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Abstract
The liver performs many essential metabolic functions, which can be studied using compu-

tational models of hepatocytes. Here we present HepatoDyn, a highly detailed dynamic

model of hepatocyte metabolism. HepatoDyn includes a large metabolic network, highly

detailed kinetic laws, and is capable of dynamically simulating the redox and energy metab-

olism of hepatocytes. Furthermore, the model was coupled to the module for isotopic label

propagation of the software package IsoDyn, allowing HepatoDyn to integrate data derived

from 13C based experiments. As an example of dynamical simulations applied to hepato-

cytes, we studied the effects of high fructose concentrations on hepatocyte metabolism by

integrating data from experiments in which rat hepatocytes were incubated with 20 mM glu-

cose supplemented with either 3 mM or 20 mM fructose. These experiments showed that

glycogen accumulation was significantly lower in hepatocytes incubated with medium sup-

plemented with 20 mM fructose than in hepatocytes incubated with medium supplemented

with 3 mM fructose. Through the integration of extracellular fluxes and 13C enrichment mea-

surements, HepatoDyn predicted that this phenomenon can be attributed to a depletion of

cytosolic ATP and phosphate induced by high fructose concentrations in the medium.

Author Summary

Despite the key role of hepatocytes in carbohydrate and lipid homeostasis, available
dynamic models of hepatocyte metabolism tend to be limited to a single pathway and/or
are based on assumptions of constant concentrations of key metabolites involved in redox
and energy metabolism (ATP, NAD, NADPH etc.). Furthermore, most dynamic models
are unable to integrate information from 13C based experiments. 13C based experiments
allow us to infer the relative activity of alternative pathways and hence are highly useful
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for indicating flux distributions. To overcome these limitations, we developed HepatoDyn,
a dynamic model of hepatic metabolism. HepatoDyn uses a large metabolic network
including key pathways such as glycolysis, the Krebs cycle, the pentose phosphate pathway
and fatty acid metabolism, and dynamically models the concentrations of metabolites
involved in the redox and energy metabolism of hepatocytes. In addition, the model was
coupled to the label propagation module of the package IsoDyn, allowing it to integrate
data from 13C based experiments to assist in the parametrization process. These features
make HepatoDyn a powerful tool for studying the dynamics of hepatocyte metabolism.

Introduction
No other organ performs as many physiological functions as the liver. The liver is responsible
for detoxification, bile acid and blood proteins synthesis, plays a key role in the inflammatory
response and, above all, it is a key regulator of glucose and lipid homeostasis in blood. Most of
its functions and properties can be linked to hepatocytes, the most abundant cell type in liver,
and therefore hepatocytes are often used as a model to study liver function and pathologies [1].
Accordingly, computational modelling of hepatocyte metabolism has received a great deal of
interest.

Recently, genome scale metabolic reconstructions based on stoichiometric modelling tech-
niques have been successfully used to model hepatocyte metabolism [2–4]. However, stoichio-
metric models provide a static picture of metabolism based on mass balance equations and the
assumption that the system is under a strict steady state. In these models each reaction step is
described by only one parameter, its steady state flux [5]. The alternative is to use dynamic
metabolic models, usually referred to as kinetic models. They are based on building a system of
ordinary differential equations (ODEs), with kinetic laws describing transport and chemical
transformations for each reaction-step and parameters describing biochemical and biophysical
constraints. Kinetic modelling has two main advantages over stoichiometric based modelling;
firstly, it is capable of performing dynamic simulations, that is to say, it can predict the varia-
tion in metabolite concentrations and fluxes over time outside of the steady state. Secondly, it
can follow the global effects of constraints emerging from the specific kinetic properties of
enzymes, post-translational modifications and regulatory circuits, thus revealing the complex
regulation of the system. Over the years, multiple kinetics models of hepatocyte metabolism
have been developed [6–11]. The main limitation of kinetic models is that they are complex to
build and parametrize. Due to this complexity, kinetic models of hepatocyte metabolism avail-
able in the literature contain only a small number of reactions and, with some exceptions [11],
are often limited to a single pathway. Furthermore, with the exception of some models focused
on mitochondria [8, 9], most of them assume a constant redox and energy state, which limits
their application. In fact, despite the huge interest in hepatocyte metabolism, there are no mod-
els capable of adequately modelling the effects of the energy and redox dynamics on hepatocyte
core metabolism. Additionally, while 13C experiments have proven their usefulness in studying
the metabolism of hepatocyte under metabolic steady state [12–24], there was only one kinetic
model of hepatocyte capable of integrating 13C data [10].

In this work, we present HepatoDyn (HepatocyteDynamics) a model of hepatocyte core
metabolism capable of simulating the redox (NAD/NADH, NADP/NADPH, etc.) and energy
(ATP/ADP/AMP, etc.) dynamics. The model includes glycolysis, gluconeogenesis, glycogen
metabolism, the pentose phosphate pathway, the Krebs cycle and fatty acid metabolism as well as
reactions associated with energy and redox metabolism (respiratory chain, malate/aspartate
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shuttle, glycerol phosphate shuttle, etc.). To our knowledge, no model of such size capable of
dynamic redox and energy metabolism simulations exists in the literature. Furthermore, the
model was coupled to the module for isotopic label propagation of the software package IsoDyn
[25, 26]. This enables HepatoDyn to integrate data from 13C based experiments to assist in the
parametrization process, regardless of whether experimental measurements correspond to an
isotopic steady state. The latter is a key feature because the levels of isotopic label enrichment are
often a non-steady phenomenon with long transition times [27]. Therefore, HepatoDyn is a very
powerful tool capable of taking advantage of both the constraints derived from a detailed tissue-
specific kinetic model and data derived from 13C based experiments to simulate hepatocytes.

In the last decades there has been a significant increase in fructose in our diets [28] and
accordingly there is great interest in studying the potential effects of fructose in the metabolism
[29–32]. To date, fructose-rich diets have been associated with many adverse metabolic condi-
tions, such as nonalcoholic fatty liver disease, insulin resistance and obesity [28, 33, 34], most
of which are directly or indirectly related to abnormal hepatocyte function. Therefore, we used
HepatoDyn to study the short-term response of hepatocyte metabolism to different concentra-
tions of fructose.

Materials and Methods

Experimental Methods
Materials. [1,2-13C2]D-glucose (>99% enriched) and [U-13C6]D-fructose (>99%

enriched) were purchased from Isotec (Miamisburg, OH, USA), and other reagents used were
from Sigma-Aldrich Company (St. Louis, MO, USA).

Animals. 180–200 g male Wistar rats were used. They were maintained in a 12 h:12 h
light-dark cycle with free access to standard laboratory rat chow pellets (Panlab) and water.
Animals were deprived of food 24 h prior to hepatocyte isolation. Experiments were conducted
according to guidelines accepted by the University Animal Care and Use Committee. Appro-
priate measures were taken to minimize pain or discomfort in the animals.

Preparation of cells and incubation. Suspensions of isolated parenchymal liver cells were
prepared from 24-h starved animals as described previously [35]. Cell suspensions were incu-
bated at 37°C with gassing and continuous shaking (160 strokes/min) for 2 h with Krebs–
Ringer bicarbonate buffer of pH 7.4 containing glucose and fructose. At the end of the incuba-
tions, cells were centrifuged and the incubation media and cell pellets were obtained.

Measurement of metabolites. Glycogen content from cell pellets and glucose and lactate
concentrations in incubation media were determined as described previously [19].

Gas chromatography/ mass spectrometry sample processing and analysis. Incubation
media were processed for isolation of lactate, glucose, and glutamate using previously estab-
lished methods [36, 37]. To analyse fructose isotopologues distribution, lyophilized incubation
medium was treated with 0.5 N sodium borohydride in methanol for 2 h at room temperature,
causing both fructose and glucose to be transformed to sorbitol. The resulting sorbitol was
then isolated by ion exchange chromatography as described for glucose [37]. Glycogen was iso-
lated from cell pellets as described previously [19]. Once isolated, glucose from the medium or
from hydrolysed glycogen, as well as lactate, glutamate and sorbitol were derivatized for gas
chromatography/mass spectrometry (GC/MS) analysis [36, 38, 39]. In the case of sorbitol, it
was derivatized to its hexaacetate derivative according to a modification of the method
described by Wolfe [40]. A mass selective detector HP 5973 equipment coupled to a gas chro-
matograph HP 6890 was used for all the metabolites as described elsewhere [36, 38, 39]. The
GC/MS method for sorbitol analysis was the same as that for glucose analysis. Chemical ioniza-
tion was used to obtain the molecular ion (C1-C6) of the glycogen or medium glucose

A Dynamic Model of Hepatocyte Metabolism That Integrates 13C Isotopomer Data

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004899 April 28, 2016 3 / 19



molecules at m/z 328, and the same for the lactate molecule (C1-C3) at m/z 328 and sorbitol
molecule (C1-C6) at m/z 375. Electron impact ionization was used to characterize the isotopo-
logue fractions of C1-C4 (m/z 242) and C3-C6 (m/z 187) glycogen glucose fragments, as well
as C2-C4 (m/z 152) and C2-C5 (m/z 198) glutamate fragments.

Spectral data were corrected using regression analysis to extract natural 13C enrichment
from results [41]. Measurement of 13C label distribution determined the different relative dis-
tribution percentages of the isotopologues, m0 (without any 13C labels), m1 (with one 13C), m2
(with two 13C), etc.

Building the model
Ametabolic network, including those pathways deemed necessary to accurately and dynami-
cally simulate the core metabolism of rat hepatocytes in the study conditions, was constructed
based on pathways that have been reported in the literature to be active in hepatocytes [42, 43].

Each reaction in the metabolic network was assigned a kinetic law. Kinetic laws describe the
dependence of each reaction flux on metabolite concentrations. They take into account the
affinity of substrates and products, the reaction mechanism and the effect of activators and
inhibitors on reaction fluxes. The kinetic laws used were mostly derived from existing kinetic
laws described in the literature [6, 11, 44]. The exceptions were the kinetic laws for aldolase
activity, which catalyses eight related elementary reactions, which were built as described in the
Supplementary Material (S1 Text).

Kinetic laws are integrated with the metabolic network topology, described by the stoichio-
metric matrix (N), to build a system of ordinary differential equations (ODEs) that predict the
evolution of metabolite concentrations, and by extension the evolution of reaction fluxes, over
time. Because fluxes are provided in units of mmol per cell perminute, but ODEs are solved in
units of mmol per litre perminute, in order to build the ODEs, the cell number and the volume
of the compartment at which each metabolite is located must also be taken into account. There-
fore, the system of ODEs can be written as:

dc½t�
dt

¼ N � jðc½t�; pÞ � ncell
vol

ð1Þ

Where j is a vector of reaction fluxes, which is a function of the vector of metabolite concentra-
tions (c[t]) in mM, and a vector model parameter (p) as defined by the kinetic laws used in the
model, ncell is the cell number and vol is a vector containing the volumes of the compartment
at which each metabolite is localized in litres.

In reversible reactions, forward and reverse reaction rates are computed separately with dif-
ferent kinetic laws, albeit sharing most of the parameters. Additionally, the fluxes of invisible
reactions, that is to say, reactions that can propagate labelled carbons even though they do not
change the overall concentrations of metabolites, are also computed [10]. This is necessary in
order to fully simulate the propagation of 13C.

To simulate the propagation of 13C through the metabolic network, fluxes are decomposed
into isotopomer fluxes. Then, an ODE system is built using the algorithms from IsoDyn [25,
26]. The resulting ODE accounts for concentrations of all isotopomers, isomers with 13C sub-
stitution in specific carbon positions [24]. To avoid unnecessary complexity, isotopomers are
not simulated for those metabolites where, according to the defined metabolic network, 13C
from labelled substrates cannot be propagated. The process is briefly summarized in Fig 1.

The system of differential equations for metabolite and isotopomer concentrations is solved
to predict metabolic fluxes, metabolic concentrations and isotopomer concentrations from the
initial time to the defined end time.
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Fig 1. Example of how ODEs are automatically built for isotopomers andmetabolites consumed or
produced by the pyruvate dehydrogenase catalysed reaction (PDH). PDH irreversibly transforms
mitochondrial pyruvate (mPyr), NAD (mNAD), and coenzyme A (mCoA) into mitochondrial acetyl-CoA
(mACoA) and NADH (mNADH). The system of differential equations is solved taking into account all
equations for total concentrations of metabolites and for concentrations of isotopomers. From the previous
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Model predictions are for isotopomers but experimental measurements refer to isotopolo-
gues (or mass isotopomers), isomers with a specific number of 13C substitutions [24]. Thus, the
resulting concentrations of isotopomers are converted into fractions of isotopologues, by add-
ing up all isotopomers that correspond to each isotopologue and dividing by the total concen-
tration of each metabolite (S1 Fig). The fractions of such isotopologues can then be compared
with the experimental measurements obtained with GC coupled to MS.

Parameterization
Kinetic parameters representing enzyme activity (Vmax or equivalent) were fitted to the experi-
mental data. For this process Vmax from the reverse reaction rate in reversible reactions are
assumed to be a function of the Vmax of the forward reaction and of the equilibrium constant
as described by the Haldane relationship [44]. To further reduce the number of parameters fit-
ted, enzyme activities catalysing sequential reactions with no ramifications (the so called reac-
tions chains) were fitted as a group. This is because in reactions chains the flux through the
whole chain could be determined by any of the enzyme activities involved and consequently
most of the activities of enzymes constituting the chain would be unidentifiable. Furthermore,
other activities known to be unidentifiable are not fitted, such as the activities of reactions that
are known to operate in rapid equilibrium in physiological conditions (glucose phosphate
isomerase, triose phosphate isomerase, enolase, etc.). The remaining parameters of the kinetic
model were assigned based on an extensive literature search, completed with data from Brenda
[45] and UniProt [46] databases.

The fitting algorithm, a variant of the basic simulated annealing algorithm [47], seeks the
set ofm parameters (Ez) that minimizes the objective function. The objective function (X2) is
the square deviation between the n experimentally measured values (Yi) and simulated values
(Zi) for both isotopologue fractions and total metabolite concentrations, normalized by the
experimental standard deviation (σi). To prevent a bias generated by very low standard devia-
tions, a minimum threshold of 0.01 was used. Additionally, parameter sets where any metabo-
lite reached concentrations greater than 50 mM were discarded.

X2 ¼
Xn

i¼1

Yi � ZiðE1; E2; . . . ; EmÞ
si

� �2

ð2Þ

Consequently, the fitting algorithm seeks the set of enzyme activities that minimize the dif-
ference between experimentally measured and simulated isotopologue fractions and metabolite
concentrations in the experimental conditions considered.

Identifiability analysis
The fitting procedure provides one set of fitted parameters, which minimizes the objective
function, and is referred to as the best fit parameter set. However, other sets of parameter val-
ues might result in similar or equal objective function values and are therefore as valid as the
best fit. The range of acceptable variation in parameters was evaluated through an

step in the simulation, the PDH flux (Jpdh) is computed, which is a function of the concentrations of the
reactants and products (m) and the kinetic parameters of PDH (p). For the ODEs describing the concentration
of metabolites the computed value is added (+ =) and subtracted (- =) for products and substrates,
respectively. For the ODE describing a particular isotopomer, the flux value is scaled according to the relative
abundance of the isotopomer for the substrate (mPyri) and the resulting scaled flux (JPDHi) is added (+ =) and
subtracted (- =) to d[mACoAi]/dt and d[mPyri]/dt, respectively. Isotopomers are not simulated for CoA, NAD or
NADH because it is assumed that 13C from labelled substrates does not propagate to such metabolites.

doi:10.1371/journal.pcbi.1004899.g001
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identifiability analysis. Identifiability is a property that indicates whether unknown model
parameters can be determined from the available experimental data. It depends both on the
structure of the model and the quality and amount of experimental data. A parameter is
defined as identifiable if the confidence interval for its estimated value at a given significance
level is finite [48, 49].

If we define X2(θi) as the optimized square deviation if parameter i is fixed to a value of θi
and the remaining parameters being fitted θj are readjusted to minimize the square deviation

X2ðyiÞ ¼ minyj6¼i
½x2ðyjÞ� ð3Þ

then if experimental errors are assumed to follow a normal distribution, for a parameter i, the
confidence interval can be defined as:

fyijX2ðyiÞ � X2
bf < Dag with Da ¼ X2ða; 1Þ ð4Þ

where X2
bf is the best fit square deviation (optimized with no fixed parameters) and Δα is the

significance threshold associated with a given significance level (α) with a Chi Square distribu-
tion with one degree of freedom. Accordingly, the upper and lower limit of the confidence
intervals for a given parameter are estimated by respectively increasing and decreasing the
value of the parameter until the square deviation difference obtained when optimizing the
remaining parameters exceeds the threshold (Δα) [48].

Additionally, intervals for system dependent variables (fluxes, metabolite concentrations
and isotopologue fractions at different time points) are estimated from the maximum and min-
imum parameter values of confidence intervals generated during the identifiability analysis.

Results

HepatoDyn: A kinetic model capable of integrating 13C based
measurements
We present HepatoDyn, the first detailed model of hepatocyte core metabolism capable of
dynamically simulating energy and redox metabolism. It consists of 88 reactions and 81 metab-
olites distributed into three compartments (extracellular, cytosolic and mitochondrial). A sche-
matic representation of the model can be found in Fig 2 and a complete list of metabolites,
reactions and compartments can be found in S1, S2 and S3 Tables, respectively.

Each reaction has an associated kinetic law and the model has a total of 470 parameters
associated to kinetic laws (S4 Table). 55 of these parameters correspond to enzyme activities
that were fitted to experimental data, taking parameter groups (S5 Table) into account this
results in 29 independent parameters that were fitted to experimental data. To the greatest
extent possible, the kinetic laws and their parameters were specific to the enzyme isoforms
active in the liver.

It is worth noting, that while most of the reactions included in HepatoDyn are also present
in genome scale reconstructions of hepatocyte metabolism [2–4], HepatoDyn includes com-
plete kinetic laws and regulatory loops, which allow for dynamic and regulatory studies. Never-
theless, HepatoDyn also has 2 reactions that are absent in genome scale reconstructions of
hepatocyte. Specifically, the reactions aldolase 3 (Fru16bP + Gra$ Fru1P + GraP) and trans-
ketolase 3 (Fru6Pa + Rib5P$ E4P + Sed7P). Those reactions emerge because the enzymes
aldolase and transketolase allow multiple combinations of substrates and products. Addition-
ally, HepatoDyn also incorporates the channelling of hexose phosphates to glycogen in the
form of two separate pools of hexose phosphates, a and b, as previously described in the litera-
ture [10].
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Fig 2. Schematic representation of the metabolic network used in the model. In this representation, reactions associated with the glycolytic and
gluconeogenic pathways are coloured in blue, reactions associated with glycogen metabolism are coloured in purple, reactions associated with the pentose
phosphate pathway are coloured in pink, reactions associated with the Krebs cycle are coloured in orange, reactions associated with fatty acid metabolism
are coloured in red and other reactions associated with redox and energy metabolism are coloured in green. Specifically, the reactions id of each reaction
represented are 1:glctr, 2: gka, 3 g6pasea, 4: gkb, 5: g6paseb, 6: gpia, 7: gpib, 8: pfkla1, 9: fbasea1, 10: pfklb1, 11: fbaseb1, 12: pfkla2, 13: fbasea2, 14:
pfklb2, 15: fbaseb2, 16: aldo1, 17: aldo2, 18: aldo3, 19: tim, 20: trik, 21: fruhk, 22: frutr, 23: gapdh, 24: pgk, 25: pgm, 26: eno, 27: pepck, 28: pk, 29: ldh, 30:

A Dynamic Model of Hepatocyte Metabolism That Integrates 13C Isotopomer Data
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The kinetic model, fully parametrized, can be found in SBML format in the Supplementary
Material (S1 XML and S2 XML).

In addition, HepatoDyn is capable of simulating the propagation of 13C from isotopically
labelled substrates to metabolic intermediaries and products. This allows HepatoDyn to inte-
grate isotopologue enrichment measurements from 13C based experiments greatly enhancing
the predictive capabilities of the model.

HepatoDyn is provided in the Supplementary Material as a C++ program (S1 Software).

Analysing the effects of fructose on hepatocyte metabolism using
HepatoDyn
The liver has a high capacity to metabolize fructose, it is estimated that up to 50% of fructose
ingested is metabolized by hepatocytes [50]. Fructose metabolism in hepatocytes consists of
phosphorylation of fructose to fructose 1-phosphate by fructokinase and the split of this
metabolite by the liver aldolase isoform (aldolase B) into dihydroxyacetone-phosphate and
glyceraldehyde, with the latter metabolite being phosphorylated by triokinase into glyceralde-
hyde 3-phosphate. Because fructose enters at the level of triose phosphate, bypassing the highly
regulated glucokinase and phosphofructokinase steps of glycolysis, fructose uptake is largely
unregulated. Consequently, the limiting step in fructose metabolism is assumed to be fructose
uptake by hepatocytes, which is heavily dependent on the extracellular concentration of fruc-
tose due to the low affinity of the proteins mediating fructose transport into hepatocytes,
GLUT2 and other carriers like GLUT8 [51–53].

As a proof of concept of the capabilities of HepatoDyn, we applied it to study the short term
response of hepatocytes to incubation with 20mM glucose supplemented by either 3mM fruc-
tose or 20mM fructose. These concentrations were chosen because our experimental data
showed that hepatocytes responded quite differently to them. While incubation with 20mM
glucose supplemented with 3mM fructose resulted on a rapid glycogen accumulation, incuba-
tion with 20mM glucose supplemented with 20mM fructose resulted on almost no glycogen
accumulation (Fig 3.A). While it has been reported that supplementation with low concentra-
tions of fructose favours glycogen accumulation [19, 29, 54], the fact that supplementation
with high fructose concentrations inhibits glycogen accumulation was not known. Further-
more, isotopologue analysis indicated that in the second condition, unlike the first condition,
almost no 13C from labelled glucose was propagated to lactate (Fig 3.B). In both conditions lac-
tate and glucose were produced from fructose at a similar rate. Hence it was an interesting case
of study.

Specifically, HepatoDyn was used to integrate experimental measurements derived from
rat hepatocytes incubated for 2 h with the following media: 20 mM glucose 50% enriched in
[1,2-13C2]-glucose and 3 mM fructose (condition A1), 20 mM glucose and 3 mM fructose
50% enriched in [U-13C6]-fructose (condition A2) and 20 mM glucose 50% enriched in
[1,2-13C2]-glucose and 20 mM fructose (condition B). The experimental data for condition A1
had been published previously [19]. This integration was achieved using the experimental
measurements of extracellular concentrations and isotopologue fractions as input to fit the 29
independent parameters associated to enzyme activities in the model assuming that the

lactr, 31: pyrtr, 32: mpyrtr, 33: pc, 34: dic, 35: pglm, 36: ugt, 37: gs, 38: gp, 39: g6pdh, 40: pgndh, 41: rpi, 42: rul5pepi, 43: tk1, 44: tk2, 45: tk3, 46: ta, 47: pdh,
48: cs, 49: aco, 50: idh, 51: kdh, 52: scs, 53: sdh, 54: fh, 55: mmdh, 56: malic, 57: citmtr, 58: citly, 59: acoacar, 60: fasyn, 61: box, 62: aatc, 63: aspglumtrans,
64: aatm, 65: malkgmtrans, 66: cmdh, 67: transa, 68: glutr, 69: glyc3pcdh, 70: glyc3pmdh, 71: nadhdh, 72: coqhoxi, 73: atpase, 74: pimtr, 75: pitr, 76: ppase,
77: atpmtrans, 78: cndk1, 79: cndk2, 80: mndk and 81 adk. Invisible reactions are not shown for clarity. The full lists of metabolites and reactions can be
found on S1 and S2 Tables respectively.

doi:10.1371/journal.pcbi.1004899.g002
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Fig 3. Bar graphs representing the experimentally determinedmetabolite productions (3.A) and isotopologue fractions (3.B) in experimental
conditions.Measurements were taken after incubating hepatocytes for 2 hours with 20 mM glucose 50% enriched in [1,2-13C2]-glucose and 3 mM fructose
(condition A1), 20 mM glucose and 3 mM fructose 50% enriched in [U-13C6]-fructose (condition A2) and 20 mM glucose 50% enriched in [1,2-13C2]-glucose
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enzyme activities, normalized by cell number (S2 Fig), were equivalent in the three conditions.
Consequently, the fitting algorithm identifies a single set of parameters that allows reproduc-
tion of the three experimental conditions. It is worth noting that because conditions A1 and
A2 only differ in the labelling pattern of substrates, the predicted fluxes and concentrations
values will be the same in both conditions. The resulting values of the fitted parameters can be
found in S6 Table. The resulting metabolites concentrations for condition A1/A2 and condi-
tion B can be found on S3 and S4 Figs respectively. The resulting fluxes for condition A1/A2
and condition B can be found on S5 and S6 Figs respectively. The resulting isotopologue frac-
tions for key metabolites in condition A1, A2 and B can be found on S7, S8 and S9 Figs respec-
tively. A comparison between the experimentally measured metabolite concentrations and
isotopologue fractions and those simulated by the model with the best fit parameter set can be
found in Fig 3.

High concentrations of fructose have been shown in vivo and in vitro to result in the deple-
tion of ATP and phosphate in hepatocytes [52, 55]. This occurs due to an accumulation of fruc-
tose 1-phosphate caused by the elevated fructokinase activity [52, 55]. This phenomenon was
predicted by HepatoDyn. The model predicted that a persistent cytosolic ATP and phosphate
depletion would occur with an extracellular concentration of 20 mM fructose (Fig 4). This is
mainly caused by an accumulation of fructose 1-phosphate, although the depletion can also be
partially attributed to the accumulation of some other phosphorylated metabolites. In this con-
text, the low glycogen synthesis observed at 20mM glucose supplemented with 20 mM fructose
can be attributed to the depletion of cytosolic ATP and phosphate. Likewise, the almost non-
existent propagation of 13C from glucose to lactate under this condition can mainly be attrib-
uted to the low glucokinase and phosphofructokinase activities caused by ATP depletion. Con-
versely, at 20mM glucose supplemented with 3 mM fructose, a persistent accumulation of
fructose 1-phosphate does not occur. Accordingly, under this condition, ATP and phosphate
are not persistently depleted (Fig 4).

Identifiability
Overall, 25 of the 29 independent parameters were identifiable with at least 95% confidence.
This remarkable degree of identifiability can be attributed to the numerous feedback regula-
tions through the redox and energy balances (ATP/ADP, NADH/NAD, etc.), the use 13C data
and the integration of data from multiple metabolic conditions.

Concerning the non-identifiable parameters, the non-identifiability of the aldolase activity
and the activities involved in the lactate production and malate aspartate shuttle reaction
chains can be attributed to the fact that the reactions associated to those pathways are predicted
to be close to the equilibrium in experimental conditions, hence the system is fairly insensitive
to the value of the enzyme activities associated to them. On the other hand, the non-identifia-
bility of the citrate synthase activity arises because in our model the flux through the citrate
synthase reaction can depend solely on the two activities upstream, pyruvate dehydrogenase
and β-oxidation, which catalyse the production of acetyl-CoA, the substrate of citrate synthase.

Compared to parameters, fluxes and to a lesser extent concentrations, show a much nar-
rower range of variation (S3, S4, S5 and S6 Figs). This can serve as an indication of robustness,

and 20 mM fructose (condition B). The red dot indicates the value fractions simulated by HepatoDyn using the best fit parameter set. Results of the
isotopologue fractions are reported as m0, m1, m2, etc. where m0, m1, m2. . . indicate the number of 13C atoms in the isotopologue fractions of a given
metabolite.

doi:10.1371/journal.pcbi.1004899.g003
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Fig 4. Plot of the simulated concentrations over time for extracellular fructose (eFru), fructose
1-phosphate (Fru1P), cytosolic phosphate (cPi) and cytosolic ATP (cATP). Specifically, the simulated
concentrations in hepatocytes incubated with 20 mM glucose and 3 mM fructose (conditions A1 and A2,
described in the main text) or 20 mM glucose and 20 mM fructose (condition B, described in the main text) are
shown. The red plot indicates the values predicted with the best fit parameter set and the grey area indicates
the estimated range of variations taking parameter sets within the 95% confidence intervals derived from the
identifiability analysis.

doi:10.1371/journal.pcbi.1004899.g004

A Dynamic Model of Hepatocyte Metabolism That Integrates 13C Isotopomer Data

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004899 April 28, 2016 12 / 19



the capacity of the system to maintain its functional properties in the face of external and inter-
nal perturbations and uncertainty [56].

Interestingly, fluxes associated with the pentose phosphate pathway and fatty acid synthesis
have fairly low upper bounds in both conditions (incubation with 3 mM fructose and 20 mM
glucose and incubation with 20 mM fructose and 20 mM glucose). This is consistent with hepa-
tocytes extracted from fasted rats, as they can be expected to have low activity in fatty acid syn-
thesis, and thus only need to generate a small amount of reductive potential (NADPH) to
maintain cell functions. However, with longer incubation times, an increase in the fatty acid
synthesis and pentose phosphate pathway activities and fluxes should be observed as fructose is
known to increase the expression of key lipogenic enzymes in hepatocytes[28, 57, 58].

It is also worth noting that the identifiability analysis further reinforces the notion that hex-
ose phosphate metabolism in hepatocytes is compartmentalized into two different pools as pre-
viously reported [10]. This is because most of enzyme activities present in both hexose pools
have a lower bound above 0 in the confidence interval, suggesting that the separation of hexose
phosphates into two separate pools must be taken into account to adequately simulate the
experimental conditions. If there was no compartmentalization, all activities present in both
pools would have a lower bound of 0 because they would be made redundant by the activities
in the other pool.

Discussion
Metabolic modelling is based on applying constraints to limit the space of feasible solutions for
system variables, such as reaction fluxes and metabolite concentrations. Constraints can arise
from different components of the model including reaction stoichiometry and kinetic laws,
and from the experimental measurements integrated by the model. Consequently, the use of a
highly complete metabolic network, including the fundamental balances affecting redox and
energy metabolism (ATP/ADP, NAD/NADH, etc.), serve as an important set of constraints.
Furthermore, the inclusion of highly detailed kinetic laws and parameters derived from the lit-
erature further constrains the solution space. For instance, important constraints that emerge
from kinetic laws are regulatory circuits, such as fructose 6-phosphate inhibiting glucokinase
or fructose-1-phosphate disrupting such inhibition [59–61]. Other important constraints that
emerge from the kinetic laws are thermodynamics constraints, which are in the form of equilib-
rium constants. Finally, integrating 13C based data provides additional constraints such as
labelling enrichments which provide information on ratios among fluxes through alternative
metabolic pathways. While numerous kinetic models of hepatocytes exist in the literature [6–
11], HepatoDyn is the first that is capable of integrating all the aforementioned constraints in a
single model.

As a proof of concept of the capabilities of the model, we applied HepatoDyn to study the
metabolic effects of high fructose concentrations on rat hepatocytes. Experimental data showed
that hepatocytes behaved quite differently depending on whether they were incubated with
20mM Glucose supplemented with either 3 mM fructose or 20 mM fructose. Using Hepato-
Dyn, we managed to find a physiological explanation for this behaviour, which involved the
rapid and persistent depletion of cytosolic ATP and phosphate at 20 mM fructose, which was
in accordance with information reported in the literature [52, 55]. This phenomenon has a
strong dynamic component, is dependent on the kinetic properties of enzymes and on the bal-
ances involved in energy metabolism. Additionally, it may be relevant for understanding the
potential adverse effects of fructose-rich diets. This is because ATP depletion impairs protein
synthesis and induces inflammatory and prooxidative changes and thus, in a fructose-rich diet,
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this depletion might result in increased susceptibility of hepatocytes to injury leading to adverse
hepatic conditions such as nonalcoholic fatty liver disease [62].

Furthermore, HepatoDyn has countless applications that go beyond studying the effects of
fructose. For instance, HepatoDyn can be used to study liver centric metabolic diseases such as
diabetes. Given that HepatoDyn is capable of dynamically simulating the redox and energetic
state of hepatocytes, it can be used to better understand the mechanism of action of anti-dia-
betic drugs like metformin which target the energetic and redox metabolism [63] as well as
identifying new drug targets. HepatoDyn can also be used to study the relative contribution of
different reactions to redox and energy balances in different conditions. Therefore, potential
applications of HepatoDyn can be to analyse the ATP consumption or production associated
to different pathways or the relative contribution of the glycerol phosphate shuttle and the
malate aspartate shuttle to the transfer of reducing equivalents between the cytosol and the
mitochondrial matrix. Last, but not least, new reactions can easily be added to HepatoDyn pro-
vided kinetic mechanisms and kinetic information such as affinity constants or inhibition
constants are known for the enzymes catalysing those reactions. Likewise, through the modifi-
cation of reactions and kinetic laws specific to hepatocytes, HepatoDyn can be adapted to other
cell types.
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dence intervals derived from the identifiability analysis. Isotopologue fractions are reported as
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ties that are fitted as a group, indicating the relative value of the enzyme activities associated to
each group.
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S6 Table. Parameters fitted to experimental conditions. This table describes the predicted
values for all parameters that have been fitted to the experimental data. In addition to the best
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S1 Text. Kinetic laws used for the aldolase reaction. This text describes the kinetic laws used
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