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ABSTRACT

Mice  have  been  used  widely  to  define  the  mechanism  of  action  of  fibric  acid 

derivatives. The fibrates are pharmacological agonists of the peroxisome proliferator-

activated receptor  α (PPARα), whose activation in human subjects promotes potent 

reduction in plasma levels of triglycerides (TG) with concomitant increase in those of 

HDL-cholesterol. The impact of PPARα agonists on gene expression in humans and 

rodents is however distinct;  such distinctions include differential  regulation of key 

genes of lipid metabolism. We evaluated the question as to whether the human and 

murine genes encoding apolipoprotein apoAV, a regulator of plasma concentrations 

of  TG-rich  lipoproteins, might  be  differentially  regulated  in  response  to  fibrates. 

Fenofibrate, a classic PPARα agonist, repressed expression of mouse Apoa5 in vivo in 

a mouse model transgenic for the human APOA5 gene; by contrast, expression of the 

human ortholog was up-regulated. Our findings are consistent with the presence of a 

functional PPAR-binding element in the promoter of the human  APOA5 gene; this 

element is however degenerate and non-functional in the corresponding mouse Apoa5 

sequence,  as  demonstrated  by  reporter  assays  and  gel  shift  analyses.  These  data 

further highlights the distinct mechanisms which are implicated in the metabolism of 

TG-rich  lipoproteins  in  mice  as  compared  to  man.  They  equally  emphasize  the 

importance  of  the  choice  of  a  mouse  model  for  investigation  of  the  impact  of 

pharmaceutical modifiers on hypertriglyceridemia. 
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Introduction

Hypertriglyceridemia  is  an  independent  and  predictive  risk  factor  for 

atherosclerosis and a key feature of the metabolic syndrome [1-3]. 

The  gene  encoding  apolipoprotein  (apo)  APOA5 is  recognized  as  a  potential 

determinant of plasma levels of triglyceride (TG) and TG-rich lipoproteins in mice[4]. 

Indeed, overexpression of APOA5 in genetically-modified mouse models consistently 

leads  to  reduction  in  circulating  TG concentrations,  whereas  apoAV deficiency is 

associated with hypertriglyceridemia [5, 6]. In vitro and in vivo experiments in mice 

support a role for apoAV in the potentiation of lipoprotein lipase  (LPL) activity [7-9]. 

LPL  is  a  central  player  in  determining  plasma  TG  levels,  as  LPL  catalyses  the 

hydrolysis of  the  hydrophobic  core  of  TG-rich  lipoproteins  (TRL),  including 

chylomicrons and VLDL. In addition, apoAV has been proposed to enhance VLDL 

remnant removal by facilitating particle binding to the LDL receptor and interaction 

of  these particles  with the LDL receptor-related protein (LRP) and  mosaic  type-1 

receptor (SorLA) [10, 11]

Fibrates  are  lipid-modifying  agents  which  are  widely  employed  in  the 

treatment  of hypertriglyceridemia.  Thus,  pharmacological  activation  of the nuclear 

receptor peroxisome proliferator-activated receptor-α (PPARα, NR1C1) by fibrates 

lowers plasma TG levels not only by increasing conversion of fatty acids to acyl-CoA 

derivatives  and  fatty  acid  oxidation  (β-oxidation),  but  in  addition,  by  stimulating 

intravascular LPL-mediated lipolysis of TRL [12-14]. Following heterodimerization 

of activated PPARα with the retinoid X receptor (RXR), the nuclear receptor complex 

binds to peroxisome proliferator response elements (PPREs). As a direct consequence, 

expression  of  target  genes  implicated  in  fatty  acid  metabolism  (L-FABP, 

mitochondrial  3-hydroxy-3-methylglutaryl-Coenzyme  A  synthase)  and  β-oxidation 
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(acyl-CoA oxidase,  ACOX)  [15-18] is  regulated.  In addition,  fibrates   activate  the 

expression of the LPL gene while concomitantly repressing that of the LPL inhibitor, 

APOC3 [19, 20]. 

Recent  studies  have shown that  primate  APOA5 expression is  regulated  by 

PPARα. In human hepatic cells,  activation of PPARα by several  agonists induces 

elevation in  APOA5 mRNA levels. Indeed, analysis of the human  APOA5 promoter 

region revealed the presence of a functional PPRE, consisting of a direct repeat (DR1) 

motif 5'-AGGTTAAAGGTCA-3' located at –271 nt from the transcription start site 

[21, 22]. Consistent with this finding, 14 days of treatment with 0.3 mg/kg/day of the 

PPAR  agonist LY570977 L-lysine in the cynomolgus monkey resulted in a 2-fold 

increase in plasma apoAV concentration and a 50% decrease in TG levels [23]. These 

findings demonstrated that pharmacological activation of PPARα can lead to increase 

in plasma apoAV levels, thereby shedding new light on the molecular mechanisms 

whereby PPARα agonists lower plasma TG levels in primates. It can therefore be 

proposed  that  apoAV  contributes  to  the  hypotriglyceridemic  effect  of  PPARα 

agonists by enhancing LPL activity upon PPARα activation. 

Peroxisome proliferators  were  originally  characterized  in  rodents  as  agents 

that  cause  peroxisome  proliferation  and  hepatocarcinoma  when  chronically 

administered  [24].  On the  other  hand,  PPAR agonists  are  not  associated  with  an 

elevated  risk  of  liver  cancer  or  peroxisome  proliferation  in  humans,  indicating  a 

species  difference  in  the  effects  of  fibrates  in  hepatic  tissue  [25].  Differential 

regulation of genes involved in lipid metabolism by pharmacological  activation of 

PPARα has equally been reported between species. Thus, whereas the major HDL 

apolipoprotein gene APOAI is induced by PPARα in humans, the mouse orthologous 

gene is down regulated  [26]. Recently, Dorfmeister et al. have shown that a fish oil 
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diet  rich in polyunsaturated fatty acids or rosiglitazone,  both of which are PPARγ 

activators,  increased  Apoa5 mRNA  levels  in  livers  of  obese  and  insulin-resistant 

Zucker rats, but tended to diminish both liver and plasma apoAV. However, they also 

observed a lack of increase in mRNA levels in primary rat hepatocytes treated with 

PPAR-α or -γ  specific agonists, thereby suggesting that rat Apoa5 may be insensitive 

to stimulation by PPAR agonists, and that the effects of rosiglitazone in Zucker rats 

are not directly mediated by PPARγ [27].

In the present study, we evaluated the question as to whether the human and 

murine APOA5 genes could be differentially regulated by fibrates. We confirmed that 

the  human  APOA5 promoter  activity  is  up-regulated  following  PPARα and 

fenofibrate treatment in a hepatic cell line. In contrast, the proximal promoter region 

of the mouse Apoa5 gene was not responsive. In vivo analysis of mice transgenic for 

the human APOA5 gene (hAPOA5-mice) confirmed these results. Indeed, short term 

oral gavage of hAPOA5-mice with fenofibrate resulted in a dose-dependent increase 

of human  APOA5 mRNA levels in the liver, whereas those of mouse  Apoa5 were 

concomitantly slightly down-regulated. These data establish that hepatic expression of 

the mouse and human APOA5 genes is regulated in an opposing manner by fibrates in  

vivo, and further highlight a critical difference in the regulation of TRL metabolism 

between mice and humans. 
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Materials and methods

Animal protocols––  All animal procedures were performed with approval from the 

Direction  Départementale  des  Services  Vétérinaires,  Paris,  France,  under  strict 

compliance with European Community Regulations. The animals were housed in a 

conventional animal facility on a 6 am to 6 pm dark/light cycle. They were weaned at 

21 days and fed a normal mouse chow diet ad libitum (RM1; Dietex France). Human 

APOA5 transgenic mice in an FVB genetic background were generously provided by 

Dr E.M. Rubin (Genome Sciences  Department,  Lawrence  Berkeley  National  Lab, 

CA).  The  APOA5 transgene  was  maintained  in  a  hemizygous  state  by  breeding 

transgenic animals with wild-type FVB mice. Genotyping of the mice were performed 

as previously described [5]

2-3 month old hAPOA5 male mice and wild-type control male littermates were 

given an oral gavage of 0.2 ml fenofibrate (Sigma) for five days, either once daily at a 

dose of 100 mg/kg or twice a day at a dose of 125 mg/kg. hAPOA5 transgenic and 

control  non-treated  groups  received  0.2  ml  of  vehicle  only  (0.5% hydroxypropyl 

methylcellulose, 1% Tween 80). Four hours after the last dose, blood was collected 

under isoflurane anaesthesia. The animals were then sacrificed by cervical dislocation 

and livers were collected, rinsed in ice-cold PBS, and snap-frozen in liquid nitrogen. 

RNAs were prepared from frozen tissue specimens using TRIzol reagent (Invitrogen).

Plasma  and  lipid  analyses  - Blood  samples  were  collected  in  EDTA-coated 

Microvette  tubes  (Sarstedt)  by  retro-orbital  bleeding  using  heparinized  micro-

hematocrit  capillary  tubes.  Plasma  samples  were  stored  frozen  at  -80°C.  Total 

cholesterol  (Roche Diagnostics)  and triglyceride (Biomérieux)  concentrations  were 

measured by enzymatic colorimetric assays. Plasma lipoproteins were fractionated by 
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gel filtration on two Superose 6 (Amersham Biosciences) columns connected in series 

using a BioLogic DuoFlow Chromatography System (BioRad) [28].

Real  Time PCR Quantification  of  mRNAs–– cDNA preparation  and quantitative 

PCR analysis were performed as previously described [29]. The sequences of forward 

and reverse primers are shown in Table I. The specificity of the primers was verified 

by  showing  that  the  real  time  reverse  transcriptase  (RT)-PCR  reaction  product 

generated a single band after agarose gel electrophoresis. In addition, each couple of 

primers  was  tested  in  successive  dilutions  of  cDNA  to  analyze  and  validate  its 

efficiency.  The levels of expression of the target genes were normalized to mouse 

ribosomal protein S3 (Rps3) expression to compensate for variations in input RNA 

amounts (Rps3 levels were unaffected by fenofibrate treatment). 

Plasmids––  p–617/+18  hAvLUC containing  the  5’  flanking  region  of  the  human 

APOA5 gene (-617 to +18) cloned in front of the promoter-less luciferase gene has 

been  previously  described  [21].  To  generate  the  luciferase  reporter  plasmids  p-

1831/+17 and p-617/+17 mAvLUC, C57BL/6 mouse genomic DNA was amplified by 

PCR using the primer pairs mAPOAV-1831f 5'-AGT CGG TAC CGG CGT GGC 

TCA CTG TTT TTA-3' and mAPOAV+17r 5'-AGT CAG ATC TCA CCT GCT CGG 

TTC TGG G-3', and mAPOAV-617f 5'-AGT CGG TAC CTG TGA GGG AAG ACT 

CTT GAG G-3' and mAPOAV+17r, respectively. The PCR products were digested at 

their 5' and 3' ends by KpnI and BglII restriction enzymes, respectively (restriction 

sites  underlined in the primer  sequences),  and subsequently  cloned in  KpnI/BglII-

digested  pGL3  basic  vector  (Promega).  The  sequences  were  verified  in  the  final 

constructs by DNA sequencing. Expression plasmid for PPARα has been previously 

described [21].
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Cell Transfection and Reporter Assays–– Human hepatoblastoma Hep3B cell lines 

were cultured in Dulbecco's modified Eagle medium (Invitrogen) supplemented with 

10% (v/v) foetal calf serum. On day 0, cells were seeded on 24-well plates at a density 

of  105 cells/well.  On  day  1,  cells  were  transfected  with  FuGENE  6  transfection 

reagent  (Roche  Applied  Science)  according  to  the  manufacturer’s  instructions. 

Typically, each well of a 24 well plate received 250 ng of human or mouse APOA5 

promoter constructs, 15 ng of a β-galactosidase expression plasmid and, either 85 ng 

of the pSG5-PPARα expression plasmid or a corresponding amount of empty pSG5 

vector. After incubation for 5h, the medium was replaced by fresh complete medium 

in the presence of either 5 µM fenofibrate (Sigma) or vehicle (DMSO). On day 4, cell 

extracts were prepared in lysis buffer (Promega) and β-galactosidase and luciferase 

activities  were  determined  as  described  previously  [30].  Luciferase  values  were 

normalized  to β-galactosidase  activities.  Transfection  data  represent  the mean (+/- 

standard deviation) of four independent experiments each performed in triplicate. 

In Vitro Transcription/Translation and Electro Mobility Shift Assays (EMSAs)––

Human PPARα and RXRα proteins were synthesized  in vitro from the expression 

plasmid  using  TNT® Quick  Coupled  transcription/translation  system  (Promega) 

according to the instructions of the manufacturer. In order to obtain an unprogrammed 

lysate  as a negative control  for EMSA, a reaction  was performed with the empty 

vector pSG5. Double-stranded oligonucleotides were radiolabelled by fill-in with the 

Klenow  fragment  of  DNA  polymerase  I  and  used  as  probes.  Samples  were 

electrophoresed at 4 ºC on a 4.5% polyacrylamide gel in 0.5X TBE buffer (45 mM 

Tris, 45 mM boric acid, 1 mM EDTA, pH 8.0). Gels were dried and analyzed using 

PhosphorImager STORM 860 and ImageQuant software (Amersham Biosciences).
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Statistical analysis.

The statistical significance of the differences between groups was evaluated using the 

unpaired two-tailed Student t-test. P<0.05 was considered significant.
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Results 

Presence of a functional PPRE in the proximal flanking region of the human 

APOA5 5' gene, but not in the mouse Apoa5 gene – 

Previously, we identified two PuGGTCA hexamers binding sites separated by a single 

nucleotide (DR1) between nt –271 and –259 in the promoter sequence of the human 

APOA5 gene. Luciferase assay and gel shift assays allowed us to demonstrate that this 

APOA5 DR1 is a genuine PPRE [21]. Interestingly, comparison of the corresponding 

human,  baboon, chimpanzee,  mouse and rat 5'  flanking sequences surrounding the 

DR1/PPRE  element  revealed  that  the  human  APOA5 DR1  element  is  highly 

conserved  among  primates,  but  not  in  the  rat  or  mouse  gene  promoters  (Fig1A). 

Indeed, alignment of the sequences reveals four nucleotide differences in the latter 

species as compared to the human  APOA5 DR1 (hDR1) sequence. Electrophoretic 

mobility  shift  assay  analysis  revealed  that  these  nucleotide  changes  in  the  mouse 

Apoa5 sequence abolished binding of the PPAR-RXR heterodimer (Fig1B, lane 8), 

whereas a specific protein–DNA complex was clearly detected when a probe for the 

human  APOA5-DR1 sequence  was  incubated  in  the  presence  of  the  recombinant 

PPARα and RXR proteins (Fig1B, lane 7). These data are in agreement with recent 

studies demonstrating that both HNF-4 [31] or RORα [32], nuclear factors which bind 

to response elements consisting of the core recognition sequence AGGTCA, bound to 

the human APOA5-DR1sequence, but not to the corresponding mouse sequence. 

Mouse APOA5 promoter is not regulated by PPARα - 

To search for other potential PPREs in mouse Apoa5 promoter, we cloned 1.8 kb (–

1831/+18mAvLUC)  and  0.6  kb  (–617/+18mAvLUC)  of  the  5'  flanking  region 

upstream of the transcription start site of the murine  Apoa5 gene sequence into the 
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firefly luciferase pGL3-basic vector. In Hep3B cells, the luciferase activities of these 

constructs  remain  unchanged  when  co-transfected  with  PPARα expression  vector 

alone or in combination with the PPARα agonist fenofibrate (Fig 2). Conversely, in 

the same experiment, a human promoter construct previously demonstrated to respond 

to PPARα activation  [21] displayed a statistically significant increase in activity of 

approximately  3.5-  and  more  than  4.5-fold  when  co-transfected  with  a  PPARα 

expression  vector  in  absence  or  presence  of  fenofibrate,  respectively.  Of  note,  in 

contrast  to what we previously described with the PPARα agonist GW9003 using 

similar  experimental  conditions  [21],  the  enhanced  effect  of  fenofibrate  on  the 

induction of human APOA5 promoter activity by the over-expression of PPARα was 

only modest and did not reach statistical significance. This discrepancy may be due to 

the difference of affinity between the two agonists for PPARα and/or the amount of 

effective drug available in the cell. Taken together, these data demonstrate that the 

proximal 5' region in the mouse gene is not responsive to PPARα in vitro.

Fibrate  treatment  upregulates  human  APOA5 gene  expression,  but 

downregulates that of mouse Apoa5 gene in vivo -

To  determine  whether  the  mouse  Apoa5 gene  could  respond  to  PPARα agonists 

through distant regulatory regions, we treated mice for a short period with fenofibrate 

at two different dosages, and evaluated mouse Apoa5 mRNA levels in the liver. These 

studies were performed concomitantly in wild-type (WT) mice and in mice transgenic 

for a 26-kbp fragment of human chromosome XI solely containing the entire APOA5 

gene, including its flanking regulatory regions [5]. Under the conditions tested, human 

APOA5 mRNA  levels  measured  by  Q-PCR  were  increased  modestly,  and  dose 

dependently (1.3- and 1.6-fold), when hAPOA5-mice received an oral daily gavage of 
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fenofibrate (100 or 250 mg) (Fig 3A). Comparatively, mouse Apoa5 gene expression 

was decreased similarly (20%) at the two fenofibrate doses in both WT and hAPOA5-

mice (Fig 3B). As a control for the efficacy for short term fenofibrate treatment, we 

quantified the level of expression of genes known to be either repressed or activated 

by PPARα. Thus, we observed that fenofibrate treatment decreased the steady state 

mRNA levels of both mApoa1 (Fig3C) and mApoc3 (Fig 3D). In contrast, mLpl (Fig 

3F) and mAcox (Fig.3E) mRNA levels were strongly upregulated in fenofibrate-fed 

mice.  For all these genes, the effects were comparable in both WT and hAPOA5-

mice. 

Taken  together,  these  results  demonstrate  an  inverse  response  of  the  mouse  and 

human  APOA5  genes  to  PPARα agonist  treatment,  in  which  transcription  of  the 

human gene is activated in vivo, whereas hepatic mRNA levels of the murine ortholog 

are downregulated in response to fenofibrate treatment.

Impact of fenofibrate treatment on plasma lipid and lipoprotein levels in WT 

and hAPOA5 mice- 

The impact of a 5-day fibrate treatment in both WT and hAPOA5-mice on plasma 

lipid  and  lipoprotein  levels  was  evaluated  at  the  250  mg/kg  dosage. Lipid 

concentrations were determined at  the time of sacrifice,  which was performed 4-h 

after the final gavage of non-fasted mice. Plasma TG levels were lower in hAPOA5-

mice as compared to WT mice (Fig. 4A), as previously reported  [5]. In addition, a 

slight and similar reduction in plasma TG levels was observed in both drug treated-

groups, but this reduction did not reach statistical significance. Surprisingly, plasma 

total cholesterol (TC) (Fig. 4B) levels were found to be statistically lower in hAPOA5-

mice  than  in  WT untreated-mice.  Plasma  TC  was  equally  found  to  be  lower  in 
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fenofibrate-fed  hAPOA5-mice  as  compared  to  untreated-hAPOA5-mice;  such  a 

reduction  was  not  observed  in  the  WT  group.  However,  fenofibrate  treatment 

markedly and similarly modified the distribution of lipoprotein cholesterol in both 

WT  and  hAPOA5-mice.  Indeed,  cholesterol  content  was  reduced  in  fractions 

corresponding  to  HDL  particles  of  normal  size,  with  appearance  of  larger  HDL 

particles  (Fig.  4C).  Such  specific  change  in  HDL  particle  distribution  is,  in  all 

likelihood,  a  direct  consequence of  down-regulation  of  hepatic  scavenger  receptor 

SR-BI expression at the protein level by fibrates which has been previously reported 

in  mice  [33].  Indeed,  reduced  expression  of  SR-BI  consistently  results  in  the 

appearance  of larger  HDL, rich in  cholesterol,  but equally  in  elevation  of  plasma 

levels of HDL-C (and plasma TC) in mice [28]. In the present study, the concomitant 

marked  reduction  of  mouse  APOA1 gene  expression  following  fenofibrate-250 

treatment in the WT group (Fig. 3C) most likely masked the HDL-C raising effect of 

knockdown expression of SR-BI; thus resulting in no net change in plasma TC levels 

(Fig. 4B) but in the presence of large HDL particles and a decrease in the level of 

regularly sized HDLs (Fig. 4C).
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Discussion

It is well established that PPARα activation has distinct effects in human and mice, 

especially  on  peroxisome  proliferation  [25].  In  addition,  with  respect  to  lipid 

metabolism,  it  is  established  that  PPARα agonists  differentially  regulate  genes 

between humans and rodents  including,  for example,  the  APOA1 or  PLTP genes. 

Here, we demonstrate that mouse  Apoa5 is repressed by fenofibrate treatment in a 

mouse model transgenic for the human APOA5 gene, whereas the human ortholog is 

up-regulated. These findings are consistent with the presence of a functional PPRE in 

the human APOA5 promoter, which is degenerate in the corresponding mouse Apoa5 

sequence. These observations substantiate the differential impact of PPARα activators 

on lipid metabolism in human and rodents.

Fibrates  are  potent  pharmacological  agents  for  reduction  of  plasma  levels  of 

triglycerides and TG-rich lipoproteins in humans, as they notably induce elevation in 

LPL activity through PPAR-mediated activation of LPL gene expression, but equally 

repress expression of the  APOC3 gene,  an inhibitor of LPL activity.  Although we 

observed a marked increase in hepatic Lpl expression and a concomitant decrease in 

Apoc3 expression associated with fenofibrate treatment in WT mice, nonetheless there 

was only a trend towards fall in TG levels in these animals as compared to untreated-

controls. A similar observation was made in hAPOA5 mice, as we did not observe an 

additional  reduction  in  plasma  TG  levels  in  hAPOA5-mice  in  response  to  drug 

treatment, despite evidence both of activation of human APOA5 gene expression and 

similar PPAR-mediated changes in expression of Lpl and Apoc3 genes as seen in the 

WT  group.  The  experimental  conditions  (non-fasting  chow-fed  mice,  emulsifier 

molecules used for oral gavage) may have masked a net lowering effect of fenofibrate 
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on plasma TG levels and in particular in hAPOA5-mice. In the latter group, one could 

have  expected  diminished  TG concentrations  following  hAPOA5 activation.  Such 

activation was nonetheless only moderate and the concomitant reduction in levels of 

mouse  Apoa5 in  response  to  drug  treatment  may  have  introduced  a  confounding 

effect.  Moreover,  it  should  be  mentioned  that  up-regulation  of  hAPOA5 was  not 

confirmed in plasma, which represents a limitation to the present study. Nevertheless, 

these results may equally raise the question of the role of ApoAV in the overall  TG 

lowering action of fibrates. Notably,  if  ApoAV and TG plasma levels were found 

inversely  correlated  in  cynomolgus monkeys  receiving  the  potent  and  selective 

PPARα  agonist  LY570977  L-lysine,  the  marked  fall  in  plasma  TG  preceded  the 

elevation  of  plasma  levels  of  ApoAV  in  this  study  [23].  Finally,  apparent 

contradictions are evident in the literature with respect to the relationship between 

plasma  TG  and  apoAV  levels.  Indeed,  whereas  transgenic  mice  overexpressing 

hAPOA5 displayed significant reduction in plasma TG concentrations, and whereas 

apoA-V deficient  mice  exhibited  a  net  increase  in  plasma  TG levels, it  has  been 

recently demonstrated that apoAV concentrations are positively correlated with TG 

levels in normolipidemic hAPOA5 mice, as reported in humans [34].

Whereas  consistent  associations  between  common  polymorphisms  of  the  APOA5 

gene and plasma TG levels have been reported, the demonstration of such genetic 

associations with plasma cholesterol  levels is less clear.  Nonetheless,  a number  of 

studies have highlighted associations of genetic variants of  APOA5 with circulating 

HDL-C  levels  in  populations  of  different  ethnic  origin  [5,  6,  35-39],  thereby 

suggesting that apoAV may contribute to regulation of HDL-C levels. Indeed, apoAV 

is mainly present in HDL during the fasting period, which could suggest a potential 

role  of  apoAV in  HDL-cholesterol  metabolism.  In  the present  study,  significantly 
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lower plasma TC and HDL-C levels were observed in chow-fed hAPOA5-mice as 

compared to wild-type controls. Such differences were not reported in the original 

publication describing the generation of hAPOA5-mice, although a trend existed [5]. 

However, it  is of note that  adenovirus-mediated overexpression of apoAV in mice 

resulted in a profound decrease in TG concentrations but equally plasma cholesterol 

levels[6].  Moreover,  cross-breeding  of  mice  overexpressing  human  APOA5 with 

either human APOC3 transgenic mice or ApoE2 knock-in mice produced a decrease 

in plasma cholesterol concentrations  [7, 40]. Further studies focusing on the role of 

apoAV in cholesterol and HDL metabolism are clearly needed to understand whether 

there exists a potential direct  action of apoAV or indirect  consequences of apoAV 

activities on HDL-C levels and HDL particle distribution. Interestingly,  fenofibrate 

treatment resulted in significant diminution in plasma cholesterol levels in hAPOA5-

mice, an effect not observed in the WT group. Whether increase in hapoAV levels 

following fenofibrate treatment may have contributed to the diminished cholesterol 

levels  observed  in  transgenic  mice  remains  speculative  and  requires  additional 

studies.

Hepatic mRNA levels of the mouse Apoa1 and Apoc3 genes were markedly reduced 

in response to oral gavage with fenofibrate. This effect, which was dose-dependent 

(Fig. 3CD), may result from PPARα-mediated induction of the nuclear receptor Rev-

erbα  [20, 41]. Indeed, the presence of a response element for this repressor in the 

promoters  of  rodent  Apoa1 [42] and  Apoc3 genes  support  this  hypothesis.  The 

sequence motifs for Rev-erbα and the nuclear hormone receptor RORα are closely 

related [43] which explains that the Rev-erbα response element present in the apoa1 

gene is  also a RORα element  [42,  44]. Human  APOA5 is a target  gene for ROR 
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through  binding  to  the  half-core  AGGTCA  DR1/PPRE  site[45],  whereas  mouse 

apoa5 is not, due to a nucleotide difference in the half-core site which prevents RORα 

binding to the mouse promoter  [32]. Consistently, mouse  Apoa5 gene expression is 

not  affected  in  the  staggerer  mutant  mouse  which  carries  a  deletion  in  the  gene 

encoding for RORα [32]. Thus, the modest decrease of mApoa5 mRNA levels that we 

observed in the livers of fenofibrate-fed mice is unlikely to result from PPAR-induced 

Rev-erbα repression mechanism,  as most likely occured for the  Apoa1 and  Apoc3 

genes. This hypothesis is consistent with the fact that the activity of the mouse Apoa5 

promoter  was  not  repressed  by  PPARα and  fenofibrate  treatment  in  transient 

transfection assays (Fig. 2). 

In conclusion, this study provides additional evidence that extrapolation from mouse 

to man of experimental findings involving the pharmacological action of fibric acid or 

their derivatives on lipid metabolism must be conducted with considerable caution. 

Nonetheless, comparison of hAPOA5-mice with non-transgenic controls in response 

to treatment with PPAR agonists may prove useful in deciphering the physiological 

significance of apoAV in the regulation of TG metabolism in fasting or non-fasting 

conditions, and equally in normo- or hyperlipidemic contexts. In the latter context, 

cross-breeding  of  hAPOA5-mice  with  the  ApoE2  knock-in  mouse  model  recently 

allowed demonstration of an atheroprotective effect of hapoAV overexpression on a 

background of mixed dyslipidemia; this effect was further enhanced upon hAPOA5 

gene activation  by fenofibrate[40].  Finally,  such studies  may highlight  a  potential 

mechanism  by  which  apoAV  could  impact  HDL-C  levels.  In  this  respect, 

crossbreeding  of  hAPOA5-mice  with  the  recently-described  hyperlipidemic 

E3L.CETP mouse model [46], in which the dual ability of fibrates to potently reduce 
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plasma  TG  and  concomitantly  increase  HDL-C  was  clearly  demonstrated,  may 

constitute an interesting approach. 
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FIGURE LEGENDS

FIGURE 1. The human  APOA5, but not mouse  Apoa5, 5' flanking region contains a 

functional PPRE (A), Sequence comparison of the human DR1/PPRE element present 

in the 5' flanking region of the human  APOA5 gene to the corresponding baboon, 

chimpanzee,  mouse  and  rat  sequences.  The  gray  boxes denote  the  nucleotide 

differences  between the primate and rodent sequences.  The hexameric  sites are in 

boldface  type and  their  orientations  are  indicated  by  arrows.  (B) EMSAs  were 

performed  using  labelled  double-stranded  oligonucleotides  corresponding  to  the 

human APOA5 gene sequence spanning nt –275 to –247 (hDR1) or the corresponding 

sequence in mouse Apoa5 gene (mDR1). Oligonucleotides were incubated with either 

in  vitro transcribed/translated  PPARα,  or  RXRα,  or  PPARα and  RXRα,  or  with 

unprogrammed  reticulocyte  lysates  (pSG5).  The  PPARα/RXRα-hDR1 complex  is 

indicated by an arrow.

FIGURE 2. Transactivation of the human but not the mouse APOA5 gene promoter 

by PPARα and fenofibrate. Hep3B cells were transfected with plasmids containing 

a  luciferase reporter  gene driven by either  the –617/+18 5’-flanking region of the 

human APOA5 gene or the  –617/+18 or -1831/+18 5’-flanking regions of the mouse 

Apoa5  gene. The  APOA5 promoter constructs were co-transfected with the PPARα 

expression vector (or corresponding control vector pSG5) in the presence of either 5 

µM fenofibrate  or vehicle  (DMSO). Results  are expressed as -fold induction over 

control. **, p < 0.001

FIGURE 3. Gene activation in livers of wild-type and hAPOA5-mice treated with 

fenofibrate. Wild-type (WT) and hAPOA5 transgenic mice were treated with vehicle 

(control), 100 mg/kg/day (fenofibrate-100 group), or 250 mg/kg/day (fenofibrate-250 

group) of fenofibrate for 5 days. A, Total RNA was extracted for analysis by real time 

RT-PCR as described under “Experimental Procedures”. human  APOA5 (A), mouse 

Apoa5 (B), mouse Apoa1 (C), mouse Apoc3 (D), mouse Acox (E) and mouse Lpl (F) 
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mRNA levels, normalized to mouse Rps3 content, are expressed relative to untreated 

WT  animals  set  as  100%  (except  for  the  hAPOA5 gene  whose  100%  reference 

corresponds to untreated-hAPOA5-mice) (mean±S.D.). Only data for control animals 

of the fenofibrate-250 group study are shown for more clarity. Significant differences 

compared with the corresponding untreated controls are as follows: *, p < 0.05; **, p 

< 0.001 N.D., not detected 

FIGURE 4. Plasma lipid parameters in fenofibrate-treated mice: Levels (mg/dl) of 

triglycerides (A) and total cholesterol (B) and lipoprotein cholesterol distribution (C) 

were determined in plasma from non-fasted wild-type (WT) or hAPOA5 mice treated 

with  vehicle  (control)  or  250  mg/kg/day  of  fenofibrate  for  5  days.  Approximate 

elution  volumes  for  particles  in  the  size  ranges  of  VLDL,  LDL,  and  HDL  are 

indicated in (C). Significant differences are as follows: *, p < 0.05; **, p < 0.001; NS: 

Not significantly different from respective controls
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