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Abstract

Background: Influenza vaccination coverage remains low among health care workers (HCWs) in many health
facilities. This study describes the social network defined by HCWs’ conversations around an influenza vaccination
campaign in order to describe the role played by vaccination behavior and other HCW characteristics in the
configuration of the links among subjects.

Methods: This study used cross-sectional data from 235 HCWs interviewed after the 2010/2011 influenza
vaccination campaign at the Hospital Clinic of Barcelona (HCB), Spain. The study asked: “Who did you talk to or
share some activity with respect to the seasonal vaccination campaign?” Variables studied included
sociodemographic characteristics and reported conversations among HCWs during the influenza campaign.
Exponential random graph models (ERGM) were used to assess the role of shared characteristics (homophily) and
individual characteristics in the social network around the influenza vaccination campaign.

Results: Links were more likely between HCWs who shared the same professional category (OR 3.13, 95% CI = 2.61–3.75),
sex (OR 1.34, 95% CI = 1.09–1.62), age (OR 0.7, 95% CI = 0.63–0.78 per decade of difference), and department (OR 11.35,
95% CI = 8.17–15.64), but not between HCWs who shared the same vaccination behavior (OR 1.02, 95% CI = 0.86–1.22).
Older (OR 1.26, 95% CI = 1.14–1.39 per extra decade of HCW) and vaccinated (OR 1.32, 95% CI = 1.09–1.62) HCWs were
more likely to be named.

Conclusions: This study finds that there is no homophily by vaccination status in whom HCWs speak to or interact with
about a workplace vaccination promotion campaign. This result highlights the relevance of social network analysis in the
planning of health promotion interventions.
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Background
Although influenza vaccination is widely recommended to
reduce the burden of influenza disease in patients and
health care workers (HCWs), coverage remains low in
many health facilities [1]. Many health promotion cam-
paigns aimed at modifying health behaviors, such as influ-
enza vaccination uptake, promote discussion among the
subjects of the campaign. However, the results of fostering
participation are not always in alignment with the cam-
paign objective [2], for instance, increasing coverage. It is

therefore interesting to consider how the health behavior in
question affects the relations around the campaign. A suit-
able framework for this question is social network analysis
(SNA) [3], a tool which is becoming increasingly popular in
health-related issues [4] and has not been applied to vaccin-
ation campaigns in HCWs. There are increasing numbers
of studies combining different types of social networks and
health [5–7], with scope for possible network interventions
[8]. In health care settings [9–11], these have been used to
analyze hierarchies and positions in the network [12, 13],
their relationship with hospitalization costs and readmis-
sion rates [14], information seeking [15, 16], the adoption
of best practices [17], and homophily in advice and friend-
ship networks, the tendency of individuals to associate and
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bond with similar others [18, 19]. Social networks may play
a role in the adoption of health behaviors and practices
[20], and homophily, in particular, has been shown to have
an effect [21, 22]. The association between positions in the
social network and decisions about vaccination [23] has
been studied in parental vaccination decisions [24, 25],
polio vaccine refusers [26], and high school [27] and med-
ical students [28]. HCWs seem to be influenced by per-
ceived pressure from colleagues to receive influenza
vaccination [29]. To our knowledge, this is the first study to
assess the relationship between the influenza vaccination
status and the social network of HCWs, defined by conver-
sations around the campaign.
After three influenza vaccination campaigns for HCWs

at the Hospital Clínic of Barcelona (HCB) that fostered
participation [30, 31], the present study was conducted
to describe to whom HCWs speak or interact with
around a campaign. In particular, we assessed whether
HCWs were more likely to discuss vaccination and the
campaign with peers with the same vaccination behavior.
In addition, given that vaccination is a behavior which is
not easily visible, we assessed the perception of vaccin-
ation behavior that HCWs have about their peers.

Methods
Study design and setting
The HCB is organized in departments which comprise
various medical services. In November 2010, we inter-
viewed HCWs from two of the 15 HCB departments (A
and B), which include four medical services, in order to
establish the social network around that season’s influ-
enza vaccination campaign. This cross-sectional study
was presented to HCWs and their representatives be-
forehand to increase participation. The payroll list was
used as an indicator of the number of staff in the two
departments. Four trained interviewers repeatedly visited
all wards of the two departments during all working
shifts (morning/afternoon/night/weekends) for 2 weeks
asking HCWs gave names of their colleagues in order to
answer the questions. The interviewers wrote down the
identification number of each HCW searched for in the
hospital payroll list. HCWs interviewed or cited by an-
other HCW became a node of the network. When a
HCW, the sender, named another HCW, the receiver,
this citation defined a link. This is a directed network
that allowed senders to be distinguished from receivers
in links. HCWs interviewed were included if they
belonged to one of the two departments, if they an-
swered at least one interview question, and when demo-
graphic data was complete in the human resources (HR)
data file. Cited HCWs were included in the study if data
was complete, even if they did not belong to either of
the two departments. Links were considered valid if both
sender and receiver were included.

Data sources and variables
We used three data sources. (1) The study survey. (2)
Vaccination history from occupational health (OH) med-
ical records. (3) HR data file.

1. The study survey (see Additional file 1) included two
questions. The first, used to generate the network,
was “Who did you talk to or share some activity
with respect to the seasonal vaccination campaign?”
The promotion campaign included vaccination in
the wards, group photos after vaccination, fostering
of promotion among peers, and informative sessions.
These were defined as activities, all of which were
voluntary. HCWs interviewed were asked to provide
some information about each link and the contents
of conversations. The second question asked for the
names of other HCWs who they knew had been
vaccinated.

2. The OH medical record included vaccination.
HCWs not registered in the OH vaccination record
were considered unvaccinated [32].

3. Demographic characteristics (sex, date of birth,
professional category, department, and positions of
responsibility) were obtained from the HR data file.
Concordance between variables was created by
cross-matching the masked ID which identifies every
HCB HCW.

In included nodes with complete data, the following
data were collected. Vaccination status, sex, and posi-
tions of responsibility (heads of service and coordinators
in all professional categories) were considered dichotom-
ously. Age was measured in years. Professional category
included five categories: staff physicians, resident physi-
cians, nurses, auxiliary nurses and orderlies, and admin-
istrative and technical staff. Department was analyzed in
three categories (A, B, and other).

Statistical methods
A descriptive analysis was made of the study population
and the answers given. Qualitative variables were de-
scribed using absolute frequencies and percentages, and
quantitative variables using central trends, position, and
dispersion by mean and standard deviation (SD). The so-
cial network was analyzed using exponential random
graph models (ERGM) [33, 34] to assess how individual
or shared characteristics influenced social links. ERGM
are a class of exponential models that aims to predict
the probability of a link between two nodes based on a
set of individual and dyadic predictors of interest [35].
Sender and receiver characteristics were considered as
individual predictors. Homophily for shared characteris-
tics and mutuality (effect of reciprocal links) were con-
sidered as dyadic predictors. The baseline probability of
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a link is represented by an edges coefficient. Additional
file 2: Table S1 contains a detailed description of all
ERGM terms in our study. The analysis used R version
3.2.2 [36] and the Statnet library [37].

Results
A total of 310 HCWs were contacted, representing
82.4% of the payroll list (n = 376). Of these (Fig. 1), 45
refused to participate (85.5% participation rate). There
were no significant differences in demographic charac-
teristics between the payroll list and the HCWs included
(Table 1). The 235 HCWs included in the analysis gener-
ated 521 links, resulting in 466 valid links and 341 nodes
(see Additional file 3). Each HCW interviewed cited a
mean of 1.98 HCWs (SD 1.45, median 2, max 8) and re-
ceived a mean of 1.36 citations (SD 1.5, median 1, max 7)
from other HCWs. Cited HCWs who had not been inter-
viewed received a mean of 1.39 citations (SD 0.85, median
1). Of HCWs interviewed, 38 cited no one, 88 were not
cited by anyone else, and 21 were neither cited nor cited
anyone. Of the 319 links between interviewed HCWs, 114
(35.74%) were mutual (the opposite link was present).
ERGM analysis of the network involved a number of

different models. Table 2 shows the coefficients of the
selected models. The odds ratios (ORs) of the probability
of a link are obtained by exponentiation. The following
ORs are taken from model 4. Homophily was significant
for professional category (OR 3.13, 95% CI = 2.61–3.75),
sex (OR 1.34, 95% CI = 1.09–1.62), age (OR 0.7, 95% CI
= 0.63–0.78 per decade of difference), and department
(OR 11.35, 95% CI = 8.17–15.64) but not for vaccination
status (OR 1.02, 95% CI = 0.86–1.22), even in the
simplistic model considering homophily by vaccination
status alone (OR 0.94, 95% CI = 0.78–1.13). This means

that, given two nodes, the OR of a link increased when
the two nodes shared a category other than vaccination
status. The sender effect was significant for staff physi-
cians (OR 0.69, 95% CI 0.50–0.94) and nurses (OR 0.61,
95% CI 0.47–0.78), meaning that they were less likely to
cite someone in the survey with respect to the “other”
category. A vaccinated HCW was more likely to be
named by their peers than a non-vaccinated HCW (OR
1.33, 95% CI 1.09–1.62) when all other factors were kept
constant. Vaccinated HCWs were not significantly more
likely to be sources of links (OR 1.12, 95% CI 0.92–1.37).
The receiver effect of the variable age was significant
(OR 1.26, 95% CI = 1.14–1.39 per extra decade of re-
ceiver HCW) as was the sender effect (OR 0.82, 95% CI
0.74–0.9 per extra decade of sender HCW). In all
models used, mutuality had the largest effect and was al-
ways significant (OR 38.74, 95% CI 27.03–55.59). Fit
diagnostics were checked for all the models included in
Table 2 (see Additional file 4) and no indication of de-
generacy was found.
When asked to provide additional information about

the reported relations, 86.48% of the 466 links were gen-
eral comments about the campaign, 19.53% were joint
participation in campaign activities, 8.8% reported hav-
ing issued a recommendation (we did not register the
sense), and 11.59% reported having received a recom-
mendation. People stated they had known each other, on
average, for 6.48 (SD 6.82) years. The frequency of meet-
ings was daily (81.97%), weekly (15.67%), or monthly
(2.36%). The topics usually discussed with the link were
work (98.5%), personal affairs (79.4%), leisure activities
(79.4%), and news (73.18%).
With respect to the second question on the perception

of the vaccination status of their colleagues, 122 HCWs

Fig. 1 Flow chart
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Table 1 Demographic characteristics of the payroll list and the participants included (interviewed, cited not interviewed, and total)

Payroll list Interviewed Cited, not interviewed Total included

Total (n) 376 235 106 341

Female (n, %) 284, 75.53% 185, 78.72% 83, 78.3% 268, 78.59%

Age (mean, SD) 42.84, 11.75 41.34, 11.47 42.32, 12.6 41.65, 11.82

Prof. category (n, %)

Staff physician 67, 17.82% 40, 17.02% 20, 18.87% 60, 17.6%

Resident physician 40, 10.64% 19, 8.09% 16, 15.09% 35, 10.26%

Nurse 152, 40.43% 94, 40% 46, 43.4% 140, 41.06%

Auxiliary nurses/orderly 67, 17.82% 43, 18.3% 14, 13.21% 57, 16.72%

Administration/other 50, 13.3% 39, 16.6% 10, 9.43% 49, 14.37%

Department (n, %)

A 209, 55.59% 131, 55.74% 40, 37.74% 171, 50.15%

B 167, 44.41% 104, 44.26% 33, 31.13% 137, 40.18%

Other 33, 31.13% 33, 9.68%

Vaccinated (n, %) 109, 28.99% 85, 36.17% 36, 33.96% 121, 35.48%

Positions of responsibility (n, %) 16, 4.26% 13, 5.53% 5, 4.72% 18, 5.28%

Table 2 Coefficients of ERG models of the social network of two departments of HCWs around the 2010/2011 influenza vaccination
campaign at HCB

Model 1 (95% CI) Model 2 (95% CI) Model 3 (95% CI) Model 4 (95% CI)

Edges −7.84 (−8.23, −7.45) −7.93 (−8.47, −7.39) −7.62 (−8.05, −7.18) −7.74 (−8.32, −7.16)

Homophily

Professional category 1.05 (0.87, 1.22) 1.04 (0.86, 1.21) 1.14 (0.96, 1.32) 1.14 (0.96, 1.32)

Department 2.41 (2.08, 2.73) 2.42 (2.09, 2.74) 2.43 (2.10, 2.75) 2.43 (2.10, 2.75)

Sex 0.27 (0.08, 0.47) 0.28 (0.08, 0.48) 0.29 (0.09, 0.50) 0.29 (0.09, 0.49)

Vaccinated 0.02 (−0.15, 0.19) 0.02 (−0.15, 0.19) 0.02 (−0.15, 0.19) 0.02 (−0.15, 0.20)

Age (per extra decade of age difference
between sender and receiver)

−0.32 (−0.42, −0.22) −0.36 (−0.47, −0.26) −0.31 (−0.41, −0.21) −0.36 (−0.46, −0.25)

Receiver effects

Vaccinated (y vs. n) 0.31 (0.12, 0.51) 0.30 (0.10, 0.49) 0.29 (0.09, 0.48) 0.28 (0.09, 0.48)

Positions of responsibility (y vs. n) 0.26 (−0.12, 0.63) 0.37 (−0.01, 0.74) 0.17 (−0.22, 0.55)

Age (per extra decade of receiver) 0.22 (0.12, 0.31) 0.23 (0.13, 0.33)

Sender effects

Positions of responsibility (y vs. n) 0.40 (0.01, 0.79) 0.55 (0.15, 0.94)

Prof. category (reference “other”)

Auxiliary nurses/orderly −0.15 (−0.45, 0.14) −0.15 (−0.45, 0.15)

Nurses −0.51 (−0.76, −0.26) −0.50 (−0.76, −0.25)

Staff physician −0.39 (−0.70, −0.08) −0.37 (−0.69, −0.06)

Resident phys. −0.07 (−0.43, 0.28) −0.14 (−0.51, 0.23)

Vaccinated (y vs. n) 0.16 (−0.04, 0.35) 0.17 (−0.02, 0.36) 0.10 (−0.10, 0.30) 0.12 (−0.08, 0.31)

Age (per extra decade of sender) −0.2 (−0.29, −0.1) −0.2 (−0.3, −0.1)

Mutuality 3.62 (3.27, 3.98) 3.68 (3.32, 4.04) 3.59 (3.24, 3.95) 3.66 (3.30, 4.02)

AIC 5049.00 5024.00 5033.00 5011.00

BIC 5136.00 5140.00 5178.00 5175.00

Italicization indicates statistical significance (p < 0.05)
AIC Akaike Information Criterion, BIC Bayesian Information Criterion
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(51.91% of those interviewed) cited at least one other
HCW they thought was vaccinated, and 94 of these
(77.05%) cited only vaccinated HCWs. The positive pre-
dictive value (PPV) (percentage of cited HCWs who
were actually vaccinated) was 86%.

Discussion
We studied the influenza vaccination of HCWs and the
social network defined by conversations around a vac-
cination campaign. A major finding is that similarity in
vaccination behavior did not play a significant role in
the probability of naming another HCW in our hospital.
Links were more likely when individuals shared a profes-
sional category, sex, age, or department. In addition,
some characteristics influenced participants citing more
HCWs (being younger, having a position of responsibil-
ity, some professional categories) and others which in-
creased the likelihood of being cited as a link (being
vaccinated).
The lack of homophily according to vaccination be-

havior, also described for influenza vaccination in a
friendship network of medical students [28], contrasts
with other studies of advice networks in parental vaccin-
ation decisions [24–26] and in a contact network of in-
fluenza vaccination in high school students [27], where
homophily by vaccination status was observed. The dif-
ferences between our findings and those of other reports
may be due to two reasons. First, different types of net-
works may yield different answers to the question of
homophily by vaccination status. In contact networks,
which are closely related to the spread of the virus,
homophily by vaccination behavior may ultimately lead
to the formation of unvaccinated clusters and thus re-
duce herd immunity [27, 38]. Advice-seeking, discussion
(such as ours), and even friendship networks are prob-
ably more dependent on the cultural context, the type of
vaccine or disease, and, in the case of HCWs, corporate
culture. Both types of networks are interdependent, and,
in the case of communicable diseases, social
reinforcement of positive and negative opinions around
vaccination [11] may increase the possibility of out-
breaks through the spread of negative opinions about
vaccination [39, 40]. Secondly, our study took into ac-
count homophily by other factors than those considered
in other studies. In this respect, we would like to
emphasize that the lack of homophily was observed even
in the simplest model, which included only the homo-
philic effect by vaccination status. Homophily by profes-
sional category, age, or department has been reported in
advice and friendship networks [18, 19]. Older and vac-
cinated HCWs were more frequently cited. This may in-
dicate a pattern of professionals who are more often
asked for advice or whose conversations are more

frequently recalled. The seniority factor has also been
observed in other studies [11, 12, 19].
The main limitation of the study is due to the cross-

sectional design, which does not allow inferential con-
clusions on the impact of the campaigns to be drawn.
The names of the two departments remain confidential
but the results seem representative of the whole hospital
since there were no significant differences in the study
variables with the payroll list [31]. Services directly re-
lated to infectious diseases and infection control were
avoided. In contrast with other behaviors or conditions,
such as overweight and smoking, influenza vaccination
could remain invisible to peers. Ideally, a question about
the perception of the vaccination status of the HCWs
named should have been included, but this could have
compromised participation in the study. A separate
question was thus added as a quality control, and a satis-
factory PPV was obtained. A strength of the study is that
it avoided sampling. The recruitment rate of 82.4% of
the total payroll list, which included workers on leave
and vacation and part-timers, is a good reflection of the
entire workforce, given that interviewers repeatedly vis-
ited all wards and all shifts until no new HCW was
found. Participation was also high. The reported mutual-
ity of 35.7% is not high but is comparable to other stud-
ies of advice and discussion network [13, 16, 41, 42].
This rate is an indication that many conversations be-
tween two interviewed HCWs that actually occurred
were only reported by one of them. A possible approach
would be to treat this inconsistency as a reporting error
and incorporate it into the model [41]. However, we de-
cided not to symmetrize the network because we con-
sider that the fact of recalling and reporting a
conversation by a HCW may be of importance in their
decision making, independently of whether it is also
recalled by the target HCW. Caution should be taken
about the generalization of the results on homophily,
since they are closely related to the cultural and corpor-
ate contexts and we believe that the present study is an
illustration of the relevance of SNA in the assessment
and planning of health promotion campaigns aiming at
peer-to-peer interaction.
This study is a first approach to the use of SNA as a

tool in vaccination campaigns. From the perspective of
health promotion, especially when aimed at participa-
tion, two situations that should be avoided may be de-
tected by SNA. First, if health behaviors are grouped in
closed communities, strategies to increase communica-
tion between peers can reinforce the beliefs of individ-
uals in each group by reducing exposure to different
points of view. Homophily due to factors other than
health behavior may increase the exposure of individuals
to diverse opinions and help changes in the behavior to
spread more successfully [21]. Secondly, individuals
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opposed to the recommendations of the program may
be more active in the network and have a higher prob-
ability of influencing others’ views, as has been reported
in some online social networks [40]. Neither of these
two possibilities was observed in our study. Since foster-
ing participation has the risk that individuals issue mes-
sages that differ from the recommendations, SNA may
be a useful tool for the assessment of the role played by
a health behavior in a group and could shed light on the
design, implementation, and evaluation of a health pro-
motion campaign, which should be validated. In this so-
cial network, for example, messages could be tailored by
professional category or strategies to foster communica-
tion among different professional categories could be
implemented. Due to the lack of homophily by vaccin-
ation behavior, vaccine promotion actions aimed at fos-
tering communication among HCWs should be
continued. More research is needed to clarify situations
in which the influenza vaccination status might be a
homophilic factor in this kind of social network of
HCWs.

Conclusions
This study defines to whom HCWs relate in the context
of a vaccination promotion campaign and shows that, in
this social network, there is no homophily by vaccination
status. Analysis of the social network of conversations
around a health topic highlights the existing channels of
communication and the relevance of the health behavior
in the configuration of links.
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