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The random-phase-approximation~RPA! dynamical response of liquid3He at finite temperatures has been
calculated using an effective density-dependent atom-atom interaction. The interaction contains a zero-range
part of Skyrme type, supplemented by a weighted density approximation to account for short-range correla-
tions, and a long-range effective interaction of Lennard-Jones type. The calculated zero-sound and paramagnon
energy centroids agree reasonably with data, and the calculated strength exhibits a negative energy tail extend-
ing up to20.5 meV, also in good agreement with existing data. We have found that opposite to what happens
with zero sound, within RPA the paramagnon peak is rather insensitive to thermal broadening.
@S0163-1829~96!01133-2#

I. INTRODUCTION

Since the pioneering work of Stringari,1 an effective
Skyrme-like atom-atom interaction has been used for the
study of bulk and surface properties of liquid3He, as well as
for energy systematics and the shell structure of3He
droplets,2,3 and for the density-density response of drops4

and homogeneous liquid.5 The use of a phenomenological
approach seems appropriate to explore physical situations
where a microscopic calculation is difficult to carry out. This
explains why the Landau theory of Fermi liquids is so widely
used to study the response to an external probe in the long-
wavelength–low-frequency limit; a successful alternative,
which removes the restriction to low transferred momentum
intrinsic to the Landau view, is contained in the polarization
potential theory of Pines.6 However, it is worth noting that
while these approaches assume a previous knowledge of the
ground state structure of the system, out of which the spec-
trum of elementary excitations can be constructed, a phe-
nomenological density-dependent interaction allows a simul-
taneous analysis of both ground state and excitation
properties.

The density functional adequate to describe most aspects
of the static and dynamic behavior of liquid helium is not
unique. The former determinations1–3 took into account bulk
data in the density channel such as the equation of state at
zero temperature and the effective mass of helium atoms,
disregarding the spin-dependent part of the interaction. It
was later seen7 that in order to reproduce the experimental
trend of the Landau parameters in the antisymmetric spin
channel, interaction terms depending upon spin density were
needed. The anomalous dispersion of the zero-sound mode
was correctly described incorporating a finite-range term,5

following a proposal by Dupont-Rocet al.8 for liquid 4He; a
similar viewpoint, inspired in polarization potential theory,

was undertaken by Weisgerber and Reinhard.9 Furthermore,
in Ref. 10 an explicit dependence of the functional on the
spin current density was proposed; this form was later em-
ployed to investigate the structure and pairing properties of
helium drops.11

Experimental data and several model calculations of the
dynamical structure factorS(q,v) of liquid 3He have been
recently reviewed by Glyde;13 in addition, random-phase-
approximation~RPA! calculations at zero temperature have
been presented in Refs. 5 and 9. To the best of our knowl-
edge, finite-temperature RPA calculations in liquid3He have
not yet been performed; as pointed out in Ref. 13, previous
RPA-like estimates of the response, based on the free
Lindhard functionx0 with an effective mass 3 times larger
than the bare mass of a helium atom, yield a first, however
limited, description of the excitations. In the approach under-
taken by Glyde and Khanna,14 the susceptibility has been
computed at 15 mK according to its expression in the Lan-
dau limit, in terms of the Landau parameters, replacing the
corresponding susceptibilityx0

(L) by the Lindhard function.
Our present goal is to investigate the response of liquid

3He at finite temperatures in the frame of the RPA theory
presented in Ref. 5. This formalism, originally developed for
the zero-temperature case, has been recently generealized to
thermally excited systems in an application to symmetric
nuclear matter;12 we wish to stress here that for Skyrme-like
interactions, exchange terms are automatically included. This
exact RPA treatment gives the correct Landau limit5 and
beyond the long-wavelength regime, generalized
temperature-dependent Lindhard functions appear in the dy-
namical susceptibility, as well as the full momentum depen-
dence of the multipolar amplitudes of the effective interac-
tion.

In order to compute the response in the liquid, some
modifications to the form of the functional of Refs. 10 and
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11 are required to restore translational invariance, to the cost
of a new adjustment in the parameters. The present param-
etrization guarantees an excellent fit of all bulk properties, of
the dispersion curve of zero sound at zero temperature and
various pressures, of the dependence of the symmetric and
antisymmetric Landau parameters with the density of the liq-
uid, and of the stability of drops within a wide range of sizes.
The location of the low-temperature paramagnon peak as a
function of incoming momentum is also reasonably repro-
duced. This functional is then introduced as an input for
dynamical susceptibility calculations in the spirit of Ref. 12,
and we examine the predictions for zero sound and paramag-
non peaks, for different temperatures and momenta.

This paper is organized as follows. In Sec. II we present
the effective Skyrme-like force and the particle-hole~ph! in-
teraction produced by double functional differentiation of the
total Hartree-Fock energy. The parametrization differs from
the one in Ref. 11 only in the strengths and exponents for the
spin channel; the fit to the symmetric Landau parameters is
thus the same as in this previous work, and we show the
adjustment of the magnetic parameters. In Sec. III we display
the results obtained for the response at finite temperatures; as
in Ref. 12, the thermal effects appear only in the ph propa-
gators involved in the RPA equations, since the current in-
teraction does not depend upon temperature. Section IV con-
tains the summary.

II. EFFECTIVE PARTICLE-PARTICLE
AND PARTICLE-HOLE INTERACTIONS

The atom-atom effective interaction employed in this
work is similar to the one presented in Ref. 11, slightly
modified to guarantee Galilean invariance, and reads

V~1,2!5V0d~r12!1
1

2
@k82V1d~r12!1d~r12!V1k2#

1k8•V2d~r12!k, ~1!

whered(r12) is the delta functiond(r12r2), k is the opera-
tor (¹12¹2)/2ı acting on the right, andk8 is the operator
2(¹12¹2)/2ı acting on the left. The functionsVi depend
on the densities in the following manner:

V05t01t08r̃
g1u0r̃

bS•S1v0~J•J2S•T!, ~2!

V15t11t18r̃1u1S•S1v1~J•J2S•T!, ~3!

V25t21t28r̃1u2S•S1v2~J•J2S•T!. ~4!

The various densities appearing in this expression are related
to the single-particle density matrixr(r ,s;r 8,s8), wheres
ands8561/2, as follows.

Particle density:

r~r !5(
s

r~r ,s;r 8,s!ur5r8. ~5!

Spin density:

S~r !5 (
s,s8

r~r ,s;r 8,s8!^s8usW us&ur5r8. ~6!

Spin-kinetic-energy density:

T~r !5 (
s,s8

u¹r~r ,s;r 8,s8!u2^s8usW us&ur5r8. ~7!

Spin-current-tensor density:

J~r !5
1

2ı(s,s8
~¹2¹8!r~r ,s;r 8,s8!^s8usW us&ur5r8, ~8!

wheresW is the Pauli matrices vector. Furthermore, in Eqs.
~2!–~4!, r̃ is a coarse-grained density defined as

r̃ ~r !5E dr 8w~r2r 8!r~r 8!, ~9!

where the weight function is taken as

w~r !5H 3

4ph3
, r,h,

0, r.h,

~10!

and the rangeh is a free parameter.
In the case of a homogeneous nonpolarized system, the

densities~6!–~8! vanish andr̃5r. But all these densities are
important to determine the ph interaction, which can be ob-
tained through a second functional derivative of the total
energy with respect to the occupation numbers. We can write
the ph matrix elements in the following manner:

^q1q1 ,q2uVphuq1 ,q1q2&5Vph
~0!P~0!1Vph

~1!P~1! , ~11!

where P(S) are the spin-symmetric (S50) and spin-
antisymmetric (S51) projector operators. For the effective
particle-particle interaction~1!, the general form ofVph

(S) is5

Vph
~S!5W1

~S!~q!1W2
~S!~q!~q12q2!

2

1W3
~S!~q!@q1•~q1q2!1q2•~q1q1!#. ~12!

Denoting byv(q) the Fourier transform of the weight func-
tion w(r ), we obtain the following form for the functions
Wi

(S) For the coherentS50 channel,

W1
~0!5t01t08r

g@112gv~q!1 1
2g~g21!v2~q!#,

1 3
10 ~ t1813t28!v~q!rkF

21 1
4 $~ t123t2!

1@11v~q!#~ t1823t28!r%q2, ~13!

W2
~0!5 1

4 $~ t113t2!1@11v~q!#~ t1813t28!r%, ~14!

W3
~0!5 1

4v~q!~ t1813t28!r, ~15!

wherekF5(3p2r)1/3 indicates the Fermi momentum, while
those in the incoherentS51 channel now read

W1
~1!52~ t01t08r

g!2 1
4 @~ t11t2!1~ t181t28!r#q2

1r2@u0r
b1 3

10 ~u113u2!kF
2 #

1 1
4r2@v01

3
10 ~v113v2!kF

2 #q2, ~16!
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W2
~1!52 1

4 @~ t12t2!1~ t182t28!r#

2 1
2r2@v01

3
10 ~v113v2!kF

2 #, ~17!

W3
~1!50. ~18!

Finite-range effects can be introduced in this description,
replacing the interaction termt0d(r ) by the direct matrix
element of a screened Lennard-Jones~SLJ! potential5,8 in the
spin-symmetric channel:

V~r !5H 4eF S s

r D
12

2S s

r D
6G , r>s,

31n

n F8e

3
1

3t0
8ps3GF12S rs D nG , r<s.

~19!

The height of the core is fixed so that the volume integral of
V(r ) is t0/2, thus guaranteeing that the bulk properties of
both finite- and zero-range functionals are the same. This
prescription for the inclusion of finite-range effects leads to
replacement oft0/2 byVSLJ(q), the Fourier transform of the
SLJ potential, inW1

(0) given by Eq.~13!. The finite-range
density functional thus obtained has been successful in ac-
counting for anomalous zero-sound dispersion at saturation
pressure5 as well as for finite pressures.11

The Landau fields can be straighforwardly obtained from
Eq. ~12!, takingqi5kF andq•qi50, and they read

f 0
s~q!5VSLJ~q!1 1

2 t08r
g@112gv~q!1 1

2g~g21!v2~q!#

1 1
4 F t113t21

518v~q!

5
~ t1813t28!rGkF2

1 1
8 @~ t123t2!1~@11v~q!#t1823t28!,r#q2, ~20!

f 1
s~q!52 1

4 @ t113t21~ t1813t28!r#kF
2 . ~21!

As shown in previous works10,11 the spin and spin-current
density contribution are needed to reproduce the density de-
pendence of the spin-antisymmetric Landau fieldsf 0

a and
f 1
a , whose expression for the above effective interaction is

f 0
a~q!52 1

2 ~ t01t08r
g!2 1

4 @~ t12t2!1~ t182t28!r#kF
2

2 1
8 @~ t11t2!1~ t181t28!r#q2

1 1
2r2@u0r

b1 3
10 ~u113u2!kF

2 #

2 1
2r2@v01

3
10 ~v113v2!kF

2 #@kF
22 1

4q
2#, ~22!

f 1
a~q!5 1

4 @~ t12t2!1~ t182t28!r#kF
2

1 1
2r2@v01

3
10 ~v113v2!kF

2 #kF
2 . ~23!

The corresponding Landau parameters are given by the val-
ues of these fields atq50.

It is then clear that in our approach finite-range effects
manifest themselves only in theS50 channel, through the
coarse-grained density, represented by the weighting func-
tion w(q), and also through the screened Lennard-Jones po-
tential VSLJ. The parameters of the effective interaction~1!
are displayed in Table I. They have been revised, with re-
spect to those presented in Ref. 11, in order to yield the best
possible fit of the dispersion relation of zero sound at van-
ishing temperature and pressuresP50, 5, 10, and 20 bars,
according to the formalism presented in the next section, as
well as of the magnetic Landau parameters for densities
ranging between saturation and fusion at zero temperature.
The latter are shown in Fig. 1, and it can be seen that there is
an excellent agreement with the data from Ref. 15; notice,
however, thatF1

a is not experimentally known, and that only
sum rule estimates are available.

III. RPA RESPONSE FUNCTION

The calculation of the response in the RPA at zero tem-
perature starting from effective interactions of the type~1!
has been presented in Ref. 5 and more recently12 the formal-
ism has been generalized to finite temperatureT and applied
to thermally excited symmetric nuclear matter. The dynami-
cal susceptibility for each spin channelS is the solution of
the RPA integral equation and, for effective interactions of
the form ~1!, it can be written in the form

x~S!~q,v,T!52
x0~q,v,T!

D ~S!~q,v,T!
, ~24!

where the factor of 2 stands for the spin degeneracy,x0 is
the Lindhard function, and the denominator is

D ~S!~q,v,T!512W1
~S!~q!x022W2

~S!Fq24 2
vm* 2

q

1

12~m* kF
3/3p2!W2

~S!Gx012W2
~S!S q22 x02kF

2x2D
1@W2

~S!kF
2 #2Fx2

22x0x41S vm*

kF
2 D 2x0

22
m*

6p2kF
q2x0G , ~25!

TABLE I. Parameters of the effective interaction.
r050.016 348 9 Å23 is the experimental saturation density.

t0 t08r0
g t1 t2

~K Å 3) ~K Å 3) ~K Å 5) ~K Å 5)
-1369.351 496.3449 -772.236 -772.236
t18r0 t28r0 u0r0

2 (u113u2)r0
2

~K Å 5) ~K Å 5) ~K Å 3(11b)) ~K Å 5(11b))
96.0680 160.0044 -0.2690275 2011.3517
v0r0

2 (v113v2)r0
2 e s

~K Å 3(11b)) ~K Å 5(11b)) ~K! ~Å!

-399.5911 1628.351 6 2.91
h ~Å! g b n
4.3 2.1251 -2.085 8
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where m* is the effective mass at densityr, and the
generalized susceptibilitiesx2(q,v,T) andx4(q,v,T) have
been given in Ref. 12. As shown in Ref. 5, ifq and v
approach zero keepingq/v at a finite figure, the well-known
expression for the dynamical response in the Landau limit16

is obtained.
It should be noticed that in previous works10,11the anoma-

lous dispersion of zero sound was estimated by means of
sum rules; instead, as in Ref. 5, the present calculation
searches the collective pole of the response function~24!. At
vanishing temperature, the zero-sound energies have been
also obtained from the RPA integral equation,9 starting from
a density functional that combines the density and momen-
tum dependence of Skyrme interactions with the finite-range
effects contained in the polarization potentials designed by
Pines.6

In Fig. 2 we show, as solid lines, the computed dispersion
relation atT50 together with the experimental data17 for the
valuesP50, 5, 10, and 20 bars from the lowest- to the
highest-lying curve. One can see that the agreement with
experiment is good. The short-dashed line represents the up-

per bound of the ph excitation band for a free Fermi gas with
the Fermi momentumkF'0.785 Å 21 and effective mass
m*'2.8m, which corresponds to the saturation density of
liquid 3He. The long and medium dashed lines, respectively,
indicate the position of the maximum of the collective
strength in the coherent channelS50 at temperatures
T51.2 K andT5«F* with «F*5\2kF

2/2m* taking the value
1.8 K. At each nonvanishing temperature, the Fermi momen-
tum and the effective mass have been calculated for the den-
sity associated with the saturated vapor pressure~SVP!. The
strength in each spin channel corresponds to the dynamical
structure factorS(q,v,T) related to the imaginary part of the
dynamical susceptibility by the detailed balance
relationship12

S~q,v,T!52
1

p

Imx~q,v,T!

12e2v/T . ~26!

We can appreciate in Fig. 2 the persistence of a well-
defined zero-sound peak for all chosen temperatures up to
large transferred momentumq. A close examination of the
strength in the symmetric spin channel as a function of both
momentumq and energyv indicates that the dispersion
curve crosses the ph band atq'1.3 Å21 at all temperatures;
at these values, the collective peak and the low-energy reso-
nance merge together in the continuum, in agreement with
observed data.18 This behavior is to be contrasted with that
of the antisymmetric spin channel. In Fig. 3 the energy of the
peak of the magnetic strength has been depicted as a function
of q at SVP for the three temperatures used above. One can
see that the paramagnon peak energy is not sensitive to in-
creasing temperature; indeed, as the liquid heats up, the ma-
jor displacement takes place in the vicinity ofq5kF . At
zero temperature, the peak energy exhibits a flat structure
aroundq50.7 Å21 which is gradually washed out asT in-

FIG. 1. ~a! The magnetic Landau parameterF0
a as a function of

density ~in Å23); ~b! same forF1
a . Experimental data are taken

from Ref. 15.

FIG. 2. The dispersion relation of the zero-sound mode of liquid
3He. Solid lines correspond to zero temperature and pressures
P50, 5, 10, and 20 bars~from the lowest to the highest curve!
together with experimental data~Ref. 17!. Long and medium
dashed lines, respectively, correspond to temperaturesT51.2 K
andT5«F* , and the short dashed curve is the upper bound of the ph
excitation band. Energies are given in meV and momenta in Å21.
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creases. The interaction in the magnetic channel being a
weakly attractive one, this structure is just a slight distortion
of the curvev0(q) for the maximum of the ph strength of an
ideal gas at zero temperature.20 In fact, in a noninteracting
system, for transferred momenta below 2kF , the peak of the
ph resonance lies at

v0~q!5H qkF
m*

2
q2

2m*
, q,kF ,

q2

2m*
, kF,q,2kF .

~27!

We then see that curvev0(q) approaches the matching point
at kF with zero slope from the left, this being the reason of
the observed flattening of thev(q) curve in the presence of
a weak interaction.

While most of the paramagnon dispersion curve lies in-
side the ph continuum, for the largest values of transferred
momentum, a collective peak appears for bothT50 and
T51.2 K. However, in either case the peak strength is weak,
as we can appreciate from Fig. 4, where the maximum
strength per particle in the asymmetric spin channel is plot-
ted for the same temperatures as above. The experimental
data are taken from Ref. 18.

This maximum strength presents, at zero temperature, a
drastic decrease with increasing momentum, as already ob-
served in previous works;5,11 thermal excitation of the liquid
causes the strength to approach zero asymptotically at an
even faster rate, and the ordinate at zero momentum is con-
siderably enlarged. This behavior of the ordinates is related
to the variation in the densities at SVP for increasing tem-
perature, which can be seen to reach a maximum at
T'0.54 K. Taking into account the fact that for zero trans-
ferred momentum the peak of the paramagnon strength lies
at zero energy, its height can be evaluated in the long-
wavelength regime5 as a function of the Landau parameters;
indeed, in this limit the denominator of Eq.~24! in the mag-
netic channel takes the form

D ~1!512
2p2

m* kF
FF0

a1
F1
a

11F1
a/3 Sm*v

qkF
D 2Gx0 . ~28!

Explicit calculations show that the paramagnon strength is a
monotonically increasing function of the density, and conse-
quently, possesses a maximum as a function of temperature
at T'0.54 K. This is illustrated in Fig. 5. It should be also
remarked that insofar as the temperature dependence of the
paramagnon peak is concerned, the present results are in
good agreement with the dynamical structure factor experi-
mentally observed.18

The total strength is defined as

S~q,v!5S~0!~q,v!1
sc

s i
S~1!~q,v!, ~29!

FIG. 3. The dispersion relation for the energy at the peak of the
paramagnon strength. Solid, long dashed, and medium dashed
curves, respectively, correspond to temperaturesT50, 1.2 K, and
«F* .

FIG. 4. The peak of the paramagnon strength~in meV21) as a
function of transferred momentum~in Å21). Solid, long dashed,
and medium dashed curves, respectively, correspond to tempera-
turesT50, 1.2 K, and«F* . The experimental data have been taken
from Ref. 18.

FIG. 5. The peak of the paramagnon strength at zero transferred
momentum as a function of temperature. Units are the same as in
Fig. 4.
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wheresc,i are the coherent and incoherent cross sections for
neutron scattering with ratiosc /s i50.25. Figure 6, respec-
tively contains~a! the strengthS(0), ~b! one-fourth of the
incoherentS(1) strength, and~c! the total one given in Eq.
~29!, per particle and as functions of transferred energy for a
momentumq5kF and for temperaturesT50, 1.2 K, and
«F* It is clearly seen that the paramagnon peak dominates the
continuum strength and that the location of the resonance
maximum is rather insensitive to thermal excitation, as al-
ready indicated in Fig. 3. By contrast, the collective peak in
the density channel undergoes an important thermal broad-
ening as well as a displacement towards lower energies in
agreement with the results in Fig. 2. An interesting feature of
these figures, which extend over the whole energy axis rather
than over the positive energy region, is the fact that for suf-
ficiently high temperatures an ‘‘image peak’’ of the collec-
tive mode appears at negative energies, indicating the en-
larged capability of the thermally excited liquid to transfer
momentum and energy to the probe.12

IV. CONCLUSIONS

We have performed a RPA calculation of the dynamical
response of liquid3He at finite temperatures. This is possible
within density functional theory, provided that the multipolar
components of the ph effective interaction vanish forl>2;
furthermore, the monopolar amplitude of this interaction has
been allowed to possess a Lennard-Jones shape to make
room to some finite-range effects. We have adopted a param-
etrization of the density functional that permits an accurate
simultaneous description of the equation of state at zero tem-
perature, the density dependence of the Landau parameters,
the surface tension, and the anomalous dispersion of zero
sound at vanishing temperature and at various pressures, and
that guarantees stability of small drops.

The calculations here presented illustrate the applicability
of the finite-temperature RPA formalism12 to liquid helium.
On the one hand, our results show that the zero-sound peak
is rather sensitive to thermal broadening~cf. Fig. 6!; how-
ever, experimental widths are mostly due to coupling of the
collective mode to multipairs whose sizes, which range be-
tween 0.1 and 0.5 meV,13 completely absorb the effects of
thermal smoothing of the Fermi sea. It is also important to
keep in mind that these experimental widths appear at any
transferred momentum. On the other hand, the calculated
zero-sound and paramagnon centroids agree reasonably with
data. The latter exhibits a weak temperature dependence;
thermal flattening of the maximum magnetic strength is more
significant and also consistent with experimental results.

An important feature of measured total intensities is the
large strength lying, at all temperatures, between the density
and spin peaks, a fact that has been regarded as a fingerprint
of a reduced value of the helium effective mass to about
2m.13 The present results include the effective mass that cor-
responds to the density at SVP for each temperature, which
remains always close to 2.8m, and do not reproduce the in-
termediate strengths atT50 and 1.2 K. Neither can these
calculations describe the measured strength at highv, which
has been attributed to multipair excitations.19 It should be
kept in mind that our formalism does not include any effect
of collisional broadening of the collective mode. Although

FIG. 6. The strength per particle in meV21 as a function of
energy~in meV! ~a! in the coherentS50 channel;~b! in the inco-
herentS51 channel, times the weigthing factorsc /s i50.25; ~c!
the total one. Solid, long dashed, and medium dashed curves, re-
spectively, correspond to temperaturesT50, 1.2 K, and«F* .
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the latter could be accounted for, at the cost of some extra
numerical effort, simply considering complex energiesv in
the finite-temperature RPA formalism, such a treatment
would require the introduction of the imaginary part of the
energy as a parameter that mimics the collisional width. A
more adequate theory of collisional broadening can be devel-
oped within the RPA philosophy and will be postponed for
future work, aiming at a description of the well-established
variation of the zero-sound width with increasing pressure.17

Finally, we wish to stress that our calculated strength ex-
hibits a negative energy tail extending up to20.5 meV, in
good agreement with existing data.18
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Lett. 37, 842~1976!; K. Sköld, and C.A. Pelizzari, Philos. Trans.
R. Soc. London B290, 605 ~1980!.

19F. Dalfovo and S. Stringari, Phys. Rev. Lett.63, 532 ~1989!.
20D. Pines and P. Nozie`res, The Theory of Quantum Liquids I:

Normal Fermi Liquids~Benjamin, New York, 1966!.

7400 54M. BARRANCO, E. S. HERNA´ NDEZ, AND J. NAVARRO


