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3He impurity excitation spectrum in liquid 4He
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We microscopically evaluate the excitation spectrum of the3He impurity in liquid 4He atT50 and compare
it with the experimental curve at equilibrium density. The adopted correlated basis perturbative scheme in-
cludes up to two independent phonons, intermediate correlated states, and the correlation operator is built up
with two- and three-body correlation functions. The experimental spectrum is well described by the theory
along all the available momentum range. A marked deviation from the simple Landau-Pomeranchuck quadratic
behavior is found and the momentum-dependent effective mass of the impurity increases by;50% at q
;1.7 Å21 with respect to itsq50 value. No signature of rotonlike structures is found.
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Both experimentalists and theoreticians have devote
great deal of effort to measure and explain the characteris
of one 3He impurity in atomic liquid4He. From the experi-
mental point of view it is well known how the impurity
chemical potential m3 behaves with temperature an
pressure,1 its effective massm3* and quasiparticle excitation
spectrume(q).2,3 In Ref. 3 the authors found a sizable d
viation from the quadratic Landau-Pomeranchuk~LP!
spectrum,4 eLP(q)5\2q2/2m3* , in low concentration
3He-4He mixtures.e(q) was parametrized in a modified L
~MLP! form as

eMLP~q!5
\2q2

2m3*
1

11gq2 . ~1!

The estimated values of the MLP parameters, atP51.6 bar
and x3;0.05 ~x353He concentration! are m3* ;2.3m3 and
g;0.13 Å2.

Microscopic calculations, done in the framework of t
correlated basis function~CBF! perturbation theory,5 have
been able to give good estimates ofm3 and m3* at the T
50 4He equilibrium densityreq50.02185 Å23. Recently,
a diffusion Monte Carlo approach has provided simi
results.6 There are also theoretical indications of a deviat
of the spectrum from the LP form.7,8 The presence of a pos
sible rotonlike structure ine(q) near the crossing with the
4He phonon-roton spectrum was supposed in Ref. 9 but
confirmed in Refs. 7, 8. However, in Ref. 8 an excitati
spectrum quite higher than the experimental one was fou

Here we will employ the CBF machinery of Ref. 5~here-
after denoted as I! to compute, in a microscopic way, th
whole impurity spectrum. The CBF basis used in I consis
in correlatedn-phonon states

Cq;q1¯qn
5r3~q2q12¯2qn!r4~q1!¯r4~qn!C0 ,

~2!

wherer4(k)5( i 51,N4
eik•r i is the4He density fluctuation op-

erator andr3(k)5eik•r3 describes the excitation of the im
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purity. The basis states were then properly normalized.C0
5C0(3,N4) is the ground state wave function ofN4

4He
atoms plus one3He impurity of volumeV, taken in theN4 ,
V→` limit, at constant4He densityr45N4 /V.

A realistic choice forC0(3,N4) is made by applying an
extended Jastrow-Feenberg correlation operator10 to the non-
interacting g.s. wave function

C0~3,N4!5F2~3,N4!F3~3,N4!F0~3,N4!. ~3!

F2,3 areN-body correlation operators including explicit two
and three-body dynamical correlations.F2 is written as a
product of two-body Jastrow,3He-4He and4He-4He correla-
tion functions

F2~3,N4!5 )
i 51,N4

f ~3,4!~r 3i ! )
m. l 51,N4

f ~4,4!~r lm!, ~4!

andF3 is given by the correspondent product of triplet co
relationsf (a,b,g)(ra ,rb ,rg).

The correlation functions are variationally obtained
minimizing the g.s. energy of the systemE0 . The procedure
is outlined in I, where a parametrized form for the tripl
correlations was used and the Jastrow factors were obta
by the Euler equationsdE0 /d f (ab)50. The equations were
solved within the hypernetted chain~HNC! framework and
the scaling approximation for the elementary diagrams11

The Aziz interatomic potential12 was used in the minimiza
tion process.

The perturbative calculation of I included one indepe
dent phonon~OIP! and two independent phonon~TIP! states
and all the diagrams corresponding to successive resca
ings of the one phonon~ROP! states. This contribution wa
obtained by solving a Dysonlike equation in the correla
basis. While the correlation factors are intended to care
the short-range modifications of the ground state wave fu
tion due to the strongly repulsive interatomic potential, t
5209 © 1998 The American Physical Society
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5210 PRB 58BRIEF REPORTS
basic physical effect induced by the perturbative correcti
may be traced back to the backflow around both the impu
and the 4He atoms. The CBF analysis providedm3~CBF!
522.62 K @vs m3(expt)522.79 K# and m3* (CBF)52.2m3

at equilibrium density. The chemical potential was obtain
with the Lennard-Jones potential and some improvem
may be expected by the Aziz interaction.

In order to construct the CBF perturbative series, we w
e(q)5e0(q)1De(q), with e0(q)5\q2/2m3 and

De~q!;DeOIP~q!1DeTIP~q!1DeROP~q!. ~5!

The different terms in Eq.~5! represent contributions from
the corresponding intermediate states. Then-phonon states
have been Schmidt-orthogonalized to states with a lo
number of phonons. For instance, the actual OIP state r

uq;q1&5
uCq;q1

&2uCq&^CquCq;q1
&

^Cq;q1
uCq;q1

&1/2 . ~6!

The two-phonon stateCq;q1q2
has been orthogonalized in

similar way toCq , Cq;q11q2
, andCq;q1,2

. The orthogonal-
ization is a necessary step in fastening the convergence o
series as the nonorthogonalized states have large m
overlaps.

The nondiagonal matrix elements~ME’s! of the Hamil-
tonianH ~we remind the reader that we use the Aziz pote
tial! are evaluated by assuming that the two- and three-b
correlations are solutions of the corresponding Euler eq
tions. This is not strictly true for the triplet correlations b
the corrections are expected to be small. With this assu
tion, it is easily verified that

^quHuq;q1&52@N4S~q1!#21/2
\2

2m3
q•q1S3~q1!, ~7!

where S(q1) and S3(q1) are the 4He and impurity static
structure functions.

In general, ME’s involvingn21 phonon states, are ex
pressed in terms of then-body structure functions

S~n!~q1 , . . . ,qn!5
1

N4

^C0ur4
†~q1!¯r4

†~qn21!r4~qn!uC0&

^C0uC0&
,

~8!

and

S3
~n!~q1 , . . . ,qn!5

^C0ur4
†~q1!¯r4

†~qn21!r3~qn!uC0&

^C0uC0&
,

~9!

with qn5q11¯1qn21 .
The diagonal ME’s have a particularly simple form:

^q;q1¯qnuq;q1¯qn&5N4
nS~q1!¯S~qn!, ~10!

and

^q;q1¯qnuHuq;q1¯qn&5E0
v1e0~q!1 (

i 51,n
wF~qi !

~11!

where E0
v5^C0uHuC0&/^C0uC0& and wF(qi)5\2qi

2/
2m4S4(qi) is the Feynman4He excitation spectrum.13
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The OIP and TIP perturbative diagrams contributing
De(q) are shown in Fig. 5 of I, where only theirq50 de-
rivative was computed, since the paper was concerned
just the calculation of the effective mass atq50. Here we
extend the formalism to finiteq. We use Brillouin-Wigner
perturbation theory, so the correction itself depends one(q)
and the series must be summed self-consistently. For
stance, the OIP contribution is given by

DeOIP~q!5(
q1

u^quH2E02e~q!uq;q1&u2

e~q!2e0~ uq2q1u!2wF~q1!

5
V

~2p!3 S \2

2m3
D 2E d3q1

1

N4S~q1!

3
@S3~q1!q•q1#2

e~q!2e0~ uq2q1u!2wF~q1!
. ~12!

The expressions of the other diagrams are quite leng
and will not be reported here. However, some comments
in order. They involve the two- and three-body structu
functions, i.e., the Fourier transforms of the two- and thr
body distribution functionsg(2)(r 12) andg(3)(r1 ,r2 ,r3). g(2)

is a direct output of the HNC/Euler theory and, in pure4He,
ends up very close to its experimental measurement.
evaluateg(3) is more involved and usually one has to res
to some approximations. The mostly common used are
convolution approximation~CA! and the Kirkwood superpo
sition approximation~KSA!.10 The CA correctly accounts fo
the sequential relation betweeng(3) and g(2) and factorizes
in momentum space,SCA

(3)(q1 ,q2 ,q3)5S(q1)S(q2)S(q3);
the SA factorizes in r space, gKSA

(3) (r1 ,r2 ,r3)5
g(2)(r 12)g

(2)(r 13)g
(2)(r 23), and adequately describes th

short-range region. The momentum space factorization p
erty makes the use of the CA particularly suitable for o
perturbative study.

The sensitivity of the calculation to the approximation f
g(3) clearly shows up in the CBF-TIP evaluation of the4He
excitation spectrumv(q). Figure 1 compares the Feynma
spectrum and those obtained within the CA and KSA w
the experimental data. The phonon linear dispersion at loq

FIG. 1. 4He excitation spectrum at equilibrium density. Stars a
the experimental data. Energies in K and momenta in Å21.
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is well reproduced by bothvF(q) and vCA(q), whereas
vKSA(q) fails to give the correct behavior. As it is we
known, the remaining part of the spectrum is severely ov
estimated byvF(q); both CA and KSA give a reasonab
description of the maxon region but KSA is closer to t
experiments at the roton minimum, because of its better
scription of the short-range regime. An overall good agr
ment with the experimental curve was obtained in Ref.
where backflow correlations were added to the CBF stat

Figure 2 showse(q) in CA and KSA, along with the data
from Ref. 3. The curves do not include the ROP contributi
At this level, the effective masses arem3* (CA)51.6m3 and
m3* (KSA)52.1m3 and again, KSA is closer to the exper
mental spectrum at large momenta. The curve labeled CA
obtained in CA, but using the experimental4He spectrum in
the energy denominators. Diagram~5.e! of I, that gives the
two-phonon correction tov(q), has not been included as i
effect is mostly taken into account by the use ofvexpt(q).
KSA and CA1 are close at largeq values, pointing to a good
description of the4He roton as a key ingredient for a corre
approach to the largeq sector. We will follow the CA1
method for the remainder of the work.

Figure 3 gives the CA1 impurity spectrum and the expe
mental3He and4He curves. The ROP terms are included a
the LP and MLP fits toeexpt(q) are shown. Since the branc
of the dynamical response due to the excitations of the
concentration3He component in the Helium mixtures ove
laps the collective4He excitation atq.1.7 Å21,3,15 eexpt(q)
is not known in that region. A rotonlike behavior was su
posed in Ref. 9. This structure was not confirmed by
variational Monte Carlo~VMC! calculation of Ref. 8, which
employed shadow wave functions in conjunction with a
strow correlation factor of the McMillan type. The VMC
data at equilibrium density are given in the figure: they ov
estimate the experiment and have an effective mass
m3* (VMC);1.7m3 .

The shadow wave function of Ref. 8 takes into acco
backflow effects. Actually, in several papers it was poin
out that second order perturbative expansion with OIP st
introduces backflow correlations into the wa

FIG. 2. 3He single particle energies in CA, KSA, and CA1 with
out phonon rescattering. Stars are the experimental data. Units
Fig. 1.
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function.5,16,17 We find m3* (OIP)51.8m3 , in good agree-
ment with the VMC outcome. An analogous CBF treatme
by Saarela18 gave similar results (m3* ;1.9m3) and a spec-
trum close to the LP form. More complicated momentu
dependent correlations are generated by TIP and ROP
grams, playing a relevant role in the CBF approach and g
ing m3* (CBF)52.1m3 .

The total CBF impurity spectrum is very close toeexpt(q)
up to its merging into the4He dispersion relation. For theg
parameter in the MLP parametrization, the theory giv
g(CBF);0.19 Å2. If the spectrum is parametrized in term
of a momentum-dependent effective masse(q)5\2q2/
2m3* (q) then we findm3* (q51.7 Å21)53.2m3 , with an in-
crease of;50% respect to theq50 value.

Beyondq;1.9 Å21, the energy denominators vanish fo
some momentum values and the series cannot be sum
anymore. This is due to the fact that the impurity quasip
ticle is no longer an excitation with a well defined energ
since it can decay into4He excitations and acquire a finit
lifetime t. A finite t value reflects a nonzero imaginary pa
of the 3He complex optical potential~or the on-shell self-
energy! W(q)5Im S@q,e(q)#.19 Figure 3 showsW(q) as
computed with only OIP intermediate states,

WOIP~q!5p(
q1

u^quH2E02e~q!uq;q1&u2

3d@e~q!2e0~ uq2q1u!2w~q1!#, ~13!

where the MLP impurity spectrum and the experimental4He
dispersion have been used@notice thatW(q) is amplified by
a factor 4 in the figure#. The OIP optical potential is close t
the one found in Ref. 18. A numerical extrapolation of t
computedeCBF(q) into the roton region does not show an
evidence of a3He rotonlike structure.

In conclusion, we find that CBF perturbative theory
able to give a quantitative description of the3He impurity

in FIG. 3. CBF/CA1~triangles!, LP, and MLP3He single particle
energies. Full circles are the VMC data. Stars and circles are
impurity and 4He experimental data, respectively. Black triangl
are extrapolated CBF/CA1 values~see text!. Black diamonds give
the impurity imaginary optical potential~in K!. Units as in Fig. 1.
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excitation spectrum in liquid4He at equilibrium density. The
intermediate correlated states must consider at least two
dependent phonon states and one phonon state rescatter
found to play a nonmarginal role at large momenta. It
plausible that in a richer basis, including, for instance,
plicit backflow correlations, a lower order expansion mig
be sufficient. However, the more complicated structure of
matrix elements could cause additional uncertainties in t
evaluation, at least in the framework of the cluster expans
approach. The development of a Monte Carlo based a
s

i-

h.
in-
g is
s
-
t
e
ir
n
o-

rithm for the computation of nondiagonal matrix elemen
would probably be the correct answer.
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