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A study of final-state effects~FSE! on the dynamic structure function of superfluid4He in the Gersch-
Rodriguez formalism is presented. The main ingredients needed in the calculation are the momentum distri-
bution and the semidiagonal two-body density matrix. The influence of these ground-state quantities on the
FSE is analyzed. A variational form ofr2 is used, even though simpler forms turn out to give accurate results
if properly chosen. Comparison to the experimental response at high momentum transfer is performed. The
predicted response is quite sensitive to slight variations on the value of the condensate fraction, the best
agreement with experiment being obtained withn050.082. Sum rules of the FSE broadening function are also
derived and commented. Finally, it is shown that Gersch-Rodriguez theory produces results as accurate as those
coming from other more recent FSE theories.

I. INTRODUCTION

Deep inelastic neutron scattering~DINS! has been exten-
sively applied to the study of quantum fluids, since Hohen-
berg and Platzman’s1 proposal of using DINS to determine
the momentum distributionn(k) of helium atoms in super-
fluid 4He. The determination ofn(k) in quantum liquids is a
challenging problem of fundamental interest.2 In fact, the
knowledge ofn(k) provides very useful information to un-
derstand basic properties of the quantum nature of these sys-
tems as the Bose-Einstein condensation. At the same time,
the theoretical analysis of DINS probes and stimulates the
development of modern many-body techniques. These issues
have been the main motivations of a considerable amount of
measurements and theoretical work on liquid4He and other
quantum liquids.3–17

The inelastic scattering of neutrons by liquid4He is de-
scribed by the double differential cross section

d2s

dVdv
5b2

kf
ki
S~q,v!, ~1!

whereb is the scattering length,ki andkf are the initial and
final wave vectors of the scattered neutron, andq andv are
the momentum and energy transferred from the neutron to
the sample. The dynamics of the sample is entirely contained
in S(q,v), the dynamic structure factor, which is the Fourier
transform of the density-density correlation function.18 At
sufficiently high momentum transfer, the scattering is en-
tirely due to single atoms andS(q,v) can be accurately de-
scribed by the impulse approximation~IA !,1 provided that
the interatomic potential does not have an infinite repulsive
core. In this regime, the kinetic energy of an atom recoiling
from a neutron collision is much larger than the potential
energy due to the interaction with the neighboring atoms, so

that collisions of the former with other atoms can be ne-
glected. The IA predicts a simple relation betweenS(q,v)
andn(k),

SIA~q,v!5
1

~2p!3rE dk n~k!dS v2vR2
k–q

m D , ~2!

wherevR5q2/2m is the free atom recoil frequency,m is the
mass of the4He atoms, andn(k) is the thermally averaged
occupation probability of the single particle state of momen-
tumk, which reduces to that of the ground state atT50. The
delta function in Eq.~2! takes care of the momentum and
energy conservation in the scattering event between the neu-
tron and a single atom. AssumingS(q,v)5SIA(q,v), the
momentum distributionn(k) can be extracted from Eq.~2!
by simple differentiation. Notice that in the previous equa-
tion and henceforth\ is set to 1.

In isotropic systems, wheren(k) depends only on the
modulus ofk, it is useful to introduce the Compton profile

JIA~Y!5
q

m
SIA~q,v!, ~3!

which is driven by a single variable

Y5
m

q S v2
q2

2mD , ~4!

and fulfillsY scaling.19 If a finite fraction of atomsn0 occu-
pies the zero momentum state,JIA(Y) presents ad peak of
strengthn0 atY50. However, this expected signature of the
condensate is not observed in experiments performed at
momentum transfer as high as 23 Å21,4 because the IA
spectrum is broadened by both final-state effects~FSE! and
instrumental resolution effects~IRE!. Hence the theoretical
interpretation of the experimental data requires not only the
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knowledge ofn(k), but also an accurate description of both
the dynamics which determines FSE and the instrumental
broadening function.5

Several methods to account for FSE have been
proposed.8,9,12–15 Among them, we will focus on the so-
called convolutive theories, in which

S~q,v!5E
2`

`

dv8SIA~q,v8!R~q,v2v8!, ~5!

whereR(q,v) is the FSE broadening function.
After the first attempt1 to approximateR(q,v) by a

Lorentzian of width proportional to the4He-4He cross sec-
tion, Gerschet al.8 expressed the response functionS(q,v)
in a 1/q series expansion, whose coefficients are given by
integrals of many-body correlation functions averaged on the
ground state of the system. In this approach, the response
whenq→` is given by the first term of the expansion of the
incoherent part ofS(q,v), which turns to be exactly the IA.
However, the theory could not deal with realistic interatomic
potentials presenting a strong repulsion at short distances. To
overcome this problem, Gersch and Rodriguez9 proposed a
cumulant expansion ofS(q,t) which provides an adequate
frame for calculating the response function at high momen-
tum transfer. The full calculation is impractical, but with
some approximations based on physical grounds,S(q,v)
can be expressed in terms of the one- and the semidiagonal
two-body density matrices, and the two-body interaction. At
the time the theory was proposed the numerical application
was made with a very simple approximation of the two-body
density matrix that resulted in an overestimation of the re-
sponse at the quasielastic peak.10

The main purpose of the present work is to revisit Gersch-
Rodriguez theory, and show that using a realistic two-body
density matrix one gets aS(q,v) in good agreement with
both experimental data and more recent theories of FSE.12,14

In the next section, a review of the theory is presented.
Section III is devoted to the discussion of the results and
their comparison with the experimental data. A sum rules
analysis ofR(q,v) is presented in Sec. IV. In Sec. V our
results are compared with other FSE theories, and finally
Sec. VI summarizes the main conclusions of the work.

II. GERSCH-RODRIGUEZ THEORY OF FSE

In the Gersch-Rodriguez theory,9 the density-density cor-
relation factorS(q,t) is expressed as the product of the IA
and the FSE correcting function by means of a cumulant
expansion. Thenth order cumulant accounts for the correla-
tions among the struck atom and clusters ofn particles in the
background. In the high momentum transfer limit, those
terms withn51 carry the most significant corrections. At
this level, the FSE broadening function can be expressed as a
function of the interatomic potential and the one- and two-
body density matrices.

The starting point in Gersch-Rodriguez theory is the time
representation of the response

NS~q,t !5(
j ,l

^e2 iqr leiHteiqr je2 iHt&

5(
j ,l

^eiq~r j2r l !e2 iqr jeiHteiqr je2 iHt&, ~6!

which can be brought to the following form:

NS~q,t !5eivqt(
j ,l

K eiq~r j2r l !eiL j t

3TexpF i E
0

t

dt8H~r j2vqt8!Ge2 iHt L , ~7!

whereT is the time-ordering operator andH(r j2vqt8) is the
actual Hamiltonian of the system where the position coordi-
nate of particlej has been shifted by an amountvqt8. As the
interatomic potential considered is velocity independent, one
can write

H~r j2vqt8!5H1Uj~vqt8!, ~8!

with

H5(
j

pj
2

2m
1(

i, j
V~r i j ! ~9!

and

Uj~vqt8!5 (
mÞ j

U j ,m~vqt8!,

Uj ,m~vqt8!5@V~r j2vqt8,rm!2V~r j ,rm!#, ~10!

wherevq5q/m andvq5q2/2m.
The incoherent part of the response, which is defined by

taking particles labeledj and l in Eq. ~7! to be the same, is
the only contribution at largeq. In this limit, S(q,t) may be
written in the following way:

S~q,t !

5eivqtK eivqtp1eiHtTexp F i E
0

t

dt8 (
mÞ1

Û1,m~vqt8!Ge2 iHt L ,
~11!

where Û(vqt8) is the previously defined potential operator
but with the position operators evaluated at timet8 rather
than att50. Notice that expression~11! is as hard to evalu-
ate as the originalS(q,t). An exact treatment would require
the knowledge of the time evolution of the whole system, so
different approximations should be made in order to deal
with this last relation.

Gersch and Rodriguez9 performed a cumulant expansion
of the ground-state expectation value of Eq.~11!. The expan-
sion contains an infinite number of terms, and allows for the
factorization of the IA from the total response

S~q,t !5SIA~q,t !R~q,t !, ~12!

R(q,t) being the FSE correcting function given by
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R~q,t !5expF2
1

^eitvqp1& (mÞ1
K eitvqp1

3F12TexpH i E
0

t

dt8Û1,m~vqt8!J G L 1•••G . ~13!

Up to this point, the result is exact because it is nothing
more than a rearrangement of the different terms entering in
S(q,t). The first problem in the calculation of Eq.~13! is
associated to the infinite number of terms appearing in the
exponential. Such a difficulty can be skipped if one looks for
the underlying physics contained in each term: the contribu-
tion of the nth order cumulant toS(q,t) accounts for the
correlations betweenn-particle clusters during their interac-
tions with the struck atom. One may expect that the first
significant correction to the IA is produced by the multiple
scattering of the struck particle with the atoms of the media,
considering them independently of each other. This corre-
sponds to a truncation of the series beyond the first order
cumulant.

The second problem lies on the evaluation of the time
dependence appearing in the particle coordinates of
Û1,m(vqt8). In the largeq limit, the displacement of the
struck particle is much larger than the average movement of
the background atoms. Thus one can discard the time depen-
dence ofr (t) in Û1,m . This is a safe procedure as, even
though the inclusion of such a time dependence avoids hard-
core collisions between the struck particle and other target
atoms, the contribution toR(q,t) coming from those situa-
tions vanishes due to rapid oscillations in the imaginary ex-
ponential of Eq.~13!. Therefore, one can write9

R~q,t !5expF2
1

r1~vqt !
E dr r2~r ,0;r1vqt,0!F1

2expH i E
0

t

dt8$V@r1vq~ t2t8!#2V@r1vqt#%J G G ,
~14!

where r1 and r2 are the one-body and semidiagonal two-
body density matrices of the system, respectively.R(q,t) is a
complex function, but its Fourier transform is real because
its real part is even and its imaginary part odd under the
changet→2t.

Equation~12! predictsS(q,t) as the product ofSIA(q,t)
and R(q,t), and thereforeS(q,v) is the convolution of
SIA(q,v) andR(q,v)

S~q,v!5E
2`

`

dv8SIA~q,v8!R~q,v2v8!. ~15!

In the particular case of liquid4He, the momentum dis-
tribution n(k) may be written as

n~k!5~2p!3rn0d~k!1ñ~k!, ~16!

wheren0 is the condensate fraction value andñ(k) stands for
the occupation of nonzero momentum states. Consequently,
SIA(q,v) is split in two parts

SIA~q,v!5n0dS v2
q2

2mD1
m

4p2rqEu
mv
q 2

q
2 u

`

kn~k!dk

5n0dS v2
q2

2mD1S̃IA~q,v!, ~17!

where the first term on the right-hand side is the condensate
response which appears as a delta peak of strengthn0 located
at the quasielastic energy, andS̃IA(q,v) is the noncondensate
contribution ofn(k) to the IA. Introducing the West variable
Y5mv/q2q/2, SIA(q,v) can be expressed in terms of the
Compton profile

q

m
SIA~q,v![JIA~Y!5n0d~Y!1

1

4p2rEuYu

`

kn~k!dk,

~18!

which scales inY.
Moreover, at highq the response is usually expressed in

terms ofY through the relation

J~q,Y!5
q

m
S~q,v!, ~19!

and thus Eq.~15! is transformed into

J~q,Y!5E
2`

`

dY8JIA~Y8!R~q,Y2Y8!

5n0R~q,Y!1E
2`

`

dY8J̃IA~Y8!R~q,Y2Y8!,

~20!

where

R~q,Y!5
q

m
R~q,v!. ~21!

III. NUMERICAL RESULTS

In this section, we present results for the FSE correcting
function R(q,Y) and the response functionJ(q,Y) calcu-
lated in the framework of the Gersch-Rodriguez formalism.
The input density matricesr1(r ) andr2(r 1,r 2;r 18,r 2) used to
calculate JIA(Y) and R(q,Y) have been obtained in the
framework of the HNC theory20,21,23 from a variational
many-body wave function containing two- and three-body
correlations.22 The variational minimization has been per-
formed for the HFDHE2 Aziz potential24 at the experimental
equilibrium density (r50.365s23; s52.556 Å!. The
ground-state description obtained with this wave function is
in good agreement with recent Green’s function Monte Carlo
calculations.25,26The discussion is separated in two parts, the
first one being devoted to the study of bothR(q,Y) and
J(q,Y) and their comparison to experimental data, and the
second one to the analysis of the dependence of these func-
tions on the different approximations used in the variational
description of the ground-state wave function.

The actual calculation of the FSE broadening function is
initially performed in time representation~14!. R(q,x) is a
complex quantity which can be written in the following way:
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R~q,x!5ef~q,x!@cos„c~q,x!…1 i sin„c~q,x!…#, ~22!

with

f~q,x!52
2

r1~x!
E dr r2~r ,0;r1x!

3sin2F 1

2vq
E
0

x

du$V~r1x2u!2V~r1x!%G ,
c~q,x!5

1

r1~x!
E dr r2~r ,0;r1x!

3sinF 1vqE0xdu$V~r1x2u!2V~r1x!%G ,
~23!

x being vqt. As can be seen from Eq.~23!, f(q,x) and
c(q,x) are even and odd functions ofx, respectively. There-
fore, the real and imaginary parts ofR(q,x) are respectively
even and odd under the changex→2x, and consequently
R(q,Y) is real. Even if the potential becomes very repulsive
at short distances, as is the case of the Aziz potential, Eq.
~14! gives anR(q,Y) which does not diverge.

The real and imaginary parts ofR(q,x) are shown in Fig.
1 for q523.1 Å21. In the relevant range ofx, ReR(q,x) has
a dominant decreasing behavior. The ReR(q,x) and Im-
R(q,x) are related to the symmetric and antisymmetric com-
ponents ofR(q,Y), respectively. As the imaginary part is
much smaller than the real part,R(q,Y) is mostly symmetric
aroundY50. In Fig. 2, we showc(q,x) and f(q,x) at

q523.1 Å21. f(q,x) is a negative and a monotonously de-
creasing function ofx, causing both the real and the imagi-
nary parts ofR(q,x) tend to zero whenx→` ~22!.

In Fig. 3, we showR(q,Y) at two different values ofq,
23.1 Å21 and 15.0 Å21. The main trends ofR(q,Y) in all
FSE convolution theories are the same: a dominant central
peak and small oscillating tails which vanish asuYu in-
creases. As one can see, the shape ofR(q,Y) smoothly
changes withq, this variation being reflected in an overall
redistribution of the strength between the main peak and the
wings. Whenq increases, the peak appears higher and nar-
rower pointing to the tendency ofR(q,Y) to become a delta
distribution in the limitq→`.

The existence of a finite condensate fractionn0 in super-
fluid 4He plays an important role in the FSE corrections, as
is reflected in Fig. 4 where the broadening of the condensate
and noncondensate parts ofJIA(Y) are separately shown.
The small differences betweenJ̃IA(Y) ~dotted line! and the
convolution ofJ̃IA(Y) with R(q,Y) ~long-dashed line! reveal
small FSE on the noncondensate part of the response at high
q. In contrast, the broadening of the condensate term~short-
dashed line!, i.e., the convolution product ofR(q,Y) and
n0d(Y), contributes toJ(q,Y) asn0R(q,Y) which is a func-
tion with an appreciable width and height. The inclusion of
the latter term produces a totalJ(q,Y) ~solid line! which

FIG. 1. Real and imaginary parts ofR(q,x) at q523.1 Å21.

FIG. 2. Functionsf(q,x) andc(q,x) at q523.1 Å21.

FIG. 3. R(q,Y) at q523.1 Å21 ~solid line! andq515.0 Å21

~dashed line!.

FIG. 4. Different contributions toJ(q,Y) at q523.1 Å21. Dot-
ted line, noncondensate term ofJIA(Y); long-dashed line, noncon-
densate term ofJIA(Y) after the convolution withR(q,Y); short–
dashed line, condensate contribution once broadened by FSE; solid
line, total response.
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manifests a sizeable departure from the IA prediction. There-
fore, FSE corrections in superfluid4He appear to be relevant
even at so highq’s.12

A direct comparison between theoretical and experimental
dynamic structure factors is not possible due to the presence
of instrumental resolution effects~IRE! in the experimental
data acquisition process. It would be desirable, from a theo-
retical viewpoint, to remove the IRE inherent to the mea-
sured response, especially at highq where they become
larger. However, the latter is an ill-posed problem due to the
statistical noise of the data, and thus the only way to com-
pare theory and experiment is by convoluting the theoretical
J(q,Y) with an instrumental resolution functionI (q,Y). At
present,I (q,Y) is obtained from a Monte Carlo simulation
of the experimental setup, and in contrast to earlier models
used in neutron scattering analysis, it is neither Gaussian nor
symmetric aroundY50, and is comparable in width and
height to R(q,Y) at those momenta.4 The influence of
I (q,Y) in the response is sketched in Fig. 5 forq523.1
Å 21. As one can see, the introduction of the IRE in the
response~solid line! appreciably modifiesJ(q,Y) ~dashed
line!. The most important effect ofI (q,Y) is to quench the
central peak reducing the effects of the FSE correction on
JIA(Y), whereas the tails remain almost unchanged.

In Fig. 6, we present results ofJ(q,Y) broadened by the
IRE at different values ofq in comparison with inelastic
scattering data atT50.34 K from Ref. 4. There is an overall
agreement between the predicted and the observed scattering
data, the quality of the Gersch-Rodriguez theory being com-
parable to results provided by other theories12,14 ~see also
Sec. V!. It is worth to notice that all FSE theories are stressed
when applied to intermediateq values. This is also apparent
in our results, as one can see for the lowestq value reported
in Fig. 6. Thus, whereas the experimental peak shifts its lo-
cation to a small negativeY value, the theoretical one is
shifted to so small positive values ofY that it is not appre-
ciable in the figure.

The most relevant quantity in the calculation ofJ(q,Y) is
the momentum distributionn(k) which completely deter-
mines the Compton profileJIA(Y). The influence ofn(k) in
J(q,Y) is shown in Fig. 7. The dashed and solid lines corre-
spond to a Jastrown(k) @nJ(k)# and a Jastrow plus triplet
n(k) @nJT(k)#, respectively. The condensate fraction pre-

dicted by the two approximations are slightly different,
n0
J50.091 andn0

JT50.082. This reduction ofn0 produces a
small decrease of strength in the peak ofJ(q,Y) bringing our
theoretical prediction closer to the experiment. A basic ingre-
dient in the calculation ofR(q,Y) is the semidiagonal two-
body density matrix, which in the framework of the HNC
theory is given by23

r2~r1 ,r2 ;r 81 ,r2!

5rr1~r 118!gwd~r 12!gwd~r 182!exp@A~r1 ,r2 ;r 81!#, ~24!

wherer1(r 118) is the one-body density matrix,gwd(r ) is an
auxiliary two-body radial distribution function, and

FIG. 5. Effects of the different broadenings to the response at
q523.1 Å21. Dotted line, noncondensate IA prediction; dashed
line, IA broadened by FSE; solid line, totalJ(q,Y) including both
FSE and IRE.

FIG. 6. Comparison of the predictedJ(q,Y) at ~a! 23.1 Å21,
~b! 17.9 Å21, ~c! 15.0 Å21, and ~d! 10.2 Å21 with experimental
data~points with error bars!.

53 5665FINAL-STATE EFFECTS ON SUPERFLUID4He IN THE . . .



A(r1 ,r2 ;r 81) is the sum of the Abe diagrams. Notice that the
structure ofr2 allows for the exact cancellation ofr1 in Eq.
~14!. As the explicit dependence ofr2 in n0 is introduced in
r1 , the influence ofn0 in R(q,Y) is almost negligible. We
have verified that the inclusion of three-body correlations
does not appreciable modify the structure ofR(q,Y). Con-
sequently, three-body correlations can be omitted in the cal-
culation ofR(q,Y). In a further step, we have also studied
the influence of the Abe diagrams using a Jastrow wave
function. As is well known, it is not possible to calculate
A(r1 ,r2 ,r18) exactly but a good estimation of its contribution
can be obtained through the scaling approximation.27 The
inclusion of the Abe diagrams in Eq.~24! using the scaling
approximation produce negligible effects in the final form of
R(q,Y). In fact, the Abe terms, which quickly vanish when
the interparticle separation increases, only modify the struc-
ture of r2 when coordinates 1, 18, and 2 are very close to
each other. These small changes inr2 are then suppressed
when integrated to obtainR(q,t). Furthermore, one can
slightly change the functionsgwd(r ) and no influences in
R(q,Y) are observed. This fact, which will be explicitly
commented in Sec. V, points to the relevance of the func-
tional decomposition ofr2 rather than the exact form of the
functions entering in it.

IV. SUM RULES

In this section we study the sum rules satisfied by the
Gersch-Rodriguez FSE broadening functionR(q,Y). From
the relation

J~q,Y!5E
2`

`

dY8JIA~Y8!R~q,Y2Y8!, ~25!

and the first sum rules of bothJIA(Y) and the incoherent part
of J(q,Y), an equivalent set ofY-weighted integrals for
R(q,Y) can be derived.12 Notice that Eq.~25! can be taken
as a possible definition ofR(q,Y) provided thatq is large
enough for the coherent part ofJ(q,Y) to be negligible.
These sum rules are model independent, and so any suitable
convolutive FSE broadening function must fulfill them. The
first sum rules ofR(q,Y) are

m0
R~q!5E

2`

`

dYR~q,Y!51,

m1
R~q!5E

2`

`

dYYR~q,Y!50,

m2
R~q!5E

2`

`

dYY2R~q,Y!50,

m3
R~q!5E

2`

`

dYY3R~q,Y!5
m

2q3
rE drg~r !~q•“ !2V~r !.

~26!

As we are only considering the incoherent part of the
response,m0

R(q) is 1 at anyq. Both the first and second
moments ofR(q,Y) vanish because the impulse approxima-
tion exactly fulfills the incoherent sum rules. Finally, the
third moment ofR(q,Y) is expressed in terms of the two-
body radial distribution functiong(r ) and the interatomic
potentialV(r ), which are not included inJIA(Y).

Relations~26! are exact and partially define the behavior
of R(q,Y). Therefore, one can use them to check the accu-
racy ofR(q,Y) calculated using different approximations. In
the Gersch-Rodriguez theory, the sum rules analysis can be
analytically performed. In fact, expressions for the sum rules
can be easily derived from the time derivatives ofR(q,t) at
t50,

mk
R~q!5

1

i kvq
k

dk

dtk
R~q,t ! U

t50
. ~27!

Performing a McLaurin expansion ofR(q,t), Eq. ~14!,
the different coefficients of the series are directly related to
theY-weighted sum rules. In this way, one obtains the rela-
tions

m0
R,GR~q!51,

m1
R,GR~q!50,

m2
R,GR~q!50,

m3
R,GR~q!5

2m

q3r E dr r2~r ,0;r !~q•“ !2V~r !

1
3m

q3r E dr @~q•“ !V~r !#@~q•“x!r2~r ,0;x!#x5r

~28!

wheremk
R,GR(q) stand for theY-weighted integral of the FSE

function in Gersch-Rodriguez theory. Integrating by parts the
second term ofm3

R,GR(q), and taking into account general
symmetry properties ofr2, one can expressm3

R,GR(q) in the
following way:

m3
R,GR~q!5

m

2q3rE dr r2~r ,0;r !~q•“ !2V~r !. ~29!

FIG. 7. Detail of the central peak of the response at q523.1
Å21 as predicted using two dif ferent n(k)’s. The solid and dashed
lines correspond tonJT(k) andnJ(k), respectively. The points with
error bars are the experimental data.
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As the diagonal part ofr2 is r2g(r ), the analytical expres-
sion ofm3

R is recovered. Therefore, the zero, first, second,
and third moments ofR(q,Y) are exactly fulfilled in the
Gersch-Rodriquez theory.

Nevertheless, the exactr2 is not known, and the use of an
approximation can produce numerical differences between
Eqs. ~29! and ~26!. In fact, we have checked that the inclu-
sion of the Abe terms in the variationalr2 defined in Eq.~24!
is crucial in reproducingg(r ) in its diagonal part, and con-
sequentlym3

R(q).

V. COMPARISON WITH OTHER FSE THEORIES

FSE theories can be classified in different groups depend-
ing on the way they incorporate the corrections to the IA.
The two most important groups are, on one hand, convolu-
tive theories in which the total response is expressed as a
convolution ofJ IA(Y) andR(q,Y) and, on the other, addi-
tive theories where the leading FSE corrections are summed
up to the IA. Examples of theories belonging to the first class
are those of Silver12 or Carraro and Koonin.14An example of
additive theory is that originally derived by Gersch, Rod-
riguez and Smith,8 which was next generalized by Rinat13 to
treat also hard core potentials.

Gersch-Rodriguez formalism was the first in predicting
convolutive FSE corrections. Silver’s and Carraro and Koo-
nin’s theories appeared some years after. In this section, we
present a comparison between their results and our predic-

tions obtained in the framework of the Gersch-Rodriguez
theory.

In the Gersch-Rodriguez theoryR(q,Y) is formulated in
terms of the semidiagonal two-body density matrix of the
system. In the present work, a variational ansatz for this
quantity has been employed and discussed, but at the time
the formalism was developed only a qualitative description
of r2 was available. This led the original authors to use a
form of r2 based on a Hartree-Fock approximation and the
Schwartz inequality8

r2~r1 ,r2 ;r 81 ,r2!5rr1~r 118!Ag~r 12!g~r 182!, ~30!

r1(r ) being the one-body density matrix andg(r ) the two-
body radial distribution function. At that time, detailed mi-
croscopic calculations ofg(r ) were not available, so they
had to approximate it. The form selected for the radial dis-
tribution function was simply a step function

g~r !5u~r2r 0!, ~31!

with a parameterr 0 to mimic the radius of the hole ofg(r ).
Originally, r 0 was taken as a fitting parameter. However,
theoretical arguments brought them to fix its value to
r 052.5 Å.10 With this prescription, Gersch and Rodriguez
predicted aJ(q,Y) that visibly overestimates the measured
strength of the response around its maximum. This failure
was later discussed and partially attributed to a somewhat
excessively simplified approximation to the problem.12 Nev-
ertheless, this discrepancy seems to be eliminated by choos-
ing a different value ofr 0 . In order to show this feature,
several calculations using Eqs.~31! and ~32! with different
values of r 0 have been performed. In Fig. 8, results for
R(q,Y) with r 0 equal to 2.0, 2.1, and 2.2 Å are depicted and
compared toR(q,Y) computed with the variationalr2 . Even
though the behavior of the tails ofR(q,Y) in the Gersch-
Rodriguez approximation ofr2 is different from the one of
R(q,Y) with the variational two-body density matrix, the
height and width of both peaks are in good agreement for a
value of r 0 laying between 2.1 and 2.2 Å. Then, a proper
choice of r 0 in the simple Gersch-Rodriguez model forr2
produces accurate results, provided that the height and width
of the central peak are the most important features of the
FSE broadening function.

We have compared our results forR(q,Y) and J(q,Y)
with those obtained by Silver12 and Carraro and Koonin.14

Figures 9, 10, and 11 showR(q,Y) andJ(q,Y) in Gersch-
Rodriguez~GR!, Silver ~HCPT!, and Carraro and Koonin

FIG. 8. Comparison ofR(q,Y) calculated using the Gersch-
Rodriguezr2 with different values ofr 0 ~solid lines! and the varia-
tional r2 ~dashed line!.

FIG. 9. Comparison between Gersch-Rodriguez, Silver, and
Carraro and Koonin results for bothR(q,Y) and J(q,Y) at
q523.1 Å21.

FIG. 10. Comparison between Gersch-Rodriguez and Silver re-
sults for bothR(q,Y) andJ(q,Y) at q515.0 Å21.
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~CK! theories for three values ofq, 23.1, 15.5, and 10.2
Å 21. The FSE functionR(q,Y) is slightly different in the
three theories, though both the height and width of the cen-
tral peak are quite similar. The tails of the FSE broadening
function show a different behavior, although they quickly
vanish as uYu increases. Despite of the discrepancies in
R(q,Y), the predicted responses are nearly the same at
q523.1 Å21 and in good agreement with the experimental
data. Asq is lowered, the deficiencies of the FSE theories
show up butJ(q,Y) is still reasonably well described at
q515.5 Å21. For the lowestq value,q510 Å21 ~Fig. 11!,
the theoretical responses move away from experiment, and in
particular do not present the small shift of the peak to nega-
tive Y values~see also Fig. 6!. Then, even for intermediateq
values, the Gersch–Rodriguez theory reproduces the dy-
namic structure function as precisely as other existing theo-
ries for the FSE.

VI. SUMMARY AND CONCLUSIONS

In this work, final state effects on the density response of
superfluid 4He have been studied in the framework of the
Gersch-Rodriguez theory using a realistic description of the
ground state of the liquid. The response is predicted as the

convolution product of the Compton profileJIA(Y) and the
FSE broadening functionR(q,Y).

Two quantities describing the ground state of the system
are needed. The first one is the momentum distributionn(k),
which completely determinesJIA(Y). The second one is the
semidiagonal two-body density matrix, which enters in the
Gersch-Rodriguez form ofR(q,Y).

JIA(Y) has two terms, one corresponding to the noncon-
densate part ofn(k) and another given byn0d(Y). This
splitting produces, after convoluting withR(q,Y), a total
response which is also the sum of two terms, corresponding
to the condensate and noncondensate contributions. The
former is linear inn0 and mostly affectsJ(q,Y) around
Y50. The latter is much less affected by FSE, although the
effects are nonnegligible. We have verified that Gersch-
Rodriguez theory gives accurate results when proper forms
for the one- and two-body density matrices are used. A varia-
tional r2 obtained in the HNC framework accurately repro-
duces the experimental response at highq’s. Furthermore,
we have checked that the functional decomposition ofr2 is
very important in the calculation ofR(q,Y). Simple models
conserving the variational functional form can also produce a
good estimation of the response.

Our results are comparable to other calculations using
more recent convolutive FSE theories. None of the theories
correctly accounts for the observed response whenq is low-
ered below about 10 Å21. Further improvements could arise
when higher order terms in the Gersch-Rodriguez cumulant
expansion are considered or the time dependence of the par-
ticle coordinates is taken into account.
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