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Structure and far-infrared edge modes of quantum antidots at zero magnetic field
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We have investigated edge modes of different multipolarity sustained by quantum antidots at zero magnetic
field. The ground state of the antidot is described within a local-density-functional formalism. Two sum rules,
which are exact within this formalism, have been derived and used to evaluate the energy of edge collective
modes as a function of the surface density and the size of the arf&fit63-18208)00332-4

With the progress of microstructure technology, the study The ground staté&ys) of the antidot is obtained solving the
of the two-dimensional electron gdé8DEG) has evolved to Kohn-Sham(KS) equations as indicated, for example, in
that of laterally confined superlattices made of either electrofref. 7. The problem is simplified by the imposed circular
islands (dotg or holes surrounded by electrofiantidoty.  symmetry, and only the radial KS equations have to be con-
Much effort has been devoted in the past to the study ofidered to determine the electronic radial wave functions
guantum dots, as compared to that put in the study of quarR|(r). We have used a dielectric constanand an electron
tum antidots. One of the goals of their study has been teffective massm=m*m,, which are characteristics of
determine the far-infrared response of these semiconductésaAs: e=12.4 andm* =0.067, which we have chosen for
microstructures, and the formation of compressible and inthe numerical applications in view of the existing experimen-
compressible states when a magnetic fidlis perpendicu- tal data of Refs. 2 and 5. The single electron potential)
larly applied. In the case of antidots, which is the subject ofentering the KS equations is made \4f,;, of the Hartree
the present work, experimental evidence of collective exci€lectron-electron potential and of the exchange-correlation
tations sustained by these structures has been presentedpiotential. The correlation potential has been obtained from
Refs. 1-3. A theoretical description based on magnetoplaghe correlation energy of Ref. 8 in a local-density approxi-
mons in two-dimensional antidot structures has been given imation. Sometimes we shall use effective atomic units. In
Ref. 4 that compares well with the experimental data of Refthis system of units, the length unit is the Bohr radius times
2. Recently, the existence of compressible and incompress/m*, and the energy unit is the Hartree time&/e?, de-
ible strips at the edge of antidots has been determined byoted here asg andH*, respectively. For GaAs we have
far-infrared spectroscopy. ag~97.9 A andH* ~11.9 meV~95.6 cm .

We have started a systematic study of the structure and physically acceptable solutions to the radial KS equations
collective far-infrared response of antidots, whose aim is tthave to be regular at=0 and behave asymptotically as
achieve a level of sophistication in the description of theser,(r k)~ J,(kr) +tan(8)Y,(kr), where J, and Y, are the
systems similar to that attained for quantum dots. As a firsinteger Bessel functions of the first and second Kirahd
step, we present here results at zero magnetic field obtaingd- \2m(E—V,)/%#2. The wave numberk has to be
within density-functional theoryDFT). To some extent, the | ke=\2mn,. Taking into consideration the spin degen-

present study is similar in scope to that carried out in Ref. Qaracy the electron densip(r) is obtained as
on the surface excitations of cavities in 3D metals. The ’

B+#0 case, which requires a rather different and far more
complex approach, will be presented in a forthcoming paper. 2 .

We have modeled an antidot of radiisin a 2DEG of p(n)= 2 > f RP(r,k)dk. 1)
surface densityg by a positive jellium background of den- === (2m)" JIki<ke
sity ng® (r —R) to which we have added a parabolic poten-
tial barrier of the typeV,(r)= mwé(Rz— r2)/2 acting on the We have checked that the number of points used to carry out
electrons for <R. A potential barrier of one kind or another @ Gaussian integration ovéds, and the maximunil| em-
is needed to prevent the electrons from spilling in the antidoployed in Eq.(1) lead to stable results.
too much, producing an unphysical representation of the ex- We show in Fig. 1 the electronic densities corresponding
perimental device. Actually, we have found thatif is set ~ to antidots ofR=7.5a5 andny=0.05, 0.1, 0.2, 0.3, and 0.4
to zero, high-density antidots such as those studied in Ref. %) 2. They span the size and density range of those fab-
would have nonzero electron densities even-a0. We shall  ricated and experimentally studied in Ref. 2, and have been
call Ve, the sum of the jellium and/,, potentials. obtained usingvy=0.3H*.
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FIG. 1. Electronic densities as a function offor antidots of
R=7.5a% andn,=0.05, 0.1, 0.2, 0.3, and 0.4%) ~2. Also shown
are the jellium densitiegdotted lines.
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my(Qp)= %<0|[QE![H1QL]]|O>’ 7

mS(QL): %<O|[[H=[H1QIT]]1[H1QL]]|O>1

where|0) is the gs of the system. These SR have been ex-
tensively studied in the literatufé:}? As indicated in these
references, if only a collective state is contributing to the
strength functionE5(Q, )= (ms/m,)*? represents the aver-
age excitation energy. This is the situation experimentally
found for antidots at zero magnetic field.

The operatoQ, is taken to be

N1
Q=2 e 3
=i
This choice is inspired in thatqf) "“e'-? is the smallq

expansion of the functiolY, (qr)e'-?, which is the restric-
tion to thez=0 plane of the irregular solution of the Laplace
equation in cylindrical coordinates. Following Ref. 10, a
lengthy but straightforward calculation yields

These results can be employed to determine BieO [ 1
far-infrared multipole response of antidots. To do so, we rely my(Qu)=27L fo dfrZL—HP(r)- (4)
on the formalism described in detail in Ref. 10. For the
present purpose, it consists in obtaining the so-catie@nd — (T + (VY
m; sum rules(SR) for an excitation operato®, . We have Ms(Qu)=Ms(T) + M(ee) + My(Vexe), ©
that'! where
® 1
m3(T)=27-rL2(L+1)f dr -5 [Lr(r)+2(L+2)\M1)], (6)
o r
2(2L_1)” ” ’ 1 ' iyt BN r' ’
ms(ee)=4wL —ZLL! fo p'(r)dr —r2L+lf0[2p (r"y+r'p"(r")JE. T dr
* 1 ! ! rn ! r ’ 2L+1L| 1 !
+fr m[(ZLJFl)P (r')=r'p"(r")]EL o dr T eLr D P (r)
S 1(r r,
+477L2f dr 2L+2[I’p"(r)—(2L+1)p'(l‘)][—f [3r’p(r’)+r’zp’(r’)]E(—)dr’
o r rjo r
oo r . r
—f r’p’(r’)E(—)dr’—er(r)+ lim RxnsE(—)], @)
r I” R, —® RO@
5 [ , 2L+1 | 1
M3(Vex€) = ml fo drVexdr)| p"(r)— r P 2t €)]

The definition of the densitieg(r) andA(r) and of the functiorE, can be found in Ref. 10, and the primes on the density

denoter derivatives. The jellium potentidl , (r) entering inV,

(RwE(r/Rw)—RE(r/R)
V., (r)y=4ng

RL.E(r/R,.)—rE(R/T)+r(1—(R/T)?>)K(R/r),

xt IS

) r<R
r>R.
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FIG. 2. Mode frquency fob=1 _and 2 as i function of the R=F1|(c);:- 13,’;_;7 ilr:a(;:t;cg%c’ daennds:;lse:soézs gg;’?gf'%;ﬁio{wsdﬁ: t?]fe
electron surface density correspondingRe 7.5 a; . The crosses iellium densities(dotted lines
are experimental data from Ref. 2, and the lines are drawn to guidJe
the eye. L

) L(L+1) Ll1 1

In the above equation¥ and E are the complete elliptic Es=2mns R2 +4n3§{zln Y3 +1_mz=1 2m—1}’
integrals of the first and second kind, respectivélgndR., (12)
represents a largevalue. In practice, it is the largestused
in the structure calculation, which we have also taken as th&herea represents the width of the quasistep function, and

point where the asymptotic behavior &(r) holds. We the precise value ofy depends on the way the electronic
want to point out that the two Coulomb diverging terms indensity goes to zert\. This equation tells one that the fre-
mz(e€) andms(Veye) cancel each other. quencies have a {R linear dependence if the Coulomb en-
The present formalism can be applied to antidots with theergy contribution dominates. For reasonable valueg af it
restriction thatp(r) vanishes in a small disk around the ori- happens for any realistic value Bf
gin. In practice, this is not a limitation, as can be inferred We have also studied the size dependence of the mode
from Fig. 1 (see also Fig. B Some technical details about energy. Figure 3 represents the electronic densities for anti-
how the above integrals are handled can be found in Sec. Idots of R=10, 15, and 20a5, and a surface density
of Ref. 6. ns=0.2 (@) 2. The frequencies of the=1 and 2 modes
For a large antidot, the electronic density is constantare shown in Fig. 4 as a function of R. They exhibit a
everywhere apart from a narrow region along the border ofjistinct R dependence, indicating a clear departure from
the hole. Following the method outlined in Ref. 10, it is parabolicity of the confining potential, i.e., a physical situa-
easy to show thaEj; yields the classical hydrodynamics tion where the generalized Kohn theorem does not apply.
dispersion relation for edge waves, namelz;= w(q)
~+y2n4qIn(gy/q). It is also worth to notice that the induced 70 ‘ \ ‘
(or transition density associated to the opera@y has the
form?!©

- 1
pu(P)rL ' (1) (10

that manifests the edge character of the excitation.

Figure 2 shows the frequency of the=1 mode as a
function ofng compared with the experimental points of Ref.
2. For completeness, we have also plotted the results corr
sponding toL =2. We have checked that similar results are
obtained using as potential barrier the parab®g(r) e
= mw(z)(R— r)2/2 for r<R with wo=1H*. One can see that .
the agreement with experiment is good. Furthermore, ou 3 . ‘ ‘
calculation vyields a frequency of-68 cmi® for the R 0.20 0.25 e 230 0.3 0.40
=180 nm, ng=9x 10" cm~? antidot, in good agreement R
with the experimental findings of Ref. 5. FIG. 4. L=1 and 2 mode frequencies as a functionRf"2

If the electronic density(r) is approximated by a qua- for ng=0.2 (a%) 2 From right to left, the dots correspond to
sistep function, an analytical expression can be obtained far=7.5, 10, 12.5, 15, 17.5, and 2 . The lines are drawn to guide

Eg. Proceeding as in Ref. 10 one gets the eye.
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In conclusion, we have shown that density-functionalthe formation of compressible and incompressible strips at
theory is able to reproduce the zero-magnetic-field frequencthe antidot edge.

of antidot edge modes in a way that is quite similar to that ;5 5 pleasure to thank Ricardo Mayol and Francesc Sal-
for quantum dots. Although a satisfactory description of theyat for useful discussions. This work has been performed
collective spectrum of antidots can be achieved using a maginder Grant Nos. PB95-1249 and PB95-0492 from CICYT,
netoplasmon approaéhan alternative method based on a Spain, and GRQ94-1022 from Generalitat of Catalunya. A.E.
more microscopic approach such as DFT is needed to discussknowledges support from the DirecsioGeneral de
other interesting problems, such as edge reconstruction angnsémnza SuperiofSpain).
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