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Systematics of properties of the electron gas in deep-etched quantum wires
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An efficient method is developed for an iterative solution of the Poisson and @eges equations, which
allows systematic studies of the properties of the electron gas in linear deep-etched quantum wires. A much
simpler two-dimensiona{2D) approximation is developed that accurately reproduces the results of the 3D
calculations. A 2D Thomas-Fermi approximation is then derived, and shown to give a good account of average
properties. Further, we prove that an analytic form due to Stakial. is a good approximation to the electron
density given by the self-consistent method0163-182@6)00339-9

[. INTRODUCTION ing the electron charge distribution to the geometry and
physical properties of the heterostructure.

Growing interest in the development of devices based on In summary, by developing successive approximations we
GaAs/Al,Ga, ,As deep-etched wires in nanoelectronicsmake the connection .between the complete, but cumber-
and related fields has lead to several detailed attéripss Ssome, 3D Poisson-Schdimger calculations, and simpler
model the properties of the quasi-two-dimensional electrornodels of the 2DEG in deep-etched wires. We show that
gas(2DEG) that appears under suitable design conditions irglthough the latter cannot reproduce the fine details of the
such wires. In general, these attempts focus on the detaildylly quantal calculations, they provide a physically intuitive
description of a specific device for which experimental meaicture of the results of the numerical calculations and a
surements are available, and less effort is put into identifying@asonably accurate prediction of the bulk properties via ana-
general properties of the 2DEG in deep-etched wires or inytiC €xpressions.
devising fast numerical methods applicable to different gen-
eral situations. I_n Sec. I, We"shall present. methods to solve || pPROPERTIES OF THE THREE-DIMENSIONAL
the _c_oupleq Poisson anq ScHiager equations t_hat allow ELECTRON GAS
significant improvement in the speed of numerical calcula-
tions and that furthermore can be applied under rather gen- Although the methods discussed below are of general util-
eral conditions. ity, we consider a specific deep-etched wire for definiteness.

The main objective of the present work, however, is to gefrigure 1 shows this heterojunction configuration, similar to
a more transparent understanding of the connection betwedhe deep mesa structure already studied in Ref. 1. From top
the geometry of the deep-etched wire, the physical propertiel® bottom we take 15, 20, 4, 16, and 10 nm for the thick-
of GaAs and AlGa,_,As, and the properties of the distri- nesses of the layers shown, and we writefor the width.
bution of charge in the 2DEG. With this purpose, and usingThe cap and donor layers aren doped, with
as a reference the results of the complete Poissorpg=210"® cm 3, and we assume that the band offset between
Schralinger calculations, we will derive successive approxi-the two materials i®V,=0.23 eV. For simplicity we ne-
mations which reveal this connection. The first of these iglect the difference in their permittivities and use a common
presented in Sec. IV: it is a factorization ansatz based orelative permittivity,e,=13.1.
analytic expressions for the confining potential derived in In our model we assume that, due to the etching process,
Sec. lll. This ansatz allows an accurate separation of theurface states form in the exposed parts of the wire, so as to
longitudinal (vertical according to Fig. )Lland transverse induce Fermi level pinning. This has been verified in a num-
components of the wave functions of the electrons in the gager of experimental conditior’sWe further assume that the
This provides a guantitative foundation for those more phefermi level on the surface of the heterojunction is the same
nomenological models that assume from the beginning thagverywhere, and choose it as the zero of energies. Accord-
the electron gas is purely two dimensiorfaD). Based on ingly, we set the location of the conduction band at points on
this separation, in Sec. V we formulate a 2D Thomas-Fermihe surface of GaAs at a fixed energy; and on the surface
approximation and verify that it also predicts with good ac-of Al ,Ga;_,As at eV +eV,. Although there is no clear
curacy the bulk properties of the electron distribution in theexperimental evidence for the validity of these assumptions,
gas. Finally, in Sec. VI, we make the connection with athey are certainly compatible with recent work supporting
purely classical model proposed by Shiléhal3# for the  the interpretation of surface states as localized defects whose
charge distribution. We show that the model can be applieground state wave function is of a bonding type, and with the
to our description and leads to a set of analytic relations, Eqs/ariation with composition of the energy of these states in
(53), (54), and(55) that directly relate the parameters defin- n-Al ,Ga, _,As sample$. For ease of comparison with pre-
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where B,=(2n+1)m/w. Orthogonality of the cogXx)

_______________ 2 leads to
| e2
Gars | vH(2) = Bivn(2)=—pal2), @
[ E with
AlGaAs 2 (w2
B L. p(2)= f PR eod Brxjdx. ®)

|-

, The explicit form of the solutiony ,(z), is different in each

GaAs . zone of the heterostructure. It is convenient to construct so-
' lutions for each zone separately and then match them at the

intervening horizontal boundaries. The general form of the

vh(2) in theith zone that is well suited for this process is
AlGaAs

vn(2)=v(2)+ 0" (2),
vz vgo)(z)=Cn‘+eBn(Z_Zi)+Cn’_e_Bn(Z_zi),

FIG. 1. Section of the deep-etched heterostructure.

2 z
v (2)= ; J sinhBn(z—2')pn(z')dZ’.  (6)
vious simulations we have chosev;=0.6 eV. . " ) .

The electrostatic potential due to the charges present iM/€ are now going to particularize these results to each sepa-
the heterostructure is different at each point, and therefore it&t€ region and impose the appropriate matching conditions.
variation affects the energgd, of the bottom of the con- ~ Z0ne 1.(0=<z=z,). Itis convenient to start with the top-
duction band inside the material. Since the etched wire i§n0St zone because the boundary condition=a0 is simply
translationally invariant along thg axis, we write this en- €V(x,z=0)=0. Here,p(x,z) = py=const and therefore

ergy as the sum
d (—1)" 4pq
Pn(z): -

ed(x,2)=eVi+eVy(z)+eV(x,z), 1) 2ntl m°
so by requiringv,(0)=0 one finds

)

where the contribution due to the band offs8¥,,(2), is zero

in the GaAs layers and 0.23 eV in the Ma;_,As layers. e2p. w2

The term due to the electrostatic potent&l/(x,z), is deter- vn(2)=

mined by solving the Poisson equation with the boundary

condition that it vanishes on all the exposed surfdseswn  where y,=4(—1)"/[(2n+1)]® and thea, will be deter-

as thick horizontal and vertical lines in Fig). IThis bound- mined by matching to the next zone.

ary condition follows from our choice of the Fermi level as  Zone 2.(z,<z=<1z,). This corresponds to the spacer layer

the origin of energies and the use of Ea) to define the and that part of the substrate layer in the etched wire. Here,

bottom of the conduction band. We write the Poisson equathe p,,(z) are determined by substituting in E&) the (yet to

tion as be determinedelectron gas density. Imposing the matching
conditions,

[a,sinhB,z+ yn(coshBz—1)], (8)

&

2
eAV(x,z)=%p(x,z), 2 vn(Z,—0)=v,(2,+0),

where in the zone of the ionized cap and donor layers vn(22=0)=vn(2,10), ©)

p(X,2)=pgq=const>0, whereas in the zone of the 2DEG, one finds
p(X,2)=—pe(X,2)<0. When fixed value boundary condi-

tions are required on two parallel sides of a rectangle, as e?pgw?
here, this equation can be very efficiently solved using Fou- UnlZ)=
rier series expansions. We therefore write expansions for the

potential and the density as x{anpsinhBnz+ y,[ coshB,z— costB,(z—2;) ]}
. +o"(2). (10
eV(X’Z):nZ‘O Un(2)COBnX, Zone 3.(z=z,) corresponds to the substrate below the

mesa. We will denote its width by (which in the numerical
® calculations is chosen sufficiently large so that the results are
p(%,2) = 2 pn(Z)COSB,X, (3) equivalent to_lettingN—too_). For the deep—e_tche@ wires that
n=0 we are studying here, it is a good approximation to neglect
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the electron density in this zone. We therefore introduce a set —sinhBn(z4—2,) 1+ v (z,). (19

of solutions of the Laplace equation with boundary condi-

tions chosen so as to make them an appropriate basis foft€r solving Eq.(17) for the a, the integration of Pois-
expandingeV(x,z). These solutionsA(x,z), are of the son’s equation is completed by substituting these values in
m Egs. (8) and (10) to determine thev,(z) in the zones of

form . ! .
interest and then using E@3) to construct the potential.
o Details of the numerical solution of Eq417) are given in
An(X,2)= 2, \; me % Zcos;X, (1)  Appendix A and in the next section.
i=0 '

Determination of the subband wave functiolrsthe en-
velope function approximation the wave functions of the

with a;=(2i+ 1)7/W. And imposing them to satis ;
@ =( )7 P ¢ ty electrons in the 2DEG are determined by solving the Schro

Am(X=+W/2,2>2,)=0, dinger equation with potentia¢®(x,z), as defined in Eq.
(1). Due to invariance along the axis they take the factor-
w ized form
Am(x,z=z4)=cosﬁmx®(§— X )
1
W)k (X,Y,2) = ——e*YW(x,2), (19
Ap(X,z—»)=0, (12 Y N2
[O(x) is the Heaviside step functignleads to where the¥(x,z) satisfy
h% [ d2  d?
w w\ w _ =
)\i,m:V_v Jo (ai"‘ﬂm)E "’lo((a’i_,gm)E” [ 2m* (d_xz+d? +ed(x2) ' Ti(x2)=E¥i(x.2).
(20)
={(o{l(i+3)¢+m+3]m} We have solved this two-dimensional equation using the
+ioll(i+3¢—m—1]7)) (13) same numerical methods described in Ref. 7: we define a

rectangular mesh of points in the spacer and substrate and
where {=w/W. The matching condition oreV(x,z) at discretize the differential equation reducing it to a matrix
z=12, then allows one to write eigenvalue problem. Then a Lanczos algorithm is used to
find the lowest eigenvalues and eigenfunctions, which are the
only ones needed here. When required, we improve the ac-
eV(x,z)=m20 Um(Z4—0)Am(X,2), (14 curacy by performing inverse iteration, as proposed in Sec.
11.7 of Ref. 8. These are the more time consuming parts of
and requiring that theleV(x,z)/9z also match atz,, we  the numerical calculations. Even so, the typical running
obtain the remaining condition needed to determine comtimes are 2 min per iteration on a 486DX-33 PC, a consid-

o

pletely the solution of the Poisson equation: erable improvement over those quoted by Snideal. in
Ref. 1.
, W Due to the assumption of thermal equilibrium, we write
Un(24=0)=— sz:o Um(Za=0)€mn, (19 the subband occupations as
with 1 [2m*kgT Er—E
; f|:; h2 I_—1/2 kBT ’ (21)
em'nzz @iNimNin- (16) where_FTUZ is the Eermi—Dirac integral, and we recall that
i=0 our origin of energies setE=0. We then construct the
This leads to a system of coupled linear equations for thglectron densities from
unknown coefficients,,,m=0,1, ... of the form L
pe(x,2)= 2, filWi(x.2)[?, (22
Bnmam=Dn, 1 : -
Em: LmeEme (A7 with the sum truncated when tHg become negligible. The
with two-dimensional and the linear densities are
e?paw? [ W _ o(X)=f pe(X,2)dz,
Bn,mE < - W fm,nsmhgmzzl_ ﬂn5n,m003fﬂnz4 %2
and )‘:f a(x)dx. (23
2 2 .
D EV_VE . eP_dwy [COShB s — COSHBo (24— 25)] By iteratively solving the Poisson and Schioger equa-
nowg ™o m me4 m.o4 22 tions, a self-consistent solution for all these quantities is de-

5 termined for a given widthw.
€ pgW : For brevity we present results only for tfie=0 K case.
Bn'yn[smhﬁnz4 Y P y

+ _ - .
€ (The systematics of the results at finite temperature are quali-
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FIG. 2. Variation of linear density with wire width. Continuous FIG. 4. Longitudinal confining potential for wire widths
line: Poisson-Schidinger calculation. Dashed line: 2D approxima- w=320 nm(continuous ling and 300 nm(long dashed ling.The
tion. Circles: Thomas-Fermi predictions. 2DEG densities fomwv=320 nm are also shown on an arbitrary

scale. Dotted line: Poissen Schralinger result. Dashed line: 2D

tatively similar to those found in Ref. 7 for a linear split gate approximation

wire.) The variation with wire width of the linear and two-
dimensional densities is shown in Figs. 2 and 3, respectively.
It can be seen that there is a rather smooth and almost linear In the previous section, our implementation of the
increase of\ with the width,w. The two-dimensional den- Poisson-Schidinger approach lead to a satisfactory numeri-
sity also increases both in width and central value with ~ cal description of the 2DEG properties. However, the inter-
and shows oscillations due to the changes in the filling of€lation between geometrical properties of the device, donor
each subband. We find tha{x) becomes rather smooth as concentration, etc., and the characteristics of the electron gas
more subbands are filled when the width increases. As exs obscured by the complexity of the numerical computation.
pected, calculations at fini lead to even smoother profiles. !N the following sections we introduce approximations that
The longitudinal confining potential at=0, ed(07) is without serious loss of aC(‘:‘l_Jracy provide a m“uch more direct
plotted in Fig. 4 together with,(0.2); clearly the band off- connection between the “input parameters* of the model
sets are a determinant in the confinement of the electron ga%?dlthle ffm_?llregults fotr rt]hz ZDEIS beain by studving thi

and the quasilinear increase of the potential in the GaAséx( ) Infinitely deep etched wirél/e begin by studying this

. . . . treme limiting case, because it turns out to be a useful
sfubstrate IS responS|bIe_for the slight gsymmetry n Fhe proétarting point for more elaborate approximations. We define
file of the eIectrqn density. The quantitative correlation ,b‘,a'such arnideal wire as one for which the width is the same for
tween changes in the densities and those of the confining); ,aiues ofz. We therefore setW=w in the previous ex-

potential will be discussed in detail in the following SeCtionS-pressions, and the following simplifications apply:

IIl. ANALYTICAL APPROXIMATIONS

e M= 8im
0.0010}_ -
% ‘ Eﬁazﬁn5m,na
©
2 2
o €"pgW
0.0005 | BE”%= B BnePr* 8, m,
2 2
w €°pgW _
RS R D= — = ynBpefri(e o1
0 10 20 30 40 50 60
x ( nm ) ) e? rz,
+—| ehl@T2p (2)dz, (24)
FIG. 3. Two-dimensional densities for wire widtha:= 300, &Jz

320, and 340 nm. Continuous line: Poisson-Sdimger calcula- . . _ .
tion. Long dashed line: 2D approximation. Dotted line: Thomas-where &, ,, is the Kronecker symbol. Sind® in Eq. (17) is
Fermi prediction. now diagonal the solution for tha, is immediate,
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a
ay”=yn(e” n22—1>—m Lze Ppa(2)dz €m0 =(2n+1) i O (31)
(25

Placing this in Eq(18), we find surprisingly that
and therefore, foZone 2one finds

B(Wba() Bfr%v
(o1 LW’ Buz 4 1, (ch)
vy (2)= o Yn(1—costB,z)e Pri+u"7(2) Dnga’QIng), (32)
g2 and thus that the,, and v, are identical to those for the

4
e‘ﬁnZZJ 4e‘ﬁn(z'‘Zz)pn(z’)dz’sinh[:’nz. infinitely deep-etched wire given above. Since they emerge
g in these two very different limits, they should be a reason-
(26) able first approximation for understanding the main trends of
the numerical calculations of Sec. Il. Further, as we show in
Appendix A, these expressions provide the starting point for
an efficient numerical solution of Eq17) in the realistic
case discussed in the previous section.

- €Pn

The first term on the right hand side.h.s) was already

derived by Davie$in the limit of vanishing electron gas

density (pinch-off) Indeed, the remaining terms account for

the effect of the electrons in the gas and their contribution is (3) Qualitative featuresThe first term in Eq.(26) for

comparaftwely small for the V\."dths consudergd here' vn(2) is independent of the electron gas density. Its contri-
(@) .W'de base_: approxmatlon (Wba‘f‘? motivate th|s al- ution to the electrostatic potential will be denoted di,.

ternative approximation we note that, since we are mteresm@ubstituting into Eq(3), one has

in the limit W>w, it is natural to look for approximations '

where the sum over in Eg. (16) is replaced by an integral

over a suitably defined continuous variable. Wjg, defined  eVy(x,z)=—

in Eg. (13) satisfy an orthogonality relation:

2 2 o
e pyw B .
. R% > ya(coshB,z,— 1) Azel B
n=0

(33
For simplicity we first discuss the cage= 0. (Replacingz by

z—ix and taking the real part, one obtains immediately the

Its for thex#0 .
which should be preserved. With this in mind one easilyresu S forihex case)

- w
izEO )\i,mhi,nzwén,ngé\n,mi (27)

checks that by introducing e?p w2
. Pd —Bz
. ) . . eVo(02)=— > ya(cosiB,z,—1)e ™ Fn
Am(D)=g{iol ({t+m+3) 7] +jol ({t—m=3) 7]} (28) n=0
and then replacing the sum overby an integration from 2e de W(z—2,)
t=0 to «, the corresponding orthogonality relation still =——= 1S(é=e ")
holds:

i} +S(E=e "R -2S(E=e")], (34
fo dtN (DN =jol(M—N)T]={Ep - (29 wherev=m/w and we have defined

[

Applying the same prescription to E¢L6) and with some S(&)= 2 (-1)" g+l (35)
minor simplifications in the integrals for the small terms, we A= (2n+1)3 '
obtain

Since the arguments in the exponentials in B4) are small
whenz corresponds to the zone occupied by the 2DEG, one

end=(2n+ 1) can obtain a very accurate estimate éd/,(0,z) by expand-
ing §[é=exp(—¢)] in a Taylor series aroung=0 (and thus
(=)™ (2n+1)(2m+ 1) 2n+1 £=1). In Appendix B, we show that

W  (n+m+1)(n— m) 2m+1 (30) 1
The values predicted with this expression are in good quan- S(é=e %)= S(1)—sS’(1)+ e?- 1_283"‘ 240°
titative agreement with the exact matrix elements computed

numerically, the largest differences being-=efl0% for the 1

casen=m=1, and =5% whenn=1, m=2 and they - 201687+ O(e?), (36)
quickly become negligible with increasingor m. The first

term in the r.h.s. of Eq(30) is always much larger than the and the corresponding expansion for E84) becomes
second, and therefore the diagonal terms are always orders of
magnitude larger than the nondiagonal. We have found how-
ever that due to large cancellations between the bigger terms, eVo(0.2)=— e |2 w + 12 we - (37
the nondiagonal matrix elements are needed to get accurate

results. For a better qualitative understanding it is neverthe- From this result we determine the pinch-off width in the
less interesting to derive the expressions that correspond tofinite etching limit: place the approximation E@7) in Eq.
retaining only the first term on the r.h.s. of E§O): (1) and sete®(0,z3+0)=0; then solving fow gives

5
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A © w=30m ' : ——
0.02
':,,4,11..
|

-0. 02 .,.,Au.,,.,u“,,. 4/."/‘
-0.04 k.2 L

. 42 44 46 48 50 52 42 44 46 48 . 52

z (nm) :

FIG. 5. Longitudinal confining potential in the substrate occupied by the electron gas, for two wire widths. Continuoe (i)
from the Poisson-Schdinger calculation. Dot-dashed line: same, from the 2D approximation. Doubly dashed line: solution of the Poisson
equation without electron gas, fulfilling the same boundary conditigfep) Dashed lineedy(0,z) obtained from the sum of the Fourier
series in Eq(34). Dotted line: same, obtained now from the analytic approximation in(&q.

224 w2 75+ 275 difference between these and the Poisson-Stthger result,
Woom 2eve |1 T2 wE ) (38)  e®(0,2), is due to two effects(i) the presence of the 2DEG,
_2_32 and (ii) the finite depth of the etching. To separate their
€°pduZ; contributions, we have set,(x,z) =0 and solved again Eq.

f (2) with the same boundary condition. This gives the doubly
dashed line in Fig. 5. The difference between that line and
e®(0,2) then accounts fofi), whereas the difference with
e®d,(0,z) accounts foii). For a qualitative understanding of
(i) one can argue that the effect of an infinite etching of the
wire amounts to bringing the laterat>z, boundaries closer
edy(02)=eVs+eVy(02)+eVy(2) (39) to the zone of the 2DEG. Since in these the energy of the
conduction band is maximale® (boundary=eV;+eV,,

for two values of the width. First of all, it should be noted this induces a rise of the bottom of the conduction band in
that the analytic result E437) is almost indistinguishable on  the zone of the 2DEG by-30 meV.
this scale from the exact calculation based on B@). The Note, in addition, that for each of the two widths shown,
the slope corresponding to the quasilinear dependenzeson
little affected by(i) and(ii) and therefore can be well deter-
mined with the approximate expression E§7). That ex-
pression also shows that when the width increases, both the
position of the conduction ban&®,(0,z), and its slope
must decrease, which is indeed what is seen by comparing
the plots forw=300, 320 nm. This lowering of the conduc-
tion band is, however, compensated by the increased repul-
sion due td(i) because the electron gas density increases with
w. The net result is then a rough independence®{0,2)
on the value ofw.

The same analytic expansion can be carried out for points
(x,2) not too far from thez axis: it suffices to add an imagi-
nary part—ix to thee in Eq. (36). The lowest order result is

Neglecting the term proportional te? gives an accuracy o
a few percent, which is improved if we iterate the value of
w in the right hand side.

To study in more detail the variation within the zone of
the 2DEG, in Fig. 5 we compare®d (0,z) to

ev

(eV)

0.015

0.010

0.005F

ezpdzg’ﬂz
eVo(x,z)=eVy(0,2)+ szz. (40)

FIG. 6. Transverse confining potential fov=320 nm and
z=43 nm. Continuous lineeVy(x,z) —eVy(0,2) from summing [N Fig. 6 we compare the exacesVo=eVy(X,2)
the Fourier series; long dashed line: quadratic approximation. Dot— €Vy(0,2) to this quadratic approximation for a wire of
ted lineeV(x,z) —eV(0,z) from the Poisson-Schdinger solution; ~ width w=300 nm and a value=43 nm that corresponds to
dash-dotted line: 2D approximatiobt(x) —U(0). the maximum density for the 2DEG. Indeed to a very good
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(z

U(x)+E !
a

approximatioreéV, has the parabolic dependenceopre-
dicted by Eq.(40) in the region occupied by the 2DEG. In
the same figure we also ple®V=eV(x,z)—eV(0,z) [and
sU=U(x)—U(0), to bedefined in next sectign Clearly,
the parabolic dependence is inadequate for these. For larger
widths the difference betweesvV andesdV, increases, the
latter retaining a parabolic shape to a good approximation.
The difference is due to the contribution of the charge in the
2DEG, which produces a flattening of the bottom of the
transverse confining potential. We shall further discuss and
clarify this behavior in Sec. VI where we generalize a clas-
sical model proposed by Shikit al3*

(ev)

0.03

-0.01

IV. THE TWO-DIMENSIONAL APPROXIMATION 10 s0 e0 70 =0
Repeating an analysis similar to that in Sec. Il of Ref. 7, x (nm)
we have found that the wave functionk,(x,z), determined
solving Eq.(20) can be to a good approximation factorized
into longitudinal and in plane components. We shall now
present an ansatz similar to that introduced for gated wires in . o

that reference and show that it allows us to formulate arflicted by (44) can be expected to be very similar to the

accurate factorization approximation. With this ansatz theffective transverse wave function that would be found if, as

FIG. 7. Effective confining potentidl (x) + E® in the 2D ap-
proximation(continuous linesand in Thomas-Fernidashed lines

results found in Sec. Il are well reproduced and require &°ne in Ref. 7,e®(0z) had been used in setting up the

much smaller computational effort. We start by rewriting Eq.
(20), as

v

+[ed(x,2)—edy(0,2)]

d2 2

W + E + e(DO(O,Z)

v, (x,2)=EV(x,2), (41)

and replace®(x,z) —ed,(0,2) by a weighted average over
z

U(X)EfoZ(Z)[e(I)(X,Z)—e(I)o(O,Z)]dZ, (42)
Z2

with a normalized weight functiom(z), to be determined in
a moment. With this simplification Eq41) becomes

d2
(W* aZ
= El,a\PLa(X!Z)v

which is separable and leads to

#? d?
2m*

+edy(0,2) +U(X) |V, a(X,2)

(43

2 2
(—é%;a?+e¢&qa%un=E?Aux (44)
#2  d2
( = Ww(x)) $()=E[Q¢(x), (45

with
W) a(X,2) = & (X)A(2),

E a=EZ+E/X. (46)

factorization ansatz. This roughly constant shift enters with
opposite signs in the values &7 andEX) and its effect
should almost cancel in their suif, , .

In this approach the two-dimensional density is obtained
as

crzD(x):Z fil (%)%, (47)

wheref, has been defined in EQRJ).

The predictions for the different quantities of interest have
been already included in Figs. 2—6. As can be seen in Figs. 2
and 3 the densities are reproduced very accurately, not only
the A(w) which is an integrated property, but also the de-
tailed shapes of(x) for the differentw, with even the inner
oscillations being accurately predicted. In addition, Fig. 4
shows that the longitudinal profile of the density is also very
well described. This confirms that the basic assumptions be-
hind this ansatz are correct, and that to a very good approxi-
mation (i) the separation of longitudinal and transverse de-
grees of freedom is justified, arfd) the longitudinal profile
of the electron distribution can be predicted directly from
e®d,(0,2), i.e., ignoring the roughly constant contribution of
the 2DEG, and thus without need for a redetermination of
A(2) at each iteration of the Poisson-Satlimger process.
Due to this, with the factorization ansatz one achieves a con-
siderable reduction in the time of computation, because the
numerical determination of the), from Eq. (45 is much
faster than that of th&, from Eq.(20): a complete Poisson
+ Schralinger calculation with this ansatz requires only 2
min in the same 486-33 PC mentioned above.

The transverse confining potentidl(x), defined in Eg.
(42), is shown in Fig. 7. As remarked in the previous section,

Note that we have chosen the weight function to be preciselthe parabolic approximation is only adequate in the limit of

the solution of Eq.(44). In the previous section we have
stressed that the main difference betwee®(0,z2) and
ed,(0,2) was a roughly constant term, so that théz) pre-

vanishing electron gas. The potential due to the charge in the
2DEG flattens out the bottom of the parabola and produces
an almost constant inner zone that increases with
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V. THOMAS-FERMI APPROXIMATION FOR THE 2DEG

. . k (ev/mm)
The accuracy of the factorization ansatz indicates that to a

good approximation the electron gas behaves as two dimen-
sional, with an effective confining potenti&l,(x), determin- 3 x 10°}
ing the electrons wave functions via E@5). At zero tem-

perature then the occupied subbands are those for which the

energy,E, , is lower than the chemical potential, which in 5 1551

our convention is at zero energy. Therefore, Ef) shows

that the effective Fermi level for a two-dimensional gas is

E2P=—E{? . The next step is to further simplify our descrip- —
x I

tion by using the Thomas-Fermi approximation: guided by
Eq. (45), we define the local Fermi momentum in terms of
the corresponding 2D density by the relations

300 320 340 360 380

ﬁZ
5 kB0 + U0 =EP, vt
FIG. 8. Dots: effective spring constaktof Eq. (53). Dashed
2 line is from Eq.(40) and the solid line includes the next order
Ke(X)=2more(X). (48)  correction.
These allow one to determine the electron density directly — 22 lt—x|
from the confining potentidll (x) and thus suppress the need Ue(X)= f In og(t)dt,
to solve the Schidinger equatior(45) for the ¢,’s at each Er L
iteration of the self-consistent process. e2 1 L\ x2
This Thomas-Fermi method leads to quite accurate esti- = 8—7TR0'0 §+In F) =i Ix|<R. (52

mates for the bulk properties of the electron gas, as shown in r
Figs. 2 and 3: for the variation of linear density wsthe  Here, L2=D2+R?/4, andD is the distance to the mirror
prediction is practically indistinguishable from that of the 2D Charge Vertica”y above the 2DEG. This approximation is
ansatz, whereas far(x) the prediction is good for the over- developed in Appendix C.

all size and scale, but the shape does not exhibit the quantal |n the classical limit adopted by Shikit al, one simply
oscillations due to contributions of each subband. The conneglects thésmall contribution of the kinetic energy which
fining potential is shown in Fig. 7. Again the agreement withis of order#?. Then Eq.(51) is satisfied for|x|<R with

the 2D prediction is excellent. oe(X)=ag(x) and
VI. APPROXIMATE ANALYTICAL MODEL :i k_R
T07e2 2, (53
The above Thomas-Fermi model is based on a semiclas-
sical approximation for the kinetic energy. We find that the ' { R2 2
resulting charge densities are rather well represented by a RZ:k[1+2In(2L/R)][1_ T(l_ >D? } (549

simple form proposed by Shikiet al.>*
whereu=EZ2P— U, is a shifted Fermi level. The linear den-

X sity, defined as in Eq23), becomes
o¥) =00\ 1|5 (49
R
. o . . AS=—0y. (55)
Remarkably, this density gives a Hartree potential that is 2

purely quadratic. Suppose, following the analytic results of _ _ -
Sec. Il in particular Eq(40), that the net confining potential ~ From the numerical Thomas-Fermi densitiesg(x), we

due to all sources other than the charges in the 2DEG ithen read off values af, andR, and use the three equations
parabolic and written as above to check the validity of this classical modgl:In all

cases considered but one'" is given to within 1% by the
1 AS of Eq. (55). (ii) From Eq.(53), one deduces an effective

U(X)=Uy+ Ekxz. (500  value for the oscillator constaht In Fig. 8, thisk is com-

pared against values obtained from E40) and one sees
qualitative agreementiii) From Eg.(54) one extracts an
effective value for the shifted Fermi levgl. Subtracting the
corresponding EZ® then determinesU,. We find that
Uy=30 meV, independent of the value wf which agrees
rather well with the difference between the upper and lower
lines in Fig. 5, already discussed just following Eg0).
with From all these comparisons we conclude that dtaéx) in

Then the Thomas-Fermi equation becomes

2
2D _ E 2 h
EF —U0+ 2kX +Ue(X)+ m* O'TF(X), (51)
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Eq. (49) is a very useful model for the density profile of the W
2DEG in a deep-etched wire: not only does it explain the Fn:WZ €m,n
flattening of the bottom of the transverse confining potential m

e2p W2

o Ym(1—costBnz;)

via very simple analytic expressions, but, in addition, it is e?pqw?

reasonably accurate in its main predictions. In particular, due X e Pmtaty(th(z,) |+ Bnyn(costB,z;—1)
to the long range of the Coulomb force, we find that the €

Shikin density gives a very good approximation, Eg_2), xe Pzaty!l(ch)(zy). (A3)

for the 2DEG contribution to the electrostatic potential.

This has the advantage of suppressing the largest terms that
VIl. CONCLUSION contribute to both sides of Eq17) but mutually cancel, so

We have considered the self-consistent solution of thqt_r;sévfl?seesorggnrir dggzg;buhon due to iy, is enhanced.

Poisson and Schdinger equations for a deep-etched linear

guantum wire. An efficient numerical technique has been

developed, based on a Fourier expansion of the relevant po- B. =B e Bmk

tentials and densities, which greatly reduces the length of nmenm ’

such calculations. Two limiting cases, that of infinitely deep

etching, and the Wi_de base approximatipn, lead to t_he same 52, = da,efm. (A4)

approximate analytic forms for the confining potential, and

this has allowed us to formulate a simple ansatz for the fac-

torization of the wave functions into vertical and transversé/Ne then solve EqA2) by successive approximations, using

factors that leads to very accurate predictions. In additionas starting values those determined from the diagonal terms

this gives a further improvement in computing times, andof B, i.e., we decompose it into its diagonal and nondiagonal

justifies the commonly madab initio assumption that the parts:

electron gas is two dimensional.

Working in this two-dimensional approximation, we have o _

implemented a Thomas-Fermi model which is found to give B=B(P)+BND (A5)

good results for the bulk properties of the 2DEG. Further-

more, the resulting Thomas-Fermi density function has been

shown to be very well represented by the analytic form dué

to Shikinet al3* This analytic form leads to useful relations

among the central electron density, its radius, the Fermi S5.=BD)-1F
. . .. 0— y

level, and the effective spring constant of the confining po-

tential, which are accurately obeyed by the numerical

Thomas-Fermi results.

nd have

53,= 63,—BP " 1BND) 57, _,. (A6)
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In general, consider a functiof(x)=f(expE))=F(s).
APPENDIX A: NUMERICAL STRATEGY Since
To solve Eq(17), one has to invert sizable matrices, typi-
cally 24 terms in the Fourier series. We have found that it is d d
very accurate and fast to use the following method, based on de Xdx’ (B1)
the analytic knowledge of the approximate solutioaﬁfi).
Defining o ) ] ]
the coefficients in the Taylor expansion B{s) require the
_ derivatives
da,=an— yn(e Pnt2— 1), (A1)
Eqg. (17) can be rewritten as d\"
f F<“>(s)=(x&> f(x), (B2)

> Boméan=Fn, (A2) _ —
m evaluated at =0 andx=1, respectively. Applying this gen-

eral result to the functioS(¢), defined in(35), and changing
with the sign ofe, we have



S(é=e %)=8({=1)-eS'(£=1)

1
+ 5648 (6=1) 48" (¢=1)]
1
- 2238 (§=1)+38/(¢=1)+8"(¢=1)]

+ﬂ84[8,(§: 1)+78'(é=1)+6S"(é=1)

+S1(g=1)]+--- (B3

The power series expansion in E®5) is convergent forg
inside the unit circle, and therefore defines the funct®n

uniquely, but as it stands it can be used to compute deriva-

tives only up to order 2, since the expressions for highe
orders become divergent. Therefore we rede8t&€ as

aa—fmfff

which can be easily shown to be equivalent to the previou
definition using the series expansion of arctanThis ex-
pression allows one to compute derivatives to all orders. Ap-~
plying Eq. (B2) to Eq. (B4) gives

arctarf

dé¢”, (B4)

T
S(¢=1)+S(¢=1)= 7,

1
S'(§=1)+38(£=1)+S"(¢=1) =7,

S'(£=1)+7S'(£=1)+68"(¢=1)+S1)(£=1)=0,

S'(£=1)+158"(¢=1)+258"(£=1)+108")(é=1)+ S

1

X(E=D)=-3,

S'(é=1)+31S"(¢=1)+90S"(¢=1)+655")(¢=1)
+1550)(¢=1)+s¥)(¢=1)=0, ..., (B5)

and one obtains Eq36).

APPENDIX C: THE SHIKIN POTENTIAL
INCLUDING MIRROR TERMS

We wish to show that the Shikin density gives a harmonic
with a constant

jivalid to leading order both for small and for larg® and is

contribution to the lateral confining potential felt by the elec-
trons. To begin, note that a filament of unit charge per uni
length at positiorx gives a potential

2

2e
er(t,x)=—8—In|t—x|, (Cy
r

so that the Hartree potential due to the charge distribution

(49 is

_Ze [0y)

L

Z06).
(€2
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SYSTEMATICS OF PROPERTIES OF THE ELECTRO. .

11 395
The derivative is
X 2
ds(t)_ (¥ Vl_(ﬁ)d
ar 9w=2] t—x X
'Y 2
=—2f ——dx/, (C3
1 X —Z

with z=t/R. This latter integral is given on p. 246 of Ref.
10:

g(t)=2mz, |t|<R
=2m[z—z*—1], |t|>R. (C4

r

This result establishes the quadratic potential inside the
charge distribution. Direct evaluation &f(t=0) then leads
to Eq. (52).

The mirror charge which we take into account is that due

{o a layer of charge at distand®=2z, above the electron

gas. Corresponding mirror terms reflected in the sides of the
etched wire are neglected because the lateral dimension
w>D>R. Then similarly to Eq(68),

620'0
Ue,m(x): Gm(X)i
Er
with
R t\2
Gm(x)zJ’iR —<§) In[(t—x)2+D?]dt. (C5)

The argument of the logarithm may be expanded as

t?—
IN[D?+x%]+

|n[(t—X)2+D2]= D2+X2"‘

(C6)

and the result of integrating ovércan be expressed as

2D2 2

7R 5. 2 —X
Gm(X)%Tln D+ x +ZW
x? R?
~7R|InL+ P l_ﬁ + , (C7)

L2=D?+(R?/4). The first expression is

an excellent interpolation between these limits.
Keeping just the logarithm in the last line of E@7) is
equivalent to saying that the potential due to a filament of

charge, Eq(C1), is modified to read

t—x|
L

eV m(t,x)= —g—ln (C8)

r

and this leads to E¢52). If one also keeps the?/L? piece
of Eq. (C7), then the coefficient ok? in Eq. (52) will be
changed. This refinement is already included in &4).
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We remark that in Ref. 3 there is an undefined quantitylargex limit, one expands in powers ofX4. The appropriate

L which we can see arises naturally in our treatment as ther2=D2—(R2/4) from Eq. (C7), and the potential of Eq.

expression of the boundary condition on the surface of th€52) reduces correctly to the dipole formed by the filament

semiconductor via the mirror term. We also note that in theplus its mirror image.
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