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Dept. d’Estad́ıstica i I.O., Universitat Politècnica de Catalunya, Barcelona, Spain. E-mail:
pedro.delicado@upc.edu

A. Esteve
CEEISCAT-ASPCAT, Badalona, Spain. E-mail: aesteve@iconcologia.net

J. Fortiana
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1 Introduction

Statistical techniques that are based on distances or similarities between sam-
ple units enjoy a long and ample tradition. Among them, cluster analysis (see,
for instance, Everitt et al. 2011) and multidimensional scaling (MDS; see, for
instance, Borg and Groenen 2005), are used extensively. MDS is a multivariate
dimensionality reduction technique valid when the information about data is
given by an inter-individual distances matrix. MDS represents in this case an
alternative to principal component analysis (PCA, which requires a standard
data matrix instead of a distances matrix).

Based on the metric version of MDS, Cuadras (1989) introduced the distan-
ce-based linear model (DB-LM), later extended by Cuadras and Arenas (1990)
and Cuadras et al. (1996). They assume that for a set of individuals an inter-
individual distances matrix is available, as well as the value of a continuous
response variable for each individual. The main idea of DB-LM is to use the
principal co-ordinates (the output of the metric MDS applied to the inter-
individual distances matrix) as explanatory variables in a linear regression
model. See Subsection 2.1 for more details on DB-LM. See also the interesting
recent work of Faraway (2014b) which considers the case of response variable
is also given as a distances matrix.

The usefulness of distance-based statistical methods (as MDS or DB-LM,
for instance) comes from the fact that situations often arise where the only
possibility of knowing relations between statistical units is to compute a dis-
tance matrix between them (then neither PCA or standard LM, for instance,
are feasible). Let us mention some examples of these situations.

– In marketing or in psychology, the individuals participating in a study
can often say how similar or different are pairs of objects or stimuli but
they find it difficult to describe them by a finite number of measurable
characteristics. Therefore a common output of these studies is a distance
matrix (or a similarity matrix) between objects (or stimuli).

– A social network can be seen as a graph where nodes represent individu-
als and edges between nodes represent relationships between individuals,
such as friendship. In this context a natural distance between individuals
is the shortest path metric (the smallest number of steps from one node to
another within the graph). MDS is used to depict the social network in a
planar graph (Buja et al. 2008). Assume now that a continuous response
(for instance, mobile phone consumption last year) is observed for several
individuals in the network (for instance, the subscribers to a particular mo-
bile phone company). Then this company could be interested in predicting
the potential consumption of other individuals in the network that are not
among their subscribers. The company may direct its marketing efforts
to attract those potential customers with a higher expected consumption.
DB-LM is an appropriate regression technique in this context.

– Assume we have observed a sample of complex random objects belonging
to an abstract space where a metric is defined. To fix ideas, consider a
sample of random graphs (see Banks and Carley 1994, Butts and Carley
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2001 or Butts and Carley 2005) and the Hamming distance between two
graphs G1 and G2, defined as the number of addition/deletion operations
(of edges or nodes) required to turn graph G1 into G2. MDS can be used for
dimensionality reduction. If, additionally, a continuous variable is measured
for each graph (for instance, the average shortest path between two nodes
in the graph), DB-LM is useful for fitting a regression model with this
characteristic as response variable.

– Multivariate mixed data (some qualitative and some quantitative variables)
and functional data constitute two additional examples of data structure
that can benefit from distance-based techniques, as we will show with more
detail in Subsections 3.1 and 4.1, respectively.

The DB-LM is susceptible of being extended in the same way that the
standard LM has been extended to GLM, to local linear regression or to non-
parametric versions of GLM (see, for instance, McCullagh and Nelder (1989)
and Wood (2006)). In this line, Boj et al. (2010) introduced local DB-LM,
a nonparametric prediction technique extending (weighted) DB-LM. In the
present paper we introduce two further extensions: the distance-based gen-
eralized linear models (DB-GLM) and their nonparametric version (the lo-
cal DB-GLM) via local likelihood. In general, any statistical technique based
on weighted least squares (WLS) can be adapted to data presented as an
inter-individual distances matrix by just replacing each WLS step by the cor-
responding weighted DB-LM. This procedure is easily extended to iterative
weighted least squares (IWLS), as applied in many statistical methods, rang-
ing from generalized linear models (GLM) (see McCullagh and Nelder 1989)
to robust regression (see, for instance, Green 1984 or Street et al. 1988). This
is the procedure used in this paper for the construction of DB-GLM and local
DB-GLM.

All the computations in the paper have been done using the recently devel-
oped R package (R Development Core Team, 2015), called dbstats (Boj et al.,
2014), available at http://CRAN.R-project.org/package=dbstats from the
Comprehensive R Archive Network. dbstats contains classes and functions im-
plementing distance-based prediction methods such as DB-LM, local DB-LM,
DB-GLM, local DB-GLM and distance-based partial least squares regression
(DB-PLSR) (Boj et al., 2007).

The paper is structured as follows. In Section 2 we review the main features
of DB-LM and classical GLM, both being the fundamentals of the new models
introduced in the paper. In Section 3 we develop DB-GLM as an extension of
DB-LM to the framework of GLM. An example of its usage is provided in Sub-
section 3.1. The nonparametric version of DB-GLM (based on local likelihood)
is introduced in Section 4, jointly with an example of its usage (Sub-section
4.1). Conclusions are summarized in Section 5. The implementation of DB-
GLM and local DB-GLM by the functions dbglm and ldbglm, respectively, of
dbstats package is described in an Appendix. Code excerpts reproducing all
the results of this article are provided as online supplementary materials.

http://CRAN.R-project.org/package=dbstats
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2 Review of DB-LM and GLM

In this section we recall the main characteristics of DB-LM and GLM.

2.1 Distance-based linear model: definition and results

DB-LM was introduced by Cuadras (1989) and has been developed in Cuadras
and Arenas (1990), Cuadras et al. (1996), Boj et al. (2007), Esteve et al.
(2009) and Boj et al. (2010). Here we recall its main concepts, as given in
these articles, where the reader is referred to for more details and proofs.

A sketchy description of DB-LM is as follows. We choose at random n in-
dependent individuals Ωi, i = 1, . . . , n, from a given population. For each of
them we observe the value of a random response variable Y : Y1, . . . , Yn. Let
Ω = {Ω1, . . . , Ωn} and Y = (Y1, . . . , Yn)>. Let wi ∈ (0, 1) be the constant pos-
itive weight of Ωi. The n×1 weight vector w = (w1, . . . , wn)> is standardized
to unit sum, i.e., 1> ·w = 1, where 1 is the n× 1 vector of ones.

We assume that a distance (metric or semi-metric) δ( · , · ) is defined in
Ω. A particular case comes up when individuals in Ω are described by a set
Z of variables, possibly including both quantitative and qualitative measure-
ments or, possibly, other nonstandard quantities, such as character strings or
functions. Then distance δ is a function of the Z variables.

We denote by ∆ the n×n matrix, whose entries are the squared distances
δ2(Ωi, Ωj). We define the n× n inner-products matrix as

Gw = −1

2
Jw ·∆ · Jw

>,

where Jw is the w-centering matrix, defined as Jw = I − 1 ·w>. Any n× k
matrix Xw such that Gw = Xw · X>w is called a Euclidean configuration
of ∆. Observe that k ≥ r ≡ rankGw and that w> · Xw = 0, i.e., Xw

is w-centered. Such a decomposition exists if and only if Gw is a positive
semidefinite matrix, in which case ∆ is called Euclidean. In this case it can
be proved that the trace of Gw divided by n extends the concept of total
variation, so we call geometric variability of ∆ to tr(Gw)/n. Additionally we
denote by gw a 1 × n row vector containing the (necessarily nonnegative)
diagonal entries of Gw. It can be proved that the map ∆↔ Gw is bijective,
as ∆ can be recovered from Gw:

∆ = 1 · gw + g>w · 1> − 2Gw.

Let us give a precise definition of a DB-LM.

Definition 1 We say that the response Y , the weights w and the square
distances matrix ∆ follow a DB-LM (a distance-based linear model) when
µ = E(Y ) w-centered (that is Jw ·µ) belongs to the column space G of Gw.
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Observe that G is also the column space of any Euclidean configuration
Xw of ∆ because Gw = Xw ·X>w (Rao, 1973, p. 27). Simple algebra shows
that

δ2(Ωi, Ωj) = ‖xi − xj‖2 = 〈xi,xi〉+ 〈xj ,xj〉 − 2〈xi,xj〉,

which express equality between δ(Ωi, Ωj) and the Euclidean distance between
rows xi and xi of Xw. The standard inner product in Rk is denoted by 〈·, ·〉.

Let y be the observed values of the response variable Y . The estimation
of the DB-LM corresponding to responses y, weights w and squared distances
matrix ∆, is performed by doing WLS regression of y on a w-centered Eu-
clidean configuration of ∆, Xw, a latent Euclidean configuration.

Assume a new case Ωn+1 is available, and we are given the 1 × n vector
δn+1 of squared distances from Ωn+1 to the n previously known individuals.
Ωn+1 can be represented as a k-vector xn+1 in the row space of Xw using the
Gowers interpolation or add-a-point formula (Gower 1968; see Boj et al. 2010
for the weighted version). Then, the predicted Y for Ωn+1 is xn+1 · β̂, where
β̂ is the vector of estimated regression coefficients.

The following Theorem (proved in Boj et al. 2010) states that DB-LM does
not depend on a specific Xw, since the final quantities are obtained directly
from the distances. Usually such a configuration needs not be made explicit,
and neither do β̂ or xn+1.

Theorem 1 In DB-LM the hat matrix is

Hw = Gw ·
(
Dw

1/2 · Fw
+ ·Dw

1/2
)
, (1)

where Dw = diag(w) is the diagonal matrix whose diagonal entries are the
weights w,

Fw = D1/2
w ·Gw ·D1/2

w ,

and Fw
+ is the Moore-Penrose pseudo-inverse of Fw. Thus, Hw is an in-

trinsic quantity, meaning that it can be expressed directly as a function of the
distances or, equivalently, the inner products.

The fitted values are

ŷ = ȳw · 1 +Hw · (y − ȳw · 1) , (2)

where ȳw = w> · y is the w mean of y.
The predicted Y for a new case Ωn+1, given its δn+1 vector, is:

ŷn+1 = ȳw +
1

2
(gw − δn+1) ·

(
Dw

1/2 · Fw
+ ·Dw

1/2
)
· (y − ȳw · 1) . (3)

In DB-LM the rank r of the hat-matrix in (1), as in an ordinary linear
regression, is equal to the number of linearly independent linear predictors.
Since for n cases, depending on the chosen metric, r can be as high as n− 1,
giving an overparametrized model with unstable predictions, a sensible pro-
cedure is to replace the pseudo-inverse F+

w with a lower-rank approximation.
This can be easily implemented by the Singular Value Decomposition which,
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by the Schmidt-Eckart-Young Theorem (see, e.g., Stewart 1993), gives the best
`2 approximation of any given rank k, 1 ≤ k ≤ r. The rank k used to define
the pseudo-inverse F+

w is called effective rank. Several criteria can be used
to select a suitable value for effective rank k: ordinary or generalized cross-
validation (OCV or GCV), as well as Akaike or Bayesian information criterion
(AIC or BIC), defined as in the ordinary linear model (LM).

An alternative way to choose the effective rank k is based on the fact that
the sum of all the singular values of Fw is equal to the geometric variability
of ∆. So it is possible to fix a given proportion of geometric variability to be
achieved by the sum of the k largest singular values of Fw.

DB-LM contains WLS as a particular instance: if we start from a n× r w-
centered matrix Xw of r continuous predictors corresponding to n individuals
and we define ∆ as the matrix of squared Euclidean distances between rows of
Xw, then Xw is trivially a Euclidean configuration of ∆, hence the DB-LM
hat matrix, response and predictions coincide with the corresponding WLS
quantities of ordinary LM.

Let us finish this subsection discussing about the sensitivity of the DB-LM
predictions to the choice of distance. It can be proved that the predictions
are continuous on the distance matrix used to fit the DB-LM (see equation
3). In general the advices given on the choice of a distance measure when
planning a MDS analysis (Borg and Groenen 2005, Chapter 6) are still valid
when fitting a DB-LM. Discussing with an expert on the field of application on
the appropriate distance choice is always a good practice. These remarks also
apply to other distance-based regression methods that are introduced later in
this paper.

2.2 Generalized linear model: basic concepts

We review the basic concepts and notations of GLM, for the sake of an easy
reference. As it is well-known (see, eg., McCullagh and Nelder 1989), in a GLM
we have a linear predictor ηi = xi ·β, which is related to the response variable
Yi by means of a link function g(·), ηi = g (µi), then,

µi = g−1 (ηi) ; i = 1, . . . , n, (4)

where µi = E(Yi).
In a GLM it is assumed that each component of the response has a distri-

bution in the exponential family, taking the form:

fYi
(yi; θi, φ) = exp {(yi · θi − b(θi))/ai(φ) + c(yi, φ)} , (5)

for some specific functions ai(·), b(·) and c(·). The dispersion parameter φ is
constant over observations. If φ is known, this is an exponential family model
with canonical parameter θi.

The log-likelihood function for a GLM is l(θi; yi) = (yi · θi− b(θi))/ai(φ) +
c(yi, φ) and the mean and the variance of Y can be derived easily from the
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relations E
(
∂l
∂θi

)
= 0 and E

(
∂2l
∂θ2i

)
+ E

(
∂l
∂θi

)2
= 0. From (5) we have that

∂l
∂θi

= {yi − b′ (θi)} /ai (φ) and ∂2l
∂θ2i

= −b′′ (θi)/ai (φ) and then,

E (Yi) = µi = b′ (θi) and var (Yi) = b′′ (θi) · ai (φ) , i = 1, . . . , n. (6)

The variance of Y is the product of two functions; one, b′′ (θi), depends on
the canonical parameter only (and hence on the mean µi, by the first part of
(6)) and will be called the variance function, while the other is independent of
θi and depends only on φ. The variance function, as a function of µi, will be
written V (µi) = b′′ (θi). Commonly ai(φ) is of the form ai(φ) = φ/wi and φ,
where wi is a known prior weight that varies from observation to observation.
Finally, we can write the variance in (6) as

var (Yi) = V (µi) ·
φ

wi
. (7)

The link function is said to be canonical when the linear predictor ηi is the
same as the canonical parameter θi.

The global log-likelihood function is l(θ;y) =
∑n
i=1 l(θi; yi). The model

deviance is

Dev = 2 [l(θ∗;y)− l(θ;y)]φ =

n∑
i=1

2wi · [yi(θ∗i − θi)− b(θ∗i ) + b(θi)] , (8)

where θ∗ is the maximum likelihood estimator of θ in the saturated model (the
model with one parameter per data point).

In a GLM the maximum-likelihood estimates of the parameters β in the
linear predictor η can be obtained by IWLS (see, e.g., McCullagh and Nelder
1989 pp. 40-43 or Wood 2006 pp. 63-66 for a more detailed description and
justification of the algorithm). In the IWLS the dependent variable of the
regression is not y but z, a linearized form of the link function applied to
y, and the weights W are functions of the fitted values µ̂. The process is
iterative because both the adjusted dependent variable z and the weight W
depend on the fitted values, for which only current estimates are available.
The procedure underlying the iteration is as follows. Let η̂0 be the current
estimate of the linear predictor, with corresponding fitted value µ̂0 derived
from the link function η = g (µ). Form the adjusted dependent variate with
typical value

z0 = η̂0 + (y − µ̂0) ·
(
dη

dµ

)
0

, (9)

where the link derivative is evaluated at µ̂0. The weight vector is defined by

W−1
0 =

(
dη

dµ

)2

0

· V 0

w
, (10)

where V 0 is the variance function evaluated at µ̂0. Now regress z0 on the

covariates with weightW 0 to give new estimates of β̂1 of the parameters; from
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these form a new estimate η̂1 of the linear predictor. Repeat until changes are
sufficiently small.

Note that z is just a linearized form of the link function applied to the
data, for, to first order, g (y) ' g (µ) + (y − µ) · g′ (µ). The variance of z is
W−1 (ignoring the dispersion parameter), assuming that η and µ are fixed
and known.

3 Distance-based generalized linear model

By analogy to the definition of DB-LM, we give the following definition.

Definition 2 A DB-GLM (distance-based generalized linear model) consists
of random variables Y = (Y1, . . . , Yn)> whose expectation, µ = (µ1, . . . , µn)>,
transformed by the link function and w-centered, is a vector in the column
space G of Gw, that coincides with the column space of any Euclidean con-
figuration Xw of ∆.

Both DB-GLM and DB-LM share the same elements: a set of n independent
individuals Ωi, i = 1, . . . , n, with associated weights vector w (standardized to
unit sum), for which we have observed the response vector y. We calculate the
n×n squared distances matrix ∆. Just as GLM with respect to LM, DB-GLM
differs from DB-LM in two aspects:

1. We assume the responses distribution is in an exponential dispersion family
(5), as in any GLM.

2. The relation between the linear predictor η = Xw · β, obtained from the
latent Euclidean configuration Xw, and the response y is given by a link
function g(·) as in (4).

Then we have an underlying GLM, with link function g

g(µi) = ηi, where µi = E(Yi), ηi = xi · β, (11)

where β ∈ Rr is an r×1 parameter vector. Model (11) relates each response Yi
to the Euclidean coordinates of Ωi. That is, the linear predictor ηi is a linear
combination of the Euclidean coordinates xi of Ωi, the i-th row of the n × r
matrix Xw of a Euclidean configuration of ∆.

To fit the DB-GLM we use the IWLS algorithm described above, where
DB-LM substitutes LM in formulas (9) and (10) to regress z0 on the covariates
with weight W 0, in order to obtain the new estimation η̂1. Observe that the
IWLS estimation process for DB-GLM does not depend on a specificXw since
the final quantities are obtained directly from distances. In the first step we

need and initial µ̂0. Then we calculate η̂0 and
(
dη
dµ

)
0
. These two elements

only depend on the link function. Finally, we calculate V 0, the function (7)
evaluated at µ̂0, which only depends on the fitted vales µ̂ at each step.

Prediction for new observations is also independent of the choice of Xw.
Given a new case Ωn+1, described by the 1×n vector δn+1 of squared distances
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from Ωn+1 to the n previously known individuals, the predicted η̂n+1 for Ωn+1

is calculated with formula (3) with the quantities of the last IWLS step. Then
we can calculate µ̂n+1 = g−1 (η̂n+1).

DB-GLM contains GLM as a particular case: if we start from a n × r w-
centered matrix Xw of r continuous predictors corresponding to n individuals
and we define ∆ as the matrix of squared Euclidean distances between rows of
Xw, then Xw is trivially a Euclidean configuration of ∆, hence the DB-GLM
hat matrix, response and predictions coincide with the corresponding IWLS
quantities of ordinary GLM. In this case, of course, there is no reason for using
DB-GLM instead of a regular GLM which would also get an insight into the
significance of each covariate. Anyway, remember (Section 1) that situations
often arise where the only possibility of knowing relations between statistical
units is to compute a distance matrix between them. In these cases it is not
possible to use a regular GLM, while it is possible to fit a DB-GLM.

As we said before, the iterative algorithm used to fit the DB-GLM makes
internal calls to DB-LM. The estimation of DB-LM requires a value for the
effective rank parameter k to be fixed (or a criterion to choose it to be pro-
vided). In dbstats package the DB-GLM fitting has been implemented (in
function dbglm, see Sub-section A.1) in such a way that, when a value of the
effective rank k is specified, this value is used for all the required internal calls
to DB-LM.

The choice of the effective rank k in function dbglm is controlled by the ar-
gument method, that can take five different values: eff.rank, rel.gvar, AIC,
BIC or GCV. When method is equal to eff.rank the user specifies a value k
of the effective rank via the additional argument eff.rank of function dbglm.
When the option is rel.gvar the user fixes a proportion of geometric vari-
ability and in this way he or she indirectly fixes the value of the effective rank
k that provides this proportion. The specific value of proportion of geometric
variability is specified with the argument rel.gvar of function dbglm.

The last three options for argument method, AIC, BIC or GCV, allow for an
automatic choice of the effective rank k, by the minimization of the criteria
(see, e.g., Wood 2006, pages 67 and 174, and Wasserman 2004, page 220)

AIC(k) = −2

n∑
i=1

log(f(yi; g(µ̂i(k)), φ̂(k))) + 2(k + 1),

BIC(k) = −2

n∑
i=1

log(f(yi; g(µ̂i(k)), φ̂(k))) + log(n)(k + 1),

or

GCV(k) =
n Dev(k)

(n−
∑n
i=1 hii(k))

2 , (12)

respectively, where µ̂i(k) and φ̂(k) are estimated with effective rank equal to
k (then k + 1 is the number of parameters), Dev(k) is the deviance (8) of
this estimated model, and hii(k) is the i-th element of the diagonal of the
hat matrix (1) in the last step of the IWLS when using effective rank k.
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Canonical links are assumed in the previous expressions. The likelihood cross-
validation criterion (parallel in DB-GLM to the OCV in DB-LM) has not been
implemented because it is much more computationally demanding than OCV
in DB-LM (see, e.g., page 129 of Wood 2006).

3.1 An example of distance-based generalized linear model fitting

We fit DB-GLM to a data set on Swedish third-party motor insurance in 1977
described in Hallin and Ingenbleek (1983). The file is included in faraway

package with the name motorins (Faraway, 2014a). A subset of these data
(registers with Zone = 1) can also be found in Andrews and Herzberg (1985,
pp. 413-421). These data correspond to Stockholm, Göteburg and Malmo, and
were obtained from a committee study of risk premiums in motor insurance.
The total number of observations (for Zone = 1) is n = 295, all the non-empty
risk groups. The following variables were observed for each group: Payment
(total of payments in Skr), Claims (number of claims) and Insured (number
of insured, in policy-years).

These data could be used to illustrate premium rating, where risk premiums
are calculated as the product of claim frequency times claim severity. Detailed
descriptions of the procedure can be found, e.g., in Haberman and Renshaw
(1996, Section 8), Brockman and Wright (1992) or Kass et al. (2008, pp. 413-
421) among other references. In premiums calculation it is a standard practice
to model claim frequency as a GLM with Poisson error structure and claim
severity as a GLM with Gamma error structure, using the logarithmic link in
both models to obtain a multiplicative tariff.

To illustrate the use of dbstats we analyze claim severity, where the re-
sponse Y is the quotient Payment/Claims and the weights w are proportional
to the number of claims. We assume a Gamma error structure with logarithmic
link.

Three risk factors are usually considered relevant in modeling claim severity
or frequency: Distance (Kilometers Traveled), Bonus (No-claims bonus) and
Make (specified car makes). The numbers of levels of each factor are 5, 7
and 9, respectively. The continuous numerical predictors Distance and Bonus,
appear as discretized in the published version of the dataset. To illustrate the
use of dbstats for mixed type predictors we substituted sensible representative
values for their factor levels. The codes are:

< 1000 Km per year : 750 Kilometers traveled per year,
1000 - 15000 Km per year : 8000 Kilometers traveled per year,
15000 - 20000 Km per year : 17500 Kilometers traveled per year,
20000 - 25000 Km per year : 22500 Kilometers traveled per year,
> 25000 Km per year : 40000 Kilometers traveled per year.

Bonus is represented by the (arbitrary) numerical codes 1 to 7, equal to the
number of years, plus one, since last claim. Make is treated as a nominal
categorical variable in Gower’s formula (13). It is numerically coded (as 1 to
9) just as a convenience. It represents 9 specified car makes.
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Model Residual deviance Effective rank
GLM 921.69 10
DB-GLM (rel.gvar = 1) 844.97 18
DB-GLM (rel.gvar = 0.90) 898.73 10
DB-GLM (method = "GCV") 845.07 17

Table 1 Motorins data. Results for different fittings of the Gamma model with logarithmic
link. The lowest residual deviance values has been highlighted.

The first step in the treatment of these data by DB-GLM is the choice of
a suitable metric. In principle it is possible to tailor a metric to reflect specific
information on predictors and on how their proximity relates to the particular
prediction under study. An omnibus popular metric for mixes of numerical,
categorical and binary predictors is the one based on Gower’s general similarity
coefficient (see Gower, 1971, for further details):

sij =

p1∑
h=1

(1− |xih − xjh|/Gh) + aij + αij

p1 + (p2 − dij) + p3
(13)

where p1 is the number of continuous variables, aij and dij are the number of
positive and negative matches, respectively, for the p2 binary variables, and
αij is the number of matches for the p3 multi-state categorical variables. Gh is
the range of the h-th continuous variable. The squared distance is computed
as: δ2ij = 1−sij . Gower (1971) proves that this distance satisfies the Euclidean
condition. In our example, p1 = 2, p2 = 0 and p3 = 1 in (13).

When we fit ordinary GLM to these data, we use class marks for continuous
predictors (Distance and Bonus) and dummies coding the 9 levels of Make,
thus the model has 11 parameters: Intercept, Distance, Bonus plus 8 more,
for the Make factor. This GLM model has been fitted using the R function
glm. The corresponding code can be found as supplementary material (see
Annex B). The first row in Table 1 shows the deviance corresponding to the
fitted GLM.

For DB-GLM we fit the following versions (the R code fitting them can be
found as supplementary material; see Annex B):

1. rel.gvar = 1, i.e., a DB-GLM taking into account the whole latent Eu-
clidean configuration, with an effective rank of k = 18. See the second row
in Table 1 for the resulting deviance.

2. rel.gvar = 0.90, i.e., up to a 90% of the total geometric variability. The
effective rank in this case is k = 10, the same value as the number of
explanatory variables (except the constant) in the GLM fitted before. Third
row in Table 1 contains the corresponding deviance.

3. method = "GCV", i.e., selecting the effective rank optimizing the GCV
statistic (12). In this case we retain k = 17 dimensions accumulating a
total of 99.46% of the total geometric variability. See fourth row in Table
1 for the resulting deviance.
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Call: dbglm(formula = y ~ KmC + BonC + factor(Make), data = Motor1,

family = Gamma(link = "log"), method = "GCV", full.search = TRUE,

metric = "gower", weights = w, range.eff.rank = c(1, 18))

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-4.5410 -1.4870 -0.2806 -0.2325 0.8918 4.7470

(Dispersion parameter for Gamma family taken to be 3.310162)

Null deviance: 1024.61 on 294 degrees of freedom

Residual deviance: 845.07 on 277 degrees of freedom

Number of Fisher Scoring iterations: 6

Convergence criterion: DevStat

AIC: 379086.1

BIC: 379152.5

GCV: 0.04

Table 2 Summary corresponding to the dbglm object obtained when fitting the DB-GLM
using method = "GCV" to the motorins data (Gamma model with logarithmic link).

In these three DB-GLM’s we obtain lower residual deviances than the residual
deviance of the classical GLM. See Table 1.

The R package dbstats includes a summary method for objects of class
dbglm (see help(summary.dbglm) for complete details). As an illustration,
Table 2 shows the summary corresponding to the dbglm object obtained when
fitting the DB-GLM using method = "GCV". Note that the reported degrees
of freedom corresponding to the residual deviance (277 in this case) are equal
to the number of observations (295) minus the model effective rank (17) minus
1.

In addition to the three previous DB-GLM models, the supplementary
materials (see Annex B) include the code for fitting a DB-GLM with Gamma
response and logarithmic link, using Euclidean distance and full geometric
variability. This is a relevant case since their results (fitted values, deviance
residuals, degrees of freedom, etc.) coincide with those of a GLM with same
response and link, as we argued before, when we said that GLM is a particular
case of DB-GLM. In fact the output of summary of this particular DB-GLM
and the summary of the standard GLM (not included here, but reproducible
using the code in the supplementary materials) are extremely close to each
other (as intended by design of the R package dbstats), with the exception
of the estimated coefficients for observed predictors, absent in DB modeling.

The package dbstats also offers a plot method for objects of class dbglm

(see help(plot.dbglm)). To illustrate it, for the DB-GLM using method =

"GCV" we exhibit the six available plots: Residuals vs Fitted (deviance
residuals are used), Normal Q-Q (of standardized residuals), Scale-location
(standardized residuals versus fitted values), Cook’s distance, Residuals

vs Leverage (it uses standardized Pearson residuals), and GCV vs Effective
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rank, which can be found in Figure 1. The first five plots are useful for residual
analysis and are the same as in plot.lm of stats package. The fitted values
used in these plots can be the fitted link values (by default) or the fitted re-
sponses (Figure 1 uses fitted responses). This is a difference with respect to
method plot for glm objects in R, that only uses fitted links. The last plot
(also specific for dbglm objects) allows us to view the "GCV", "AIC" or "BIC"

criterion according to which the effective rank is chosen and it applies only if
the parameter full.search is TRUE. In this example the result for the effective
rank according to the "GCV" criterion is k = 17.

Regarding the available predict method for objects of class dbglm, predicted
values may be the expected values of the response for a new data (type.pred
= "response"), or of the linear predictors evaluated at the estimated dblm of
the last iteration (type.pred = "link"). Also, we can choose the type of the
new data, according to the type of data used when fitting the dbglm model,
as explained in Appendix A.1. See help(predict.dbglm) for more details.

4 Local distance-based generalized linear model

In this section we introduce a non-parametric version of the DB-GLM, con-
sidered in Section 3 that is based on the same ideas that Loader (1999) uses
to extend the GLM to the local likelihood based models.

Consider again the DB-GLM framework. Now we examine the local DB-
GLM, where local refers to the fact that, in a neighborhood of any observed
individual, a DB-GLM is assumed to be approximately valid. Let us be more
precise. Let fY (y; η), η ∈ R, be a density function in the exponential family,
with µ = µ(η) = E(Y ) when Y ∼ fY (y; η) (we assume that the dispersion
parameter is φ = 1, as in Loader 1999, page 61). A 1-1 relation between µ
and η is assumed: η = g(µ). We assume that for each observed individual Ωi,
Yi ∼ fY (yi; ηi). Let µi = E(Yi) = g−1(ηi).

The DB-GLM assumes that the vector (η1, . . . , ηn), once w-centered, be-
longs to the column space G of Gw. This is equivalent to assume that there
exists a vector η = (η1, . . . , ηn) that, once w-centered, is in the column space
G of Gw, such that

g(µi) = ηi, i = 1, . . . , n.

The local version of DB-GLM is defined as follows:

Definition 3 We say that the random variables Y1, . . . , Yn follow a local DB-
GLM (local distance-based generalized linear model) when, for any additional
individual Ωn+1, there exists a vector ηn+1 = (ηn+1

1 , . . . , ηn+1
n ) that, once

w-centered, is in the column space of Gw and verifies that

g(µi) = ηn+1
i + o(δ(Ωi, Ωn+1)), i = 1, . . . , n,

that is, lim(|g(µi)− ηn+1
i |/δ(Ωi, Ωn+1)) = 0 as δ(Ωi, Ωn+1) goes to zero.
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Fig. 1 Plots of Residuals vs Fitted (deviance residuals versus fitted responses), Normal
Q-Q, Scale-location, Cook’s distance, Residuals vs Leverage, and Effective rank of

GCV method for DB-GLM with Gamma response and logarithmic link, using Gower’s distance
and fitted with method = "GCV".
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In other words, Y follows a local DB-GLM when a DB-GLM is a good approx-
imation for the true distribution of Y in the neighborhood of any additional
individual Ωn+1 .

Let µn+1 be the expected value of the response Y corresponding to the
individualΩn+1. This is the value we want to estimate and we do that by fitting
a DB-GLM that only uses the information provided by observed objects Ωi,
i = 1, . . . , n, that are close to Ωn+1. The idea is to translate to the DB-GLM
context the principles of local likelihood, as stated in Loader (1999, Chapter
4) (see also Section 3.4 in Bowman and Azzalini 1997, Section 6.5 in Hastie
et al. 2009, Section 5.10 in Wasserman 2006, or the book of Wood 2006). Our
approach parallels that used in Boj et al. (2010), where local DB-LM was
defined.

We consider the weights

υi(Ωn+1) = K(δ(Ωn+1, Ωi)/h)/

n∑
j=1

K(δ(Ωn+1, Ωj)/h), (14)

where K is a kernel function (a non-negative function, decreasing in [0,∞)
with limu→∞K(u) = 0) and h > 0 is a smoothing parameter (depending on
n). Let υ = (wi ·υi(Ωn+1))i=1,...,n (where wi is the original weight of individual
i). The local log-likelihood function is defined as

LΩn+1
(η) =

n∑
i=1

υi(Ωn+1) log(fY (yi; ηi))

for each η = (η1, . . . , ηn) such that (η − 1υ>η) ∈ Gυ , the column space of
Gυ . It is easy to prove that

(η − 1υ>η) ∈ Gυ ⇔ (η − 1w>η) ∈ Gw ⇔ (η − 1

n
11>η) ∈ G .

To maximize the local likelihood function, we fit the DB-GLM defined by the
elements

y = (yi)i=1,...,n, υ = (wi · υi(Ωn+1))i=1,...,n, ∆ = (δ(Ωi, Ωj)
2)i=1,...,n,j=1,...,n,

(15)
as responses, weights and squared distances matrix, respectively. Running the
IWLS algorithm we obtain the local maximum likelihood estimator of η, say
η̂n+1. Let

δn+1 = (δ(Ωn+1, Ω1)2, . . . , δ(Ωn+1, Ωn)2) (16)

be the squared distances from Ωn+1 to other individuals Ωi. By analogy with
equation (3), the prediction η̂n+1

n+1 for the linear predictor ηn+1 = g(µn+1) is

η̂n+1
n+1 = υ>η̂n+1+

1

2
(gυ−δn+1)·

(
Dυ

1/2 · Fυ+ ·Dυ1/2
)
·
(
η̂n+1 − 1υ>η̂n+1) ,

and the local DB-GLM estimator of µn+1 is

µ̂n+1 = g−1(η̂n+1
n+1).
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When fitting the local DB-GLM, the distance function δ(Ωi, Ωj) has two
different roles. First, in equation (14) it is used to define the weights υi(Ωn+1)
that give the local character to the whole procedure. Second, in equations
(15) and (16), distance δ is used to fit the weighted DB-GLM. Both roles
are unrelated and in fact it is possible to work with two different distance
functions involved in the local DB-GLM: one of them, say δ1, used in equation
(14), and the other, say δ2, in equations (15) and (16). In the context of local
DB-LM, Boj et al. (2010) show that using two distance functions provides
more flexibility than using only one (δ1 = δ2). For instance, in the case of
univariate explanatory variable, xi, a local cubic polynomial fitting can be
implemented using the local DB-LM with

δ1(xi, xj) = |xi − xj | and δ2(xi, xj) = ‖(xi, x2i , x3i )− (xj , x
2
j , x

3
j )‖,

‖ · ‖ being the Euclidean norm in R3.
It is worth to mention that most of the diagnostic tools introduced in

Loader (1999, Section 4.3) are valid in the local DB-GLM: deviance defini-
tion, different types of residuals, influence function, fitted degrees of freedom,
likelihood cross-validation and AIC. In general, all definitions given in local
likelihood that are not based directly on the local estimated parameters are
still valid in local DB-GLM. In particular the likelihood cross-validation and
the AIC criteria can be used to select the value of the bandwidth parameter h
in local DB-GLM. For instance, for a given h the corresponding AIC is defined
as

AIC(h) = −2

n∑
i=1

wi log(f(yi; g(µ̂i(h)))) + 2ν(h),

where ν(h) is the number of fitted degrees of freedom and µ̂i(h) is the local DB-
GLM estimation of µi, both corresponding to bandwidth h. The bandwidth
choice can be done minimizing AIC(h) in h. Another possibility is using the
BIC criterion, that is defined as the AIC, but replacing the penalty 2ν(h)
by a larger one: log(n)ν(h). Both methods of bandwidth selection, AIC and
BIC, are implemented in the package dbstats. The likelihood cross-validation
criterion, much more computationally demanding, has not been implemented.
As an alternative we have included the GCV criterion, following the suggestion
of Wood (2006, equation 4.24).

The local DB-GLM has an extra tuning parameter that is not present
in the local likelihood model developed in Loader (1999): the effective rank k,
the number of linearly independent Euclidean coordinates used in prediction at
each DB-LM performed throughout the iterations of the IWLS algorithm. This
extra parameter lends more flexibility to local DB-GLM at the risk of falling
into over-fitting. A possible way to avoid over-fitting is to choose jointly both
parameters, h and k, by minimization of the AIC (or BIC or GCV) criterion,
that in fact depends on both: AIC(h, k). Another possibility is to fix k and
then choose h as explained before. Alternatively, the effective rank k can be
indirectly specified by fixing the proportion of geometric variability that each
DB-LM should explain. Values between 0.9 and 0.99 for this proportion are
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usually adequate. In the package dbstats the last two possibilities have been
implemented.

4.1 An example of local distance-based generalized linear model fitting

In this section we make an example using local DB-GLM with functional
data as explanatory variable and a binary response. We say that an observed
variable is functional when a whole function is registered for each individual
in the sample (see Ramsay and Silverman 2005 for a general perspective on
Functional Data Analysis and Ferraty and Vieu 2006a for a nonparametric
approach).

We consider the near infrared (NIR) spectral data set contending with
wheat samples that was described in Kalivas (1997). This data set contains
data from 100 wheat samples. The available information for each sample
consists of two scalar measures (protein and moisture contents; only pro-
tein content is used here) and a functional variable, the NIR spectra: sam-
ples were measured using diffuse reflection in units of log inverse reflectance
log(1/R) at wavelengths going from 1100 to 2500 nm in 2 nm intervals (re-
flectance refers to the fraction of incident electromagnetic power that is re-
flected by the sample; see Brenchley et al. 1997 for more details about NIR
measurements). The protein and spectrum data were available for years at
ftp://ftp.clarkson.edu/users/h/o/hopkepk/chemdata/kalivas/ (we ac-
cessed in May 2011), at files protein.asc and whtspec.asc, respectively.
Nevertheless Clarkson University stopped running FTP servers around 2013.
So the data sets are no longer available there. Therefore we provide these two
files as supplementary material with the permission of John H. Kalivas (see
Annex B).

Let us define the binary variable y indicating for each wheat sample in the
data set whether its protein content is over the median value (y = 1) or not
(y = 0). Our goal is to predict the variable y using the NIR spectra function
as predictor.

We use the R package fda.usc (Febrero-Bande and Oviedo, 2014) to deal
with NIR spectra data as functional data. The corresponding code can be
found as supplementary material (see Annex B). In particular fda.usc has
been used to plot the spectra functions, as well as their first and second deriva-
tives, in Figure 2. Wheat samples have been colored according to the value
of the binary variable y (gray continuous for y = 1, black dotted for y = 0).
From the figure it is not obvious how NIR spectra functions or their derivatives
could allows us to predict the value of y, the indicator of high protein content.

We compare the performance of the following binary prediction tools, all
of them using functional predictors:

– FGLM: Functional Generalized Linear Model, a version of the GLM with
functional predictor using basis representation. We use the implementation
of FGLM available as function fregre.glm in package fda.usc.

– DB-GLM: Distance based generalized linear model, developed in Section 3.
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Fig. 2 Wheat data set. NIR spectra functions, jointly with their first and second derivatives.
Functions represented with gray continuous lines correspond to wheat samples with protein
content over the median. Black dotted lines are used otherwise.

– PSSR: P-spline signal regression, as defined by Marx and Eilers (1999). It is
a different way of fitting a generalized linear model with functional explana-
tory variable. The main difference with the previous alternative is that in
P-spline signal regression only the functional coefficient is assumed to be a
smooth function (and therefore represented by splines). The work of Marx
and Eilers (1999) has its motivation in chemometric data (in fact they use
wheat protein data as an example, with the original continuous response
variable). We use the function signal.fit, downloaded from Marx’s web
page (http://www.stat.lsu.edu/faculty/marx/signal.txt) on May 15,
2014. The default values are used for the parameters of this function.

– FGAM: Functional Generalized Additive Model, introduced by Mclean
et al. (2014). This model is the natural extension of the generalized addi-

http://www.stat.lsu.edu/faculty/marx/signal.txt
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Prediction tool
FGLM DB-GLM PSSR FGAM Local DB-GLM

Functional predictor:
NIR spectra functions 54 29 24 33 27
First derivative 58 25 26 20 29
Second derivative 62 24 20 30 28

Table 3 Number of bad classified wheat samples by leave-one-out cross-validation. Observe
that these figures must be integers numbers between 0 and n = 100 (the sample size) and
that a random classifier would fail at 50 cases in average. The best performances have been
highlighted.

tive models (GAMs) to functional data when there is only one explanatory
functional variable, as argued by Mclean et al. (2014). FGAM has been im-
plemented as function fgam in R package refund Crainiceanu et al. (2014)
with its parameters in their default values. For an extension of GAMs to
the case of multiple functional covariates see Febrero-Bande and González-
Manteiga (2013).

– Local DB-GLM: Local distance based generalized linear model, developed
in Section 4.

For each of these five prediction tools we have used three different func-
tional predictors: NIR spectra functions, their first derivatives and their second
derivatives (in P-spline signal regression we use first and second differences in-
stead). In order to measure the prediction ability of the 15 prediction rules
under consideration we compute the number of bad classified wheat samples
when applying leave-one-out cross-validation. The Table 3 shows the results.
The R code used to fit these model can be found as supplementary material
(see Annex B).

It follows from Table 3 that in this dataset FGLM presents significantly
worst results than other methods. A possible explanation for that is our arbi-
trary choice of the number of elements in the basis of B-splines (we have chosen
18 basis functions) that could be improved by using an automatic model choice
criterion as GCV, AIC or BIC.

In order to fit a DB-GLM with the function dbglm the first step is to
compute the inter-individual distance matrix. When dealing with functional
data our choice is to use one of the semimetrics defined in Ferraty and Vieu
(2006a) as they are implemented in their own R library NPFDA (Ferraty
and Vieu 2006b), http://www.lsp.ups-tlse.fr/staph/npfda/, also avail-
able at the package fda.usc (see functions metric.lp, semimetric. basis

and semimetric.NPFDA in this package). In particular here we use L2 distances
between NIR spectra functions or their derivatives calculated after represent-
ing functions in a B-spline basis. The effective rank has been chosen according
to the GCV criterion using all the data. The resulting values are 6, 8 and 8,
respectively, when using the spectra functions, their first or second derivatives.
These effective ranks values have been fixed for all the DB-GLM fits in the
leave-one-out process. We fit the local DB-GLM with the function ldbglm of
package dbstats. We use again L2 distances between NIR spectra functions

http://www.lsp.ups-tlse.fr/staph/npfda/
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or their derivatives. The automatic choice of the smoothing parameter h is
done with the Generalized Cross Validation criterion for the whole dataset.
The resulting optimal bandwidths have been fixed for all the local DB-GLM
fits in the leave-one-out process.

The results of DB-GLM, PSSR, FGAM and local DB-GLM fits (second
to fourth columns of Table 3) are better than those of FGLM and they are
comparable with each other. It seems that the performance of P-spline signal
regression is slightly better than FGLM, FGAM or DB-GLM, mainly when
using derivatives.

Observe that, among these four functional regression, two of them are
global logistic estimators (DB-GLM and PSSR) and the other two (FGAM and
local DB-GLM) have local (or non-parametric) character. The fact that all of
them behave in a similar way indicates that a global logistic fit is appropriate
for this particular example. FGLM (also a global logistic method) does not
perform as well as DB-GLM or PSSR because it is less flexible than the other
two (at least with the chosen combination of tuning parameters).

In order to explore the performance of these functional regression methods
when the relationship between the explanatory functional data and the binary
response is not global logistic, we have simulated alternative responses accord-
ing to a non-logistic pattern as follows. First we compute the first and second
functional principal components of the wheat spectra functions (we use the
function fdata2pc from package fda.usc). Let wi,j the score of functional data
i in the principal direction j, for i = 1, . . . , n = 100 and j = 1, 2, once stan-
dardized to have variance 1 among individuals. Then, for i = 1, . . . , n = 100,
we define yi equal to 1 when(

1

2
+

1

2
cos(2w1,i) sin(2w2,i)

)α
>

1

2
,

and 0 otherwise. The value α is fixed at the value 0.95 in order to have 50
values of yi = 1 and the other 50 yi = 0.

The results of the leave-one-out cross-validation procedure are shown in
Table 4. The results corresponding to functional GLM are not included because
this model (as well as the DB-GLM with effective rank equal to 1) has a very
bad performance (almost 100% of bad classified observations) that is due to
their lack of flexibility. Both estimators are unable to fit a such so highly
non-linear binary regression function. Then both provide a regression function
that are almost constant: the estimated conditional probability of yi being 1 is
approximately equal to the proportion of 1’s in the training set. That is, in this
non-logistic example GLM and DB-GLM (with effective rank equal to 1) are
equivalent to the majority vote rule. It is easy to check that in a data set with
exactly 50% of the data in each of two classes, the majority vote rule provide
a 100% of bad classified cases when applying leave-one-out cross-validation
(when a data is removed from the sample the majority of the remaining data
are always of the other class).

Table 4 shows that, in this non-logistic situation, the local (or nonpara-
metric) methods, FGAM and local DB-GLM, has better performance that the
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Prediction tool
DB-GLM PSSR FGAM Local DB-GLM

Functional predictor:
NIR spectra functions 48 43 24 19
First derivative 45 47 25 19
Second derivative 57 57 51 43

Table 4 Non-logistic simulated data from wheat spectra functions. Number of bad classi-
fied samples by leave-one-out cross-validation. Observe that these figures must be integers
numbers between 0 and n = 100 (the sample size) and that a random classifier would fail
at 50 cases in average. The best performances have been highlighted.

globals methods DB-GLM (in this case the chosen effective rank is 2) and
PSSR. Moreover DB-GLM seems to be preferable to FGAM.

An additional advantage of local DB-GLM over FGAM or PSSR is that
local DB-GLM can be applied to any kind of data, as long as we are able to
compute distances between them, but FGAM or PSSR are useful only for func-
tional data. For instance, we can fit a local DB-GLM to the motorins insurance
data introduced in Section 3.1. In this example the local DB-GLM obtains a
residual deviance equal to 733.68 (much lower than the results obtained with
parametric fits; see Table 1).

5 Conclusions

We have extended distance-based regression in two directions. First, we intro-
duce the distance-based generalized linear model, in an analogous way to that
that brings from the linear model to the generalized linear model. Second, we
use local likelihood ideas to propose a nonparametric version of the distance-
based generalized linear model. The R package dbstats implements these an
others distance-based regression methods. We have used this library to fit the
proposed models to two real data examples. They show that both (global and
local) distance-based generalized linear models compete well with alternative
methods. Moreover our proposals have the additional advantage that they are
applicable to a wide range of data types, while some of the alternative models
have being designed for specific contexts (for instance, functional GLM works
only for functional data).

A The dbstats package

The dbstats package (Boj et al., 2014) for R (R Development Core Team, 2015) implements
several distance-based prediction methods. The main functions of dbstats are: dblm for DB-
LM, ldblm for local DB-LM, dbglm for DB-GLM, ldbglm for local DB-GLM and dbplsr for
DB-PLSR.

In sub-section A.1 we describe the usage of function dbglm whereas ldbglm is described
in sub-section A.2. Two examples illustrating the usage of these functions from a user
perspective have been presented, respectively, in sub-sections 3.1 and 4.1. For details of
dblm, ldblm and plsr we refer to Boj et al. (2014).
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A.1 Function dbglm

Function dbglm fits DB-GLM. In this function distances can be directly provided as: an
interdistances matrix (class dist or dissimilarity as in stats package); a squared interdis-
tances matrix (class D2); or an inner-products matrix (class Gram). Classes D2 and Gram have
been implemented in the dbstats package. It is also possible to compute distances directly
from observed explanatory variables (using a class formula object in the call to dbglm).

The dbstats package does not provide specific methods for computing distances, de-
pending instead on other available functions and packages such as dist in the stats package,
daisy in the cluster package (Maechler, 2015) or dist in the proxy package (Meyer and
Buchta, 2015). Utility functions such as as.D2, as.Gram, D2toDist, D2toG, distoD2 and GtoD2

allows the user mutual interconversions (see Boj et al. 2014 for details).
Response and link function are as in the glm function of stats for ordinary GLM.
The usage of dbglm is:

dbglm(distance, y, family = gaussian, method = "GCV", full.search = TRUE,

weights, maxiter = 100, eps1 = 1e-10, eps2 = 1e-10, rel.gvar = 0.95,

eff.rank = NULL, offset, mustart = NULL, range.eff.rank, ...)

where the argument distance is of class dist or dissimilarity. The same information can
be provided replacing distance by an object of class either D2 or Gram.

When calling dbglm using an object of class formula, the first and second arguments in
the previous call to dbglm are replaced by other three arguments: formula (of the form y∼Z),
data (a data frame containing the variables in the model: both response y and explanatory
variables Z) and metric (that indicates how to compute distances between the rows of Z; it
must be one of the strings "euclidean" (the default), "manhattan" or "gower" to be passed
to function daisy of cluster package).

In addition to the response y, the distance matrix distance (or equivalent information),
the formula formula, data data and metric, it is worth mentioning the following arguments
of dbglm:

family, weights, offset, mustart are arguments with the same role that they have in the glm

function.
method sets the method to be used in deciding the effective rank. There are five different

methods: "AIC", "BIC", "GCV" (default), "eff.rank" and "rel.gvar". See Section 3
(before Subsection A.1) for details on these criteria.

range.eff.rank a vector defining the range of possible values for the effective rank in the
dblm iterations to be evaluated when method is "AIC", "BIC" or "GCV". It should be
restricted between c(1, n− 1).

full.search sets the optimization procedure to be used to minimize the modelling criterion
specified in method when "AIC", "BIC" or "GCV" criteria are specified. See the help of of
dbstats package Boj et al. (2014) for details.

rel.gvar relative geometric variability (a real number between 0 and 1; default is 0.95). More
details can be found at the end of Section 3 (before Subsection A.1).

eff.rank integer between 1 and n−1. If specified its value overrides rel.gvar. When eff.rank

= NULL (default), calls to dblm are made with method = "rel.gvar". More details can
be found in Section 3 (before Subsection 3.1).

maxiter, eps1, eps2 are stopping criteria for the iterative algorithm that fits the DB-GLM.

The function returns a list of class dbglm containing the following components:

Common elements with the output of glm function for R: residuals, fitted.values, family, de-
viance, aic.model, null.deviance, iter, prior.weights, weights, df.residual, df.null, y, call.

H hat matrix projector of the last dblm iteration.
convcrit convergence criterion. One of: "DevStat" (stopping criterion 1: when the relative

decrement of deviance in one step is less than eps1), "muStat" (stopping criterion 2: when
the relative change of the estimated expected values of the responses in one step is less
than eps2), "maxiter" (maximum allowed number of iterations has been exceeded).

eff.rank, rel.gvar effective rank and relative geometric variability that have been finally used.
bic.model, gcv.model BIC and GCV criteria of the final DB-GLM.
dev.resids deviance residuals (the way they are computed depends on the specified family).
varmu vector of estimated variance of each observation (that depends on the estimated

vector of expected values and on the specified family).
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A.2 Function ldbglm

Function ldbglm is a localized version of a DB-GLM. As in the global model dbglm, explana-
tory information is coded as distances between individuals, that can either be computed
from observed explanatory variables or directly provided to function ldbglm as a (possibly
squared) interdistances matrix or as a inner products matrix (a Gram matrix).

Remember that in local DB-GLM there appear two distance functions, δ1 and δ2, playing
different roles. Accordingly, function ldbglm has two different arguments, dist1 and dist2

of class dist or dissimilarity, where distances δ1 and δ2 are specified: dist1 defines the
neighborhood delimiting what observations (and with what weight) are used when locally
fitting a DB-GLM, whereas dist2 (which may coincide with dist1) is used specifically for
fitting this weighted DB-GLM.

The usage of ldbglm is:

ldbglm(dist1, dist2 = dist1, y, family = gaussian(), kind.of.kernel = 1,

method.h = "GCV", weights, user.h = quantile(dist1, .25) ^ .5,

h.range = quantile(as.matrix(dist1), c(.05,.25)) ^ .5, noh = 10,

k.knn = 3, rel.gvar = 0.95, eff.rank = NULL, maxiter = 100,

eps1 = 1e-10, eps2 = 1e-10, ...)

In the same way that it was explained in the overview of function dbglm, the predictive
information contained in distance matrices dist1 and dist2 can be provided to function
ldbglm in three alternative ways: two squared distances matrices (D2.1 and D2.2), two inner
products matrices (G1 and G2), or a formula jointly with a dataset and two metrics (formula,
data, metric1 and metric2).

The following are other arguments of ldbglm that are specific of this function because
they control its local character:

kind.of.kernel integer number between 1 and 6 which determines the user’s choice of smooth-
ing kernel K (see equation 14): (1) Epanechnikov (Default), (2) Biweight, (3) Triweight,
(4) Normal, (5) Triangular, (6) Uniform.

method.h sets the method to be used when choosing the bandwidth h to be used in equation
(14). There are four different methods, AIC, BIC, GCV (default) and user.h. AIC, BIC and
GCV take the bandwidth minimizing the Akaike or Bayesian Information Criterion or
the generalized cross-validation, respectively. When method is user.h, the bandwidth
is explicitly set by the user through the user.h optional parameter which, in this case,
becomes mandatory.

user.h global bandwidth set by the user. The default value is the first quartile of all the
distances d(i, j) in matrix dist1. It applies only if method = "user.h".

h.range a vector of length 2 giving the range for automatic bandwidth choice. (Default value:
quantiles 0.05 and 0.5 of d(i, j) in matrix dist1). It applies when method != "user.h".

noh number of bandwidth h values within h.range for automatic bandwidth choice. It
applies when method != "user.h".

k.knn minimum number of observations with positive weight in any local fit of a DB-GLM
model. A too small value of bandwidth h could originate a neighborhood with only one
observation producing a runtime error when trying to fit a local fit of a DB-GLM model.
Choosing k.knn > 1 prevents from this problem. By default k.knn = 3.

The function returns a list of class ldbglm containing the following components:

Common elements with the output of dbglm: residuals, fitted.values, family, weights, y, call.

dist1, dist2 the distances matrices used to calculate the local weights of the observations
and to locally fit the dbglm’s, respectively.

h.opt the optimal bandwidth h used in the fitting process (if method != user.h).

S the smoothing matrix in the last iteration of the IRWLS. See Boj et al. (2010) for details
on the definition of the smoothing matrix.
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B Supplementary material

Code for fitting DB-GLM and local DB-GLM is available in the R package dbstats

(http://CRAN.R-project.org/package=dbstats). Additional code for reproducing the com-
putations and graphics in the paper are included in the R script ExamplesDB.R. The data files
protein.asc and whtspec.asc are provided as supplementary material with the permission
of John H. Kalivas, Idaho Satate University.
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