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Quantum cavitation in liquid 3He: Dissipation effects
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We have investigated the effect that dissipation may have on the cavitation process in normatHiguid
Our results indicate that a rather small dissipation decreases sizeably the quantum-to-thermal crossover tem-
peratureT* for cavitation in normal liquic®He. This is a possible explanation of why recent experiments have
not yet found clear evidence of quantum cavitation at temperatures beloW*tipeedicted by calculations
which neglect dissipatiorfS0163-182@9)00429-4

Quantum cavitation in superfluid liquitHe has been un- wherep(r,t) denotes the particle density the *He atomic
ambiguously observed using ultrasound experimentaimass, and(r,t) is the velocity potential, i.e., the collective
techniques:® These experiments have shown that quantunvelocity is u(r,t)=Vs(r,t). The Hamiltonian density
cavitation takes over thermal cavitation at a temperafliye H(p,s) reads
around 200 mK, in good agreement with theoretical
calculations** so that the problem of cavitation in liquid H(p,s)= 1o 2 _

G + SO blem of p.S)=5Mpu+[w(p) ~ w(pm)], @
He can be considered as satisfactorily settled.

The crossover temperature correspondingHie has also wherew(p) is the grand potential density of the system and
been calculated; predicting thafT* ~120 mK. It tuns out  p,, is the density of the metastable homogeneous liquid. We
that preliminary results obtained in a recent experimentrefer the reader to Ref. 4 and references therein for details.
have not shown clear evidence of quantum cavitation for To describe the dynamics in the dissipative regime while
temperatures even below that value. However, the phenonstill being able to deal with inhomogeneodble, which is
enon has been firmly established as a stochastic process.GAucial for a proper description of cavitation in liquid helium,
possible explanation is that thermal cavitation is still thewe have introduced a phenomenological Rayleigh’s dissipa-
dominant process down to temperatures lower than pretion functior?'® 7

dicted. -
The method of Ref. 4see also Ref. J6is based, on the e ESP_ 3)
one hand, in using a density functional that reproduces the 2 p2'
thermodynamical properties of liquidHe at zero tempera- , .
ture (equation of state, effective mass, gt@as well as the From Lagrange’s equations,
properties of the®He free surface. A major advantage of alsc\ sc OF
using a density functional is that one can handle bubbles in —(—) —_——=— (4)
the vicinity of the spinodal region, where they are not empty It ox ox Ix

objects** and any attempt to describe the critical bubble inyith x being eithers or p, one gets the continuity and motion
terms of a sharp surface radius fdil@n the other hand, we equation, respectively:

have used a functional-integral approach especially well
suited to findT*. This gives us some confidence on the p+V(pu)=0 (5)
values obtained for the crossover temperature, and inclines

us to think that any appreciable discrepancy between theory

and experiment has to be attributed not to the method itself, M
but to some physical ingredient which has been overlooked

in the formalism. One such ingredient in the case of liquidFor an homogeneous fluid, the equation of motion res-
3He is dissipation, which is knoWrto decreasd@™®. Since  sembles the Navier-Stokes equatibn

“He is superfluid below the lambda temperature, we are ac- {

+V, . (6

Jduy Sw
W-Fuivkui = _Vk 5_p

1
£V (pu)
p

tually treating both quantum fluids within the same frame- % I+ l,,
work, the behavior of'He being accounted for by the dissi- ot 3
pationless version of the general formalism. @)
Our starting point is the real time Lagrangian densitywhereP is the pressure. For liquidHe at lowT, dissipation
L(p,s): depends on the mean free path of quasiparticles, and a pre-
. cise estimation of the magnitude of this effect in the tunnel-
L(p,s)=mps—H(p,S), (1) ing process is difficult. Since our interest here is to explore

+UinUi}:_ka+ 77Auk+ VK(V‘U),
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TABLE I. Equation of state, sound velocity, energy barrier, and 60
quantum action §=0) near the spinodal point.
— &0
p P C AQ Siti P
_3 ~-—- 30
(A9 (ban (m/s) (K) 40 b - 50
100
.0123 —3.08 42.3 1.3 16.0
0124 -3.07 47.8 1.8 19.4 5
.0125 —3.06 52.7 25 22.9
.0126 —-3.05 57.4 3.2 26.8 20 r
.0127 —-3.03 61.8 4.0 31.2
.0128 -3.01 66.1 4.9 36.0
.0129 —-2.99 70.1 5.8 41.5
— 0 L L
.0130 2.96 74.1 6.9 47.8 %35 31 23.05 3
.0131 —2.93 77.9 8.0 55.0 P(oar)
.0132 —2.90 81.7 9.3 63.5
.0133 —2.86 85.3 10.6 73.5 FIG. 2. Effective quantum action ifi units as a function of
0134 —-2.83 88.9 12.1 85.5 pressure for the values @femployed in Fig. 1.
.0135 —2.78 92.4 13.7 100.3
.0136 —2.74 95.9 15.5 119.2 Mpr(r)=[mw2— M;— EoM,]p*(r)=0. 9
.0137 —2.69 99.3 17.4 144.0
.0138 —2.64 102.7 19.6 175.4 The differential operatord, and. M, in Eq.(9) are, respec-
.0139 —2.59 106.1 21.9 212.6 tively, the linearization of
.0140 —2.53 109.4 24.6 256.6
w
) . VipV|— and VypV|—|¢, (10
the effect of a small viscosity om*, we have adopted the op p

pragmatic point of view of identifyingg with {+ »/3 and

presenting results for differerts close to the experimental in which only first-order terms ip*(r) and its derivatives

7 value it is known that at low temperatures, the shear vis-have been kegtSinceé depends on the densifyasp®?, in
cosity coefficient is much larger than the bulk viscosity actual calculations we have made a local-density approxima-
coefficient{, see, for example, Ref. 12Using the macro- tion, using as form factor in Eq(3) the expression

scopic viscosity coefficient, one should have in mind that well p2BpY3(r)], wherepgy, is the density of the liquid aT
are likely overestimating the dissipation effects. =0 andP=0, and¢{ is then density independent.

To obtainT* we have proceeded as indicated in Ref. 4, Equation(9) is a fourth-order linear differential, general-
writing the above equations in imaginary time=it and lin-  ized eigenvalue equation, whose physical solutions have to

earizing them around the critical bubble dengity seeking  fulfil p'(0)=p"(0)=0, and fall exponentially to zero at

solutions of the kind: large distances. We have solved it as indicated in Ref. 4.
Ciowr Once the largest dissipation-renormalized frequedgyhas
p(r,m)=po(r)+pi(r)e s, ®  peen determinetf the crossover temperature is obtained as
Upon linearization, we end up with the following equation T* =fiws/(2).
for wg andp(r): Table | collects the equation of state near the spinodal
point (psp=0.01191 A3, P ,=—3.102 ba), and other
200 : quantities which are of interest to analyze the experimental
results? Our spinodal point compares very well with recent
Monte Carlo calculation$ (ps,=0.0121A73, P,
150 t =—3.12+0.10 baj, and also with other phenomenological
approaches?!®
< We showT* in Fig. 1 as a function of pressure for dif-
€ 100 ferent¢ values. In particularé= 100w P roughly corresponds
= to the experimental vald&of 7 at P=0 and T=100 mK.
The associated effective quantum actiSnobtained asS
50 =AQ/T*, whereAQ is the maximum of the energy barrier,
is displayed in Fig. 2.
Figure 3 shows(r) at P=—3 bar for threet values, as
o_32 0 28 well as the critical bubble densify,(r). The linearized con-

tinuity equationp(r) =V (pou) implies thatp*(r) must have

nodes, as it imposes that the integralpd{r) is zero when
FIG. 1. T* as a function of pressure for differesitvalues(in  taken over the whole space.

uP). The homogeneous cavitation pressigT*) is shown as When¢ is small enough and thé1, term in Eq.(9) can

circles for (Vt)ex,=10° A3s. be treated perturbatively, a straightforward calculation yields

P(bar)
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FIG. 4. Homogeneous cavitation press@gas a function ofl

FIG. 3. Particle density profileo(r) in A~3 for P=—3 bar  for (Vt)ex,=10° As, and thet values employed in Figs. 1 and 2.
(solid line), as well asp’(r) densities for threg¢ values(arbitrary

units). . .
In conclusion, we have developed a phenomenological

> model to size the effect of dissipation in the cavitation pro-

we= wgo (%) _ % (11) cess in liquid®He that allows one to handle realistic critical
’ 2m 2m cavitation configurations near the spinodal line, and to treat
both helium isotopes within the same frame, using the dissi-

aswooand|p3(®) the higher frequency solution of the non- We have obtained indicate that for liquite even a moder-

viscous problem w2, — M1)|pL(@)=0, and have defined ate dissi_pa}tion may redu_ce thg crossover temperature i.n a
M25—<p(1)(0)|/\/12|p(1)(0)>>0. Equation(11) is similar to that qon—negllglble amount, dlsplgcmg the hompgengous cavita-
given in Ref. 8 for the dissipation-renormalized frequeagy tion pressure towardg the splngdal value. Viscosity may then
in the case of frequency-independent damping. pe the reason of the mcongluswe re;ults for quantgm pawta-
Figures 1 and 2 indicate that for viscosity values of thetion reported in Ref. 5 which, if confirmed, would indicate
order of the experimental one, a sizeable decrease of tHBat dissipation plays a crucial role in quantum cavitation in
crossover temperature occurs. However, the present modéguid helium. The experimental study of cavitation in under-
still predicts that a transition from thermal to quantum cavi-Saturated®’He-*He mixtures might then uncover a structure

tation takes place in liquidHe. much richer than that theoretically described in Ref. 6, since
We finally obtain the homogeneous cavitation presgyre He is still superfluid and’He is in the normal phase. This
from the equatioh would open the possibility of studying the influence of dis-
sipation in the cavitation process varying thide concentra-
1=(Vexpdo %, (12 tion.
taking for the experimental volume time (Vt)., a typical We would like to thank Sebastien Balibar, Eugene Chud-
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