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Systematic trends in the properties of a linear split-gate heterojunction are studied by solving
iteratively the Poisson and Schrédinger equations for different gate potentials and temperatures. A
two-dimensional approximation is presented that is much simpler in the numerical implementation
and that accurately reproduces all significant trends. In deriving this approximation, we provide
a rigorous and quantitative basis for the formulation of models that assume a two-dimensional

character for the electron gas at the junction.

I. INTRODUCTION

The properties of the electron gas formed in gated
Al,Ga;_,As/GaAs heterojunctions have been exten-
sively studied in recent years, particularly the quantum
phenomena appearing in the transport of electrons un-
der a split gate. Many models that exploit the almost
two-dimensional character of the electron wave functions
have been developed to explain these properties and de-
scribe the behavior of the electrons in these so-called
quantum wires. However, to our knowledge, there are
only a few examples in the existing literature of fully
three-dimensional self-consistent calculations of the elec-
tron gas properties in a quantum wire under stationary
conditions, and in none of them is a quantitative connec-
tion with two-dimensional models discussed. This is the
main objective of this work.

The reference calculation for a linear split gate of con-
stant width is that of Laux et al,! later extended to
a wire of periodically varying width? and to quantum
dots.3 Linear split gate devices with somewhat more in-
volved geometry have been considered by Snider et al.,*
by Kerkhoven et al,®> and more recently by Jovanovic
and Leburton® and by Wu and Ruden.” The calculations
of Laux et al.! have had a considerable impact in the
development of models, because they have provided the
main theoretical support to certain simplifying assump-
tions on the profile of the confining walls and correspond-
ing properties of the electron wave functions, used in
most discussions of transport in quantum wires. How-
ever, the complexity of three-dimensional calculations,
which require an iterative solution of the Poisson and
Schrédinger equations, has restricted them until now to
a few specific cases. In this work we present methods and
approximations appropriate for linear split-gate devices
which simplify the numerical treatment and therefore al-
low one to perform more systematic studies and to clarify
the physical interpretation of the results.

Extending a method originally proposed by Davies,®
we determine the potential due to the gates analytically,
avoiding the numerical integration of the Poisson equa-
tion in the cap and donor layers. Therefore only the po-
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tential due to the mutual repulsion between the electrons
and, eventually, between them and that part of the donor
layer which remains nonionized has to be computed nu-
merically. Although we do neglect the small effect of
different dielectric constants of GaAs and Al,Ga;_ As,
we do, however, fully include the image charges of the
electrons and donors due to the potential boundary con-
ditions at the surface. In our approach the occupations
of the surface states in the split are determined assuming
Fermi level pinning midgap and thermodynamical equi-
librium with the electrons at the junction. In making
these assumptions we follow the same conventions as in
Refs. 3 and 4, but not the prescription in the original
work of Laux et al. In some of our calculations the as-
sumption of thermodynamical equilibrium is extended
also to the donors, but it should be remembered that
this condition may be experimentally difficult to achieve
unless the measurements are performed a sufficiently long
time after preparation of the sample, so that equilibra-
tion by capture and emission of electrons by the DX
centers is guaranteed. We shall therefore also consider,
as an alternative case, the behavior of the device when
it is prepared so that the donor layer is fully ionized and
compare the effects on the electron gas.

Our study will focus on the interpretation of general
trends rather than on the behavior of a specific device,
and on simplifying assumptions that reduce the numer-
ical work. Therefore one point which will be studied in
detail is the precise formulation of the factorization as-
sumption implicit in most two-dimensional models: i.e.,
that the wave functions of the electrons can be approxi-
mated by the product of an in-plane component times a
common component orthogonal to the plane of the junc-
tion. In Sec. III we will present a systematic way to
implement this factorization and study its quantitative
accuracy.

II. THE THREE-DIMENSIONAL MODEL

We study conventional heterojunction structures made
of successive plane layers of GaAs and Al,Ga;_,As, with
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a metallic gate completely covering their surfaces except
for a linear split. Starting at the exposed surface the
devices consist of (i) a cap layer of GaAs of thickness ¢
on top of which the metallic gate is deposited; the lat-
ter is maintained at a constant potential V; and has a
linear split of constant width wj; (ii) a “donor” layer of
Al,Ga;_,As of thickness d and n doped with a constant
donor number density pg4; (iii) an undoped spacer layer
made also of Al,Ga;_,As of thickness s; and (iv) an un-
doped substrate of GaAs whose thickness will be consid-
ered infinite for all practical purposes. Since these devices
are translationally invariant in the direction defined by
the split gate, it is convenient to choose this as the z axis,
setting the origin at a point in the middle of the split,
and in the orthogonal plane, choosing the z axis parallel
to the surface and the y axis directed towards the inside
of the semiconductor.

A. The electrostatic potential

The potential acting on the electrons in the device is
due to a combination of charges at the surface, includ-
ing those in the gates, to the ionized donors, and to the
electrons in the junction. We will construct this poten-
tial taking into account successively all these sources of
electric field. The potential V,4(z,y) generated by a split
gate at potential V; in the absence of other charges has to
satisfy the Laplace equation everywhere in the half plane
y > 0 with the boundary condition

V. when
‘/Eg(z,y = 0) = { 09

when

T w/2
|.L|l<>w//z. (1)

The function fulfilling these conditions has already been
written down by Davies:®

Veg(@,y) = Vg{l - %[arctan(w/_%y—_f)

L

+ arctan (
Yy

Note that with this choice

Vag(m7 y) = Vg, (3)

so that the electric field at infinity vanishes, as required
by other authors who integrate the Poisson equation di-
rectly.

There are two other sources of potential in the device:
the ionized donors and the electrons in the wire. Due to
translation invariance along the wire axis, the infinites-
imal elements contributing to the electrostatic field will
be in both cases linear filaments parallel to the z axis
with uniform linear charge density *ep(z’,y’) dz’ dy'.
(In our convention e < 0 is the electron charge.) Each
filament contributes a potential:

limy ;00

+e
dVi(z,y) = —mp(z'7y')dz'dy'
x In[(z —z')% + (y — ¥')?] + const, (4)
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and this has to be summed over all elements with non-
vanishing charge. However, adding these contributions
directly to V,, leads to a total potential that does not
verify the boundary condition in Eq. (1). To satisfy that
condition image charges must be added and each of the
linear filaments above acquires an image filament with
opposite charge located mirror symmetrically with re-
spect to the surface.

Applying the above prescription to the charge densities
epe(z’,y')dz'dy’ leads to the Hartree potential acting on
an electron due to the others:

/ dy / d IBPE(w 7y )
vz 4me

(=2 +(y-y)°

X In ,
G=2) + (T v)?

(5)

where y, = ¢ + d. As we will show later, the additional
effects due to exchange (Fock term) and e-e correlations
are small, so we have used the Slater approximation for
the Fock term and, following the classic work of Stern and
Das Sarma,® the parametrization proposed by Hedin and
Lundqvist!? to include e-e correlations. The appropriate
expressions can be found in these references and in an
earlier work by us.!!

A simpler case of application of this method of images
is that of a fully ionized donor layer located in a slab:
¢ < y < ¢+ d, with uniform charge density —ep4: the
corresponding mirror slab is located at —c —d < y <
—c, with density epq. Using the well known expressions
for slabs with a uniform charge distribution one finds an
electrostatic potential:

[
Vi(l0<y<ec)= —ZPd dy,
[
Va(c<y<ws)=——paldy - 1y -0, (6)
Va(yz < y) = —5-pa d (2 +d).

Note that these slabs produce a zero electric field in the
substrate (also when y — o0), indicating that the charge
in the donor layer has been fully compensated by an ad-
ditional induced charge in the gates. The potential due
to the gates and the donors is thus

ng(:’:a y) + Va(y), (7)

so that the total potential affecting the electrons is

Vag+d($a y) =

V(z,y) = Vaga(z,y) + Ve(z, ). (8)
We determine the conduction band edge by multiplying
by the electron charge e and choosing an appropriate
origin of energies. We follow the convention of fixing
this origin at the energy of the bound surface states in
the split and write e¢, > 0 for the binding energy of
these states with respect to the conduction band. The as-
sumption of thermodynamical equilibrium between these
states and the electron gas therefore sets the Fermi level
at zero energy. Then the band edge is given by

CV(Z, y) = e¢5 + e‘/ag+d(z’ y) + e‘/e(za y) + e% ) (9)
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where the last term accounts for the band offset between
GaAs and Al,Ga;__As.

When the assumption of thermodynamical equilibrium
is extended to the donors, the above expressions for Vy(y)
apply only when the donor layer is fully ionized, so that at
all its points eV (z,y) > e®;, the latter being the ioniza-
tion potential. When this is not the case, in those points
where the previous condition is not met the donors re-
main neutral. We describe this situation by positing that
in addition to a fully ionized donor layer at these points
there is a compensating distribution of electrons. We
then add to Eq. (9) the additional potential due to this
latter charge distribution. In split-gate devices, the donor
layer is always fully ionized below the gates, and there is
at most a symmetric nonionized thin strip running par-
allel to the split. At T = 0 K that strip is characterized
by a boundary, z, = txs(y), which has to be determined
simultaneously with the other quantities during the self-
consistent process. Assuming it to be known, then the
additional contribution reads

+z5(y')
AVd(z y 47('6/ / (y")
1 E—E)+ (v —y)?

. (-2 +(y+y)?* (10)

When T # 0 K we assign to each point (z',y’) in the
above integral a fractional occupancy according to the
prescription

va(z',y') =

1+ exp{[eV (z',y’) — e®;]/kT} (11)

and determine the boundary by selecting only those
points for which v4 is not negligibly small.

B. Pinch-off potential

We discuss here its determination for a fully ionized
donor layer, leaving the partial ionization case for the
next section. Vg, is the critical value of V, for which
the electron density at the junction vanishes. Ignoring
quantal effects due to zero point motion, this requires
that the bottom of the conduction band at the bound-
ary between spacer and substrate should lie just at zero
energy:

eV(z=0,y=y3+07) =0, (12)
where y3 = ¢ + d + s. From this it follows that

€ pad(2¢ + d) — e,
eVg,poz 25pd ( c+ ) e¢ ) (13)

1-2 a.rctan (2ys)

As an example we consider a device, named L1 from now
on, with the same physical parameters as that originally
studied by Laux et al.: ¢ = 24 nm, d = 36 nm, s = 10 nm,
w = 400 nm, binding energy of surface states e¢, = 0.7
eV, pg = 0.0006 nm 3, conduction band offset eV}, = 0.2
eV, donor ionization energy e®; = 0.05 eV, and relative
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dielectric constant ¢, = 13.1. From Eq. (13) one then
gets Vg po = —2.58 V. However, as already pointed out by
Davies,® due to zero point motion, a bound subband ex-
ists only for potential wells in the substrate whose depth
is greater than a certain minimal value. The calcula-
tions that we will later show indicate that this minimal
depth is of about eVpp, >~ —0.064 eV. To include this
effect, the numerator of Eq. (13) has to be increased by
that amount, and this leads to an improved estimate of
Vg,po = —2.28 V. As we shall see, this estimate agrees well
with the extrapolation of our self-consistent calculations
to zero electron density. Since the interesting regime of
work of a quantum wire is that of small electron densities,
we shall be concerned with values of the gate potential
only slightly above V, ,,. It was already remarked by
Davies® that the different surface boundary conditions
assumed here, Eq. (2), and in the original work of Laux et
al.! lead to very different pinch-off potentials. As stated
in the Introduction we have preferred to follow the more
recent prescriptions of Refs. 3 and 4.

C. The electron wave functions and densities

Since the potential energy is independent of the z coor-
dinate, in the envelope function approximation the wave
functions of the electrons in the gas can be written in the
factorized form

1 .
@n,kz (w,y,z) S \/2—1retk:z‘1’n(m7y)7 (14)

where n is the subband index and ¥,, is a solution of the
two-dimensional Schrédinger equation:

B2 d? d?
[_% (d:l:z d 2) + eV(:c,y)] \I"n(a:a y)
= En¥n(z,y) , (15)
with boundary conditions that it vanishes at y = y2, and
also when y — oo or when £ — +oo. For convenience

this wave function is normalized to unity. The subband
occupations are determined by

E,
F_ 12 (*m) ) (16)

where F_; /3 is the Fermi-Dirac integral, as in Refs. 4 and
5, and it should be remembered that in our convention
the Fermi level is set at zero energy. Thus

= ZVn Iq’n(m1y)[27 (17)

l 2m*kgT
T k2

VUp =

pe(T,y)

and the sum is truncated when the v,, becomes negligible.
For later use we define explicitly the two-dimensional and
linear densities as

o(z) = f " pe(@y) dy,

2

: (18)
= / o(z) dz .
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The dependence of p.(z,y) and eV (z,y) on each other,
explicit in the above expressions, requires use of an itera-
tive method for their determination. This self-consistent
process consists of (i) starting with some trial V.(z,y),
to construct the total potential V(z,y), (ii) solving the
Schrodinger equation, Eq. (15), for the occupied sub-
bands and constructing pe(z,y), (iii) with that charge
density, computing V.(z,y) from Eq. (5), determining
zp(y) and vy, constructing V(z,y), and returning again
to step (ii) until the results converge.

We solve the two-dimensional Schrodinger equation,
(15), using a rectangular mesh defined in the spacer and
substrate: |z| < Tm, Y2 < ¥ < Ym, with boundary con-
ditions such that its solutions vanish on the sides of that
rectangle. Typical values for device L1 are z,, < 100 nm,
Ym = Y2 +35 nm. Since the potential is symmetric under
the exchange ¢ — —z, the wave functions ¥,, have a def-
inite parity under that transformation and the explicit
calculation can be restricted to > 0 with boundary
conditions now chosen according to the symmetric or an-
tisymmetric character of each wave function. Because we
are interested only in determining the subbands close to
the Fermi energy, i.e., only a few of the lowest eigenvalues
and their eigenfunctions, the Lanczos algorithm is well
suited to the purpose. This method allows one to refor-
mulate the matrix problem that results from discretiza-
tion in the above mesh into one of finding the eigenvalues
of a tridiagonal matrix. When only the lowest eigenstates
are needed, this matrix can be truncated sizably with-
out losing much accuracy. We followed the method as
described in Refs. 12. In instances where the Lanczos
algorithm failed to produce sufficiently accurate results
we improved on them by performing inverse iteration, as
described in Sec. 11.7 of Numerical Recipes.!® The ac-
curacy of the results was tested using two-dimensional
separable potentials (linear in y and harmonic oscillator,
square well or stretched harmonic oscillator in the z co-
ordinate). For the computation of the Hartree potential
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acting on the electrons the same mesh was used. The
calculation of the double integrals was found to be much
less time consuming than the solution of the differential
equation. The numerical code is run on a 486DX-33 PC
and typical running times per iteration are less than 2
min.

D. Results

For simplicity we shall show first results for device L1
at T = 0 K and with the donor layer fully ionized. As
will be seen later, at low T the donor layer of this device
is only partially ionized in thermodynamical equilibrium,
so that in experiment this full ionization condition could
only be attained by photoionization or by cooling under
a suitable negative bias.

The most representative results of the self-consistent
calculation are summarized in Figs. 1-4. The continu-
ous line in Fig. 1 shows the variation of the linear elec-
tron density, Eq. (18), with gate potential. As can be
seen, the results extrapolate well to the pinch-off value
derived above. The corresponding two-dimensional den-
sities are shown in Fig. 2. [Only the values for positive =
are shown since o(z) is symmetric.] The lowest subband
energies are plotted in Fig. 3, again as a function of the
gate potential. And in Fig. 4 the potential as a function
of z for y = y3 + 6 nm is shown also for several V,. This
value of y was chosen because it is where the electron den-
sity peaks. We shall not dwell on these results because
they are qualitatively similar to those already found by
other authors. These figures will also be used to gauge
the quality of the “two-dimensional” approximation to
be presented in the next section.

For a better understanding of the connection between
the changes in V; and those of the results just shown,
the variation of the potential and the wave functions with
depth has to be analyzed: for two selected values of V, we

0.3 T T T T T T T
0.25 | .
0.2 - i FIG. 1. Linear densities for
various gate potentials, fully
o ionized donor layer. Contin-
E uous line: three-dimensional
< 0.15r ) calculation; dashed line: two-
dimensional approximation;
squares: prediction omitting
0.1 . the exchange and electron cor-
relation terms. Diamond on the
« axis: pinch-off potential.
0.05 1
0 1 1 1 1 1 1 1

-2.3 -2.2 -2.1 -2 -1.9

Vg ( volts)
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0.0025 T T T T T T

0.0020

0.0015

o (nm-2)

0.0010

0.0005

- FIG. 2. Two-dimensional
densities, o(z), for gate poten-
tials V, = —1.85, —1.95, —2.05,
and —2.15 V from top to bot-
tom. Continuous lines: 3D cal-
culation; dashed lines: 2D ap-
proximation.

show in Fig. 5 the gates plus donors potential, eV, 4 and
the full potential, eV, as a function of y, with z = 0 fixed.
It is seen that the repulsive Hartree potential pushes up
the conduction band edge in both cases, by an amount
that on the scale of the figure renders the two curves for
the total potential almost indistinguishable. The same
is found for other values of V,. This shows that there
is a large compensation between the changes in eV,g14
induced externally by varying V, and those produced in
the Hartree potential by the increase in the density of
electrons. Plotting eV (x,y) we have found that system-
atically the slope of the walls responsible for confinement

in the z direction is lower than the slope in the y direc-
tion shown in Fig. 5. Since the Coulomb potential is
long ranged, the Hartree term varies quite smoothly in
the rectangular domain of substrate and spacer of non-
vanishing electron density, and the qualitative features
of the slopes of the confining walls are those of eV, .4
so that they can be easily studied, even with analytical
approximations. The changes in density can be qualita-
tively understood using a Fermi gas model for the elec-
trons. When the gate potential is lowered in absolute
value, eV,g 4 is also lowered in the substrate, as shown in
Fig. 5, and this favors an increase in the electron density.
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é FIG. 4. Total potential,
- 0 eV(z,y), for fixed y = 76 nm
’I\' and the same four values of V,
N as in Fig. 2, now from bottom
3 o0t to top.
s
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-0.02
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x ( nm)

This tendency is partially compensated by the increase in
the Hartree potential. Since the confining walls are less
steep in the z than in the y direction the electron den-
sity finds it much easier to grow by expanding laterally;
precisely the trend seen in Fig. 2.

The changes in Fig. 4 can also be interpreted qualita-
tively: For a fixed y, the variation with = of the Hartree
term is found to have a shape reminiscent of a Gauss-
ian: it is maximal and slowly varying at small z and
starts to decrease smoothly roughly at the same x where
o(z) also does. Since the potential eV, can be viewed as
the convolution of the electron density with the screened

Coulomb potential between point charges it will tend to
the shape of o(z), but smoothed by the convoluting func-
tion. Since the latter is long ranged this makes the de-
crease very slow. The variations of eV, nearly compen-
sate those of eV,g1q4 at small x, so that, as shown in
Fig. 4, eV (z,y = 76 nm) is almost constant at small z.
In the larger scale of the figure one can see, however,
that the compensation between these changes found in
Fig. 5 is not complete, and that the bottom of the con-
fining potential descends when the absolute value of the
gate potential decreases. This explains the increase in
the central values of o(z) found in Fig. 2.

ev

(

Energy

.15

FIG. 5. Total and gates
plus donors potentials for fixed
z = 0 as a function of
y. Continuous lines: eV (0,y);
dashed lines: eVeg+4(0,y).
Short dashes correspond to
Vy, = —2.10 V, long dashes to
V,=-1.95V.

30 50

b4 (nm)

100
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Figure 5 also shows the well known quasilinear varia-
tion of the potential in the substrate. Clearly the slope of
that variation depends on the gate potential. To exam-
ine this point further we have fitted straight lines to the
curves eV,14(0,7y) and eV (0,y) in the substrate. We
have found that for a given V, the slopes of the total
potential and of eV 4.4 are very close: their difference
is negligible near pinch off and grows to ~ 3% when
Vy, = —1.9 V. This is again a consequence of the smooth-
ness of the variation of the Hartree term and will support
the approximation to be described in the next section.

The basis of the models that treat the electron gas at
the junction as two dimensional is the assumption that
it is a good approximation to factorize the subband wave
functions as

Un(z,y) = U742, 9) = ¢a(2)Ay), (19)

where the two functions in the right-hand side are taken
to be separately normalized. It is immediately verified
that in this approximation the ratio

pe(Z,Yy) (20)

o(z)

should be equal to A(y) and thus be independent of z.
In Fig. 6 we have plotted the ratio 7(z, y) obtained from
our self-consistent p.(z,y) and o(z), at the points of the
rectangular mesh used to solve the Schrodinger equation.
The continuous line shows the curve that corresponds to
the average over x of the values for a fixed y vs y and
the vertical “error bars” at each point indicate the ex-
treme values of the ratio. The smallness of these error
bars shows that this ratio is to a good approximation
independent of z, thus supporting the factorization ap-
proximation. However, as shown in the same figure, the
profile of the A(y) thus extracted is different from that of

r(z,y) =
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a truncated Airy function, mainly due to tunneling into
the spacer layer. The latter is constructed so that (i)
its zero is located at the boundary between spacer and
substrate, and (ii) it corresponds to a linear potential
whose slope (0.0058 eV /nm) is an average of that of the
curves eV (0,y) in the substrate. We have found that for
all V, considered the A(y) are similar, but close exami-
nation shows, as expected, that as the slope of eV (0,y)
decreases the A(y) expand slightly towards large y. This
trend is much better seen in the wave function for the
“extreme” case V; = 0 (ungated device), taken from Ref.
11, also shown in the figure: whereas the tunneling into
the spacer remains similar, one sees that under the effect
of the negative potential the electron gas becomes much
more concentrated at the junction.

We have examined the effect of the contributions due
to exchange and e-e correlations, included in the Hedin-
Lundqvist approximation. The Fock term is of opposite
sign to the Hartree potential and is therefore attractive
for electrons. Its contribution thus lowers the potential
in the substrate and produces an increase in the electron
density. Since in the Slater approximation the exchange
potential is proportional to p}g/s the effect of this term
increases with A. But, as can be seen in Fig. 1, it is com-
paratively small even for the largest of the linear densities
considered. The changes in o(x) are also small and what
is qualitatively more important is the slight smoothing of
the decrease of the density at large z when these terms
are omitted. The additional effect of the e-e correlations
that we find is even smaller, practically negligible on the
scale of these figures.

E. Finite temperatures

We have studied the systematic changes produced by
increasing the temperature up to 50 K, keeping the as-

-1/2)

nm

r(x,y)

FIG. 6. Continuous line: av-
erage over z of the ratio r(z,y)
defined in Eq. (20). The ver-
tical bars connect the extreme
values of the ratio at the cho-
sen y values. Long dashed line:
wave function for the ungated
device. Short dashed line: nor-
malized function corresponding
to a linear potential with an in-
finite wall at the junction.
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sumption of a fully ionized donor layer. The changes are
small and go in the expected directions: as shown in Fig.
7, due to the spread of the occupations over a larger set
of subbands, the two-dimensional densities expand and
progressively become smoother, with less pronounced os-
cillations in their inner part and a slower decrease to
zero. The changes in the total linear density are very
small: for the case considered in the figure, V, = —2.00
V, the increase in A when T rises from 0 to 50 K is of
only ~ 6%. The changes in the subband energies are
more significant, as shown in the inset in Fig. 7, where
it is seen that the increases in T' push them upwards, a
change related to the increase in A. Similar changes are
found for other gate potentials. We therefore conclude
that in this domain of temperatures there are no quali-
tatively significant changes in the bulk properties of the
device.

F. Donor layer partially ionized

As already pointed out, under the assumption of ther-
mal equilibrium, and when the value chosen for the ion-
ization potential is e®; = 0.05 eV, a part of the donor
layer below the split in the gate remains neutral. As de-
scribed in Sec. II, there is then an additional piece in the
contribution of the donor layer to the electrostatic poten-
tial that accounts for the repulsion between the electrons
retained in this layer and those in the gas.

As a representative case we have chosen to study the
same device L1 as before, at T = 20 K, but now assuming
that the occupations in the donor layer are determined by
the thermodynamical equilibrium condition. The linear
densities for several V, are shown in Fig. 8, together with
the corresponding linear densities of electrons trapped in
the donor layer. Taking as reference the case previously
studied, Fig. 1, the changes in the linear densities are
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quite important. The two-dimensional densities for the
two cases, when V;, = —2.00 V, are shown in Fig. 8 (in-
set): due to the smallness of the spacer layer (remember
that s = 10 nm), the electrons trapped at the donor layer
generate a rather strong repulsive potential everywhere
in the junction, with the repulsion being maximal near
z = 0, so that o is reduced in magnitude everywhere.
A two-dimensional plot of eV (z,y) shows, as expected,
that the additional repulsive potential is stronger near
the center of the wire and closer to the junction. This
is reflected in the subband energies: while the lowest,
and thus with a wave function maximal at the middle of
the wire, increases by some 2.0 meV, for the sixth sub-
band the increase is only some 1.7 meV. However, these
changes have a very simple interpretation: some of the
electrons that were previously in the gas have now moved
to the zone of the minimum in the conduction band edge
in the donor layer, making it rise until the energy of the
electrons trapped by the donors equals that of the Fermi
level in the gas. It is interesting that the sum of linear
densities at the donor layer and the junction is now close
(~ 15% higher) to the linear density found for the same
V, in the full ionization case. Again this is a consequence
of the smoothness and long range of the mean field cre-
ated by the electrons and of the smallness of the spacer
layer: the total Hartree potential in the substrate is not
too different when part of the electrons in the gas are
transferred to the donor layer, and therefore the total
amount of charge does not need to change much to fulfill
the equilibrium conditions.

The same conservation mechanism operates when we
study the changes produced when the Coulomb exchange
terms are suppressed: this increases the repulsion in the
substrate and, as can be seen in Fig. 8, there is an addi-
tional transfer of electrons to the donor layer that leaves
the total linear density almost unchanged. Note also
that, as can be seen again in Fig. 8 extrapolating to
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FIG. 8. Linear electron den-
sities at the gas and donor lay-
ers; 3D gas, solid line; 2D
gas, dashed line; 3D donor,
) dash-dotted line; 2D donor,
dotted line. The diamonds are
the results of 3D calculations
for V = -1.8 V, omitting
the Coulomb exchange con-
tribution. Inset: Compari-
son of o(z) for fully and par-
tially ionized donor layer cases.
Vg = —2.0V and T = 20 K.
Partial ionization: continuous
line, 3D model; dotted line, 2D
4 model. Full ionization: dashed
line, 3D model; dot-dashed line,
2D model.

zero linear density, the pinch-off potential for this par-
tial ionization case is slightly shifted to smaller |V,| with
respect to that in Fig. 1, again in accordance with the
above transfer process.

We finally stress that this sizable dependence of the
density of electrons in the gas on the degree of ionization
of the donor layer implies that a meaningful comparison
between theoretical predictions and experiment will only
be possible when the conditions under which the device
is prepared and the experiment is performed are carefully
controlled.

III. THE TWO-DIMENSIONAL MODEL

In the preceding section we have seen that the factor-
ization of Eq. (19) is a good approximation provided that
for each value of V; the appropriate A(y) is constructed,
taking into account the tunneling into the spacer and the
variation of slope of eV (z,y) with y when V is varied.
We shall now present a systematic way of implement-
ing the factorization approximation which incorporates
these effects and therefore reproduces very accurately
the trends found in our more exact calculations. The
first step consists in rewriting the Schrédinger equation,
Eq. (15), as

R (& &
[" v (;i;; +t3 2> + eVag+a(0,y) + [eV (z,y)

—ev.g+d(o,y)]] Uo(2,y) = Ealu(,y), (21)

Y2

e — 2
Usg+d($) = —-‘7/—1'3 A2( )[arctan ( /2 m) + arctan ( / + w) 2 arctan (;;) } dy,
-z’

2
Ue(x)=~e— dy/ dm/ dy’ ln

and then approximate eV (z,y)
weighted average over y: we define

- eVYsg+d(0’y) by a

U@ = [ T A2(y) [V (@,y) - eVigra(0,9)] dy,  (22)

with a normalized weight function, A(y), to be chosen in
a moment. This leads to approximating Eq. (21) by

B2 d? d?
[ oo (s + ez ) + Vagral0.9) + V(@) W)

= En,a\pn,a(za y)7 (23)

which is separable into

hZ d2
( T eVigral0, y))A(m:E,sy)A(y) (24)

2m* dy
and
52 d2
<_%E{2 + U(m)) bu(z) = EClpn(z) . (25)
with
‘I"n,a(a:» y) = qﬁn(:r)A(y),
Ena=EY + Ef), (26)
U(z) = Usgta(z) + Ue(z) -

The different pieces of this potential have the explicit
forms

U(w )A*(Y')
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and a third contribution, AUyi(z), obtained similarly
from Eq. (10), to be added in the case of partial ion-
ization of the donor layer. The two-dimensional density
is now constructed directly as

o(x) = ZV"|¢,,(.'B)|2, (28)

with the v, already defined in Eq. (16). This set of
equations (24)—(28) summarizes the simplification ac-
complished: the two-dimensional wave functions now fac-
torize into a common y-dependent function, A(y), which
is determined once and for all by solving Eq. (24), and an
z-dependent part that has to be determined iteratively.
Note that the integrations over y and y’ in Egs. (27)
need be done only once, so that the whole iterative pro-
cess refers only to z-dependent functions. The numerical
solution of the one-dimensional Schrédinger equations is
now straightforward and very fast, and the construction
of the different pieces of U(z) requires also only one-
dimensional integrations, except for the piece AUy(z).
The whole iterative process is much faster than that de-
scribed in the preceding section. Note, however, that
since eV,g14(0,y) depends on V,, the weighting func-
tions A(y) are different for each gate potential, so that
the above approximation accounts better for the changes
of the external potential than would a cruder model in
which a universal form for A(y) is imposed from the be-
ginning. This would be the case, e.g., if we had made the
ansatz of choosing A(y) proportional to a truncated Airy
function.

Results

The predictions of this approximation have already
been shown in most of the figures presented for the three-
dimensional calculations and by now it should be clear
that the two-dimensional model is quite successful in all
cases considered: fully or partially ionized donor layers
and different temperatures, not only qualitatively, but
also quantitatively to a high degree of accuracy. It is
therefore a very useful tool in the study of all these sys-
tematic changes.

When the different contributions defined in the approx-
imation process are considered separately the final agree-
ment found is surprisingly good. Let us consider as an
example the prediction for the occupations v,. For the
particular case T = 0 K and for states below the Fermi
level (remember that Er = 0 in our convention), Eq. (16)
reduces to
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2 _ 2m*E,
T Rz

Vp = (29)
The E, are now given by Eq. (26) as the difference of
two large terms: e.g., for V; = —2.0 V and a fully ion-
ized donor layer we find F; , = —67.10 4 61.97 = —5.13
meV. The agreement found in Fig. 3 for the subband en-
ergies and that in Figs. 1 and 2 for the densities is crit-
ically dependent on an accurate prediction by the two-
dimensional (2D) model of these two large terms. As
has been stressed when discussing Fig. 5, the Hartree
term gives a large contribution. It is the fact that it
is sufficiently smooth that makes the replacement of the
y dependence of eV (z,y) by that of eV,g44(z,y) suffi-
ciently accurate for the determination of a good A(y).
In devices whose geometry induces more rapidly vary-
ing Hartree contributions one should then expect the 2D
model to become less accurate, and cause the electron gas
to depart from behaving as a two-dimensional system.

IV. SUMMARY AND CONCLUSIONS

We have presented a self-consistent approach to the
potential energy of electrons in a linear split-gate het-
erojunction device. Solution of the Poisson equation has
been simplified by following Davies’s method® to account
for the gate potential and surface boundary conditions.
Further, we have studied the accuracy of the commonly
used two-dimensional approximation to the full three-
dimensional system. Our formulation for this approxi-
mation is shown to be very accurate, and simple to carry
out. As a result, one can make systematic studies with
little computational effort.

Work is in progress to formulate a two-dimensional
Thomas-Fermi approximation for the electron gas at
the junction based on the above results. We have
found that a Thomas-Fermi approximation for the three-
dimensional case fails badly in reproducing the shape
of A(y) and although the results for the linear densities
show the same qualitative trends as above they are not
quantitatively accurate. Results for these models will be
presented in a future publication.
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