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Structure and far-infrared edge modes of quantum antidots at zero magnetic field
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We have investigated edge modes of different multipolarity sustained by quantum antidots at zero magnetic
field. The ground state of the antidot is described within a local-density-functional formalism. Two sum rules,
which are exact within this formalism, have been derived and used to evaluate the energy of edge collective
modes as a function of the surface density and the size of the antidot.@S0163-1829~98!00332-4#
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With the progress of microstructure technology, the stu
of the two-dimensional electron gas~2DEG! has evolved to
that of laterally confined superlattices made of either elect
islands ~dots! or holes surrounded by electrons~antidots!.
Much effort has been devoted in the past to the study
quantum dots, as compared to that put in the study of qu
tum antidots. One of the goals of their study has been
determine the far-infrared response of these semicondu
microstructures, and the formation of compressible and
compressible states when a magnetic fieldB is perpendicu-
larly applied. In the case of antidots, which is the subject
the present work, experimental evidence of collective ex
tations sustained by these structures has been present
Refs. 1–3. A theoretical description based on magnetop
mons in two-dimensional antidot structures has been give
Ref. 4 that compares well with the experimental data of R
2. Recently, the existence of compressible and incompr
ible strips at the edge of antidots has been determined
far-infrared spectroscopy.5

We have started a systematic study of the structure
collective far-infrared response of antidots, whose aim is
achieve a level of sophistication in the description of the
systems similar to that attained for quantum dots. As a fi
step, we present here results at zero magnetic field obta
within density-functional theory~DFT!. To some extent, the
present study is similar in scope to that carried out in Re
on the surface excitations of cavities in 3D metals. T
BÞ0 case, which requires a rather different and far m
complex approach, will be presented in a forthcoming pap

We have modeled an antidot of radiusR in a 2DEG of
surface densityns by a positive jellium background of den
sity nsQ(r 2R) to which we have added a parabolic pote
tial barrier of the typeVp(r )5mv0

2(R22r 2)/2 acting on the
electrons forr<R. A potential barrier of one kind or anothe
is needed to prevent the electrons from spilling in the anti
too much, producing an unphysical representation of the
perimental device. Actually, we have found that ifv0 is set
to zero, high-density antidots such as those studied in Re
would have nonzero electron densities even atr 50. We shall
call Vext the sum of the jellium andVp potentials.
PRB 580163-1829/98/58~11!/6732~4!/$15.00
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The ground state~gs! of the antidot is obtained solving th
Kohn-Sham~KS! equations as indicated, for example,
Ref. 7. The problem is simplified by the imposed circu
symmetry, and only the radial KS equations have to be c
sidered to determine the electronic radial wave functio
Rl(r ). We have used a dielectric constante and an electron
effective massm5m* me , which are characteristics o
GaAs: e512.4 andm* 50.067, which we have chosen fo
the numerical applications in view of the existing experime
tal data of Refs. 2 and 5. The single electron potentialV(r )
entering the KS equations is made ofVext , of the Hartree
electron-electron potential and of the exchange-correla
potential. The correlation potential has been obtained fr
the correlation energy of Ref. 8 in a local-density appro
mation. Sometimes we shall use effective atomic units.
this system of units, the length unit is the Bohr radius tim
e/m* , and the energy unit is the Hartree timesm* /e2, de-
noted here asa0* and H* , respectively. For GaAs we hav
a0* ;97.9 Å andH* ;11.9 meV;95.6 cm21.

Physically acceptable solutions to the radial KS equati
have to be regular atr 50 and behave asymptotically a
Rl(r ,k);Jl(kr)1tan(dl)Yl(kr), where Jl and Yl are the
integer Bessel functions of the first and second kind,9 and
k5A2m(E2V`)/\2. The wave numberk has to be
k<kF5A2pns. Taking into consideration the spin dege
eracy, the electron densityr(r ) is obtained as

r~r !5 (
l 52`

l 5`
2

~2p!2 EukW u<kF

Rl
2~r ,k!dkW . ~1!

We have checked that the number of points used to carry
a Gaussian integration overk, and the maximumu l u em-
ployed in Eq.~1! lead to stable results.

We show in Fig. 1 the electronic densities correspond
to antidots ofR57.5 a0* andns50.05, 0.1, 0.2, 0.3, and 0.4
(a0* )22. They span the size and density range of those f
ricated and experimentally studied in Ref. 2, and have b
obtained usingv050.3H* .
6732 © 1998 The American Physical Society
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These results can be employed to determine theB50
far-infrared multipole response of antidots. To do so, we r
on the formalism described in detail in Ref. 10. For t
present purpose, it consists in obtaining the so-calledm1 and
m3 sum rules~SR! for an excitation operatorQL . We have
that11

FIG. 1. Electronic densities as a function ofr for antidots of
R57.5a0* andns50.05, 0.1, 0.2, 0.3, and 0.4 (a0* )22. Also shown
are the jellium densities~dotted lines!.
y

m1~QL!5 1
2 ^0u@QL

1 ,@H,QL##u0&,
~2!

m3~QL!5 1
2 ^0u@@H,@H,QL

1##,@H,QL##u0&,

whereu0& is the gs of the system. These SR have been
tensively studied in the literature.11,12 As indicated in these
references, if only a collective state is contributing to t
strength function,E3(QL)[(m3 /m1)1/2 represents the aver
age excitation energy. This is the situation experimenta
found for antidots at zero magnetic field.

The operatorQL is taken to be

QL5(
j 51

N
1

r j
L

eiLu j . ~3!

This choice is inspired in that (qr)2LeiLu is the smallq
expansion of the functionYL(qr)eiLu, which is the restric-
tion to thez50 plane of the irregular solution of the Laplac
equation in cylindrical coordinates. Following Ref. 10,
lengthy but straightforward calculation yields

m1~QL!52pL2E
0

`

dr
1

r 2L11
r~r !, ~4!

m3~QL!5m3~T!1m3~ee!1m3~Vexte!, ~5!

where
sity
m3~T!52pL2~L11!E
0

`

dr
1

r 2L13
@Lt~r !12~L12!l~r !#, ~6!

m3~ee!54pL2
~2L21!!!

2LL!
E

0

`

r8~r !drH 1

r 2L11E0

r

@2r8~r 8!1r 8r9~r 8!#ELS r 8

r Ddr8

1E
r

` 1

r 8~2L11!
@~2L11!r8~r 8!2r 8r9~r 8!#ELS r

r 8
D dr82

2L11L!

~2L11!!!

1

r 2L
r8~r !J

14pL2E
0

`

dr
1

r 2L12
@rr9~r !2~2L11!r8~r !#H 1

r E0

r

@3r 8r~r 8!1r 8 2r8~r 8!#ES r 8

r Ddr8

2E
r

`

r 8r8~r 8!ES r

r 8
D dr822rr~r !1 lim

R`→`

R`nsES r

R`
D J , ~7!

m3~Vexte!5pL2E
0

`

drVext~r !Fr9~r !2
2L11

r
r8G 1

r 2L11
. ~8!

The definition of the densitiest(r ) andl(r ) and of the functionEL can be found in Ref. 10, and the primes on the den
denoter derivatives. The jellium potentialV1(r ) entering inVext is

V1~r !54nsH R`E~r /R`!2RE~r /R!, r ,R

R`E~r /R`!2rE~R/r !1r „12~R/r !2
…K ~R/r !, r .R.

~9!
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In the above equations,K and E are the complete elliptic
integrals of the first and second kind, respectively,13 andR`

represents a larger value. In practice, it is the largestr used
in the structure calculation, which we have also taken as
point where the asymptotic behavior ofRl(r ) holds. We
want to point out that the two Coulomb diverging terms
m3(ee) andm3(Vexte) cancel each other.

The present formalism can be applied to antidots with
restriction thatr(r ) vanishes in a small disk around the o
gin. In practice, this is not a limitation, as can be inferr
from Fig. 1 ~see also Fig. 3!. Some technical details abou
how the above integrals are handled can be found in Sec
of Ref. 6.

For a large antidot, the electronic density is const
everywhere apart from a narrow region along the borde
the hole. Following the method outlined in Ref. 10, it
easy to show thatE3 yields the classical hydrodynamic
dispersion relation for edge waves, namely,E35v(q)
;A2nsq ln(q0 /q). It is also worth to notice that the induce
~or transition! density associated to the operatorQL has the
form10

r tr~rW !}L
1

r L11
r8~r ! ~10!

that manifests the edge character of the excitation.
Figure 2 shows the frequency of theL51 mode as a

function ofns compared with the experimental points of Re
2. For completeness, we have also plotted the results co
sponding toL52. We have checked that similar results a
obtained using as potential barrier the parabolaVp(r )
5mv0

2(R2r )2/2 for r<R with v051H* . One can see tha
the agreement with experiment is good. Furthermore,
calculation yields a frequency of;68 cm21 for the R
5180 nm, ns5931011 cm22 antidot, in good agreemen
with the experimental findings of Ref. 5.

If the electronic densityr(r ) is approximated by a qua
sistep function, an analytical expression can be obtained
E3

2. Proceeding as in Ref. 10 one gets

FIG. 2. Mode frequency forL51 and 2 as a function of the
electron surface density corresponding toR57.5 a0* . The crosses
are experimental data from Ref. 2, and the lines are drawn to g
the eye.
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L~L11!

R2
14ns

L

RF1

2
lnS g

R

a D112 (
m51

L
1

2m21G ,

~11!

wherea represents the width of the quasistep function, a
the precise value ofg depends on the way the electron
density goes to zero.14 This equation tells one that the fre
quencies have a 1/AR linear dependence if the Coulomb e
ergy contribution dominates. For reasonable values ofg/a, it
happens for any realistic value ofR.

We have also studied the size dependence of the m
energy. Figure 3 represents the electronic densities for a
dots of R510, 15, and 20a0* , and a surface density
ns50.2 (a0* )22. The frequencies of theL51 and 2 modes
are shown in Fig. 4 as a function of 1/AR. They exhibit a
distinct R dependence, indicating a clear departure fro
parabolicity of the confining potential, i.e., a physical situ
tion where the generalized Kohn theorem does not apply

de

FIG. 3. Electronic densities as a function ofr for antidots of
R510, 15, and 20a0* , and ns50.2 (a0* )22. Also shown are the
jellium densities~dotted lines!.

FIG. 4. L51 and 2 mode frequencies as a function ofR21/2

for ns50.2 (a0* )22. From right to left, the dots correspond t
R57.5, 10, 12.5, 15, 17.5, and 20a0* . The lines are drawn to guide
the eye.
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In conclusion, we have shown that density-function
theory is able to reproduce the zero-magnetic-field freque
of antidot edge modes in a way that is quite similar to t
for quantum dots. Although a satisfactory description of
collective spectrum of antidots can be achieved using a m
netoplasmon approach,4 an alternative method based on
more microscopic approach such as DFT is needed to dis
other interesting problems, such as edge reconstruction
g
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the formation of compressible and incompressible strips
the antidot edge.5
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