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An efficient method is developed for an iterative solution of the Poisson and Schro¨dinger equations, which
allows systematic studies of the properties of the electron gas in linear deep-etched quantum wires. A much
simpler two-dimensional~2D! approximation is developed that accurately reproduces the results of the 3D
calculations. A 2D Thomas-Fermi approximation is then derived, and shown to give a good account of average
properties. Further, we prove that an analytic form due to Shikinet al. is a good approximation to the electron
density given by the self-consistent methods.@S0163-1829~96!00339-6#

I. INTRODUCTION

Growing interest in the development of devices based on
GaAs/AlxGa12xAs deep-etched wires in nanoelectronics
and related fields has lead to several detailed attempts1,2 to
model the properties of the quasi-two-dimensional electron
gas~2DEG! that appears under suitable design conditions in
such wires. In general, these attempts focus on the detailed
description of a specific device for which experimental mea-
surements are available, and less effort is put into identifying
general properties of the 2DEG in deep-etched wires or in
devising fast numerical methods applicable to different gen-
eral situations. In Sec. II, we shall present methods to solve
the coupled Poisson and Schro¨dinger equations that allow
significant improvement in the speed of numerical calcula-
tions and that furthermore can be applied under rather gen-
eral conditions.

The main objective of the present work, however, is to get
a more transparent understanding of the connection between
the geometry of the deep-etched wire, the physical properties
of GaAs and AlxGa12xAs, and the properties of the distri-
bution of charge in the 2DEG. With this purpose, and using
as a reference the results of the complete Poisson-
Schrödinger calculations, we will derive successive approxi-
mations which reveal this connection. The first of these is
presented in Sec. IV: it is a factorization ansatz based on
analytic expressions for the confining potential derived in
Sec. III. This ansatz allows an accurate separation of the
longitudinal ~vertical according to Fig. 1! and transverse
components of the wave functions of the electrons in the gas.
This provides a quantitative foundation for those more phe-
nomenological models that assume from the beginning that
the electron gas is purely two dimensional~2D!. Based on
this separation, in Sec. V we formulate a 2D Thomas-Fermi
approximation and verify that it also predicts with good ac-
curacy the bulk properties of the electron distribution in the
gas. Finally, in Sec. VI, we make the connection with a
purely classical model proposed by Shikinet al.3,4 for the
charge distribution. We show that the model can be applied
to our description and leads to a set of analytic relations, Eqs.
~53!, ~54!, and~55! that directly relate the parameters defin-

ing the electron charge distribution to the geometry and
physical properties of the heterostructure.

In summary, by developing successive approximations we
make the connection between the complete, but cumber-
some, 3D Poisson-Schro¨dinger calculations, and simpler
models of the 2DEG in deep-etched wires. We show that
although the latter cannot reproduce the fine details of the
fully quantal calculations, they provide a physically intuitive
picture of the results of the numerical calculations and a
reasonably accurate prediction of the bulk properties via ana-
lytic expressions.

II. PROPERTIES OF THE THREE-DIMENSIONAL
ELECTRON GAS

Although the methods discussed below are of general util-
ity, we consider a specific deep-etched wire for definiteness.
Figure 1 shows this heterojunction configuration, similar to
the deep mesa structure already studied in Ref. 1. From top
to bottom we take 15, 20, 4, 16, and 10 nm for the thick-
nesses of the layers shown, and we writew for the width.
The cap and donor layers aren doped, with
rd51018 cm23, and we assume that the band offset between
the two materials iseVb50.23 eV. For simplicity we ne-
glect the difference in their permittivities and use a common
relative permittivity,« r513.1.

In our model we assume that, due to the etching process,
surface states form in the exposed parts of the wire, so as to
induce Fermi level pinning. This has been verified in a num-
ber of experimental conditions.5 We further assume that the
Fermi level on the surface of the heterojunction is the same
everywhere, and choose it as the zero of energies. Accord-
ingly, we set the location of the conduction band at points on
the surface of GaAs at a fixed energyeVs and on the surface
of Al xGa12xAs at eVs1eVb . Although there is no clear
experimental evidence for the validity of these assumptions,
they are certainly compatible with recent work supporting
the interpretation of surface states as localized defects whose
ground state wave function is of a bonding type, and with the
variation with composition of the energy of these states in
n-Al xGa12xAs samples.

6 For ease of comparison with pre-
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vious simulations we have choseneVs50.6 eV.
The electrostatic potential due to the charges present in

the heterostructure is different at each point, and therefore its
variation affects the energy,eF, of the bottom of the con-
duction band inside the material. Since the etched wire is
translationally invariant along they axis, we write this en-
ergy as the sum

eF~x,z!5eVs1eVb~z!1eV~x,z!, ~1!

where the contribution due to the band offset,eVb(z), is zero
in the GaAs layers and 0.23 eV in the AlxGa12xAs layers.
The term due to the electrostatic potential,eV(x,z), is deter-
mined by solving the Poisson equation with the boundary
condition that it vanishes on all the exposed surfaces~shown
as thick horizontal and vertical lines in Fig. 1!. This bound-
ary condition follows from our choice of the Fermi level as
the origin of energies and the use of Eq.~1! to define the
bottom of the conduction band. We write the Poisson equa-
tion as

eDV~x,z!5
e2

«
r~x,z!, ~2!

where in the zone of the ionized cap and donor layers
r(x,z)5rd5const.0, whereas in the zone of the 2DEG,
r(x,z)52re(x,z),0. When fixed value boundary condi-
tions are required on two parallel sides of a rectangle, as
here, this equation can be very efficiently solved using Fou-
rier series expansions. We therefore write expansions for the
potential and the density as

eV~x,z!5 (
n50

`

vn~z!cosbnx,

r~x,z!5 (
n50

`

rn~z!cosbnx, ~3!

where bn[(2n11)p/w. Orthogonality of the cos(bnx)
leads to

vn9~z!2bn
2vn~z!5

e2

«
rn~z!, ~4!

with

rn~z![
2

wE2w/2

w/2

r~x,z!cos~bnx!dx. ~5!

The explicit form of the solution,vn(z), is different in each
zone of the heterostructure. It is convenient to construct so-
lutions for each zone separately and then match them at the
intervening horizontal boundaries. The general form of the
vn(z) in the i th zone that is well suited for this process is

vn~z!5vn
~0!~z!1vn

~ch!~z!,

vn
~0!~z!5Cn,1e

bn~z2zi !1Cn,2e
2bn~z2zi !,

vn
~ch!~z!5

e2

«bn
E
zi

z

sinhbn~z2z8!rn~z8!dz8. ~6!

We are now going to particularize these results to each sepa-
rate region and impose the appropriate matching conditions.

Zone 1.(0<z<z2). It is convenient to start with the top-
most zone because the boundary condition atz50 is simply
eV(x,z50)50. Here,r(x,z)5rd5const and therefore

rn~z!5
~21!n

2n11

4rd
p

, ~7!

so by requiringvn(0)50 one finds

vn~z!5
e2rdw

2

«
@ansinhbnz1gn~coshbnz21!#, ~8!

wheregn[4(21)n/@(2n11)p#3 and thean will be deter-
mined by matching to the next zone.

Zone 2.(z2<z<z4). This corresponds to the spacer layer
and that part of the substrate layer in the etched wire. Here,
thern(z) are determined by substituting in Eq.~5! the~yet to
be determined! electron gas density. Imposing the matching
conditions,

vn~z220!5vn~z210!,

vn8~z220!5vn8~z210!, ~9!

one finds

vn~z!5
e2rdw

2

«

3$ansinhbnz1gn@coshbnz2coshbn~z2z2!#%

1vn
~ch!~z!. ~10!

Zone 3.(z>z4) corresponds to the substrate below the
mesa. We will denote its width byW ~which in the numerical
calculations is chosen sufficiently large so that the results are
equivalent to lettingW→`!. For the deep-etched wires that
we are studying here, it is a good approximation to neglect

FIG. 1. Section of the deep-etched heterostructure.
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the electron density in this zone. We therefore introduce a set
of solutions of the Laplace equation with boundary condi-
tions chosen so as to make them an appropriate basis for
expandingeV(x,z). These solutions,Lm(x,z), are of the
form

Lm~x,z!5(
i50

`

l i ,me
2a i ~z2z4!cosa ix, ~11!

with a i5(2i11)p/W. And imposing them to satisfy

Lm~x56W/2,z.z4!50,

Lm~x,z5z4!5cosbmxQSw2 2UxU D ,
Lm~x,z→`!50, ~12!

@Q(x) is the Heaviside step function#, leads to

l i ,m5
w

W F j 0S ~a i1bm!
w

2 D1 j 0S ~a i2bm!
w

2 D G
5z„j 0$@~ i1

1
2 !z1m1 1

2 #p%

1 j 0$@~ i1
1
2 !z2m2 1

2 #p%…, ~13!

where z[w/W. The matching condition oneV(x,z) at
z5z4 then allows one to write

eV~x,z!5 (
m50

`

vm~z420!Lm~x,z!, ~14!

and requiring that the]eV(x,z)/]z also match atz4, we
obtain the remaining condition needed to determine com-
pletely the solution of the Poisson equation:

vn8~z420!52
W

w (
m50

`

vm~z420!em,n , ~15!

with

em,n[(
i50

`

a il i ,ml i ,n . ~16!

This leads to a system of coupled linear equations for the
unknown coefficientsam ,m50,1, . . . of the form

(
m

Bn,mam5Dn , ~17!

with

Bn,m[
e2rdw

2

« S 2
W

w
em,nsinhbmz42bndn,mcoshbnz4D

and

Dn[
W

w(
m

em,nFe2rdw2

«
gm@coshbmz42coshbm~z42z2!#

1vm
~ch!~z4!G1

e2rdw
2

«
bngn@sinhbnz4

2sinhbn~z42z2!#1vn8
~ch!~z4!. ~18!

After solving Eq.~17! for the am , the integration of Pois-
son’s equation is completed by substituting these values in
Eqs. ~8! and ~10! to determine thevn(z) in the zones of
interest and then using Eq.~3! to construct the potential.
Details of the numerical solution of Eq.~17! are given in
Appendix A and in the next section.

Determination of the subband wave functions.In the en-
velope function approximation the wave functions of the
electrons in the 2DEG are determined by solving the Schro¨-
dinger equation with potentialeF(x,z), as defined in Eq.
~1!. Due to invariance along they axis they take the factor-
ized form

C l ,ky
~x,y,z!5

1

A2p
eikyyC l~x,z!, ~19!

where theC l(x,z) satisfy

F2
\2

2m* S d2dx2
1

d2

dz2D1eF~x,z!GC l~x,z!5ElC l~x,z!.

~20!

We have solved this two-dimensional equation using the
same numerical methods described in Ref. 7: we define a
rectangular mesh of points in the spacer and substrate and
discretize the differential equation reducing it to a matrix
eigenvalue problem. Then a Lanczos algorithm is used to
find the lowest eigenvalues and eigenfunctions, which are the
only ones needed here. When required, we improve the ac-
curacy by performing inverse iteration, as proposed in Sec.
11.7 of Ref. 8. These are the more time consuming parts of
the numerical calculations. Even so, the typical running
times are 2 min per iteration on a 486DX-33 PC, a consid-
erable improvement over those quoted by Snideret al. in
Ref. 1.

Due to the assumption of thermal equilibrium, we write
the subband occupations as

f l5
1

p
A2m* kBT

\2 F21/2SEF2El

kBT
D , ~21!

whereF21/2 is the Fermi-Dirac integral, and we recall that
our origin of energies setsEF50. We then construct the
electron densities from

re~x,z!5(
l51

L

f l uC l~x,z!u2, ~22!

with the sum truncated when thef l become negligible. The
two-dimensional and the linear densities are

s~x!5E
z2

`

re~x,z!dz,

l5E
2`

`

s~x!dx. ~23!

By iteratively solving the Poisson and Schro¨dinger equa-
tions, a self-consistent solution for all these quantities is de-
termined for a given widthw.

For brevity we present results only for theT50 K case.
~The systematics of the results at finite temperature are quali-
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tatively similar to those found in Ref. 7 for a linear split gate
wire.! The variation with wire width of the linear and two-
dimensional densities is shown in Figs. 2 and 3, respectively.
It can be seen that there is a rather smooth and almost linear
increase ofl with the width,w. The two-dimensional den-
sity also increases both in width and central value withw,
and shows oscillations due to the changes in the filling of
each subband. We find thats(x) becomes rather smooth as
more subbands are filled when the width increases. As ex-
pected, calculations at finiteT lead to even smoother profiles.
The longitudinal confining potential atx50, eF(0,z) is
plotted in Fig. 4 together withre(0,z); clearly the band off-
sets are a determinant in the confinement of the electron gas,
and the quasilinear increase of the potential in the GaAs
substrate is responsible for the slight asymmetry in the pro-
file of the electron density. The quantitative correlation be-
tween changes in the densities and those of the confining
potential will be discussed in detail in the following sections.

III. ANALYTICAL APPROXIMATIONS

In the previous section, our implementation of the
Poisson-Schro¨dinger approach lead to a satisfactory numeri-
cal description of the 2DEG properties. However, the inter-
relation between geometrical properties of the device, donor
concentration, etc., and the characteristics of the electron gas
is obscured by the complexity of the numerical computation.
In the following sections we introduce approximations that
without serious loss of accuracy provide a much more direct
connection between the ‘‘input parameters‘‘ of the model
and the final results for the 2DEG.

(1) Infinitely deep etched wire.We begin by studying this
extreme limiting case, because it turns out to be a useful
starting point for more elaborate approximations. We define
such anidealwire as one for which the width is the same for
all values ofz. We therefore setW5w in the previous ex-
pressions, and the following simplifications apply:

a i
~`!5b i ,

l i ,m
~`!5d i ,m ,

em,n
~`! 5bndm,n ,

Bn,m
~`! 52

e2rdw
2

«
bne

bnz4dn,m ,

Dn
~`!52

e2rdw
2

«
gnbne

bnz4~e2bnz221!

1
e2

« Ez2
z4
ebn~z42z!rn~z!dz, ~24!

wheredn,m is the Kronecker symbol. SinceB in Eq. ~17! is
now diagonal the solution for thean is immediate,

FIG. 2. Variation of linear density with wire width. Continuous
line: Poisson-Schro¨dinger calculation. Dashed line: 2D approxima-
tion. Circles: Thomas-Fermi predictions.

FIG. 3. Two-dimensional densities for wire widths:w5300,
320, and 340 nm. Continuous line: Poisson-Schro¨dinger calcula-
tion. Long dashed line: 2D approximation. Dotted line: Thomas-
Fermi prediction.

FIG. 4. Longitudinal confining potential for wire widths
w5320 nm~continuous line! and 300 nm~long dashed line.! The
2DEG densities forw5320 nm are also shown on an arbitrary
scale. Dotted line: Poisson1 Schrödinger result. Dashed line: 2D
approximation.
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an
~`!5gn~e

2bnz221!2
1

rdw
2bn

E
z2

z4
e2bnzrn~z!dz,

~25!

and therefore, forZone 2one finds

vn
~`!~z!5

e2rdw
2

«
gn~12coshbnz2!e

2bnz1vn
~ch!~z!

2
e2

«bn
e2bnz2E

z2

z4
e2bn~z82z2!rn~z8!dz8sinhbnz.

~26!

The first term on the right hand side~r.h.s.! was already
derived by Davies9 in the limit of vanishing electron gas
density~pinch-off.! Indeed, the remaining terms account for
the effect of the electrons in the gas and their contribution is
comparatively small for the widths considered here.

(2) Wide base approximation (wba).To motivate this al-
ternative approximation we note that, since we are interested
in the limit W@w, it is natural to look for approximations
where the sum overi in Eq. ~16! is replaced by an integral
over a suitably defined continuous variable. Thel i ,m defined
in Eq. ~13! satisfy an orthogonality relation:

(
i50

`

l i ,ml i ,n5
w

W
dn,m[zdn,m , ~27!

which should be preserved. With this in mind one easily
checks that by introducing

lm~ t !5z$ j 0@~zt1m1 1
2 !p#1 j 0@~zt2m2 1

2 !p#% ~28!

and then replacing the sum overi by an integration from
t50 to `, the corresponding orthogonality relation still
holds:

E
0

`

dtlm~ t !ln~ t !5z j 0@~m2n!p#5zdn,m . ~29!

Applying the same prescription to Eq.~16! and with some
minor simplifications in the integrals for the small terms, we
obtain

em,n
~wba!5~2n11!

p

W
dm,n

1
~21!n1m

pW

~2n11!~2m11!

~n1m11!~n2m!
ln
2n11

2m11
. ~30!

The values predicted with this expression are in good quan-
titative agreement with the exact matrix elements computed
numerically, the largest differences being of.10% for the
case n5m51, and .5% when n51, m52 and they
quickly become negligible with increasingn or m. The first
term in the r.h.s. of Eq.~30! is always much larger than the
second, and therefore the diagonal terms are always orders of
magnitude larger than the nondiagonal. We have found how-
ever that due to large cancellations between the bigger terms,
the nondiagonal matrix elements are needed to get accurate
results. For a better qualitative understanding it is neverthe-
less interesting to derive the expressions that correspond to
retaining only the first term on the r.h.s. of Eq.~30!:

em,n
~wba,0!5~2n11!

p

W
dm,n . ~31!

Placing this in Eq.~18!, we find surprisingly that

Bn,m
~wba,0!5Bn,m

~`! ,

Dn
~wba,0!5Dn

~`! , ~32!

and thus that thean and vn are identical to those for the
infinitely deep-etched wire given above. Since they emerge
in these two very different limits, they should be a reason-
able first approximation for understanding the main trends of
the numerical calculations of Sec. II. Further, as we show in
Appendix A, these expressions provide the starting point for
an efficient numerical solution of Eq.~17! in the realistic
case discussed in the previous section.

(3) Qualitative features.The first term in Eq.~26! for
vn(z) is independent of the electron gas density. Its contri-
bution to the electrostatic potential will be denoted byeV0.
Substituting into Eq.~3!, one has

eV0~x,z!52
e2rdw

2

«
ReF (

n50

`

gn~coshbnz221!e2bnzeibnxG .
~33!

For simplicity we first discuss the casex50. ~Replacingz by
z2 ix and taking the real part, one obtains immediately the
results for thexÞ0 case.!

eV0~0,z!52
e2rdw

2

« (
n50

`

gn~coshbnz221!e2bnz

52
2e2rdw

2

p3«
@S~j5e2n~z2z2!!

1S~j5e2n~z1z2!!22S~j5e2nz!#, ~34!

wheren5p/w and we have defined

S~j!5 (
n50

`
~21!n

~2n11!3
j2n11. ~35!

Since the arguments in the exponentials in Eq.~34! are small
whenz corresponds to the zone occupied by the 2DEG, one
can obtain a very accurate estimate foreV0(0,z) by expand-
ing S@j5exp(2«)# in a Taylor series around«50 ~and thus
j51). In Appendix B, we show that

S~j5e2«!5S~1!2«S8~1!1
p

8
«22

1

12
«31

1

240
«5

2
1

2016
«71O~«9!, ~36!

and the corresponding expansion for Eq.~34! becomes

eV0~0,z!52
e2rdz2

2

« S 122
z

w
1

p2

12

zz2
212z3

w3 D . ~37!

From this result we determine the pinch-off width in the
infinite etching limit: place the approximation Eq.~37! in Eq.
~1! and seteF(0,z310)50; then solving forw gives
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wpo5
2z3

12
2eVs«

e2rdz2
2

S 12
p2

12

z2
212z3

2

w2 . . . D . ~38!

Neglecting the term proportional top2 gives an accuracy of
a few percent, which is improved if we iterate the value of
w in the right hand side.

To study in more detail the variation withz in the zone of
the 2DEG, in Fig. 5 we compareeF(0,z) to

eF0~0,z![eVs1eV0~0,z!1eVb~z! ~39!

for two values of the width. First of all, it should be noted
that the analytic result Eq.~37! is almost indistinguishable on
this scale from the exact calculation based on Eq.~33!. The

difference between these and the Poisson-Schro¨dinger result,
eF(0,z), is due to two effects:~i! the presence of the 2DEG,
and ~ii ! the finite depth of the etching. To separate their
contributions, we have setre(x,z)50 and solved again Eq.
~2! with the same boundary condition. This gives the doubly
dashed line in Fig. 5. The difference between that line and
eF(0,z) then accounts for~i!, whereas the difference with
eF0(0,z) accounts for~ii !. For a qualitative understanding of
~ii ! one can argue that the effect of an infinite etching of the
wire amounts to bringing the lateralz.z4 boundaries closer
to the zone of the 2DEG. Since in these the energy of the
conduction band is maximal:eF~boundary!5eVs1eVb ,
this induces a rise of the bottom of the conduction band in
the zone of the 2DEG by.30 meV.

Note, in addition, that for each of the two widths shown,
the slope corresponding to the quasilinear dependence onz is
little affected by~i! and~ii ! and therefore can be well deter-
mined with the approximate expression Eq.~37!. That ex-
pression also shows that when the width increases, both the
position of the conduction band,eF0(0,z), and its slope
must decrease, which is indeed what is seen by comparing
the plots forw5300, 320 nm. This lowering of the conduc-
tion band is, however, compensated by the increased repul-
sion due to~i! because the electron gas density increases with
w. The net result is then a rough independence ofeF(0,z)
on the value ofw.

The same analytic expansion can be carried out for points
(x,z) not too far from thez axis: it suffices to add an imagi-
nary part2 ix to the« in Eq. ~36!. The lowest order result is

eV0~x,z!5eV0~0,z!1
e2rdz2

2p2

2«w3 zx2. ~40!

In Fig. 6 we compare the exactedV0[eV0(x,z)
2eV0(0,z) to this quadratic approximation for a wire of
widthw5300 nm and a valuez543 nm that corresponds to
the maximum density for the 2DEG. Indeed to a very good

FIG. 6. Transverse confining potential forw5320 nm and
z543 nm. Continuous line:eV0(x,z)2eV0(0,z) from summing
the Fourier series; long dashed line: quadratic approximation. Dot-
ted lineeV(x,z)2eV(0,z) from the Poisson-Schro¨dinger solution;
dash-dotted line: 2D approximation:U(x)2U(0).

FIG. 5. Longitudinal confining potential in the substrate occupied by the electron gas, for two wire widths. Continuous line:eF(0,z)
from the Poisson-Schro¨dinger calculation. Dot-dashed line: same, from the 2D approximation. Doubly dashed line: solution of the Poisson
equation without electron gas, fulfilling the same boundary conditions.~Top! Dashed line:eF0(0,z) obtained from the sum of the Fourier
series in Eq.~34!. Dotted line: same, obtained now from the analytic approximation in Eq.~37!.
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approximationedV0 has the parabolic dependence onx pre-
dicted by Eq.~40! in the region occupied by the 2DEG. In
the same figure we also plotedV[eV(x,z)2eV(0,z) @and
dU[U(x)2U(0), to bedefined in next section#. Clearly,
the parabolic dependence is inadequate for these. For larger
widths the difference betweenedV andedV0 increases, the
latter retaining a parabolic shape to a good approximation.
The difference is due to the contribution of the charge in the
2DEG, which produces a flattening of the bottom of the
transverse confining potential. We shall further discuss and
clarify this behavior in Sec. VI where we generalize a clas-
sical model proposed by Shikinet al.3,4

IV. THE TWO-DIMENSIONAL APPROXIMATION

Repeating an analysis similar to that in Sec. II of Ref. 7,
we have found that the wave functions,C l(x,z), determined
solving Eq.~20! can be to a good approximation factorized
into longitudinal and in plane components. We shall now
present an ansatz similar to that introduced for gated wires in
that reference and show that it allows us to formulate an
accurate factorization approximation. With this ansatz the
results found in Sec. II are well reproduced and require a
much smaller computational effort. We start by rewriting Eq.
~20!, as

F2
\2

2m* S d2dx2
1

d2

dz2D1eF0~0,z!

1@eF~x,z!2eF0~0,z!#GC l~x,z!5ElC l~x,z!, ~41!

and replaceeF(x,z)2eF0(0,z) by a weighted average over
z:

U~x![E
z2

`

A2~z!@eF~x,z!2eF0~0,z!#dz, ~42!

with a normalized weight function,A(z), to be determined in
a moment. With this simplification Eq.~41! becomes

F2
\2

2m* S d2dx2
1

d2

dz2D1eF0~0,z!1U~x!GC l ,a~x,z!

5El ,aC l ,a~x,z!, ~43!

which is separable and leads to

S 2
\2

2m*
d2

dz2
1eF0~0,z! DA~z!5Ea

~z!A~z!, ~44!

S 2
\2

2m*
d2

dx2
1U~x! Df l~x!5El ,a

~x!f l~x!, ~45!

with

C l ,a~x,z!5f l~x!A~z!,

El ,a5Ea
~z!1El ,a

~x! . ~46!

Note that we have chosen the weight function to be precisely
the solution of Eq.~44!. In the previous section we have
stressed that the main difference betweeneF(0,z) and
eF0(0,z) was a roughly constant term, so that theA(z) pre-

dicted by ~44! can be expected to be very similar to the
effective transverse wave function that would be found if, as
done in Ref. 7,eF(0,z) had been used in setting up the
factorization ansatz. This roughly constant shift enters with
opposite signs in the values ofEa

(z) andEl ,a
(x) and its effect

should almost cancel in their sum,El ,a .
In this approach the two-dimensional density is obtained

as

s2D~x!5(
l
f l uf l~x!u2, ~47!

where f l has been defined in Eq.~21!.
The predictions for the different quantities of interest have

been already included in Figs. 2–6. As can be seen in Figs. 2
and 3 the densities are reproduced very accurately, not only
the l(w) which is an integrated property, but also the de-
tailed shapes ofs(x) for the differentw, with even the inner
oscillations being accurately predicted. In addition, Fig. 4
shows that the longitudinal profile of the density is also very
well described. This confirms that the basic assumptions be-
hind this ansatz are correct, and that to a very good approxi-
mation ~i! the separation of longitudinal and transverse de-
grees of freedom is justified, and~ii ! the longitudinal profile
of the electron distribution can be predicted directly from
eF0(0,z), i.e., ignoring the roughly constant contribution of
the 2DEG, and thus without need for a redetermination of
A(z) at each iteration of the Poisson-Schro¨dinger process.
Due to this, with the factorization ansatz one achieves a con-
siderable reduction in the time of computation, because the
numerical determination of thef l from Eq. ~45! is much
faster than that of theC l from Eq. ~20!: a complete Poisson
1 Schrödinger calculation with this ansatz requires only 2
min in the same 486-33 PC mentioned above.

The transverse confining potentialU(x), defined in Eq.
~42!, is shown in Fig. 7. As remarked in the previous section,
the parabolic approximation is only adequate in the limit of
vanishing electron gas. The potential due to the charge in the
2DEG flattens out the bottom of the parabola and produces
an almost constant inner zone that increases withw.

FIG. 7. Effective confining potentialU(x)1Ea
(z) in the 2D ap-

proximation~continuous lines! and in Thomas-Fermi~dashed lines!.
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V. THOMAS-FERMI APPROXIMATION FOR THE 2DEG

The accuracy of the factorization ansatz indicates that to a
good approximation the electron gas behaves as two dimen-
sional, with an effective confining potential,U(x), determin-
ing the electrons wave functions via Eq.~45!. At zero tem-
perature then the occupied subbands are those for which the
energy,El ,a is lower than the chemical potential, which in
our convention is at zero energy. Therefore, Eq.~46! shows
that the effective Fermi level for a two-dimensional gas is
EF
2D52Ea

(z) . The next step is to further simplify our descrip-
tion by using the Thomas-Fermi approximation: guided by
Eq. ~45!, we define the local Fermi momentum in terms of
the corresponding 2D density by the relations

\2

2m*
kF
2~x!1U~x!5EF

2D ,

kF
2~x!52psTF~x!. ~48!

These allow one to determine the electron density directly
from the confining potentialU(x) and thus suppress the need
to solve the Schro¨dinger equation~45! for the f l ’s at each
iteration of the self-consistent process.

This Thomas-Fermi method leads to quite accurate esti-
mates for the bulk properties of the electron gas, as shown in
Figs. 2 and 3: for the variation of linear density vsw the
prediction is practically indistinguishable from that of the 2D
ansatz, whereas fors(x) the prediction is good for the over-
all size and scale, but the shape does not exhibit the quantal
oscillations due to contributions of each subband. The con-
fining potential is shown in Fig. 7. Again the agreement with
the 2D prediction is excellent.

VI. APPROXIMATE ANALYTICAL MODEL

The above Thomas-Fermi model is based on a semiclas-
sical approximation for the kinetic energy. We find that the
resulting charge densities are rather well represented by a
simple form proposed by Shikinet al.:3,4

sS~x!5s0A12S xRD 2. ~49!

Remarkably, this density gives a Hartree potential that is
purely quadratic. Suppose, following the analytic results of
Sec. III, in particular Eq.~40!, that the net confining potential
due to all sources other than the charges in the 2DEG is
parabolic and written as

Uc~x!5U01
1

2
kx2. ~50!

Then the Thomas-Fermi equation becomes

EF
2D5U01

1

2
kx21Ue~x!1

\2p

m*
sTF~x!, ~51!

with

Ue~x!5
22e2

« r
E ln

ut2xu
L

sS~ t !dt,

.
e2

« r
pRs0F121 lnS 2LR D2

x2

R2G , uxu<R. ~52!

Here, L25D21R2/4, andD is the distance to the mirror
charge vertically above the 2DEG. This approximation is
developed in Appendix C.

In the classical limit adopted by Shikinet al., one simply
neglects the~small! contribution of the kinetic energy which
is of order \2. Then Eq.~51! is satisfied foruxu<R with
sTF(x)5sS(x) and

s05
« r
e2

kR

2p
, ~53!

R25
4m

k@112ln~2L/R!#F12
R2

2L2 S 12
R2

2D2D G , ~54!

wherem5EF
2D2U0 is a shifted Fermi level. The linear den-

sity, defined as in Eq.~23!, becomes

lS5
Rp

2
s0 . ~55!

From the numerical Thomas-Fermi densities,sTF(x), we
then read off values ofs0 andR, and use the three equations
above to check the validity of this classical model:~i! In all
cases considered but one,lTF is given to within 1% by the
lS of Eq. ~55!. ~ii ! From Eq.~53!, one deduces an effective
value for the oscillator constantk. In Fig. 8, thisk is com-
pared against values obtained from Eq.~40! and one sees
qualitative agreement.~iii ! From Eq. ~54! one extracts an
effective value for the shifted Fermi levelm. Subtracting the
correspondingEF

2D then determinesU0. We find that
U0.30 meV, independent of the value ofw which agrees
rather well with the difference between the upper and lower
lines in Fig. 5, already discussed just following Eq.~40!.
From all these comparisons we conclude that thesS(x) in

FIG. 8. Dots: effective spring constantk of Eq. ~53!. Dashed
line is from Eq. ~40! and the solid line includes the next order
correction.
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Eq. ~49! is a very useful model for the density profile of the
2DEG in a deep-etched wire: not only does it explain the
flattening of the bottom of the transverse confining potential
via very simple analytic expressions, but, in addition, it is
reasonably accurate in its main predictions. In particular, due
to the long range of the Coulomb force, we find that the
Shikin density gives a very good approximation, Eq.~52!,
for the 2DEG contribution to the electrostatic potential.

VII. CONCLUSION

We have considered the self-consistent solution of the
Poisson and Schro¨dinger equations for a deep-etched linear
quantum wire. An efficient numerical technique has been
developed, based on a Fourier expansion of the relevant po-
tentials and densities, which greatly reduces the length of
such calculations. Two limiting cases, that of infinitely deep
etching, and the wide base approximation, lead to the same
approximate analytic forms for the confining potential, and
this has allowed us to formulate a simple ansatz for the fac-
torization of the wave functions into vertical and transverse
factors that leads to very accurate predictions. In addition,
this gives a further improvement in computing times, and
justifies the commonly madeab initio assumption that the
electron gas is two dimensional.

Working in this two-dimensional approximation, we have
implemented a Thomas-Fermi model which is found to give
good results for the bulk properties of the 2DEG. Further-
more, the resulting Thomas-Fermi density function has been
shown to be very well represented by the analytic form due
to Shikinet al.3,4 This analytic form leads to useful relations
among the central electron density, its radius, the Fermi
level, and the effective spring constant of the confining po-
tential, which are accurately obeyed by the numerical
Thomas-Fermi results.
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APPENDIX A: NUMERICAL STRATEGY

To solve Eq.~17!, one has to invert sizable matrices, typi-
cally 24 terms in the Fourier series. We have found that it is
very accurate and fast to use the following method, based on
the analytic knowledge of the approximate solutions,an

(`) .
Defining

dan5an2gn~e
2bnz221!, ~A1!

Eq. ~17! can be rewritten as

(
m

Bn,mdam5Fn , ~A2!

with

Fn5
W

w(
m

em,nFe2rdw2

«
gm~12coshbmz2!

3e2bmz41vm
~ch!~z4!G1

e2rdw
2

«
bngn~coshbnz221!

3e2bnz41vn8~ch!~z4!. ~A3!

This has the advantage of suppressing the largest terms that
contribute to both sides of Eq.~17! but mutually cancel, so
that the smaller contribution due to thedam is enhanced.
Likewise one redefines

B̃n,m[Bn,me
2bmz4,

dãm[dame
bmz4. ~A4!

We then solve Eq.~A2! by successive approximations, using
as starting values those determined from the diagonal terms
of B̃, i.e., we decompose it into its diagonal and nondiagonal
parts:

B̃5B̃~D !1B̃~ND! ~A5!

and have

dã05B̃~D !21F,

dãi5dã02B̃~D !21B̃~ND!dãi21. ~A6!

Iterating the latter a few times suffices to get the required
accuracy.

APPENDIX B: A TAYLOR EXPANSION

In general, consider a functionf (x)5 f „exp(«)…[F(«).
Since

d

d«
5x

d

dx
, ~B1!

the coefficients in the Taylor expansion ofF(«) require the
derivatives

F ~n!~«!5S x d

dxD
n

f ~x!, ~B2!

evaluated at«50 andx51, respectively. Applying this gen-
eral result to the functionS(j), defined in~35!, and changing
the sign of«, we have
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S~j5e2«!5S~j51!2«S8~j51!

1
1

2
«2@S8~j51!1S98~j51!#

2
1

6
«3@S8~j51!13S9~j51!1S-~j51!#

1
1

24
«4@S8~j51!17S9~j51!16S-~j51!

1S~ iv !~j51!#1•••. ~B3!

The power series expansion in Eq.~35! is convergent forj
inside the unit circle, and therefore defines the functionS
uniquely, but as it stands it can be used to compute deriva-
tives only up to order 2, since the expressions for higher
orders become divergent. Therefore we redefineS(j) as

S~j!5E
0

jdj8

j8
E
0

j8arctanj9

j9
dj9, ~B4!

which can be easily shown to be equivalent to the previous
definition using the series expansion of arctanx. This ex-
pression allows one to compute derivatives to all orders. Ap-
plying Eq. ~B2! to Eq. ~B4! gives

S8~j51!1S9~j51!5
p

4
,

S8~j51!13S9~j51!1S-~j51!5
1

2
,

S8~j51!17S9~j51!16S-~j51!1S~ iv !~j51!50,

S8~j51!115S9~j51!125S-~j51!110S~ iv !~j51!1S~v !

3~j51!52
1

2
,

S8~j51!131S9~j51!190S-~j51!165S~ iv !~j51!

115S~v !~j51!1S~v i !~j51!50, . . . , ~B5!

and one obtains Eq.~36!.

APPENDIX C: THE SHIKIN POTENTIAL
INCLUDING MIRROR TERMS

We wish to show that the Shikin density gives a harmonic
contribution to the lateral confining potential felt by the elec-
trons. To begin, note that a filament of unit charge per unit
length at positionx gives a potential

eVf~ t,x!52
2e2

« r
lnut2xu, ~C1!

so that the Hartree potential due to the charge distribution
~49! is

Ue,H5
22e2s0

« r
E

2R

R A12S xRD 2lnut2xudx[
2e2s0

« r
G~ t !.

~C2!

The derivative is

dG~ t !

dt
[g~ t !52E

2R

R
A12S xRD 2

t2x
dx

522E
21

1 A12x82

x82z
dx8, ~C3!

with z5t/R. This latter integral is given on p. 246 of Ref.
10:

g~ t !52pz, utu,R

52p@z2Az221#, utu.R. ~C4!

This result establishes the quadratic potential inside the
charge distribution. Direct evaluation ofG(t50) then leads
to Eq. ~52!.

The mirror charge which we take into account is that due
to a layer of charge at distanceD52z2 above the electron
gas. Corresponding mirror terms reflected in the sides of the
etched wire are neglected because the lateral dimension
w@D.R. Then similarly to Eq.~68!,

Ue,m~x!5
e2s0

« r
Gm~x!,

with

Gm~x!5E
2R

R A12S tRD 2ln@~ t2x!21D2#dt. ~C5!

The argument of the logarithm may be expanded as

ln@~ t2x!21D2#5 ln@D21x2#1
t222xt

D21x2
••• ~C6!

and the result of integrating overt can be expressed as

Gm~x!'
pR

2
lnFD21x21

R2

4

D22x2

D21x2G
'pRF lnL1

x2

2L2 S 12
R2

2D2D1••• G , ~C7!

with a constantL25D21(R2/4). The first expression is
valid to leading order both for small and for largex2, and is
an excellent interpolation between these limits.

Keeping just the logarithm in the last line of Eq.~C7! is
equivalent to saying that the potential due to a filament of
charge, Eq.~C1!, is modified to read

eVf1m~ t,x!52
2e2

« r
ln

ut2xu
L

~C8!

and this leads to Eq.~52!. If one also keeps thex2/L2 piece
of Eq. ~C7!, then the coefficient ofx2 in Eq. ~52! will be
changed. This refinement is already included in Eq.~54!.
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We remark that in Ref. 3 there is an undefined quantity
L which we can see arises naturally in our treatment as the
expression of the boundary condition on the surface of the
semiconductor via the mirror term. We also note that in the

largex limit, one expands in powers of 1/x2. The appropriate
L825D22~R2/4! from Eq. ~C7!, and the potential of Eq.
~52! reduces correctly to the dipole formed by the filament
plus its mirror image.
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