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Large-q neutron inclusive-scattering data from liquid 4He
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~Received 10 June 1997!

We report dynamical calculations for large-q structure functions of liquid4He at T51.6 and 2.3 K and
compare those with recent MARI data. We extend those calculations far beyond the experimental rangeq<29
Å21 in order to study the approach of the response to its asymptotic limit for a system with interactions having
a strong short-range repulsion. We find only small deviations from theoretical 1/q behavior, valid for smooth
V. We repeat an extraction by Glydeet al. of cumulant coefficients from data which are invariably very well
reproduced. We argue that fits determine the single atom momentum distribution, but express doubt as to the
extraction of meaningful final state interaction parameters.
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I. INTRODUCTION

In the following we discuss different aspects of the
sponse of liquid4He to density fluctuations which is mea
sured in large-q neutron inclusive scattering against liqu
4He. The linear response is a function of two parameterq
andv, which in the scattering experiment are the moment
and energy transferred from the projectile to the target.
medium and largeq those responses contain information
the target, such as the momentum distribution of the c
stituents and prescribed manifestations of their interac
which are commonly known as final-state interactions~FSI!.
The state of the art of the field and extensive references h
recently been reviewed by Glyde.1

First we report predictions which are compared with m
recent data. Next, we compute the response forq&300 Å21

in order to study how FSI effects vanish for largeq. In the
end we present results of a model-independent cumu
analysis of data in order to extract the single-atom mom
tum distribution and interaction parameters.

Recent precision data for temperatures below and ab
the transition temperatureTc have been taken at the Ruthe
ford ISIS facility by means of the MARI spectromete
Those by Andersenet al. span neutron momentum transfe
3<q(Å21)<10 for T51.42 K and 3<q(Å21)<17 for T
52.5 K,2 while Azuah’s measurements covere
10<q(Å21)<29 for T51.6 and 2.3.3 The present results
expand in scope previous information taken a few years
at the IPNS facility at Argonne forq<23.1 Å21.4

To our knowledge noab initio calculations of the MARI
data have previously been performed. Such calculations
quire as input the atom-atom interaction and ground-s
information, which for the aboveq regime are primarily the
single-atom momentum distributionn(p) and the semidiago
nal two-particle density matrix.

Using variations of much the same theory, predictio
have been made before for medium-q, as well as for the
higher-q Argonne data.5–9 The above-mentioned MARI dat
570163-1829/98/57~9!/5347~11!/$15.00
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have recently been approached in an entirely different fa
ion with the purpose of determining in a model-independ
way the dominant coefficients in the cumulant expansions
the asymptotic and FSI parts of the response.10,11,12Good fits
to the data were obtained, but those have little in comm
with dynamic calculations. The latter use asinput n(p), ad-
ditional ground-state information, andV whereas, ideally,
n(p) and properties ofV areextractedfrom cumulant fits.

As a major result of the above analysis, Glydeet al. re-
port the reconstruction of the single-atom momentum dis
bution n(p) in good agreement with accurate theoretic
predictions.13,14 However, a less satisfactory feature is t
extracted dominant FSI cumulant coefficient which, dep
dent on the analysis, is reported to be less than 0.65 times
calculated value. One then wonders whether the appa
partial fit may have consequences on the precision of
reconstructedn(p). We shall demonstrate that in spite of th
misfit of FSI parameters, their minor role hardly affects t
stability of the extractedn(p), at least forT.Tc when the
condensate fraction is absent.

The following program emerges from the above obser
tions. In Sec. II we outline an approach to high-q responses.
In Sec. III we report computations of the high-q measure-
ments using the MARI spectrometer and compare those
dictions with the data. In addition we interpret respons
computed out to very highq<300 Å21. The results enable
the study of the approach of the response to its asympt
limit for systems with a strong short-range repulsion in t
interaction between the constituents. In Sec. IV we pres
fits for cumulant parameters forT52.3 K and compare those
with similar results by Glydeet al.10–12 We discuss the dis-
crepancy between the calculated and the extracted FSI
rameters and attribute it to the truncation of the cumul
series. In the conclusion we estimate that both experime
and theoretical studies of the response of liquid4He at high
q may have reached a degree of sophistication, bey
which there is little prospect to gain new information.
5347 © 1998 The American Physical Society
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II. DESCRIPTIONS OF THE LINEAR RESPONSE
FOR HIGH Q

Consider for infinitely extended liquid4He the response
per atom in the form

S~q,v!5A21~2p!21E
2`

`

dteivt^0urq
†~ t !rq~0!u0&,

~1!

f~q,y!5~q/M !S~q,v!,

with M the mass of a4He atom.rq(t) above is the density
operator

rq~ t !5e2 iHtrq~0!eiHt ,
~2!

rq~0!5(
j

eiqrj ~0!.

Strictly speaking, the symbol^0u . . . u0& should stand for a
canonical average at givenT, but we shall use instead th
ground state in conjunction withT-dependent quantities.

In the last line of Eq.~1! we introduce the reduced re
sponsef(q,y) with the energy lossv, replaced by an alter
native kinematic variabley5y(q,v) ~Refs. 15,16!

y5
M

q S v2
q2

2M D . ~3!

Upon substitution of Eq.~2! into Eq. ~1! one generates
two components of the response. In the incoherent part,
tracks the same particle when propagating in the medi
while in the coherent part one transfers momentum and
ergy to a particle distinct from the struck one. Forq*8 Å21

the response is dominated by the incoherent part and
coherent part can be safely disregarded.

For the description of the large-q response we shall ex
ploit the theory of Gersch, Rodriguez, and Smith~GRS! for
smooth interactionsV which leads to the following expan
sion for the reduced response in inverse powers ofq or of the
recoil velocity vq5q/M ~Ref. 15! ~we use units\5c51
causing all quantities to have dimensions of powers of Å
Å21):

f~q,y!5 (
n50

` S 1

vq
D n

Fn~y!, ~4a!

F0~y!5 lim
q→`

f~q,y!5~4p2!21E
uyu

`

dppn~p!, ~4b!

1

vq
F1~y!5 i ~2pr!21E

2`

`

dseiys

3E drr2~r,0;r2sq̂,0! x̃ ~q;r,s!, ~4c!
ne
,

n-

he

r

x̃ ~q,r,s!52
1

vq
F E

0

s

ds8V~r2s8q̂!

2sV~r2sq̂!G . . . , etc. ~4d!

The function x̃ in Eq. ~4d! resembles an eikonal phase.
differs from it because the integration limits on the line i
tegral over the first component ofV are not (2`,`), as is
appropriate for on-shell scattering. The finite limits corr
spond to off-shell scattering described in the coordinate r
resentation. Moreover a second interaction is implicit in E
~4d!. In the following we shall allude to the total expressio
~4d! as the generalized eikonal phase.

We recall the interpretation of the lowest-order terms. F
sufficiently large momentum transferq, an atom with initial
momentump recoils with p85up1qu'q@^p2&1/2, which is
larger than the average momentum of an atom in the med
and is moreover in excess of any inverse length in the s
tem. The recoiling atom moves therefore too fast to be
fected by atom-atom collisions and the response is
asymptotic limitF0(y) for q,v→` at fixedy. Equation~4b!
shows its expression in terms of the single-atom momen
distribution, normalized as*dp/(2p)3n(p)51.

Although the GRS theory is not a perturbation theory
the interactionV, the second term in the series~4a!, linear in
V, is entirely due to binary collisions~BC! between the hit
and any other atom. It accounts for the dominant FSI colle
ing all contributions}1/q. This is achieved at the price o
introducing the semidiagonal two-particle density matrixr2
in Eq. ~4c!.

In another publication Gersch and Rodriguez sugges
an alternative representation for the reduced response17

f~q,y!5E dy8F0~y2y8!R~q,y8!

5E dp

~2p!3
n~p!R~q,y2pz!, ~5a!

f̃~q,s!5E
2`

`

dye2 iysf~q,y!5(
n

S 1

vq
D n

F̃n~s!

5F̃0~s!R̃~q,s![F̃0~s!exp@Ṽ~q,s!#. ~5b!

In Eq. ~5a! the response is written as a convolution of
asymptotic limit and a FSI factorR(q,y). It is frequently
convenient to use Fourier transformsF̃ i(q,s),R̃(q,s) . . . .
In particular for the first two terms in Eq.~5b! one has@cf.
Eqs.~4b! and ~4c!#

F̃0~s!5
r1~s,0!

r
5E dp

~2p!3
e2 ipq̂sn~p!, ~6a!

1

vq
F̃1~s!5

i

rE drr2~r2sq̂,0;r,0! x̃ ~q;r,s!, ~6b!

with r1(s,0)5r1(r2sq̂,r), the single-atom density matrix
andr5r1(r,r), the number density.

We shall restrict ourselves below to various descriptio
of FSI due to BC, starting from the corresponding cumula
form ~5b! and using Eq.~6a! ~Ref. 17!
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f̃~q,s!5
r1~s,0!

r
R̃2~q,s!5

r1~s,0!

r
exp@Ṽ2~q,s!#,

Ṽ2~q,s!5 irE drz2~r,s!v2~q,r,s!, ~7!

whereR̃2(q,s) andṼ2(q,s) are the BC approximation to th
corresponding quantities defined in Eqs.~5a! and ~5b!. z2
above is defined by

z2~r,s!5
r2~r2sq̂,0;r,0!

rr1~s,0!
, ~8a!

z2~r,0!5g2~r! ~8b!

with g2 the pair-distribution function.
Equation~7! is the most general cumulant form in the B

approximation for the FSI phaseṼ2(q,s)5 ln@R̃2(q,s)#, and
distinguishes throughv2 between different dynamical ap
proaches. For instance, for smooth interactionsV, which
would allow for an expansion of the exponential in Eq.~7!,
comparison of Eqs.~7!, ~5b!, and ~4d! showsv2 to be the
generalized eikonal phase

v2,V~q,r,s!5 x̃ ~q,r,s!. ~9!

For interactions with a strong short-range repulsion, the
integral overV in the ~off-shell! phase~4d! which enters the
dominant BC FSI contributionF̃1(s), Eq. ~6b!, may produce
large and even divergent integrals. The standard metho
tackle those difficulties is by partial summation of selec
higher-order terms

iv2,V→ iv2,t5ei x̃21, ~10!

which amounts to replacing the bareV by a q-dependent
effective interactionV→Veff(q)5 t̃ (q), the latter being the
off-shell t matrix, in turn generated byV. Moreover the
propagation in between collisions is described in the eiko
approximation.7,18

In an alternative regularization for an atom-atom inter
tion with a strong short-range repulsion, one replaces
generalized eikonal phase~4d! by a semiclassica
approximation19,20

v2,sc~q,r,s!5 iqE
0

s

ds8FA12
2m

q2
V~r2s8q̂!

2A12
2m

q2
V~r2sq̂!G . ~11!

For (2m/q2V)!1, v2,sc coincides withv2,V , Eq. ~9!. How-
ever, in classically forbidden regions (2m/q2)V.1, v2,sc
describes damping, as the dominant imaginary part
Veff(q) in ~10! is expected to do. This will be borne out b
calculations.

Whereasv2,V is strictly proportional to 1/q, this is no
more the case forv2,t after the replacementV→Veff(q). The
above manifestly introducesq dependence in coefficients o
the GRS series~4a!,~5b! and in particular in the BC approxi
mation. Taking the latter in the cumulant form~7! adds to the
e

to
d

al

-
e

f

blurring of the original 1/q dependence. This raises the que
tion how the response approaches its asymptotic limit.

We start with a theoretical analysis of the first cause
additional q dependence and focus on4He-4He scattering
for high lab momentaq. The latter is of a distinctly diffrac-
tive nature, typical for interactions with a strong, short-ran
repulsion. For those, the dominant imaginary part of the
shell scattering amplitudet(q)'Imf (q)} iqsq

tot , where the
total 4He-4He cross sectionsq varies much slower thanq
itself.6

Without entering into details, we state that the off-sh
t̃ 5Veff in v2 , Eq. ~7!, can approximately be related to th
on-shell scattering amplitude for elastic scattering.~See Ref.
21 for a more extensive treatment of the parallel discuss
for atomic nuclei!. It can then be shown that the rigorou
proportionality of the dominant BC FSI phaseṼ2,V}1/q for
a smooth, bareV still holds approximately forṼ2,t .

Additional q dependence is due to the use of the cumul
representation~7! but it will be small to the extent that FS
are. In conclusion, the reduced response described by
~5! and ~7! is expected to approximately preserve the 1q
signature of the dominant binary collision contribution. W
shall return below to a numerical confirmation.

III. DYNAMICAL CALCULATIONS
OF SELECTED MARI 4He DATA

We first mention and discuss the input elements wh
suffice for the BC approximation in any of the forms d
scribed in Sec. II.

~a! The atom-atom interactionVAziz.
22

~b! The single-atom momentum distributionn(p,T):

n~p;T!5~2p!3d~p!n0~T!1@12n0~T!#nNO~p;T!,

r1~s,0;T!

r
5n0~T!1@12n0~T!#

r1
NO~s,0;T!

r
. ~12!

n0(T<Tc) is the fraction of atoms in the condensed state23

nNO(p;T) andr1
NO(s,0;T)/r above are, respectively, the mo

mentum distribution of the normal~uncondensed! atoms and
its Fourier transform. Path integral Monte Carlo~PIMC! cal-
culations have shown moderateT dependence ofnNO(p;T)
for T<4 K.13,25

~c! The least accessible ground-state property require
the BC approximation is the semidiagonal, two-body dens
matrix which weights the dominant BC FSI terms in Eq
~4c! or ~5b!. Calculations based on a variationally dete
mined ground-state wave function in the hypernetted ch
~HNC! formalism produce forz2 , Eq. ~8! ~Refs. 26 and 9!:

z2
HNC~r,s;j!5gwd~r !gwd~ ur2sq̂u!exp@A~r,s!#

'gwd~r !gwd~ ur2sq̂u!exp@jA4~r,s!#,

A4~r,s!5rE dr8@gwd~ ur82sq̂u!21#@gwd~r 8!21#

3@g~ ur82ru!21#. ~13!

gwd(r ) is an auxiliary function related to what in HNC for
malism is called a form factor.26 The functionA(r,s) for-
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mally adds all so-called Abe diagrams and is approxima
in Eq. ~13! by the four-body Abe diagramA4(r,s), using in
addition a scaling parameterj.9,27

Far less sophisticated and simpler is the G
approximation15

z2
GRS~r,s!5Ag~r!g~r2sq̂!, ~14!

which interpolatesz2 betweens50 and the Hartree limit for
larges.15

Both options have drawbacks and fail for instance
extended unitarity test

E drr2~r2sq̂,0;r,0!5~A21!r1~s,0!, ~15!

which can be written as

J~s!5rE dr@12z2~r;s!#51. ~16!

Using a typical pair-distribution functiong(r ), J(s)
above computed withz2

GRS, Eq. ~14!, produces values up to
1.7 for s52.0 instead of the exact value 1.0, independen
s.28 In the HNC case, approximations involved in the eva
ation of the Abe terms~13! are responsible for similar devia
tions of J(s) from 1. The violation of condition~16! is
intrinsic in the GRS approximation~14!, no matter whatg(r )
is used.

Another important constraint is the fact that the diago
two-body density matrix should coincide with the pa
distribution function: z2(r,0)5g(r ), Eq. ~8b!. While the
GRS approximation fulfills that condition by construction,
full evaluation of the Abe terms is necessary in the HN
formalism. Demanding the boundary value condition to
fulfilled in the mean, one determines the so-called sca
parameterj by minimizing the following quantity:

s~j!5E druzHNC~r,0;j!2g~r !u2.

A particular choice ofz2 presumably matters for mediumq,
but for increasingq*20 Å21 FSI contributions decrease i
importance relative to the asymptotic response. A fe
percent spread, due to uncertainty in the choice ofz2 , in
already small FSI terms will go unnoticed. We thus opted
expression~14! which is numerically much easier to hand
than Eq.~13!.

~d! Finally, for a comparison of actual data with predi
tions the latter have to be folded into the experimental re
lution function ~ER! E(q,y;T) of the instrument. The
E(q,y;T) corresponding to theq>20 Å21 MARI data are
given in Azuah’s thesis3 and have been fitted to the sum
two off-center gaussians. No ER, pertinent to lowerq’s were
available to us, thus precluding an analysis forq<20 Å21.

Until this point we did not specify theT dependence o
the theoretical responses. In fact one ought to employ qu
tities computed for givenT. Actually, there exist experimen
tal data29 and also PIMC studies13,25 on theT dependence o
the pair-distribution functiong(r ,T). However, in view of
the above arguments we shall use the one forT50. By the
same tokenz2 , Eq. ~14!, and consequently FSI effects wi
be independent ofT. This leaves the single-particle densi
d

e

f
-

l

e
g

-

r

o-

n-

matrices, or equivalently the momentum distributions as
only T-dependent quantities in the present analysis. We t
n0(T51.6 K!50.087 and r1

NO(0,s;T51.6 K!5r1(0,s;T
52.3 K! from calculations forT51.54 and 2.5 K.13,25

The expression for the predicted response is therefore

f~q,y;T>Tc!5E dp

~2p!3
n~p;T!R~q,y2pz!,

~17!

f~q,y;T<Tc!5n0~T!R~q,y!1@12n0~T!#

3E dp

~2p!3
nNO~p;T!R~q,y2pz!,

which in order to enable a comparison with data, has to
folded into ER

fE~q,y;T!5E
2`

`

dy8E~q,y2y8;T!f~q,y8;T!

5~2p!21E
2`

`

dseiysẼ~q,s,T!f̃~q,s;T!.

~18!

For future reference we emphasize here that the FSI factoR
is, from Eqs. ~7! and ~8!, seen to be independent of th
single-particle density matrixr1(s,0)/r. In particular for all
but pure hard-core interactions

lim
q→`

R̃~q,s!51. ~19!

We thus computed the reduced responsefE(q,y;T), for
the q521,23,25,29 Å21 sample out of the MARI data. In
view of the steady decrease of FSI, thisq range and steps
seems to be sufficient for our study. We emphasize in p
ticular the caseq523 Å21, considered because it is the lar
est q in the older Argonne data sets4 and for it we shall
compare our results with others.

We start with a comparison of our predictions forT52.3
K and the corresponding data3 @Figs. 1~a!–1~d!#. The overall
agreement is very good. One notices that, whereas the ce
value for the theoretical response hardly changes
21<q(Å21)<29, the data for the same, folded in the E
fE(q,0) showq dependence present inE(q,y).

The agreement forT51.6 K @see Figs. 2~a!–2~d!# is
slightly worse. The slight staggering in the central region
q521 Å21 is probably of instrumental origin, but contrary t
the T52.3 K case, differences inE(q,y) for q521,29 Å21

do not explain the small discrepancies in their central
gions. We recall that exactly the same input is used as
T52.3 K and that the only extra parameter is the condens
fraction n0(T51.6 K!.

We now reach our second topic. In spite of the fact th
no data exist forq>29 Å21, we have extended calculation
up to q5300 Å21. The purpose of the exercise is to obta
theoreticalinformation on the approach of the response to
asymptotic limit.

In Fig. 3~a! we presentfeven(q,y,T52.3 K! which is the
part of the response, even iny and computed in the BC
approximation~7!,~10!. Even in the wings out toy'3.5 Å21



is also
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FIG. 1. ~a!–~d! Predictions for the response~5!,~7! of liquid 4He atT52.3 K for q521,23,25,29 Å21 from Eq. ~7! using the ladder
approximation~10! for binary collisions. Those results have been folded with the experimental resolutions from Azuah’s thesis, which
the the source of data~Ref. 3!.
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those coincide within 1% among themselves and with
asymptotic responseF0(y), Eq. ~4b!. The above appear
hardly changed, when predictions for 20<q(Å21)<29 are
included: only in the immediate neighborhood ofy50, is
there a&2.5% difference.

In Fig. 3~b! we showqfodd(q,y,T52.3 K!, the part of the
response which is odd iny, multiplied fodd by q. The latter
is the signature of the dominant FS. Some residualq depen-
dence is then apparent in Fig. 3~b! in the extrema as well a
in the wings. However, the true measure for the size of FS
the ratio fodd/feven which is at most a few percent. Th
conclusion is clear: Neither the strong short-range repuls
in the atom-atom interaction which forces the use
Veff(q)5 t̃ (q), nor the effect of the cumulant representatio
much changes the 1/q signature of the dominant FSI term i
the GRS series~4a! for smoothV. The above agrees with ou
arguments in Sec. II and with our previous results.6

All reported predictions are based on the use of tht
matrix, i.e., on Eq.~10!. In Sec. II we also mentioned
semiclassical approximation~11! for FSI and found that, ex-
cept for smalls, there are considerable differences betwe
the BC phases, calculated by means of Eqs.~11! and ~10!.
Ultimately excellent agreement is obtained between the
responding responses, computed with Eqs.~5! and ~7!.
Clearly both thet-matrix and the semiclassical method acc
rately describe the binary collision phase in the salient reg
just inside the classically forbidden region. Contributio
from deeper penetration distances are strongly suppress
e

is

n
f
,

n

r-

-
n

d.

We conclude this section by a discussion and compari
of predictions forq523 Å21 by other authors. Since th
various studies refer to differentT and data have been take
at different instruments, the natural quantity to compare
the FSI factorR(q,y) assumed to beT independent.

We start with predictions by Mazzantiet al.9 which are
based on exactly the same BC approximation in theVeff ver-
sion ~10!, employing however the variationally derive
z2

HNC, Eq. ~13!. Next we mention Silver5 who used, what
amounts to the cumulant form~7! with v2→v2,t and
z2→g2 , the pair-distribution function. In his hard-core pe
turbation theory he disregarded the second part of the t
phasex, Eq. ~4d!, which is only permissible for apure
hard-core interaction. However, Silver actually construc
the off-shell t matrix in Eq. ~10!, corresponding to the firs
part in Eq.~4d! from JWKB partial wave phase shifts for
realisticV, which in addition to strong short-range repulsio
also included attractive components. Nevertheless, he
glected the second component in Eq.~4! which does not
vanish when an attraction is present. We conclude wit
path-integral method by Carraro and Koonin, who compu
high-q FSI using a fixed scattering approximation for th
entire system with a large, finite number of atoms.8 The
method requires the parallel calculation of the ground-s
wave function in order to construct theN-body density ma-
trix, diagonal except for one particle, withN the number of
atoms in the sample and which averages the response
fixed scatterers.
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FIG. 2. ~a!–~d! Same as Figs. 1~a!–1~d!, for T51.6 K, computed forn0(T51.6 K!50.087.
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Results forR(q,y) for all cases discussed are assemb
in Fig. 4 and show occasionally substantial differenc
However, those are considerably smoothened by the sin
particle momentum distribution@Eq. ~5!# or density matrix in
Eq. ~6!, and ultimately produce quite similar responses.4,9

IV. CUMULANT EXPANSIONS OF THE RESPONSE

We consider below a method which has extensively b
applied in the past30 before the rediscovery of the 1/q GRS
expansion of the response~4a!.15 Recently it has been
brought to the fore again in an attempt to parametrize d
without the intervention of a theory. The method uses cum
lant expansions of the Fourier transforms of the sepa
asymptotic and FSI parts of the response~5b!, with coeffi-
cient functions related to moments of the response10

f̃~q,s!5expF (
n>2

~2 is!n

n!
m̄n~q!G , ~20a!

F̃0~s!5expF (
n>2

~2 is!n

n!
ānG , ~20b!

R̃~q,s!5exp@Ṽ~q,s!#5expF (
n>3

~2 is!n

n!
b̄n~q!G .

~20c!

Using Eq.~5b! the various coefficient functions are relate
by m̄n(q)5 ān1 b̄n(q).31 Data for the responsefE

exp are then
compared with the parametrization~20!
d
.

le-

n

ta
-
te

fE
exp~q,y!⇔ 1

p
ReE

0

`

dseiysf̃E~s,@m̄n~q!# !, ~21!

where, as in Eq.~18! the right-hand side in Eq.~20a! in-
cludes ER. In principle, noa priori knowledge, or even
meaning of the cumulant coefficient functionsmn(q) is nec-
essary for a search. However, it is natural to use motiva
initial values, such as calculated ones.

Consider the normal fluid, in which case th
q-independent cumulant coefficientsān originating in the
asymptotic part off̃(q,s) can simply be expressed in term
of averages of even powers of the momentum of an at
e.g.,

ā25
1

3
^p2&,

ā45
1

5
^p4&2

1

3
^p2&2, etc. ~22!

The q-dependent coefficientsb̄n(q) relate to the FSI factors
R̃(q,s),Ṽ(q,s) in Eq. ~5b! and may be written as10

b̄n~q!5 (
m51

[ ~n21!/2] S 1

vq
D n22m

b̄n,2m

5 (
m51

[ ~n21!/2] S 1

q*
D n22m

zn,2m . ~23!



-

ys-

-

-
em-
ce,

I

he

s

se
t
I
t

ue

ot

-

y

d

e
a

57 5353LARGE-q NEUTRON INCLUSIVE-SCATTERING DATA . . .
-

FIG. 3. ~a! feven(q,y), part of the response even iny for
21<q(Å21)<300. Forq>25 Å21 those cannot be distinguishe
from the asymptotic limitF0(y), Eq. ~6!. ~b! qfodd(q,y), q times
the response, odd iny for 21<q(Å21)<300.

FIG. 4. FSI functionR(q523 Å21,y) in Eq. ~5a!, computed
with the GRS choice forr2 as well as for other descriptions. Th
drawn line is our result. Long dashes, short dashes, and dots
from Refs. 9, 8, and 5, respectively.
For convenience we useq* , the momentum transfer param
eter q in units of 10 Å21. Equation~23! displaysq depen-
dence and defines coefficientszn,2m , which have the same
dimensions and may be expressed in the same units asb̄n .
The above are operators for dynamical variables of the s
tem, averaged overdiagonal l-body density matrices and
their derivatives of orderl<n. For the lowest-order cumu
lant coefficient functions one has

b̄3~q!56 lim
s→0

@ ImṼ~q,s!/s3#56 lim
s→0

@ ImṼ2~q,s!/s3#

~24a!

5
1

6vq
^¹2V&r2

, ~24b!

b̄4~q!524 lim
s→0

@ReṼ~q,s!/s4#, ~24c!

b̄5~q!5
1

vq
b̄541S 1

vq
D 3

b̄52. ~24d!

Contrary to the GRS series in 1/q, with coefficients depend-
ing on nearly-diagonal n-particle density matrices
rn(r12sq̂,r2 , . . . rn ;r1 , . . . rn), the moment approach un
derlying the cumulant expansion does not produce a syst
atic q dependence of the coefficient functions. For instan
all b̄n(q) with oddn contain FSI contributions}1/q. Equa-
tions ~24a! and ~24d! illustrate this for the dominant FS
coefficient functionsb̄n(q). Thus b̄3(q)}1/q draws exclu-
sively on the BC contribution~7!, while the two components
of b̄5 are proportional to 1/q and (1/q)3 due to binary, re-
spectively, higher-order collision contributions, etc. It is t
expansion of the semidiagonalr2(r12sq̂,r j ;r1 ,r j ) in s
which produces an infinite number of contribution
b̄2n11(q), all of which have parts}1/q with coefficients
depending ondiagonal densities@cf. Eq. ~24b!# and their
derivatives.

We start with the threshold behavior of the FSI pha
Ṽ(q,s), Eqs.~7!,~10!, and in particular of its imaginary par
which, according to Eq.~24a!, produces the dominant FS
parameterb̄3(q). We checked that, within a few percen
qImṼ2(q,s) is, out tos'0.8 Å, independent ofq. In par-
ticular we could extract the theoretical threshold val
z35q* b̄3

V2(q)56q* lims→0@ ImṼ2(q,s)/s3#50.555 Å23

which over the entire rangeq<300 Å21 is, to better than
1%, independent ofq. For the above reason one cann
determine the next order odd-n coefficientsz5 with reason-
able precision.

We return to Eq.~24b! which seems to provide an inde
pendent way to calculateb̄3(q). However, one can actually
derive it from Eq.~24a!, using Eq.~7! for Ṽ2 in either ver-
sion ~9! or ~10! for the generalized eikonal phaseṽ(q,s). It
holds for arbitrary semidiagonalr2 which exactly satisfies
Eq. ~8b!.33

Using the sameg(r ) as in z2
GRS Eq. ~14! we compute

q* b̄3
¹2V(q)50.56 Å23. The agreement betweenq* b̄3

¹2V

andq* b̄3
Ṽ is very good, especially in view of the sensitivit

of q* b̄3
¹2V on the precise shape ofg(r ) where the Laplacian

re
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TABLE I. Cumulant coefficient functions from data atT52.3 K. The second column gives theoretic
values. The third column gives seven-parameter fits with prescribedq* behavior from~renormalized! data.

Column 4 give fits whenq* b̄3(q) is fixed at its starting values. Column 5 are fits if in additionq* 2b4(q) is
fixed. In the last column are results by Glydeet al., who fittedmn(q) from a large set of data for differentq.

Cumulant Computed Seven-parameter Six-parameter Five-parameter Glydeet al.
coefficient starting fit for prescribed fit; fixed fit; fixed ~Refs. 10,11!

values q dependence q* b̄3 q* b̄3 ,q* 2b̄4

ā2(Å22) 0.916 0.910 0.913 0.914 0.897

ā4(Å24) 0.470 0.553 0.594 0.781 0.46

ā6(Å26) 0.337 0.535 0.613 0.700 0.38

q* b̄3(Å23) 0.555 0.237 0.555 0.555 0.33

q* 2b̄4(Å24) 22.268 20.698 20.993 22.268 0

q* b̄54(Å
25) 0 0.416 0.851 0.615 0

q* 3b̄52(Å
26) 0 20.152 1.32 3.23 0.201

q* 2b̄64(Å
26) '231.0 1.539
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of V is large. The extraordinary stability of the extract

q* b̄3
Ṽ confirms the numerical consistency of the calculatio

As has been mentioned before, all FSI functions ha
been assumed to beT independent and we have used valu
for T50. In order to estimate the influence of the tempe

ture we have also calculatedq* b̄3
¹2V using ag(r ) obtained

with PIMC at T52.8 K.13 The resultq* b̄3
¹2V(T52.8 K!

50.47 Å23 confirms its sensitivity on the precise shape
g(r ).

Regarding parameters of even order inn one finds from
ReṼ2(q,s), Eq. ~24c! for the leading coefficient
z425q* 2b̄4

V2(q)522.26 Å24. The next-to-leading

z64'q* 2b̄64(q)'231 Å26 has been estimated from
ReṼ2(s,q) for s*0.1 Å.

An important remark is in order here. Whileb̄3 , the lead-
ing FSI coefficient of odd order, is entirely given by the B
approximation, the first nonvanishing, even order coeffici
b̄4 has additional contributions from higher-order FSI. D
rect evidence for their existence is provided by the ex
expressionb̄4}^(¹V)2&, i.e., the average of the square
force on the struck atom. The latter is positive definite10,34

whereas in the above-mentioned BC approximationb̄4
V2,0.

We recall that the latter derives from ReṼ2 , with Re
Ṽ2!ImṼ2 . It is therefore plausible that higher-order F
contributions overwhelm the small BC part, leading to
overall positiveb̄4 .

At this point we recall the comment in the Introduction o
FSI parameters, based on the outcome of the cumulant an
sis by Glydeet al.10,11At first sight the misfit of, specifically
b̄3 , may conceivably affect the parameters for the mom
tum distribution and, if true, put in question a success
determination ofn(p). This was the main reason why w
wanted to repeat the analysis.

We report below several results for fits of cumulant p
rameters to the experimental response~21!. Those have been
obtained with theCERN MINUIT code, as applied to the te
T52.3 K data sets in the range 21<q(Å21)<29 from
Azuah’s thesis.3 We first note that the integrated strengths
.
e
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-

f

t

t

ly-

-
l

-

f

the data there appear for allq to be approximately 1.4% in
excess of the exact result 1. By construction that deman
exactly fulfilled by a cumulant expansion~20a! in, no matter
what approximation. We also considered data, cut
y'3.0– 3.4 Å21 where statistical noise in very small re
sponses, may cause those to have negative values. The
appear to hardly affect the extracted parameters.

The above source of information does not contain num
cal data and ER for the lowerq data. As a consequence w
had to limit ourselves to a small data base which is bound
influence the FSI parameter functions which increases w
decreasingq.

Our results forT52.3 K are assembled in Table I. W
entered in column 2 theoretical values for the paramet
calculated as indicated in Eq.~24!, or set to 0 when impos-
sible to evaluate reliably. Notice that the negativez6 , ob-
tained from a limiteds range, will generate an unbounde
R̃(q,s), barring a convergent Fourier transform ofR̃(q,s).
Actually we did not considerz6 in the fits and restrict our-
selves to a maximum of seven parameters as discussed
low.

Column 3 is the result of a seven-parameter fit for cum
lant coefficients functions with theoreticalq dependence and
encompasses therefore all ten data sets in ourq range. Col-
umns 4 and 5 are six-, respectively, five-parameter fits like
column 3, when firstq* b̄3(q) alone and then alsoq* 2b̄4(q)
are held at their theoretical values.

Notice, that not only the extractedb̄4
V2 @Eq. ~24c!# in the

BC approximation, but also fitted values are negative, at le
when higher-order even coefficients in the cumulant se
are neglected. This can be understood if one tries to fit
data for allq using a polynomial ins with a finite number of
b̄n(q) as coefficients. However, those no more reproduce
low-s behavior of the FSI phaseṼ(q,s). It is also clear that
a fit is only possible if limusu→`R̃(q,s)→0. For an expansion
up to n54 this implies a negativeb̄4(q).

We now reach the extraction ofm̄n(q) for eachq and the
determination, as opposed to the aboveassumption, of their
q dependence. This appeared to be impossible for the lim
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FIG. 5. ~a! Comparison of the single atom density matrixr1(0,s)/r and its sixth-order cumulant expansion.~b! Real and imaginary parts

of the BC FSI phaseṼ2(q,s) (q521 Å21) from theory and represented by a fifth-, respectively, sixth-order cumulant expansion;~c! the

same for the FSI factorR̃(q,s).
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data set available to us. However, Glydeet al. had access to
far more data and we enter their results in the last colu
taken from Table I of Ref. 11. As the reportedz4 is zero, a
positive value ofz6 is required to give a convergent Fouri
transform ofR̃(q,s).

First we remark that the parameters, resulting from the
from columns 3–6, all produce good fits to the response d
However, those fits do not resolve the disagreement betw
theoretical and extracted FSI parameters. Table I shows e
smaller values forz35q* b3(q) than reported in Refs
10,11.

In fact, we find the results of column 5 in Table I mo
telling. Fixing the dominant FSI parametersz3,4 at their the-
oretical values, one expectsā4 ,ā6 to settle close to their
starting values. This appears not to be the case: Colum
appears to produce the poorest agreement between any o
reconstructed and the computedn(p) ~see Fig. 6 below!.

To understand the above, we turn again to the calcula
Ṽ(q,s) which we recall, produces very good fits to the da
~Figs. 1,2!. Although not called for in calculations using
dynamic theory, Eqs.~5b! and~20c! show that the expansio
n

ts
a.
en
en

5
the

d

of Ṽ(q,s) in s produces, in principle, the cumulant coeffi

cients and in particular the FSI parametersb̄n(q).
The complete cumulant series is of course equivalen

the exactṼ, but a truncation at somen obviously reproduces
behavior up to some relatively lows. The crucial question is
to what order one should go, and the answer clearly depe
on the effectives range of each of the component factor
Those are according to Eqs.~5b!, ~18!, and ~21! the single-
atom density distributionr1(0,s)/r, the FSI interaction fac-

tor R̃(q,s) @or Ṽ(q,s)], and the Fourier transformẼ(q,s) of
the ER function.

Next, we report on tests where we compare not data,

theoretical values of the input factorsr1(0,s),R̃,Ṽ and their

cumulant approximationsR̃cu,n,Ṽcu,n to ordern. The coef-

ficients definingR̃cu,n,Ṽcu,n are given in column 2 of Table
I. Figure 5~a! shows over the relevants range reasonable
adequacy of the cumulant expansion forr1(0,s)/r to order

n56. Next, Figs. 5~b!, 5~c! give Re and Im parts ofṼ(q,s),
respectively,R̃(q,s) q523 Å21 and shows that the FSI cu
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mulant series, truncated atn55, rapidly falls short of the
computed functions fors>1 Å21. Inclusion of the above-
mentioned, well-determinedz6'z64 affects only ReṼ @cf.
Eq. ~20b!#. It extends the agreement between the calcula
and cumulant expansions for the two FSI functions ove
modest additionals range, but does not prevent rapid de
rioration of R̃(q,s),Ṽ(q,s) from 1.2 Å21 on. As mentioned
before the estimatedz6 gives rise to a nonboundR̃(q,s).
Since terms in the cumulant expansions (24) in powerss
have alternating signs, the order ofbn to be retained depend
on thes range one wishes, or needs to cover.

The given observations do not contradict the high-qua
reproduction of the response data, when generated by a
fit of the parameters in a polynomial representation
Ṽ(q,s), Eq. ~24c!, to the data. However, the parameters o
tained in this way differ considerably from the expansi
coefficients ins of the FSI phaseṼ(q,s). As has been men
tioned above, the failure is due to the insufficiency of fin
order cumulant representationsR̃cu,n,Ṽcu,n and will only
disappear if for sufficiently highn, FSI functions will coin-
cide with their cumulant expansion out to the relevant m
dium s.

The above is, in our opinion, the source of the discr
ancy between calculated and extracted FSI parameter
spite of correlations between fitted parameters, there is
ficient meaning to the extracted FSI to justify the above c
clusion. Were it not for the overwhelming role of th
asymptotic part and its representation by a truncated cu
lant series, one could not trust the extractedān .

The sensitivity of the fitting procedure can be judged fro
Fig. 6, where we reconstruct single-atom momentum dis
butions from the various fits foran . Dense dots, shor
dashes, and spaced dots are results using columns 3–5
Table I. Long dashes are from the last column, i.e., the fi
Glyde et al., while the drawn line corresponds to the the
retical cumulant parameters in column 2. We recall that

FIG. 6. The single atom momentum distribution forT52.3 K,
reconstructed from the various cumulant fits, assembled in Tab
including the one from theoretical starting values. The curves,
beledcn correspond to increasing column number in Table I,
cluding the fit by Glydeet al. ~Glyde!. The circles are values cal
culated in Ref. 13.
d
a
-

y
est
f
-

-

-
In
f-
-

u-

i-

om
f

-
e

a parameters in that column are based on the computed
tribution n(p,T52.5 K!,13 marked by circles. The neverthe
less imperfect fit for the reconstructedn(p) is again due to
the finite-order expansion ofr1(0,s) causing a moderate
misfit for larges. Otherwise all reconstructed distribution
are of comparable quality:n(p) is clearly well determined
by the data.

V. SUMMARY AND CONCLUSIONS

We addressed above three topics regarding the resp
of liquid 4He, retrieved from the inclusive scattering of ne
trons. Using dynamics we first made predictions for the
cent MARI data, taken at temperatures both below and ab
Tc . We analyzed the range of momentum transf
21<q(Å21)<29, for which we had available data and e
perimental resolution and obtained good agreement with
periment.

A second topic was the approach of the response to
asymptotic limit inq for fixed scaling variabley. For smooth
interactions between constituents, that approach is rigoro
}1/q, but the same is not guaranteed when a strong sh
range repulsion is present in the atom-atom interactionV.
We investigated theoretically the response forq<300 Å21

for the actualV with its short-range repulsion, and what w
found reconfirmed our findings from a few years ago ba
on medium-q data: final-state-interaction contributions, ov
and above the asymptotic part, still decrease approxima
as 1/q.

Regarding theq values for which the response has be
measured, we repeat what was already evident from the o
data:4 there is no additional information to be retrieved b
increasingq by less than 20–30 % and no new informatio
at all at very highq.

Our last topic was a refit of the expansion coefficie
functions, which parametrize data. A previous analysis led
a single-atom momentum distribution in good agreem
with computedn(p,T), but did not produce the main FS
coefficient function. Its influence in the large-q region is too
marginal to be extracted from the data with present accu
cies. This does not change our judgment that little can
added tounderstandingthe data on the response of liqu
4He at high momentum.

In spite of minor discrepancies, a summary of the tre
ment of the first two topics is definitely positive. Presumab
for no atomic, molecular, nuclear or subnuclear system
which the response has been measured, has one reache
ymptotia as clearly and as well understood as for liquid4He.
Of course, asymptotia is not simply the mathematical lim
q→` for fixed y. Increasingq requires increasing beam
energy, ultimately beyond the ionization energy'39 eV. A
description of the response then requires the inclusion
additional electronic degrees of freedom to translatio
ones.

Finally we venture an outlook for future explorations
inclusive scattering which almost certainly implies extens
of experiments to larger momentum transfersq. Our judge-
ment is based on Eqs.~5b! and~7!. In that representation fo
the response, the FSI factorR̃(q,s) does not depend on th
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single-particle densityr1(0,s) and in particular not on the
condensate fraction forT<Tc . Together with Eq.~19! this
implies the universality of the asymptotic limit~4b! under all
circumstances. One then tends to believe that present ex
ments and theory seem to have exhausted the search fo
formation contained in the response of liquid4He at high
momentum.
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