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An Ising-like model, with interactions ranging up to next-nearest-neighbor pairs, is used to sim-
ulate the process of interface alloying. Interactions are chosen to stabilize an intermediate “antifer-
romagnetic” ordered structure. The dynamics proceeds exclusively by atom-vacancy exchanges. In
order to characterize the process, the time evolution of the width of the intermediate ordered region
and the diffusion length is studied. Both lengths are found to follow a power-law evolution with
exponents depending on the characteristic features of the model.

I. INTRODUCTION

Interface alloying of two metals is a nonequilibrium
problem of great interest because of its relation with
technological processes like diffusion bonding, thin film
deposition, and laser surface alloying. Generically, in-
terface alloying appears when two soluble metals with
similar crystallographic structures and lattice parame-
ters are put in close contact. Atomic interdiffusion of the
two species A and B may appear, and eventually, a new
intermediate phase mixture of A and B arises. The struc-
ture of this intermediate phase can be very complex and
depends, among other parameters, on the microscopic in-
teractions between A and B atoms. The effect of these
interactions is measured in terms of the effective mixing
energy J. For low temperatures, the case J < 0 pre-
vents the interdifussion and so no intermediate structure
is formed. When the interactions between both species
are negligible (J = 0) or the temperature is very high,
the new phase is a random solution of A and B atoms.
In this paper we focus on the more interesting case of
J > 0. Then, for temperatures low enough, the arising
intermediate phase is an ordered structure with a cer-
tain periodicity like the so-called B2 or DOj structures
observed in bcc crystals.

Experimental examples can be found when a thin film
is deposited on a substrate, like Sn-Pt which forms an in-
termediate DOj structure,! Al-Ni which may form a rich
variety of ordered structures,? and Co-Pt which forms a
random solution.® Other examples are laser surface al-
loying like the case of Fe-Cr,* and superlattice structure
growth.® It is also worth mentioning the case of the two
semiconductors AuGe and GaAs which form an Au-Ga
alloy.® A related problem is the Kirkendall effect,” which
appears when the two species A and B diffuse at different
rates.

Besides its metallurgic relevance, this problem is also
very interesting from a more fundamental point of view.
Indeed, interface alloying of two metals can be regarded
as the relaxation from an initially ordered but unstable
phase (two pure A and B phases separated by a flat inter-
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face), to a final equilibrium phase exhibiting a different
order. This case represents a step forward from the stan-
dard experiments, in which the system is in an initially
disordered state, which have been extensively studied by
different methods.® They are schematically indicated in
Fig. 1(a) by the arrows I (order-disorder) and II (phase
separation). In our case (represented by arrow III) the
understanding of the intermediate path, joining both the
initially unstable and the final stable ordered structures,
may provide a new insight into the dynamics of nonequi-
librium ordering phenomena.

In this paper, a simple microscopic model is formulated
in terms of Ising-like variables, and it is used to study the
formation and growth of the intermediate ordered phase
arising when two pure A and B phases are put in close
contact. We have restricted ourselves to a two dimen-
sional (2D) case and considered pair interactions only,
ranging up to next-nearest neighbors. The dynamical
evolution is studied by Monte Carlo simulation and we
have incorporated the important fact that in binary al-
loys the diffusion proceeds via vacancies.® Although, in
most of the cases, the concentration of vacancies is very
small and it is not expected to modify substantially the
equilibrium properties of the system, they turn out to
be crucial in the dynamics. Indeed, in recent simula-
tions of the order-disorder process, the vacancy mecha-
nism has been shown to increase the domain growth ex-
ponent compared to the standard atom-atom exchange
mechanism, provided that the range of microscopic dy-
namics extends, at least, up to next-nearest neighbors.10
It should be mentioned that a similar model has been pre-
viously proposed for the study of interface alloying using
Monte Carlo simulations but incorporating a different al-
gorithm for the vacancy dynamics.'?'1? As a consequence
of this difference, it is not straightforward to compare
their results with ours, which seem, in some cases, con-
tradictory. This will be discussed in Secs. II and IV.

Given the complexity of the phenomenon when con-
sidering real materials, one should not expect to com-
pare directly simulations with experiments. Neverthe-
less, the model allows the possibility of studying the ef-
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fect of both the microscopic chemical interactions and
the dynamic rules on the relaxation path. It should also
be mentioned that to our knowledge no experimental at-
tempts at characterizing quantitatively the dynamics of
such process have been performed. There are, neverthe-
less, some experiments where the process is qualitatively
described.!™*8

From our results, the relaxation process can be charac-
terized by the time evolution of three relevant lengths in-
dicated in Fig. 1(b): the size of the intermediate ordered
structure §, the diffusion length A of the A(B) atoms in
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FIG. 1. (a) Schematic phase diagram for an Ising binary al-
loy representing the different quench experiments discussed in
the text. The vertical axis represents the generic order param-
eter. B. and 3. are the ferromagnetic and antiferromagnetic
critical points, respectively. (b) Schematic representation of
the simulated system indicating the relevant lengths W, A,
and §. Open circles represent diffused A(B) particles inside
the B(A) phase.
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the B(A) phase, and finally the roughness of the interface
W between the two ordered (stable and unstable) phases.
Here we shall focus on the ordering process itself rather
than on the characteristics of the interface. The analysis
of the parameter W together with the eventual fractal
properties of the interface will be presented elsewhere.

The paper is organized in the following manner: first,
in Sec. II, we introduce the model and provide infor-
mation about the simulation procedure. In Sec. III we
present the obtained results and finally in Sec. IV we
discuss and give the conclusions.

II. MODEL
AND MONTE CARLO SIMULATION DETAILS

The atomic configuration of the alloy is described by a
set of spin variables {S;;} (¢ =1,2,...,L,,j = 1,2, ..., L)
on a 2D square lattice. Each spin can take three values:

Si;; = 1 for an A atom, S;; = —1 for a B atom, and
Si;; = 0 for a vacancy. The following Hamiltonian is
proposed:
H = leSijSkz — J2 Z S5 Skt (1)
n.n. n.n.n.

where the first sum extends over all nearest-neighbor
(n.n.) pairs and the second sum over all the next-nearest-
neighbor (n.n.n.) pairs. J; and J; are taken to be non-
negative constants in order to ensure the antiferromag-
netic (ABABA) order of the low-temperature equilib-
rium state. By taking J; as a the unit of energy we can
write the reduced Hamiltonian as

H/Jl =H" = ZS,;J'SM - K* Z Si]-Sk, . (2)

n.n.n.

Three different values of the ratio K* = J;/J> have
been considered: K* = 0, 0.5, and 1.0. For such a sim-
plified model, this parameter K* can be understood as
an effective interaction range. Simulations have been per-
formed on a L, = 100 x L, = 300 lattice (N = L, x L)
with N4 = 14999 (number of A atoms), Ng = 15000
(number of B atoms), and Ny = 1 (number of vacan-
cies). This represents a very low concentration of vacan-
cies (~ 3.3 x 107°) as is expected for a metallic system.
Actually, the effect of introducing more vacancies has
been studied in the case of a quench of type I [see Fig.
1(a)] and does not influence significantly the dynamics.!®
The inital state consists of two pure A and B phases sep-
arated by a flat interface initially located at the position
j = 150.

The dynamics is performed by exchanging atoms with
the vacancy only. Hereafter we shall refer to this ex-
changes as “vacancy jumps.” Such jumps can be per-
formed either to n.n. or to n.n.n. positions. The ratio
of n.n.n. proposed vacancy jumps relative to the total
number of proposed jumps is defined as

number of proposed jumps to n.n.n.

Q=

3)

total number of proposed jumps
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Two values of @ have been considered: @ = 0 (vacancy
jumps to n.n.n. positions are not allowed) and @ = 0.5
(vacancy jumps to n.n. and to n.n.n. positions proposed
with the same probability). In real systems this ratio
is controlled by the values of the barrier heights associ-
ated to each path. Thus, the parameter @Q is an effective
measure of the range of the average vacancy jump, which
in general will depend on both the temperature and the
special features of each system.

The vacancy jumps are accepted following the stan-
dard Metropolis probability:

P = Min{l,exp(—AH/kpT)}, (4)

with kgT/J; = 1.0. This temperature is low enough
compared to the critical temperature of the order-
disorder transition (7'/T. < 0.5) for all the studied values
of Js, in order to ensure that critical fluctuations are ir-
relevant.

Notice that with this probability (4) the vacancy is al-
lowed to remain in the same position after the jump trial.
This algorithm differs from the one used in Refs. 11, 12.
In these works, the authors use a probability which al-
ways forces the vacancy to jump to one of its neighbours.
This makes the acceptance ratio of the proposed jumps
homogeneous and independent of the local state of order
of the system which, a priori, cannot be assumed.

We have considered periodic boundary conditions
along the i direction. Along the j direction fixed bound-
ary conditions are imposed maintaining pure A and B
phases. Concerning the vacancy, it is reflected every time
it reaches the fixed boundaries. We define the unit of time
(Monte Carlo step) as N vacancy jump trials. In order
to study the evolution of the system we have measured
the following quantities as a function of time:

(a) Concentration profile. It is measured averaging the
concentration over ¢ on rows of constant j:

~

. 1 =
c(j) = . Sij - (5)
T =1

Il

(b) Order parameter profile. It is the absolute value of
the antiferromagnetic order parameter measured on the
rows with constant j:

L
N1 . i
nG)= £ 30, ©
(c) Structure factor.
2
|1 2mi(lky +mky)
S(km7 ky) =\v IZSlme ) (7)

where 1 < m < L, and 1 < ! < Ly scan the direct
lattice and 0 < k; < 1 and 0 < k, < 1 scan the recip-
rocal lattice. We have focused on the antiferromagnetic
peak around the position k = (1/2,1/2) along the (0,1)
direction.
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III. RESULTS

Figure 2 displays a comparative study of the evolution
of the system for different values of the effective inter-
action range K* and the microscopic dynamic range Q.
Black symbols represent particles with a local environ-
ment neither in pure A, pure B, nor ABAB phase. It
can be observed that when @ = 0 the growth of the inter-
mediate ABAB ordered phase is almost prevented while
when @ = 0.5 the width of the intermediate ordered re-
gion () grows independently of the value of K*. This is
because n.n.n. vacancy jumps are needed to allow the va-
cancy to travel across the ABAB region in order to trans-
port particles from the pure phases to the interface.l® It
can also be seen that K* controls the diffusion of the
A (B) particles in the B (A) phase. Actually, the diffu-
sion length (A) decreases with increasing K*. The reason
for this behaviour has to do with the energy associated
with an impurity inside the pure phase which increases
linearly with K*. The existence of antiphase boundaries
inside the intermediate ordered phase which eventually
will disappear at long times should be noticed [see Fig.

2(e)].

500 5000 50000 1000 10000
B3 g TR
b)

: N
2 L"': ‘vl_l
Ve

c) f) .0
m:])::g:[ 3
e

Q=0 Q=1/2

FIG. 2. Snapshots showing the evolution of the interface
between two mutually soluble metals obtained by a Monte
Carlo simulation. Black symbols represents particles neither
in pure A, pure B, nor ABAB phase. The numbers on top
indicate the time in Monte Carlo steps. The six different
evolutions, from (a) to (f), correspond to kpT/J1 = 1.0 and
the following values of @ and K*: (a) Q = 0, K* = 0; (b)
QZOvK':1/2; (C)Q:D,K*:l; (d)Q:]-/zaK*:O;
(e) Q=1/2, K* =1/2; (f) Q =1/2, K* = 1. To refer to the
six studied cases this terminology is kept in the next figures.
The values of K* and Q are indicated on the right and the
bottom margins, respectively.
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A. Concentration, order parameter,
and structure factor

A quantitative analysis of the behavior displayed in
Fig. 2 can be carried out by studying the evolution of
the concentration [Eq. (5)] and of the order parame-
ter [Eq. (6)] profiles which are shown in Figs. 3 and
4, respectively. The curves have been averaged over ten
independent runs and correspond to the same temporal
sequences shown in Fig. 2. Moreover, the mirror sym-
metry existing at j = 150 allows us to average the two
equivalent regions and to display only half of the system.
In the following, we redefine j starting at 1 in the middle
of the system and ending at 150. In Figure 3, the width
of the intermediate ordered region § can be estimated
from the length of the plateau with c¢(j) ~ 0, while the
diffusion length A from the exponential increase towards
¢(j) ~ 1. These two relevant lengths have been obtained
by fitting the following expression:

) 0 when i<é,
c(s) = 1—exp(—’:u) when j>94. (8)

The same lengths can also be obtained from the order
parameter profiles plotted in Fig. 4. In this case, § can
be estimated by measuring the width at half height and
) is related with the tail towards m(j) ~ 0. It should be
mentioned that the existence of antiphase domains pre-
vents the order parameter from reaching its maximum

500 5000 50000 100 1000 10000
1.0
a) [d)
hgnd o
= 05 o
L4 X
0.0
1.0
= | b) e)
o~N
= 05 =
T o
X
0.0
1.0
c) f)
= n
= 05 o
00 5750100 50100 50 100 150 0 50 100 50 100 50 100 150
i j j J j i
Q=0 Q=1/2

FIG. 3. Time evolution of the concentration profile for the
six studied cases. The data correspond to an average over
ten independent evolutions and furthermore each one of them
is an average over the two antisymmetric half parts of the
system.
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FIG. 4. Time evolution of the antiferromagnetic order pa-
rameter profile for the six studied cases. The averages have
been performed over ten independent evolutions and further-
more each one of them is an average over the two symmetrical
half parts of the system.

value m = 1 in the intermediate ordered region. The
overshooting that can be observed in some order param-
eter profiles [see, for instance Figs. 4(e) and 4(f)] might
be related to the rough character of the interface and
especially to the penetration of the pure phase in the an-
tiphase domain boundaries that can be well appreciated
in Fig. 2(f).

Figure 5 shows a linear-logarithmic plot of the struc-
ture factor along the (0,1) direction around the k =
(1/2,1/2) position for the same time sequences as in
the previous figures. They correspond to averages over
20 different independent runs. The emerging peak and
the general oscillating character are a consequence of the
growth of the intermediate ordered region. The width of

TABLE I. Exponents n characterizing the growth of §. The
symbols correspond to those in Fig. 6.

Q=0 Q=1/2
©0.13 o 0.49

K*=0 m0.12 W 0.58
A 0.32 A 0.55

© 0.06 o 0.46

K*=1/2 m0.03 W 0.54
A 0.12 A 0.53

0 0.12 0 0.48

K*=1 m0.13 m0.55
A 0.13 A 0.53
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FIG. 5. Time evolution of the structure
factor S(k) for the six studied cases. Data
correspond to the line k = (1/2,k) and are
shown in linear-logaritmic scale. The dis-
played results have been averaged over 20 in-
dependent runs.

FIG. 6. Log-log plot of the time evolution
of the width of the intermediate ordered re-
gion ¢ for the six studied cases (mcs stands
for Monte Carlo steps). Different symbols
correspond to estimations from the concen-
tration profiles M, the order parameter pro-
files (o), and the structure factor (A).
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the peak is proportional to the inverse of §. The main
effect of the diffusion inside the pure phases is to enhance
the background S, as can be clearly seen in Figs. 5(a)
and 5(d). It can be assumed that S, ~ L A.

B. Time evolution of § and A

Figure 6 shows, in a log-log plot, the time evolution of
the width of the intermediate region () for the different
values of the model parameters Q and K*. Different sym-
bols correspond to estimations obtained from the concen-
tration (M), the order parameter (o), and the structure
factor (A). After a short transient, § increases with time
following a power law characterized by an exponent n
(6 ~ t™). Table I summarizes the values of n for all the
displayed cases. The different estimations agree in all the
cases except for case (a) where the estimation from the
structure factor gives a larger value of n. This is due to
the strong effect of the diffusion background which masks
the tiny growth of the width of the peak 6~!. Despite
this, the results obtained are compatible with a value of
n =0.52+0.05for @ =1/2andn = 0.13+0.08 for Q@ =0
irrespective of the value of K*. This fact is in complete
agreement with the qualitative explanation advanced at
the beginning of this section; that is, @ = 0 prevents the
vacancy movements across the ordered region, and so the
growth is strongly slowed down.

Figure 7 shows the time evolution of the diffusion
length A for the different values of Q and K* obtained

2
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TABLE II. Exponents p characterizing the growth of A.
The symbols correspond to those in Fig. 7.

Q=0 Q=1/2

K =0 m0.45 W 0.46
A 0.52 A 0.50

K =1/2 m0.24 m0.22
A 0.08 A 0.19

K =1 m0.19 m0.27
A 0.01 A 0.30

from the concentration profile (®) and from the structure
factor background (A). It has not been possible to ob-
tain reliable estimations of this quantity from the order
parameter since the diffusion tail in m(j) is too small.
The results are compatible with a power-law growth for
A characterized by an exponent p (A ~ t?). The numeri-
cal results, shown in Table II, are consistent with a value
p =0.50£0.05 for K* = 0 and p = 0.231+0.07 for K* # 0
independently of Q. Again this is in agreement with the
qualitative description given at the beginning of this sec-
tion, suggesting that the diffusion is drastically reduced
(by a factor around 2 in the exponent p) when the inter-
actions to n.n.n.’s are switched on (K* # 0). The values
of p obtained from the structure factor in cases (b) and
(c) are doubtful since the low diffusion makes difficult
to discriminate the background from the very wide peak
(see Fig. 5).
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IV. DISCUSSION AND CONCLUSIONS

From the results of Table I, one can conclude that the
exponent for the growth of the width of the intermediate
phase is n = 1/2 provided that the vacancy is allowed
to jump to n.n.n.’s (Q # 0). This result can be theoret-
ically explained assuming that during the evolution, the
relaxation of the order parameter is much faster than the
relaxation of the concentration. This assumption is jus-
tified taking into account that ordering does not require
long-range diffusion so that the coarse-grained value of
the local order parameter can rapidly reach, at every
time, its maximum value m ~ (1 — |c¢|). As the re-
laxation of ¢ is known to obey a diffusion equation, this
leads to a growth § ~ t1/2.14

It has already been mentioned that when @ = 0 almost
no proposed vacancy jumps are accepted inside the or-
dered region and so the growth of § is hindered. The pic-
ture we have in mind is that when the vacancy in the in-
terface (pure-phase-ABAB-phase) cannot penetrate in-
side the ordered region (and consequently cannot cross
the intermediate ordered region) it travels along the in-
terface or towards the pure phase. During this process,
the vacancy transports particles from the interface to the
pure phase, destroying the AB AB phase partially, so that
almost no net increasing of § can be observed.

From Table II one can conclude that the growth of
the diffusion length A obeys a power law with p = 1/2
when K* = 0, as expected from a pure diffusion of the
A(B) particles inside the B(A) phase. When K* # 0 the
diffusion is prevented mainly because of the tendency for
the diffusing particles to aggregate in n.n.n. positions
(with an energy gain of K*). This fact can be naively
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compared to the existence of a random potential that
it is known to decrease the diffusion exponent.!® Such
a decrease in the diffusion when K* # 0 was already
pointed out in Ref. 12.

In summary, a kinetic model for the study of interface
alloying via vacancies has been proposed. It allows one
to simultaneously study the effect of both the interac-
tion and the dynamic ranges on the growth of the in-
termediate ordered region as well as the diffusion length
inside the initial pure phases. It has been shown that
the growth of the intermediate ordered region follows a
power law with an exponent 1/2 if the mobility of the
vacancy prevents it from being trapped in the ordered
regions. The diffusion of A(B) particles inside the B(A)
phases is controlled by the mixing energy between the
two species. When the range of the interaction is long
enough, diffusion is prevented. Otherwise the diffusion

length grows following a power law, with an exponent
1/2.
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