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Running title: Enzymatic reactions in crowded media 

 

Abstract  

We perform Monte Carlo simulations in three-dimensional (3D) lattice in order to 

study diffusion-controlled and mixed activation-diffusion reactions following an irreversible 

Michaelis-Menten scheme in crowded media. The simulation data reveal the rate coefficient 

dependence on time for diffusion-controlled bimolecular reactions developing in three-

dimensional media with obstacles, as predicted by fractal kinetics approach. For the cases of 

mixed activation-diffusion reactions, the fractality of the reaction decreases as the activation 

control increases. We propose a modified form of the Zipf-Mandelbrot equation to describe 

the time dependence of the rate coefficient, k t( ) = k0 1+ t τ( )−h
. This equation provides a 

good description of the fractal regime and it may be split into two terms: one that corresponds 

to the initial rate constant ( 0k ) and the other one correlated with the kinetics fractality. 

Additionally, the proposed equation contains and links two limit expressions corresponding to 

short and large periods of time: 01 kk = (for t<<τ) that relates to classical kinetics and the 

well-known Kopelman’s equation k ~ t
−h

 (for t>>τ) associated to fractal kinetics. The τ 

parameter has the meaning of a crossover time between these two limiting behaviours. The 

value of k0 is mainly dependent on the excluded volume and the enzyme-obstacle relative 

size. This dependence can be explained in terms of the radius of an average confined volume 

that every enzyme molecule feels, and correlates very well with the crossover length obtained 

in previous studies of enzyme diffusion in crowding media. 

 

Keywords: diffusion limited reactions; Michaelis-Menten mechanism; time dependent rate 

coefficient; fractal kinetics; macromolecular crowding; Monte Carlo simulations 
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1. Introduction 

Many functions of living cells involve complex biochemical reactions of which rates 

must be as fast as possible to allow a wide range of processes to take place. To study 

biochemical reactions one must take into account that cellular media are not homogenous but 

highly compartmented being characterized by a high total macromolecular content known as 

macromolecular crowding [1-3]. Macromolecular crowding influences the thermodynamics of 

the cell by volume exclusion effects [1-3]. It also affects the diffusion processes by reducing 

the diffusion coefficient of the macromolecules [4-20]. In this way, diffusive processes 

leading to the necessary encounter of reactants determine the rates of biochemical reactions. 

However, after the pioneering work of Laurent in 1971 [21], quite a few studies have 

explored the effects of crowding on enzyme catalysis, even in vitro [22-39]. 

 Schnell and Turner [40] excellently reviewed a few non-classical approaches 

regarding biochemical reactions developing in crowded media. They are mainly divided into 

deterministic approaches, particularly comprising fractal kinetic approaches [41-42] and 

kinetics based on fractional reaction orders [43-46], and stochastic ones [47]. However, there 

are mathematical connections between deterministic and stochastic models. The conversion 

between these models has been illustrated for large-scale genetic regulatory networks [48] 

and for Michaelis-Menten enzyme kinetics and stochastic focusing [49]. The deterministic 

models proved to be widely applied on the analysis of enzymatic reactions developing in 

crowded media. Among them, the fractal-like kinetics is the one considered in the present 

study. The fractal-like kinetics assumes that the rate coefficient describing diffusion 

controlled chemical reactions is time dependent, for large periods of time, taking the form 

[41-42]:  

k(t) = k0
‘ t−h   ;  0 ≤ h ≤ 1     (1)  
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This formalism brakes down for 0→t and 0>h  because in this situation k(t) → ∞ . 

A solution has been proposed by Schnell and Turner [40] and they consider a modified 

fractal-like kinetics with the rate coefficient following a temporal Zipf-Mandelbrot 

distribution:  

k t( ) =
k0

‘‘

τ + t( )h
  ;  0 ≤ h ≤ 1     (2) 

In both Eqs. 1 and 2, '
0k  and ''

0k  are constant even though not related to any rate 

constant as in classical kinetics and h, called the fractal parameter, depends on the topological 

dimensionality of the medium in which reaction occurs. The τ parameter in Eq. 2 is a positive 

constant and its physical meaning is the time after which the reaction “feels” the crowding 

effects [40]. 

Recently, Bajzer at al. [44-46] have proven that Schnell and Turner model applied on 

bimolecular reactions predicted an unlikely asymptotic concentration of the product. This 

approach is valid for diffusion-limited reactions and we used it in our investigation assuming 

that the corresponding time period of our simulations does not reach the asymptotic region. 

Moreover, for enzymatic reactions in crowded media, the diffusion-limited case is not the 

most usual one [16, 33, 38 and references quoted therein]. There are also cases of mixed 

activation-diffusion control, e.g. the reduction of Pyruvate by NADH catalyzed by Lactate 

Dehydrogenase induced by Dextrans [39]. For these last cases, the asymptotic concentration 

of the product is reached at longer periods of time than for diffusion-limited reaction cases 

and, thus, the time period used in simulations can be larger. 

 To perform in vivo experiments of biochemical reaction dynamics in crowded media 

is a difficult task, therefore computer simulation is an excellent alternative. There are 

numerous published papers with regard to simulations of diffusion processes [4-7, 10-12, 17, 

19-20] and chemical reactions in crowded media [40-47, 50-56]. Macromolecular crowding 
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can lead to anomalous diffusion more likely when low dimension environments are 

considered especially up to percolation threshold [41]. In such cases, diffusion is strongly 

influenced by crowders concentration, size and mobility. It has been illustrated that diffusion 

becomes more anomalous when higher concentration of obstacles is present but less 

anomalous for mobile and big obstacles [10-12, 14, 17-20]. Inside living cells, 

macromolecular crowding does not always reach the percolation limit. However, when large 

macromolecules diffuse inside the cell their movement is greatly impaired [8, 15]. 

Consequently, anomalous diffusion becomes perceptible and significant giving rise to rate-

limited chemical reactions [16]. 

Berry [52] studied a native Michaelis-Menten reaction scheme using a Monte Carlo 

simulation on two-dimensional lattice with cyclic boundary conditions. He used immobile 

obstacles varying their densities from zero to the percolation threshold. His study showed that 

the reaction kinetics was of fractal type as a result of low-dimensional media and 

macromolecular crowding. The kinetics fractal characteristics intensified with obstacles 

density and substrate concentration, the two contributions being mainly additive. 

Schnell and Turner [40] used Berry’s algorithm and implemented it in a two-

dimensional lattice with cyclic boundary conditions using the same parameters [52]. Apart 

from confirming the clear decay of the rate coefficient k1 over time, they also revealed that the 

rate coefficient behaviour at 0t →  was better described by the Zipf-Mandelbrot distribution 

than the Kopelman’s law. They extended the simulation to a three-dimensional lattice without 

obstacles for which case the rate coefficient did not show an apparent dependence on time, 

being thus in accordance with classical kinetics.  

Isvoran and co-workers [57] analysed several computational aspects of the 

implementation of Berry’s algorithm in two-dimensional media with obstacles. Particularly, 

different initial distributions of obstacles and reactants molecules were considered and also 
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the effect brought by eight nearest neighbours of every particle in the lattice instead of four. 

Moreover, Isvoran and co-workers [58] compared different equations proposed in the 

literature in order to describe the rate coefficient time dependence. 

Agrawal and co-workers [59] studied the effect of macromolecular crowding on 

Michaelis-Menten enzymatic reaction occurring in 2D media. They used a Monte Carlo 

algorithm based on substrate molecules random walk in a percolation cluster. The substrate 

diffusion length and the reaction rate decrease as the fractional volume occupancy of the 

crowding agent increases.  

Intracellular structures have been explicitly modelled using immobile/mobile 

obstacles in 2D environments for the first time by Grima and Schnell [55]. They compared 

different geometries of the simulation grid with an off-lattice Brownian Dynamics, revealing 

qualitative and quantitative differences as the obstacle concentration increased. Moreover, 

Grima [56] extended the off-lattice simulation study to the case of activation control in 

crowded media, showing that crowding induces a reduction of the noise of intracellular 

biochemical reactions. Recently, Klann and coworkers [60] have developed an off-lattice 

continuous space simulation method, in which all sub-cellular structures are modelled 

explicitly as static obstacles. They noticed a reduced reaction rate in presence of obstacles. 

They also identified some factors causing the diminution of the reaction rate: the reduced 

mobility of the reactants and molecular crowding determining a reduced accessibility of the 

molecules. 

 Moreover, there are some computational and theoretical papers emphasising the effect 

of diffusion on enzyme kinetics in cellular environment [61-65 and references therein]. These 

studies provide several expressions concerning the time-dependence of reactants diffusion 

coefficients and the effects of the excluded volume resulting in time-dependent rate 

coefficients.  
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 In recent years, the effects of crowding on enzyme catalysis have been explored by 

different experimental works, excellently depicted by Zhou et al [16] and Noris and Malys 

[30]. Some of the studies present distinct effects produced by various crowding agents on the 

enzymes kinetics [26, 33, 38-39, 66]. These effects are given by different experimental 

conditions considering the type, shape, size and excluded volume of the used crowders. 

Anyway, most of the investigations indicate that the effect of excluded volume due to the 

presence of crowding agent is the major player in modulating enzymatic behavior. 

However, the dependence of the kinetic parameters of a typical Michaelis-Menten 

enzymatic mechanism on the enzyme-crowder relative size and their particular shape is not 

yet well understood. 

 As a result, the present study aims at extending Berry’s algorithm in order to examine 

a more nature-like environment, namely to analyse an irreversible Michaelis-Menten 

enzymatic reaction progressing in 3D crowded media, not only for diffusion-limited reaction 

cases but also for mixed activation-diffusion control ones. In detail, the work attempts to 

express the time-dependence of the bimolecular rate coefficients in terms of excluded volume 

and enzyme-obstacle relative size. A modified form of Zipf-Mandelbrot equation, previously 

proposed by our research team [67], is used to describe the time dependence of the rate 

coefficient
 k t( ) = k0 1+ t τ( )

−h
. Recently, this kind of equation has also been taken into 

account by Bajzer and co-workers [46]. They also generalize different approximations used in 

the literature in order to understand which kind of formalism better describes the biochemical 

reactions in crowded environment, and used them in an experimental study to test different 

models for reaction kinetics in intracellular environments [46]. 
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2. Theoretical background 

We apply the fractal kinetics approach on the irreversible Michaelis-Menten 

mechanism of enzymatic reactions. It considers the following reactions 

E + S  ⇔
k−1

k1

  C  →
k2

  E + P    (3) 

where E is the enzyme, S the substrate, C the enzyme-substrate complex, P the product and ki 

are the rate constants. 

The fractal kinetics considers that second order reactions are described by time 

dependent rate coefficients. In the Michaelis-Menten mechanism only the first reaction 

E + S  ⇒
k1

  C   is a reaction of a second order, so only k1 depends on time in crowded media 

[41]. 

The Zip-Mandelbrot Eq. 2 proposed by Schnell and Turner [40] has been shown to 

describe well enough the temporal dependence of k1. However, for 0→t  the equation 

becomes k(t) → k0
‘‘τ −hwhere ''

0k  does not correspond to the rate constant described by 

classical kinetics, neither by dimensionality nor by being independent of the reaction 

environment.  Therefore, we proposed a modification of Eq. 2 [67] and write it as 

  k t( ) = ko 1+
t

τ







−h

      (4) 

where τ > 0  and h>0.  Now, for 0t →  we obtain  

0
0

)(lim ktk
t

=
→

       (5) 

which corresponds to the initial rate constant of the bimolecular reaction which is time 

independent as in classical kinetics. In addition, for t >> τ  we may neglect the number 1 in 

Eq. 4 and it becomes 

lim
t>>τ

k(t) = k0τ
h
t

−h = k0
‘
t

−h ⇒ k0
‘ = k0τ

h     (6) 
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being similar with Kopelman’s equation [41-42] and having the same problem of 

dimensionality of the '
0k  parameter, which does not correspond to the rate constant in 

classical kinetics. 

 However, a mathematical description in terms of macromolecular crowding of the two 

limiting situations of Eq. 4 is necessary. On the one hand, we need to generalize the well-

known solution of Smoluchowski equation for the rate constant of bimolecular reactions in 

3D homogeneous media in infinite dilute conditions [68]  

kd

∞ = 4πNA DESrmin      (7) 

for diffusion-limited reactions taking place in crowded media. In this equation DES
 refers to 

the relative diffusion coefficient between the E and S reactant molecules ( DES = DE + DS
) and 

minr is the distance of maximum approach between the reactant molecules, considered as 

spherical particles, for a reactive collision ( rmin = rE + rS
). We suppose that macromolecular 

crowding is seen as a division of the system in small volumes surrounded by big obstacles. 

This is due to the fact that the free volume of the reaction media, ( )φ−1V , is lower than the 

total volume, V, because of the excluded volume, φ , caused by the crowding 

macromolecules. The shape and number of these divisions should depend on the density, size 

and way of distribution of the obstacles. For each division it is possible to consider an average 

volume, which is a decreasing function of the excluded volume, φ . Then, if we consider 
cvr  

the radius of this average small volume (confined volume), the stationary profile of substrate 

S molecules towards one of enzyme E molecule (described by the Laplace equation in 

spherical coordinates; ∇2
cS r( ) =

d
2
cs

dr2
+

2

r

dcs

dr
= 0 ) is limited by the distance of maximum 

approach ( minr ), where the substrate concentration vanishes, and the radius of the confined 

volume (
cvr ), where the substrate concentration has the average effective value within the 
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confined volume, c
S

eff . In these conditions, it is straightforward to integrate the Laplace 

equation for substrate concentration, to obtain the stationary profile of the substrate [68]: 

cS r( ) = cS

eff rcv

rcv − rmin

 

 
 

 

 
  1−

rmin

r

 
 

 
 

    (8) 

Now, the total diffusion flux of substrate S molecules at maximum approach distance, 

minr , for every enzyme E molecule, is 

Jdif ,total rmin( ) = −4π  rmin
2 NADES

∂cS

∂r









r=rmin

= 4π  rminNADEScS

eff rcv

rcv − rmin










 

(9) 

Then, the rate of the bimolecular reaction that takes place in any confined volume, can 

be put in terms of the total diffusion flux of substrate S molecules 

Jreaction = kdcE

eff
cS

eff = Jdif ,total rmin( )cE

eff    (10) 

where cE

eff  is the average effective concentration of the enzyme E molecules within the 

confined volume. 

Thus, combining Eqs. (9) and (10), it is straightforward to obtain a relationship 

between the diffusion-limited rate constant, 
d

k , and the radius of the confined volume 

kd = 4π  rminNADES

r
cv

rcv − rmin







= kd

∞ r
cv

rcv − rmin







    (11) 

We may notice from Eq. 11 that the diffusion-limited rate constant, 
d

k , increases as the radius 

of the confined volume, 
cv

r , decreases. As a result, the 0k  parameter in Eq. 4 can be 

interpreted as the diffusion-limited rate constant, 
d

k , which describes the reaction at initial 

times when it takes place within a confined volume, as being in an homogenous medium: 

k0 ≡ kd = kd

∞ r
cv

rcv − rmin







= kd

∞
f rcv( )      (12) 

 However, the dependence of the confined volume radius (
cv

r ) on crowding conditions 

is not easy to be expressed in this simplified mean-field approximation. Previous studies of 
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enzyme diffusion in crowding media [19] show that there are a crossover length, 

r* ≡ τ * DE

* , that represents the minimum displacement distance from which the diffusion of 

enzymes becomes normal, before a period of time, τ *, that is anomalous, and achieve a 

constant diffusion coefficient, DE

* , lower than its value at infinite dilution, D
E
. This crossover 

length depends on both the exclude volume and the size of the obstacle. However, it is not 

easy to obtain a simple mathematical function for it. 

In order to work with dimensionless parameters, we use a dimensionless length for the 

sites of the simulation lattice, associated to the mean free path covered by one substrate 

molecule, λ , in a Monte Carlo time step, ˜ t . This two parameters can be related using the 

Einstein-Smoluchowski equation in 3D: λ 2 = 6DS
�t . Therefore the time-dependent rate 

coefficient, k t( ), and the rate constants, k0  and kd , have dimensionless values dependent on 

the dimensionless rate constant of bimolecular reactions in 3D homogeneous media in infinite 

dilute conditions, Eq. 7: 

   �k
d

∞ =
2πrminD

ES

3λD
S

      (13) 

The later depends on the size and diffusion coefficient of the substrate and enzyme molecules 

considered in infinite dilute conditions. 

Then, from the dimensionless version of initial rate constant of the modified Zipf-

Mandelbrot, defined in Eq. 4 and given by Eq. 12, the dependence on the confined volume, 

f rcv( ) defined in Eq. 12, is obtained as the ratio between the initial rate constant of the 

modified Zipf-Mandelbrot equation and the rate constant of bimolecular reaction of enzyme-

substrate in 3D homogeneous media  

k0

k0
∞

=
�k0

�k0
∞

= f rcv( ) =
r
cv

rcv − rmin







    (14) 

which depends on the excluded volume and enzyme-obstacle relative size. 
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In order to simplify the notation, in the following sections we will not use the “˜” sign 

for the dimensionless parameters. 

3. Methodology 

3.1 Simulation algorithm 

 The Michaelis-Menten enzymatic reaction in 3D obstructed media was modelled as a 

reactive process among particles moving in a 200x200x200 three-dimensional lattice with 

cyclic boundary conditions. The obstacles (O) are randomly distributed and their density is 

under the percolation threshold. Several test simulations performed for different lattice sizes 

yielded the same results (data not shown here). The simulation algorithm is an extension of 

the algorithm developed by Berry [52].  

 According to Michaelis-Menten scheme (Eq. 3) in presence of crowding agents, there 

are five different types of molecules distributed in the lattice: substrate (S), enzyme (E), 

complex (C), product (P) and obstacle (O). The S, E, C and P molecules can move through 

the lattice performing a random walk. The obstacle particles (O) are non-reactive species and 

are kept fixed during the simulation. 

 We consider excluded volume interactions (hard-sphere repulsions) among diffusing 

particles, so any site in the lattice may not be occupied by two particles at the same time, 

excepting the S and P particles, which are allowed to share the same lattice site. During the 

simulation process there are lattice sites that are occupied by one or several S molecules 

and/or one or several P molecules. In fact we are considering S and P molecules being smaller 

than a lattice site. Every C and E particle is considered to occupy a single lattice site. In 

contrast, to account for the usual greater size of the crowding molecules and to analyse the 

effect of the relative crowder size in the diffusion-reaction process, four different obstacles 

sizes have been considered (see Fig. 1 of Ref. 19): 1 site, 27 sites (a 3x3x3 site cube), 81 sites 

(a cube of 5x5x5 sites with edge and vertex sites removed to obtain a quasi-spherical shape) 
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and 179 sites (a cube of 7x7x7 sites with edge and vertex sites removed). We use the notation 

5x5x5 R and 7x7x7 R (where R stands for rounded) to refer to the last two obstacle sizes. As 

every obstacle occupies many sites within the lattice, in our calculations we distinguish the 

density of sites occupied by obstacles, [O]sites from the concentration of obstacle particles, 

[O]. We will refer to the density of sites occupied by obstacles, [O]sites, as the excluded 

volume due to the obstacle presence (φ). Four values for the obstacle excluded volume have 

been considered: 0.1, 0.2, 0.3 and 0.4. 

 The rate constants k1, k-1 and k2 are modelled by the reaction probabilities f, r and g, 

respectively. We have considered f=1, r=0.02 and g=0.04 for diffusion-limited reaction case, 

similarly with previous simulations presented in the literature [40,52], and f=0.75, 0.50, 0.25 

for mixed activation-diffusion control case. In order to estimate the values of these parameters 

with biophysical importance, we can assume that the mean free path of a typical enzyme, with 

R
g =(2-4) nm and DE = 2 × 10-10 m2 s–1 [69], is λ  = 5 nm. Additionally, taking into account 

the relationship between dimensionless and dimensional rate constants explained in Sec. 2, it 

is possible to obtain the ratio between dimensionless and dimensional k2 k1  in terms of N
A
λ 3 . 

Then, for a typical enzymatic reaction [33], with k1 ≈ k2 KM  = (1-3) × 105 M–1 s–1, being 

K
M

≡ k2 + k–1( ) k1  the Michaelis constant, k2  = 2 × 102 s–1, and k–1 ≤ k2 , we obtain k2 k1  = 

(0.02-0.05), which are of the same order as the above considered probabilities. The value of 

k1  lies in the region of diffusion-limited reaction of the proposed spectrum of protein-protein 

association rate constant [69-70]. Its value is also in agreement with the statistical study of 

Bar-Even et al. [71] regarding kinetic parameters of the majority of enzymes, which are 

below the diffusion-limited rate of a typical bimolecular reaction taking place between low-

molecular mass reactants, in diluted solutions [68, 71]. 
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 The rules for the movement and reaction depend on the type of molecule. One molecule 

is chosen randomly to move or react according to the following rules: 

 - if the selected molecule is S, a destination site is chosen randomly within the 6 

neighbouring positions; if this site is empty or occupied with S or P, the molecule moves to 

the new position; if it is occupied by C or O, the molecule rests in the old position; if it is 

occupied by E, a reaction occurs according to the f probability. In that case the destination 

molecule is replaced by C and the S molecule is removed. 

 - if the selected molecule is E, first the probability of its movement is checked. If the 

motion is accepted, a random direction is picked and all neighbouring sites are analysed. If 

one of these sites contains an S the reaction occurs according to the f probability. Thus, E is 

replaced by C preserving the same position, and S is removed. On the contrary, when the sites 

are empty the displacement of E is performed. The displacement will be impeded only by the 

presence of any other particle instead S.  

 - if the selected molecule is C, a site among its neighbour empty sites is randomly 

chosen. If this C has not empty neighbours, we choose randomly another C [57]. According to 

the r and g probabilities, the molecule C reacts to give E and S or E and P. If C does not react, 

the probability motion is checked. When accepted, a random direction is picked and all 

neighbouring sites are analysed. The displacement will take place only if not impeded by 

another molecule.  

 - if the selected molecule is P, a destination site is chosen randomly within the 6 

neighbouring positions; if this site is empty or occupied with S or P, the molecule moves to 

the new position; if it is occupied by E, C or O, the molecule rests in the old position. 

 A time step t is defined as the repetition of this Monte Carlo sequence for Ntot(t) times, 

where Ntot(t) is the total number of mobile molecules in the lattice at the time t. Each 

simulation run has 1000 time steps. The computed values of the reactants concentrations and 
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of the rate coefficients are averaged over 200 to 500 independent runs. For all our calculations 

the time is expressed in simulation time units and the concentrations of the reactants are 

expressed as ratios between the number of particles and the number of all lattice sites, being 

thus coincident with their densities. In our model, the crowding is produced only by the big 

molecules (O) and can be evaluated considering the excluded volume, φ . It is calculated as 

the product between the particle concentration, its size (expressed in number of occupied 

sites) and the lattice dimension.  

In order to analyse the effects of obstacle concentration and size, we have considered in 

our simulations a constant initial concentration of reactants (enzyme, [E]=0.0002 and 

substrate, [S]=0.01), and four distinct obstacles concentrations for each of their size to reach 

the same excluded volume, ϕ = 0.1, 0.2, 03, 0.4.  

3.2 Fitting procedure 

After the previously described simulations are run we obtain the values of the rate 

constants k1, k-1 and k2 over time, this procedure being explained elsewhere [40, 52, 57]. In 

order to test if the proposed Eq. 4 is valid to describe the temporal dependence of k1 and 

further to determine the values of the equation parameters, we plot k1 versus time and perform 

the fitting. To be as accurate as possible, the fitting is done after the curves are adjusted by 

excluding the points corresponding to the initial steps in which the reaction is very fast 

because the substrate concentration has not achieved yet a stationary profile (a necessary 

condition required to obtain the well-known diffusion-limited rate constant given by Eq. 7). 

We use the Levenberg-Marquardt non-linear fitting procedure with our Eq. 4 under the Origin 

8.5 software package (OriginPro, OriginLab Corp.). The fitting is performed until the chi-

squared ( χ 2) test values cannot be minimized anymore. 

 

4. Results and discussions  
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4.1 Diffusion-limited reactions 

First, we study the case of diffusion-limited reactions, f = 1. The simulation data 

represent the values of the rate coefficients k1, k-1 and k2 over time and the concentrations of 

every type of molecule implicated in the reaction for each time step. The rate constants k-1 and 

k2 do not correspond to diffusion controlled reactions, they are constant and the linear fitting 

of the corresponding data yielded the imposed probabilities, 02.01 =−k and 04.02 =k  

(Fig.1a). Of the most interest for our study are the curves of k1 versus time. The general shape 

of the curves can be seen in Fig.1a, which shows the case of [S] = 0.02, [E] = 0.0001 and φ  = 

0.3 for obstacles of size 5x5x5 R. The curve presents a sharp decrease at the beginning 

followed by a gradual decrease in time, underlining the fractal type of kinetics. As mentioned 

above, the initial steps correspond to a rapid reaction taking place before the achievement of 

the stationary profile of the substrate molecules, favoured by a homogeneous distribution of 

the reactants due to the random arrangement of the molecules at the beginning of the 

simulation. Due to crowding, diffusion is impeded and thus the collisions between reactants 

are diminished, reflected by the decrease of k1 versus time. Fig. 1b shows the dependence of 

log(k1) on time for the case without obstacles. It has a constant behaviour, as expected, with a 

lower value that that obtained in presence of obstacles. 

The time dependence of reactant and product concentration is shown in Fig. 2, for the 

case of [S] = 0.02, [E] = 0.0001 and φ  = 0.4 for obstacles of size 3x3x3. It can be noticed that 

enzyme, E, and complex, C, concentrations show a sharp variation at initial times and then 

follow a monotonic one. This is determined by the reactions occurring at the beginning of the 

simulation when all molecules are randomly distributed. Then, the reactions follow without 

achieving a stationary state, until they stop due to consumption of substrate molecules. 

Additionally, it is worth mentioning here the log-log plot of k1 versus time that allows us to 

see the reaction process from another point of view (Fig. 3). There are four regions within this 
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plot. The first decreasing part, very steep, corresponds to the initial steps of the rapid reaction 

previously discussed. The second one is a plateau in which k1 is almost constant in time as it 

happens in classical kinetics. Therefore, we can interpret that the Michaelis-Menten reaction 

shows a classical behaviour during this time interval. The third and the fourth regions of the 

plot are characteristic to the fractal kinetics with the last one corresponding to a linear 

decrease of log(k1) versus log(t) as described by the limiting behaviour expressed in Eq. 6.  

It should be noted here that the proposed Eq. 4 not only describes the two limit linear 

regions of the plot but also the transition curve between them. This is to say, that this equation 

contains and links two limit expressions: 01 kk = (for t<<τ) and k = k0
‘ ⋅ t−h (for t>>τ). The log-

log plot allows the determination of the crossover time value, τ, which corresponds to the 

passage from one limiting expression to another. It may also be estimated as the time value 

related to the intersection of the two linear fittings of the linear regions (see Fig. 3). 

 In order to assign an interpretation to this temporal dependence of k1 the proposed Eq. 

4 has been used as the fitting function. Within a plot, considering all data points, the fitting 

has not brought a good representation. Therefore, the curves have been adjusted in such a way 

to remove the data corresponding to the initial steps (see the fitted curve in Fig. 4). To be able 

to identify that particular point we have considered the graph that gives the complex 

concentration of each case versus time. The curve presents a maximum, reached shortly after 

the simulation starts, which might be seen as the end of these initial steps (Fig. 4).  

As a result, we have chosen the time corresponding to this maximum value of the 

complex concentration as the initial time for the fitting procedure. After the fitting, we have 

retrieved the values of k0, h and τ parameters of Eq. 4 for all the investigated cases, as 

presented in Table 1, which also shows χ 2for the goodness of the fit. To study the influence 

of crowding and obstacles size on the temporal dependence of k1, we have analysed the way 

in which these factors influence the values of k0, h and τ parameters (see Table 1).  
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The physical meaning of the parameters of Eq. 4 helps in understanding the non-

classical kinetic behaviour of the system. The k0 parameter is the rate constant associated to 

the diffusion limited reaction at short periods of time when the reaction occurs in a confined 

volume. The h parameter has the same meaning as that given by Kopelman [6], a fractal 

parameter that reflects two aspects: the fractality of the media and the spectral dimension of 

the random walk of the particles in that medium. The τ parameter might be regarded not as 

the time after the reaction “feels” the crowding effects [40] but as the crossover time between 

two particular regimes that system goes through, the classical one in which k1 is constant and 

the fractal one that follows Kopelman’s equation, Eq. 1.  

 Figure 5 shows the variation of rate coefficient, k1, for different obstacles sizes for the 

same excluded volume, φ  = 0.4. The k0 values retrieved from the curves (Table 1) increase 

along with the obstacle size. This variation might be interpreted in terms of the finite volume 

where the reactants are confined. In crowded media the reactants are initially confined in a 

small volume and the rate constant increases as the confined volume decreases according to 

Eq. 14.  

 Figures 6 and 7 comparatively present the k1 time dependence for the same excluded 

volume in the presence of different obstacles size. The obtained k0 values (Table 1) present 

distinct variations. In the case in which the smallest obstacles are present, the k0 value 

decreases for higher excluded volumes. On the contrary, for cases with bigger obstacles, k0 

value rises along with the excluded volume. This result is expected as the confined volume 

diminishes, being consistent with Eq. 14 predictions. 

 In order to explain the reaction rate dependence on obstacle size for the same excluded 

volume and the dependence distinct behaviour on the excluded volume for cases with small 

and big obstacles, respectively, we focus on the confined volume meaning. Previous 

simulations of enzyme diffusion in crowded media [19] present that the crossover length, 
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r* ≡ τ * DE

* , has a similar behaviour. The crossover length values computed in our study are 

shown in Table 2.  It can be seen that for all cases with obstacles bigger than 1x1x1 size, the 

crossover length becomes smaller as the exclude volume rises, yielding a decreased confined 

volume and an increased value of the initial rate constant, k0. The opposite behaviour for the 

case of 1x1x1 obstacles size is probably due to a greater proportion of obstacle cluster [9]. 

Moreover, for the same excluded volume, the crossover length becomes higher for bigger 

obstacles explaining the rise of k0 value. The behaviour of both rate coefficient and crossover 

length illustrate that the enzyme-obstacle relative size is a very important factor for in vivo 

enzymatic reactions. Moreover, a small substrate-enzyme relative size against the obstacles 

favours a higher initial rate. 

 Regarding the crossover time, τ , it links with the crossover length because it relates 

to the time that reactants (E and S) are present in confined volumes and need to further diffuse 

to continuous confined volumes. Table 1 presents the obtained values of this crossover time, 

but with higher errors than the other parameters, due to a less precise way to determine it. 

This crossover time decreases, for the same excluded volume, if the obstacle size grows. 

Thus, this parameter becomes important when quantifying the initial period of time in which 

the enzymatic reaction is enhanced and acts as in dilute solution. 

The interpretation of τ parameter comes out from the log-log plots of k1 versus time. 

The equation that we have proposed provides a good description of the fractal regime and, 

additionally, it contains and links two limit expressions corresponding to short and large 

periods of time: 01 kk = (for t<<τ) and k1 = k
o

' t−h (for t>>τ). This ensures the meaning of a 

crossover time for τ. The τ values drop sharply for higher exclude volume reflecting in this 

way that the transition from classical to fractal regime, described by Kopelman’s equation, 

occurs at shorter periods of time. 
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Concerning the h parameter, we note that its values are small (Table 1), probably due 

to the fact that anomalous diffusion is imperceptible in the studied cases and also that the 

reaction occurs in a 3D media. The h values increase with the obstacle concentration, being 

thus in agreement with the fact that it represents the media fractality. This fact is also seen in 

Figs. 5 to 7 in which the fractal regions slopes change with obstacle concentration. These 

regions are described by Kopelman’s Eq. 1 that in log-log representation gives h as the slope 

of the lines. Moreover, the values obtained for this parameter do not depend on obstacle size 

but only on the exclude volume. This behaviour does not correlate with the variation of 

anomalous diffusion exponent, α,  obtained in our previous simulation of enzymes diffusion 

[20]. 

It is important to mention that the estimation of the parameters of Eq. 4 (k0, τ  and h) 

is susceptible to be influenced by the limits brought by the usage of a 3D squared lattice. The 

reduced anisotropy of the considered grid may lead to minor changes of the parameters values 

as revealed by Grima and Schnell [55] when comparing the results obtained from on- and off-

lattice 2D simulations. 

Depending on the temporal scale, the macromolecular crowding may have positive or 

negative effects on the reaction kinetics. For short periods of time, macromolecular crowding 

stimulates reaction because the reactants are confined and they need to explore a small 

volume in order to meet each other and react. For large periods of time (and at long 

distances), the decrease of the reactants diffusion coefficients diminishes the rate of collisions 

between them and thus it decreases the value of the rate coefficient. 

4.2 Mixed activation-diffusion reactions 

In this section, we study the case of mixed activation-diffusion reactions, f = 0,75; 0,5; 

0,25. We chose the case of maximum value of the excluded volume below the percolation 

threshold, φ  = 0.4. The fitting values of the parameters of Eq. 4 (k0, τ  and h) are shown in 
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Table 3. The results obtained gives that the rate constant, k0, diminishes as the probability of 

reaction, f, as expected, because the reaction passes from a diffusion-limited to a mixed 

activation-diffusion control as happens in classic kinetics for bimolecular reactions [68]. The 

fractality, h, also diminishes, due to the fact that it is associated to the obstructed diffusion 

process in crowded media. Finally, the crossover time, τ , also decreases until have a 

negligible value, which is normal because in the mixed activation-diffusion control the time 

that the substrate and enzyme need to react is not important in order to react. This behaviour 

is observed in the high errors found for the fitted crossover time to Eq. 4. Alternatively, the 

crossover time, τ , can be obtained if we only fit the values of k1 for long periods of time 

(t>>τ), so the third region in Fig. 3, with Kopelman’s equation (6). We obtain the values of h 

and k
o

‘  parameters and we may estimate the crossover time using the relationship given in Eq. 

6, τ = k0
‘

k0( )
1

h . The values of τ  are shown in Table 4 with the fitted values to Kopelman’s 

equation, for cases of the highest excluded volume, φ  = 0.4, considered here, and for obstacle 

size of 3x3x3. Now, the standard errors for τ  diminish, but they are large enough, indicating 

that the time dependence of rate constant for bimolecular reactions in crowded media 

decreases as the mixed activation-diffusion control increases, until to not have sense. This 

could means that in the cases of activation control, the crowding only affects to the value of 

bimolecular rate constants, probably due to different surroundings seen by the substrate and 

enzyme molecules when react, and also for possible conformation changes of the enzyme 

[16]. 
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Table 1. The values of k0, h and τ dimensionless parameters for all the cases under study with 

f = 1. 

 

Obstacle 

size 

φ k0 τ  h χ 2  

1x1x1 

0.1 1.49±0.01 64±37 0.0072±0.0002 2.558 

0.2 1.42±0.01 43±26 0.0087±0.0002 2.243 

0.3 1.33±0.01 24±18 0.0111±0.0002 1.964 

0.4 1.21±0.02 12±10 0.0174±0.0002 1.555 

3x3x3 

0.1 1.62±0.01 36±31 0.0071±0.0002 3.068 

0.2 1.70±0.01 57±29 0.0088±0.0002 3.300 

0.3 1.81±0.02 17±17 0.0110±0.0002 3.727 

0.4 1.88±0.01 34±15 0.0144±0.0002 3.869 

5x5x5 R 

0.1 1.65±0.01 24±29 0.0069±0.0002 3.162 

0.2 1.74±0.01 56±29 0.0087±0.0002 3.577 

0.3 1.87±0.01 21±18 0.0109±0.0002 4.009 

0.4 1.97±0.01 39±16 0.0142±0.0002 4.455 

7x7x7 R 

0.1 1.66±0.01 27±30 0.0069±0.0002 3.208 

0.2 1.79±0.01 31±25 0.0086±0.0002 3.766 

0.3 1.93±0.01 29±19 0.0108±0.0002 4.288 

0.4 2.08±0.01 36±16 0.0141±0.0002 4.947 
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Table 2. The values of dimensionless k0 and τ in comparison with crossover length, r*, for 

all the cases under study with f = 1 

 

Obstacle 

size 

φ  k0 r* 

1x1x1 

0.1 1.49±0.01 5.09 

0.2 1.42±0.01 5.53 

0.3 1.33±0.01 6.04 

0.4 1.21±0.02 6.31 

3x3x3 

0.1 1.62±0.01 9.19 

0.2 1.70±0.01 8.62 

0.3 1.81±0.02 8.57 

0.4 1.88±0.01 8.34 

5x5x5 R 

0.1 1.65±0.01 12.27 

0.2 1.74±0.01 10.96 

0.3 1.87±0.01 9.72 

0.4 1.97±0.01 8.91 

7x7x7 R 

0.1 1.66±0.01 14.95 

0.2 1.79±0.01 13.54 

0.3 1.93±0.01 12.31 

0.4 2.08±0.01 10.81 
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Table 3. The values of k0, h and τ dimensionless parameters for cases with exclude volume ϕ 

= 0.4 and different values of f 

 

Obstacle 

size 
f k0 τ  h χ 2  

1x1x1 

1 1.21±0.02 12±10 0.0174±0.0002 1.554 

0.75 1.0±0.2  2±31  0.0113±0.0004  4.640 

0.5 0.7±0.2   2±52 0.0075±0.0004 2.972 

0.25 - - - - 

3x3x3 

1 1.88±0.01 34±15 0.0144±0.0002 3.869 

0.75 1.5±0.3  1±39  0.0085±0.0004  10.084 

0.5 1.1±0.2  2±63 0.0053±0.0004 5.666 

0.25  0.61±1.4  0.1±127 0.0018±0.0004 2.353 

5x5x5 R 

1 1.97±0.01 39±16 0.0142±0.0002 4.455 

0.75 1.6±0.2  3±43 0.0081±0.0004 11.312 

0.5 1.2±0.2  2±75 0.0045±0.0004 6.031 

0.25 0.6±0.5  0.4±184 0.0017±0.004 2.435 

7x7x7 R 

1 2.08±0.01 36±16 0.0141±0.0002 4.947 

0.75 1.7±0.2  3±43 0.0079±0.0004 12.668 

0.5 1.2±0.2  3±76 0.0047±0.0004 6.787 

0.25 - - - - 
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Table 4. The values of k0
' , h and τ dimensionless parameters obtained from Kopelman 

equation (6) for cases with exclude volume ϕ = 0.4 and obstacle size 3x3x3 for different 

values of f 

 

Obstacle 

size 
f k0

'  h τ = k0
‘ k0( )

1
h  χ 2

 

3x3x3 

1 1.977±0.003 0.0144±0.0002 34±74 3.719 

0.75 1.545±0.005  0.0079±0.0004  0.7±22 9.542 

0.5 1.105±0.004 0.0042±0.0004 0.2±16 5.310 

0.25 0.601±0.002 0.0006±0.0005 (10–9-10–6) 2.191 
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Figure captions 

Fig. 1 

(a) Time dependence of k1 and constant values of k-1 and k2 for the case with 3x3x3 obstacles 

and an excluded volume of 0.4; (b) Comparison of time dependence of log(k1) versus log(t) 

between the case of obstacles given in (a) and the case without obstacles. 

Fig. 2 

Time evolution of the substrate, product, enzyme and complex concentrations for the case 

with 3x3x3 obstacles and an excluded volume of 0.4 

Fig. 3 

The log(k1) versus log(t) plot for the case with 3x3x3 obstacles and an excluded volume of 0.4  

Fig. 4 

Indication of the fitting starting points for the time dependence curves of k1 and complex 

concentration for the case with 3x3x3 obstacles and an excluded volume of 0.4. Fitted curve 

of k1 is plotted in continuos line. 

Fig. 5 

The log-log plots of k1 versus time for the four considered obstacle sizes and the excluded 

volume of 0.4 

Fig. 6 

The log-log plots of k1 versus time for all considered values of excluded volume when the 

obstacle size is 1x1x1. 

Fig. 7 

The log-log plots of k1 versus time for all considered values of excluded volume when the 

obstacle size is 7x7x7 R. 
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Fig. 1a 

 

Fig. 1b 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Highlights of the paper “Monte Carlo simulations of enzymatic reactions in crowded media. 

Effect of the enzyme-obstacle relative size” 

 

• The study reveals a fractal kinetics of enzymatic reactions in 3D crowded media 

•  A modified equation is proposed to describe the fractal kinetics 

• The parameters of proposed equation are interpreted 

• The dependence of kinetics fractality on the excluded volume is explained 

• Kinetics fractality dependence on reactants-obstacles relative size in also provided 

  

 
 

 

 




