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Momentum distributions in 3He-4He liquid mixtures
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We present variational calculations of the one-body density matrices and momentum distributions for
3He-4He mixtures in the zero-temperature limit, in the framework of the correlated basis functions theory. The
ground-state wave function contains two- and three-body correlations and the matrix elements are computed by
~Fermi! hypernetted chain techniques. The dependence on the3He concentration (x3) of the 4He condensate
fraction (n0

(4)) and of the3He pole strength (ZF) is studied along theP50 isobar. At low3He concentrations,
the computed4He condensate fraction is not significantly affected by the3He statistics. Despite the lowx3

values,ZF is found to be quite smaller than that of the corresponding pure3He because of the strong3He-4He
correlations and of the overall, large total densityr. A small increase ofn0

(4) alongx3 is found, which is mainly
due to the decrease ofr with respect to the pure-4He phase.@S0163-1829~97!03242-6#
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I. INTRODUCTION

The momentum distributions~MD’s! of atoms in quantum
liquids is a challenging problem of fundamental interest1,2

They provide essential information on the correlatio
present in the system, which do not show up explicitly
other quantities. In the past years, accurate inelastic neu
scattering experiments have allowed for studying several
pects of the momentum distribution in helium liquid
4He,3,4 3He,5 and 4He-3He mixtures.6,7 However, a clean
extraction of information on the helium MD’s is someho
tempered by the need of a sound theoretical understandin
the final-state effects in the analysis of the dynamic struc
function, even at high momentum transfers.

The theoretical methods to evaluate momentum distri
tions of many-body interacting, dense systems at zero t
perature have also made a significant progress in re
years.1 At present, there are results for the pure heliu
phases obtained within different many-body techniques,
variational theory~using either integral equations8,9 or Monte
Carlo methods10! and almost exact stochastic methods
Green’s-function Monte Carlo11,12 ~GFMC! or path-integral
Monte Carlo~PIMC!.13

The MD’s of liquid 4He (3He) are influenced by the Bos
~Fermi! statistics of the atoms. The macroscopic occupat
of the zero momentum state, as given by the conden
fraction n0

(4) , characterizes the momentum distribution
bosonic, liquid 4He and it is strictly linked to its superfluid
behavior. On the other hand, the discontinuityZF at the
Fermi momentumkF is a characteristic of the3He system
when it is studied as a normal Fermi liquid.

In this paper we consider the interesting case of isoto
3He-4He mixtures where, due to its fermion-boson natu
both quantitiesZF and n0

(4) are simultaneously present. R
cent neutron-scattering experiments on helium mixtures
560163-1829/97/56~18!/11854~11!/$10.00
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high momentum transfers6,7 give additional motivation to un-
dertake a microscopic, theoretical study of their moment
distributions and one-body density matrices. Special emp
sis will be devoted to the dependence on the3He concentra-
tion x3 of the single-particle kinetic energies of the isotop
and ofZF andn0

(4) .
The investigation is carried on in the framework of th

variational approach. The trial wave function for the mixtu
contains two-body~Jastrow! and triplet correlations. This
type of correlated wave function has been useful in eff
tively studying the pure phases.8,9,14,15Two of us16 ~A.P. and
A.F.! derived the hypernetted and Fermi hypernetted ch
~HNC/FHNC! equations for the momentum distributions
the mixtures using trial wave functions with only pair corr
lations. Numerical applications were carried out in the HN
FHNC/0 approximation, i.e., neglecting the elementary d
grams. A preliminary study of the elementary diagrams fo
Jastrow trial wave function was performed17 by generalizing
the scaling approximation proposed for pure phases.8,9 Also
available are variational Monte Carlo~VMC! calculations18

with similar correlations of the analytical McMillan type
The studies of the mixture have been recently complemen
with variational calculations concerning the energy and s
bility of the ground state,19,20with path-integral Monte Carlo
~PIMC! analysis21 and with microscopic correlated bas
functions estimates of the inelastic neutron-scattering cr
sections both at intermediate22 and high23 momentum trans-
fers.

The paper is organized as follows: in Sec. II, we w
present the HNC/FHNC theory to calculaten(k) for mix-
tures described by correlated wave functions containing t
and three-body correlations. The treatment of the elemen
diagrams in the so-called scaling approximation is discus
in some detail in the second part of the section. Results
11 854 © 1997 The American Physical Society
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n(4)(k),n(3)(k), and for the one-body density matrices a
presented in Sec. III, together with a critical discussion of
discrepancies with the available analysis of the deep inela
neutron-scattering measurements on mixtures, which~in con-
trast with our results! point to a large enhancement of th
4He condensate fraction.
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II. HNC/FHNC EQUATIONS FOR THE MOMENTUM
DISTRIBUTION OF 3He-4He MIXTURES

The one-body density matricesr (a)(r1 ,r18) (a53,4) for a
homogeneous, isotopic mixture ofN3

3He atoms and
N4

4He atoms, described by a ground-state wave funct
C(1,...,N41N3) are defined as
r~a!~r1 ,r18!5
Na

ra

*C* ~1a ,...,N41N3!C~1a8 ,...,N41N3!dr2•••drN41N3

* uC~1,...,N41N3!u2dr1•••drN41N3

. ~1!
d in
ing

1

y.

A,

sity
In homogeneous mixtures, with constant particle densi
ra5Na /N, r (a)(r1 ,r18)5r (a)(r ), with r 5ur12r18u.
r (a)(r )’s satisfy the normalization conditionsnar (a)(0)
51, na being the spin degeneracy~n451, n352!. Notice
that in the definition ofr (3)(r ) the spin variables have no
been explicitly written. We will henceforth omit the subin
dex in the degeneracy factor and assume that it always re
to 3He.

The momentum distribution of thea component, or rathe
the occupation probability for single-particle states with m
mentumk and given spin projection, can be obtained as
Fourier transform of the corresponding density matrix,

n~a!~k!5da4r4n0
~4!~2p!3d~k!

1raE dr exp~ ik•r !@r~a!~r !2da4n0
~4!#, ~2!

wheren0
(4)5r (4)(`) is the 4He condensate fraction, i.e., th

fraction of 4He particles in the zero momentum state.
The ground state of the mixture is well described by

generalization of the correlated wave function used in
pure phases:

C~1,...,N41N3!

5 )
a<b<g53,4

)
i a< j b

f ~a,b!~ i a , j b!

3 )
i a< j b<kg

f ~a,b,g!~ i a , j b ,kg!f~1,...,N3!. ~3!

f(1,...,N3) is the Slater determinant of plane waves cor
sponding to the Fermi component of the mixture, a
f (a,b)( i a , j b) „f (a,b,g)( i a , j b ,kg)… are the two~three!-body
correlation functions involving two~three! particles of types
a,b ~a,b,g!, respectively. Similar trial wave functions hav
been used in previous works to study the structure and e
getic ground-state properties of3He-4He mixtures.16,19,20

A cluster analysis ofr (a)(r ) in powers ofv (a,b)[ f (a,b)

21, h(a,b)[@ f (a,b)#221, v (a,b,g)[ f (a,b,g)21 andh(a,b,g)

[@ f (a,b,g)#221, as that carried out in the pure phases,24,25

gives the following structural decomposition forr (a)(r ):

r~a!~r !5n0
~a!N~a!~r !, ~4!
s

rs

-
e

e

-
d

r-

where massive resummations of the diagrams, as define
Refs. 8, 9, 16, 25, may be performed in practice by us
HNC/FHNC techniques.16,20,26

The strength factorn0
(a) is given by

n0
~a!5exp@2Gv

~a!2Gd
~a!# ~5!

and

Na~r !5Fda41da3S 1

n
l ~kFr !2Nvcvc

~3! ~r !2Evcvc

~3! ~r ! D G
3exp@Nvv

~a!~r !1Evv
~a!~r !# ~6!

sums up all the irreducible diagrams with external pointsa

and 1a8 . In Eq. ~6!, l (x)53 j 1(x)/x is the Slater function and
kF5(6p2r/n)1/3 is the 3He Fermi momentum.

The functionsNxy
(a)(r ) and Exy

(a)(r ) are the sums of the
nodal and elementarydiagrams contributions, respectivel
The evaluation of the nodal functionsNxy

(a)(r ), in the context
of the HNC/FHNC approach, is discussed in Appendix
which also contains the explicit expressions of theGv,d

(a) fac-
tors.

The momentum distributions are computed via the den
matrices by Eq.~2!. We thus get

n~4!~k!5~2p!3r4n0
~4!d~k!1r4n0

~4!E dr exp@ ik•r #

3$exp@Nvv
~4! ~r !1Evv

~4! ~r !#21%, ~7!

and

n~3!~k!5n0
~3!@nc~k!1Q~kF2k!nd~k!#, ~8!

where

nd~k!512X̃cc12X̃vcc1
X̃vcc

2

12X̃cc

~9!

and
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nc~k!52
X̃vcc

2

12X̃cc

2r3E dr exp@ ik•r #$„exp@Nvv
~3! ~r !

1Evv
~3! ~r !#21…@2 l ~kFr !/n1Nvcvc

~3! ~r !

1Evcvc

~3! ~r !#1Evcvc

~3! ~r !%. ~10!

Xyc5gyc2Nyc1 l /n for y5vc , c andX̃xy(k) stands for the
Fourier transform

X̃xy~k!5r3E dr eik•rXxy~r !. ~11!

The strength factorn0
(4) is the asymptotic value of the4He

one-body density matrix,r (4)(r→`)5n0
(4) and corresponds

to the 4He condensate fraction. The decomposition
n(3)(k) in a continuous@nc(k)# and a discontinuous@nd(k)#
piece explicitly links the discontinuity ofn(3)(k) at kF , ZF ,
to nd(kF) by

ZF5n0
~3!nd~kF!. ~12!

Scaling approximation for the elementary diagrams

The HNC/FHNC equations can be solved once a giv
prescription for the contributions of the elementary diagra
has been given. However, as no exact method to com
them is presently known, at least in the frame of the integ
equations, one has to resort to some approximation. Am
the available schemes27–29 we have chosen the scaling a
proximation ~SA!, developed for both the energy and th
one-body density matrix of pure phases,8,9,14,15and satisfac-
torily reproducing VMC calculations. Although the numb
of elementary diagrams in the mixture is much larger, it
straightforward to generalize the pure phases scaling
proximation to our case.

The SA is based on the evaluation of the four-points
ementary diagrams constructed with the combinations of
distribution functionsgxy

(a,b)(r ) allowed by diagrammatic
rules, and it has already been used in the calculation of
energy and of the static structure functions of the mixture20

The elementary diagrams are approximated by

Edd
~a,b!~r !5E~r !, Exy

~a,b!~r !50,

a,bP$3,4%, xy5@de,ee,cc#, ~13!

where

E~r !5~11s!Eg
@4#~r !1Et

@4#~r !. ~14!

Eg
@4#(r ) and Et

@4#(r ) are the four-point elementary diagram
without and with explicit three-body correlations into the
basic structure, respectively. These diagrams are constru
by using as internal links anaverageddressed correlation
ĝ(r )21,

ĝ~r !5x4
2g~4,4!~r !12x3x4g~4,3!~r !1x3

2g~3,3!~r !, ~15!

with xa5ra /r. The introduction ofĝ(r ) makes feasible the
calculation ofE(r ) because it reduces drastically the hi
number of elementary diagrams originated by all the poss
f
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bonds between3He and 4He particles. Actually, for the un-
derlying boson-boson mixture@i.e., F(1,...,N3)51 in Eq.
~3!# and taking the same correlation functions between
types of isotopes @average correlation approximatio
~ACA!#, ĝ(r ) provides the exactEg,t

@4#(r ). This property and
the small3He concentration in the physical region of intere
(x3,0.10) justify the use ofĝ(r ). The scaling parameters,
Eq. ~14!, is determined by imposing the consistency betwe
the Pandharipande-Bethe and the Jackson-Feenberg form
the kinetic energy for the boson-boson mixture without tr
let correlations.s is calculated for each total density and it
kept fixed whenx3 changes. This assumption is plausib
because, at low3He concentrations, the statistical effects
ĝ(r ) are negligible.

The additional elementary diagrams needed for the o
body density matrices are similarly evaluated:

Evd
~a,b!~r !5Evd~r !, Eyz

~a,b!50 ~yz5ve,vcc! ~16!

with

Evd~r !5~11svd!Evd,g
@4# ~r !1Evd,t

@4# ~r !, ~17!

and

Evv
~a!~r !5~11svv

~a!!Evv,g
@4# 1Evv,t

@4# ~r !, ~18!

Evcvc

~3! ~r !5~11svcvc
!Evcvc ,g

@4# 1Evcvc ,t
@4# ~r !. ~19!

The average distribution function

ĝv~r !5x4
2gvd

~4,4!~r !12x3x4@gvd
~4,3!~r !1gve

~4,3!~r !#

1x3
2@gvd

~3,3!~r !1gve
~3,3!~r !# ~20!

has been used to compute the above four-point elemen
diagrams.

Finally, the set of single external point elementary d
grams, appearing in the strength factorsn0

(a) expressions, are
approximated, as in the pure phases,8,9 by

Ex5S 11
3

2
sxdDEx,g

@4#1Ex,t
@4# , x5v,d. ~21!

As far as the factors related to the momentum distrib
tions are concerned, we have chosensvd by imposingTMD
5TJF, where TMD is the total kinetic energy obtained b
integrating the momentum distribution,

TMD5
\2

2m4

x4

~2p!3r4
E dk k2n~4!~k!

1
\2

2m3

x3n

~2p!3r3
E dk k2n~3!~k!, ~22!

and TJF is the ground-state expectation value of the kine
energy operator computed by the Jackson-Feenberg iden
Moreover, the fulfillment of the normalization conditions o
the momentum distributions, i.e.,

na

~2p!3ra
E dk na~k!51, ~23!

equivalent tonar (a)(0)51, requires
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n0
~a! exp@Nvv

~a!~0!1Evv
~a!~0!#51, ~24!

Nvcvc

~3! ~0!1Evcvc

~3! ~0!50. ~25!

These conditions are used to determine the remaining sca
parameters (svv

(a) ,svcvc
).

As a matter of fact, the use for the triplet correlated wa
function of the samesvv

(a) and svcvc
parameters, as dete

mined in the Jastrow case, produces significant deviation
the above normalizations from their exact values. For t
reason and to ensure the correct normalizations of the de
matrices, we have recalculated the scaling factorssvd , svv

(4) ,
svv

(3) , andsvcvc
when the wave function contains three-bo

correlations, as in Ref. 9.

III. RESULTS

In this section we report results for the momentum dis
butions of3He-4He liquid mixtures using the Aziz potential30

~HFDHE2! for the variational determination of the groun
state correlations. This interaction effectively describes
equation of state of the pure phases.12,31 The interatomic po-
tential in isotopic mixtures is the same between any pair
particles. Based on this fact, we have used the average
relation approximation~ACA!. The ACA approach, which
has been carefully analyzed for the impurity problem,32 has
also been used in the past to study finite concentration
lium mixtures.20,33,34 The potential is strongly repulsive a
short distances, so the correlation functions are expecte
show the same short-range behaviors. Small differences
arise however at intermediate and large distances, where
interaction is weaker, because of the different masses
statistics of the isotopes. Nevertheless, ACA may well se
the purpose of studying thex3 dependence of the momentu
distributions in the mixture. In fact, for Jastrow correlat
wave functions we have released the ACA, allowing for d
ferent correlations in different isotopic pairs, and these ex
variational degrees of freedom have not significan
changed our results.

The two-body correlation functionf (r ) has been taken to
have an analytical form, of the McMillan type at short di
tance and with enough flexibility to adjust to the optim
pure 4He correlation behavior in the intermediate and lo
ranges,

f ~r !5expX2 1

2 S b

r D 5CFA1B expS 2
~r 2D !2

tr 4 D G . ~26!

The long-range,r 22 behavior ensures the proper linear d
pendence of the4He structure function atk→0.

The f (r ) parameters at the4He energy variational mini-
mum, at equilibrium densityr050.365s23 (s52.556 Å),
are b51.18s, A50.85, B512A, D53.8 Å, and t
50.043 Å22. B and t are related to the experimental pu
4He sound velocityc and to the low-k behavior of its static
structure function by

B

t
5

m4c

2p2\r0
. ~27!
ng
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The three-body correlation functionf (r i j ,r ik ,r jk) has the
parametrized form:8,9,14,15

f ~r i j ,r ik ,r jk!

5expF2
1

2 (
l 50,1

l l(
cyc

j l~r i j !j l~r ik!Pl~ r̂ i j • r̂ ik!G , ~28!

where

j l~r !5~r 2d l0r tl !expF2S r 2r tl

v t l
D 2G . ~29!

The values of the triplet functions parameters have b
taken from Ref. 14 omitting the smalll 52 component.

The calculations presented here are performed at the
perimental values of the density along theP50 isobar. In
this regime, the density decreases fromr5r0 (x350) to r
50.3582s23 at x350.066, corresponding to the3He maxi-
mum solubility. The partial3He density increases from zer
up to r350.0236s23 in the samex3 range. So, we have
neglected the density dependence of the variational par
eters of the correlations because of the small variations b
of the total and partial densities in the region of physic
interest.

Before presenting the results for the helium mixtures, i
worthwhile to study the accuracy of the scaling approxim
tion in the case of pure4He. We have considered a corre
lated wave function containing McMillan two-body correla
tions @A51, B50, andb51.20s in Eq. ~26!# and a three-
body factor given by Eq.~28!. At r0 we obtainn0

(4)(JT1)
50.078 andn0

(4)(JT01)50.081, where the JT1 (JT01) results
include triplet correlations contributions without~with! the
l 50 component. The corresponding energies
E/N~JT1!526.55 K, and E/N~JT01!526.58 K. A VMC
study by one of the authors~J.B.!, with the same trial wave
functions, givesn0

(4)~JT1!~VMC!50.078, n0
(4)~JT01!~VMC!

50.082, E/N~JT1!~VMC!526.617 K, and E/
N~JT01!~VMC!526.625 K. These results have been co
firmed by an independent VMC calculation of Moroni,35

who obtainedn0
(4)50.077 andE/N526.604 K for the (JT1)

case.
The agreement between HNC and VMC results gives c

fidence in the scaling approximation to the elementary d
grams as described in the previous section, prescribing a
calculation of the scaling parameters directly associated w
the momentum distribution after the inclusion of the thre
body correlations. Actually, if the scaling parameters in t
JT cases are the ones determined at the Jastrow level~as in
Refs. 8, 36!, we getn0

(4)(JT1)50.064 with a violation of the
normalization conditions of;15%. In addition, thel 50
component of the triplet correlation has been found to hav
very small effect on both the energy and condensate fract
This finding also has been confirmed by the Moro
calculations35 and is in contrast with that of Refs. 8, 36
where the relative change inn0 was about 25%. Due to the
small effect of thel 50 triplet correlation, we have omitted
its contribution in all the results presented for the mixture

The use of the semioptimized two-body correlation fac
of Eq. ~26! and of the l 51 triplet correlation lowers the
energy to 26.62 K and providesn0

(4)50.082. The Euler
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Monte Carlo~EMC! result of Ref. 35, using fully optimized
two- and three-body correlations in a VMC scheme,
n0

(4)(EMC)50.087. On the other hand, the DMC results
Refs. 37, 12 aren0

(4)(DMC)50.072 and n0
(4)(DMC)

50.084, respectively. The difference between the two DM
results is due to the use of an extrapolated estimator whic
sensitive to the overlap between the importance samp
wave function and the exact ground state. The PIMC
proach of Ref. 13 providesn0

(4)(PIMC)50.069 at tempera-
ture T51.8 K, with large statistical errors. As a final com
ment, we stress that all the above theoretical values of
4He condensate fraction are slightly lower than the lat
experimental estimates of Snowet al.,38 n0

(4)(expt);0.10.
However, as the condensate fraction, as well as the kin
energy, is extracted by fitting the Compton scattering pro
in neutron-scattering experiments at large momentum tra
fers, the resultingn0

(4) can be strongly model dependent.
We start the analysis of the mixture by studying thex3

dependence of the4He momentum distribution. Figure
shows kn(4)(k)/„(2p)3r4… in mixture at x350.066 (rexpt
50.358s23) compared with that of pure 4He (r4
50.365s23), both atP50. The differences are small an
can be explained by the slight change in density. In fact,
smaller mass of3He results in a larger zero-point motion o
3He compared with4He, and therefore the total density o
the mixture decreases whenx3 increases.

Figure 2 illustrates the same comparison but for the4He
one-body density matrix. The asymptotic value ofr (4)(r ),
identified with the condensate fraction, is reached ar
;7 Å. The value ofn0

(4) in the mixture is slightly larger than
in the pure phase~see also Table I! due mainly to the smalle
total density of the mixture. The fermionic nature of the3He
does not affectn0

(4) . In fact, one gets the samen0
(4) in the

boson-boson approximation, which consists of treating
3He component as a bosonic mass-3 one. Furthermor

FIG. 1. Momentum distribution of the4He atoms in the mixture.
The continuous line corresponds tox350.066 (r50.3582s23) and
the dashed line to pure4He at saturation density (r50.365s23).
Both results are at zero pressure.
s
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ACA is assumed, the boson-boson approximation yield
n0

(4) which is exactly the one of pure4He at the total density
of the mixture.

The Fermi statistics makes thex3 dependence ofn(3)(k)
more sizeable. The3He momentum distributions atx3
50.066 andx350.020 are compared in Fig. 3. The corr
sponding Fermi momenta arekF50.235 Å21 and kF
50.347 Å21, to be compared withkF50.79 Å21 for pure
3He at equilibrium density. The Fermi momentum and t
discontinuity ZF increase alongx3 , whereas the depletion
decreases~see Table I!. This behavior is qualitatively ex-
plained by considering the change of both the total and p
tial 3He densities.

r (3)(r ) at x350.066 is compared in Fig. 4 with the fre
fermionic case@nr(r )/r5 l (kFr )# and with that of pure3He
at the samer3 . In this density region it is necessary to rea
larger values beforer (3)(r ) begins to oscillate around zero
Despite the small partial3He density,r (3)(r ) is very differ-
ent from those obtained both in the pure~short-dashed line!
and the free~long-dashed line! cases. While the pure3He
shows a density matrix very similar to the free case,
mixturer (3)(r ) has a strong depletion due to the correlatio
with the 4He atoms. This behavior translates into a cor

FIG. 2. One-body density matrix of the4He atoms in the mix-
ture. The notation is the same as in Fig. 1.

TABLE I. 4He condensate fraction,3He ZF factor and partial
kinetic energies in the mixtures as a function of the3He concentra-
tion at zero pressure. The first lines are the Jastrow values.
second lines include the effect of the triplet correlations.

x3 r(s23) n0 Z T4 /N4 ~K! T3 /N3 ~K!

0.0 0.3648 0.091 15.06 19.99
0.082 14.52 19.27

0.02 0.3629 0.092 0.093 14.92 20.04
0.085 0.085 14.39 19.33

0.04 0.3609 0.094 0.094 14.79 19.99
0.086 0.086 14.27 19.30

0.066 0.3582 0.096 0.096 14.61 19.88
0.088 0.088 14.10 19.21
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spondingly large depletion ofn(3)(k) at the origin,
n(3)(k50, x350.066)50.1, while for pure3He at the same
partial density as in the mixturen(3)(k50)50.9. Notice that
in pure 3He at its equilibrium densityn(k50)50.5.9 The
three density matrices have the nodes approximately at
same points, the location of the zeros being governed by
zeros ofl (kFr ). In fact, by taking the lowest-order term o
the expansion ofr (3)(r ) in powers of the statistical correla
tion l (kFr ), as done in the Wu-Feenberg expansion for
distribution function, one obtains

rWF
~3! ~r !5rB

~3!~r !
l ~kFr !

n
, ~30!

where rB
(3)(r ) is the 3He density matrix in the underlying

boson-boson mixture. Due to the small values ofx3 in the
mixture, rWF

(3)(r ) is almost indistinguishable from the exa
r (3)(r ).

Equation~30! explicitly decouples the statistical and d
namical correlations contributions tor (3)(r ) and has also
recently proved to describe quite accurately even the p
3He density matrix.37 In this approximation,n(3)(k) is given
by

nWF
~3! ~k!5

1

~2p!3r3
E

0

kF
d3k8nB

~3!~ uk2k8u!. ~31!

Therefore, the discontinuityZF coincides with the value o
the condensate fraction associated withnB

(3)(k). The kinetic
energy associated withnWF

(3)(k) can be expressed as

T3

N3
5

3\2kF
2

10m3
1

TB3

N3
, ~32!

where TB3 /N3 is the kinetic energy associated wi
nB

(3)(k). In the ACA, the density matrices of the two com
ponents of the underlying boson-boson mixture are the s
and are equal to the density matrix of pure4He considered a

FIG. 3. 3He momentum distributions in the mixture atx3

50.066 ~solid line! and x350.02 ~dashed line!. The values ofkF

are 0.347 and 0.235 Å21, respectively.
he
he

e

re

e

the total density of the mixture. As a consequence, the c
responding condensate fractions are also equal and in
modelZF andn0

(4) coincide.
More detailed information on thex3 dependence of the

condensate fraction, the discontinuity ofn(3)(k) at the Fermi
surface and the kinetic energies of the two component
shown in Table I, the explicit values ofn(a)(k) being re-
ported in Appendix B.T3(x350) is the kinetic energy of one
3He impurity in 4He. Recent DMC~Ref. 39! and PIMC
~Ref. 21! calculations predict a smallerT3(x350) value of
about 17.5 K. The effect of the three-body correlations
similar to that in the4He pure phase, i.e., they slightly de
crease the condensate fraction and simultaneously decr
by about half a Kelvin the total kinetic energy. The conde
sate fractionn0

(4) shows a small increment withx3 . As we
have mentioned before, this is mainly a consequence of
fact that the total density of the mixture slightly decreas
whenx3 increases. The effect of the Fermi statistics onn0

(4)

is almost negligible, the results ofn0
(4) in the boson-boson

approximation being equal to the ones reported in Table
n0

(4) is shown in Fig. 5 as a function of the pressure,P,
for pure 4He ~diamonds! and for a x350.066 mixture
~circles!. The condensate fraction, in both cases, decrea
with pressure as a consequence of the corresponding incr
of density. The density of pure4He is larger than the one o
the mixture at the same pressure and therefore the con
sate fraction in the mixture is larger than in4He. However,
asP increases, the differences between the densities bec
smaller and the condensate fractions of both systems
closer.

The low values ofZF imply a large value of the energy
dependent effective mass at the Fermi surface,

ME512
]

]E
RS~p,E!uE5eF ,p5pF

5ZF
21, ~33!

FIG. 4. One-body density matrix of the3He atoms in ax3

50.066 mixture~solid line! compared with the free Fermi system
~dash-dotted line! and pure 3He ~dashed line!, both at the same
partial densityr3 .
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11 860 56J. BORONAT, A. POLLS, AND A. FABROCINI
where S(p,E) is the self-energy of the3He atoms in the
mixture. At x350.04, ME512m3 , which is around three
times larger than for pure3He at the saturation density, fo
which ZF50.275 and consequentlyME53.6m3 .9,37 This
large value of the energy-dependent effective mass can
attributed to the correlations with the4He atoms, and implies
a small value of thek-dependent effective mass in order
reproduce the total effective mass that, at those small c
centrations, can be takenm3* /m352.3,40,41 i.e., the value in
the impurity case.

Figure 6 showsn(4)(k)/r4 andnn(3)/r3 for a 6% mixture
~solid and long-dashed lines, respectively! together with
n(4)(k)/r4 for pure 4He at the equilibrium density~short-
dashed!. The three momentum distributions are very clo
abovekF , as the large-k behavior is essentially dominate

FIG. 5. Condensate fraction as a function of pressure. The
monds and circles correspond to pure4He and to ax350.066 mix-
ture, respectively. The lines are guides to the eye.

FIG. 6. Momentum distributions per particle of pure4He at
equilibrium density~short-dashed!, and of 4He ~long-dashed! and
3He ~solid! of a x350.066 mixture.
be

n-

e

by the short-range dynamical correlations. As in the p
phases, the tails of the momentum distributionsk
.3.5 Å21) are taken to have an exponential behavior

n~k.3.5!5n~k53.5!exp„a~k23.5!…, ~34!

the value ofa being obtained by fitting a straight line to th
ln n(k) in the range 3.0<k<3.5. Their contribution atx
56.6% to the total kinetic energy is;8%. On the other
hand, the kinetic energy of the free Fermi sea~that would
give an upper-bound to the contribution toT3 /N3 belowkF!
is 0.58 K. That means that more than 97% of the3He kinetic
energy comes from momenta abovekF , clearly showing the
importance of the correlations between3He and4He atoms.

It is also of interest to consider the dependence ofT3 /N3
on the concentration. Figure 7 givesT3 /N3 in function of the
3He partial density in the mixture along theP50 isobar.
Obviously, the kinetic energy ends up with the kinetic e
ergy of pure3He (;12 K) which corresponds to a densit
value that lies out of the plot. Therefore the kinetic energy
the 3He should be in average a decreasing function of
concentration except for the behavior at the origin where
term associated with the free Fermi kinetic energy domina
the overall decreasing behavior driven by the decrease o
total density. Actually, the kinetic energy in the interval co
sidered here is well parametrized as the sum of the fr
Fermi-gas energy plus a linear term describing the decre
of the kinetic energy with the density

T3

N3
5

T3

N3
~r350!2Ar31

3

10

\2

m3
S 6p2

n D 2/3

r3
2/3. ~35!

The numerical value of the parameterA may be estimated
by calculating thex3 dependence of the kinetic energy in th
underlying boson-boson mixture and it results to beA
527.2 Ks3.

a- FIG. 7. 3He kinetic energy as a function ofr3 at P50. The
solid line is the fit provided by Eq.~35!.
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IV. DISCUSSION AND CONCLUSIONS

The results obtained in this paper for the4He condensate
fraction and thex3 dependence of the3He kinetic energy are
in contrast with recent experimental estimates. In fact, So
et al.6,7 analyzing deep inelastic neutron-scattering meas
ments carried out for a 9.5% mixture at 1.4 K, and for
momentum transfer as high as 23 Å21, estimated a conden
sate fractionn0

(4)518% and a3He kinetic energy of approxi-
mately 10 K, basically independent of the concentrati
These results are to be compared with the theoretical pre
tions n0

(4);10% andT3 /N3;19 K obtained in ACA for a
similar mixture.

It has been argued6 that the main source of discrepanc
with a preliminary presentation of the present results17 is due
to the use of ACA, implying the same type of local enviro
ment for the different types of atoms in the mixture. Soko
observation is physically founded on the large zero-po
motion of the 3He atoms which should decrease the lo
density around them to a value similar to the pure3He.
Obviously, the use of optimal correlations should clarify th
point. However, it must be stressed that theT50 DMC cal-
culations of Ref. 39 give for the3He impurity kinetic energy
T3517.5 K, i.e., 1.5 K lower value than the ACA predictio
estimated by using the pure4He DMC kinetic energy (T4

514.3 K).12 On the other hand, the predictedn0
(4) by DMC

~Ref. 42! points to an extrapolated value of 11% for a 6.6
mixture at the same temperature. A dramatic change of b
n0

(4) and T3 at higher concentrations would be required
order to reproduce the experimental estimates.

In conclusion, we believe that although the use of optim
correlations will certainly decrease the kinetic energy of
3He component and enhance a little the4He condensate
fraction, the resulting values will be far from the prese
experimental analysis. A full theoretical calculation of t
scattering process including final-state interactions and
experimental broadening, similar to the ones performed
pure 4He,43 is necessary in order to fully understand t
experimental measurements and reliably extract kinetic e
gies and condensate fractions.

Summarizing, we have calculated the momentum dis
butions of 3He-4He mixtures in the framework of the HNC
FHNC equations using variational wave functions with tw
and three-body correlations. These momentum distributi
can be used as input for the analysis of the recently p
formed inelastic neutron-scattering experiments. It has b
found that, at the low concentration where the mixture
stable, the Fermi statistics do not significantly modify t
value of the4He condensate fraction. On the other hand, i
crucial to take into account the Fermi statistics for the sta
ity of the mixture. The concentration dependence of the
ferent quantities studied in the paper can be mainly explai
by the decrease in the total density of the mixture when
3He concentration increases.
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APPENDIX A

In this appendix we present the HNC/FHNC equations
the mixture one-body density matrices. The sums of
nodal diagrams contributions,Nvcvc

(3) andNvv
(a) , are obtained

by solving the integral equations

Nvv
~a!5 (

l53,4
rl(

z,y
~gvz

~a,l!2Nvz
~a,l!2dzdugyv

~l,a!2dyd!,

~A1!

and

Nvcvc

~3! 5r3„gvcc1 l ~kFr 12!/n2Nvcc
~3! ugcvc

1 l /n…

1r3„2 l /nu2~gcvc
1 l /n2Ncvc

~3! !

2~gcc1 l /n2Ncc!…. ~A2!

The notation „A(r i j )uB(r jk)… stands for the convolution
product

„A~r i j !uB~r jk!…5E dr jA~r i j !B~r jk!. ~A3!

The summations overz and y ~where z,y5d,e,c! always
extend to all possible connections allowed by the diagra
matic rules of the HNC/FHNC theory.16,17

Besides the distribution functionsgzy
(a,b)(r ) ~gdd

(a,b) ,
gde

(a,3) , gee
(3,3) , and gcc

(3,3)!, which have been defined
elsewhere,20,26 it is necessary to introduce the auxiliary di
tribution functions:

gvd
~a,b!~r !5 f ~a,b!~r !exp@Bvd

~a,b!~r !#, ~A4!

gve
~a,3!~r !5gvd

~a,3!~r !Bve
~a,3!~r !, ~A5!

gvcc
~3,3!~r !5gvd

~3,3!~r !
Lv~r !

n
, ~A6!

where

Bvx
~a,b!~r !5Nvx

~a,b!~r !1Evx
~a,b!~r !1Cvx

~a,b!~r !, ~A7!

and

Lv~r !52 l ~kFr !1nBvcc
~3,3!~r !. ~A8!

The functionsEvd
(a,b)(r ), Eve

(a,3)(r ), and Evcc
(3,3)(r ) give the

contributions of the elementary diagrams.
The nodal functionsNvz

(a,b)(r ) are solutions of the follow-
ing integral equations:

Nvx
~a,b!5 (

l53,4
rl(

z,y
~gvz

~a,l!2Nvz
~a,l!2dzdugyx

~l,b!2dyd!,

~A9!

Nvcc
~3,3!5r3~gvcc2Nvcc1 l /nugcc!. ~A10!
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Finally, the functionsCvx
(a,b)(r ) give the contribution of

the dressedtriplet correlations,

Cvx
~a,b!~r 12!5 (

l53,4
rlE dr3v~a,l,b!~r 12,r 13,r 23!

3(
zy

gvz
~a,l!~r 13!gyx

~l,b!~r 32!, ~A11!

and
Cvcc
~3,3!~r 12!5r3E dr3v~3,3,3!~r 12,r 13,r 23!

3gvcc
~3,3!~r 13!gcc

~3,3!~r 32!. ~A12!

The functionsNzy
(a,b)(r ) andCzy

(a,b)(r ) have been defined in
Ref. 20.

The quantitiesGv
(a) andGd

(a) , entering the expressions o
the strength factorsn0

(a) , are given by
al

508

416

170

846

533

297

51

02

77

50

84

80

77

33

03

22

98

11

33
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Gx
~a!5 (

l53,4
rlE dr „gxd

~a,l!~r !212Nxd
~a,l!~r !2Exd

~a,l!~r !…1r3E dr „gxe
~a,3!~r !2Nxe

~a,3!~r !2Exe
~a,3!~r !…

2~1/2! (
l53,4

rlE dr „gxd
~a,l!~r !211dl3gxe

~a,l!~r !…„Nxd
~a,l!~r !12Exd

~a,l!~r !…2~1/2!r3E dr „gxd
~a,3!~r !21…„Nxe

~a,3!~r !

12Exe
~a,3!~r !…2~1/2! (

l53,4
rlE dr „gxd

~a,l!~r !1dl3gxe
~a,l!~r !…Cxd

~a,l!~r !2~1/2!r3E drgxd
~a,3!~r !Cxe

~a,3!~r !1Ex
~a! ,

~A13!

whereEx
(a) is the sum of the one-point elementary diagrams.8,9,17By settingr350 (r450), expression~2.15! reduces to the

pure phasesGx .8,9

APPENDIX B

In this appendix, results for the momentum distributions of the different components of the mixture at sever3He
concentrations are reported in the following table:

k (Å 21)

x350.02 x350.04 x350.066

n(4)(k)
(1022)

n(3)(k)
(1023)

n(4)(k)
(1022)

n(3)(k)
(1023)

n(4)(k)
(1022)

n(3)(k)
(1022)

0.00 53.9037 89.7342 52.9961 96.7339 51.8615 10.5

0.05 53.7869 89.5174 52.8810 96.6067 51.7480 10.5

0.10 53.4385 89.4813 52.5376 96.4602 51.4095 10.5

0.15 52.8645 89.3475 51.9718 96.3355 50.8519 10.4

0.20 52.0749 89.2132 51.1935 96.2190 50.0848 10.4

0.25 51.0825 4.9579 50.2154 96.0861 49.1211 10.4

0.30 49.9035 5.1966 49.0532 9.7540 47.9763 10.41

0.35 48.5558 5.1927 47.7248 9.7000 46.6680 1.53

0.40 47.0590 4.9945 46.2494 9.4897 45.2153 1.50

0.45 45.4335 4.6889 44.6470 9.1555 43.6381 1.47

0.50 43.6997 4.3663 42.9379 8.7442 41.9563 1.42

0.55 41.8776 4.0904 41.1417 8.3027 40.1894 1.36

0.60 39.9864 3.8836 39.2774 7.8661 38.3560 1.29

0.65 38.0439 3.7306 37.3623 7.4521 36.4734 1.22

0.70 36.0664 3.5954 35.4127 7.0620 34.5574 1.15

0.75 34.0687 3.4424 33.4431 6.6862 32.6224 1.08

0.80 32.0639 3.2531 31.4664 6.3124 30.6811 1.01

0.85 30.0637 3.0307 29.4943 5.9321 28.7448 0.96

0.90 28.0787 2.7946 27.5372 5.5437 26.8239 0.90

0.95 26.1185 2.5685 25.6046 5.1526 24.9277 0.84

1.00 24.1919 2.3685 23.7054 4.7676 23.0649 0.78

1.05 22.3073 2.1973 21.8480 4.3968 21.2437 0.72



01

26

95

06

47

06

75

58

64

06

94

29

04

10

38

84

49

36

46

77

24

77

30

81

28

77

32

93

60

2

97

64

30

98

71

50

35

22

10

96

81

66

55

47

43

41

38

33

27

56 11 863MOMENTUM DISTRIBUTIONS IN 3He-4He LIQUID MIXTURES
k (Å 21)

x350.02 x350.04 x350.066

n(4)(k)
(1022)

n(3)(k)
(1023)

n(4)(k)
(1022)

n(3)(k)
(1023)

n(4)(k)
(1022)

n(3)(k)
(1022)

1.10 20.4731 2.0454 20.0406 4.0451 19.4722 0.66

1.15 18.6973 1.8983 18.2913 3.7125 17.7585 0.60

1.20 16.9880 1.7447 16.6081 3.3960 16.1104 0.54

1.25 15.3531 1.5815 14.990 3.0915 14.5358 0.50

1.30 13.8004 1.4145 13.4717 2.7964 13.0423 0.45

1.35 12.3371 1.2541 12.0332 2.5110 11.6368 0.41

1.40 10.9699 1.1095 10.6902 2.2381 10.3258 0.36

1.45 9.7043 0.9846 9.4480 1.9821 9.1146 0.32

1.50 8.5445 0.8770 8.3109 1.7470 8.0071 0.28

1.55 7.4932 0.7805 7.2812 1.5352 7.0057 0.25

1.60 6.5514 0.6892 6.3599 1.3469 6.1110 0.21

1.65 5.7181 0.6007 5.5457 1.1809 5.3217 0.19

1.70 4.9900 0.5173 4.8354 1.0351 4.6345 0.17

1.75 4.3625 0.4436 4.2241 0.9081 4.0443 0.15

1.80 3.8286 0.3842 3.7050 0.7987 3.5442 0.13

1.85 3.3803 0.3405 3.2697 0.7063 3.1260 0.11

1.90 3.0080 0.3101 2.9090 0.6302 2.7802 0.10

1.95 2.7015 0.2877 2.6125 0.5688 2.4967 0.09

2.00 2.4503 0.2678 2.3698 0.5194 2.2652 0.08

2.05 2.2439 0.2469 2.1706 0.4789 2.0753 0.07

2.10 2.0721 0.2247 2.0049 0.4440 1.9175 0.07

2.15 1.9257 0.2032 1.8637 0.4119 1.7830 0.06

2.20 1.7969 0.1849 1.7391 0.3812 1.6640 0.06

2.25 1.6788 0.1711 1.6246 0.3513 1.5543 0.05

2.30 1.5662 0.1610 1.5153 0.3224 1.4492 0.05

2.35 1.4556 0.1521 1.4076 0.2951 1.3453 0.04

2.40 1.3447 0.1418 1.2995 0.2694 1.2408 0.04

2.45 1.2325 0.1287 1.1901 0.2452 1.1349 0.03

2.50 1.1194 0.1133 1.0797 0.2221 1.0280 0.03

2.55 1.0063 0.0977 0.9694 0.1997 0.9213 0.03

2.60 0.8949 0.0842 0.8608 0.1780 0.8165 0.02

2.65 0.7871 0.0743 0.7559 0.1574 0.7155 0.02

2.70 0.6849 0.0676 0.6567 0.1384 0.6201 0.02

2.75 0.5901 0.0627 0.5648 0.1215 0.5321 0.01

2.80 0.5043 0.0575 0.4818 0.1068 0.4528 0.01

2.85 0.4283 0.0508 0.4085 0.0942 0.3830 0.01

2.90 0.3627 0.0428 0.3454 0.0832 0.3232 0.01

2.95 0.3074 0.0346 0.2923 0.0732 0.2731 0.01

3.00 0.2618 0.0280 0.2487 0.0638 0.2321 0.01

3.05 0.2250 0.0238 0.2136 0.0550 0.1992 0.00

3.10 0.1957 0.0219 0.1858 0.0471 0.1733 0.00

3.15 0.1726 0.0212 0.1638 0.0403 0.1528 0.00

3.20 0.1541 0.0201 0.1463 0.0347 0.1365 0.00

3.25 0.1389 0.0178 0.1318 0.0303 0.1230 0.00

3.30 0.1257 0.0141 0.1193 0.0266 0.1112 0.00

3.35 0.1137 0.0102 0.1078 0.0234 0.1003 0.00

3.40 0.1020 0.0071 0.0966 0.0203 0.0897 0.00

3.45 0.0904 0.0057 0.0854 0.0174 0.0790 0.00

3.50 0.0786 0.0060 0.0740 0.0147 0.0682 0.00
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