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Microstructural evaluation of primary crystallization with diffusion-controlled grain growth
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A model has been developed for evaluating grain size distributions in primary crystallizations where the
grain growth is diffusion controlled. The body of the model is grounded in a recently presented mean-field
integration of the nucleation and growth kinetic equations, modified conveniently in order to take into account
a radius-dependent growth rate, as occurs in diffusion-controlled growth. The classical diffusion theory is
considered, and a modification of this is proposed to take into account interference of the diffusion profiles
between neighbor grains. The potentiality of the mean-field model to give detailed information on the grain
size distribution and transformed volume fraction for transformations driven by nucleation and either interface-
or diffusion-controlled growth processes is demonstrated. The model is evaluated for the primary crystalliza-
tion of an amorphous alloy, giving an excellent agreement with experimental data. Grain size distributions are
computed, and their properties are discussed.@S0163-1829~97!10405-2#
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I. INTRODUCTION

For some nonequilibrium transformations the kinetics
molecular rearrangement is sufficiently slow to give a rate
advance of the interface limited by the kinetics of the int
face attachment process rather than by the heat flow.
characteristic has been used to carry out studies of interf
controlled crystal growth over wide ranges of temperatu
We wish to consider the situation in which the kinetics
transformation is sufficiently fast for diffusive processes
limit the rate of interface advance. Assuming that the tra
formation kinetics is controlled by random nucleation, t
explicit form of the growth-rate-limiting process determin
the microstructure of the final product. Other quantities, s
as transformation rate, mean grain size, and grain den
depend to some extent on the limiting mechanisms unde
ing the transformation.

The diffusion-controlled growth rate plays a fundamen
role in a wide range of crystallization processes, especiall
partitioning transformations. In a general sense, the kine
of the grain growth is controlled by the diffusion of th
slower species which must be included in, or expelled out
the transformed phase. In most cases primary crystalliza
of amorphous materials falls into this picture and, therefo
an accurate knowledge of the diffusion process and the
duced kinetics is essential in order to describe the prope
of the microstructures developed in the crystallization p
cess.

The diffusion process around an isolated growing grain
550163-1829/97/55~6!/3435~10!/$10.00
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well established; see, for instance, Ref. 1. However, the
fusion around isolated grains cannot give a description of
interference between diffusion fields of neighbor grains
advanced stages of the phase transformation, which follow
nucleation and growth kinetics.

Nucleation and growth kinetics which results in the c
culation of the volume fraction transformed at a given time
well established by the Kolmogorov-Johnson-Mehl-Avra
~KJMA! theory.2–6 KJMA’s theory considers randomly dis
tributed active nucleation sites which grow to form grai
and during the growing process may collide with other gra
of neighbor sites. To summarize, let us define a control v
umeV0 where the growing phase occupies a volumeV(t);
the transformed volume fraction is thenX(Y,t)5V(t)/V0.
HereY is any of the macroscopic variables which may i
fluence the kinetics. Avrami introduces the concept of e
tended volumeṼ(t) as the volume that the growing grain
would occupy neglecting impingement:

dV

dṼ
5
V02V

V0
. ~1.1!

This relationship means that the probability of each gr
finding an untransformed volume to continue growing is ra
domly distributed. The KJMA theory gives an adequate d
scription of the kinetics of any nucleation and growth tran
formation because it is based only on statistic
considerations, being independent of the specific dynam
of the process.7
3435 © 1997 The American Physical Society
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Equation ~1.1! can be integrated under realistic cond
tions, provided that the nucleation rateI (Y,t) and the growth
rate G(Y,t) are known. Several authors have perform
these kind of calculations.8–11

Recently, Crespo and Pradell12 have proposed an exten
sion of the Avrami’s theory in order to calculate not only t
transformed volume fraction but also the grain size distri
tion developed. This model has been tested against M
Carlo simulations, showing excellent agreement.

In this paper, the above model is used and convenie
modified in order to describe diffusion-controlled gra
growth in primary crystallization processes. In Sec. II A w
summarize the features of the previous model.12 In Sec. II B
radius-dependent grain growth is studied, and results
tained are applied to diffusion-controlled grain growth
Sec. II C. Overlapping of diffusion fields is considered
Sec. II D. Comparison with experimental data is also p
sented. Sec. III is devoted to the analysis of the grain s
distributions obtained in each case and their properties. C
cluding remarks are presented in Section IV.

II. MODELING OF DIFFUSION-CONTROLLED
GRAIN GROWTH

A. Mean field integration of Avrami’s model

As mentioned, Crespo and Pradell12 have proposed a
mean-field model in order to calculate the grain size dis
bution obtained after nucleation and growth. The essen
feature of this model is that it assumes that Eq.~1.1! can be
applied in differential form to any grain population with
well-defined average radius. The main features of this mo
are now summarized.

The model is written in terms of reduced variables, wh
are presented as lowercase letters while dimensional v
ables are presented in as uppercase letters. A unit lengthh is
defined to make calculations dimensionless, i.e., the res
tion length of a suitable observation method, and space
mensions are reduced byh. Time is also scaled by imposin
the condition that the growing speed in the reduced sys
(g) be unity. Then the time unitt is defined by

h5E
t

t1t~ t !
G~Y,t8!dt8, ~2.1!

and, consequently, the reduced nucleation rate is

i ~ t !5h3E
t

t1t~ t !
I ~Y,t8!dt8. ~2.2!

Let us assume that new nuclei have an average in
radiusRe ; in the reduced system it becomesr e , given by

r e5
Re

h
. ~2.3!

Extended and real populations by unit volume are defin
and their evolution is followed at unit time steps. Extend
populationsñ j ,k are calculated assuming that grains grow
isolation. Due to the particular coordinate system chosen
evolution is
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ñe,k115 i k ,

ñ j11,k115ñ j ,k , j.e, ~2.4!

where ñ j ,k is the extended population of radiusr j per unit
volume at timetk , and i k5 i (tk). Note that all the grains
nucleated at timetk are included in the populationñe,k11,
thus having a finite number of populations which grow
unit speed. The extended transformed volume, coming fr
a unit volume, is easily written as

ṽk5(
j
ñ j ,k

4
3pr j

3 . ~2.5!

Actual grain populationsnj ,k do grow at a slower spee
than extended populations due to grain collisions. Our p
pose is to calculate those populations explicitly. Therefo
an extension of the KJMA model is needed. The mode
built in the following structure. Impingement between grai
implies that only a fraction of the grains belonging to ea
population of radiusr j at time tk is able to grow enough to
have radiusr j11 at time tk11. We define this fraction as
ak , and postulate that this fraction is independent of
grain radiusr j because it is only related to the probability
finding an untransformed volume near to a grain. This allo
us to write equations equivalent to Eqs.~2.4! for the actual
populationsnj ,k :

ne,k115~12ak!ne,k1 i k~12vk!,

nj11,k115~12ak!nj11,k1aknj ,k , j.e, ~2.6!

wherevk is the transformed volume by unit volume, define
as

vk5(
j
nj ,k

4
3pr j

3 . ~2.7!

The value ofak is determined by imposing the conditio
that the volume differentials~extended and actual! satisfy
Avrami’s equation~1.1!, which in this formulation is written
as

vk112vk21

ṽk112 ṽk21

512vk . ~2.8!

Equations~2.4!, ~2.6!, and~2.8! give an iterative method
to obtain the grain size distributions present in the materi
The initial conditions for the integration are

nj ,050, j51,M ,

ñ j ,050, j51,M , ~2.9!

whereM is the arbitrarily large number of populations sim
lated. At each integration step Eqs.~2.4! are used to calculate
the new values of the extended populations. Then the va
of ak is determined from Eqs.~2.6! and ~2.8! by using a
Newton-Rapson method. The model has been tested ag
Monte Carlo simulations, giving excellent results; see R
12. We refer to this model as the mean-field constant-sc
~MFC! model because the grain radius scale is homo
neous.
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55 3437MICROSTRUCTURAL EVALUATION OF PRIMARY . . .
B. Modeling of radius-dependent grain growth

Most of the nucleation and growth transformations a
driven by a growth speed dependent on the grain radius,
G5G(Y,t,r ). The MFC model is not able to reproduce su
processes because the radius dependence of the growt
breaks the grain radius scale homogeneity which is unde
ing the MFC model. For that reason, in this section
present a modification of the MFC model which is able
deal with the particular case of time-independent radi
dependent growth rates, i.e.,G5G(r ), which we will refer
to as the mean-field variable-scale~MFV! model. In particu-
lar, this model will apply to diffusion-controlled grain
growth.

In order to adapt the MFC model to radii-depende
growth, it is necessary to define a variable radius len
scale, by imposing

g~r k!51 ;k. ~2.10!

This is achieved by observing that the radius of an i
lated grain, nucleated att5t0 with an initial radiusRe , is a
continuous function of (t2t0) given by

R~ t !5Re1E
t0

t

G~ t82t0!dt8. ~2.11!

This is a universal function, in the sense that the radius
all grains has the same time dependence after nuclea
Then, for a given value ofh we have

r ~ t2t0!5r e1
1

hE0
t2t0

G~ t8!dt8, ~2.12!

which establishes that there is a univocal relationship
tween the grain radius and the time elapsed since nuclea
Therefore, the value oft is defined by

h5E
0

t

G~ t8!dt85r ~t!2r e . ~2.13!

Once definedt, the values ofr k are simply

r e1k5r ~kt!, ~2.14!

which automatically satisfy Eq.~2.10!.
Expression~2.14! ensures that extended populationsñ j

k

will always transform intoñ j11
k11 for any values ofj andk.

This property also implies the need of a time independe
of G, because changing values ofG would imply the redefi-
nition of the radius scale, thus invalidating the definition
populations.

Under the above condition, Eqs.~2.4!, ~2.6!, and ~2.8!
apply without any correction, conserving their meaning. C
culation of the actual grain populations according to t
definition is achieved straightforwardly by using the sa
computation strategy as in the MFC model.

This MFV model allows us to study the crystallizatio
behavior of a primary transformation.
e
e.,
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C. Application: Interface plus
diffusion controlled grain growth

We will consider a particular case of a transformati
driven by homogeneous nucleation of grains~of spherical
shape! of critical radiusRe whose initial growth occurs at a
constant rate up to a threshold radiusRT , further growth
being diffusion controlled.13 Under steady-state condition
the growth velocity will become

dR

dt
5D

C*2C0

C*2Cxt

1

R
, ~2.15!

whereD is the diffusion coefficient for the slowest solu
that piles up ahead of the interface, andCxt , C* , andC0
stand, respectively, for the concentration of that solute ins
the grain, at the grain interface, and at very large distan
compared to the radius of the grain.

In this section we ignore the interference between diff
ent growing grains that arises from the competition for t
available excess solute, since it becomes important o
when the diffusion fields of two grains begin to overlap to
appreciable extent. The more general problem of interfere
is treated in the next section. Thus, as a first approximat
isolated grains grow in an infinite matrix andC has the initial
value C0 of the initial phase. We will define aneffective
diffusion coefficientD0 as

D05D
C*2C0

C*2Cxt
, ~2.16!

and then

dR

dt
5
D0

R
. ~2.17!

In order to select between the two growth mechanism
the continuity in radius size is imposed, resulting in

R~ t !5H Re1G0t, R~ t !<RT ,

ARe
21D0t otherwise,

~2.18!

whereG0 is the interface controlled growth rate and th
threshold radiusRT is

RT5
D0

G0
2Re . ~2.19!

Figure 1 shows the behavior ofR(t).

FIG. 1. Plot of R(t) in a interface-plus-diffusion-controlled
grain growth process.
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The length scale of the MFV model applied to this case
written in reduced units as

r j5H j , j<RT /h,

Ar e
21~ j2e!d otherwise,

~2.20!

whered is the reduced diffusion coefficient defined by

d5
D0

G0h
, ~2.21!

andRT /h5d2r e in reduced units.
We now illustrate the effect of the introduction of th

diffusion in the grain growth. Figure 2 plots the evolution
the crystalline fraction versus time for a given growth ra
g and three different values of the reduced nucleation r
namely,i5431028, and i /10, andi /100, without diffusion.
Moreover, two diffusion-controlled processes obtained
the same values ofg and i , and reduced diffusion coeffi
cientsd51.2 andd/4, are presented. As a general trend, b
diffusion and reduction of the nucleation rate retard the cr
tallization, but in a different way. Therefore, the introductio
of the diffusion mechanism provides more flexibility fo
modeling grain size populations in transformations for wh
the KJMA theory is applicable.

We can also visualize the relative importance of the t
mechanisms, nucleation rate and diffusion, by plotting
Fig. 3 the number of grains versus time for a given value
g and different values ofi and d. Although reducing the
nucleation rate and introducing diffusion both delay the tr
sition, the effect on the grain density is the opposite: Red
ing the nucleation rate drastically reduces the total numbe
grains, while the introduction of diffusion increases it.

The model of grain growth used assumes that diffus
takes place only after the grain reaches a threshold ra
RT . Therefore, diffusion-controlled growth takes pla
above the time needed for the first nuclei to reachRT . This
is also shown in Fig. 3, where the relative fractions of gra
growing either by interface or by diffusion are also plotte
At increasing time, diffusion becomes the dominant mec
nism of grain growth. The average grain radius also sho
these differences, as shown in Fig. 4. Without diffusion,
average grain size increases as the nucleation ratei de-

FIG. 2. Plot of the crystalline fraction vs time for a given grow
rate g and reduced nucleation ratei5431028, i /10, and i /100
without diffusion, and for the same values ofi andg with diffusion
obtained whend51.2 andd/4.
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creases, but it is reduced as soon as diffusion plays a
The effect on the grain size distribution shape will be d
cussed in Sec. III.

We will apply this model to the experimental data o
tained for the primary crystallization ofa-Fe~Si! DO3 struc-
ture in a Fe73.5CuNb3Si17.5B5 amorphous alloy. As is well
known,14–18nanocrystallization is promoted by the presen
of Nb atoms which limit the grain size. Nb is expelled fro
the crystalline structures, generating a diffusion layer in
surrounding matrix.19 The homogeneous nucleation fre
quency and interface-controlled growth dependence on t
perature are evaluated by the classical theory,20 and the dif-
fusion coefficient D0, corresponding to Nb atoms, i
assumed to follow an Arrhenius temperature depende
The values of the several relevant quantities are shown
Table I for specific temperatures. Experimental data
X(t) were obtained under isothermal transformation of
sample heat treated in a differential scanning calorime
~DSC! cell.21,22

The isothermal evolution of the transformed fraction f
three different temperatures~490, 500, and 510 °C! is ob-
tained by the integration of the MFC model for interfac
controlled growth and the MFV model for interface-plu
diffusion-controlled growth. Figure 5 shows the comparis

FIG. 3. Plot of the grain density vs time obtained for a giv
value ofg and i5431028 ~solid line! and i /10 ~dashed line! with-
out diffusion. Plot of the total~stars line!, interface-controlled
~circles line!, and diffusion-controlled~triangles line! grain density
in an interface-plus-diffusion-controlled process with the same v
ues ofi andg and a reduced diffusion coefficientd51.2.

FIG. 4. Plot of the average grain radius vs time obtained fo
given value ofg andi5431028 ~solid line! andi /10 ~dashed line!
without diffusion, and with the same values ofi and g and a re-
duced diffusion coefficientd51.2 ~stars line!. In all cases the ar-
rows indicate the end of the primary crystallization.
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55 3439MICROSTRUCTURAL EVALUATION OF PRIMARY . . .
between experimental data21,22and the values calculated wit
the two models above mentioned. By convention, the tra
formed volume fraction is taken to beX51 at the end of the
primary crystallization, while a volume fraction 12g of the
specimen remains untransformed.

Close observation of Fig. 5 indicates that the compu
volume fraction for both models fits the experimental data
the onset of the transformation. However, systematic ove
timation of the transformed fraction occurs when consider
only interface-controlled growth. Overestimation, compa
to experimental data, likewise appears in the computed
ues when the interface-plus-diffusion-controlled growth
used, but it occurs mainly at the late stages of the trans
mation. These results suggest that, in the crystallization
cess considered, the onset is driven by homogene
nucleation- and interface-controlled growth, while t
diffusion-controlled growth dominates further crystallizatio
stages. However, in this particular alloy some further mec
nism is retarding the crystallization.

D. Model of overlapping diffusion fields

The interference between nearby growing grains is par
the diffusion problem and results in a growth rate that gra
ally becomes zero.23 This is due to the fact that the conce
tration profile in the matrix is altered by the presence
nearby grains, becoming time dependent, as sketched in
6. In a general sense, this corresponds to the situation w
the growth of the grains modifies their surroundings, i.e.

TABLE I. Parameters used in the calculation of the nucleat
rate I , the growth rateG, and the diffusion coefficientD0 for the
Fe73.5CuNb3Si17.5B5 amorphous alloy.

T Re G0 I D 0

(°C! ~nm! ~cm s21) ( cm23 s21) ( cm2 s21!

490 1.106 3.2417310209 1.4112310115 1.6826310215

500 1.106 6.0970310209 3.5303310115 2.6611310215

510 1.106 1.0993310208 8.3671310115 4.1597310215

FIG. 5. Experimentally measured transformed volume fract
vs time for the isothermal crystallization of Fe73.5CuNb3Si17.5B5

metallic alloy at several temperatures. Calculated crystalline f
tions for interface-controlled growth~dotted line! and with the in-
troduction of the diffusion-controlled process~solid line! are also
shown for the three temperatures.
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partitioning transformations. The concentration gradient
the grain interface is fortunately quite insensitive to the p
cise manner in which we specify the boundary conditions
away from one grain.24 At the final stages of the transforma
tion, one expectsuC*2Cu!uC*2Cxtu. In this case, the in-
terface will move sufficiently slowly for the steady-sta
equation~2.15! to be appropriate. However, the presence
neighbor grains growing simultaneously will increaseC,
which instead of remaining constant~and equal toC0), as
assumed in the first approximation, will vary with time an
depending on the microstructure developed.

The main problem in order to take this effect into accou
is that spherical symmetry is lost due to the random dis
bution of grains around a given grain of radiusR. Moreover,
Eq. ~2.15! is obtained under the assumption that far aw
from the growing grain the concentration of solute is know
In the present case, we consider that the grains are still gr
ing in isolation by substituting the effect of the rest of th
growing grains for an increase in the average concentra
C(t) of solute in the matrix far away from the grain at an
given time. That is, we will substitute the concentration
homogeneity, due to individual grains, for the mean conc
tration fieldC(t). Therefore, Eq.~2.15! will still be appli-
cable, replacingC0 by C(t). In order to evaluate this time
dependent concentration of solute, a mass balance at tit
has to be written, yielding

gX~ t !Cxt1@12gX~ t !#C~ t !5C0 . ~2.22!

The value ofC(t) is then

C~ t !5
C02gX~ t !Cxt

12gX~ t !
. ~2.23!

Introducing this value in Eq.~2.15! in place ofC0, we
obtain after some transformation

dR

dt
5S 12

12 f xt
12 f 0

gX~ t ! D 1

12gX~ t !

D0

R
. ~2.24!

Here f 05C0 /C* , f xt5Cxt /C* , andg are assumed con
stants which might be determined experimentally. It is ea
to see that at the beginning of the transformation, that is
the limit X(t)→0, the growth speed is the same as defin
by Eq. ~2.17!.

n

n

c-

FIG. 6. Scheme of the concentration profile between grain
the beginning~a! and near the end~b! of the crystallization process
showing the effect of the overlapping diffusion fields.
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In order to simplify the notation, we will define the coe
ficient

s„X~ t !…5S 12
12 f xt
12 f 0

gX~ t ! D 1

12gX~ t !
, ~2.25!

so that

dR

dt
5s„X~ t !…

D0

R
. ~2.26!

Therefore, the radius evolution of a grain is still given
Eqs. ~2.18! and ~2.19!, substitutingD0 by s„X(t)…D0. This
produces a double effect on the growth protocol; on the
hand there is an additional reduction of the diffusio
controlled growth rate as the transformed volume fract
increases, while on the other hand there is a reduction of
threshold radius at which diffusion begins to control t
growth rate.

The introduction of this variable diffusion rate in th
MFV model is performed by defining the same variable
dius scale as in Eq.~2.20!, and modifying Eqs.~2.4! and
~2.6! as follows:

ñe,k115 i k ,

ñ j11,k115ñ j ,k , s~Xk!d2r e. j.e,

ñ j11,k115S 12s~Xk!
d

r j11
D ñ j11,k1s~Xk!

d

r j
ñ j ,k ,

r T. j.s~Xk!d2r e , ~2.27!

ñ j11,k115@12s~Xk!#ñ j11,k1s~Xk!ñ j ,k , j.r T ,

ne,k115~12ak!ne,k1 i k~12Vk!,

nj11,k115~12ak!nj11,k1aknj ,k , s~Xk!d2r e. j.e,

nj11,k115S 12aks~Xk!
d

r j11
Dnj11,k1aks~Xk!

d

r j
nj ,k ,

r T. j.s~Xk!d2r e , ~2.28!

nj11,k115@12aks~Xk!#nj11,k1aks~Xk!nj ,k, j.r T .

Here,Xk5X(tk) and, consequently,s(Xk) are considered
slowly varying variables; their variation during the integr
tion step is neglected and they are recomputed at each i
tion. It is worth noting that it is necessary to separate
grains of radiuss„X(t)…d2r e,r j,r T because they firs
grow at a constant rate, their radius scale being cons
Afterwards their growth is controlled by diffusion, and th
growth rate becomes proportional to 1/R.

Let us evaluate the effect of the existence of ov
lapping diffusion fields in our previous example, of the p
mary rystallization of a-Fe~Si! DO3 structure in a
Fe73.5CuNb3Si17.5B5 amorphous alloy. In this particula
case, it has been determined experimentally thatCxt50.
Mössbauer results indicate that primary crystallization e
approximately after annealing 4 h~1 h!, at 490 °C~510 °C!;
so we accept thatX51 at this moment. Analysis of the
e
-
n
he

-

ra-
e

nt.

-

s

Mössbauer spectra also gives the value ofg(T)X(t), obtain-
ing g~490 °C!50.6060.05 ~Ref. 25! and g~510 °C!
50.6560.05.26 These parameters have not been determi
at 500 °C, but it seems plausible to accept thatg~500 °C!
.0.6260.05). The only unknown parameter still undefin
in Eq. ~2.24! is C* , which we will fix by imposing the con-
dition that no diffusion gradients exist in the remaining m
trix; that is,C(t)→C* when t→`. This results in

C0

C*
5 f 0512g. ~2.29!

With this assumption, no new adjustable parameters
introduced in the modeling of the growing speed.

The results of the integration of the MFV model using t
growth rate defined by Eq.~2.24! and the above-mentione
assumptions are compared with experimental data in Fi
for the annealing of the samples at the same temperat
~490, 500, and 510 °C!. The agreement between comput
and experimental data is excellent, always below the un
tainty of the experimental data (610%).

III. GRAIN SIZE DISTRIBUTIONS

The final goal of the above formulations is to obtain
quantitative description of the resulting grain size distrib
tions after controlled thermal treatments.12 The shape of the
size distribution has substantial influence on most of
macroscopic physical properties of interest, i.e., magnetic
ercitivity and susceptibility, electric resistance, etc. Ho
ever, the parameters usually given in the description o
microstructure, namely, the grain density and the aver
grain radius, are quite insensitive to the real grain size d
tribution. Thus, the ability of the above models to obta
those distributions greatly increases the knowledge of
microstructure, which is the essential feature controlling
macroscopic properties.27–30

Figures 8 and 9 show the computed grain size distri
tions after isothermal treatments of Fe73.5Cu Nb3Si17.5B5 at
490 and 510 °C for several crystallized fractions. Interfa
controlled growth produces a broad grain size distributi

FIG. 7. Experimentally measured transformed volume fract
vs time for the isothermal crystallization of Fe73.5CuNb3Si17.5B5

metallic alloy at several temperatures. The calculated crystal
fractions with the diffusion-controlled process~dotted line! and
with the introduction of the overlapping diffusion model~solid line!
are shown.
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showing a flat profile with a similar number of grains for a
radii below the maximum. The introduction of a diffusio
mechanism dramatically changes the shape of the distr
tion, giving a main asymmetric peak. The discontinuity o
served on the left side of the peak appears at the thres
radius, where diffusion becomes the controlling mechan
of grain growth. The shape of the discontinuity is due to
discontinuous model of growing mechanism used, which
sumes continuity in the radius growth but not in the growi
speed, being only a first approach of the true growing mec
nism. In fact, a smooth transition between interface- a
diffusion-controlled growth is expected, and more sophi
cated models may offer a more realistic description. Ho
ever, the effect of this improvement of the growing descr
tion should not affect the main trends of the shape of
distribution.

The most interesting features of the introduction of
diffusion-controlled growing mechanism are the refinem
of the microstructure and the reduction of the maximu
grain size, closely related to the asymmetry observed in
shape of the distribution.

The delay of the crystallization given by the introductio
of the presence of overlapping diffusion fields gives a furt
reduction of the maximum grain radius and results in
accumulation of grains at small radiis, giving a more asy
metric grain size distribution.

The main features of the grain size distribution are
same at higher annealing temperatures, but an extra re
tion of the average grain size and maximum grain size and
increase of the total number of grains and peak maximum
also observed. Therefore, a sharper distribution with

FIG. 8. Plot of the grain size distributions for isothermal anne
ing of Fe73.5CuNb3Si17.5B5 at 490 °C at three different crystallize
fractions, namely,X520%, 60%, and 99%. The dotted line show
the resulting distribution for the interface-controlled growth mec
nism. The dashed line includes interface-plus-diffusion-contro
growth. The solid line shows the result of interface plus overlapp
diffusion fields growth.
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smaller average radius will be obtained with a higher num
of grains while increasing temperature.

The refinement of the distribution produced by the diff
sion process may also be observed in Fig. 10, where
average grain size and maximum grain size of the distri
tion are plotted as a function of the annealing temperature
the overlapping diffusion field model, and are compared w
the interface-controlled growth results. Although the avera
grain size is only slightly reduced, it becomes evident t
the maximum grain size is strongly cut down because of

-

-
d
g

FIG. 9. Plot of the grain size distributions for isothermal anne
ing of Fe73.5CuNb3Si17.5B5 at 510 °C at three different crystallize
fractions, namely,X520%, 60%, and 99%. The dotted line show
the resulting distribution for the interface-controlled growth mech
nism. The dashed line includes interface-plus-diffusion-control
growth. The solid line shows the result of interface plus overlapp
diffusion fields growth.

FIG. 10. Dependence of the average~diamonds! and
maximum ~circles! grain size with annealing temperature
Fe73.5CuNb3Si17.5B5 for the overlapping diffusion field mode
~solid line! and the interface-controlled growth~dashed line!. Re-
sults for the diffusion model are indistinguishable from the avera
diffusion field model.



a
a
r

n
o
d

i
o
e

n

s
i

-

y

here
on-
t is
ion
de-
s
tal
gle
g
tri-
r of
ilar

d a
ob-
the

by

On
ni-
tion
on-
the
an
ns.

the
lso
ibu-
ion
the
°C
ds
he
eak

ter

ri-
u-
line
ne
lds
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diffusion, and it is additionally reduced by an increase in th
annealing temperature. Results for the diffusion model a
indistinguishable from the overlapping diffusion field mode
and so are not plotted.

The above statements greatly coincide with the empiric
knowledge about the suitable annealing procedures to obt
small grain sizes. Effectively, it is well known that bette
macroscopical properties are obtained by annealing at high
temperatures, provided that no secondary crystallization b
gins.

Another critical parameter of the obtained grain size dis
tribution is the grain density. It is shown in Fig. 11 for the
three models studied above and the three temperatures, a
function of the crystallized fraction. Comparing the
interface-controlled growth and the diffusion-controlled
growth for a given temperature, the effect of the diffusio
mechanism is to increase the grain density by a factor
about 3/2. Furthermore, the overlapping diffusion fiel
model still gives a further increase in the grain density, du
essentially to the additional reduction of the growing spee
for larger grains.

In the final stages of the crystallization process, for crys
tallized fractions over 0.9, the overlapping diffusion field
model gives rise to an additional increase in the total gra
number. This increase is due to the fact that the nucleati
rate is considered constant in the whole process. Howev
the change in composition of the remaining amorphou
phase should result in a reduction of the nucleation rate at t
final stages of the crystallization.31 This has not been consid-
ered in the present model, and will result in a smoother i
crease of the total number of grains.

The relatively important number of grains of small size
responsible for the marked asymmetry of the grain size d
tributions will, in fact, have a low effect on any extensive
macroscopical property. In fact, considering the fraction o
volume occupied by each population of a given radius, th
populations with small radii will also make a small contribu
tion to the total crystallized volume. The volume fraction
distribution, obtained by plotting the volume occupied b

FIG. 11. Plot of the grain density vs crystallized fraction in
Fe73.5CuNb3Si17.5B5.
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each population, is presented in Fig. 12, and shows that t
is only a narrow range of grain sizes having appreciable c
tributions to any extensive macroscopical property. Wha
also important is the main change induced by the diffus
mechanism controlling the growth rate, namely, a clear
crease in the size (;30%) of the relevant populations. Thi
distribution is directly comparable with the experimen
data obtained by indirect Fourier transform of small an
neutron scattering~SANS! and small angle x-ray scatterin
~SAXS! spectra. These methods give volume fraction dis
butions, but not absolute measurements of the numbe
grains. Measurements of a crystallized material of a sim
composition ~Fe73.5CuNb3Si15.5B7),

32 annealed for 1 h at
550 °C, give an average grain size of about 5 nm an
maximum grain size of about 8 nm. The shape of the
tained distribution is very close to those computed with
interface-plus-diffusion-controlled growth model.

The developed microstructure may also be evaluated
transmission electron microscopy~TEM! analysis. However,
it has some limitations both in resolution and statistics.
the one hand, the resolution of the TEM spot limits the mi
mum size of a detectable grain, thus avoiding the detec
of smaller grains, as well as in the separation between c
tiguous grains. On the other hand, the finite thickness of
sample is responsible for grain overlapping. Both facts c
lead to an underestimation of the total number of grai
Moreover, as shown by several authors,33 the shape of the
TEM grain size distribution also depends on the tracks of
cut grains on the two surfaces of the sample, which may a
be evaluated as in Ref. 12. The observed grain size distr
tion becomes a mixture between the grain size distribut
and the surface grain size distribution. As an example,
final surface distribution for the sample annealed at 490
and 510 °C, computed with the overlapping diffusion fiel
model following Ref. 12, is shown in Figs. 13 and 14. T
shape of this distribution shows a more rounded main p
than the grain size distribution.

FIG. 12. Volume fraction occupied by each population af
completion of primary crystallization (X51) for a sample
of Fe73.5CuNb3Si17.5B5 annealed at 490 °C at the end of the p
mary crystallization. The dotted line shows the resulting distrib
tion for the interface-controlled growth mechanism. The dashed
includes interface-plus-diffusion-controlled growth. The solid li
shows the result of interface plus overlapping diffusion fie
growth.
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55 3443MICROSTRUCTURAL EVALUATION OF PRIMARY . . .
TEM analysis of the samples after 2 h of annealing at
490 °C ~Refs. 22 and 25! gave an average grain radius
about 5 nm and a maximum grain radius of about 15 nm
good agreement with the calculated results for the over
ping diffusion fields model, namely, 5.7 and 12.7 nm. E
perimental estimation of the final number of grains by u
surface and volume gives values of about 431011 and
231017 cm23, respectively, which are in excellent agre
ment with the computed values of 5.931011 and 5.231017

cm23.

IV. CONCLUSIONS

A mean-field model for nucleation and diffusion
controlled growth processes in primary crystallization h
been developed which allows one to evaluate the microst
ture development by computing the grain size-distributi
In a general sense, this corresponds to the situation wher
growth of the grains modifies their surroundings, which
the case in partitioning transformations. The body
the model is a generalization of the already develope12

nucleation and growth kinetics model for evaluating gra
size distributions, conveniently modified to include siz
dependent crystal growth.

Comparison between the calculations performed in
case of interface-controlled growth and diffusion-controll
growth ~without overlapping diffusion fields! is given, and
the relative importance of the nucleation and growth mec

FIG. 13. Final surface grain size distribution o
Fe73.5CuNb3Si17.5B5, isothermally annealed at 490 °C, comput
by using the overlapping diffusion field model at three differe
crystallized fractions, namely,x520%, 60%, and 99%. The dotte
line shows the resulting distribution for the interface-controll
growth mechanism. The dashed line includes interface-p
diffusion-controlled growth. The solid line shows the result of i
terface plus overlapping diffusion fields growth.
n
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s
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nisms in both cases is analyzed. Extensive analysis of
data is presented with respect to the macroscopical and
croscopical property evolution.

As a main result it has been demonstrated that the in
duction of diffusion mechanisms is crucial for understand
the microstructure development. Consideration of the ov
lapping diffusion fields is necessary in order to obtain
overall agreement with the experimental time evolution d
ing the transformation process~both microstructure and
transformed fraction!, and provides a natural mechanism
stop the primary crystallization. However, the main pictu
of the final microstructure developed is rather insensitive
the overlapping diffusion field consideration.

The validity of the model has been tested against exp
mental data on the primary crystallization of an amorpho
material resulting in a nanocrystalline structure. In practi
applications, interesting macroscopical properties of n
materials may be obtained with a very large amount of gra
of a refined nanostructure, namely, a very small grain s
distribution with a small average grain size. The results p
sented show that those characteristics may be achieved
result of a diffusion-controlled growth mechanism.
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FIG. 14. Final surface grain size distribution o
Fe73.5CuNb3Si17.5B5, isothermally annealed at 510 °C, comput
by using the overlapping diffusion field model at three differe
crystallized fractions, namely,x520%, 60%, and 99%. The dotte
line shows the resulting distribution for the interface-controll
growth mechanism. The dashed line includes interface-p
diffusion-controlled growth. The solid line shows the result of i
terface plus overlapping diffusion fields growth. Fig. 8.
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