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In a recent paper@Phys. Rev. B50, 3477~1994!#, P. Fratzl and O. Penrose present the results of the Monte
Carlo simulation of the spinodal decomposition problem~phase separation! using the vacancy dynamics
mechanism. They observe that thet1/3 growth regime is reached faster than when using the standard Kawasaki
dynamics. In this Comment we provide a simple explanation for the phenomenon based on the role of interface
diffusion, which they claim is irrelevant for the observed behavior.

In the study of nonequilibrium growth phenomena two
processes are considered as prototype.1 Both correspond to
the evolution of systems quenched from a high-temperature
disordered phase to a temperature below an equilibrium
phase transition. The first case is the growth of ordered do-
mains@nonconserved order parameter~NCOP!# and the sec-
ond the spinodal decomposition problem@conserved order
parameter~COP!# also called phase separation. There is gen-
eral agreement2 in the fact that in both cases the mean size of
the domains grows, during the late stages of the evolution,
following a power law. Such laws@R(t);tx# are character-
ized by the growth exponentx that takes the value
xNCOP51/2 ~Allen-Cahn law3! for the nonconserved case and
xCOP51/3 ~Lifshitz-Slyozov law4! for the conserved case.
These values are considered to be universal, independent of
details of the model and dimensionality. They have been cor-
roborated by theoretical arguments, numerical analysis of
Langevin equations, and Monte Carlo simulations of lattice
systems.2 For the case of COP and concentrationc50.5 the
first Monte Carlo results suggested that the growth exponent
was xT.0.25.5 After a wide discussion it was shown that
this behavior was just a transient regime with enhanced dif-
fusion along the interfaces6,7 corresponding to a growth law
R(t)5R01lt1/3. For very large systems a correct extrapola-
tion revealed the existence of thex51/3 law at late times,8

dominated by the bulk diffusion.
Most Monte Carlo simulations in the literature have been

carried out using the standard Kawasaki dynamics, propos-
ing neighboring atom-atom exchanges homogeneously on
the lattice, and the Metropolis acceptation probability, which
ensures the evolution towards equilibrium. For a lattice with
N sites, the time unit, called a Monte Carlo step~MCS!, is
defined asN proposals of atom-atom exchanges, indepen-
dently of its acceptance ratio. Such a definition is based on
the assumption that a system out of equilibrium, but in con-

tact with a heat bath, is excited~jump proposals! with a rate
constant in time and homogeneous in space.

Recently a more realistic vacancy dynamics has been pro-
posed for the study of such growth processes:9–14 a very
small amount of vacancies is introduced in the system, al-
most not affecting its equilibrium properties. Only neighbor-
ing atom-vacancy exchanges are proposed and accepted or
not according to the standard Metropolis rules. The time unit
is also defined asN proposals, which areinhomogeneously
distributed since the vacancy walk through the lattice is very
correlated with the current order existing in the system.11

Nevertheless, to our knowledge, such an inhomogeneous
time scale has not been analyzed by general theoretical argu-
ments.

For the case of NCOP it is now well established that the
vacancy mechanism increases the growth exponent towards a
higher value at low temperatures.10–12 The physical reason
for this acceleration is that the vacancy stays most of the
time on the interfaces, avoiding a waste of time in the al-
ready ordered bulk.

In a recent paper13 P. Fratzl and O. Penrose point out the
usefulness of the vacancy dynamics also for the COP case in
order to reach the asymptoticx51/3 regime much faster than
when using the standard Kawasaki dynamics, suppressing
the transientx.0.25 regime.

We have performed Monte Carlo simulations with the va-
cancy dynamics of a system with the same conditions as in
Ref. 13~square lattice with linear sizeL5128, c50.5, and
c50.1, 1 vacancy and reduced temperatureT50.5).15 We
have measured the structure factorS(k,t) at different time
steps, averaging over the (1,0) and (0,1) directions in recip-
rocal space. Also, averages over 43 and 20 independent runs
for c50.5 andc50.1, respectively, have been taken. We
have estimated the mean domain size by measuring the first
moment of the structure factor:
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In Fig. 1~a! we show the evolution ofk0(t) and compare
with the x51/3 behavior forc50.5 and c50.1. Fig. 2
shows the scaled structure factorsk0

2S(k/k0) for different
time steps, revealing the existence of dynamical scaling, at
least, from 103 to 105 MCS for the two studied concentra-
tions, in agreement with the results in Ref. 13. The straight
line corresponds to the behaviork23 predicted by Porod’s
law.2

In order to measure the growth exponent, we have com-
puted the logarithmic derivative ofk0(t) defined as
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Results fora510 are shown in Fig. 1~b! and compared
with the valuex51/3 ~dashed line!. The error bars have been
estimated from the difference between the values ofk0 ob-
tained from the structure factor in the (1,0) and (0,1) direc-
tions. We have tested that such error bars include the devia-
tions arising from the change in the derivation step in Eq.~2!
betweena51.11 anda5100.

For c50.5, a value of the dynamical exponentx.1/3 is
reached after the first 103 MCS, in agreement with the results
of Fratzl and Penrose.13 Furthermore our analysis also re-
veals, first, that the exponent continues increasing towards

higher values (x.0.4) and, second, that after a maximum it
decreases again towards values aroundx.1/3.

For c50.1 we find that the dynamical exponent monoto-
nously increases from very low values. After 33105 MCS it
still remains belowx51/3. In our opinion this result is in
agreement with those obtained by Fratzl and Penrose~ac-
cording to their Fig. 3! using both the atom-atom exchange
and the vacancy mechanisms. On the basis of Fig. 2 of their
paper, the authors claim that the vacancy mechanism accel-
erates the process. We think that such analysis ofR vs t1/3

only demonstrates the change of the prefactor of the growth
law but not the change of the dynamical exponent. The study
of the dynamical exponent is better performed on a logR vs
log t as in their Fig. 3. By comparing their Fig. 3a and 3b we
cannot see any significant change in the slope enough to
justify the change in the dynamical exponent. We believe
that a change in the prefactor may well exist~as suggested by
their Fig. 2!, but this could depend on fine details of the
simulations, such as time correlation between configurations,
diffusion constants, energy barriers, etc. Therefore, contrarily
to their conclusions, we think that forc50.1 the vacancy
mechanism does not change the dynamical exponent.

The authors of Ref. 13 claim that the transient regime
x.0.25 is avoided since the vacancy mechanism introduces
a curvature dependence in the surface tension and that inter-
face diffusion does not play any role. Such curvature depen-
dence of the surface tension is introduced from a phenom-
enological point of view, and the irrelevance of the interface
diffusion is justified only from the paradox that, according to
Huse6 and Vengrenovitch,16 such diffusion enhances the
x.0.25 regime. Here we shall provide a simple explanation,
based on the existence of interface diffusion and heteroge-
neous excitations, for the change in the growth exponent
from a valuex.0.25 towardsx.1/3 in the initial stages of
the COP case withc50.5. The argument also applies to the
change fromx.1/2 towardsx.1 in the NCOP case.11

Let us consider a quenched system for which, under ho-
mogeneous excitations, the mean domain size evolves fol-
lowing a power lawR(t);tz, and the amount of interface
decreases likeA(t);t2z. If a small amount of vacancies are
introduced in the system, for energetic considerations they
will concentrate on the domain interfaces destroying the
most unfavorable bonds@as shown for both NCOP~Ref. 11!
and COP systems~Ref. 13!#. This fact immediately implies
an accumulation of the excitations on the domain boundaries
compared to the excitations in the bulk. If the physical pro-
cess underlying the growth takes place on the interfaces~as
happens in the NCOP case and in the intermediate stages of
the COP case forc50.5) the growth will obviously be ac-
celerated by the vacancy mechanism. We can estimate the
change in the growth exponent in the limiting case in which
the following two hypotheses hold: only the excitations on
the interface are responsible for the evolution of the system,
and the vacancies always stay on the interface.

Consider the usual Kawasaki exchange dynamics. During
a Monte Carlo step (N trials! only A(t) are useful while
N2A(t) represent excitations in the bulk that are useless for
the growth. Within the limiting case of the vacancy dynamics
all the N trials would be useful~concentrated on the inter-
face!. This means that a configuration that has been reached

FIG. 1. ~a! Evolution of the reciprocal mean domain size as a
function of time in log-log scale forc50.5 (d) andc50.1 (s).
Data forc50.5 correspond to averages over 43 different runs up to
105 MCS and 12 different evolutions from 105 to 106 MCS; for
c50.1 averages are taken over 20 different evolutions. Error bars
are smaller than the symbols. The dashed line shows thex51/3
behavior.~b! Logarithmic derivative of the curves shown in~a! in
log-linear scale displaying the effective exponent as a function of
time. The dashed line indicates the valuex51/3.
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after t MCS using standard Kawasaki dynamics, is reached
at time t8,t with vacancy dynamics according to

t8;E
t0

t

A~t!dt;E
t0

t

t2zdt;t12z, ~3!

wheret0 is an initial transient time and the last aproximation
holds for large enought. With this new time scale the growth
law will be

R8~ t8![R~ t !5R~ t81/~12z!!;t8z/~12z!. ~4!

Thus, the exponent for the vacancy mechanism (z8) is
related to the homogeneous one (z) according to
z85z/(12z). Such enhancement only applies when the
dominant process for the growth is of interfacial nature, like
interface diffusion in the intermediate stages of the COP case

for c50.5 (z.0.25⇒z8.1/3) and interfacial ordering in the
NCOP case (z.1/2⇒z8.1). The above scenario is also in
agreement with the following three facts.

~1! The vacancy mechanism does not increase the expo-
nent during the late stages of the COP case forc50.5 since
then the bulk diffusion becomes responsible for the growth.
This might be an explanation for the observed decrease of
the exponent towardsx.1/3 in the late stages of the evolu-
tion in Fig. 1 ~filled circles!. Nevertheless, we cannot com-
pletely discard that such a decrease is a finite size effect.
Only simulations to larger systems will clarify this point.

~2! For c50.1, the growth enhancement due to the va-
cancy mechanism almost disappears. In this case the pattern
consists of isolated domains of the minority phase enbedded
in a sea of the majority phase. One then expects that the
interfacial diffusion is not relevant for the growth, and con-
sequently the vacancy mechanism cannot accelerate the evo-
lution.

~3! We expect that the growth enhancement due to the
vacancy mechanism is reduced when the temperature is in-
creased. This is because thermal fluctuations compel the va-
cancy to scan the lattice more homogeneously.11 In our opin-
ion results shown in Fig. 2 of the Rapid Communication by
Fratzl and Penrose, are consistent with this explanation.

In conclusion, we have revised and completed the study
by Fratzl and Penrose of the domain growth in the spinodal
decomposition problem using the vacancy mechanism. In
agreement with them we have found~i! that there is dynami-
cal scaling and~ii ! that forc50.5 the system evolves with a
growth exponent which reaches a valuex.1/3 very fast.
Contrarily with their results, extending the simulations up to
106 MCS, we obtain~iii ! that for c50.5 the exponent con-
tinues growing to higher values and~iv! that for c50.1 the
exponent takes monotonously increasing values below
x51/3. We have provided a very simple explanation for the
observed behaviors based on the existence or absence of dif-
fusion along the interface, which Fratzl and Penrose claim is
irrelevant for the process.
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