

Fatty acids palmitate and stearate were analysed from the interphase and lower organic phase 

obtained from the cell cultures by the addition of Trizol and chloroform (as described in the 

section 3.11). 100% ethanol and 30% potassium hydroxide were added to these two phases to 

hydrolyse the fatty acids. Samples were incubated overnight at 70°C and the free fatty acids 

were extracted twice with petroleum ether and then the mixture evaporated with N2 flow. 

Then the fatty acids derivatives were dissolved in hexane to be analysed using GC/MS under 

chemical ionisation mode. Samples were injected at 250°C and the oven temperature was 

programmed as: 120°C for 1 min and increase to 220°C at the rate of 5°C/min and held for 1 

min. The RT’s of the chromatographic peaks were 9.2 min for palmitate and 11.9 min for 

stearate. Ions were monitored by SIM recording the ion abundance for palmitate in the range 

of 269-279 m/z and stearate in the range of 297-307 m/z. 

 

3.12.7. Glycogen 

 

For quantifying the glycogen content and analyse its isotopologue distribution, the plates of cell 

cultures, after the experiment, were washed twice with ice-cold PBS, scrapped with 0.1 M 

NaOH and heated to 100°C for 15 min for protein denaturation. The samples were then 

sonicated for 5 min 2-3X using an ultrasonic bath (Branson 200 Ultrasonic Cleaner, Emerson 

Industrial Automation, St Louis, MO, USA). The pH of the samples was adjusted to pH 6-7 and 

then a fixed quantity of [U-13C-D7]-glucose was added as an internal standard for all them. Then 

200 µL of 1.25 mg/mL α-amyloglucosidase in 0.4 M acetate buffer was added to digest the 

glycogen and the mixture was incubated overnight at 37°C under agitation. Then both the 

glucose released from glycogen and the glucose internal standard were isolated using Dowex-

1X8/Dowex-50WX8 ion-exchange columns, eluting with water. The eluted samples were then 

dried overnight under airflow. After drying completely the glucose was derivatized in the similar 

procedure described in section 3.12.1. The GC/MS analysis was carried out under chemical 

ionisation. Sample injection, oven temperature and RT parameters were similar to that of 
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glucose in section 3.12.1.  Ions were monitored by SIM recording the ion abundance for C1-C6 

glucose in the range of 327-334 m/z and of [U-13C-D7]-glucose in the range of 339-345 m/z. In 

order to build a calibration curve for the glycogen quantification the same quantity of the 

internal standard [U-13C-D7]-glucose used for the samples above was added to varying 

quantities of 12C-glucose. The calibration solutions were derivatized in the similar manner as the 

samples to be measured in GC-MS. The glycogen content estimated using the calibration curve 

was normalized with protein content measured as described in section 3.8. 

 

3.13. GC-MS data reduction 

 

The MS spectral data shows the distribution of ions of a compound or a fragment with a specific 

m/z value. Monitoring such specific m/z values for the ion distributions in each metabolite will 

give us the fractional distribution of the artificially introduced 13C. The peak areas for all the 

ions in the cluster were integrated and extracted from the raw data using MSD5975C Data 

Analysis (Agilent technologies) or GCMS Postrun Analysis (Shimadzu Corporation) softwares. 

Each peak area corresponds to the fraction of ions within the ion cluster under analysis. These 

observed m/z values may be contaminated with natural abundance of the 13C isotopes and 

during derivatization process other isotopes, such as that of silicon from the reagents, can be 

added to the actual derivatization product of the metabolite under analysis. In order to 

distinguish the known, artificially introduced labels, isotopes contaminating from other modes 

described above must be subtracted. This kind of label correction is carried out using an in-

house developed algorithm based on R programming. The resulting data corrects for the 

unwanted isotope enrichments mentioned above and gives only the enrichment due to the 13C 

atoms from the precursor tracer introduced in our experiment. The final data is represented as 

fractional isotopologue distribution designated as m0, m1, m2,.. etc. where the number 

indicates the corrected labelled carbons (13C). The sum of all the isotopologues of the ion 

clusters is equal to 1 (or 100%) and the total 13C enrichment is calculated as 1 (or 100%) minus 

m0. 
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3.14. 13
C tracer-based metabolomics: data interpretation  

 

The data from the metabolite consumption and production and the label distribution 

measurements, obtained as described in the above sections, can be used to predict intracellular 

fluxes in the central carbon metabolic pathway. In order to achieve this, two kinds of data 

analysis are combined, 13C tracer analysis based on simple formulas and a computational 

model-based 13C metabolic flux analysis, that are described in the following sections. 

 

3.14.1. Direct interpretation of fluxes or 
13

C tracer analysis  

 

In this type of analysis, a direct interpretation of the 13C labelling patterns measured using GC-

MS is performed with the help of simple analytical formulas [275]. Also we have used the 

metabolite consumption and production data, measured using the method described in section 

3.7 for glucose, lactate, glutamine and glutamate, and glycogen content measured as described 

in section 3.12.7, in addition to the 13C label distribution data measured in lactate, glutamate, 

ribose, glycogen and fatty acids as described in the section 3.12. Since [1,2-13C2]-glucose is the 

tracer and source of the 13C labels in other metabolites measured in our experiments and we 

have not observed a change in the label distribution of glucose which remains 50% since the 

beginning until the final time point of 40 hours, we have not considered it for the flux 

estimations. The label distributions shown in the results section of the Chapter 4.1 used simple 

calculations described as follows: 1) In the case of 13C enrichment in lactate the total 13C lactate, 

Σm is obtained by the sum of m1, m2 and m3 isotopologue distributions measured in lactate; 2) 

In the case of ribose the ratio m1/m2 isotopologue distributions in ribose is done to calculate 

the contribution of oxidative to non-oxidative branch of PPP. 

 

3.14.2. Computational modelling based flux estimation or 
13

C metabolic flux 

analysis 

 

This part of flux estimation was done by Dr. Pedro Atauri of our laboratory and the method
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employs the use of a computational tool (Mathematica®) to develop steady state model-based 

13C flux estimations. To predict this network of reactions, the data from the metabolite 

consumption and production (section 3.7 for glucose, glutamine, lactate and glutamate, and 

3.12.7 for glycogen) and the 13C label enrichments (section 3.12) were combined along with a 

prior knowledge of the biochemical reaction pathways computationally. In the first step of the 

analysis intracellular reaction fluxes were estimated from the metabolite consumption and 

production data and a range of values possible for the fluxes of the respective reactions were 

estimated, as detailed in Table A1.1 of the Appendix 1. In the second step of the analysis, the 

isotopologue distributions of each of the metabolite were predicted by using a set of balance 

equations of all possible isotopomers for that metabolite. By iteratively changing the ratios of 

flux estimations from the first step and applying them for predicting the label distributions in 

the second step, the difference among the predicted and the measured 13C label distributions 

as per section 3.12 are reduced to a minimum level. The set of flux estimations (from the first 

step) at this level is assumed to be the result of this computational analysis and are included in 

constructing the network of reactions in the model of the central carbon metabolism. A 

detailed description of the methodology used for this study, flux ranges estimated and flux 

ratios used in iteratively predicting the label enrichments are described in Appendix 1. 

 

3.15. Mass spectrometry-based targeted metabolomics  

 

The frozen tumour tissues and plasma samples prepared from the tumour efficacy assay, as 

described in section 3.6, were sent to the Biocrates Life Sciences AG, Austria, to perform a 

targeted metabolomics analysis of the samples using their p180 Absolute IDQ kit. Using this kit 

absolute and semi-quantifications of a large number of metabolites were carried out using API 

4000 triple quadrupole mass spectrometer (Applied Biosystems/MDS Sciex), where amino acids 

and biogenic amines were quantified by LC-MS and lipids, acylcarnitines and hexoses were 

semi-quantified by flow injection analysis (FIA) coupled to MS. The protocol for tissue 

extraction of metabolites involved the use of ethanol-phosphate buffer (85/15 v/v), based on 

the methods tested by Romisch-Margl et. al.  [315]. The supernatants from the homogenized 
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tissues containing the extracted metabolites were loaded on to the 96-well plate kit at a 

volume of 10 µL per sample and the metabolite derivatization, extraction and filtration were 

carried out as described in the user manual instructions. The plasma samples were directly 

added to the 96-well kit and processed in the same manner as in tissue extracts. For the FIA-MS 

analysis 2 × 20 µL of sample injections, with a flow rate of 30 µL/min was carried out, and both 

positive and negative ionisation methods were used. In the LC/MS method 10 µL of sample was 

injected, with a flow rate of 500 µL/min and positive ionisation method was used. The results 

were then exported to the MetIDQ database, to a project already registered for the samples, 

for further data analysis, as described in the user manual. The metabolite concentrations in the 

results exported were represented in µM and was normalized by tissue weight in g for the 

tissue metabolites. 

 

3.16. LC-MS-based non-targeted metabolomics 

 

The samples generated from co-culture experiments, explained in section 3.1, were used for 

non-targeted metabolomics analysis using LC-MS technique, performed in collaboration with 

Beaumont Research Institute, MI, USA. The sample preparation and analysis are described in 

the following sections. 

 

3.16.1. Sample preparation  

 

500 µl of 50% ice-cold MeOH/water was added to frozen cell pellets and 25 µl of 0.001 mg/mL 

tryptophan D3 (internal standard) was spiked to all the samples before extraction. Samples 

were mixed using a microplate shaker for 10 min, followed by ultrasonication at 4°C for 20 min, 

vortexed vigorously to make sure pellets are completely dissolved and mixed using a microplate 

shaker for 10 min. Subsequently, the samples were centrifuged at 13,000 g at 4°C for 20 min 

and the supernatant collected. The supernatant was evaporated to dryness under vacuum at 

room temperature and reconstituted in 150 µl of ultra-pure water. The sample extract was 

filtered using Whatmann syringeless filters (0.2 µm). 5 µl was injected onto the LC/MS (n=3 
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technical replicates). A pool sample was made from all samples together as a quality control 

and to be used for fragmentation later [316,317]. 

 

3.16.2. LTQ – Orbitrap elite LC-MS analysis 

 

Dionex Ultra High Performance Liquid Chromatography (UHPLC) coupled with an Orbitrap Elite 

was used for acquiring the data. The chromatographic system was coupled to the mass 

spectrometer with a heated electrospray ionization source II (HESII). The optimized HESII 

conditions for both ESI+ and ESI- were: spray voltage of 3.5 kV; sheath gas flow rate (N2), 60 

units; auxillary gas flow rate, 45; sweep gas flow rate, 1; capillary temperature, 320°C; S lens RF 

level, 35; heater temperature, 400°C. Nitrogen produced by a nitrogen generator (Peak 

Scientific) was employed as both the collision and damping gas. The mass calibration of the 

Orbitrap was performed once a week to ensure a working mass accuracy of < 5 ppm. Pierce LTQ 

Velos ESI Positive ion and Pierce LTQ Velos ESI Negative ion calibration solutions from Thermo 

Fisher Scientific (Rockford, IL, USA) were used to calibrate the mass spectrometer. A mass range 

of 50–1200 m/z and resolving power of 60,000 FWHM at 400 m/z were used for full scan 

acquisitions. Data dependent acquisitions with MS/MS list having precursor ion accurate mass 

and RT were used for identification experiments. The precursor ions were isolated in the LTQ at 

an isolation width of 1 m/z, fragmented in the HCD cell and analyzed in the Orbitrap at a mass 

range of 100–750 m/z and resolving power of 60,000 FWHM at 400 m/z. The fragmentation 

was completed at 4 different collision energies, NCE–10, 30, 50 and 70 %. The chromatographic 

column used was an Acquity BEH C18, 1.7 µm 2.1 x 100 mm (Waters, Wexford Ireland) and the 

mobile phases used were 0.1% formic acid in water (A) and 0.1 % formic acid in methanol (B). 

The ESI+ gradient was as follows, (time in minutes, %B): (0, 1), (2.5, 1), (16, 99), (18, 99), (18.11, 

1), (20, 1) with a flow rate of 0.4 ml/min. In ESI-, the same gradient with a flow rate of 0.36 

ml/min was used. 
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3.16.3. Data analysis for untargeted metabolomics 

 

Xcalibur 2.2 from Thermo Fisher Scientific (MA, USA) was used for instrument control and 

acquisition of the high resolution LC-MS data. The acquired .raw files were converted to .mzML 

format using the Proteowizard msconvert tool [318]. The data were uploaded to XCMS online 

for data pre-processing and analysis. The pre-processing parameters used are as follows: 

feature detection with centWave (m/z tolerance of 5 ppm, minimum and maximum peak 

widths of 5 and 20 respectively), RT correction with obiwarp method (profStep1), 

chromatographic alignment with mzwid - 0.05, minfrac 0.5 and bw 5. The multi-group data 

analysis was carried out using the Kruskal-Wallis non-parametric test with post hoc analysis. 

Peak intensities/area were normalized against cell counts. Multivariate analysis (orthogonal 

projection to partial least squares discriminant analysis; OPLS-DA) was completed in SIMCA 

v14.1 (Umetrics, Umea, Sweden) to visualize differences between sample groups and produced 

prediction models. For the metabolite identification by fragmentation the masses were chosen 

based on the variable importance in projection plots (VIP plots) generated by the SIMCA tool 

for the multi-group analysis. From this list significant features with p-value ≤ 0.05, q-value ≤ 

0.05 and peak intensity ≥ 105 were chosen for identification. The high resolution mass spectral 

library, mzcloud was used for identification of unknown metabolites. The identified metabolites 

under different experimental conditions (HUVECs in RM, RMV, co-cultured with PC-3/S and PC-

3/M cells) were represented by column plots. The identified features and their peak areas were 

analyzed using the MSEA tool in MetaboAnalyst [319] to identify the pattern of metabolite 

changes within the pre-defined metabolite set libraries. Peak area data was uploaded pairwise, 

as conditions of control (RM) vs RMV, PC-3/S and PC-3/M co-cultured HUVECs. In this case a 

quantitative enrichment analysis (QEA) was carried out with the peak area data, associated 

with the identified metabolites, uploaded into the web-based software and a Q-statistic was 

estimated for each metabolite set that describes the correlation between the peak area 

profiles, X, of the matched metabolite set and the phenotype labels, Y, which in our case are 

the different conditions of HUVECs with RM, RMV, PC-3/S and PC-3/M cells. Fold enrichment 

obtained from the MetaboAnalyst application of MSEA is calculated as the ratio of calculated 

statistic/expected statistic [309,320].  
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3.17. Statistics  

 

Statistical analysis was carried out using Student’s t-test, two-tailed for independent samples. 

For the in vivo efficacy assay, non-parametric Kruskal-Wallis test was employed followed by 

multiple comparisons using Dunn’s test. Bar graphs represent the values of mean ± standard 

deviation. Statistical significance was estimated by calculating the p-value and was indicated by 

asterisk (*) for differences among conditions and by hash (#) for differences among 

normoxia/hypoxia (Chapter 4.1) or time points (Chapter 4.3) (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 

0.001, **** p ≤ 0.0001). In some cases, to project the importance of no difference among 

conditions, non-significant differences were indicated as ‘ns’. 
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Chapter 4.1  

4.1. Flux analysis of endothelial cells induced by VEGF: changes under 

normoxia and hypoxia 

 

4.1.1. Introduction 

 

As discussed in the introduction, VEGF is one of the most important factors driving angiogenesis 

and various changes induced by VEGF associated to signalling pathways have been identified 

recently [29,30]. In addition, it has been identified that hypoxia plays a main role in inducing 

angiogenesis to re-oxygenate the ischemic tissues and also induces an over-expression of VEGF 

by tumour and other stromal cells in order to activate endothelial cells for blood vessel 

formation [73,321-323]. Although molecular signalling pathways in endothelial cells linking 

VEGF and hypoxia inductions have been extensively studied, the metabolic changes that occur 

downstream of these activations are poorly understood. Hence we have applied the fluxomics 

approach in which we have combined the experimental measurements of 13C labelling patterns, 

together with the data of consumption and production of selected metabolites for the 

estimation of metabolic fluxes [324]. Using this approach we have intended to characterize the 

metabolic pathways in the central carbon metabolic network of HUVECs, used as a model for 

endothelial cells, that are altered by VEGF and hypoxic conditions. 

 

For this purpose, HUVECs were initially deprived of excess nutrients and hormones by 

maintaining them overnight in a restricted medium with only 2% fetal bovine serum, VEGF was 

then added (condition RMV) and incubated for 40 hours in the presence of the tracer [1,2-13C2]-

glucose until sample collection, as described in the Methods section 3.1. In parallel, the control 

cells were incubated only with restricted medium (condition RM) containing the same tracer 

indicated above and for the same 40 hours. In the following sections we describe the results on 

the characterization of central carbon metabolism, obtained by the measurements of 

consumption and production of metabolites such as glucose, glutamine, lactate and glutamate 
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and the GC-MS analysis of 13C isotopologue distribution in selected metabolites related to the 

main central carbon metabolic pathways. Our tracer based metabolomics approach combined a 

direct interpretation of 13C labelling patterns with a computational model-based 13C metabolic 

flux analysis approach [269,325], using the above-mentioned metabolite concentrations and 

label distribution measurements. Our combined approach consistently revealed the more 

subtle metabolic adaptations of HUVECs due to VEGF, within the expected larger remodelling 

associated to hypoxia. 

 

4.1.2. Results 

 

4.1.2.1. Net metabolite consumption and production with VEGF stimulation, 

under normoxia and hypoxia 

 

Glucose and glutamine are the two main sources of cellular energy and are important for the 

formation of major macromolecules for cell proliferation, survival and function. Hence we first 

wanted to compare the utilization of these energy sources and production/consumption of 

lactate and glutamate by HUVECs in the presence of VEGF, under normoxia and hypoxia. These 

cells were incubated with 10 mM of glucose and 2 mM of glutamine during the experiment, as 

discussed in the Methods section 3.1. Figures 4.1.1a and 4.1.1b show the extracellular fluxes 

measured at 40 hours from the cell culture spent medium. 

 

 

Figure 4.1.1: Net consumption and production of metabolites. The rates of the metabolite uptake (negative 

values) and secretion (positive values) in the spent cell culture medium are measured in the absence and presence 

of VEGF, under (a) normoxia, 21% O2 and (b) hypoxia, 1% O2. HUVECs were incubated with 10 mM of glucose and 
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From the Figure 4.1.1, we see that the presence of VEGF induces a significantly higher 

production of lactate under both normoxia and hypoxia, while there is no change in the 

glucose, glutamine or glutamate consumed with VEGF under both conditions. Moreover, 

HUVECs showed relatively higher glucose and lower glutamine consumption under hypoxia with 

respect to normoxia, showing that HUVECs under hypoxia are more glucose-dependent than 

the HUVECs under normoxia. 

 

4.1.2.2. 13
C-label enrichment in lactate 

 

To gain more insights in the intracellular metabolic flux changes we incubated the HUVECs with 

10 mM of 50% [1,2-13C]-glucose, as mentioned in the Methods section 3.1, to measure the 13C 

enrichment in lactate. Isotopologue distribution data for lactate and other metabolites 

analysed are shown as supplementary information in Appendix 2. It has to be reminded that 

m1, m2 and m3 are the fractional isotopologue distribution, where the number indicates the 

number of labelled carbons in the metabolite measured, as described in the Introduction 

section 1.6.1.1. The fraction m2 lactate, i.e., the lactate with two carbons labelled, is obtained 

by glycolytic pathway from the m2 labelled glucose, added at the beginning of the experiment. 

The results show that under normoxia VEGF induces a higher percentage of 13C-lactate enriched 

in m2, shown in Figure 4.1.2a while it does not seem to affect HUVECs under hypoxia (Figure 

4.1.2b). Moreover, the total 13C-lactate calculated as the sum of m1, m2 and m3 lactate 

isotopologues, shown in Figure 4.1.2c, is significantly higher under hypoxia than normoxia, 

which clearly reflects that under hypoxia glucose is the main substrate for lactate production.  

 

 

2 mM of glutamine for 40 hours, in the presence and absence of VEGF and the metabolite concentrations 

measured at the initial and final time points of incubation with VEGF were used for calculating consumption and 

production rates. Data are normalized using cell number and time (h). Lact – lactate, Glc – glucose, Gln – 

glutamine, Glu – glutamate, RM – HUVECs in restricted medium (control); RMV – HUVECs with RM+VEGF. 

Statistically significant difference among RM and RMV: * p ≤ 0.05.  
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Figure 4.1.2: Comparison of the enrichment of 
13

C enrichment in HUVECs under normoxia and hypoxia, in the 

presence of VEGF. The % 13C-lactate enrichment in HUVECs under, (a) normoxia, (b) hypoxia and (c) the total 13C-

enriched lactate, Σm calculated as the sum of m1+m2+m3, under both normoxia and hypoxia. HUVECs were 

incubated with or without VEGF and 50% of 10 mM [1,2-13C2]-glucose as tracer, under normoxia and hypoxia for 40 

hours and the 13C enrichment in lactate was measured from the spent cell culture medium after the incubation. 

RM – HUVECs in restricted medium (control); RMV – HUVECs with RM+VEGF. Statistically significant difference 

among RM and RMV: ** p ≤ 0.01, among RM/RMV of normoxia and hypoxia, respectively: #### p ≤ 0.0001. 

 

4.1.2.3. 13
C-label enrichment in ribose 

 

Pentose phosphate pathway is important for cells to adapt themselves to two main kinds of 

situations, for producing macromolecules for cell proliferation or to produce NADPH to 

maintain redox homeostasis. These are carried out under different branches of PPP, the 

reversible non-oxidative and the irreversible oxidative branches controlled by the rate-limiting 

enzymes TKT and G6PD, respectively. Upon analyzing the 13C-label enrichment in lactate in 

HUVECs induced by VEGF under normoxia and hypoxia, we wanted to study the fluxes through 

PPP by measuring 13C enrichment in ribose. The isotopologue m1 ribose depicts the 
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contribution of the oxidative branch of PPP for the formation of ribose while m2 ribose gives 

the fractional contribution of non-oxidative branch of PPP for its formation, as explained in the 

general isotopologue distribution model with [1,2-13C]-glucose (which includes the label 

position information) in the Figure 1.6 of the Introduction part 1.6.1.1 of fluxomics. Figure 4.1.3 

shows the 13C label enrichments and distribution in ribose and relative contributions of 

oxidative to non-oxidative PPP in producing ribose in HUVECs with VEGF under normoxia and 

hypoxia. 

 

 

 

Figure 4.1.3: Glucose-derived carbon for the production of ribose through PPP is studied with 
13

C-enriched 

ribose. Isotopologue distribution in ribose under (a) normoxia, (b) hypoxia, (c) Ratio of the isotopologues m1/m2 

indicative of oxidative to non-oxidative contributions to PPP, under normoxia and hypoxia. The label enrichment in 

ribose is calculated from the cell extracts after incubating HUVECs with and without VEGF and 50% of 10 mM [1,2-
13C2]-glucose, under normoxia and hypoxia for 40 hours. RM – HUVECs in restricted medium (control); RMV – 

HUVECs with RM+VEGF. Statistically significant difference among: RM and RMV - *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 

0.001. 
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Upon comparing the % 13C ribose under normoxia and hypoxia in Figures 4.1.3a and 4.1.3b, we 

observe that the m2 and m4 13C ribose are similar under both conditions, while the m1 and m3 

13C ribose under hypoxia are lower than that of normoxia. This shows that hypoxia reduces the 

flux of oxidative branch of PPP (depicted by the lower m1 fraction compared to normoxia) for 

the production of ribose in HUVECs. This is further supported by the ratio of the isotopologues 

m1/m2 ribose depicting the ratio of oxidative to non-oxidative branch of PPP, in Figure 4.1.3c, 

which is significantly reduced under hypoxia compared to normoxia. In addition VEGF induces a 

significant increase in 13C-ribose under normoxia (Figure 4.1.3a) and a shift towards the 

synthesis of ribose through oxidative branch of PPP evident from the significantly higher 

m1/m2 ratio of ribose (Figure 4.1.3c).  

 

In addition to the 13C isotopologue analysis that shows VEGF increases the oxidative PPP under 

normoxia, the enzyme activity study of the rate-limiting enzyme of the oxidative PPP branch 

G6PD, measured under normoxia as shown in Figure 4.1.4, also depicts an increase of the 

activity with VEGF, supporting that VEGF induces an increase in the oxidative branch of PPP in 

HUVECs under normoxia. 

 

 

 

Figure 4.1.4: G6PD enzyme activity under normoxia, with and without VEGF. Enzyme activity assay of G6PD in cell 

extracts prepared after 40 hours of incubation of HUVECs with and without VEGF. G6PD – glucose-6-phosphate 

dehydrogenase; RM – HUVECs in restricted medium (control); RMV – HUVECs with RM+VEGF.  
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4.1.2.4. 13
C-label enrichment in fatty acids 

 

Fatty acids are an important part of cellular environment and are not only significant for energy 

storage, but also for maintaining cell membrane structure or as signalling molecules. Hence 

studying fatty acids metabolism is important for understanding its role in the central carbon 

metabolism of endothelial cells. In our study, we measured the 13C enrichment in the fatty acids 

palmitate and stearate, from labelled glucose, under both normoxia and hypoxia. The results 

are shown in Figure 4.1.5.  

 

 

 

Figure 4.1.5: Isotopologue distribution in fatty acids, induced by VEGF. The 13C enrichments from glucose source 

in palmitate and stearate are shown under, (a) and (b) normoxia and (c) and (d) hypoxia, respectively. The 13C 

enrichments in fatty acids of HUVECs incubated with and without VEGF and 50% of 10 mM [1,2-13C2]-glucose, 

under normoxia and hypoxia for 40 hours, were estimated from the cell extracts. RM – HUVECs in restricted 

medium (control); RMV – HUVECs with RM+VEGF. Statistically significant difference among RM and RMV - *p ≤ 

0.05, **p ≤ 0.01. 

 



82 
 

The m2, m4 and m6, shown in the results, represent the 13C enrichment from [1,2-13C]-glucose. 

Moreover, VEGF shows a tendency of increasing label enrichments in palmitate and stearate 

under both normoxia and hypoxia, although under hypoxia it is more significantly observed than 

under normoxia (Figures 4.1.5c and 4.1.5d). This label enrichment suggests that VEGF clearly 

induces higher fatty acid synthesis from the glucose-derived carbons and more significantly under 

hypoxia. 

 

4.1.2.5. 13
C-label enrichment in glycogen and glycogen accumulation 

 

Glycogen is a readily available energy store for cells and has varied significance for different cell 

types. Since the glucose carbons have a direct turnover (entrance and exit) to glycogen, we 

decided to measure the influence of VEGF and hypoxia on the glycogen content and glycogen 

13C enrichment from the labelled glucose in HUVEC, incubating the cells with 10 mM of 50% 

[1,2-13C]-glucose for 40 hours. Upon measuring the glycogen content in the presence and 

absence of VEGF we observe that VEGF induced a significant reduction of glycogen with respect 

to the control under both normoxia and hypoxia, as shown in the Figure 4.1.6. Moreover, under 

hypoxia the glycogen content was increased in HUVECs irrespective of the presence of VEGF, 

compared to normoxia.  

 

 

 

Figure 4.1.6: Glycogen content in HUVECs. Glycogen content (µg glycogen/mg protein) measured in HUVECs, both 

with and without VEGF incubation, under normoxia and hypoxia. The measurements were performed using the cell 

extracts of HUVECs after 40 hours of incubation with and without VEGF, under normoxia and hypoxia, and with 
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Although the results obtained (in Figure 4.1.6) were for 40 hours of incubation with labelled 

glucose and VEGF, the glycogen 13C enrichment measured at this time point was at similar level 

to that measured at 72 hours incubation period (shown in Figure 4.1.7b), under normoxia. This 

showed that the label enrichment in glycogen was saturated at these time points and that only 

the glucose molecules that form the external structure of the glycogen molecule participate in 

glycogen turnover. Hence it is difficult to explain if there is an active glycogen turnover in 

HUVECs from these results and so in order to explore the glycogen metabolism better we 

performed a short time course experiment for 3, 7 and 24 hours under normoxia and measured 

the glycogen content and 13C enrichment from glucose, as displayed in Figure 4.1.7. As shown in 

Figure 4.1.7a, VEGF decreased glycogen content in HUVECs from 7 hours. Moreover, we see a 

constant increase in 13C enrichment of glycogen in Figure 4.1.7b, which also reveals that VEGF 

significantly lowers the 13C enrichment at the time points of 3, 7 and 24 hours. These results 

indicate that glycogen turnover works slower in VEGF-treated cells than in control cells.  

 

 

 

Figure 4.1.7: Glycogen accumulation and 
13

C enrichment of HUVECs incubation with and without VEGF. The time-

course experimental results show glycogen content and 13C-enrichment in glucose-derived from glycogen in 

HUVECs under normoxia. (a) Percentage of glycogen content in RMV condition with respect to the control RM, (b) 

Glycogen 13C enrichment. RM – HUVECs in restricted medium (control); RMV – HUVECs with RM+VEGF. Statistically 

significant difference among: RM and RMV - *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. 

 

 

 

10 mM of glucose. RM – HUVECs in restricted medium (control); RMV – HUVECs with RM+VEGF. Statistically 

significant difference among: RM and RMV - *p ≤ 0.05, ***p ≤ 0.001; among normoxia and hypoxia - #p ≤ 0.05. 
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4.1.2.6. 13
C metabolic flux analysis for estimation of fluxes 

 

In order to estimate the flux distribution in the central carbon metabolic network, the results 

obtained from the measurements of metabolite consumption and production and the 13C 

labelling patterns of the different metabolites (shown in Appendix 2) were used in 

computational modelling. This method was used to develop a model of the central carbon 

metabolism, comparing the measured and predicted 13C isotopologue distributions, as 

described in the Methods section 3.14.2 of 13C flux analysis and Appendix 1. Importantly, the 

metabolic network included the conservation of cytoplasmic and mitochondrial NADH/NAD+ 

and mitochondrial acetyl-CoA/CoA, which are the fundamental constraints for central carbon 

metabolism. The 13C tracer analysis results of the metabolites glucose, lactate, glutamate, 

ribose and glycogen, described in the previous sections, were used for constructing the model 

that assumes an experimental steady state, while the data from the fatty acid 13C enrichment 

could not be used as the label enrichments have not reached a steady state even after 40 and 

72 hours of incubation with the tracer (72 hours data for fatty acids not shown). Although the 

13C label distributions in amino acids such as proline, serine, aspartate+asparagine and 

glutamate+glutamine have not shown changes in both the control and VEGF-incubated HUVECs 

(data not shown), the data were used for the 13C flux analysis using computational modelling. 

The network of reactions considered as well as the flux distributions predicted by the model for 

the four conditions studied (control and VEGF-treated HUVECs under normoxia and those 

under hypoxia) are shown in Figure 4.1.8. This network of reactions in the model compares the 

changes in the absolute values of fluxes through key reactions of the control and VEGF 

conditions under normoxia and hypoxia. The absolute flux values covering the transformation 

and oxidation of glucose, amino acids and fatty acids, including the synthesis of pentose-

phosphates and release of lactate and glutamate were used to perform the quantitative 

analysis of metabolic flux distribution.  

 

The model reveals that there is an important metabolic reorganization induced by hypoxia that 

is affecting in parallel both the control HUVECs (RM) and VEGF-treated cells (RMV). Clearly, cells 

under normoxia have a metabolism with a more relevant role for mitochondria and the use of 
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carbon sources other than glucose, while hypoxia leads to a more clearly dominant glycolytic 

pattern, in agreement with previous observations [326]. This prediction is consistent with the 

analysis in the section 4.1.2.1 where, irrespective of the slightly higher lactate production under 

normoxia, compared to hypoxia, higher glucose utilization was observed under hypoxia (Figure 

4.1.1) and the model prediction gives additional information that under normoxia pathways 

other than glycolysis are also active. Accordingly, in order to predict the measured 13C labelling 

patterns, the computational process of flux estimation considered the ratios among fluxes 

associated with mitochondrial activity versus the flux of lactate release. Also, changes in the 

ratios among fluxes were performed to emphasize a relevant reorganization of PPP, suggesting 

a clear decrease of the activity of the oxidative branch of PPP under hypoxia, as shown by the 

reduction of flux distribution by hypoxia in the reaction RG6PD in the computational model in 

Figure 4.1.8. This supports the calculation of PPP in the results section 4.1.2.3 where hypoxia 

showed a decrease in the oxidative branch of PPP with respect to the non-oxidative branch. 

Also, the model is consistent with a slightly higher oxidative PPP activity for VEGF treated cells 

suggested by our previous analysis.  

 

In addition, though at a lesser extent, the model also shows that under normoxia VEGF 

increases mitochondrial reactions by using carbon sources other than glucose. However, in 

contrast to this observation, under hypoxia these smaller changes are not observed at the level 

of the ratios among fluxes that are required to predict the measured 13C labelling patterns. The 

use of alternative pathways in addition to glycolysis (for lactate production) predicted under 

normoxia can be explained by the fact that the reduced NADH produced by glycolysis is not 

enough to support the observed LDH’s NADH-dependent release of lactate, then requiring 

additional NADH from other sources. On the other hand, this higher ratio also implies 

alternative sources other than glucose that are providing the carbons for lactate. Altogether the 

results suggest that a strong homeostatic regulation is associated with all the processes induced 

in our experiments. Homeostatic adaptations have the potential to lead to stressing equilibria 

and then to emphasize metabolic fragilities that could be exploited following a biomedical 

objective. 
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Figure 4.1.8: Computational network model of flux distributions. The 13C flux analysis shows the flux distributions 

in the central carbon metabolism of HUVECs in the presence of VEGF, under normoxia and hypoxia. Fluxes are 

predicted with the 13C tracer analysis encompassing 13C label enrichment analysis and the concentrations of the 

consumption/production of metabolites measured. The flux distributions are represented as the reactions (Ri) 

covering the central carbon metabolism. Nor – Normoxia, Hyp – Hypoxia, RM – HUVECs in restricted medium 

(control); RMV – HUVECs with RM+VEGF, IDH – isocitrate dehydrogenase, Lac – lactate, G6PD – glucose-6-

phosphate dehydrogenase, Glc – glucose, Gln – glutamine, Glu – glutamate, Glyc – glycogen, ME – mitochondrial 

reaction flux, OT1, OT2, OT3 – group of reactions with alternative sources of carbons, PC – pyruvate carboxylase, 
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4.1.3. Discussion 

 

Endothelial cells are imperative for the formation of blood vessels which is important for the 

blood supply for entire human body and are affected in many pathological angiogenic 

processes like diabetes and cancer [327]. In addition, endothelial cells are in constant contact 

with blood and its constituents and have to adapt to local environmental changes like differing 

oxygen tensions, growth factors and angiogenic factors, according to the changes in organs in 

which they form the blood vessels. All these constant environmental changes can ultimately 

cause a metabolic reprogramming of the endothelial cells to adapt to the signals to survive, 

proliferate and form blood vessels. The most important factors that can affect the endothelial 

cells are the changing oxygen tensions and secretion of angiogenic factors by neighbouring cells 

that are in need of blood vessel formation. An overall study of the metabolic adaptations due to 

these changes is vital to find key pathways in the endothelial cells that can be used as 

therapeutic targets against the pathologies that require blood vessel formation, such as 

diabetic retinopathy and tumour angiogenesis. Few important methods can be implied for this 

holistic approach such as fluxomics and metabolomics. Fluxomics is a targeted study and uses 

13C-labelled isotopic tracers in studying the cellular metabolism by determining the relative 

pathway contributions in the metabolic pathways under study. Mass spectrometry is a 

powerful technique used widely to quantify the 13C labelling patterns accurately with smaller 

confidence intervals [328]. The measured label distributions along with the metabolite 

consumption/production data can then be subjected to a direct interpretation of fluxes using 

simple analytical formulas based on the previous knowledge of the metabolic pathways [275]. 

In addition to this 13C tracer analysis approach, model-based predictions known as 13C flux 

analysis are helpful in constructing a holistic metabolic network of reactions with the 

information from 13C tracer analysis and also by predicting flux distributions, increasing the 

confidence of the biological conclusions. This modelling-based flux analysis can be used to 

 

PDH – pyruvate dehydrogenase, TKT/TA – transketolase/transaldolase. Red colour denotes increase and green 

colour denotes decrease in fluxes in the respective conditions. 
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validate the 13C tracer analysis interpretations and also provide additional information on flux 

estimations [269]. 

 

In our study we have characterized the metabolic reprogramming of HUVECs, as a model of 

endothelial cells, under normoxia (with 21% oxygen) and hypoxia (with 1% oxygen) and in the 

presence of the pro-angiogenic factor VEGF. Our results have revealed key changes in the 

metabolic pathways along the central carbon metabolism. Thus, our results show that hypoxia 

induces a major metabolic adaptation by HUVECs revealing a more glucose-dependent 

phenotype, compared to normoxia. In addition, HUVECs under hypoxia show a lower flux of the 

irreversible oxidative PPP branch compared to normoxia. Under hypoxia VEGF induced an 

increase of fatty acid synthesis from glucose. Moreover, VEGF reduced glycogen turnover in 

HUVECs under normoxia. Also hypoxia induced an increase of glycogen content, compared to 

normoxia, and VEGF reduced the glycogen content under both normoxia and hypoxia. Other 

smaller but significant changes of HUVECs with VEGF include a slight but significantly higher 

production of lactate, under both normoxia and hypoxia and the increase of the oxidative 

branch of PPP under normoxia. 

 

Endothelial cells in general are observed to be highly glycolytic, in the presence or absence of 

oxygen, unless under stress when they shift to mitochondrial oxidation [118,119]. Hypoxia is 

known to induce glycolysis further [326] and upregulate hypoxia-associated stress proteins such 

as the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and non-

neuronal enolase in endothelial cells [75,329]. Moreover VEGF promotes increased expression 

of GLUT1 transporter [120] and glycolytic enzymes like LDH-A and PFKFB3 [119,121] in 

endothelial cells. Hence the preference of glycolysis by endothelial cells could be due to reasons 

such as varying oxygen tension in the blood flow and their exposure to tissues with low oxygen 

levels to perfuse them with blood vessels. Moreover our computational 13C flux analysis shows 

that normoxic HUVECs depend on other pathways to produce lactate in addition to glycolysis 

which could be possible as the endothelial cells have been shown to utilize glucose oxidation by 

OXPHOS during conditions of high metabolic demand or stress [124]. In addition, the 13C flux 

analysis predicts a preference of VEGF-induced mitochondrial activity under normoxia from our 
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study. It has been shown that VEGF increases mitochondria biogenesis and ROS production in 

vitro in endothelial cells [129,330] and mitochondria-derived ROS has been implicated as pro-

angiogenic signalling molecules at non-toxic levels [331,332]. 

 

The oxidative branch of PPP is governed by the rate-limiting enzyme G6PD and this pathway is 

required for the conversion of G6P into ribulose-5-phosphate (Ru5P) to produce NADPH for 

maintaining cellular redox balance and R5P to synthesize nucleotides. Under normoxia the 

mitochondrial activity is higher in general compared to hypoxia and there is higher production 

of ROS for the same. The need for maintaining cellular homeostasis induces a shift to produce 

ROS-reducing molecules such as NADPH by increasing G6PD activity. It is shown that the 

vascular endothelial cells overexpress G6PD producing NADPH that functions as a cofactor for 

endothelial nitric oxide synthase (eNOS) for the production of the endothelial pro-angiogenic 

signal NO and the reduction of ROS [131]. It was also shown that VEGF increases G6PD activity 

in endothelial cells [134] and inhibiting or silencing G6PD enzyme decreased the endothelial cell 

proliferation, viability, migration and tube formation in vitro [135,333] under normoxia. These 

observations show that the oxidative branch of PPP has a protective role against oxidative 

stress in endothelial cells. We have observed from our results of VEGF induction in HUVECs at 

normoxia, an increase of the oxidative branch of PPP thus depending on the stress-reducing 

pathway. From our results we have also observed that hypoxia induced a shift of glucose 

carbons to the non-oxidative branch relative to the oxidative branch of PPP. In a similar case, in 

drug resistant leukemia cells the HIF1α has shown to promote non-oxidative branch compared 

to the oxidative branch of PPP, by activating the enzyme TKT [334]. Endothelial cells forming 

blood vessels sense and respond to different forms of pathological stresses in particular due to 

deficient oxygen such as those prevailing in hypoxic regions of tumours. Formation of blood 

vessels in these regions re-oxygenates the tumour regions and helps them in survival and 

spread to other tissues through metastasis. 

 

Endothelial cells have shown to express enzymes that are essential for fatty acid synthesis such 

as, ATP citrate lyase that produces acetyl-CoA from citrate, acetyl-CoA carboxylase that 

converts acetyl-CoA into malonyl-CoA, and fatty acid synthase that is involved in the synthesis 
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of long-chain fatty acids like palmitate from malonyl-CoA and acetyl-CoA (reviewed in Harjes, 

2015 [335]). And it has been reported that inhibiting fatty acid synthase in endothelial cells 

reduces the endothelial cell fatty acid synthesis, cell proliferation and the exposure of VEGFR2 

on cell surface that can disrupt the binding of VEGF, in addition inducing anti-angiogenic effects 

[336,337]. In turn we observe from our results that VEGF induces an increase in fatty acid 

synthesis from glucose which, taking into account the previous studies mentioned above, could 

be important for the endothelial cell survival or angiogenesis. 

 

Finally, we have noticed a metabolic change in HUVECs in this study related to glycogen 

metabolism. Glycogen is an important energy reserve for many cell types. In liver tissues 

glycogen breakdown is important for the production of glucose to feed other tissues, while in 

muscles glycogen is the main fuel for generating its own ATP during strenuous exercise. They 

have also shown to play key roles in other cell types such as astrocytes and neurons, where 

astrocytes have been reported to use glycogen for producing lactate to fuel its neighbouring 

cells, while neurons depend on glycogen during acute hypoxic stress for its survival 

[256,338,339]. Glycogen utilization has also been shown essential for cancer cell survival, 

whose inhibition has shown to induce cellular apoptosis [176]. Endothelial cells have shown to 

divert a fraction of glucose to glycogen reserves [150,152]. In a previous study in our lab we 

showed that the glycogen reserves in HUVECs are utilized during glucose deprivation [135], 

indicating that they are essential for sustaining endothelial cell glycolysis. In our present study 

we have observed the presence of a futile cycle in glycogen metabolism in HUVECs and the 

presence of VEGF reduces this turnover. A preliminary study by inhibiting glycogen degradation 

showed a reduction in HUVEC viability and migration [135]. However the role of glycogen 

metabolism and its functional relevance is still underestimated in endothelial cells due to the 

lack of sufficient studies. It is clear that though the glycogen reserve is simply observed as an 

energy store, its metabolism is involved in distinct cellular functions and in most of the cases for 

the fundamental cellular protection and survival. The significant flux changes and the active 

glycogen metabolism observed in HUVECs in our study in addition strengthens this observation 

and tempts us to consider that the glycogen reserve and metabolism could possess far more 

significance in endothelial cell metabolism. 
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Chapter 4.2 

4.2. Untargeted metabolomics in endothelial cells induced by VEGF and 

metastatically different sub-populations of prostate cancer cells 

 

4.2.1. Introduction 

 

Tumour angiogenesis is an important hallmark of cancer and the study of its metabolic 

adaptations can reveal attractive targets for inhibiting cancer growth. In the tumour 

microenvironment, endothelial cells interact with heterogeneous tumour cell types that drive 

angiogenesis and metastasis [340]. In Chapter 4.1 we saw the differences in HUVEC metabolism 

induced by VEGF in normoxic and hypoxic conditions, although following the flux changes only 

along a limited part of the central carbon metabolic pathways targeting glycolysis, PPP, fatty 

acid metabolism, amino acid metabolism and glycogen metabolism. In the present chapter we 

have intended to characterize globally the metabolic alterations in HUVEC with VEGF and in the 

presence of tumour cells with extremely different metastatic abilities, using untargeted 

analysis. 

 

In order to understand the metabolic changes that affect the angiogenesis associated with 

tumours it is important to choose a method that can focus only on the affected endothelial 

cells, which is not quite possible in vivo as it could be complex to extract different types of 

stromal cells from the tumour tissues. The in vitro co-culture method employed in this study is 

both simple and also intends to closely imitate the tumour-endothelial cell association in vivo. 

When combined with the HRMS-based metabolomics, the method can give us a global picture 

of the early metabolic events induced by tumour cells on endothelial cells. In this study HUVECs 

were incubated under normoxia for 24 hours with VEGF and also co-cultured under same 

conditions with prostate cancer sub-populations that exhibit extreme metastatic abilities: the 

PC-3/M cell line that is rich in cancer stem cell (CSC) properties and is highly metastatic and the 

PC-3/S cell line displaying epithelial-mesenchymal transition (EMT) program and is highly 
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invasive but poorly metastatic. HUVECs under restricted medium were included as control in 

the study. The pellets harvested after incubation were subjected to metabolite extraction and 

analyzed using UHPLC coupled with Orbitrap Elite mass spectrometer, as described in the 

Methods section 3.16. Sample analysis was done under both positive and negative ionization 

modes. The untargeted MS data extracted was subjected to feature detection using the XCMS 

Online software, preliminary multivariate data analysis using SIMCA tool and metabolite 

identifications were done based on selected ion fragmentation and were confirmed with the 

online mass spectral fragmentation database, as described in the Methods section 3.16.3. 

Following this the MSEA was used to explore the metabolites highly enriched and associated 

with possible metabolic pathways and the results of metabolite changes and pathway 

enrichments obtained with each condition are discussed in the following section. These results 

provide an overall preview of the metabolic plasticity of endothelial cells in the heterogeneous 

tumour microenvironment, which could be exploited in combined therapies targeting not only 

the tumour cell reprogramming, but also the metabolic changes of endothelial cells induced by 

this microenvironment. 

 

4.2.2. Results 

 

4.2.2.1. Multivariate data analysis 

 

After 24 hours incubation of HUVECs with VEGF and the PC-3/S and PC-3/M cell lines, the cell 

samples were collected and metabolite extraction was done to inject into the LC-MS to carry 

out the untargeted analysis, as described in the Methods section 3.16.1. After the sample runs 

the raw spectral data extracted from mass spectrometer was analysed through XCMS Online, a 

web-based software for processing LC-MS data for metabolomics [306,341]. Using this online 

platform we could identify 5285 features in ESI+ and 1366 features in ESI- by multi-group 

analysis, based on retention time and m/z value matches. Within XCMS Online each feature is 

putatively matched with its structural identity through METLIN database. Multivariate data 

analysis for all the conditions was done using OPLS-DA and the scores plot is represented in 
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Figure 4.2.1. The ESI+ data showed cumulative values of R2(Y) = 99.7% and Q2 = 86.2% and ESI- 

showed R2(Y) = 97.9% and Q2 = 86.3%, where R2 indicates the variation shown by all the 

components in the model and Q2 is the accuracy of the model prediction of the class 

membership. These high values show a clear distinction between the control and the different 

treatment conditions (VEGF, PC-3/S cells and PC-3/M cells).  

 

 

 

Figure 4.2.1: Multivariate data analysis of the experimental groups. Orthogonal projection to partial least squares 

discriminant analysis (OPLS-DA) plots of the experimental groups of data from: (a) ESI+ ionization mode, (b) ESI- 

ionization mode. R2 indicates the variation shown by all the components in the model and Q2 is the accuracy of the 

model prediction of the class membership. The peak area data extracted from the XCMS Online analysis of the 

untargeted raw data was analyzed through the SIMCA tool for performing this OPLS-DA multivariate statistics. 

RM_24h – Control HUVECs incubated in restricted medium for 24h, V_24h - HUVECs incubated in restricted 

medium with VEGF for 24h, M_24h – HUVECs co-cultured with PC-3/M cells for 24h, S_24h – HUVECs co-cultured 

with PC-3/S cells for 24h. 

 

4.2.2.2. Metabolite identifications 

 

Following the multivariate statistical analysis we selected top 200 features from the VIP plots 

based on their higher variance among the experimental groups of HUVECs mentioned above. 

We then short-listed them by cross checking their chromatographic peak shapes, peak 

intensities and p-values in their corresponding spectral profiles in XCMS and removing the ions 

of peak intensity < 100000 and p-value > 0.05. The short-listed ions were subjected to MS/MS 

fragmentation, as described in the Methods section 3.16.2, and the identification of the 

metabolites were confirmed by comparing with the metabolite fragmentation pattern in the 
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high resolution mass spectral library mzCloud (https://www.mzcloud.org). Untargeted mass 

spectral metabolomics profiling is currently bottlenecked due to the lack of available spectral 

libraries. However identification confidence increases with the use of one or more of following 

data: accurate mass, isotopic pattern match, retention time match with reference standards 

and fragmentation spectral match. The metabolomics community is increasingly consensus of 

the need for reporting the confidence and means of identification and, as a result, different 

scoring systems have been suggested [300,342-344] . In this work, we adapted a quantitative 

metabolite identification metric as proposed by Sumer et.al. [342]. Briefly, the authors have 

proposed an identification scoring system, which sums the identification points gained from 

each type of data used for identification of the feature. The identification points system is 

shown in Table A3.1 of Appendix 3.  A minimum score of the identification points (IP) is 

suggested to be 5 [342]. In this work, accurate mass match with a tolerance of 5 ppm (1.0  IP), 

accurate mass tandem mass spectrum (2.0 IP), molecular formula from accurate mass and 

isotopic pattern (1.0 IP), followed by match with a high resolution spectral library were used for 

all the identified metabolites. The total score for each metabolite is calculated as, 

(1+2+1)*1.5=6 (the score is multiplied by 1.5 for spectral library or 2 for the use of standards). 

The list of the putatively identified metabolites is given in Table 4.2.1. 

 

Table 4.2.1. Putative metabolite identifications with ESI+ and ESI- modes. 

ESI+ 

Identified metabolites Accurate mass from 

XCMS Online [M+H] 

Retention 

time (min) 

p-value 

L-Glutamate 148.0600 0.7 0.00509 

L-Arginine 175.1182 0.65  0.00007 

L-Glutathione reduced 308.0900 1.15 0.00067 

L-Tryptophan 205.0965 5.3 0.00001 

L-Tyrosine 182.0805 1.49 0.00002 

L-Methionine 150.0579 1.13 6.07226e-6 

Nicotinamide dinucleotide (NAD+) 664.1141 1.30 7.25358e-6 

Pantothenic acid (CID match) 220.1173 5.09 0.00004 

Oleamide 282.2781 16.32 0.00342 

γ-L-Glutamyl-L-Glutamic acid 277.1021 0.93 0.00125 
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Identified metabolites 

ESI+ cont... 

Accurate mass from 

XCMS Online [M+H] 

Retention 

time (min) 

p-value 

Spermine 203.2223 0.51 ns 

trans 3-Indole acrylic acid/Indole 3-

acrylic acid 

188.0700 5.3 0.00001 

Cysteinylglycine 179.0479 1.15 0.00046 

Guanine 152.0561 0.91 0.00017 

Creatine 132.0763 0.73 0.0005 

Hypoxanthine* 137.0453 1.19/ 

2.71 

0.00007/ 

0.00401 

Acetyl L-Carnitine 204.1222 1.01 1.66321e-6 

*Hypoxanthine shows two isotopic peaks at the same accurate mass. 

 

ESI- 

Identified metabolites Accurate mass from 

XCMS Online [M-H] 

Retention 

time (min) 

p-value 

L-Aspartate 132.0298 0.74 0.01284 

L-Glutamate# 146.0454 0.75 ns 

Glycerol 3-phosphate 171.0058 0.82 ns 

Pantothenic acid# 218.1026 5.26 0.00013 

Uridine 243.0613 1.72 0.00445 

L-Glutathione reduced# 306.0752 1.24 0.00052 

Uridine monophosphate 323.0273 1.10 0.04184 

Adenosine monophosphate 346.0544 1.11 ns 

Galactonic acid 195.0503 0.76 ns 

Guanosine 282.0834 2.82 0.01496 
#Metabolites present both in ESI+ and ESI- modes. p-values extracted from the XCMS Online data analysis are for 

the entire group (Kruskal-Wallis non-parametric statistical test [306]). ns – not significant. 

 

The chromatographic peak, accurate mass of the precursor ion, fragmentation spectral match 

of the identified metabolites and the isotopic pattern match are shown in the Figure A4.1 of 

Appendix 4. It is clear that while ESI+ mode is better in extracting higher number of features 

and metabolites, both ESI+ and ESI- negative modes provide complementary information and 

different sets of metabolites, except for the redundancy observed in L-glutamate, pantothenic 

acid and L-glutathione. The normalized peak areas of the metabolites identified, for each of the 

condition are shown in the Table A3.2 of Appendix 3. 
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4.2.2.3. Metabolite set enrichment analysis of the identified metabolites  

 

The putatively identified compounds were then subjected to MSEA, which is similar to the gene 

set enrichment analysis (GSEA), through the MetaboAnalyst 3.0 software [308,319], where a 

biologically meaningful pattern was estimated for our identified metabolites using a pre-

defined set of metabolites, associated to the metabolic pathways. In this case the peak area 

profiles of the identified metabolites, given in Table A3.2 in Appendix 3, were uploaded to the 

web-based MSEA software and a pair-wise analysis using QEA [320], which correlates the peak 

area profiles of the matched metabolite sets and the phenotype labels (in our case the different 

conditions of the experiment), was performed for each pairs of conditions: control (RM) vs 

VEGF, PC-3/S and PC-3/M co-cultured HUVECs. Figure 4.2.2 summarizes the pathways that are 

altered at higher fold enrichments for each of the pairs of conditions (the complete result of the 

MSEA analysis is shown in Figure A3.1 of Appendix 3). 

 

 

 

Figure 4.2.2: Metabolite Set Enrichment Analysis for pathway analysis. Pathways associated with MSEA on 

HUVECs in the presence of (a) VEGF, (b) PC-3/S and (c) PC-3/M cells compared to the control (RM). This 

representation shows the pathways enriched by the identified metabolites and their quantitative values, 

irrespective of the upregulation or downregulation of the individual metabolites within the pathways identified.
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The analysis reveals that most of the metabolic pathways that are altered in HUVEC are in 

common for both the conditions of VEGF and PC-3/S cell co-culture. The common metabolic 

pathways altered in HUVECs in the presence of VEGF and PC-3/S cells are those related to fatty 

acid β-oxidation (associated with acetyl L-carnitine (ALC)) and glycolysis, nicotinate and 

nicotinamide metabolism, citric acid cycle, ketone body metabolism and gluconeogenesis (all of 

these related to NAD+). Apart from these VEGF also induces a change in purine metabolism 

(hypoxanthine, guanine and AMP), while PC-3/S cells alter metabolites related to the pathways 

of glutathione, pantothenate and amino acid metabolism. In the case of PC-3/M (Figure 4.2.2c), 

pathways related to methionine and betaine are shown to be enriched, also included in the 

condition of HUVECs with PC-3/S, while in addition it alters other pathways related to 

tryptophan and tyrosine (tyrosine and phenylalanine metabolism and catecholamine 

biosynthesis). Although this metabolite enrichment data shows the arrangement of the 

identified metabolites into meaningful metabolic pathways, it does not give us the information 

of the upregulation or downregulation of the respective metabolites, with respect to the 

control. Thus in order to deeply understand the results we constructed bar graph models for 

the peak areas of the identified metabolites and incorporated them into the ad hoc pathways, 

generated with the help of the MSEA, as shown in Figures 4.2.3 - 4.2.5. 

 

In Figure 4.2.3, the bar graphs show the changes in peak areas of the metabolites among the 

conditions of HUVECs in RM, VEGF and PC-3/S co-culture. Figure 4.2.3a shows that ALC is 

upregulated in HUVECs both under VEGF and PC-3/S co-culture, where the fold change is ≥ 1.5X 

in both the cases, and is associated with fatty acid oxidation according to the MSEA (Figures 

4.2.2a and 4.2.2b). In Figure 4.2.3b, we observe an upregulation of metabolites such as NAD+, 

 

 

This MSEA was carried out using QEA by estimating the correlation between the peak area profiles, X, of the 

matched metabolite set and the phenotype labels, Y. P-value expresses that none of the matched compounds in 

the metabolite set is associated to the clinical outcome, Y. Fold enrichment is estimated from the ratio of 

calculated statistic/expected statistic [309]. RM – HUVECs incubated in restricted medium (control), VEGF – 

HUVECs incubated with VEGF, PC-3/S-HUVEC – HUVECs co-cultured with PC-3/S cells, PC-3/M-HUVEC – HUVECs co-

cultured with PC-3/M cells.  
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Figure 4.2.3: Metabolite changes induced by VEGF and PC-3/S cells on HUVECs. The pathways identified by MSEA 

analysis are illustrated, incorporated with the metabolite changes that correspond to these pathways, showing (a) 

ALC, associated to β-oxidation of fatty acids as shown by MSEA, (b) NAD-induced pathway alterations and other 

changes only induced by PC-3/S cells, such as in creatine, methionine, pantothenate, glutathione reduced, 

cysteinylglycine and aspartate. 3PG – 3-phoshogluconate, αKG – α-ketoglutarate, β-Ala – β-Alanine, ALC – acetyl L-

carnitine, Asp – aspartate, CAT – Carnitine acetyltransferase, CoASH – reduced co-enzyme A,  
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creatine, methionine, pantothenate, glutathione reduced, cysteinylglycine and aspartate, 

incorporated along the pathways identified by the MSEA (Figures 4.2.2a and 4.2.2b). It has to 

be noted that only NAD+ is upregulated in both VEGF and PC-3/S conditions (1.6X and 2.2X, 

respectively), while all other metabolites are upregulated only in PC-3/S condition, although 

fold changes are lower. 

 

Figure 4.2.4 (in the following page) shows the peak area changes of HUVECs among RM, VEGF 

and PC-3/S conditions, in the metabolites inosine, hypoxanthine, guanosine, guanine and AMP, 

which are associated under purine metabolism by the MSEA (Figure 4.2.2a). From this data we 

observe that there are significant changes in these metabolites in HUVECs under VEGF 

induction, while PC-3/S cells did not show such changes. Especially, the metabolites guanine 

and hypoxanthine are upregulated by a fold change > 3X by VEGF and AMP is downregulated by 

a fold change of ~5X. 

 

Figure 4.2.5a (in the following page) shows the oleamide identified in all the experimental 

conditions and Figure 4.2.5b shows other metabolite changes significantly induced by PC-3/M 

in HUVECs which are associated with tyrosine, methionine and tryptophan related pathways by 

the pair-wise MSEA (Figure 4.2.2c). Oleamide identified was not associated with any metabolic 

pathways by the MSEA and strikingly it shows a 4X upregulation by PC-3/M cells, while other 

conditions do not show changes in this metabolite. On the other hand, the enriched pathways 

identified by MSEA (Figure 4.2.2c) show a significant downregulation of the respective 

metabolites induced in HUVECs by PC-3/M, as shown in Figure 4.2.5b. 

 

 

 

 

 

 

Cys-Gly – cysteinylglycine, DMG – Dimethylglycine, FA Acyl-Coa – fatty acid acyl-CoA, Hcy – homocysteine, Gly – 

glycine, GSH – glutathione reduced, Glu – glutamate, Met – methionine, OAA – oxaloacetate, PDH – pyruvate 

dehydrogenase, Pyr – pyruvate, ROS – reactive oxygen species, Ser – serine, Thr – threonine, RM – control HUVECs, 

VEGF – HUVECs treated with VEGF, S – HUVECs co-cultured with PC-3/S. Peak area = Peak area×105 (A.U. per 106 

cells). Statistical significance shown by p-values: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. 
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Figure 4.2.4: Metabolite changes induced by VEGF and PC-3/S cells on HUVECs related to purine metabolism. 

AMP – adenine monophosphate, ATP – adenine triphosphate, GMP – guanine monophosphate, GTP – guanine 

triphosphate, IMP – inosine monophosphate, PRPP – Phosphoribosyl pyrophosphate, R5P – ribose-5-phosphate, 

ROS – reactive oxygen species, RM – control HUVECs, VEGF – HUVECs treated with VEGF, S – HUVECs co-cultured 

with PC-3/S. Peak area = Peak area×105 (A.U. per 106 cells). Statistical significance shown by p-values: * p ≤ 0.05, ** 

p ≤ 0.01, *** p ≤ 0.001. 

 

 
 

Figure 4.2.5: Metabolite changes and pathway enrichments induced by PC-3/M cells in HUVECs. The MSEA 

analysis of pathway enrichments in HUVECs under different experimental conditions show, (a) changes in oleamide 

by PC-3/M and PC-3/S co-cultures, and VEGF incubation, compared to the RM control; (b) Changes in tyrosine, 

methionine and tryptophan metabolism by PC-3/M condition. DMG – Dimethylglycine, Fum – fumarate, 
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4.2.3. Discussion 

 

In order to grow and spread to other organs cancer cells recruit endothelial cells for tumour 

angiogenesis [65] and to achieve this they induce several changes in endothelial cells that can 

alter their molecular signalling and metabolic pathways. Studies on molecular angiogenesis 

have led to the development of anti-angiogenic therapies in the past decades, although the 

success rate has been low [345]. Since metabolism is the ultimate description of the changes in 

a cellular phenotype targeting metabolic pathways could be an attractive strategy against 

tumour angiogenesis. Although endothelial cell metabolism has been under study in the past 

few years they have not been particularly focused on the effect of cancer cells on endothelial 

cells. In our co-culture study with the help of the HRMS technique we were able to provide a 

global metabolic fingerprint of the endothelial cells in which changes related to the direct effect 

of cancer cells were observed. In addition we also have been able to distinguish clearly the 

distinctive metabolic changes caused by cancer cell sub-populations displaying different 

metastatic capacities (PC-3/S – low metastatic and highly invasive; PC-3/M – highly metastatic). 

We found that the metabolic alterations induced by PC-3/S cells are similar to that of VEGF, at 

the least for the highest fold changing metabolites such as ALC and NAD+. In line with this 

similarity, the PC-3/S cells have been found to upregulate the expression of VEGF-A mRNA, 

compared to the expression in PC-3/M cells (T.M. Thomson, personal communication, Feb 3, 

2016) and it has been found in vivo that another low metastatic DU145 cell line secretes 3 times 

higher VEGF than the PC-3/M cell lines [346]. Supported by the above reports, our results 

suggest that the metabolic alterations induced by PC-3/S cells in HUVEC are partially due to PC-

3/S-secreted VEGF, shown by the common metabolite upregulations of ALC and NAD+ by VEGF 

and PC-3/S cells in HUVECs (Figures 4.2.2a, 4.2.2b and 4.2.3). However PC-3/S cells also 

upregulate other metabolites shown in Figures 4.2.2b and 4.2.3b, not upregulated by VEGF.  

 

 

Hcy – homocysteine, Lys – lysine, Met – Methionine, Phe – phenylalanine, Trp – Tryptophan, Tyr – Tyrosine, RM – 

control HUVECs, VEGF – HUVECs treated with VEGF, S – HUVECs co-cultured with PC-3/S cells, M – HUVECs co-

cultured with PC-3/M cells. Peak area = Peak area×105 (A.U. per 106 cells). Statistical significance shown by p-

values: ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. 
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This difference may be attributed to the additional factors involved in the PC-3/S condition, 

which is not uncovered yet. While only VEGF has induced a high alteration in purine 

metabolism (Figure 4.2.4), PC-3/S cells have not shown significant changes in purines. Cells 

under the influence of a single factor or a combination of factors can induce different types of 

phenotypic or functional changes. It has also been reported that different angiogenic effects 

are induced by the combination of pro-angiogenic factors with respect to that induced by a 

single factor alone in endothelial cells [347,348], reiterating the fact that the differences 

observed in the metabolome between HUVECs cultured either in the presence of VEGF or in the 

presence of PC-3/S cells in our study could be due to the combination of additional factors 

secreted by the PC-3/S cells. 

 

ALC is produced from carnitine and acetyl-CoA by carnitine acetyltransferase (CAT) and we 

observe an upregulation in HUVEC with VEGF and PC-3/S to almost a fold change of 2, as seen 

in the peak area plot in Figure 4.2.3a. ALC is closely related to fatty acid oxidation in which the 

acetyl-CoA generated from fatty acid breakdown can combine with carnitine to produce ALC, 

illustrated in Figure 4.2.3a. This reaction is reversible and carnitine that can be produced from 

the breakdown of ALC can be recycled back to cytoplasm for transporting more fatty acid acyl-

CoA’s for β-oxidation [349], which in turn produces more acetyl-CoA. Fatty acid oxidation has 

been found important in endothelial cells for its contribution to dNTP synthesis and driving 

endothelial cell proliferation for vessel sprouting [142]. In addition, it has been observed that 

the conversion of carnitine and acetyl-CoA to ALC can contribute to glucose metabolism 

homeostasis by eliminating the excess acetyl-CoA which is an allosteric inhibitor of the enzyme 

pyruvate dehydrogenase that enables the entry of pyruvate into TCA cycle [350,351]. Also, ALC 

supplementation has been reported to possess therapeutic implications in protecting vascular 

function against oxidative stress [352] and in protecting endothelial structure in blood-brain 

barrier [353]. On the other hand in the case of NAD+, it is implicated in various pathways 

(glycolysis, nicotinamide metabolism, citric acid cycle, ketone body metabolism and 

gluconeogenesis) as shown in the pathway enrichment analysis (Figures 4.2.2a and 4.2.2b) and 

pathway illustrations (Figure 4.2.3b), however it has to be taken into account that the related 

reactions involve the inter-conversions between the oxidized and the reduced forms where the 
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reduced NADH form is unstable and hence it is probable that the NAD+ measured could be a 

mixture of both forms. Hence NAD+ cannot be completely relied as a stable biomarker. 

 

The altered purine metabolism in HUVEC has been unique to the VEGF condition in our study 

(Figure 4.2.4). VEGF is a potent regulator of endothelial cell proliferation and angiogenesis [354] 

and in order to proliferate, cells have to generate excess of nucleotide components. Purine 

metabolism is important for the production of DNA and RNA components, in addition, they can 

also generate xanthine oxidase-derived ROS, as illustrated in Figure 4.2.4. The implications of 

the changes in hypoxanthine, guanine and AMP by VEGF in endothelial cells have not been 

reported before. On the other hand it has been shown that VEGF can induce the production of 

mitochondrial ROS which in turn can function as a signalling factor for mediating endothelial 

cell migration [355]. ROS-mediated angiogenesis is also observed by NADPH-generated ROS 

[356]. 

 

While VEGF and PC-3/S cells are observed to be affecting similar metabolic pathways in HUVEC, 

PC-3/M cells show distinct alterations from the other two conditions, as discussed in the 

Results section. Figure 4.2.5 illustrates the pathways altered by PC-3/M cells in HUVEC which 

shows a clear and high upregulation in oleamide and significant downregulation of pathways 

related to tryptophan, methionine and tyrosine. It has been shown that some of the proteins 

over-represented in the conditioned medium obtained from PC-3/M cells are related to cell 

adhesion and cell organization [357], which are typical for a metastatic cell line. The oleamide, 

observed in our study, has also been implicated to anti-metastatic roles when used as a 

therapeutic supplement, by inhibiting the protein connexion 26 that enables the gap junction-

mediated intercellular communications during metastasis [358]. In addition oleamides are 

suspected to play a role in preventing the spread of apoptotic proteins from a damaged cell to 

the neighbouring cell through cellular junctions [359]. During metastasis tumour cells have 

shown to induce endothelial cell damage and apoptosis in order to extravasate from the blood 

vessel to invade secondary metastatic sites [360,361]. Although oleamide has been found in 

some types of cells including human breast cancer cells [362] and mouse neuroblastoma cells 

[363] and in biological samples like the human serum [364] and rat cerebral spinal fluid [365], it 
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has not been reported in HUVECs before and from our study it seems like this metabolite is 

expressed as a defence mechanism against the cellular damage from the metastatic PC-3/M 

cancer cell line. 

 

Overall, our untargeted metabolomics approach combined the co-culture technique with the 

high throughput Orbitrap mass spectrometry to deduce for the first time, the metabolic 

fingerprints of tumour-affected endothelial cells. The co-culture experimental technique closely 

mimics the in vivo tumour-endothelial cross-talk and indicates changes in endothelial cells, 

which would otherwise be difficult to assess in vivo for only these cell types. Our method 

intended to capture the early events of metabolic adaptations and identified 25 metabolites 

enriched in several pathways including fatty acid oxidation, central carbon metabolic pathways 

related to NAD+, pathways related to amino acids and redox homeostasis. Our results showed a 

distinct similarity in the metabolic profiles of endothelial cells affected by VEGF and low 

metastatic cancer cells and contrasting metabolic profile induced by the high metastatic cancer 

subtype. These observations provide a preliminary view of the tumour-affected endothelial 

cells which can contribute to the future biomarker discoveries distinct for tumour subtype 

related angiogenesis. 
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Chapter 4.3 

4.3. Therapeutic implications of glycogen phosphorylase inhibition in in vitro 

and in vivo angiogenesis 

 

4.3.1. Introduction 

 

In the Chapters 4.1 and 4.2 we characterized the metabolic reprogramming in HUVECs in the 

presence of different microenvironmental challenges using fluxomics and untargeted 

metabolomics approaches, respectively. Among the general metabolic changes, the 13C-based 

metabolomics and fluxomics study revealed that there is a considerable glycogen reserve in 

HUVECs and the presence of a high glycogen turnover, the purpose for which is not known yet 

in this cellular type. Glycogen reserve and its metabolism have been proven to be highly 

significant for the survival and function of certain cell types, to overcome cellular stress due to 

hypoxia or nutrient starvation conditions, like in cancer cells [170,176], neurons [256], 

astrocytes [338] and functions as an energy sensor in adipocytes [203]. We hypothesize that the 

glycogen turnover observed in our endothelial cells must be linked to a functional significance 

distinct for these cell types that could be related to the functions of angiogenesis, comprising 

endothelial cell proliferation, migration and blood vessel formation. 

 

Previous studies in our laboratory on glycogen metabolism of HUVECs have shown that 

inhibiting VEGF-induced proliferation of cells decreased the utilization of glycogen and some 

preliminary in vitro experiments have shown a decrease in HUVEC viability upon inhibiting 

glycogen degradation [135]. Following this previous observation in our laboratory and the 

significant findings from our fluxomics study, we wanted to test further the importance of 

glycogen metabolism in endothelial cell survival and function. The futile cycle of glycogen 

metabolism could be due to the continually opposing activities of both GS and GP enzymes, 

which drive for synthesizing and degrading glycogen, respectively. While both enzymes could 

be significant for HUVEC survival and/or function, we target glycogen degradation pathway by 
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choosing inhibitors for GP, as there is no direct inhibitor for the GS enzyme and its regulation is 

complex [178]. In addition there are many direct inhibitors of GP that are patented [253,366] 

and commercially available, under clinical trials for therapeutic uses of Type 2 diabetes and 

related diabetic complications [367]. Hence in this chapter we show the observations of GP 

inhibitors on distinct endothelial cell functions and survival such as the cell viability, migration 

and wound healing in vitro and the effect in vivo on angiogenesis and tumour growth. 

 

4.3.2. Results 

 

4.3.2.1. Effect of glycogen phosphorylase inhibitor on HUVEC viability and 

function in vitro 

 

In order to choose a GP inhibitor that is effective against the HUVEC viability, we tested several 

of these compounds in the in vitro viability and migration assays. For this purpose HUVECs were 

treated under normoxic condition with the indole carboxamide inhibitors such as CP-316819, 

CP-320626 and CP-91149 and other inhibitors such as isofagomine, BAYU6751 and DAB, as 

described in detail in the Methods sections 3.2 for in vitro viability assay and 3.3 for in vitro 

migration assay. Figure 4.3.1 shows the results of HUVEC in vitro viability assay. 

 

 

 

Figure 4.3.1: in vitro viability assay of HUVECs with GP inhibitors. The HUVEC viability test was performed by MTT 

assay with GP inhibitors: CP-316819, CP-320626, CP-91149, Isofagomine, BAYU6751 and DAB. For this assay 

…/…

-100

-50

0

50

100

150

200

250

0 50 100 150 200 250

%
 V

ia
b

il
it

y

Concentration (µM)

CP-316819

CP-320626

CP-91149

Isofagomine

BAY U6751

DAB



111 
 

In the in vitro viability assay we observed that the indole carboxamide-based inhibitors CP-

316819, CP-320626 and CP-91149 affected the HUVEC viability effectively showing a half 

maximal inhibitory concentration (IC50) in the range of 45 to 70 µM, while the other GP 

inhibitors Isofagomine, BAYU6751 and DAB did not show a reduction in cell viability until the 

200 µM concentration tested. From the three indole carboxamide inhibitors tested in the in 

vitro viability assay we chose CP-316819 for further experiments as it showed comparatively 

lower IC50 than CP-91149 and in addition was commercially available, unlike CP-320626 which 

was not commercially available but showed similar IC50 to CP-316819. Also the other inhibitors: 

BAYU6751, Isofagomine and DAB, which did not show reduction in viability, were included in 

the migration assay to check if they show effect on HUVEC migration (Figure 4.3.2). 

 

  

 

Figure 4.3.2: in vitro migration assay of HUVECs with GP inhibitors. HUVECs treated with the different inhibitor 

types were tested for their effects against cell migration. (a) Migration assay result with CP-316819. BAYU6751 and 

Isofagomine, (b) Migration assay with DAB showing. The controls are without the GP inhibitors: +ve control, 

representing maximum migration induction, has HUVECs in the presence of the complete medium with 10% FBS 

and Lonza SIngleQuots supplements that shows effective migration and –ve control, representing least induction 

of migration, has HUVECs in the presence of endothelial basal medium without serum and additional factors. Cells 

in the endothelial basal medium were incubated at the upper well, while the complete medium with or without 

inhibitors were placed in the lower wells of the transwell plates and incubated for 24 hours before measuring the 

migration of cells to the lower part of the upper well, as described in the Methods section 3.3. DAB - 1,4-dideoxy-

1,4-imino-d-arabinitol. *p≤0.05, ****p≤0.0001. 

 

 

…/… 

HUVECs were incubated with the GP inhibitors under varying concentrations, up to 200 µM, under normoxic 

condition for 72 hours in 96-well plates and at the end of the assay the cell viability was estimated using MTT 

assay, as described in the Methods section 3.2. DAB - 1,4-dideoxy-1,4-imino-d-arabinitol. 
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The migration assay was performed with varying concentrations of the inhibitors (10, 40 and 

100 µM). For this assay, HUVECs deprived of nutrients and hormones were kept in endothelial 

basal medium without serum or supplements in the upper chamber of the transwell plates and 

the inhibitors mixed with complete medium with 10% FBS and Lonza SingleQuots supplements 

were placed in the lower wells. After incubation the migration of cells through the pores from 

the upper well to the surface facing the lower side, which is in contact with the complete 

medium (with or without inhibitors), was assessed through quantitative fluorescence 

absorption measurement (see Methods section 3.3 for more details). The results, in Figure 

4.3.2, show that the GP inhibitor CP-316819 significantly reduced HUVEC migration at 40 µM 

and 100 µM of concentrations while the other inhibitors have not shown an effect against the 

migration. 

 

In order to test the effect of GP inhibitors further on angiogenic properties of HUVECs, in vitro 

wound healing assay or scratch assay was performed in which a physical scratch was created  

on the cellular monolayer to study the migration of cells to heal the ‘wound’, mimicking the in 

vivo situation [312]. In this case, we did the wound healing assay with HUVECs to check the 

effectiveness of the inhibition of both cellular proliferation and migration by the GP inhibitor 

CP-316819, that showed effective reduction against HUVEC viability and migration in the assays 

described in the previous paragraphs. For this assay HUVECs were maintained in complete 

medium with 10% FBS and Lonza SingleQuots supplements and the GP inhibitor CP-316819 was 

added at either the concentration of 40 µM or 100 µM. In the positive control the cells were 

maintained in the complete medium and in the negative control the cells were incubated with 

the restricted medium containing 2% FBS and no supplements, both the controls without the 

GP inhibitor. At the end of the incubation times of 14 and 21 hours the cells under all the 

conditions were analyzed for ‘wound healing’ capacity, as described in the Methods section 3.4. 

Figure 4.3.3 shows the pictures taken before and after treatment of the cells for the time points 

mentioned above. We observe that as the positive control partially closes the wound at 14 

hours and completely closes it at 21 hours, the negative control does not show a closure at 

both time points. At 40 µM and 100 µM, the CP-316819 treated cells have inhibited the wound 

closure both at 14 and 21 hours. 
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Figure 4.3.3: Wound healing assay of HUVECs with GP inhibitor CP-316819. For this assay HUVECs in positive 

control and the treated cells were in the presence of complete medium with 10% FBS and Lonza SingleQuots 

supplement, either in the absence or presence of the GP inhibitor, respectively. The cells in the negative control 

were in the presence of restricted medium with 2% FBS without supplements. For this assay a physical scratch was 

created on the cellular monolayer and the HUVECs were incubated with the compound CP-316819 at 

concentrations 40 and 100 µM and for 14 and 21 hours. The cellular monolayers under the different conditions 

before and after treatment were recorded under the phase contrast microscope and the photographs analyzed for 

the effectiveness of the compound CP-316819 in inhibiting the ‘wound’ closure. 

 

4.3.2.2. Effect of glycogen phosphorylase inhibitor against in vivo 

neovascularisation, tumour growth and microvessel density  

 

The results described in the previous section showed that the GP inhibitors were effective in 

reducing HUVEC viability and function in vitro. In order to further test its effect on in vivo 

angiogenesis we performed a matrigel plug assay [368]. In this assay we test the anti-

neovascularization effect of the GP inhibitor CP-316819 in the mice model C57BL6, by injecting 

the matrigel with or without the GP inhibitor (see Methods section 3.5 for more details). The 

positive control contains matrigel along with the pro-angiogenic factor VEGF and the negative 

control contains only matrigel. The treatment group contains both VEGF and the GP inhibitor 

CP-316819 with varying concentrations (10 and 50 µM). In this assay we assessed the 

effectiveness of the GP inhibitor in reducing the blood vessel formation by quantifying the 
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haemoglobin quantity in the matrigels of the treated animals. As shown in Figure 4.3.4, the 

negative control showed a very low haemoglobin quantity while the positive control showed 

elevated haemoglobin. We observed that at the given dosages of the GP inhibitor the 

haemoglobin quantity was not significantly lower as compared to the positive control. 

 

 

 

Figure 4.3.4: In vivo matrigel plug assay to test the anti-neovascularization effect of the GP inhibitor. The GP 

inhibitor CP-316819 at the doses 10 µM and 50 µM were injected with the matrigels and VEGF into a mice model 

and incubated for 7 days. After treatment the extracted matrigels were processed for assessing the haemoglobin 

quantity, as described in the Methods section 3.5. The graph shows the haemoglobin quantity in the matrigels 

extracted from controls and CP-316819-treated mice. The negative control is only matrigel injected 

subcutaneously into mice abdominal area and the positive control contains matrigel injected along with VEGF. The 

treated groups contain both the GP inhibitor CP-316819 and VEGF. 

 

We next wanted to check if the GP inhibition had an impact on the tumour growth and the 

tumour angiogenesis. For this in vivo efficacy assay we used an experimental animal model of 

nude mice injected subcutaneously with a human myelomonocytic leukemia cell line (see 

Methods section 3.6 for more details). One group of mice was kept as control without 

treatment, with only vehicle and the second group of mice were treated with 25 mg/kg CP-

316819 injected on alternate days for two weeks. Figure 4.3.5a shows the relative tumour 

volume (with respect to the volume at day 0 of the treatment) of the control and treated mice 

recorded during the treatment regimen. We see that though the injection of the compound CP-

316819 does not cause a visible variation in the tumour size during the initial days of the 

treatment the tumour size seems to reduce during the second week, while reaching about 15% 

of reduction at the end of the treatment when compared with the controls, though the 
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reduction was not statistically significant. Figures 4.3.5b and 4.3.5c show the measurements of 

the percentage CD31 tumour microvessel density and vessel area of the treatment group with 

respect to the control group. From these results we observe that the area occupied by the 

tumour microvessels does not change, but an estimated reduction of about 30% of the tumour 

microvessels can be observed. 

 

 

 

Figure 4.3.5: The effect of GP inhibitor CP-316819 on in vivo tumour efficacy assay. In this assay, results of the (a) 

measurements of relative tumour volumes of the tumours measured in the control mice (Vehicle, blue) and 

treated mice (CPD, red) during the treatment regimen, (b) estimation of tumour microvessel density and (c) 

estimation of tumour vessel area, are shown, with and without treatment of the tumour models with the GP 

inhibitor CP-316819. In this assay the mice model injected subcutaneously with tumours were subjected to a 

treatment with CP-316819 GP inhibitor every alternate day for 12 days, at a dosage of 25 mg/Kg. The tumour size 

was measured during the treatments and at the end of the dosage regimen the tumours were extracted and 

analyzed for tumour vessel density and area, as described in the Methods section 3.6. a.u. – arbitrary units. 
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4.3.2.3. Effect of the glycogen phosphorylase inhibitor on HUVEC lipid 

metabolism 

 

The indole inhibitors were claimed to have additional therapeutic relevance to 

hypercholesterolaemia and hyperlipidemia [366]. Hence in order to check if the effect of the GP 

inhibitor CP-316819 on in vitro and in vivo angiogenesis can be attributed to any additional 

side-effects on other metabolic pathways like the lipid metabolism, we used ketoconazole, an 

anti-fungal agent which also inhibits the synthesis of cholesterol and phospholipids [369,370] in 

the in vitro and in vivo angiogenesis assays. For the in vitro viability assay, HUVECs were 

incubated with ketoconazole under normoxia for 72 hours similar to the viability assay with GP 

inhibitors described in the section 4.3.2.1. The results in Figure 4.3.6a show that the HUVEC 

viability was affected with a slightly higher IC50 of about 70 µM with ketoconazole, than that 

obtained with HUVECs when treated with the GP inhibitors (Figure 4.3.1). Then the effect of 

ketoconazole on in vivo angiogenesis was tested by matrigel plug assay, carried out in the 

similar manner as described with the GP inhibitor CP-316819 in the section 4.3.2.2. Upon 

measuring the haemoglobin content from the extracted matrigels the results in Figure 4.3.6b 

indicate that the haemoglobin content with ketoconazole treatment has not shown a decrease 

with respect to the untreated positive control that shows a higher haemoglobin content, similar 

to the results with GP inhibitor CP-316819 (Figure 4.3.4), reiterating that the compound 

ketoconazole has not affected the in vivo neovascularisation in the matrigels. 

 

 

 

Figure 4.3.6: Effect of the lipid metabolism inhibitor ketoconazole on HUVEC viability and function. The 

compound ketoconazole possessing anti-lipid metabolic properties was used to check if blocking lipid metabolism 

has any effect against in vitro and in vivo angiogenesis. The results show, (a) the in vitro viability assay with
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From the above in vitro viability and in vivo matrigel experiments we observed a slight to no 

effect of the lipid metabolism inhibitor on the activities of angiogenesis, to validate that the 

indole carboxamide GP inhibitor used was not affecting endothelial cell viability and function 

based on other metabolic pathways such as those of lipids, than the glycogen metabolism. In 

order to further validate this hypothesis we intended to check if there was a change in the 

levels of lipids from the in vivo CP-316819-treated samples. For this purpose the same samples 

of controls and CP-316819-treated tumour tissues and the plasma extracted from the 

respective mice models from the in vivo tumour efficacy assay, performed and discussed in 

section 4.3.2.2, were subjected to an LC-MS-based targeted metabolomics analysis, using 

Biocrates AbsoluteIDQ kit where the metabolites extracted from the tumour tissues and plasma 

were measured for lipids using LC-MS, as described in the Methods section 3.15. Figure 4.3.7, in 

the following page, shows the concentrations of the metabolites, glycerophospholipids and 

sphingolipids in the plasma and tumour tissues with and without CP-316819 treatment. From 

these results we observe no significant change in lipid contents with the GP inhibitor treatment 

with respect to the control samples and hence we have not observed any compelling evidence 

that the changes observed in the experiments with CP-316819 were due to changes in lipids. 

 

 

 

 

 

 

 

 

HUVECs, (b) the in vivo matrigel assay in which the haemoglobin content was measured in the presence and 

absence of ketoconazole. The in vitro viability assay was performed in the similar manner as with the GP inhibitors, 

described in section 4.3.2.1 where HUVECs were incubated for 72 hours under normoxic condition with 

ketoconazole and its effect on cell viability was estimated after treatment. The in vivo matrigel assay was also 

performed under similar conditions as with the GP inhibitor CP-316819 described in the section 4.3.2.2, where the 

matrigels with VEGF and ketoconazole were injected into the mice and after 7 days the matrigels extracted were 

subjected to a measurement of haemoglobin content obtained from the neovascularized areas of the matrigels. 

The control matrigels contain only VEGF for positive control and only matrigel for negative control. The 

haemoglobin content was normalized with mg matrigel. 
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Figure 4.3.7: LC-MS- based targeted metabolomics analysis of lipids on CP-316819-treated in vivo samples. The 

levels of glycerophospholipids and sphingolipids in the tumour tissues and plasma samples from the tumour mice 

models treated with CP-316819 were measured to check if the GP inhibitor showed changes in lipid metabolism. 

The results show the levels of, (a) Plasma glycerophospholipids, (b) Plasma sphingolipids, (c) Tissue 

glycerophospholipids and (d) Tissue sphingolipids. For this in vivo efficacy, the tumour incorporated mice were 

treated with 25 mg/Kg of CP-316819 on alternate days and after 12 days of treatment the mice were sacrificed and 

blood and tumour tissues were extracted. The plasma extracted from the blood samples and the tumour tissues 

were subjected to metabolite extraction procedure for LC-MS analysis and the extracted metabolites were 

measured for lipids content. LysoPCa – lyso-phosphotidylcholines with acyl side chains, PC – phosphotidylcholines, 

SM – sphingomyelins, PCaa – phosphotidylcholines with acyl residues in the side chains, PCae – 

phosphotidylcholines with alkyl and alkenyl residues in the side chains, SM (OH) – sphingomyelins with substituted 

OH groups in the side-chains,. Cx:y indicates the lipids with total number of x carbons with y double bonds.  

 

4.3.3. Discussion 

 

In our study we attempted to verify the efficacies of GP inhibition in HUVECs in the reduction of 

in vitro cell proliferation, migration and in vivo angiogenesis and tumour growth. In the in vitro 

assays we found that the GP inhibitor CP-316819 lowered the HUVECs cell viability, cellular 

migration and wound healing capability. Although it was efficient in vitro, it showed very little 

effect in vivo in reducing the angiogenesis and tumour growth. The haemoglobin quantity 

measured in the matrigel assay did not show a significant reduction with the GP inhibitor 
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compared to the positive control, while in the tumour efficacy assay there was an observable 

reduction in the microvessel density. 

 

The haemoglobin content measurement is an indirect estimation of the quantity of blood in the 

vessels formed. In turn the blood content measured in the newly formed blood vessels can be 

affected by the size of the vessels and by the extent of stagnant pools of blood at certain areas 

[371]. In our results of the matrigel assay the uneven and higher blood content from the 

haemoglobin measurement observed with the GP inhibitor treated samples could be attributed 

to these vessel morphology discrepancies such as the uneven sizes of blood vessels and blood 

stagnation as mentioned above. Hence, including a direct visualization of vessel morphology in 

the matrigels extracted, in addition to the indirect haemoglobin content analysis, could have 

supported the study for a better understanding of the effect of CP-316819 on blood vessels. In 

the case of the in vivo tumour efficacy assay, although the reduction in tumour growth was not 

significant, the decrease in tumour microvessel density could be attributed to some significant 

anti-angiogenic activity by GP inhibition. It is already reported in some studies that anti-

angiogenesis treatments induce reduction in tumour microvessel density, with or without 

reducing tumour size, which is attributed to the morphological changes of tumour vessels 

causing vessel normalization [372-374]. These studies show that even if the treatments 

focussed on inhibiting angiogenesis do not show a direct effect on reducing tumour growth, 

some important effects are observed which indirectly can aid in anti-cancer treatments. It is 

shown that normalized vessels can improve the blood flow and aids in effective response to 

chemotherapy, immunotherapy and radiation therapy to treat cancer [372]. Thus our results 

seem to show that inhibiting glycogen degradation has an indirect effect on angiogenesis and 

tumour vessels which could possess a therapeutic importance that has to be explored further. 

 

In addition, the choice of tumour models can affect the treatment results as some types of 

tumours may require more or less quantity of blood vessels for their survival and propagation. 

Studies using inhibitors of angiogenic factors have shown that certain types of tumours such as  

rhabdomyosarcoma, glioblastoma and melanoma [93,375] vary in their responses to the anti-

angiogenic treatments reducing tumour vessel density and tumour growth, as some types of 
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tumours may be more angiogenesis-dependent than others. Thus a better choice of in vivo 

tumour models that provide effective tumour microenvironment for angiogenesis can improve 

the efficiency of compounds tested for angiogenesis [376]. In addition to that, it is important to 

understand the process of angiogenesis at the metabolic level for designing better therapies, as 

discussed in the previous chapters. Thus a better understanding of the metabolic regulations in 

glycogen metabolism of endothelial cells will throw a light on targeting this pathway for 

pathological angiogenesis. Regulation of glycogen metabolism has not been studied before in 

endothelial cells and we have intended to characterize it in the following chapter using HUVECs 

as the endothelial cellular model. 
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Chapter 4.4 
 

4.4. Characterization of glycogen metabolism and its regulation in endothelial 

cells 

 

4.4.1. Introduction 

 

Studies on endothelial cell metabolism have been under focus in recent years in search for a 

strong therapeutic target against pathological angiogenesis, among which the glycogen 

metabolism is still unexplored. In a preliminary study in our laboratory it was shown that 

endothelial cells accumulate significant amount of glycogen both under normoxia and hypoxia 

[135]. In the Chapter 4.1 we have observed a similar pattern, of glycogen accumulation by 

HUVECs and the presence of glycogen turnover revealed by the 13C-based metabolomics and 

fluxomics studies. The purpose of this glycogen metabolic pattern in endothelial cells was not 

clear, but from our in vitro and in vivo studies described in Chapter 4.3 we have observed that 

inhibiting GP enzyme actually affected HUVEC viability and function and have even caused 

changes to tumour angiogenesis by affecting the tumour microvessel density. These 

observations are revealing a protective role of glycogen degradation in endothelial cells similar 

to that observed in other cell types, like in cancer cells and neurons [176,256]. Although the 

importance of glycogen metabolism is beginning to reveal itself with these preliminary studies 

in endothelial cells, and direct inhibitors to GP may be a good therapeutic target to explore 

anti-angiogenic strategies, there are not sufficient information about the glycogen metabolism 

and regulation in these cells which could assist in a better therapeutic design. The GP inhibitor 

was effective in vitro in endothelial cells but did not show an expected tumour inhibition or a 

strong anti-angiogenic pattern in vivo, as seen in Chapter 4.3. It is known that glycogen 

metabolism and its key enzymes, GP and GS have complex regulatory mechanisms [212,217] 

and inhibition of one of the enzymes could involve changes in factors affecting its regulatory 

pathways. Hence we decided to extend this study further, to characterize the glycogen 
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metabolism of HUVECs by assessing their glycogen reserves, expressions of GP and GS enzyme 

isoforms, and measuring the GP and GS enzyme activities under different substrate conditions.  

 

For this purpose our experiments with HUVECs involved growing the cells under three different 

substrate conditions: (i) in a medium with VEGF (represented as RMV) containing 2% FBS and 

30 ng/mL VEGF, (ii) in a complete medium (represented as CM) containing 10% FBS and with 

growth hormones such as hydrocortisone and human epidermal growth factor and, (iii) in a 

restricted medium (represented as RM) containing only 2% FBS, which is used as the control 

condition (see Methods section 3.1 for more details on these cell culture conditions). The 

experimental condition with VEGF (RMV) was included because it was found that VEGF receptor 

inhibition reprogrammed the glycogen metabolism in HUVECs [135] and in addition our studies 

in Chapter 4.1 have shown that VEGF reduces the glycogen content in HUVECs and thus we 

wanted to check if this angiogenic factor causes a change in GP and GS enzyme expressions or 

activities in HUVECs. Additionally we wanted to check if glycogen stores or enzyme expressions 

and activities were different when HUVECs were under highly proliferating and growth 

hormone-rich condition as in CM as opposed to the low proliferating conditions of RM and 

RMV. Additionally we have studied the effect of normoxia and hypoxia and the presence and 

absence of glucose in glycogen accumulation/degradation in all the conditions mentioned 

above and characterized the enzyme expressions and activities under normoxia, the results of 

which are discussed in the following sections. 

 

4.4.2. Results 

 

4.4.2.1. Glycogen degradation at glucose depleted conditions 

 

Previous results have demonstrated that glycogen is mobilized in the absence of glucose under 

normoxia [135], as well in Chapter 4.1 we have observed the effect of VEGF in reducing the 

glycogen reserves in HUVECs. Hence to investigate it further, we have measured the glycogen 

content in HUVECs cultivated under normoxia, in different substrate conditions of RM, RMV 
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and CM, initially with 15 mM of glucose and then deprived of glucose for different time points. 

Figure 4.4.1 shows the results of the glycogen content measurement in HUVECs incubated in 

the conditions mentioned above, with (0h) and without glucose (1h, 5h and 24h of glucose 

deprivation). 

 

 

 

Figure 4.4.1: Glycogen content measured in the presence and absence of glucose under normoxia. Measurement 

of glycogen levels in HUVECs incubated with glucose (0h) and without glucose (after 1h, 5h and 24h), with different 

substrate conditions of RM, RMV and CM under normoxia. The glucose, derived from the degradation of glycogen 

extracted using α-amyloglucosidase, was measured using GC-MS, as described in the Methods section 3.12.7. glc – 

glucose, RM – restricted medium with 2% of FBS, RMV – restricted medium with 2% FBS and VEGF, CM – complete 

medium with 10% FBS and Lonza EGM SingleQuots. Statistically significant difference among RM and CM or RMV 

and CM - **** p ≤ 0.0001, *** p ≤ 0.001, * p ≤ 0.05. 

 

From the Figure 4.4.1, we see that in the presence of glucose in the cell culture media the 

glycogen accumulation is high in all the three conditions. Upon depriving glucose completely 

the glycogen content is degraded to a minimum level at 5h, to almost 70% of the content at 0h, 

and remains almost at the same level until 24h of glucose deprivation. It can be observed that 

glycogen is not degraded completely and there is always a minimum amount left even at 24h 

without glucose. Though VEGF does not induce significant change in glycogen content with 

respect to RM, the cells incubated in CM show significantly reduced glycogen accumulation. 

Although VEGF (RMV condition) showed a significant reduction of glycogen content in 
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Chapter 4.1, which was not observed for the experiments in the present chapter, we assume 

this difference could be due to the lower incubation period of 3h with VEGF in the present 

experiments where sufficient metabolic adaptation of HUVECs to VEGF could not have been 

achieved, compared to those in Chapter 4.1 where the incubation periods were longer. 

 

For the experiment under hypoxia, HUVECs in RM, RMV and CM conditions were pre-

conditioned under hypoxia for 3h in the presence of glucose and then the respective media 

without glucose were replaced and the cells were maintained for 5h more under hypoxia (refer 

to Methods section 3.1 for cell culture conditions for more details). The result of the glycogen 

content measurement under hypoxia in HUVECs with (0h) and without glucose (5h) is shown in 

Figure 4.4.2, where we see that the glycogen is almost depleted in the absence of glucose, to 

about 90% compared to those at 0h, in the cells maintained in all the substrate conditions. As 

seen under normoxia (Figure 4.4.1), under hypoxia also the HUVECs in CM condition 

accumulate lesser glycogen (seen at 0h with glucose in Figure 4.4.2), while the cells in RMV 

condition does not show significant difference with respect to those in RM. 

 

 

 

Figure 4.4.2: Glycogen content measured in the presence and absence of glucose under hypoxia. The 

measurement of glycogen content of HUVECs is shown under hypoxia with glucose and after 5h without glucose, 

under the substrate conditions RM, RMV and CM. HUVECs in RM, RMV and CM were initially pre-incubated under 

hypoxia for 3h and then the cells were maintained under hypoxia for 5h more without glucose, before finishing the 

experiment. The glucose, derived from the degradation of glycogen extracted using α-amyloglucosidase, was 

measured using GC-MS, as described in the Methods section 3.12.7. glc – glucose, RM – restricted medium with 2% 

of FBS, RMV – restricted medium with 2% FBS and VEGF, CM – complete medium with 10% FBS and Lonza EGM 

SingleQuots. Statistically significant difference among: RM and CM - * p ≤ 0.05; among time-points (with and 

without glucose), between respective incubation conditions - ## p ≤ 0.01, ### p ≤ 0.001, #### p ≤ 0.0001.  
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4.4.2.2. Enzyme expressions of glycogen synthase and glycogen phosphorylase   

 

The observations, in the previous section, of the glycogen utilization when glucose was 

deprived in HUVECs suggest that there is an active participation of the enzymes of glycogen 

metabolism. In order to better understand the role of glycogen in HUVECs, it is important to 

uncover the characteristics, enzyme activities and regulations of GS and GP enzymes in these 

cells. As an initial step of characterizing the key enzymes of glycogen metabolism in HUVECs we 

aimed to find out which isoforms of GS and GP are expressed in HUVECs. Moreover it is of our 

interest to check if there is a relevant difference in the expression of these isoforms when the 

cells are incubated under different substrate conditions of RM, RMV and CM. Hence, HUVECs 

were grown in the presence (0h) and absence of glucose (1h and 5h), under normoxia in RM, 

RMV and CM conditions and were processed for analyzing the protein expressions of the 

different isoforms of the enzymes GS (liver and muscle) and GP (liver, muscle and brain). Also, 

RNA was extracted for qRT-PCR analysis, for estimating their expressions corresponding to GS 

and GP isoforms. 

 

Figure 4.4.3a.i shows the results of the protein expressions of the GS enzyme in HUVECs under 

different substrate conditions, with and without glucose. It is shown that HUVECs express 

muscle isoform of GS and liver isoform expression was not observed (data not shown for liver 

GS). In addition, we observed that the bands of the muscle GS protein, after 5h of incubation in 

the absence of glucose, run faster than those at other time points, attributing to the possible 

differences in phosphorylated states of the enzyme. On the other hand, the expression of these 

isoforms did not change due to different incubation conditions. In order to further validate the 

differences in phosphorylated states of the muscle GS at different time points of incubation, we 

checked the protein expression of phosphorylated GS. It has to be noted that phosphorylated 

GS form corresponds to inactive GS enzyme, while the unphosphorylated GS corresponds to the 

active form of the enzyme. Figure 4.4.3b.i shows the results of the protein expressions of 

muscle GS in HUVECs phosphorylated at serine residues 641/645, in which we clearly see 

relatively low intense bands of the phosphorylated GS enzyme at 5h compared to the other 

time points. Figure 4.4.3a.ii shows the protein quantification of the total muscle GS, 
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Figure 4.4.3b.ii shows the quantification of the phosphorylated muscle GS bands and Figure 

4.4.3c shows the ratio of phosphorylated to total muscle GS. It is evident that at 0 and 1h, in the 

presence of plenty of glycogen (as shown in the results in Figure 4.4.1), GS enzyme is highly 

phosphorylated which shows that it is inactive, while at 5h at minimum glycogen levels the 

phosphorylated GS is too low showing that the enzyme is highly active. 

 

 

 

Figure 4.4.3: GS enzyme expression in HUVECs. (a.i) Protein expression of total muscle GS (83.7 kDa), (a.ii) 

quantification of total muscle GS protein (b.i) protein expression of GS enzyme phosphorylated at serine 641/645, 

(b.ii) quantification of the phosphorylated muscle GS protein, (c) ratio of the phosphorylated GS to the total GS 

(pGS/GS), in HUVECs grown in the substrate conditions of RM, RMV and CM and also with (0h) and without glucose 

(glucose deprivation for 1h and 5h). B, M and L are the protein expressions of the mice brain, muscle and liver 

tissues, respectively, as controls for the enzyme isoforms. GS – glycogen synthase, MGS – muscle GS isoform, pGS 

– phosphorylated GS, RM – restricted medium with 2% of FBS, RMV – restricted medium with 2% FBS and VEGF, 

CM – complete medium with 10% FBS and Lonza EGM SingleQuots.  
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In the case of GP enzyme, HUVECs co-expressed brain and liver isoforms of GP, as shown in 

Figure 4.4.4, while muscle GP was not expressed (data not shown). Additionally, no apparent 

difference was observed in expression of these isoforms in HUVECs incubated neither under 

different substrate conditions nor in the presence or absence of glucose. 

 

 
 

Figure 4.4.4: GP enzyme isoform expression in HUVECs. Protein expressions of brain GP (96.6 kDa) and liver GP 

(97.1 kDa) enzyme isoforms are shown in HUVECs grown in the substrate conditions of RM, RMV and CM and also 

with (0h) and without glucose (glucose deprivation for 1h and 5h). B, M and L are the protein expressions of the 

mice brain, muscle and liver tissues, respectively. as controls for the enzyme isoforms. BGP – brain GP isoform, LGP 

– liver GP isoform, RM – restricted medium with 2% of FBS, RMV – restricted medium with 2% FBS and VEGF, CM – 

complete medium with 10% FBS and Lonza EGM SingleQuots. 

 

The expressions of muscle GS, and brain and liver GP isoforms in HUVECs were also validated by 

the mRNA expression levels from the quantitative RT-PCR analysis. As shown in Table 4.4.1 the 

relative abundances of mRNA expressions of muscle GP (GYS1), brain GP (PYGB) and liver GP 

(PYGL), with respect to the reference gene PPIA, were much higher than the other isoforms - 

the liver GS (GYS2) and the muscle GP (PYGM) which were almost undetectable.  

 

Table 4.4.1: Quantitative RT-PCR. Relative abundances of the genes of muscle GS, brain GP and liver GP 
enzymes with respect to PPIA reference gene in the measured RNA expression levels in HUVECs: The mRNA levels 
were calculated on the assumption of theoretical amplification efficiency of 2.  
 

 Genes % Relative abundance 

GS GYS1 (Muscle) 12.8 ± 2.5 

GYS2 (Liver) 0.003 ± 0.002 

GP PYGB (Brain) 22.9 ± 4 

PYGL (Liver)  10.7 ± 1.4 

PYGM (Muscle) 0.009 ± 0.002 
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4.4.2.3. Enzyme activities of glycogen synthase and glycogen phosphorylase 

 

The mobilization of glycogen in the absence of glucose and the differences in phosphorylation 

states of the muscle GS enzyme with respect to the glucose content in the incubation media, as 

observed in the above results, show that the GP and GS enzymes are actively involved in the 

glycogen metabolism in HUVECs. Hence we wanted to observe the enzyme activities of GP and 

GS enzymes in HUVECs in the same incubation conditions. The results of the GS enzyme activity 

assay are shown in Figure 4.4.5. 

 

  

 

Figure 4.4.5: Enzyme activity assay of GS in RM, RMV and CM, in the presence and absence of glucose. (a) Total 

GS activity, (b) active GS form, with an expanded plot of 0h and 1h embedded into the main plot and, (c) the ratio 

of active to total GS, with the plots of 0h and 1h expanded and embedded within the main graph. The total GS 

activity was measured in the presence of the allosteric activator G6P and the active GS was measured in the 

absence of it. GS – glycogen synthase, GSa – active GS form, glc – glucose, RM – restricted medium with 2% of FBS, 

RMV – restricted medium with 2% FBS and VEGF, CM – complete medium with 10% FBS and Lonza EGM 

SingleQuots. 
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In the case of the GS enzyme, the total enzyme activity (that correlates with all GS protein 

present in these cells) (Figure 4.4.5a), the actual GS activity (corresponding to the active GS 

proteins) (Figure 4.4.5b) and the ratio of the active GS to total GS, that gives the estimation of 

the active state of GS, (Figure 4.4.5c) are displayed. From the results we observe that the total 

GS activity remains the same in the presence or absence of glucose (Figure 4.4.5a) irrespective 

of the substrate conditions of RM, RMV and CM. Moreover, we see that the real GS activity at 

5h is more than 15 times compared to that at time points 0h and 1h (Figure 4.4.5b). 

Accordingly, the ratio of active to total GS in Figure 4.4.5c is much higher at 5h, compared to 0h 

and 1h. This result is consistent with the result from protein expression of phosphorylated GS 

shown in Figure 4.4.3b, where the phosphorylation of GS, that inactivates GS, was much lower 

at 5h compared to 0h and 1h. In addition HUVECs in CM condition show significantly lower total 

GS and active GS levels (Figures 4.4.5) compared to the cells in RM and RMV. VEGF did not 

seem to induce significant changes in the enzyme activity and remained similar to the control 

cells in RM. 

 

The enzyme GP is described to be regulated by covalent phosphorylation, where 

phosphorylation activates GP enzyme, in contrary to GS where it inactivates the enzyme. This 

active GP form is represented as GPa, while the dephosphorylated or the inactive GP form is 

represented as GPb. Both these forms of GP can be regulated by some allosteric regulators that 

can favour either the GPa or the GPb forms of the enzyme, and in addition, can be selective to 

the GP isoforms (see Introduction section 1.5.1). In Figure 4.4.6, we show the enzyme activity 

measurement of the GPa in HUVECs, in the presence of caffeine which allosterically inhibits the 

GPb forms of the liver and brain isoforms of GP. The GPa enzyme activity decreases significantly 

at 5h when glycogen is depleted, uniformly for all medium conditions. Although the activity 

range for GP and GS enzymes are not of the same order (almost 3 mU/mg in the graph of Figure 

4.4.5b for GS and 30 mU/mg in Figure 4.4.6 for GP), clearly at 5h the reduction of GP activity is 

lower and is of the order of 3x than that of the increase in GS activity which is more than 15x, 

with respect to their 0 and 1h activities. The insufficient knowledge of other allosteric activators 

for the liver isoform of GP (where AMP is described to activate brain isoform of GP, but not 
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effective for the liver isoform), did not allow to measure the total GP enzyme activity which is 

based on AMP activation of GPb to GPa form. 

 

 

 

Figure 4.4.6: GP activity measured in the conditions RM, RMV and CM, in the presence and absence of glucose. 

The GP activity was measured for its active GPa form in the presence of caffeine in HUVECs that were incubated 

under normoxia in RM, RMV and CM conditions, with (0h) and without glucose (1h and 5h). glc – glucose, GP – 

glycogen phosphorylase, RM – restricted medium with 2% of FBS, RMV – restricted medium with 2% FBS and 

VEGF, CM – complete medium with 10% FBS and Lonza EGM SingleQuots. 

 

4.4.3. Discussion 

 

Very few studies have reported the presence of glycogen in endothelial cells [150-152] and so 

far glycogen metabolism has not been characterized in this type of cells. The glycogen 

accumulation in HUVECs, as observed from our results, and the role of its utilization for cellular 

functions poses a significant question, why do endothelial cells need glycogen? In the in vivo 

situation, endothelial cells are engaged in the process of angiogenesis and even though when 

they are in constant contact with blood carrying nutrients in the blood vessels, during 

angiogenesis the endothelial cells have to proliferate and migrate towards tissues that might be 

depleted in nutrients and oxygen. Unless the blood vessels are formed with proper lumen and 

the blood flow is established, the endothelial cells forming new vessels might have to be shortly 

under nutrient or oxygen-deficient environment and in such situations a readily-available form 
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of energy store will be highly useful or even protective against cellular damage. In addition, 

endothelial cells are considered highly glycolytic, also shown  and prefer glycolysis over 

mitochondrial oxidation [118], and if a glycolytic substrate is available this might be preferred 

the most during glucose-deficient conditions. Glycogen is an emergency fuel store and can be 

an immediate source of energy when the cells are in demand [377]. Endothelial cells meet 

acute demands of fuel during their physiological functions of angiogenesis and it would be 

easier for them to seek a readily-available form of energy in such strenuous situations. These 

speculations make it worthy to characterize and understand the glycogen metabolism in 

endothelial cells that is essential to identify the roles of glycogen synthesis and degradation in 

the functions of these cells. 

 

In this study we intended to study the glycogen degradation pattern under glucose-depleted 

conditions, reveal the isoforms of the key enzymes of glycogen metabolism, GS and GP 

expressed by HUVECs, and show the associated enzyme activity patterns. In addition these 

studies were carried out in different substrate conditions in order to deduce the additional 

effects of VEGF and growth factors and hormones on glycogen metabolism of HUVECs. The 

glycogen degradation pattern obtained when HUVECs were depleted of glucose shows that 

VEGF did not induce significant differences in glycogen levels or degradation pattern in HUVECs, 

probably because they were incubated for a shorter time of 3h with VEGF before removing 

glucose, compared to the longer incubation periods in the experiments of Chapter 4.1 which 

showed significant reduction of glycogen. On the other hand, HUVECs in the presence of high 

serum and mitogens showed lower glycogen levels both under normoxia and hypoxia. It has 

been shown that elevated glycogen levels are regularly associated with slow growing cells [378] 

and are enhanced during non-proliferative state of cells when they are at G1-G0 arrest, as seen 

in cancer cells in vitro and in vivo [166,379]. The growth factor and serum deprivation can drive 

the cells into quiescence or non-proliferative G0 phase [380].  Also HUVECs did not grow in the 

presence of RM and those cells incubated in CM showed a high proliferation rate (unshown 

data), suggesting that the high glycogen accumulation from our studies could be related to the 

low proliferation rate of HUVECs and vice versa. 
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Moreover, in our present study we observed a higher utilization of glycogen in the absence of 

glucose under hypoxia, compared to that under normoxia, as seen at 5h of glucose depletion in 

both conditions. In cancer cells hypoxia has shown to induce rapid glycogen depletion when 

glucose was deprived [170,174]. This utilization of glycogen was shown to protect cancer cells 

from cell death by harsh conditions like anoxia or glucose depletion [170,174], similar to the 

conditions encountered in tumour microenvironment. In fact under low oxygen conditions and 

in the absence of glucose the readily available substrate for ATP production by cells could be 

from glycogen degradation. 

 

The types of isoforms of enzymes within the metabolic pathways are important for deciding the 

functional relevance of these enzymes or the metabolism depending on the cell type. In our 

study it was important to identify the enzyme isoforms of GS and GP in order to understand the 

rationale behind the glycogen accumulation and utilization and relate to the functional roles of 

endothelial cells. We found that HUVECs express muscle isoform of GS which is commonly 

expressed by many cell lines while liver isoform of GS is specific only to the liver tissue 

[381,382]. In addition, the GS enzyme activity (Figure 4.4.5) has shown an inversely 

proportional relationship with the glycogen content, concomitant with the observation in 

muscle tissue by W. H. Danforth [383]. This reiterates a product inhibition phenomenon where 

the presence of high glycogen levels inhibits GS enzyme activity by converting it to a less active 

form. 

 

On the other hand HUVECs co-expressed brain and liver isoforms of GP enzyme. Although 

individually, the brain isoform of GP is expressed in cell types other than brain, such as heart, 

skeletal muscle [219] and developing fetus [384,385], the liver isoform of GP is believed to be 

related only to liver tissues [212]. In addition, the expression of chimeric GP isoforms in certain 

types of cells is not new. Astrocytes and cardiomyocytes have been reported to co-express 

brain and muscle isoforms of GP and their isoform-specific enzyme regulations and its relation 

to cellular functions have been under study [219,220,226]. Co-expression of the GP isoforms 

has also been speculated for mutual functional roles of each isoform in pathological cases. For 

example in the case of astrocytes which express both muscle and brain isoforms of GP, a 
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deficiency in muscle GP isoform encountered in patients with McArdle’s glycogen storage 

disease, does not affect brain functions and it is believed that this is due to the alternative brain 

isoform expressed by astrocytes that protects the brain tissues from damage in the absence of 

muscle GP [226]. 

 

The GP enzyme isoforms, like those of GS, can be regulated by covalent phosphorylation and 

also by a variety of allosteric regulators. The brain isoform of GP is said to be strongly activated 

by the allosteric regulator AMP [386], in contrary to the liver GP isoform which is poorly 

activated by AMP [222]. These differential regulations of the isoforms help to meet different 

metabolic demands of the cell. In this study the experimental set up of analyzing GP activity 

under glucose depletion is ideal for observing the isoform-selective activity as glucose 

deprivation lowers ATP and increases cytosolic AMP by adenylate kinase [226]. This AMP could 

activate the brain GP, than the liver isoform and we speculate that most of the glycogen 

degradation observed in the absence of glucose could be due to the active brain GP isoform. In 

addition, the active GP measured in the presence of caffeine shows a mild but significant 

reduction of GP activity at the minimum glycogen condition (at 5h) concomitant to the sharp 

increase of GS activity with much higher fold change. 

 

A research into the chimeric GP isoform expression in HUVECs would help us to understand 

their possible functional relevance. Liver isoforms of GS and GP have unique functions of 

glucose and glycogen regulation in liver cells. Thus liver GP isoform expression by HUVECs arises 

a question of its functional relevance correlating to the liver type and there are no evidences 

yet to show the similarity of endothelial cells with liver cells. Liver cells are capable of both 

taking up and releasing glucose moieties due to their expression of the bi-directional glucose 

transporter GLUT2, while the endothelial cells have been found to express only the mono-

directional GLUT1 glucose transporter that is involved in the uptake of glucose [144,387]. 

Although liver GP is unique to its cellular type and function, we have to note that PYGL (the 

gene encoding the liver isoform of GP enzyme) was shown to be one of the hypoxia-regulated 

genes expressed in head and neck squamous cell carcinoma in vivo [388]. Studies on brain, 

breast and colon cancer cell lines showed an increased expression of the PYGL gene under 
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HIF1α activation, that sustains cancer cell proliferation and the PYGL knockdown showed 

increased cellular senescence in vitro by increasing ROS levels and impaired tumor growth in 

vivo [170]. At this point it would be interesting to note that both tumour cells and endothelial 

cells might encounter similar physiological conditions during the process of tumour 

angiogenesis. Both types of cells need to survive such hostile tumour microenvironment that 

has unstable or low oxygen tensions, low glucose and high acidosis. The liver isoform of GP 

seems to be functionally related to cancer cell survival which makes us wonder if similar 

possibility could exist for endothelial cells that share the tumour microenvironment. Further 

studies are required to reveal the functional significance of liver isoform of GP in HUVECs. 

 

To understand the functional relevance of brain isoform of GP expressed by HUVECs, we 

intended to understand the glycogen utilization by brain cells. Neurons that express the brain 

isoform of GP enzyme have found to accumulate very little glycogen, but its metabolism has 

been found to protect these cells from damage during ischemic conditions [256]. Hence 

neurons seem to possess active glycogen metabolism, expressing brain GP isoform, for utilizing 

glycogen for its own purpose, to protect itself from adverse conditions. In the case of 

astrocytes, expressing both brain and muscle forms of GP, they are found to be more altruistic 

during nutrient-depleted conditions by letting the neighbouring neurons to use the blood-

borne glucose, while the astrocytes themselves obtain energy from glycogen-derived pyruvate 

oxidation [205]. Also astrocytes are reported to use glycogen to produce lactate that could be 

shuttled to neurons for oxidation during nutrient-depleted conditions [338,339]. There is no 

clear correlation of glycogen metabolism of astrocytes and HUVECs, but from the results of the 

angiogenesis assays with GP inhibitors in Chapter 4.3, where we showed that inhibiting 

glycogen degradation compromised HUVEC viability, migration and wound healing capacity. 

Hence we could deduce that glycogen reserves in HUVECs could be relevant for their own use 

like in neurons and glycogen metabolism could be related to the cellular protection and 

function. In addition our observation of the increased utilization of glycogen under hypoxia 

seems to show that this metabolism could also play an important role during hypoxic stress of 

HUVECs. 
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GENERAL DISCUSSION 
 
 

In this thesis we have studied the metabolic reprogramming of endothelial cells contributed by 

different microenvironmental factors and have focussed upon the study of glycogen 

metabolism and its target for therapeutic angiogenesis. Endothelial cells are the main 

components of blood vessels and they play an important role in blood vessel formation or 

angiogenesis in normal and pathological situations. Although various studies on molecular 

mechanisms of angiogenesis, based on endothelial cell signalling pathways, have been carried 

out, the metabolic control of angiogenesis is yet to be understood completely. Anti-angiogenic 

therapies based on targeting pro- and anti-angiogenic factors are under clinical trials, and yet 

they have not been proven completely successful. Hence, alternative strategies that target 

pathological angiogenesis need to be developed. The study of the metabolic reprogramming in 

endothelial cells when activated for angiogenesis can reveal the adaptations of the cells for the 

pathological condition or the treatment strategies, which can be efficient targets to interfere 

such cellular adaptations and inhibit their survival or growth. In our study we present a holistic 

view on the metabolic reprogramming in endothelial cells in the presence of conditions that are 

encountered during angiogenesis, with HUVE cells using different techniques. The 13C-assisted 

metabolomics and fluxomics study in Chapter 4.1 has revealed some major metabolic 

adaptations of HUVECs under hypoxia in general, and those changes induced by the pro-

angiogenic factor VEGF under both normoxia and hypoxia. The untargeted metabolomics study 

in Chapter 4.2 has also provided complementary information on the effect of VEGF on HUVEC 

metabolism under normoxia, in addition to the differentially metastatic prostate cancer cell 

lines on HUVEC metabolism, a condition representing tumour-endothelium interaction in vivo. 

 

Endothelial cells, lining the blood vessels, encounter varying oxygen levels during the blood 

flow and the perfusion of hypoxic tissues. One of the main cellular adaptations during such 

environmental changes and hypoxic condition is metabolic reprogramming, which we aim to 

characterize in Chapter 4.1. The results from our study reveal a strong metabolic adaptation of 

HUVECs under hypoxic condition, showing a higher shift towards glycolytic flux and non-
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oxidative PPP branch, compared to HUVECs under normoxia. This shift of metabolism was 

observed both in the presence and absence of VEGF under hypoxia, when compared to those 

under normoxia. Hypoxia can cause a major disturbance in endothelial cells [389,390] and are 

in fact one of the major factors regulating angiogenesis [391,392]. Previous studies have shown 

that hypoxia can induce an upregulation of glycolytic activity in bovine artery endothelial cells 

[326] and an upregulation of glycolytic proteins [329,393,394] in brain capillary endothelial 

cells, supporting our results of glycolytic metabolic shift in HUVECs. 

 

In addition to the major metabolic adaptation under hypoxia, VEGF induction under both 

normoxia and hypoxia showed varying effects of metabolic reprogramming in HUVECs. Our 

results showed that under normoxia, HUVECs induced with VEGF upregulated alternative 

pathways in addition to glycolysis for lactate production, compared to those without VEGF 

induction. In addition, oxidative PPP was increased and G6PD activity was upregulated under 

normoxia in the presence of VEGF. Studies have reported an upregulation of the enzyme G6PD 

in endothelial cells in the presence of VEGF, under normoxia [134,333,395], which could be 

important for counteracting the ROS production due to mitochondrial oxidation. The presence 

of VEGF also showed an increasing flux from glucose to the synthesis of fatty acids in HUVECs, 

compared to the cells in the absence of VEGF, which is more significantly observed under 

hypoxia. Another metabolic pathway found to be affected by VEGF and hypoxia in HUVECs was 

identified to be glycogen metabolism. VEGF reduced the glycogen content under both normoxia 

and hypoxia and decreased the glycogen turnover under normoxia. In addition, HUVECs under 

hypoxic condition were found to accumulate higher glycogen content, produced from glucose 

as the main substrate. It is worth noting that in some of the cell types, although the glycogen 

accumulation was not reported significant, its functional relevance has been shown to be vital, 

serving the purpose of an emergency fuel for sustaining different cellular functions 

[176,256,396]. In our case HUVECs show both a significant amount of glycogen content and an 

evident futile cycle of glycogen metabolism occurring in these cells. 

 

In Chapter 4.2 the untargeted analysis has revealed other important changes in the metabolites 

measured, induced by VEGF under normoxia. In this chapter we saw a change in fatty acid 
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oxidation by VEGF by upregulating acetyl L-carnitine, supporting the results from fluxomics 

(Chapter 4.1) that showed an upregulation of mitochondrial metabolism by VEGF in HUVECs 

under normoxia, which is also reported elsewhere [355]. Additional changes by VEGF have also 

been observed in purine metabolism where metabolites hypoxanthine and guanine were 

upregulated. The increase in NAD+ levels by VEGF induction in this study has predicted the 

enrichment of this metabolite not only in glycolysis, but also in other metabolic pathways 

including TCA cycle and ketone body metabolism, recognized by the metabolite enrichment 

analysis. A similar profile was observed from the 13C metabolomics and fluxomics study of 

Chapter 4.1, where VEGF was found to upregulate alternative pathways in addition to 

glycolysis, for the production of lactate, in HUVECs under normoxia. Chapter 4.2 also describes 

the effects of the differentially metastatic prostate cancer cell sub-populations – PC-3/S and PC-

3/M on HUVECs in vitro, in a condition that closely mimics the heterogeneous cancer-

endothelial cell populations in tumours. The results of the global metabolic analysis revealed a 

completely different metabolic adaptation of HUVECs under the low metastatic PC-3/S cells and 

high metastatic PC-3/M cells. HUVECs co-cultured with PC-3/S cells showed metabolic 

reprogramming very similar to that induced by VEGF, in that it showed upregulated acetyl-L-

carnitine and NAD+ levels. Interestingly a previous study reported a high secretion of VEGF by 

low metastatic prostate cancer cell lines [346], in addition to an unreported result that showed 

an increased mRNA expression levels of VEGF-A by PC-3/S cell line, supporting that the 

metabolic changes induced by PC-3/S in HUVECs could partly be due to its secretion of VEGF. In 

addition to these changes, additional pathways related to amino acids, glutathione and 

pantothenic acid, were also up-regulated in HUVECs co-cultured with PC-3/S cells, although the 

fold change was much lower (≤ 1.5X). On the other hand, in contrast to VEGF and PC-3/S, the 

highly metastatic PC-3/M cells induce a different metabolic alteration in HUVECs. The pathway 

analysis revealed changes in methionine, tryptophan and tyrosine metabolism by 

downregulating the respective metabolites. Another important change was the upregulation of 

oleamide by a factor greater than 2 in HUVECs co-cultured with PC-3/M, while this was not 

observed in other conditions. Oleamides have been found to interfere with cellular gap 

junctions during metastasis [358] and are suspected to be protective against cytochrome c 

mediated cellular apoptotic molecules that can pass through the cellular gaps to neighbouring 
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cells causing their death [359]. During metastasis the tumour cells intravasating or 

extravasating through the blood vessels can escape from the vessel barrier by inducing 

disintegration of endothelial cell monolayer by causing its death [361,397], although these 

observations were made for direct tumour-endothelial cell interactions. In our study though 

both cell lines were not in contact directly, the production of oleamide infers a protective 

adaptation of HUVECs against metastatic or cell damaging factors introduced by the PC-3/M 

cells. 

 

As mentioned above in the fluxomics part, the glycogen accumulation and turnover observed in 

HUVECs showed an interesting metabolic target in angiogenesis. Our experimental tests of 

targeting GP, the key enzyme along glycogen degradation, in Chapter 4.3 showed effective 

against in vitro HUVEC viability, migration and wound healing capabilities. Further studies were 

performed, in Chapter 4.4, to understand the HUVEC glycogen metabolism and its enzymatic 

characteristics and find some possible explanations for the lower effects of GP inhibition on in 

vivo angiogenesis observed in Chapter 4.3. In Chapter 4.4 we observed the changes in glycogen 

content and enzyme regulations in HUVECs by depriving glucose and also explored different 

substrate conditions of HUVECs in the presence of VEGF and in complete medium which 

induces a higher cell proliferation. In this study HUVECs showed that glycogen is utilized in the 

absence of glucose and a minimum glycogen level was maintained in these cells, without 

completely depleting the reservoir, even after 24h of glucose depletion. In addition, under 

hypoxia without glucose, HUVECs consumed higher glycogen than under normoxia, showing 

their dependence of glycogen degradation at this low oxygen condition. It has been reported in 

cancer cells that glycogen utilization serves to protect them from cell death under low oxygen 

conditions [170,174]. The fact that glycogen might be an important substrate for ATP 

production under hypoxia, when mitochondrial oxidation normally does not function, makes 

this an attractive condition to target glycogen degradation pathway to affect cell viability. Also, 

as discussed before, endothelial cells constantly encounter varying O2 conditions, in addition to 

low nutrient conditions in tumours, in the in vivo situations and so introducing hypoxia and low 

substrate conditions while exploring GP enzyme as a target could be an effective strategy 

against both endothelial and cancer cell viability/function. We additionally noticed that HUVECs 
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under high proliferating condition showed lower glycogen content and vice versa, agreeing with 

previously described studies in cancer cells [166,379]. 

 

We also explored the enzyme isoforms expressed by HUVECs and found that these cells express 

muscle GS and interestingly co-express brain and liver GP enzymes. In addition a higher GS 

activity was found in the glycogen depleted conditions, showing the necessity of the enzyme to 

receive a substrate to replenish the glycogen stores in HUVECs to their normal levels. On the 

other hand the GP enzyme activity was lower at glucose and glycogen depleted condition. 

Absence of glucose reduces ATP levels and increases AMP content in the cellular environment 

[226]. The brain isoform of the GP enzyme is shown to be activated by the presence of AMP (in 

conditions of low glucose) in astrocytes [226,386]. Also brain GP is expressed in neurons, which 

helps in cellular protection during hypoxic stress [256]. These show that brain GP is important 

for cellular survival or function when glucose is deprived and in low oxygen conditions. While 

AMP activation of liver GP isoform is low, the covalent phosphorylation activates it to a much 

higher extent [222], showing that liver isoform responds to hormonal control and hence 

dependent on the in vivo environment. Indeed, the expression of liver GP isoform in endothelial 

cells observed in this study and the observations of the higher PYGL gene expression by cancer 

cells under HIF1α activation, which has shown to be tumour protective [170], can suggest that 

the liver GP isoform may be important for both cancer and endothelial cell survival or function 

in a tumour microenvironment. 

 

The characterization of the enzymes of glycogen metabolism from the Chapter 4.4 could 

provide some possible explanations for the results obtained in the previous Chapter 4.3. In the 

Chapter 4.3 we found that the GP inhibitor CP-316819 effectively inhibited HUVEC viability and 

function in vitro, while it had a very small effect on in vivo tumour angiogenesis. The effect of 

the GP inhibitors on inhibiting GP enzyme can depend on various factors like the presence of 

allosteric effectors and on the GP enzyme isoforms. The indole site inhibitors like CP-316819 

work by inhibiting the T-state of the GPa form (the active form of the GP enzyme; the enzyme 

active states are discussed in detail in the Introduction section 1.5.1) and act synergistically with 

glucose [254,398]. As discussed in the Introduction part-section 1.5.1, the presence of glucose 
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favours the T-state of the GPa enzyme form, contrarily AMP does not favour the T-state. We 

know that the tumour microenvironment is generally nutrient depleted and glucose levels are 

constantly lower. It was found that the glucose content in tumour tissues were about 10 times 

lower than in normal tissues [399] which could also increase AMP levels in tumours. Hence in 

these situations, the low glucose and high AMP might not favour the T-state GPa form, which 

might reduce the effectiveness of an indole site GP inhibitor. Additionally CP-316819 was found 

to be selectively inhibiting liver GP in vitro, and contrarily it was found to be selective for 

skeletal muscle GP in vivo, which was attributed to the lower AMP levels in muscle tissues and 

other T state promoters acting synergistic with the inhibitor in muscles in vivo [400]. Hence the 

lower effect of the indole inhibitor in the in vivo anti-angiogenesis and anti-tumour results of 

Chapter 4.3 could be due to the presence of very low glucose and high AMP levels that could 

have not favoured the GPa T-state that is required for the inhibitory action of the indole 

inhibitor. 

 

Apart from the allosteric effectors like glucose and AMP, GP enzyme isoforms can also influence 

the GP inhibitors by being selective substrates for them. It was shown that another indole 

inhibitor CP-91149 reduces the cell growth of tumour and normal cell lines concurrently with 

the increase in glycogen content and was claimed to be selective for brain GP isoform [401]. If 

this is true in the case of HUVECs then the in vitro effectiveness of CP-316819 in our results 

could possibly be related to the brain GP isoform as well. Thus from these analyses we observe 

that the GP enzyme isoforms and allosteric regulators play an important role in regulating the 

glycogen degradation and anti-angiogenic effects in HUVECs. Hence it is important to consider 

the levels of the nutrient and energy substrates like glucose, AMP, ATP, etc. in the 

microenvironment under study and their effects on the GP enzyme isoforms, for designing 

effective anti-angiogenic therapies targeting glycogen metabolism. 

 

Overall, in this thesis we have provided a global view of the metabolic reprogramming in 

HUVECs that are affected by different factors that the endothelial cells encounter in the in vivo 

situations. We have shown that hypoxia induces a highly different metabolic reprogramming in 

HUVECs and factors like VEGF and low and high metastatic cancer cells can induce distinctly 
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differential metabolic adaptations. In addition we have extensively focussed upon glycogen 

metabolic regulation and the therapeutic effects of targeting glycogen metabolism in 

angiogenesis. Our results have reported the importance of glycogen utilization and the 

expression of enzyme isoforms in HUVECs, in addition to the significance of enzyme effectors in 

the modulation of glycogen metabolism. Finally, in this thesis we show the intimate relationship 

between the regulations of endothelial cell metabolism and cellular survival and function, and 

highlight the importance of endothelial cell metabolism in angiogenesis. 
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CONCLUSIONS 

 

1. Our 13C-assisted metabolomics and fluxomics approach showed that HUVECs, under 

hypoxia favours pathways such as glycolysis and the non-oxidative branch of PPP, and 

induces a higher accumulation of glycogen produced from glucose. 

Under normoxia VEGF upregulated alternative pathways in addition to glycolysis for the 

lactate production in HUVECs, and increased the flux to oxidative branch of PPP. In addition 

VEGF increased the flux of glucose to fatty acid synthesis and reduced glycogen content 

irrespective of the oxygen conditions. 

 

2. The untargeted metabolomics analysis revealed that the low metastatic PC-3/S prostate 

cancer cells and VEGF both induced an increase in the levels of acetyl L-carnitine and NAD+. 

In addition, metabolites related to pathways such as amino acid, glutathione and 

pantothenate metabolism were upregulated by PC-3/S cells on HUVECs. Whereas, 

metabolites related to purine metabolism such as hypoxanthine, guanine and AMP were 

altered by VEGF in HUVECs. 

On the other hand, the highly metastatic PC-3/M cells induced a completely different 

metabolic signature in HUVECs, compared to VEGF and PC-3/S, by upregulating oleamide 

and downregulating methionine, tyrosine and tryptophan. 

 

3. Glycogen was found to be accumulated at significant levels in HUVECs in the presence of 

glucose and these cells showed an evident glycogen turnover from the 13C tracer 

enrichment analysis. 

Targeting glycogen metabolism by inhibiting GP enzyme showed a reduction of cell viability 

and function in vitro. In vivo the GP inhibition showed a tendency towards reducing 

microvessel density of tumour tissues. 

 

4. Characterization of glycogen metabolism in HUVECs revealed that in the absence of 

glucose, glycogen is utilized under both normoxia and hypoxia and showed a tendency of 

higher utilization under hypoxia. Moreover, HUVECs expressed muscle isoform of GS 
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enzyme, which increased its activity when glycogen was reduced in the absence of glucose. 

On the other hand, these cells co-expressed brain and liver isoforms of GP and in contrary 

to GS, the GP activity reduced with reduction in glycogen, in the absence of glucose. 

Furthermore, HUVECs incubated in high serum and growth hormone-rich conditions 

reduced the glycogen content and showed low GS and GP enzyme activities, compared to 

the cells grown in low serum conditions. 
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COMPUTATIONAL 
13

C METABOLIC FLUX ANALYSIS 

 

1.1. Description of the procedure 

The reliability of hypotheses regarding intracellular reaction fluxes suggested by our previous 

direct 13C tracer analyses can be evaluated by comparing measured and predicted 13C 

isotopologue distributions. A variety of different methods have been developed, assuming 

stationary or dynamic conditions [1-6]. In many cases, a system of balance equations around 

isotopomers, which depend on specific fluxes, is solved to predict label enrichments. Fluxes are 

iteratively changed until the difference among measured and predicted label enrichments is 

reduced. 

In our analysis, two computer programs were developed with Mathematica [7] and applied 

iteratively until a flux distribution is found that is compatible with the measured labelling 

patterns. In summary, taking the known reaction network (reactions included are detailed in 

Table A1.1) and the measured uptake and secretion rates and assuming steady state, the first 

program estimates by linear programming the range of possible values for each reaction flux, 

where each flux is maximised or minimised while leaving all other fluxes free [4-6]. The second 

program solves a non-linear problem to predict isotopologue abundances by solving a system 

of balance equations around isotopomers, which take into account label transitions and the 

refined solution for fluxes obtained by applying the first program. The two programs are 

repeatedly applied to estimate flux distributions and to predict the associated label 

distribution in experiments using 50% [1,2-13C2]-glucose as the labelled substrate. For each flux 

distribution, the enrichment in 13C-labelled products can be predicted and then compared with 

the measured enrichments, where comparisons are made at the isotopologue level.  Selected 

ratios among fluxes are set to specific values, which additionally constraints the space of 

possible solutions for fluxes. These selected ratios among fluxes are iteratively changed until the 

difference among predicted and measured label enrichments is reduced. 

Our analysis compared HUVECs cultured in restricted media (RM) at 40 hours and those cells 

cultured in restricted media with 30 ng/mL of VEGF (RMV) at 40 hours.   
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Table A1.1: Biochemical reaction network: The metabolic network included reactions (Ri) 

covering central carbon metabolism (RN refers to normoxia, RH refers to hypoxia), given in the 

table below (units: μmol·h-1·million_cell-1):  

 
Reaction stoichiometry and carbon transitions for 

label propagation 
Resulting flux distributions 

ID substrates products RM RMV 

RGlc C1,C2,C3,C4,C5,C6-extGlc C1,C2,C3,C4,C5,C6-Glc 
0.282 < RN < 0.282 

0.463 < RH < 0.463  

0.201 < RN < 0.201  

0.49 < RH < 0.49  

RGln C1,C2,C3,C4,C5-extGln C1,C2,C3,C4,C5-Gln 
0.235 < RN < 0.235 

0.099 < RH < 0.099 

0.243 < RN < 0.243 

 0.051 < RH < 0.051  

RGlu Glu   
0.061 < RN < 0.061 

0.05 < RH < 0.05 

0.055 < RN < 0.055 

 0.046 < RH < 0.046  

RLac Lac   
1.558 < RN < 1.558 

1.169 < RH < 1.17 

1.948 < RN < 1.948  

1.466 < RH < 1.466  

ROXPHOS RCI + RCII + 7 RFA RCI + RCII + 7 RFA  
3.571 < RN < 6.4674 

1.3052 < RH < 2.0971 

4.3943 < RN < 7.9885  

1.6886 < RH < 2.5797  

RGlc1 C1,C2,C3,C4,C5,C6-Glc + ATP C1,C2,C3,C4,C5,C6-G6P + ADP 
0.282 < RN < 0.282 

0.463 < RH < 0.463 

0.201 < RN < 0.201 

 0.49 < RH < 0.49  

RGlc2d C1,C2,C3,C4,C5,C6-G6P C1,C2,C3,C4,C5,C6-H6P 
0.354 < RN < 0.354 

0.579 < RH < 0.579 

0.2531 < RN < 0.2531  

0.6129 < RH < 0.6129  

RGlc2r C1,C2,C3,C4,C5,C6-H6P C1,C2,C3,C4,C5,C6-G6P 
0.0708 < RN < 0.0708 

0.1158 < RH < 0.1158 

0.0506 < RN < 0.0506  

0.1226 < RH < 0.1226  

RGlc2 RGlc2d- RGlc2r  RGlc2d- RGlc2r  
0.282 < RN < 0.282 

0.463 < RH < 0.463 

0.2025 < RN < 0.2025  

0.4904 < RH < 0.4904  

   RGlc2r/RGlc2 = 25/100 RGlc2r/RGlc2 = 25/100 

RGlc3 C1,C2,C3,C4,C5,C6-H6P + ATP 
C1,C2,C3-DHAP + C4,C5,C6-G3P + 

ADP 

0.2794 < RN < 0.2794  

0.4609 < RH < 0.4609  

0.1985 < RN < 0.1985  

0.4879 < RH < 0.4879  

RGlc4 C1,C2,C3-DHAP C3,C2,C1-G3P 
0.2794 < RN < 0.2794  

0.4609 < RH < 0.4609  

0.1985 < RN < 0.1985  

0.4879 < RH < 0.4879  

RGlc5 C1,C2,C3-G3P + cNAD + ADP C1,C2,C3-c3PG + cNADH + ATP 
0.5626 < RN < 0.5626  

0.924 < RH < 0.924  

0.401 < RN < 0.401  

0.9783 < RH < 0.9783  

RGlc6 C1,C2,C3-c3PG + ADP C1,C2,C3-Pyr1 + ATP 
0.5626 < RN < 0.5626  

0.924 < RH < 0.924  

0.401 < RN < 0.401  

0.9783 < RH < 0.9783  

RLDH C1,C2,C3-Pyr1 + cNADH C1,C2,C3-Lac + cNAD 1.558 < RN < 1.558  

1.169 < RH < 1.17  

1.948 < RN < 1.948  

1.466 < RH < 1.466  

RPyrEd C1,C2,C3-Pyr1 C1,C2,C3-Pyr2 
199.078 < RN < 199.078  

48.993 < RH < 49.193  

309.409 < RN < 309.409  

97.546 < RH < 97.546  
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RPyrEr C1,C2,C3-Pyr2 C1,C2,C3-Pyr1 
200.073 < RN < 200.073  

49.238 < RH < 49.439  

310.956 < RN < 310.956  

98.0337 < RH < 98.0337  

RPyrE RPyrEd - RPyrEr  RPyrEd - RPyrEr 
-0.9954 < RN < -0.9954  

-0.246 < RH < -0.245  

-1.547 < RN < -1.547  

-0.4877 < RH < -0.4877  

   RPyrEd/RPyrE = 20000/-100 RPyrEd/RPyrE = 20000/-100 

RGlyc  G6P 

0.0012 < RN < 0.0012  

0.0002 < RH < 0.0002  

0.0015 < RN < 0.0015  

0.0004 < RH < 0.0004  

RG6PD C1,C2,C3,C4,C5,C6-H6P C2,C3,C4,C5,C6-PenP 
0.0113 < RN < 0.0113  

0.0069 < RH < 0.0069  

0.0121 < RN < 0.0121  

0.0074 < RH < 0.0074  

   
RN: RG6PD/RGlc = 4/100 

RH: RG6PD/RGlc = 1.5/100 

RN: RG6PD/RGlc = 6/100 

RH: RG6PD/RGlc = 1.5/100 

RTKTad 
C1,C2,C3,C4,C5-PenP +  

C6,C7,C8,C9-E4P 

C3,C4,C5-G3P +  

C1,C2,C6,C7,C8,C9-H6P 

0.0066 < RN < 0.0066  

0.0069 < RH < 0.0069  

0.006 < RN < 0.006  

0.0074 < RH < 0.0074  

RTKTar 
C3,C4,C5-G3P +  

C1,C2,C6,C7,C8,C9-H6P 

C1,C2,C3,C4,C5-PenP + 

 C6,C7,C8,C9-E4P 

0.0028 < RN < 0.0028  

0.0046 < RH < 0.0046  

0.002 < RN < 0.002  

0.0049 < RH < 0.0049  

   RTKTar/RGlc = 1/100 RTKTar/RGlc = 1/100 

RTKTa RTKTad - RTKTar RTKTad - RTKTar  
0.0038 < RN < 0.0038  

0.0023 < RH < 0.0023  

0.004 < RN < 0.004  

0.0025 < RH < 0.0025  

RTKTbd 
C1,C2,C3,C4,C5-PenP + 

C6,C7,C8,C9,C10-PenP 

C1,C2,C6,C7,C8,C9,C10-S7P + 

C3,C4,C5-G3P 

0.0066 < RN < 0.0066  

0.0069 < RH < 0.0069  

0.006 < RN < 0.006  

0.0074 < RH < 0.0074  

RTKTbr 
C1,C2,C6,C7,C8,C9,C10-S7P + 

C3,C4,C5-G3P 

C1,C2,C3,C4,C5-PenP + 

C6,C7,C8,C9,C10-PenP 

0.0028 < RN < 0.0028  

0.0046 < RH < 0.0046  

0.002 < RN < 0.002  

0.0049 < RH < 0.0049  

   RTKTbr/RGlc = 1/100 RTKTbr/RGlc = 1/100 

RTKTb RTKTbd - RTKTbr RTKTbd - RTKTbr  
0.0038 < RN < 0.0038  

0.0023 < RH < 0.0023  

0.004 < RN < 0.004  

0.0025 < RH < 0.0025  

RTAd 
C1,C2,C3,C4,C5,C6,C7-S7P + 

C8,C9,C10-G3P 

C4,C5,C6,C7-E4P + 

C1,C2,C3,C8,C9,C10-H6P 

0.4268 < RN < 0.4268  

0.6968 < RH < 0.6968  

0.3055 < RN < 0.3055  

0.7375 < RH < 0.7375  

RTAr 
C4,C5,C6,C7-E4P + 

C1,C2,C3,C8,C9,C10-H6P 

C1,C2,C3,C4,C5,C6,C7-S7P + 

C8,C9,C10-G3P 

0.423 < RN < 0.423  

0.6945 < RH < 0.6945  

0.3015 < RN < 0.3015  

0.735 < RH < 0.735  

   RTAr/RGlc = 150/100 RTAr/RGlc = 150/100 

RTA RTAd - RTAr RTAd - RTAr  
0.0038 < RN < 0.0038  

0.0023 < RH < 0.0023  

0.004 < RN < 0.004  

0.0025 < RH < 0.0025  

RPDH 
C1,C2,C3-Pyr2 + mCoA + 

mNAD 
C2,C3-mAcCoA + mNADH 

0.0779 < RN < 0.0779  

0.0468 < RH < 0.0468  

0.0974 < RN < 0.0974  

0.0293 < RH < 0.0293  

   
RN: RPDH/RLac = 5/100 

RH: RPDH/RLac = 4/100 

RN: RPDH/RLac = 5/100 

RH: RPDH/RLac = 2/100 

RPC 
C1,C2,C3-Pyr2 + C4-extCO2 + 

ATP 
C1,C2,C3,C4-mOAA + ADP 

0.008 < RN < 0.008  

0.0056 < RH < 0.0064  

0.0096 < RN < 0.0096  

0.0028 < RH < 0.0028  
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RCS 
C1,C2,C3,C4-mOAA + 

 C5,C6-mAcCoA 
C4,C3,C2,C1,C6,C5-Cit + mCoA 

0.4674 < RN < 0.4674  

0.1754 < RH < 0.1755  

0.5844 < RN < 0.5844  

0.2199 < RH < 0.2199  

   
RN: RCS/RLac = 30/100 

RH: RCS/RLac = 15/100 

RN: RCS/RLac = 30/100 

RH: RCS/RLac = 15/100 

RIDH C1,C2,C3,C4,C5,C6-Cit + mNAD C1,C2,C3,C5,C6-αKG + mNADH 
0.4674 < RN < 0.4674  

0.1754 < RH < 0.1755  

0.5844 < RN < 0.5844  

0.2199 < RH < 0.2199  

RSUC 
C1,C2,C3,C4,C5-αKG + mNAD + 

ADP 

0.5 C2,C3,C4,C5-Suc + 0.5 

C5,C4,C3,C2-Suc + mNADH + 

ATP 

0.6414 < RN < 1.2409  

0.2243 < RH < 0.3656  

0.7724 < RN < 1.3719  

0.2249 < RH < 0.366  

RCII C1,C2,C3,C4-Suc + 1.5 ADP C1,C2,C3,C4-Fum + 1.5 ATP 
1.1721 < RN < 1.4721  

0.3906 < RH < 0.4624  

1.541 < RN < 1.841  

0.513 < RH < 0.5836  

RCI mNADH + 2.5 ADP mNAD + 2.5 ATP 
2.3988 < RN < 4.9953  

0.9145 < RH < 1.6347  

2.8533 < RN < 6.1475  

1.1756 < RH < 1.9961  

RFH C1,C2,C3,C4-Fum C1,C2,C3,C4-Mal 
1.4721 < RN < 1.4721  

0.4612 < RH < 0.4624  

1.841 < RN < 1.841  

0.5836 < RH < 0.5836  

RcMDH C1,C2,C3,C4-Mal + cNAD C1,C2,C3,C4-cOAA + cNADH 
0.9954 < RN < 0.9954  

0.245 < RH < 0.246  

1.547 < RN < 1.547  

0.4877 < RH < 0.4877  

RmMDHd C1,C2,C3,C4-Mal + mNAD C1,C2,C3,C4-mOAA + mNADH 
107.19 < RN < 107.19  

15.197 < RH < 15.21  

194.449 < RN < 194.449  

54.1247 < RH < 54.1247  

RmMDHr C1,C2,C3,C4-mOAA + mNADH C1,C2,C3,C4-Mal + mNAD 
107.726 < RN < 107.726  

15.273 < RH < 15.286  

195.422 < RN < 195.422  

54.3953 < RH < 54.3953  

RmMDH RmMDHd - RmMDHr RmMDHd - RmMDHr 
-0.536 < RN < -0.536  

-0.0761 < RH < -0.076  

-0.9722 < RN < -0.9722  

-0.2706 < RH < -0.2706  

   
RmMDHr/RMDH = 20000/-

100 

RmMDHr/RMDH = 20000/-

100 

RGLS C1,C2,C3,C4,C5-Gln C1,C2,C3,C4,C5-Glu 
0.235 < RN < 0.235  

0.099 < RH < 0.099  

0.243 < RN < 0.243  

0.051 < RH < 0.051  

RGDH C1,C2,C3,C4,C5-Glu + mNAD C1,C2,C3,C4,C5-αKG + mNADH 
0.9039 < RN < 1.7623  

0.2622 < RH < 0.4919  

1.1558 < RN < 2.2723  

0.3907 < R RH H < 0.6787  

RmAST 
C1,C2,C3,C4-Asp +  

C5,C6,C7,C8,C9-αKG 

C1,C2,C3,C4-mOAA + 

C5,C6,C7,C8,C9-Glu 

0.9954 < RN < 0.9954  

0.245 < RH < 0.246  

1.547 < RN < 1.547  

0.4877 < RH < 0.4877  

RcAST 
C1,C2,C3,C4-cOAA + 

C5,C6,C7,C8,C9-Glu 

C1,C2,C3,C4-Asp + 

 C5,C6,C7,C8,C9-αKG 

0.9954 < RN < 0.9954  

0.245 < RH < 0.246  

1.547 < RN < 1.547  

0.4877 < RH < 0.4877  

RME C1,C2,C3,C4-Mal C1,C2,C3-Pyr2 
1.0127 < RN < 1.0127  

0.2922 < RH < 0.2925  

1.2662 < RN < 1.2662  

0.3665 < RH < 0.3665  

   
RN: RME/RLac = 65/100 

RH: RME/RLac = 25/100 

RN: RME/RLac = 65/100 

RH: RME/RLac = 25/100 

RAla C1,C2,C3-Ala + C4,C5,C6,C7,C8-αKG C1,C2,C3-Pyr2 + C4,C5,C6,C7,C8-Glu 
0. < RN < 0.0303 

 0. < RH < 0.0058  

0. < RN < 0.0303  

0.0039 < RH < 0.0071  
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RArg 
C1,C2,C3,C4,C5-Arg + 

C6,C7,C8,C9,C10-αKG + mNAD 

C1,C2,C3,C4,C5-Glu + 

C6,C7,C8,C9,C10-Glu + mNADH 

0. < RN < 0.2995 

0. < RH < 0.0705 

0. < RN < 0.2995 

0. < RH < 0.0705 

RHis C1,C2,C3,C4,C5-His C1,C2,C3,C4,C5-Glu 
0. < RN < 0.2 

0. < RH < 0.0471 

0. < RN < 0.2 

0. < RH < 0.0471 

RPro C1,C2,C3,C4,C5-Pro + mNAD C1,C2,C3,C4,C5-Glu + mNADH 
0. < RN < 0.1 

0. < RH < 0.0235 

0. < RN < 0.1 

0. < RH < 0.0235 

RIle 

C1,C2,C3,C4,C5,C6-Ile + mCoA + 

C8,C9,C10,C11,C12-αKG + 2 

mNAD 

C5,C6-mAcCoA +  

0.5 C7,C4,C3,C2-Suc + 0.5 

C2,C3,C4,C7-Suc + C8,C9,C10,C11,C12-

Glu + 2 mNADH 

0. < RN < 0.3895 

0. < RH < 0.1185 

0. < RN < 0.487 

0. < RH < 0.1185 

RMet 

C1,C2,C3,C4,C5-Met +  

C6,C7,C8-Ser + mNAD + 

C10,C11,C12,C13,C14-αKG 

0.5 C9,C4,C3,C2-Suc + 

 0.5 C2,C3,C4,C9-Suc + mNADH 

+ C6,C7,C8-Pyr2 + 

C10,C11,C12,C13,C14-Glu 

0. < RN < 0.0686 

0. < RH < 0.0058 

0. < RN < 0.1007 

0.0205 < RH < 0.0237 

RVal 
C1,C2,C3,C4-Val + 3 mNAD + 

C6,C7,C8,C9,C10-αKG 

0.5 C5,C4,C3,C2-Suc +  

0.5 C2,C3,C4,C5-Suc + 

 3 mNADH + C6,C7,C8,C9,C10-Glu 

0. < RN < 0.8307 

0. < RH < 0.2353 

0. < RN < 1. 

0. < RH < 0.2353 

RTyr 
C1,C2,C3,C4,C5,C6,C7,C8,C9-Tyr + 

C10,C11,C12,C13,C14-αKG 

0.5 C4,C5,C6,C7-Fum + 

 0.5 C7,C6,C5,C4-Fum + 

C10,C11,C12,C13,C14-Glu 

0. < RN < 0.1 

0. < RH < 0.0235 

0. < RN < 0.1 

0. < RH < 0.0235 

RPhe 
C1,C2,C3,C4,C5,C6,C7,C8,C9-extPhe 

+ C10,C11,C12,C13,C14-αKG 

0.5 C4,C5,C6,C7-Fum + 

 0.5 C7,C6,C5,C4-Fum + 

C10,C11,C12,C13,C14-Glu 

0. < RN < 0.2 

0. < RH < 0.0471 

0. < RN < 0.2 

0. < RH < 0.0471 

RCys C1,C2,C3-Cys + C4,C5,C6,C7,C8-αKG C1,C2,C3-Pyr2 + C4,C5,C6,C7,C8-Glu 
0. < RN < 0.0686 

0. < RH < 0.0058  

0. < RN < 0.1989  

0.0436 < RH < 0.0468  

RSerGly C1,C2,C3-Ser C1,C2,C3-Pyr2 
0. < RN < 0.0686  

0. < RH < 0.0058  

0.058 < RN < 0.3354  

0.0757 < RH < 0.0789  

RThr 
C1,C2,C3,C4-Thr + C5-extCO2 + 

mNAD 

0.5 C5,C4,C3,C2-Suc +  

0.5 C2,C3,C4,C5-Suc + mNADH 

0. < RN < 0.1008 

0. < RH < 0.0237 

0. < RN < 0.1008 

0. < RH < 0.0237 

RLeu 

C1,C2,C3,C4,C5,C6-Leu + 3 mCoA 

+ C7-extCO2 + C8,C9,C10,C11,C12-

αKG + mNAD + ATP 

C2,C3-mAcCoA + 

 C7,C4-mAcCoA + C5,C6-

mAcCoA + C8,C9,C10,C11,C12-Glu 

+ mNADH + ADP 

0. < RN < 0.1298 

0. < RH < 0.0429 

0. < RN < 0.1623 

0. < RH < 0.0635 

RLys 

C1,C2,C3,C4,C5,C6-Lys + 2 mCoA 

+ 2 mNAD + C7,C8,C9,C10,C11-

αKG + C12,C13,C14,C15,C16-αKG 

C2,C3-mAcCoA +  

C4,C5-mAcCoA + 2 mNADH + 

C7,C8,C9,C10,C11-Glu + 

C12,C13,C14,C15,C16-Glu 

0. < RN < 0.1948 

0. < RH < 0.0643 

0. < RN < 0.2435 

0. < RH < 0.0953 

RTrp 
C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11-

Trp + 2 mCoA + 2 mNAD 

C10,C9-mAcCoA +  

C8,C7-mAcCoA + 2 mNADH 

0. < RN < 0.0201 

0. < RH < 0.0047 

0. < RN < 0.0201 

0. < RH < 0.0047 
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RFA 
7 mNAD + 8 mCoA + 10.5 

ADP 

8 C1,C2-mAcCoA + 7 mNADH 

+ 10.5 ATP 

0. < RN < 0.0487 

0. < RH < 0.0161 

0. < RN < 0.0609 

0. < RH < 0.0238 

ROT1 
RAla + RMet + RCys + RSerGly + 

RThr 

RAla + RMet + RCys + RSerGly + 

RThr  

0.0686 < RN < 0.0686 

0.0058 < RH < 0.0058 

0.3878 < RN < 0.3878 

0.1533 < RH < 0.1533 

   
RN: ROT1/RLac = 4.4/100 

RH: ROT1/RLac = 0.5/100 

RN: ROT1/RLac = 19.91/100 

RH: ROT1/RLac = 10.46/100 

ROT2 
RIle + RThr + 3 RLeu + 2 RLys + 

2 RTrp + 8 RFA 

RIle + RThr + 3 RLeu + 2 RLys + 2 

RTrp + 8 RFA  

0.3895 < RN < 0.3895  

0.1286 < RH < 0.1287 

0.487 < RN < 0.487 

0.1906 < RH < 0.1906  

ROT3 
RArg + RHis + RPro + RIle + RMet 

+ RVal + RTyr + RPhe 

RArg + RHis + RPro + RIle + RMet 

+ RVal + RTyr + RPhe  

0.8307 < RN < 0.8307  

0.2369 < RH < 0.2379 

1.0686 < RN < 1.0686  

0.3587 < RH < 0.3587  

RconATP ATP ADP 
9.0765 < RN < 16.1931  

4.0486 < RH < 5.9939 

10.7701 < RN < 19.5951  

4.9558 < RH < 7.1692  

where abbreviations are 3PG (3-Phosphoglycerate); AcCoA (Acetyl-CoA); Ala (Alanine); Arg (Arginine); Asp 

(Aspartate); Cit (Citrate); CoA (Coenzyme A); Cys (Cysteine); DHAP (Dihydroxyacetone phosphate); E4P (Erythrose 4-

phosphate); F6P (Fructose 6-phosphate); Fum (Fumarate); G3P (Glyceraldehyde 3-phosphate); G1P (Glucose 1-

phosphate); G6P (Glucose 6-phosphate); Glc (Glucose); Gln (Glutamine); Glu (Glutamate); Gly (Glycine); H6P 

(Hexose phosphate (G6P+F6P)); His (Histidine); Ile (Isoleucine); Lac (Lactate); Leu (Leucine); Lys (Lysine); Mal 

(Malate); Met (Methionine); OAA (Oxaloacetate); PenP (Ribulose 1-phosphate, Ribose 1-phosphate, Xylulose 1-

phosphate); Phe (Phenylalanine); Pro (Proline); Pyr1 and Pyr 2 (two pools of Pyruvate); Ser (Serine); S7P 

(Sedoheptulose 7-phosphate); Suc (Succinate); Thr (Threonine); Trp (Tryptophan); Tyr (Tyrosine); Val (Valine); αKG 

(alpha-Ketoglutarate), and were ext means external, c cytoplasmic and m means mitochondrial. The model covers 

glycolysis, pentose phosphate pathways and TCA cycle. Glucose and glutamine are included as the main sources of 

carbons, although the alternative uptake of other amino acids and fatty acids is also included. Reactions include 

the energy and redox balances for ATP/ADP and NADH/NAD+, including mitochondrial respiration and oxidative 

phosphorylation and the malate-aspartate shuttle for NADH transfer. The process of model refinement takes 

advantage of the redox balanced nature of the model – i.e., the high energy electron (NADH or FADH2) production 

rate matches the consumption rate by oxidative phosphorylation [8] – which constrains additionally the space of 

solutions for fluxes. 

 

1.2. Measured cellular uptake and secretion rates 

Units for reaction fluxes are micromole per hour per millions of cells (μmol·h-1·million-cells-1). 

Reaction fluxes for glucose uptake (RGlc), glutamine uptake (RGln), glutamate secretion (RGlu), and 

lactate secretion (RLac) (estimated from the experimental data reported in Chapter 4.1) were 

assumed to be 0.282, 0.235, 0.061 and 1.558 (RM, normoxia), 0.463, 0.099, 0.05 and 1.17 

(RMV, normoxia), 0.201, 0.243, 0.055 and 1.948 (RM, hypoxia),  and 0.49, 0.051, 0.046 and 

1.466 (RMV, hypoxia), respectively, according to experimental data. A net uptake of glycogen 

(RGlyc) is included, according to experimental measurements, to be 0.0012 (RM, normoxia), 
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0.0015 (RMV, normoxia), 0.0002 (RM, hypoxia) and 0.0004 (RMV, hypoxia). Finally, the 

maximum utilization of most of the amino acids is fixed according to the media composition, 

which depended on the number of cells. For example, under normoxia this maximum value was 

fixed to be 0.030 for Alanine (RAla), 0.300 for Arginine (RAra), 0.200 for Histidine (RHis), 0.100 for 

Proline (RPro), 0.504 for Isoleucine (RIle), 0.101 for Methionine (RMet), 1.000 for Valine (RVal), 

0.100 for Tyrosine (RTyr), 0.200 for Phenylalanine (RPhe), 0.199 for Cysteine (RCys), 0.305 + 0.031 

for Serine + Glycine (RSerGly), 0.101 for Threonine (RThr), 1.000 for Leucine (RLeu), 0.995 for Lysine 

(RLys), and 0.020 for Tryptophan (RTrp). 

 

1.3. Set ratios among fluxes 

The initial space of solutions for fluxes was constrained to the reduced solution space showed 

above (Table A1.1) by setting some ratios among fluxes. In order to fit the measured label 

enrichments appropriately, some of these ratios needed to be different between the four 

conditions.  

 

On the one hand, the ratio of oxidative PPP versus glycolysis (RG6PD/RGlc) reflects an important 

change in the activity of oxidative PPP, which is in correspondence with the observed (Figure 

4.1.3 in Chapter 4.1) changes in the ratio of oxidative versus non-oxidative PPP when comparing 

normoxia and hypoxia.  

 

On the other hand, several ratios associated with mitochondrial activity (RME/RLac, RCS/RLac, 

RPDH/RLac) were required to be different, reflecting the expected lower mitochondrial activity 

compared with glycolysis in hypoxia. To avoid unrealistic cycles, the ratio “non-mitochondrial-

other sources” versus lactate secretion (ROT1/RLac) was adjusted differently in each condition to 

have a ratio pyruvate carboxylase versus pyruvate dehydrogenase (RPC/RPDH) around 10/100. 

This last change was not required to fit label enrichments.  
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1.4. Estimated intracellular metabolic fluxes 

The iterative process described above constrained the reaction fluxes associated with glucose 

uptake, glycolysis, PPP and parts of the TCA cycle, although maintained a high level of 

uncertainty for fluxes associated with the use of alternative sources of carbons. These 

alternative sources of carbons were required to satisfy the high level of lactate secreted to the 

media according to the experiments, which also required an additional source of NADH. A 

scheme of the metabolic network with the more relevant values for fluxes is provided as a 

separate figure, included in Chapter 4.1 as Figure 4.1.8. A detailed list of the resulting values for 

all fluxes is provided in the Table A1.1 together with the description of the reactions. In this 

figure and the table the alternative sources of carbons are grouped in three super-reactions 

(ROT1, ROT2 and ROT3). 

The predicted and measured label enrichments from the labelled glucose to the metabolites 

ribose, glycogen, lactate and glutamate under normoxia and hypoxia, in the presence and 

absence of VEGF are shown in Figures A1.1 and A1.2. It is observed from these measurements 

that the predicted label enrichments perfectly fit the measured experimental data, increasing 

the confidence of the fluxes predicted from the computational model (shown in Figure 4.1.8 in 

Chapter 4.1). 
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Figure A1.1: Predicted and measured label enrichments I. Label enrichment of 13C label from labelled glucose to 

ribose and glycogen, under normoxia and hypoxia, with VEGF (RMV). The fraction m0 is a isotopologue with zero 
13C, m1 with one 13C, m2 with two 13C and so on. Σm refers to the summation of all isotopologues with one or more 
13C (Σm = m1 + m2 + …).  The measured enrichments for glucose, lactate, alanine and glutamate were obtained 

from the media. The measured enrichments for ribose and glycogen were obtained from cells. Notice than 

predicted enrichments in ribose, glycogen, lactate, alanine and glutamate are based on the model counterparts 

pentose phosphate (PenP), glucose 6-phosphate (G6P), first pool of pyruvate (Pyr1), second pool of pyruvate 

(Pyr2), and glutamate (Glu), respectively.  
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Figure A1.2: Predicted and measured label enrichments II. Label enrichment of 13C label from labelled glucose to 

lactate and glutamate, under normoxia and hypoxia, with VEGF (RMV). See Figure A1.1 legend for details. 
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MEASURED 
13

C LABEL ENRICHMENTS 
 

Table A2.1. Measured 13C isotopomer enrichments using [1,2-13C2]-glucose, under normoxia 

and hypoxia in extracellular metabolites: glucose, lactate, glutamate, aspartate and proline, and 

the intracellular metabolites: ribose, glycogen, palmitate and stearate. 

 

    Normoxia Hypoxia 

  
RM RMV RM RMV 

  
mean SD mean SD mean SD mean SD 

Glc-328 

m0 0.527 0.001 0.519 0.001 0.523 0.001 0.523 0.001 

m1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

m2 0.475 0.000 0.484 0.000 0.482 0.001 0.482 0.001 

m3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

m4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

m5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

m6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
  

  
  

    

Lac-328 

m0 0.866 0.004 0.847 0.003 0.801 0.001 0.797 0.002 

m1 0.002 0.003 0.007 0.001 0.003 0.000 0.004 0.000 

m2 0.127 0.003 0.142 0.002 0.193 0.001 0.195 0.002 

m3 0.004 0.001 0.004 0.000 0.003 0.000 0.003 0.000 

  
  

  
  

    

Glu-198 

m0 0.995 0.000 0.995 0.000 0.991 0.000 0.991 0.000 

m1 0.001 0.000 0.001 0.000 0.002 0.000 0.002 0.000 

m2 0.003 0.000 0.003 0.000 0.006 0.000 0.006 0.000 

m3 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 

m4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
  

  
  

    

Asp/Asn-
342 

m0 0.996 0.001 0.997 0.004 0.995 0.002 0.995 0.001 

m1 0.002 0.000 0.002 0.000 0.003 0.001 0.003 0.001 

m2 0.002 0.000 0.001 0.000 0.002 0.000 0.002 0.000 

m3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

m4 0.000 0.001 0.000 0.004 0.000 0.000 0.000 0.000 

  
  

  
  

    

Glu/Gln-
384 

m0 0.994 0.003 0.995 0.002 0.991 0.000 0.991 0.000 

m1 0.003 0.001 0.001 0.000 0.002 0.001 0.002 0.000 

m2 0.003 0.000 0.003 0.000 0.007 0.000 0.007 0.000 

m3 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 

m4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

m5 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 
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Pro-296 

m0 0.989 0.002 0.992 0.001 0.994 0.002 0.994 0.001 

m1 0.002 0.000 0.002 0.000 0.003 0.001 0.003 0.000 

m2 0.009 0.003 0.006 0.001 0.003 0.000 0.003 0.001 

m3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 

m4 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 

m5 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 

  
  

  
  

    

Rib-256 

m0 0.779 0.004 0.747 0.004 0.840 0.017 0.849 0.003 

m1 0.107 0.002 0.129 0.003 0.051 0.005 0.050 0.001 

m2 0.082 0.001 0.087 0.000 0.084 0.008 0.078 0.002 

m3 0.018 0.001 0.023 0.001 0.009 0.001 0.009 0.002 

m4 0.013 0.001 0.014 0.000 0.016 0.002 0.014 0.001 

m5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
  

  
  

    

Glyc-328 

m0 0.633 0.024 0.649 0.009 0.622 0.010 0.640 0.001 

m1 0.008 0.001 0.008 0.001 0.004 0.001 0.006 0.000 

m2 0.346 0.026 0.332 0.012 0.366 0.011 0.345 0.001 

m3 0.003 0.001 0.001 0.001 0.002 0.000 0.002 0.000 

m4 0.009 0.000 0.009 0.001 0.005 0.001 0.007 0.000 

m5 0.002 0.001 0.002 0.000 0.000 0.000 0.000 0.000 

m6 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 

  
  

  
  

    

Palm-270 

m0 0.961 0.009 0.950 0.008 0.955 0.002 0.921 0.011 

m1 0.004 0.005 0.003 0.004 0.000 0.000 0.001 0.000 

m2 0.022 0.009 0.025 0.004 0.028 0.001 0.047 0.006 

m3 0.001 0.000 0.004 0.004 0.000 0.000 0.001 0.000 

m4 0.009 0.003 0.012 0.002 0.013 0.001 0.022 0.003 

m5 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 

m6 0.002 0.001 0.003 0.000 0.003 0.000 0.006 0.001 

m7 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 

m8 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.000 

m9 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 

m10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
  

  
  

    

Stear-298 

m0 0.994 0.006 0.970 0.038 0.994 0.001 0.987 0.005 

m1 0.000 0.001 0.001 0.003 0.000 0.001 0.000 0.001 

m2 0.004 0.001 0.005 0.001 0.006 0.000 0.010 0.002 

m3 0.000 0.001 0.004 0.006 0.000 0.000 0.000 0.000 

m4 0.002 0.001 0.004 0.001 0.001 0.000 0.003 0.001 

m5 0.000 0.000 0.003 0.005 0.000 0.000 0.000 0.000 

m6 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 
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m7 0.000 0.002 0.010 0.019 0.000 0.001 0.000 0.002 

m8 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.000 

m9 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 

m10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

Abbreviations, according to Materials and Methods: Glc-328, C1-C6 glucose in the range 327-

334 m/z; Lac-328, C1-C3 lactate in the range 327-332 m/z; Glu-198, C2-C5 glutamate in the 

range 197-203 m/z; Asp/Asn-342, C1-C4 aspartate and asparagine in the range 341-348 m/z; 

Glu/Gln-384, C1-C5 glutamate and glutamine in the range 383-390 m/z; Pro-296, C1-C5 proline 

in the range 295-302 m/z; Rib-256, C1-C5 ribose in the range 256-262 m/z; Glyc-328, C1-C6 

glucose in the range 327-334 m/z; Palm-270, C1-C10 palmitate in the range 269-279 m/z, Stear-

298, C1-C10 stearate in the range 297-307 m/z. 
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UNTARGETED METABOLOMICS OF ENDOTHELIAL CELLS INDUCED BY VEGF AND 

METASTATICALLY DIFFERENT PROSTATE CANCER CELL LINES  
 

Table A3.1. Metabolite identification scoring system. The summation of each of these points 

for the respective data parameters gives the confidence level for the metabolite identification 

of the features. 

 

IR absorbance spectrum 0.5 

UV absorbance spectrum 0.5 

Retention time (±2.5 %) 1.0 

High resolution retention time (±0.5 %, W1/2 < 10s)  1.5 

High resolution retention index (±0.5 %, RI ± 25, W1/2 < 10s) 2.0 

Nominal mass of parent ion 0.5 

Accurate mass of parent ion (<5 ppm) 1.0 

Molecular formula based upon accurate m/z and isotope 

pattern 

 

1.0 

Confident EI Spectral match to commercial library 1.0 

Tandem mass spectrum 1.5 

Accurate mass tandem mass spectrum 2.0 

1H 1D NMR 2.0 

1H 2D NMR 3.0 

1H × 13C 2D NMR 4.0 

IR infrared spectroscopy, UV ultraviolet, RI retention index, W1/2 

peak width at half-height, m/z mass-to-charge ratio, EI electron 

ionization, 1D one-dimensional, 2D two-dimensional, NMR nuclear 

magnetic resonance spectroscopy 

*Table obtained with permission from Springer (Sumner, 2014). 
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Table A3.2. Quantitative peak area values for metabolites analysed using ESI+ and ESI- 

ionisation modes. The peak area values extracted from the raw chromatographic data using 

XCMS Online software, for the identified metabolites, were normalized with cell number values.   

 

ESI+ 

Identified 

metabolites 

Peak area (arbitrary units per 10
6
 cells) 

RM VEGF PC-3/S PC-3/M 

L-Glutamate 66951254 ± 
10674565 

60992435 ± 
3955201 

72793180 ± 
3482523 

62494526 ± 
13847139 

L-Arginine 
2850696 ± 369503 2517868 ± 214860 2331266 ± 204334 

3011323 ± 
575637 

L-Glutathione 

reduced 
147457447 ± 
13614146 

138056413 ± 
3400935 

175365361 ± 
11071488 

154091478 ± 
19812579 

L-Tryptophan 
6426731 ± 230788 7203514 ± 673466 6657208 ± 669328 

5561158 ± 
447360 

L-Tyrosine 
15231094 ± 772657 

15901039 ± 
873714 

16843892 ± 
1494436 

13488768 ± 
954533 

L-Methionine 
11781372 ± 843742 

11785904 ± 
444868 

13535238 ± 
879145 

9864736 ± 
1002319 

Nicotinamide 

dinucleotide 

(NAD+) 349585 ± 80340 579638 ± 126952 777683 ± 95892 425925 ± 72943 
Pantothenic acid 

(CID match) 10573990 ± 705837 
10812162 ± 
522376 

12247706 ± 
865008 

9241784 ± 
1403771 

Oleamide 210787 ± 24989 242042 ± 116576 295589 ± 144044 874802 ± 482152 
γ-L-Glutamyl-L-

Glutamic acid 325453 ± 57026 359204 ± 53875 373348 ± 51076 347485 ± 51410 
Inosine 

4477199 ± 1528783 5556422 ± 775440 
4514688 ± 
2478730 

5939550 ± 
1121325 

Spermine 1582 ± 1614 385951 ± 416964 1236 ± 789 598696 ± 757055 
trans 3-Indole 

acrylic 

acid/Indole 3-

acrylic acid 7834998 ± 306567 8760753 ± 786143 8112445 ± 815039 
6740205 ± 
546530 

Cysteinylglycine 
2625137 ± 201836 2463979 ± 72958 3114935 ± 200785 

2709193 ± 
351143 

Guanine 
731455 ± 217760 

2866933 ± 
1288558 642033 ± 438881 

1350835 ± 
1074163 

Creatine 
9604021 ± 1560719 9974211 ± 699518 

11891689 ± 
483560 

9381733 ± 
2024394 

Hypoxanthine 

 (RT - 1.19 min) 8228745 ± 2318231 
25984608 ± 
8815781 

6797809 ± 
4899521 

13325046 ± 
8236728 

Acetyl L-Carnitine 125615 ± 15138 192802 ± 9752 221326 ± 6966 129106 ± 24962 
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ESI- 

Identified 

metabolites 

Peak area (arbitrary units per 10
6
 cells) 

RM VEGF PC-3/S PC-3/M 

L-Aspartate 

4026645 ± 951907 4435094 ± 677350 5885484 ± 328430 

4970474 ± 

1385427 

L-Glutamate 

17083370 ± 3074331 

13386798 ± 

1453575 

18918489 ± 

667475 

16034316 ± 

3746532 

Glycerol 3-

phosphate 188690 ± 87424 251507 ± 112517 193762 ± 64197 268337 ± 144276 

Pantothenic acid 

4313972 ± 224135 4238894 ± 275881 4969068 ± 354539 

3999473 ± 

544548 

Uridine 

678202 ± 325545 1357260 ± 466045 706975 ± 664597 

1461404 ± 

881076 

L-Glutathione 

reduced 50317037 ± 2771427 

48217214 ± 

3361789 

60203491 ± 

5163431 

56410579 ± 

5028755 

Uridine 

monophosphate 4343895 ± 3007429 

1729642 ± 

1314237 

3633971 ± 

2666633 

1775034 ± 

1427553 

Adenosine 

monophosphate 6265769 ± 6184181 1259364 ± 915144 

7451180 ± 

5603151 

1911056 ± 

1437925 

Galactonic acid 135979 ± 50315 91977 ± 9055 127242 ± 10561 120871 ± 32839 

Guanosine 

1707467 ± 658309 2383234 ± 652545 

1463307 ± 

1032962 

2946629 ± 

1780239 
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Figure A3.1: Pathways generated with identified metabolites in HUVEC in the presence of 

VEGF, PC-3/S and PC-3/M cells, by metabolite set enrichment analysis using MetaboAnalyst 

3.0.    
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CHROMATOGRAPHIC PEAK AND MASS SPECTRAL DATA FROM THE 

UNTARGETED ANALYSIS. 

 

Figure A4.1: (a) Chromatographic peaks from XCMS Online [1,2], (b) accurate mass of the 

precursor ion, (c) fragmentation spectral match of the identified metabolites from mzcloud 

(https://www.mzcloud.org) and (d) the isotopic pattern match. Some metabolites do not show 

peaks in XCMS Online as p > 0.05.  RM – control HUVECs grown in restricted medium, VEGF – 

HUVECs grown in restricted medium supplemented with VEGF, M – HUVECs co-cultured with 

PC-3/M cells, S – HUVECs co-cultured with PC-3/S cells. 
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L- Arginine 
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L- Glutathione reduced 
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L-Tryptophan 
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L-Tyrosine 
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L-Methionine 
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Nicotinamide dinucleotide (NAD+)  
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Pantothenic acid (CID match) 
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Oleamide 
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Ƴ-L-Glutamyl-L-Glutamic acid 
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Inosine 
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Spermine 

 

a. Peak not shown in XCMS Online as p > 0.05. 
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Indole 3-acrylic acid / trans 3-Indole acrylic acid 
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Cysteinylglycine 
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Guanine 
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Creatine 
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Hypoxanthine (RT 1.19 min) 
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Acetyl L-Carnitine 
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L-Aspartate 
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L- Glutamate (ESI-) 

 
a. Peak not displayed in XCMS Online as p > 0.05. 
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Glycerol-3-phosphate 

 
a. Peak not displayed in XCMS Online as p > 0.05. 
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Pantothenic acid (ESI-) 

  
 

 
 

 
  

a 
b 

c 

d 



229 
 

Uridine 
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L-Glutathione reduced (ESI-) 
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Uridine monophosphate (UMP) 
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Adenosine monophophate (AMP) 

 
a. Peak not displayed in XCMS Online as p > 0.05. 
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Galactonic acid 

 
a. Peak not displayed in XCMS Online as p > 0.05. 
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Guanosine 
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Metabolic processes are altered in cancer cells, which obtain advantages from 
this metabolic reprogramming in terms of energy production and synthesis of 
biomolecules that sustain their uncontrolled proliferation. Due to the conceptual 
progresses in the last decade, metabolic reprogramming was recently included as one 
of the new hallmarks of cancer. The advent of high-throughput technologies to amass 
an abundance of omic data, together with the development of new computational 
methods that allow the integration and analysis of omic data by using genome-scale 
reconstructions of human metabolism, have increased and accelerated the discovery 
and development of anticancer drugs and tumor-specific metabolic biomarkers. Here 
we review and discuss the latest advances in the context of metabolic reprogramming 
and the future in cancer research.

Cancer is still one of the major causes of 
death worldwide and the statistics are dev-
astating. According to the WHO the global 
burden of cancer has risen to 14.1 million 
new cases and 8.2 million cancer deaths in 
2012 and the estimates predict that it could 
increase in its global incidence [1].

It was proposed 15 years ago by Hanahan 
and Weinberg that cancer development relies 
on the following basic biological capabili-
ties, known as the ‘hallmarks of cancer’ that 
are acquired during the multistep process of 
tumor development: the capability to sus-
tain proliferative signaling, resistance to cell 
death, evasion of growth suppression, ability 
of replicative immortality, tumor-promoting 
inflammation, genome instability and muta-
tion, induction of angiogenesis and activation 
of invasion and metastasis. Owing to concep-
tual progress in the last decade, two new hall-
marks, metabolic reprogramming and 
evasion of immune destruction, have been 
identified (Figure 1) [2]. 

Nowadays, it is widely recognized that 
metabolic reprogramming is essential to sus-
tain tumor progression. Several metabolic 
adaptations described in cancer cells, such 
as the metabolization of glucose to lactate in 

the presence of oxygen (Warburg effect), are 
quite common among different cancer types. 
These changes are promoted by genetic and 
epigenetic alterations producing mutations 
or alterations in the expression of key meta-
bolic enzymes that modify flux distributions 
in metabolic networks, providing advantages 
to cancer cells in terms of energy production 
and synthesis of biomolecules [3,4].

Understanding the mechanisms that trig-
ger metabolic reprogramming in cancer cells 
and its role in tumoral progression is crucial, 
not only from a biological but also from a 
clinical stance, since this can be the basis 
towards improving existing cancer therapies 
or developing new ones.

In this review, we discuss the role of: the 
crosstalk between oncogenic signaling path-
ways and metabolism; the influence of non-
genetic factors, such as tumor microenviron-
ment, on metabolic reprogramming of cancer 
and stromal cells; the changes in isoenzymes 
patterns as potential therapeutic targets; and 
the new computational tools used by a sys-
tems biology approach in drug-target and bio-
marker discovery based on genome-scale 
metabolic models (GSMMs). Finally, 
we also discuss the future challenges in 
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developing new strategies and methods to drug and 
biomarker discovery, exploiting the reprogramming of 
metabolism that sustains cancer progression.

Crosstalk between oncogenic signaling 
events & cancer cell metabolism
Through a better understanding of the complex net-
works of oncogenic signaling pathways, altered cellular 
metabolism emerges as one of the major routes through 
which oncogenes promote tumor formation and pro-
gression. Many key oncogenic signaling pathways con-
verge to adapt tumor cell metabolism in order to support 
their growth and survival. The identification of new 

metabolic coordination mechanisms between altered 
metabolism and regulators of cell signaling networks, 
controlling both proliferation and survival, triggers the 
interest for new metabolism-based anticancer therapies. 
Several oncogenes, tumor suppressor genes and cell 
cycle regulators controlling cell proliferation and sur-
vival are intimately involved in modulating glycolysis, 
mitochondrial oxidative phosphorylation (OXPHOS), 
lipid metabolism, glutaminolysis and many other meta-
bolic pathways (Figure 2). The accumulation of genetic 
abnormalities required for oncogenesis leads to changes 
in energetic and biosynthetic requirements that in turn 
affects the metabolic signature of cancer cells through 
interactions between enzymes, metabolites, transport-
ers and regulators. High-throughput sequencing data 
reveals that the mutational events causing tumorigen-
esis are much more complex than previously thought 
and that the mutational range can vary even among 
tumors with identical histopathological features [5]. 
Some of the metabolic adaptations driven by onco-
genic signaling events have been described as common 
to different tumors, but metabolic profiles can be sig-
nificantly tissue/cell specific [6]. Here, we will high-
light some of the most prevalent examples of crosstalks 
between oncogenic signaling events and pivotal meta-
bolic pathways. HIF-1 is a key regulator that initiates 

Figure 1. Hallmarks of cancer. The hallmarks of cancer comprise ten capabilities required during a multistep tumor pathogenesis to 
enable cancer cells to become tumorigenic and ultimately malignant. Metabolic reprogramming has been identified as an emerging 
hallmark and as a promising target for the treatment of cancer as there is a deregulation of bioenergetic controls and an abnormal 
use of metabolic pathways to sustain their biosynthetic and energetic needs. 
Reproduced with permission from [2] © Elsevier.
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Key terms

Metabolic reprogramming: Process in which the 
cellular metabolism evolves in order to adapt to new 
environmental conditions and perturbations. In the case of 
tumor, the energy metabolism is reprogrammed in order to 
sustain the high proliferative rate of cancer cells.

Genome-scale metabolic models: Those models that 
summarize and codify the information known about 
the metabolism of an organism based on the literature 
and databases. These models represent the metabolic 
reaction encoded by an organism’s genome and can be 
transformed into a mathematical formulation in order to 
study the metabolic cell behavior.
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a coordinated transcriptional program activated by 
hypoxic stress (in response to low-oxygen conditions), 
to promote the metabolic shift from mitochondrial 
OXPHOS to glycolysis (Figure 2) through the induction 
of several genes, including glucose transporters and gly-

colytic enzymes, leading to an increased flux of glucose 
to lactate [7]. Additionally, HIF-1 actively downregulates 
the OXPHOS flux by activation of PDK1, which inhib-
its the conversion of pyruvate to acetyl-CoA catalyzed 
by the tricarboxylic acid (TCA) cycle enzyme PDH.

Figure 2. Nongenetic and oncogenic influences on tumor metabolic reprogramming. The nongenetic component 
(the tumor microenvironment) influences metabolic changes in tumor cells as a result of gradients of oxygenation 
and pH, nutrient availability, oxidative stress and the intercellular communication with stromal cells by means of 
metabolites such as lactate, pyruvate, fatty acids and glutamine. Combined with tumor microenvironment, the 
genetic component (oncogenes and tumor suppressors) plays a key role in metabolic reprogramming to ensure 
metabolites are shunted into pathways that support the energetic requirements and the biosynthesis of structural 
components, achieved by maintaining high rates of glycolysis and/or glutaminolysis, promoting the pentose 
phosphate pathway, slowing mitochondrial metabolism (oxidative phosphorylation) and utilizing tricarboxylic acid 
intermediates for biosynthetic precursors (e.g., fatty acids and lipids). 
CAF: Cancer-associated fibroblastic cell; PPP: Pentose phosphate pathway; SREBP: Sterol regulatory element 
binding protein.
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Similar to HIF-1, oncogenic activation of Myc also 
triggers a transcriptional program that enhances gly-
colysis by directly inducing glucose transporters and 
glycolytic enzymes. Indeed, there is a crosstalk between 
HIF-1 and Myc, whereby they cooperate to confer 
metabolic advantages to tumor cells by oxygen-depen-
dent mechanisms, with a difference that, contrary to 
HIF-1,  Myc upregulation has more significant conse-
quences for many cells as it alters not only glycolysis but 
also glutaminolysis (Figure 2) and many other biosyn-
thetic pathways [8]. The Myc oncogene stimulates gluta-
mine uptake and glutaminolysis by inducing glutamine 
transporters directly and GLS, the enzyme that con-
verts glutamine to glutamate, indirectly [9]. Besides gly-
colysis, glutaminolysis is another important metabolic 
pathway in cancer cells, which contributes not only as 
a source to replenish the TCA cycle, but also to control 
the redox potentials through generation of reductive 
equivalents, such as NADPH. In addition to glucose, 
a vast amount of glutamine is consumed by cancer 
cells. Glutamine is converted to glutamate and then to 
α-ketoglutarate (α-KG), which feeds the TCA cycle. 
Some tumors that show an upregulation of glutamine 
metabolism have been reported to exhibit ‘glutamine 
addiction’, that is, glutamine becomes essential during 
rapid growth. However, glutamine consumption and 
addiction are dependent on the metabolic profile of the 
cancer cells and in particular on the oncogene/tumor 
suppressor involved in tumor progression [10].

Activated PI3K/AKT/mTOR pathway is one of the 
most common signaling cascades altered in tumor 
cells and this pathway is one of the most heavily tar-
geted to develop anticancer therapies. Many cancers 
are driven by aberrations in the PI3K/AKT/mTOR 
pathway promoting metabolic transformation through 
multiple metabolic pathways, including an increase 
in glucose and amino acid uptake (Figure 2), upreg-
ulation of glycolysis and lipogenesis and enhanced 
protein translation through Akt-dependent mTOR 
activation [11].

In cancer cells, the increased rate of de novo lipid 
biosynthesis is an important aspect of the metabolic 
reprogramming during oncogenesis. Lipid metabo-
lism is regulated via activation of the sterol regulatory 
element binding proteins (SREBPs) (Figure 2), which 
are important regulators of the Akt/mTOR signaling 
pathway [12]. Indeed, various genes coding for enzymes 
involved in fatty acid and cholesterol biogenesis are 

targets of SREBPs, including ATP-citrate lyase, acetyl-
CoA carboxylase and fatty acid synthase [13]. Lipogen-
esis is also controlled by the RAS oncogene through 
the action of HIF-1, which has been reported to induce 
the expression of fatty acid synthase in human breast 
cancer cell lines [14]. However, the RAS oncogene also 
modulates mitochondrial metabolism roughly increas-
ing the activity of Myc and HIF-1 [4], glycolysis and 
the pentose phosphate pathway (PPP) [15]. Prolifer-
ating cells, such as tumors, require high amounts of 
pentose phosphates for biosynthesis of macromolecules 
and NADPH for redox homeostasis maintenance [16]. 
Therefore, PPP plays a fundamental role in defining 
the metabolic phenotype of tumor cells. Hence, there 
are also examples of coordinated crosstalk between the 
main enzymes that control the PPP during oncogenesis 
and oncogenic signaling pathways. K-RAS and PI3K 
signaling have been shown to positively regulate G6PD, 
whereas p53, which is a transcription factor and regula-
tor of the cell cycle and apoptosis, physically interacts 
with G6PD to negatively modulate its activity [17], and 
thereby downregulates PPP. On the other hand, active 
HIF-1 signaling has been linked to both TKT and 
TKTL1, the enzymes catalyzing the rate-limiting step 
of the non-oxidative branch of the PPP [18].

In addition, alterations in p53 are frequent events in 
tumorigenesis. The loss or inactivation of p53 down-
regulates OXPHOS by inducing aerobic glycolysis 
through inhibiting glucose transporters and the gly-
colytic enzyme PGM and inducing TP53-induced 
glycolysis and apoptosis regulator, a negative regulator 
of glycolysis [19]. On the other hand PHF20 stabilizes 
and upregulates p53 resulting in a gain of functionality 
that drives the reprogramming of the metabolism of 
certain cancers cell lines, such as U87 (glioblastoma) 
or MCF7 (breast cancer) [20].

Other examples of oncogene-mediated metabolic 
reprogramming include mutations in genes encoding 
FH and succinate dehydrogenase, which are loss-of-
function mutations and behave as tumor suppressor 
genes [21]. On the other hand, mutations in IDH-1 and 
IDH-2, do not result in inactivation of normal IDH 
enzymatic function but generation of novel gain-of-
function mutation that enables the conversion of α-KG 
to D2-HG, which may act as an ‘oncometabolite’ by 
inhibiting multiple α-KG–dependent dioxygenases 
involved in epigenetic regulation [22].

Tumorigenesis occurs as a consequence, not only of 
the dysregulation of numerous oncogenic pathways, 
but also due to many nongenetic factors, including 
tumor microenvironment stresses, such as hypoxia, lac-
tic acidosis and nutrient deprivation. The integration 
of these nongenetic factors within the genetic frame-
work of cancer is the next logical step in understanding 

Key term

Tumor heterogeneity: Variability among different 
tumors in the same organ (intertumoral heterogeneity) 
or the variability among cells in a tumor (intratumoral 
heterogeneity).
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tumor heterogeneity. Research over the years has 
elucidated the cellular and molecular interactions 
(including metabolic reprogramming) occurring in the 
tumor microenvironment and are closely linked to the 
processes of angiogenesis and metastasis.

Tumor microenvironment
Since the discovery of immune cells in tumor samples 
by Rudolf Virchow in 1863, various studies have shown 
the linkage of cancer to inflammation, vascularization 
and other conditions, which suggest that tumors do 
not act alone. Without its ‘neighborhood’ the survival 
of tumor cells could be a big question mark. The cellu-
lar heterogeneity in this microenvironment is complex 
and comprises of extracellular matrix, tumor cells and 
non-transformed normal cell types that co-evolve with 
the tumor cells (e.g., cancer-associated fibroblastic cells 
[CAFs], infiltrating immune cells and endothelial cells 
that constitute the tumor-associated vasculature) that 
are embedded within this matrix and nourished by the 
vascular network. In addition, there are many signaling 
molecules and chemicals, such as oxygen and protons, 
all of which can influence tumor cell proliferation, 
survival, invasion, metastasis and energy metabolism 
reprogramming. CAFs, one of the most abundant stro-
mal cell types in different carcinomas, are activated 
fibroblasts that share similarities with fibroblasts, stim-
ulated by inflammatory conditions or activated during 
wound healing. But, instead of suppressing tumor for-
mation, CAFs can significantly promote tumorigenesis, 
invasion and de novo cancer initiation by some unique 
growth factors and cytokines secretion (e.g., EFG, 
FGF, IL6, IL8, VEGF etc), extensive tissue remodel-
ing mediated by augmented expression of proteolytic 
enzymes (e.g., matrix metalloproteinases), deposition 
of extracellular matrix and pathogenic angiogenesis by 
liberating pro-angiogenic factors within the matrix [23]. 
Significant cell plasticity exists within this cell popula-
tion, as both mesenchymal-to-epithelial and epithelial-
to-mesenchymal transitions are known to occur, fur-
ther enhancing stromal heterogeneity. Moreover, CAFs 
can enhance proliferation and invasion by inducing 
the epithelial-to-mesenchymal transitions on tumor 
cells [24,25]. Immune cell recruitment and localization 
in the tumor milieu vary widely in the lesions. Het-
erogeneity of tumor immune contexture is influenced 
by various factors, including those secreted by CAFs, 
the extension and permeability of the vasculature, and 
the tumor cells themselves. Importantly, macrophages 
comprise the most abundant immune population in the 
tumor microenvironment and are responsible for the 
production of cytokines, chemokines, growth factors, 
proteases and toxic intermediates, such as nitric oxide 
and reactive oxygen species [26]. Their contribution to 

tumor initiation, progression and metastasis can be 
attenuated by antioxidant treatments, such as butyl-
ated hydroxyanisole, as reactive oxygen species levels 
have been reported to regulate the differentiation and 
polarization state of macrophages. Endothelial cells 
that are ‘hijacked’ by the tumors play an important 
part in forming a transport system, although ineffec-
tive, but essential for its survival and growth. In addi-
tion, blood vessel formation needs a protein matrix for 
the endothelial cells to be attached to and also it needs 
pericytic cells to strengthen these vessels. But, since the 
pericytes are not known to function very well in tumor 
vessel formation, the vessels are always malformed and 
leaky [27].

In the last few years the concept of cancer stem 
cells (CSC), a small minority of cells in the tumor, 
has evolved to be a possible cause and source of tumor 
heterogeneity. Currently there are two models that 
describe tumor cell heterogeneity: the hierarchical 
CSC model, where self-renewing CSCs sustain the 
stem cell population while giving rise to progenitor 
cells that are not capable of self-renewal and can give 
rise to differentiating clones that contribute to over-
all tumor heterogeneity, and the stochastic (tumor 
microenvironment-driven). model in which cancer 
cells are clonally evolved, and virtually every single cell 
can self-renew and propagate tumors. In this model, 
the self-renewal capability of each cell is determined 
by distinct signals from the tumor microenvironment. 
Recent studies have suggested that tumor heterogene-
ity may exist in a model coordinating with both the 
CSC and the stochastic concepts [28].

Metabolic reprogramming associated with 
cancer & stromal cell interaction
Recently, the relationship between tumor microenvi-
ronment and metabolic reprogramming has been high-
lighted and there has been extensive research about 
metabolic symbiosis between cancer and stromal cells. 
Among these interactions, it was shown that epithe-
lial tumor cells induce oxidative stress in the normal 
stroma, inducing aerobic glycolysis in CAFs, as well as 
changes in inflammation, autophagy and mitophagy 
(Figure 2). As a consequence of this rewiring in CAFs 
metabolism, energy-rich metabolites (such as lactate, 
pyruvate and ketones) are secreted, feeding adjacent 
cancer cells. This tumor–stroma metabolic relation-
ship is referred to as the ‘reverse Warburg effect’. CSCs 
that are present within the tumor also rely more heav-
ily on glycolysis, even in the presence of oxygen (War-
burg effect), and decrease their mitochondrial activity 
in order to limit reactive oxygen species production. 
As these glycolytic and mitochondrial signatures help 
to maintain the CSC phenotype, recent studies have 
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focused their attention to these metabolic weaknesses 
to be combined with traditional chemotherapy that, 
alone, usually fails to target CSCs [29,30]. In addition, 
other stromal cells, such as adipocytes, are able to act 
as energy sources, transferring fatty acids that come 
from lipolysis to ovarian tumor cells for β-oxidation 
[31]. Deregulated lipogenesis has been shown to play an 
important role in the interactions between cancer cells 
and the surrounding stromal cells. Studies suggest that 
it affects the epithelial cell polarity during the early 
stages of cancer development [32], inducing cancer cell 
migration [33] and activation of angiogenesis involv-
ing signaling lipids (e.g., diacyl glycerides, lysophos-
phatidic acid and prostaglandins), fatty acid synthesis 
enzymes and overof the monoglyceride-lipase [34–36].

Loss of stromal caveolin-1 in CAFs has been asso-
ciated with tumor progression and metastasis [37] and 
causes oxidative stress and induction of autophagy, 
which results in increased levels of glutamine and 
ammonia in the stromal microenvironment. This glu-
tamine could be consumed by cancer cells for energy 
and anaplerotic reactions and ammonia acts as a potent 
inducer of autophagy, creating a vicious cycle [37]. The 
migration stimulating factor, a truncated isoform of 
fibronectin identified to be overexpressed by CAFs 
and other ‘activated’ fibroblasts, has been shown to 
increase lactate production in the stromal environ-
ment and decrease mitochondrial activity, suggesting 
a shift towards glycolysis during hypoxia in addition 
to promoting tumor growth without affecting tumor 
angiogenesis [38].

Angiogenesis has been long known to play a major 
role in supporting cancer cell growth in the tumor 
microenvironment. But since the newly formed blood 
vessels are mostly defective there is always a nutrition 
deficiency and acidosis in these areas (Figure 2). A bio-
marker study in the gastric cancer environment where 
a quantitative analysis of the organic acids that are the 
end products of metabolism, using GC–MS, showed 
an increase in glycolytic end-products, such as pyruvic 
and lactic acids, with respect to normal tissues [39]. The 
pattern of high acidification in the tumor microenvi-
ronment due to the accumulation of glycolytic end-
products results in a nutrient-deficient environment. 
In addition, metabolic reprogramming of tumor-
associated endothelial cells has been showing up wide 
interests. Upon tumor angiogenic activation, endothe-
lial cells are pushed to a state of metabolic stress for 
increasing their proliferation rate to form new blood 
vessels, although the resulting network is abnormal and 
inefficient. These normal cells show higher glycolytic 
enzyme activities and lactate production, even in the 
presence of oxygen [40], and they continue proliferat-
ing even in the presence of hostile conditions and high 

nutrient deficiency [41]. Also it has been shown that 
endothelial cells, similar to tumor cells, have a high 
expression of monocarboxylate transporter 1 required 
for the lactate influx, revealing that these cells seek 
alternative metabolites in a nutrition-deficient environ-
ment [42]. Moreover, the inhibition of glycogenolysis in 
human umbilical vein endothelial cells has been shown 
to decrease cell viability and migration, elucidating the 
importance of glycogen for the survival of these cells 
[43]. The role of the PPP in cell viability has also been 
demonstrated, in that, the direct inhibition of G6PDH 
has been shown to decrease endothelial cell survival 
[43]. When tumor cells choose the less energy-efficient 
metabolic pathways, such as glycolysis and glutaminol-
ysis, both leading to the production of lactic acid, the 
pH of the tumor microenvironment decreases. It has 
been shown that endothelial cells behave in a similar 
fashion while forming new tumor blood vessels. While 
this phenomenon is known, it has also been found that 
the decrease in pH in the surrounding microenviron-
ment actually increases cancer survival by immune 
suppression. Loss of T-cell function has been reported 
under low pH environment, while restoring the pH 
to normal conditions has been found to restore T-cell 
function [44]. Similarly, the lactic acid generated has 
shown to increase the proliferation of endothelial cells 
by increased interleukin8/CXCL8 production [41,45]. 
From a therapeutic point of view, targeting the altered 
metabolic pathways leading to lactic acid accumula-
tion in tumor microenvironment could inhibit tumor 
growth as this mechanism would restore the impaired 
immune response and also a combinatorial therapy 
with antiangiogenesis drugs could reduce the prolifera-
tion of endothelial cells and formation of new blood 
vessels [46].

An important event that occurs during the changes 
in tumor microenvironment, as the cancer progresses, 
is the metastasis of some selected cancer cells to dis-
tant sites. A receptive microenvironment is required for 
tumor cells to engraft distant tissues and metastasize. 
Although several studies have indicated the formation 
of a premetastatic niche in the secondary sites before 
the primary tumor metastasizes [47], we have to con-
sider how metastatic cells are able to adapt to their new 
metabolic environment, which can differ to a greater 
or lesser extent with respect to its nutrient and oxygen 
availability. Metastatic cells should exhibit a remark-
able and dynamic flexibility that enables them to 
rapidly switch between metabolic states [48]. In addi-
tion, the homeostasis of the sites for metastasis can be 
disrupted as consequence of the metabolic activity of 
metastatic cells. This has been observed in bone, where 
metastatic prostate cancer cells secrete glutamate into 
their extracellular environment as a side effect of cel-
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lular oxidative stress protection, promoting the devel-
opment of pathological changes in bone turnover [49]. 
Further studies are required to analyze these metabolic 
interplays between metastatic cells and tumor microen-
vironment in order to obtain more specific treatments 
and therapies.

Isoenzymes: therapeutic targets in cancer
The technological advances that have occurred over 
the past decade and the increasing number of evidences 
that have emerged from previous studies show a wide 
array of metabolic rewiring in cancer cells. Many met-
abolic enzymes that are specific to important metabolic 
pathways and those altered in cancer cells have been 
identified. These enzymes have a key role in mediating 
the aberrant metabolism of cancer cells and could serve 
as a promising source of novel drug targets. Isoforms of 
many of these metabolic enzymes are found to be spe-
cifically expressed in tumor cells affecting important 
pathways of the energetic metabolism. The current 
research is being refocused on specifically targeting 
these isoforms that has shown to be a promising strat-
egy to develop new anticancer treatments. In this part, 
we will highlight some of the most important, altered 
pathways and the specific isoenzymes, that could be 
used for drug targeting, in cancer disease.

Glycolytic isoenzymes
Glycolytic pathway serves as the principal energetic 
source for a cell. The higher dependency of cancer 
cells upon glycolytic metabolism for the production 
of ATP provides a greater motive to target glycolytic 
enzymes (Figure 2). Many isoforms of these enzymes 
have been found to be specifically expressed in tumor 
cells and are being exploited as potential candidates to 
be used as drug targets. The transport of glucose across 
the plasma membrane is regulated by various isoforms 
of glucose transporters (GLUT1–14 or SLC2A1–14). 
GLUT1, -3 and -4 are found to be expressed at higher 
levels in cancer [50]. GLUT3 and other transporters 
could be targeted by the use of specific antibodies or 
drugs, such as phloretin or ritonavir, causing the cells 
to starve by blocking their nutrient uptake through 
these transporters.

Another important metabolic enzyme of the gly-
colytic pathway is HK, which regulates the first rate-
limiting step of glucose metabolism. Cancer cells are 
heavily dependent on HK isoforms, such as HK2 [51]. 
The specific expression of HK2 in adipose tissue and 
skeletal muscles provides an opportunity to target this 
enzyme without having the risk of affecting other tis-
sues. Compounds such as methyl jasmonate isolated 
from plants have been shown to disrupt the associa-
tion between mitochondria and HKs (HK1 and -2). 

involved in regulating apoptosis [52] and have shown to 
be lethal to cancer cells in vitro [53].

Recent publications suggest a key role of PK isoen-
zyme – PKM2 – in mediating the Warburg effect in 
cancer cells [54], proving its prospective as an enzymatic 
anticancer drug target. The enzyme activity of PKM2 
is inhibited downstream of cellular growth signals [55]. 
Cell proliferation and aerobic glycolysis in tumors are 
greatly dependent on this ability to inhibit the activ-
ity of the PKM2 enzyme. Many approaches using 
small-molecule inhibitors and small-hairpin RNA-
based inhibition of PKM2 have been shown to cause 
cell death and slow down cell proliferation in  vitro 
[54,56]. The PFKFB3 isoform is shown to be important 
in RAS-mediated tumors and inhibition of PFKFB3 
by small-molecule inhibitors has been shown to have 
cytostatic effect on the growth of cancer [57]. Inhibition 
of LDHA using FX11 or oxamate has been shown to 
induce oxidative stress and cause cell death in cancer 
cells [58,59]. Targeting LDHA combined with NAMPT 
inhibitors has been shown to slow down tumor regres-
sion and thus making it a potential candidate for drug 
targets [59].

TCA isoenzymes/mitochondrial complex
PDK phosphorylates PDH and inhibits the conver-
sion of pyruvate to acetyl-CoA, a key metabolite in the 
TCA cycle (Figure 2). Isoenzyme PDK3 is induced by 
upregulation of HIF-1α under hypoxic conditions and 
results in cells undergoing glycolysis instead of TCA 
for energy production. Inhibition of PDK3 increases 
the susceptibility of tumor cells towards anticancer 
drugs and causes inhibition of hypoxia-induced glycol-
ysis [60]. Thus PDK3 could be used as a drug target to 
overcome drug resistance and improve chemotherapy.

Isoforms of IDH1 and -2 are found to be mutated in 
glioma and acute myeloid leukemia [61,62]. Mutations 
in IDH1 and -2 result in the overexpression of both 
of these enzymes and the production of 2-HG, which 
inhibits α-KG-dependent dioxygenase enzymes. Asso-
ciation between high levels of 2-HG and tumorigenic-
ity is yet to be established, but interestingly the levels 
of several TCA metabolites remain unaltered, sug-
gesting an alternate pathway that could be acting in 
normalizing the metabolite levels in cells with IDH1 
mutations.

Isoenzymes of the PPP
Cancer cells are in a constant demand for greater 
amounts of purines and pyrimidines to maintain their 
high proliferative nature (Figure 2). The key enzyme 
for the oxidative PPP, the G6PDH enzyme, is over-
expressed in certain types of cancers and it has been 
shown to transform fibroblasts and help in tumor cell 
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proliferation [63]. On the other hand, the overexpres-
sion of TKTL1 in many forms of cancer could increase 
the concentration of glyceraldehyde-3-phosphate and 
help in mediating the Warburg effect in cancer cells 
[64]. Combinatorial approach of targeting G6PDH and 
TKTL1 can help overcome drug resistance and may 
cause cell death [65].

Targeting isoenzymes of glutamine metabolism
Recent findings that point to the use of glutamine as 
a carbon source for the TCA cycle [66] in cancer cells 
encouraged researchers to consider enzymes of glu-
tamine metabolism as potential therapeutic targets. 
6-diazo-5-oxo-L-norleucine- or bis-2-(5-phenylacet-
amido-1,2,4-thiadiazol-2-yl)ethyl sulphide-mediated 
inhibition of GLS or siRNA-induced silencing of GLS 
and GDH have been shown to inhibit the activation 
of mTORC1 [67]. Thus, combinatorial targeting of 
GLS and GDH along with chemotherapy may prove 
to be more effective in cancer treatment. The differ-
ential expression of these cancer-associated isoenzymes 
can be used as potential biomarkers for early cancer 
prognosis or as enzymatic drug targets. However, 
the role and importance of these mutations in the 
reprogramming of the energetic metabolism observed 
in cancer cells is not always obvious. This makes it 
extremely difficult to evaluate the effects of these 
mutations in the cancer metabolism qualitatively or 
quantitatively. Additionally, the effects of these isoen-
zymes on metabolism can be attenuated or enhanced 
by compensatory and regulatory mechanisms. Taking 
into account these rationales, the need for a tool that 
permits a holistic analysis of the metabolic system is 
essential, in order to qualitatively evaluate the effects of 
a single or combination of different mutations within 
the whole metabolic network system. In the last few 
years, genome-scale metabolic network models have 
demonstrated their suitability for the integrated analy-
sis of large and complex metabolic networks providing 
new clues for identifying drug targets.

GSMMs as new tools emerging from 
systems biology approach to drug discovery
In the previous sections, we have presented evidences 
that support cancer onset and that the progression relies 
on metabolic abnormalities to balance energy demand 
and biomolecular synthesis (metabolic reprogram-
ming) [68]. GSMMs are emerging as a potential solu-
tion to decipher the molecular mechanisms underlying 

cancer in the context of systems biology [69]. GSMMs 
represent the metabolic reaction complement encoded 
by an organism’s genome. These models are built 
based on the literature and databases and enable one to 
summarize and codify information known about the 
metabolism of an organism.

Over 100 GSMMs have been built for different spe-
cies, ranging from archea to mammals [70–84]. Recon-
structions of human metabolism, such as Recon1 [81], 
Edinburgh Human Metabolic Network [82] or the most 
recent reconstructions of human metabolism, Recon2 
[83], are widely used to study the mechanism of diseases 
with a strong metabolic component, such as cancer or 
diabetes [85–88].

This systems biology tool enables the mathematical 
representation of biotransformations and metabolic 
processes occurring within the organism and offers 
an appropriate framework to integrate the increas-
ing amount of ‘omic’ data generated by the different 
high-throughput technologies.

The transformation into a mathematical formula-
tion is mostly driven by constraint-based modeling 
(CBM) [89] and allows the systematic simulation of 
different phenotypes, environmental conditions, gene 
deletion and so on. This approach allows for model-
ing the complexity of cancer metabolism and tackling 
more problematic biological questions, such as the role 
of metabolism in cancer disease [90].

Genome-scale constraint-based metabolic models 
have been used for a variety of applications, involving 
studies on evolution [91], metabolic engineering [92–94], 
genome annotation [95] or drug discovery [96], with a 
high relevance in cancer research.

Indeed, GSMMs can efficiently capture the com-
plexity of cancer metabolism in a holistic manner and 
permit to improve existing therapies or develop new 
ones [97].

In this chapter we discuss methods for building 
GSMMs and computational approaches to analyze 
and integrate ‘omic’ data into these large-scale meta-
bolic network models. Finally, we introduce some of 
the most relevant softwares and algorithms developed 
for drug-target discovery that can be used in cancer 
research.

GSMM reconstruction
Genome-scale metabolic reconstructions are created 
in a bottom-up manner based on genomic and bib-
liomic data and, thus, represent a biochemical, genetic 
and genomic knowledge base for the target organism 
[81–83]. However, to date we are still not able to com-
pletely and automatically reconstruct high-quality 
metabolic networks (Figure 3A) [98]. Genome-scale 
reconstruction starts with the generation of a draft, 

Key term

Enzymatic drug target: A component in a metabolic 
pathway to which some other entity, such as a drug, is 
directed and/or binds.
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automated reconstruction based on the genome anno-
tation and biochemical databases of the target organ-
ism. This task can be achieved by using software tools, 
such as Pathways tool [99]. The genomic sequence of 
the targeted organism is coupled with the most recent 
annotations available from databases [100], such as 
GOLD or NCBI Entrez Gene databases [101,102].

Metabolic reactions can be associated with the 
annotated metabolic genes by using enzyme commis-
sion (E.C.), ID and biochemical reaction databases 
(e.g., KEGG [103] and BRENDA [104]). This process 
permits both linking metabolic genes with their cor-
responding encoded enzymes and determining the 
stoichiometric relationship of metabolic reactions 
with the metabolites and cofactors that they consume 
and/or produce.

The gene–protein-reaction association (GPR). is 
represented as Boolean relationships in which isoen-
zymes that catalyze the same reaction have an “OR” 
relation (only one of the genes that encode the dif-
ferent isoenzymes is required to have the reaction 
active) and the complexes that catalyze a reaction 
have an “AND” relation (all the genes that encode the 
different complex subunits are necessary to have the 
reaction active) [81]. GPR associations enable the map-
ping of transcriptomics or proteomics to the level of 
reactions.

Reactions can be located into different subcellular 
compartments based on protein location [81]. Reac-
tion directionality can be determined from thermo-
dynamic data. Additionally, artificial reactions, such 
as biomass reaction that define the ratio at which bio-
mass constituents are produced (nucleic acids, lipid, 
proteins, etc) or exchange reactions that define the 
overall rate of nutrients consumption or production, 
are also defined in the reconstruction. These artificial 
reactions are necessary to predict or impose certain 
phenotypic conditions on the mathematical model.

Next, it is necessary to manually curate and refine 
the draft, automated reconstruction. The main objec-
tive of curation is to identify and correct incomplete 
or erroneous annotation, add reactions that occur 
spontaneously and remove gaps and metabolites that 
cannot be produced or consumed [81] through search 
on the literature and other databases.

Once the model is curated, it is evaluated and vali-
dated in an iterative fashion by using mathematical 
tools [105]. The aim of the validation process is to eval-
uate if the model is stoichiometrically balanced, find 
gaps in the network and search for candidate reactions 
for gap filling, quantitative evaluation of biomass pre-
cursor production and growth rate, compare predicted 
physiological properties with known properties and 
determine the metabolic capabilities of the model.

It is worth noting that once a GSMM has been con-
structed, it can be used in future reconstructions in 
order to expand and refine the model [81,83].

Constraint-based methods as tools for tumor 
metabolism characterization
As was previously mentioned, GSMMs include stoichio-
metric details for the set of known reactions in a given 
organism. These large scale metabolic models require 
computational methods to be qualitatively analyzed. 
Traditionally, approaches based on ordinary differential 
equation have been used for characterization of dynamic 
cell states. However, this full-scale dynamic modeling is 
frequently infeasible for large-scale networks because of 
a paucity of necessary parameter values.

Constraint-based methods (CBMs) permit the anal-
ysis of large-scale biochemical systems under conditions 
where kinetic parameters need not be defined (steady 
state). Genome-scale constraint-based metabolic mod-
els can be used to predict or describe cellular behaviors, 
such as growth rates, uptake/secretion rate or intracel-
lular fluxes [89]. Flux balance analysis (FBA) is one of 
the most widely used CBMs for the study of biochemi-
cal networks. The variables used in FBA include the 
fluxes through transport and metabolic reactions and 
model parameters include reaction stoichiometry, bio-
mass composition, ATP requirements and the upper 
and lower bounds for individual fluxes, which define 
the maximum and minimum allowable fluxes of the 
reactions.

The first step in FBA is the mathematical representa-
tion of the metabolic reactions in the form of a numeri-
cal matrix, with stoichiometric coefficients of each 
reaction (stoichiometric matrix), where the metabolites 
are represented in rows and reactions in columns. FBA 
employs mass actions formalism for the mathematical 
representation of the metabolic networks: dC/Dt = S.v., 
where v and C are vectors of reaction fluxes and metab-
olite concentration respectively, t is time and S is the 
stoichiometric matrix (Figure 3A).

The next step is to impose constraints to the metabolic 
network. Constraints are fundamentally represented in 
two ways:

•	 Steady-state mass-balance imposes constraints on 
stoichiometry and network topology on the meta-
bolic fluxes through the network. Additionally, 
steady state assumption also imposes constraints 
that narrow the space of solutions. By defini-
tion, the change in the concentration of a certain 
metabolite over time at steady state is 0: dC/Dt = 0, 
thus: S.v = 0. These constraints ensure that for each 
metabolite in the network the net production rate 
equals the net consumption rate;
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Figure 3. Genome-scale metabolic model building and analysis (facing page). (A) GSMM reconstruction starts with a draft automated 
version based on literature and databases, finally this version is manually curated in order to refine the model. Typically, these models 
are analyzed by using flux balance analysis, assuming steady state. (B) GSMMs can be used as a platform to integrate and combine omic 
data from multiple layers. In these models, metabolomics data can be associated with metabolites, while genomics, transcriptomics and 
proteomics can be associated with metabolic reactions, these associations are established through gene–protein-reaction associations. 
The phenotypic assays can constrain properties of the network, such as growth rate under certain experimental conditions. (C) By 
integrating omic data into a GSMM we can determine either tumor-specific biomarkers or anticancer drug-targets and reconstruct 
cancer-specific GSMM. (D) Cancer-specific reconstructions can be used to determine synthetic lethals specific for each cancer type for 
which the non-tumor cells are insensitive (ROOM and MOMA methods), Additionally if we reconstruct an initial GSMM describing 
metastatic phenotype and a target GSMM describing non-metastatic phenotype we can determine the actors that would permit to 
revert the metastatic phenotype into a non-metastatic one (MTA method). 
FBA: Flux balance analysis; GSMM: Genome-scale metabolic model; Ret.: Retention.
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•	 Inequalities that impose bounds on the system: every 
reaction can also be given upper and lower bounds. 
These restrictions are based on measured rates (e.g., 
metabolite uptake/secretion rates) or reaction revers-
ibility (e.g., irreversible fluxes have a zero lower 
bound) and are used to define the environmental 
conditions in a given simulation, such as nutrient 
or O

2
 availability, which can be related with a spe-

cific tumor microenvironment or stages in tumor 
progression.

Finally it is necessary to define a phenotype in the 
form of a biological objective that is relevant to the 
problem being studied (objective function). Typically, 
objective functions are related to growth rate prediction. 
GSMMs define this phenotype by an artificial biomass 
production reaction, that is, the rate at which metabolic 
compounds are converted into biomass constituents 
(nucleic acids, lipid, proteins, etc). The biomass reaction 
is based on experimental measurements of biomass com-
position and is unique for each organism or cell type. 
Thus, an objective function could be the maximization 
of growth rate that can be accomplished by calculating 
the set of metabolic fluxes that result in the maximum 
flux through biomass production reaction. Since uncon-
trolled cell growth is the basis of tumor progression, this 
approach is widely used in the simulation of cancer cell 
metabolism. The objective function can be adapted to 
the specific cell type or organism; however, the objec-
tive that better defines our case of study is not always 
obvious, especially in multicellular organisms [106].

Taken together, the mathematical representation of 
the metabolic reactions and of the objective function, is 
defined as a system of linear equations that are solved by 
a number of algorithms and software developed for this 
purpose [105]. Predictions of values for these fluxes are 
obtained by optimizing for an objective function, while 
simultaneously satisfying constraint specifications.

Omic data integration
The advent of high-throughput technologies have trans-
formed molecular biology into a data-rich discipline by 
providing quantitative data for thousands of cellular 

components across a wide variety of scales. However, 
extraction of ‘knowledge’ from this ocean of omic data 
has been challenging [107]. GSMMs have emerged as an 
advantageous platform for the integration of omic data 
(e.g., [108]; Figure 3B). In this framework cellular and 
molecular phenotypes are simulated allowing the devel-
opment of biological hypotheses and discoveries [109]. 
Metabolic reconstruction of the human metabolism has 
been successfully used for a variety of analyses of omic 
data, including applications in data visualization [110], 
deducing regulatory rules [111], network medicine [112], 
constructing tissue-specific models [113] or multicellular 
modeling [114]. Thus, omic data can be used to further 
constrain the non-uniqueness of constraint-based solu-
tions space and thereby enhance the precision and accu-
racy of model prediction (Figure 3A–C) [109]. To achieve 
this aim a number of FBA-driven algorithms that inte-
grate omic data into GSMMs have been developed. 
Table 1 highlights some of the most relevant approaches 
recently developed to incorporate experimental omic 
data into GSMMs [86,87,113,115–117]

Drug-target & biomarker discovery
Cancer cells maintain their high proliferation rate by 
adapting their metabolism based on the environmental 
conditions, such as pH, O

2
 availability, vascularization 

or nutrient availability [118]. The elucidation of diverse 
metabolic alterations for the identification of biomarkers 
and novel drug targets has, therefore, been increased in 
recent years. An increasing number of methods and algo-
rithms have been recently developed to integrate tumor-
specific omic data into GSMMs. It has enabled the gain 
of further biological and mechanistic understanding 
of how cancer benefits from metabolic modifications 
[90]. This model-driven approach allows the discovery 

Key term

Omic data integration: Computational process in 
which multi-omic data obtained from different high-
throughput technologies, considering different aspects of 
the molecular biology, are integrated into genome-scale 
metabolic models in order to unveil emergent properties of 
the biological systems.
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of potential biomarkers and drug targets [87,97,119]. The 
identification of new biomarkers is of major importance 
to biomedical research for early diagnosis and monitor-
ing treatments efficiently. The identification of cancer 
biomarkers is possible due to aberrant metabolism of 
tumors that alters the profile of absorption and nutrients 
secretion.

Omic data of clinical samples (mainly transcrip-
tomics data) can be used to infer the exchange rates 
of different metabolites for each individual sample via 
GSMM analysis (alterations in exchange reactions in the 
model). Thus, those metabolites that significantly dif-
fer between two clinical groups in their exchange rates 
are then considered as potential biomarkers. However, 
this task is especially challenging in the case of cancer 
owing to metabolic abnormalities resulting from com-
plex and elaborate genetic and epigenetic alterations that 
modify the expression of a variety of cancer-associated 
isoenzymes. In order to determine potential biomarkers 
in cancer, several computational approaches has been 
developed. For example, the metabolic phenotypic anal-
ysis (MPA) method uses GPR association to integrate 
transcriptomic and proteomic data within a GSMM to 
infer metabolic phenotypes [88]. MPA was used to study 
breast cancer metabolism and predict potential biomark-
ers. These predictions, wich include amino acid and cho-

line-containing metabolites, are supported by a number 
of experimental evidences [120]. Another recently devel-
oped algorithm is mCADRE, which has been used to 
systematically simulate the metabolic function of 26 
cancer cell types (among other cell types) [86]. This algo-
rithm has been able to identify several pathways, such 
as folate metabolism, eicosanoid metabolism, fatty acid 
activation and nucleotide metabolism, that are enriched 
in tumor tissue compared with their corresponding nor-
mal tissue. Many enzymes involved in these pathways are 
already used as chemotherapy targets. Other approaches, 
such as flux variability analysis [121] or sampling analy-
sis [122], are also suitable to predict metabolic biomarker 
candidates by integrating omic data into a GSMM. The 
novel drug discovery is based on the abnormalities exist-
ing in various reactions/pathways of cancer metabolism. 
These differences can be used as drug targets to attack 
specific weaknesses of the tumor and hence compromis-
ing its viability, but not that of non-cancerous cells [123]. 
For example, the INIT method [87] was used to identify 
characteristic metabolic features of cancer cells by infer-
ring the active metabolic network of 16 different can-
cer types and compare them with the healthy cell types 
where they come from. These metabolic differences may 
play an important role in proliferation of cancer cells 
and could be potential drug targets. This method found 

Table 1. Computation method for integrating omic data into global-scale metabolic models.

Name Input Description Ref.

iMAT Gene expression data Seeks to maximize the similarity between the gene 
expression and the metabolic profiles

[115]

mCADRE Gene expression and 
metabolomic data

Uses tissue-specific data to identify a set of core 
reactions. Seeks to build a consistent network using 
all the core reactions and the minimum number of 
non-core reactions

[86]

GIM3E Gene expression and 
metabolomic data

Builds a network that satisfies an objective function 
while penalizing the inclusion of reactions catalyzed 
by genes with expression below a certain threshold. 
It can be further constrained to produce certain 
metabolites based on experimental evidences

[116]

INIT Gene expression and 
metabolomic data

Seeks to build a model prioritizing the addition of 
reactions with strong evidence of their presence 
based on gene expression data. Can be forced 
to produce metabolites that have been detected 
experimentally

[87]

MBA Transcriptomic, 
proteomic, 
metabolomic, 
bibliomic data

Uses tissue-specific data to identify high and 
moderate probability core reactions. Seeks to build a 
network with all the high-probability core reactions, 
the maximum moderate probability core reactions 
and the non-core reaction required to prevent gaps

[113]

Fastcore Transcriptomic, 
proteomic, 
metabolomic, 
bibliomic data

Identify a set of core reactions based on tissue-
specific data. Seeks to build a network that contains 
all reactions from the core set with the minimum set 
of additional reactions necessary

[117]
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significant differences in polyamine metabolism, the iso-
prenoid biosynthesis and the prostaglandins and leukot-
rienes pathways in cancer cells compared with healthy 
cells. Some of the reactions that were found that have 
different activity in cancer cells, are already used in the 
clinical practice as therapeutic targets [124,125]. Based on 
the rationale that the differences between normal and 
tumoral cells can be potential therapeutic targets, several 
approaches have been developed that consider different 
aspects of cancer metabolism for the discovery of new 
drug targets:

Antimetabolite
One of the most common anticancer drugs are antime-
tabolites. An antimetabolite is structurally similar to a 
certain metabolite but it cannot be used to produce any 
physiologically important molecule. Antimetabolite-
based drugs act on key enzymes preventing the use of 
endogenous metabolites, resulting in the disruption 
of the robustness of cancer cells and reduction or sup-
pression of cell growth. For example, antimetabolites, 
such as antifolates or antipurines, mimic folic acid and 
purines [126]. The GSMM approach can be used to sys-
tematically simulate the effect of potential antimetabo-
lites in cancer research. To achieve this, methods such 
as the tINIT (Task-driven Integrative Network Infer-
ence for Tissues) algorithm have been developed [97]. 
This method has been used to reconstruct personalized 
GSMMs for six hepatocellular carcinoma patients based 
on proteomics data and the Human Metabolic Reac-
tion database [87] and identify anticancer drugs that are 
structural analogs to targeted metabolites (antimetabo-
lites). The tINIT algorithm was able to identify 101 
antimetabolites, 22 of which are already used in cancer 
therapies and the remaining can be considered as new 
potential anticancer drugs.

Synthetic lethal
The genetic lesions occurring in cancer not only pro-
mote the oncogenic state but are also associated with 
dependencies that are specific to these lesions and absent 
in non-cancer cells. Two genes are considered ‘synthetic 
lethal’ if the isolated mutation on either of them is com-
patible with cell viability but the simultaneous mutation 
is lethal [127]. Analogously, two genes are considered 
to interact in a ‘synthetic sick’ fashion, if simultaneous 
mutation reduces cell fitness below a certain threshold 
without being lethal [127].

Enzymes encoded by genes that are in synthetic 
lethal or sick interactions with known, non-druggable 
cancer-driving mutations can be potential anticancer 
drug targets. This approach has two main advantages: 
first, we can indirectly target non-druggable cancer-
promoting lesions by inhibiting druggable synthetic 

lethal interactors and secondly we can achieve a high 
selectivity by exploiting true synthetic lethal interactions 
for anticancer therapy. This is especially remarkable in 
the case of cancer-specific isoenzymes, which are emerg-
ing as one of the most promising anticancer drug targets. 
GSMMs provide an excellent tool for the systematic 
simulation of specific pairs of gene knock-out (KO) to 
unveil those combinations that compromise the viability 
of cancer cells (synthetic lethal). By definition, gene KO 
is simulated by giving value zero to gene expression and 
the effect of gene deletion is transferred to the metabolic 
reaction level by GPR association. Thus, for instance, 
the flux through a reaction that is associated only to one 
knocked-out gene would be zero. If the reaction is cata-
lyzed by isoenzymes or complexes, the effect of a gene 
deletion is more complex.

However, predicting the metabolic state of a cell after 
a gene KO is a challenging task, because after the gene 
KO the system evolves into a new steady-state that tends 
to be as close as possible to the original steady-state 
[128]. To overcome these difficulties several algorithms 
have been developed. For example, the MOMA algo-
rithm minimizes the euclidean norm of flux differences 
between metabolic states of the KO compared with the 
wild type [129]. The ROOM method minimizes the total 
number of significant flux changes from the wild type 
flux distribution [129].

In other words, MOMA minimizes the changes in 
the overall flux distribution while ROOM minimizes 
the number of fluxes to be modified after the gene KO 
(Figure 3D). As an example of employing the concept 
of synthetic lethality in cancer, a GSMM approach has 
been used to develop a genome scale network model of 
cancer metabolism [119]. The model predicted 52 cyto-
static drug targets (40% of which were known) and 
further predicted combinations of synthetic lethal drug 
targets, which were validated using NCI-60 cancer cell 
collection. In a remarkable example, synthetic lethality 
between heme oxygenase and fumarate hydratase was 
predicted by the GSMM approach and was also experi-
mentally validated [130]. The number and the quality of 
these predictions prove the capabilities of this approach 
to identify synthetic lethal pairs of genes as potential 
novel drug target in cancer.

Future perspective
Metabolism represents the essence of how cells inter-
act with their environment to provide themselves with 
energy and the essential building blocks for life. In this 
review, we highlighted the role of a wide range of factors 
that trigger the malignant transformation of cancer 
metabolism as well as experimental and computational 
approaches to develop new therapies. Despite the 
encouraging achievements and improvements in cancer 
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research, there still exist limitations that need to be 
overcome in order to enhance the effectiveness of drug 
therapies in cancer disease.

One of the major challenges in targeting key met-
abolic pathways is the lack of clear understanding of 
how the cancer cell metabolic profile varies from a 
non-tumor proliferating cell and the potential toxic-
ity risk associated with targeting metabolism. A better 
understanding of how the metabolism differs in a spe-
cific type of cancer or within the same type may help 
us predict and identify targets without affecting non-
tumor cells. In this context, combination of metabolic 
and signaling pathway inhibitors has been proposed 
as one of the rational approaches [131]. Using compu-
tational approaches permits the systematic simulation 
of gene perturbations, either metabolic and/or non-
metabolic, that could contribute to unveil novel key 
signaling nodes resulting in potential anticancer drug 
targets. Recently developed algorithms, such as PROM 
[111], allow the integration of transcriptomic data into 
GSMMs while considering the gene regulatory net-
work structure of a given organism. This approach has 
been developed for predicting metabolic changes that 
result from genetic or environmental perturbation in 
Escherichia coli. However, it is obvious that algorithms 
accounting for both gene regulatory and metabolic net-
works could be used to analyze more precisely the effect 
of perturbations on oncogenes in cancer metabolism.

Tumor heterogeneity represents a hurdle that must 
be overcome in order to develop new and more efficient 
anticancer therapies. One of the factors triggering intra-
tumoral heterogeneity is the tumor microenvironment, 
which interferes with the ability of drugs to penetrate 
tumor tissue and reach the entire tumor cells in a poten-
tially lethal concentration. In addition, heterogeneity 
within the tumor microenvironment leads to marked 
gradients in the rate of cell proliferation and to regions 
of hypoxia and acidity, all of which can influence the 
sensitivity of the tumor cells to drug treatment. Better 
understanding of how tumor microenvironment pro-
tects cancer cells, during and immediately after chemo- 
or radiotherapy is imperative to design new therapies 
aimed at targeting this tumor-protective niche [132,133]. 
The use of drug delivery systems can improve the 
pharmacological properties of traditional chemothera-
peutics by altering pharmacokinetics and biodistribu-
tion to overcome the harsh conditions of the tumor 
microenvironment. Moreover, the co-administration 
of chemotherapeutics and tumor-associated stromal-
depleting drugs helps to target the fibrous structure of 
the modified extracellular matrix, which can result in a 
less penetrable tumor microenvironment [134].

Another interesting approach considers therapies 
that interfere in the metabolic co-operation between 

cancer cells and stromal cells in their microenviron-
ment [135] or between intratumoral subpopulations. 
The study of the metabolic coupling between differ-
ent cellular populations as potential drug targets can be 
achieved by reconstructing an artificial tumor microen-
vironment by using GSMMs approach. To date several 
algorithms have been developed that integrate omic 
data into a GSMM reconstruction that permit to com-
pute the secretion and uptake rates of nutrients (Table 1) 
and hence study the complementary secretomes within 
a heterogeneous cellular community. However, test and 
validation of a metabolic model becomes more com-
plex if it considers a heterogeneous cellular population. 
Nevertheless, recent studies on artificial microbial eco-
systems have demonstrated the potential of this type 
of approach to study synergies in heterogeneous cellu-
lar communities [136] that could be extrapolated to the 
study of cancer to unveil the mechanisms underlying 
the cooperation between tumoral and stromal cells, as 
well as between intratumoral subpopulations.

The intratumoral microenvironment also confers an 
extreme flexibility and adaptation capability to cancer 
cells that enhances tumor progression and represents a 
challenge for target-directed therapies [137]. The intra-
tumoral heterogeneity is driven by two main processes: 
epithelial-to-mesenchymal transitions, by which epithe-
lial cells gain invasive properties and lose at least part of 
their epithelial phenotypes [138]; and mesenchymal-to-
epithelial transitions, by which mesenchymal cells can 
revert to an epithelial gene program displaying strong 
self-renewal and survival properties [138–140]. Drug tar-
gets that repress these processes have been proposed to 
significantly reduce tumoral progression.

Anti-angiogenic therapy has been proposed for a 
long time as an interesting approach to reduce tumor 
growth. Tumor blood vessels are surrounded by a very 
hostile environment, with a high amount of acidosis, 
low oxygen regions, weak pericyte–endothelial cell 
interaction, leading to its tortuous and leaky vessels 
with gaps that allow easy escape of invading tumor 
cells [141,142]. Additionally, restoring the blood vessels 
to a ‘normal’ state would get the tumor vessels back on 
track to its proper functional form, reducing hypoxia-
induced metastasis and improving the effects of che-
motherapy [143,144]. Also it is expected to reduce the 
spreading of cancer cells, because pericytes that are 
required to strengthen blood vessels would be acting 
more efficiently and hence prevent the intravasation of 
the cancer cells through the gaps found in the normally 
leaky tumor vessels.

Therapies based on both metastatic targets arresting 
cancer cells in a non-metastatic stage and angiogenic 
targets normalizing tumor vessels are promising 
strategies to design new anticancer therapies. Coupling 
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this strategy with associated key metabolic pathways 
is a good approach in cancer treatment and requires 
computational tools to identify the putative targets. 
Recently developed methods, such as the ‘metabolic 
transformation algorithm’ allows the identification 
of the actors involved in metabolic transformations 
[145]. This methodology identifies targets that alter the 
metabolism retrieving the cells back from a given met-
abolic state to another metabolic state (Figure 3D). This 
method has been successfully used to find drug targets 
that revert disrupted metabolism focused on aging. 
However, this approach could be suitable to determine 
drug targets arresting tumor in a non-metastatic stage, 
normalize tumor vessels or prevent tumor intravasa-
tion, resulting in a reduction of tumor progression. 
Additionally, GSMM predictions could be refined by 
integrating information from dynamic 13C FBA [146].

Moreover, combinatorial therapies, targeting 
angiogenesis and metastatic targets, have been pro-
posed as a way to enhance anticancer therapies [27]. 
Traditionally, these approaches has been focused on 

targeting signaling pathways, such as the VEGF inhi-
bition or VEGF receptors (R1/R2) blockade [147,148] 
and CXCR4 protein, which is involved in tumor col-
onization, or the cytokine PIGF, which prepares the 
metastatic niche in bone marrow for the cells invading 
from breast cancer [149]. However, studies on the meta-
bolic reprogramming in endothelial cells have opened 
new avenues to explore the combinatorial therapies of 
targeting both tumors and their angiogenesis, in the 
context of metabolism.

The approaches reviewed here provide a guideline to 
improve the anticancer drug-target therapies focused 
on metabolic reprogramming. However, the lack of a 
proper model depicting the complete map of metabolic 
reactions, regulatory processes as well as tumor hetero-
geneity and synergistic cooperation between cellular 

Key term

Combinatorial therapies: Strategy that takes profit 
of the synergistic effects of two therapeutic treatments 
targeting different processes of the cellular biology.

Executive summary

Background
•	 Nowadays, it is widely recognized that metabolic reprogramming is essential to sustain tumor progression. 

These changes are promoted by genetic and epigenetic alterations producing mutations in key metabolic 
enzymes that modify flux distributions in metabolic networks, providing advantages to cancer cells in terms of 
energy production and synthesis of biomolecules.

Crosstalk between oncogenic signaling events & cancer cell metabolism
•	 Many key oncogenic signaling pathways, such as HIF, Myc, PI3K/AKT/mTOR or SREBPs, converge to adapt 

tumor cell metabolism in order to support their growth and survival. They are intimately involved in 
modulating glycolysis, mitochondrial oxidative phosphorylation, lipid metabolism and glutaminolysis.

Tumor microenvironment
•	 The tumor microenvironment is complex and comprises the extracellular matrix, tumor and stromal cells (e.g., 

epithelial cells, fibroblasts and inflammatory cells) that are embedded within this matrix and nourished by 
vascular network. The tumor heterogeneity, signaling molecules and chemicals, such as oxygen and protons, 
can influence tumor cell proliferation, survival, invasion, metastasis and energy metabolism reprogramming.

Isoenzymes: therapeutic targets in cancer
•	 Isoforms of many of the enzymes specific to important metabolic pathways are found to be overexpressed 

in tumor cells affecting important pathways of the energetic metabolism. These isoforms have a key role 
in mediating the aberrant metabolism of cancer cells and could serve as a promising source of novel drug 
targets.

•	 These tumor-specific isoforms can be involved in important pathways, such as glycolysis, tricarboxylic acid 
cycle, pentose phosphate pathway and glutamine metabolism, among other important energetic pathways

Genome-scale metabolic models as new tools emerging from systems biology approach to drug 
discovery
•	 Genome-scale metabolic models are emerging as a potential solution to decipher the molecular mechanisms 

underlying cancer in the context of systems biology. These models represent the metabolic reactions encoded 
by an organism’s genome and summarize and codify information known about the metabolism of that 
organism.

•	 These models use constraint-based methods for the mathematical representation of biotransformations and 
metabolic processes occurring within the organism and offer an appropriate framework to integrate the 
increasing amount of ‘omic’ data generated by the different high-throughput technologies.

•	 Genome-scale metabolic models approaches have allowed to identify a number of tumor-specific biomarkers, 
anticancer drug-target and synthetic lethal genes opening a promising avenue in the development of new 
anticancer therapies.
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communities, makes selecting the best possible tar-
get combinations difficult. Thus, in order to develop 
more efficient anticancer therapies, more efforts need 
to be made in developing new methods to study tumor 
metabolism and obtain a better understanding of the 
molecular processes underlying tumor progression and 
invasion.
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