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In this paper we show that if the electrons in a quantum Hall sample are subjected to a constant electric field
in the plane of the material, comparable in magnitude to the background magnetic field on the system of
electrons, a multiplicity of edge states localized at different regions of space is produced in the sample. The
actions governing the dynamics of these edge states are obtained starting from the well-known Schro¨dinger
field theory for a system of nonrelativistic electrons, where on top of the constant background electric and
magnetic fields, the electrons are further subject to slowly varying weak electromagnetic fields. In the regions
between the edges, dubbed as the ‘‘bulk,’’ the fermions can be integrated out entirely and the dynamics
expressed in terms of a local effective action involving the slowly varying electromagnetic potentials. It is
further shown how the bulk action is gauge noninvariant in a particular way, and how the edge states conspire
to restore theU~1! electromagnetic gauge invariance of the system. In the edge action we obtain a heretofore
unnoticed gauge-invariant term that depends on the particular edge. We argue that this term may be detected
experimentally as different edges respond differently to a monochromatic probe due to this term.
@S0163-1829~96!03835-0#

I. INTRODUCTION

Field theories of planar systems have enjoyed a consider-
able measure of popularity in recent years, particularly in the
sphere of condensed-matter physics. Specifically, the field
theory of the quantum Hall effect~QHE!, in its various in-
carnations, is the focus of a great deal of vigorous activity.
As it was noted by several authors,1–4 a finite Hall sample
supports gapless excitations at the edge~edge states! which
have been experimentally measured. The action governing
the edge excitations plays a crucial role in maintaining the
electromagneticU~1! gauge invariance,2–4 and it would be a
worthwhile endeavor to extract this action in a clean fashion
from the underlying microscopic action describing the ge-
neric QHE.

In the sequel, we have developed a technique which al-
lows us to calculate the effective action for strong magnetic
and electric fields in a QH sample. A key ingredient is the
proper splitting of the microscopic action into two pieces,
one leading to a local effective action in the bulk and the
other to the edge states. Perturbation theory must be orga-
nized in a different fashion for the two pieces. The mainte-
nance of theU~1! gauge invariance emerges in a rather non-
trivial fashion.

We begin with a system of planar nonrelativistic electrons
in a constant strong magnetic field perpendicular to the
plane, and a constant electric field in the plane. The electric
field need not be small. In fact we shall see that if the electric
field is comparable to the magnetic field, an infinite number
of edges are created even when the chemical potential is
small. On the other hand, if, for a given chemical potential,
we reduce the strength of the electric field, the distance be-
tween edges becomes very large, and hence only one edge
need be considered in a realistic situation.5

The appearance of an edge state every time the chemical
potential crosses a Landau level can already be inferred from

Ref. 1. However, it is also clear from Ref. 1 that for any
finite value of the chemical potential, only a finite number of
edge states are encountered. This can be traced back to the
fact that the single-particle wave functions are required to
vanish at the sample boundary. We have addressed a some-
what different situation here. We have considered an infinite
sample with a constant electric field. Our single-particle
wave functions are not required to vanish at any spatial
point. The presence of the electric field ensures that the
chemical potential, no matter what its value is, intersects all
the Landau levels, thereby producing an infinite number of
edges.

An interesting feature of this work is that we have devel-
oped an operator technique which permits a gauge-invariant
treatment of the strong magnetic and electric fields. The Lan-
dau gauge and the symmetric gauge, for instance, which are
among the popular choices for a strong magnetic field, can
be easily seen to lead to the same operator algebra. This is
also true for any interpolating gauge choice between them. It
is important to notice that the splitting of the electromagnetic
field between the constant strong magnetic and electric com-
ponents and the slowly varying~weak! background depends
on the gauge choice for the former. Although it is indeed
technically possible to work within a given gauge with its
explicit single-particle wave functions, the gauge invariance
of the slowly varying background will be lost in the effective
action unless a great deal of caution is exercised. The gauge-
independent operator algebra obviates this problem. It fur-
ther avoids using explicit single-particle electronic wave
functions, which simplifies the calculations immeasurably.

Another interesting discussion included here concerns the
role of the electron mass. Since we are working in a nonrel-
ativistic theory for the electrons, it is implicit thatm2@B,
and hence any term suppressed by 1/m should be considered
smaller than the same term suppressed by 1/AB. However, it
is quite easy to realize the scenarioB@m2. Although a
proper treatment of this case would require the full relativis-
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tic theory, our calculation exhibits the flexibility required to
adapt to this relationship between the external parameters.
That is, finite-mass effects can be incorporated systemati-
cally.

Last but not least, we have provided what we believe to
be a very clear derivation of the edge actions. We also dis-
cuss in detail the ambiguities inherent to anomalous gauge
theories, and how they can be accommodated to obtain a
perfectly gauge-invariant effective action once the contribu-
tions from the bulk have been taken into account.

Having established the salient features of this work, we go
on to its organizational details. In Sec. II, we establish the
notation, and discuss the operator algebra for the unperturbed
system together with the classification of the perturbations in
powers of the large background magnetic field. We further
discuss the role of the chemical potential~which specifies the
ground state of the system! in defining the edge of the system
in the presence of a constant electric field. We note that, near
the edges, the derivative expansion that we have envisioned
is bound to fail. We indicate how to excise small neighbor-
hoods of the edges and reserve them for a separate treatment,
thereby establishing a clear domain of validity for the deriva-
tive expansion. In Sec. III, we provide a detailed example of
the derivative expansion we have performed, and indicate
how interesting terms emerge with a minimum effort. Sec-
tion IV contains the final results of the derivative expansion
in the bulk, where we establish how potentially damaging
terms cancel out in a clean fashion. The net effect of this
expansion is to provide a local electromagnetic effective ac-
tion governing the bulk of the system. This effective action is
not gauge invariant in itself, but all the gauge noninvariance
is pushed to the edges. In Sec. V, we show how to deal with
the neighborhoods of the edges in a direct fashion. This re-
sults in the emergence of 111 dimensional anomalous chiral
gauge theories at the edges. We show that local counterterms
can be added to the basic anomaly to cancel fully the gauge
dependence of the bulk action obtained in Sec. IV. Section
VI is reserved for indicating further avenues of work along
these lines. Nontrivial manipulations required in the calcula-
tion are displayed in the Appendix.

II. NOTATION AND FORMULATION

The system we wish to discuss is described by the La-
grangian density

L5cC ~x,t !F iD 01
1

2m
D2G ĉ~x,t !. ~2.1!

Here ĉ~x,t! is the second quantized fermion field operator
satisfying the standard anticommutation relation
$ĉ~x,t!,cC ~y,t!%5d~3!~x2y!. Here

iD 0[ i ] t2a0~x,t !2A0~x,t ! ~2.2!

and

2 iD[2 i“2A~x,t !2a~x,t !. ~2.3!

The uniform background fieldsE andB arise fromA0 andA.
E is in the plane and taken to be along thex direction, and
the magnetic fieldB is perpendicular to the plane. They are

taken to be of comparable magnitude. The action corre-
sponding to~2.1! has the obviousU~1! gauge invariance

ĉ~x,t !→exp u~x,t !ĉ~x,t !,

d@am~x,t !1Am~x,t !#5]mu~x,t !.

In the sequel, we shall not display the dependence of the
functions onx andt explicitly. This action may be written in
a more transparent form

S5E dx dtcC ~x,t !@P̂02h#ĉ~x,t !, ~2.4!

whereh is the corresponding single-particle Hamiltonian

h5
1

2m
~2 i“2A2a!21Ex1a0, ~2.5!

and

P̂05 i ] t2A01Ex.

Integrating the fermions out, one obtains an effective action
in terms of theam,

Seff52 i Tr ln@P̂02h#. ~2.6!

To evaluateSeff exactly, we need to know the exact spectrum
of h, which is not possible as theam are arbitrary. However,

h0[
1

2m
~2 i“2A!21Ex ~2.7!

has a well-known spectrum. We thus obtain the effective
action by perturbing around the eigenbasis ofh0, with 1/B as
the small parameter. It should be remarked that the actual
parameter is the ratio of any gauge invariant local configu-
ration of the dimensions of@mass#2 constructed out ofam,
with B. In the following we have this in mind when we
mention the order in 1/B of any given term.

We set up a gauge-independent algebraic procedure for
extracting the spectrum ofh0. We take

A0[Ex̂a,

Ax[~12a!Et̂1bBŷ, ~2.8!

Ay[2~12b!Bx̂,

where it is clear that these potentials lead to the correct back-
ground fields irrespective of the arbitrary parametersa and
b. We further define the single-particle operators

p̂x[2 i ]x2Ax, ~2.9!

p̂y[2 i ]y2Ay1m
E

B
. ~2.10!

The associated commutator

@p̂x,p̂y#52 iB ~2.11!

is seen to be independent of the arbitrary parametersa andb.
We further define the single-particle operators

X̂0[ t̂, ~2.12!
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X̂[ x̂2
1

B
p̂y, ~2.13!

Ŷ[ ŷ1
1

B
p̂x, ~2.14!

with the associated commutators

@X̂,Ŷ#5
i

B
, ~2.15!

@P̂0,X̂0#5 i . ~2.16!

These commutators are also seen to be independent ofa and
b. X̂ andŶ are referred to in the literature as guiding center
coordinates. We can also see quite easily that

@p̂x,X̂#5@p̂y,X̂#5@p̂x,Ŷ#5@p̂y,Ŷ#50. ~2.17!

Further,

@P̂0,p̂x#5@P̂0,p̂y#5@P̂0,X̂#5@P̂0,Ŷ#50

and

@X̂0,p̂x#5@X̂0,p̂y#5@X̂0,X̂#5@X̂0,Ŷ#50.

These relations are also insensitive to the choice ofa andb.
They further indicate that the spectrum of theP̂ i ~the cyclo-
tron motion! is independent of that ofX̂ and Ŷ ~the guiding
center motion!.

We can now construct holomorphic and antiholomorphic
combinations of the operators

p̂[p̂x2 i p̂y, ~2.18!

p̂†[p̂x1 i p̂y, ~2.19!

Ẑ[X̂1 iŶ, ~2.20!

ZC[X̂2 iŶ, ~2.21!

and the corresponding commutation relations are

@p̂,p̂†#52B ~2.22!

and

@ Ẑ,Ẑ̄#5
2

B
. ~2.23!

With these operators,h0 can be reexpressed as

h05
1

2m
p̂†p̂1EX̂1

vc

2
1
m

2 SEBD 2, ~2.24!

vc[B/m is the cyclotron frequency. It is easily seen thath0
is diagonalized by the basis$un,X&%, where

p̂un,X&5A2Bnun21,X&, ~2.25!

p̂†p̂un,X&52Bnun,X&, ~2.26!

X̂un,X&5Xun,X&, ~2.27!

h0un,X&5En~X!un,X&, ~2.28!

with

En~X![nvc1EX1
vc

2
1
m

2 SEBD 2. ~2.29!

The indexn labels the Landau levels. In the event thatE50,
X measures the degeneracy of each Landau level~LL !. The
electric field lifts this degeneracy. It is important to note that
the unperturbed single-particle spectrum is unbounded be-
low. In the second-quantized many-body problem, however,
the ground state will be specified as the one where all the
single-particle states are occupied up to a given energy. This
is done by an appropriate choice of the chemical potential.
For definiteness, we shall take the chemical potential such
that all the energy levels up toE0~0! are filled up. This is
equivalent to redefining the origin of energies by dropping
the constant term (vc/2)1(m/2)(E/B)2 in ~2.29!, which we
shall do in the rest of the paper. Hence

En~X!→En~X!5nvc1EX.

For a givenn, the shifted energy becomes negative when

X<2Xn[2
vc

E
n. ~2.29a!

Furthermore, foruEu!B, only X050 remains finite. All other
Xn for nÞ0 go to minus infinity. Thus in this case the filling
of all negative-energy single-particle states is tantamount to
filling only the negative-energy states corresponding ton50.
Thus the system exists only uptoX50, which forn50 is the
same asx50. Hence, forn50, the system exhibits an edge
in real space atx50.5 For uEu.B, however, all LL’s contrib-
ute to the ground state. In this case, an edge develops for
eachXn .

An interesting observation that has to be made is that
away from X5Xn , the size of ^n,Xuhun,X& is roughly
En(X), which is O(B). However, in the neighborhood of
X;Xn , sinceEn(X);0 the size of̂ n,Xuhun,X& depends on
the slowly varying electromagnetic potentials and turns out
to beO~1!. Thus, near the edges given byXn , the perturba-
tion theory abouth0 fails. To ensure its validity, we excisee
neighborhoods of theXn out from the integral overX, which
arises when we calculate the trace~2.6! in the un,X& basis,
and treat the fermion modes in these neighborhoods sepa-
rately. For the remaining modes, the perturbation is obvi-
ously valid. These fermion modes that are treated separately
lead to the edge states of the system.

Having discussed these finer points, let us now go on to
organize the perturbative expansion. The perturbations onh0
are given by

V[h2h05a01
1

2m
@a22a•~2 i“2A!2~2 i“2A!•a#.

~2.30!

We define the holomorphic and the antiholomorphic combi-
nations of the components of the vector potential. That is,

A[ax1 iay

and

Ā[ax2 iay.
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Further,

z[x1 iy

and

z̄[x2 iy .

We note that

@p̂,A~ ẑ, ẑ̄!#522i ]zA ~2.31!

and

@Ā~ ẑ, ẑ̄!,p̂†#52i ] z̄Ā. ~2.32!

Here we have used the relations

ẑ5Ẑ2
i

B
p̂†,

~2.33!

ẑ̄5 Ẑ̄1
i

B
p̂,

that are obtained from~2.13!, ~2.14!, and ~2.18!–~2.21!. In
terms of these quantities, the perturbation~2.30! is written as

V5a01
E

B
ay2

1

2m
b1

1

2m
a22

1

2m
~Ap̂1p̂†Ā!.

Hereb5]xa
y2]ya

x. Furthermore, any analytic function

f ~ ẑ, ẑ̄!5(
p,q

1

p!q! S 2 i

B D pS iBD qp̂†pp̂q]]Z
p]Z

q̄f ~ Ẑ,ZC !].

Here the symbol] ] simply indicates the antinormal order-
ing forced ontoẐ,ZC due to the normal ordering ofp̂,p̂†.
Using these,~2.30! may be rewritten and expanded in powers
of 1/B as

V5V~1/2!1V~0!1V~21/2!1V~21!1••• , ~2.34!

where

V~1/2!52
1

2m
~Ap̂1p̂†Ā!, ~2.35!

V~0!5V2
i

2mB
@p̂2] z̄A2~p̂†!2]zĀ2p̂†p̂~]zA2] z̄Ā!#,

~2.36!

V~21/2!5
i

B
~p̂] z̄V2p̂†]zV!

2
1

4mB2
p̂†p̂2~2]z] z̄A2] z̄

2Ā!

2
1

4mB2
p̂†2p̂~2]z] z̄Ā2]z

2A!, ~2.37!

V~21!5
1

B2 p̂†p̂]z] z̄V1
i

4mB3
]z] z̄~]zA2] z̄Ā!p̂†2p̂2.

~2.38!

Here

V[a01
E

B
ay2

1

2m
b1

1

2m
a2. ~2.39!

Here all the functions are antinormal ordered with respect to

Ẑ,Ẑ̄, even though the antinormalization symbol has not been
displayed explicitly. In~2.37! and ~2.38!, we have omitted
off-diagonal terms that do not contribute to the order we are
working at. Reinserting all this back into the expression for
the effective action given in~2.6!, expanding the logarithm
and retaining contributions uptoO(1/B2), we obtain

Seff5 i TrF2 ln D1(
i51

6

Li G ,
L15

1

D
~V~0!1V~21!!,

L25
1

2

1

D
V~1/2!

1

D
V~1/2!,

L35
1

D
V~1/2!

1

D
V~21/2!, ~2.40!

L45
1

2

1

D
V~0!

1

D
V~0!,

L55
1

D
V~1/2!

1

D
V~1/2!

1

D
V~0!,

L65
1

D
V~1/2!

1

D
V~1/2!

1

D
V~1/2!

1

D
V~1/2!,

where D[P̂02h0 . The first term in the trace in~2.40!,
2ln D, does not involve the perturbative electromagnetic po-
tentials. It is just the vacuum energy, and we are not inter-
ested in it in the present paper. The trace is realized in terms
of the tensor product of the basis ofh0 given earlier with the
basis of eigenfunctions ofP0. Indeed, since [P̂0,h0]50, the
eigenvectors ofD read

Dun,X,v&5Gn~X,v!un,X,v&,
~2.41!

Gn~X,v!5v2En~X!,

such thatun,X,v&5un,X&uv&, where

P̂0uv&5wuv&. ~2.42!

The specification of the ground state of the system,
namely, that all the negative-energy single-particle states are
filled, means that the integral over the frequencyv must be
defined such that

E dv

2p

1

Gn~X,v!
5 iu@2En~X!#. ~2.43!

Furthermore, as we mentioned earlier, we have to excisee
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neighborhoods ofX52Xn to ensure the validity of the per-
turbation theory. This has the following direct consequence.
Consider the derivative of~2.43! with respect toEn(X),

E dv

2p

1

Gn
2~X,v!

52 id„En~X!…. ~2.44!

Since, for a givenn, En(X)50 only whenX52Xn , the d
function never contributes asX52Xn is not permitted ac-
cording to the criteria adopted above to define a valid per-
turbation theory. Hence coincident denominators can be
dropped owing to the exclusion of thee neighborhoods. We
shall do so consistently in the sequel.

III. SAMPLE CALCULATION

In this section, we provide a nontrivial instance where the
perturbative calculation outlined in Sec. II is actually per-
formed. We choose to work out the termL3 in Eq. ~2.40! in
detail. Realizing the trace operation as mentioned earlier, this
term is

L35 (
n50

` E dXE dv

2p
^n,X,vu

1

D
V~1/2!

1

D
V~21/2!un,X,v&.

~3.1!

We now use the action ofp̂ andp̂† on the basis states from
~2.25! and its complex conjugate, and that ofD from ~2.41!
to obtain

L35
1

2m (
n50

` E dXE dv

2p F 1

GnGn11
^X,n,vu@2i ~n11!#]A]]]zV]1S 2n~n11!

m D]A]]~]z] z̄Ā2 1
2 ]z

2A!]uX,n,v&

1
1

GnGn21
^X,n,vu~22in !]Ā]]] z̄V]1S 2n~n21!

m D]Ā]]~]z] z̄A2 1
2 ] z̄

2 Ā!]uX,n,v&G . ~3.2!

We have writtenGn as a shorthand forGn(X,v). We have also assumed that the commutator of 1/D with any function
f (Ẑ,ZC ,t) is suppressed by 1/B @see~A9!#, and hence it does not contribute toL3 at the order we are considering. However,
there are contributions toL2 emanating from such a commutator. We can now use properties~2.25! and ~2.26! to bring the
Landau-level indexn in the states to zero with no other alteration in~3.2!. We next introduce the identity*dtut&^tu in the uv&
subspace. Sincêtuv&5e2 ivt all thev dependence in the states disappears, and it only remains inGn . We have

1

2m (
n50

` E dXE dv

2p E dtF 1

GnGn11
^X,0u@2i ~n11!#]A]]]zV]1S 2n~n11!

m D]A]]~]z] z̄Ā2 1
2 ]z

2A!]uX,0&

1
1

GnGn21
^X,0u~22in !]Ā]]] z̄V]1S 2n~n21!

m D]Ā]]~]z] z̄A2 1
2 ] z̄

2 Ā!]uX,0&G . ~3.3!

We useuX& for uX,0& in the following.
At this point we recall that all the functions ofẐ andZC

above are separately antinormal ordered. However, as dis-
played in the Appendix in~A6!, the product of two individu-
ally antinormal ordered quantities can itself be reexpressed
as an infinite series of antinormal ordered quantities, more
and more subleading in~1/B!. In the order we are working,
only the first term in the series contributes toL3. However,
the next to leading term in the series contributes toL2.
Hence we can just substitute the separate antinormal order-
ings in ~3.3! by a global antinormal ordering which we will
not explicitly write down@e.g., for the first term in~3.3! we
have ]A]]]zV];]A]zV]→A]zV#. We then use Eqs.
~A10! and~A11! from the Appendix to disentangle the mul-
tiple denominators in~3.2!. This yields

L35
1

2m (
n50

` E dXE dtE dv

2p F2imB ~n11!S 1

Gn11
2

1

Gn
D

3^XuA]zVuX&1
2

B
n~n11!S 1

Gn11
2

1

Gn
D ^XuA~]z] z̄Ā

2 1
2 ]z

2A!uX&1
~22im!

B
nS 1Gn

2
1

Gn21
D ^XuĀ] z̄VuX&

1
2

B
n~n21!S 1Gn

2
1

Gn21
D ^XuĀ~]z] z̄A2 1

2 ] z̄
2 Ā!uX&G ,

~3.4!

which can be further simplified using~A12!–~A15!. Thus we
reduce all the denominators to the same formGn . This en-
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ables us to use~2.43! to integrate overv and obtain theu
function displayed therein. This means that from~3.4! we
obtain

L35
1

2m (
n50

` E dXE dtF2mB u@2En~X!#^Xu~A]zV

2Ā] z̄VuX&2
4in

B
u@2En~X!#^XuA~]z] z̄Ā2 1

2 ]z
2A!

1Ā~]z] z̄A2 1
2 ] z̄

2 Ā!uX&G . ~3.5!

In its turn, theu function is used to yield ann-dependent
upper bound on theX integral. That is, theX integral goes
from 2` to 2Xn . Furthermore, as shown in~A5!, the inte-
gral over X of a function that is antinormal ordered and
evaluated in theX basis can be easily reexpressed as the
integral over real space of ac-number-valued function that
can be readily obtained from the original antinormal-ordered
q-number valued function. In this integral over real space,
thex integral ranges from2` to 2Xn , a consequence of the
restricted range of integration ofX. The y integral, on the
other hand, is over the entirey axis. Thus, going through this
last step, forL3 we have

L352
i

2p (
n50

` E
2`

2Xn
dxE dyE dtFbS a01 E

B
ay2

1

2m
b

1
1

2m
a2D1

2n

m
~A]z] z̄Ā1Ā]z] z̄A2 1

2A]z
2A

2 1
2 Ā] z̄

2 Ā!G1
i

2p (
n50

` E dyE dtFa0ay2 1

2m
ay~b

2a2!1
E

B
~ay!2GU

x52Xn

. ~3.6!

We note here that apart from terms that obviously live in the
‘‘bulk,’’ there are terms that live at the edges of the bulk.
These terms have arisen as a consequence of reexpressing
some terms in the bulk in a convenient form through judi-
cious integrations by parts. Notice also that we have taken
the e neighborhoods to zero at the end of the calculation.

IV. RESULTS FOR THE BULK

Now that the perturbation theory in the bulk has been
scrupulously defined, and a significant example of a calcula-
tion has been shown in Sec. III, we proceed to display the
results for the various contributions in~2.40!. Notice that the
first term in ~2.40! is just an irrelevant vacuum contribution
that we drop. Let us organize the remaining contributions as
follows:

Seff
bulk5 i(

n50

` E dxE dyE dtE dv

2p E dXz^X,0,vux,y,t& z2

3
1

Gn~X,v! (
i51

6

Li . ~4.1!

We obtain

L15V2
n

m
b1

2n

B
] z̄]zV2

n~n21!

mB
]z] z̄b, ~4.2!

L252
1

2m
AĀ1

1

2mB
~] z̄A]zĀ1]zA] z̄Ā!2

1

4B F2 iĀ] tA

1 iA] tĀ2
E

B
@Ā~]zA2] z̄A!2A~]zĀ2] z̄Ā!#G , ~4.3!

L35
i

B
@Ā] z̄V2A]zV#2

2n

mB
@Ā~2 1

2 ] z̄] z̄Ā1] z̄]zA!1A

~2 1
2 ]z]zĀ1] z̄]zĀ!#, ~4.4!

L452
2n11

mB
]zĀ] z̄A, ~4.5!

L55
i

2mB
~2ĀĀ] z̄A1AA]zĀ1ĀA]zA2ĀA] z̄Ā!,

~4.6!

L650. ~4.7!

A few comments are in order. The second and third terms
in the first line of~4.3! arise from the renormal ordering of
the first term@see~A6!#. The second line in~4.3! arises from
the fact thatD andV~1/2! do not commute@see~A9!#.

A few cancellations can be readily seen from~4.2!–~4.7!.
The term (1/2m)AĀ from ~4.3! cancels against the same
term in V from ~4.2!. Equation ~4.6! cancels against the
terms with (1/2m)AĀ in V from ~4.4!. As we indicated in
~2.43!, the integral overv gives rise to a step function. This
step function, in turn, provides a finite upper limit to theX
integral. We show in~A1!–~A5! how this translates into a
finite upper bound for thex integral. Therefore partial inte-
gration with respect tox gives rise to boundary terms which
must be kept. Let us divide the final result into bulk and
boundary terms. In each contribution there are both mass-
independent and mass-dependent terms. We also rewriteA
andĀ in terms ofax anday, and]z and] z̄ in terms of]x and
]y . Consider first the bulk effective action. We obtain

Sbulk5
1

2p (
n50

` E
2`

2Xn
dxE dyE dt~L top1Lm!, ~4.8!

L top52 1
2 emnram]nar2BS a01 E

B
ayD , ~4.9!

Lm52
2n11

2m
b21

2n11

2m
bB. ~4.10!

The boundary effective action reads

Sn
bound5

1

2p E dyE dt~L top1Lm!, ~4.11!

L top52
n

2
]xS a01 E

B
ayD2

1

2 S aya01 E

B
~ay!2D ,

~4.12!
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Lm52
n2

4mB
]xb1

2n11

4m
]x~a

y!2. ~4.13!

Notice that the bulk action is gauge invariant but the bound-
ary action is not. This is so because on the one hand there are
explicit gauge-noninvariant terms in~4.13! and ~4.14!, and
on the other hand the gauge variation of~4.9! gives rise to
boundary contributions due to the Chern-Simons term in
~4.10!. We shall see in Sec. V how the edge states fix up the
lack of gauge invariance at the boundary.

V. EDGE STATES

In Sec. II, we excluded small neighborhoods aroundXn
from the calculation, which correspond to zero modes of the
Hamiltonianh0. In these neighborhoodsh0 is O(B

0) instead
of O(B1), and hence the perturbation theory must be reorga-
nized. Notice first thatV21/2 andV21 are still perturbations.
We shall ignore them for the moment, and see later on that
they actually give rise to higher-order terms. Let us then split
D into its diagonal and off-diagonal parts,

D5Od1DO,

Od5P̂02h02a02
E

B
ay2

1

2m
AĀ1

1

2m S p†p

B
11Db,

DO5DO1/21DO0, ~5.1!

DO1/25
1

2m
~Ap1p†Ā!,

DO05
i

2mB
] z̄Ap22

i

2mB
]zĀp†2.

The effective action for all these neighborhoods reads

Sedges52 i (
p50

` E
2Xp2e

2Xp1e

dX(
n50

` E dv

2p
^n,X,vu ln~Od

1DO!un,X,v&, ~5.2!

whereXp is defined in~2.29a!. Let us next focus on a fixed
p. Notice that whene→0, only singular terms make a finite
contribution toSedge. Those may occur only whenh0 is close
to zero. Otherwise, a local expansion abouth0, which gives
rise to piecewise continuous functions, as we have seen in
Sec. IV, is legitimate.h0 gets close to zero only if
n5p,p61 at the order we are interested in. Consider then
the formal expansion

Sedgep52 i E
2Xp2e

2Xp1e

dX(
n50

` E dv

2p
^n,X,vuF ln Od

1(
r51

`
~21!r11

r S 1

Od
DOD r G un,X,v& ~5.3!

Let us first focus on the first term in the expansion. For
this term it is clear that onlyn5p gives rise to a smallh0.
The remaining terms in~5.3! also make contributions with
smallh0 for n5p and forn5p61, which will be calculated
further on. Forn5p,

S0
edgep52 i E

2Xp2e

2Xp1e

dXE dv

2p
^p,X,vu lnF P̂02h02a0

2
E

B
ay2

1

2m
AĀ1

1

2m S p†p

B
11DbG up,X,v&

52 i E
2Xp2e

2Xp1e

dXE dv

2p
^0,X,vu ln Gpu0,X,v&

Gp :5Gp~P̂0 ,X̂,Ŷ!:5P̂02
B

m
p2EX̂1 f p~X̂,Ŷ!,

~5.4!

f p~X̂,Ŷ!:52a02
E

B
ay12

1

2m
AĀ1

1

2m
~2p11!b.

Let us next insert the identity into the subspace^Ŷ,t&, and
use the representation

X̂5
i

B
]Y , P̂05 i ] t . ~5.5!

We have

S0
edgep52 i E

2Xp2e

2Xp1e

dXE dv

2p E dYE dt^0,X,vu0,Y,t&

3 ln GpS i ] t , iB ]Y ,YD ^0,Y,tu0,X,v&. ~5.6!

Using the explicit expression for the wave function,

^0,Y,tu0,X,v&5S B

2p D 1/2e2 ivteiBXY, ~5.7!

and making the shift

X→2Xp1
k

B
, ~5.8!

we have

S0
edgep52 i E

2eB

eB dk

2p E dv

2p E dtE dYE dt lnS v2
E

B
k

1 i ] t2 i
E

B
]Y1 f p~Xp ,Y! D1O~e!. ~5.9!

For eB→`, the above is nothing but the effective action
for a 111-dimensional chiral fermion, the Lagrangian for
which reads

Lp
chf5E dtE dY c†S i ] t2 i

E

B
]Y2a02

E

B
ay

1
1

2m
~2p11!b2

1

2m
AĀDc. ~5.10!

Notice that~5.9! is alreadyO(B0), and hence any contri-
bution suppressed by 1/B should be consistently neglected.
In particular, that includes contributions fromV~21/2! and
V~21! which we have already disregarded. Formula~5.10! is
not yet the right Lagrangian for the edge states, but it con-
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tains its essential features, which we would like to comment
upon. First of all there is only one term, namely,2(1/
2m)AĀ, which is not gauge invariant. This term cancels out
with other terms which also contribute to the edge action, as
we will see below, so we shall disregard it in the following
discussion. The remaining terms can be split into mass-
independent and mass-dependent terms. The mass-
independent terms, which are identical for any edge~p inde-
pendent!, and hence identical to the ones obtained for the
only edge that exist when the electric field is weak,5 corre-
spond to the usual Lagrangian for a 111 chiral fermion~chi-
ral Schwinger model!. The coefficient of the mass-dependent
term depends on the particular edge~p dependent!, and to
our knowledge has not been found before.

It is well known that the chiral Schwinger model is
anomalous.6,7 This means that not all the symmetries of the
classical Lagrangian can be implemented at the quantum
level. This is due to UV singularities, and implies that the
quantum theory is defined up to local counterterms. The lo-
cal counterterms encode the inherent ambiguity of an anoma-
lous gauge theory.8 They can also be regarded as a reminder
of the possible different results one can obtain at the quan-
tum level by using different regularizations. In the relativistic
chiral Schwinger model, one usually requires Lorentz sym-
metry at the quantum level. This forces gauge invariance to
be spoiled, and reduces the number of possible local coun-
terterms. In our case the physical situation is quite different.
In condensed-matter physics Lorentz symmetry is not sup-
posed to play an important role. Although in them→` limit
the edge action enjoys a 111 Lorentz symmetry~taking
c5E/B!, it is not clear that it must be considered a funda-
mental symmetry. In fact, the only fundamental symmetry
that we have in our system is theU~1! electromagnetic gauge
invariance. Then the most reasonable criterion to define the
edge effective action quantum mechanically is to require
gauge invariance in the whole system. Since the bulk action
contains a Chern-Simons term which gives rise to the gauge
anomaly at the boundary, we must define the edge action in
such a way that cancels out this gauge anomaly, together
with the rest of non-gauge-invariant local counterterms. Re-
call that the cancellation of the gauge anomaly coming from
the Chern-Simons term in the bulk cannot be carried out by
means of local counterterms at the edge. It actually requires
the existence of extra degrees of freedom at the edge, in this
case the chiral fermion. Therefore once we have chosen a
regularization for the edge effective action which cancels the

gauge anomaly, the non-gauge-invariant local counterterms
are automatically fixed. The only freedom we have are
gauge-invariant local counterterms~up to total derivatives in
t andy! at the edge. Let us list them below:

d51:a0, ay,

d52:]xa
0, ]xa

y, ~5.11!

d53:]x
2a0, ]x

2ay.

The coefficients of these terms contribute to the observables,
and must be fitted experimentally or calculated numerically
from the fundamental theory.

One may wonder at this point as to how it comes about
that even though we started with a well-defined problem we
end up with a few free parameters that we cannot calculate.
The answer is that for the bulk and edge calculations, as-
sumptions aboute, the cutoff which separates the edge and
bulk, are different. For the perturbation theory at the bulk to
be correct one needsEe@(ABai /m), (aiaj /m), and a0,
whereas for the derivation of the edge statesEe!a0 is un-
derstood. Therefore there is a region, presumably small, in
which none of the expansions hold. What is remarkable,
however, is that our ignorance about this region can be sum-
marized into only a few gauge-invariant local counterterms
at the edges.

Let us next analyze the remaining terms in expansion
~5.3!. Recall first that 1/Od is O(B

0) at the edge butO(B1)
elsewhere, and thatDO contains a pieceO(B1/2) and a piece
O(B0). We notice that only a very particular class of terms
makes contributions of the same order as~5.4!. Indeed, if
1/Od is at the edge,DO brings the following 1/Od out of the
edge. The nextDO may either keep the next 1/Od out of the
edge or bring it back to the edge. In the first case we obtain
a term which is suppressed at least by a power of 1/B with
respect to~5.4!. In the second case we obtain a contribution
of the same order as~5.4! due toDO1/2, whereasDO0 gives
rise to contributions suppressed by 1/B. Therefore we must
add up all the terms corresponding to the second case in
which onlyDO1/2 is involved. From this discussion it is clear
that onlyn5p,p61 will contribute. Forn5p, we have

S08
edgep

52 i E
2Xp2e

2Xp1e

dXE dv

2p (
j51

`

2
1

2 j K p,X,vUS 1

Od
DO

1

Od
DOD jUp,X,vL

52 i E
2Xp2e

2Xp1e

dXE dv

2p (
j51

`

2
1

2 j K p,X,vUS 1Gp
F 1

Gp21

pBAĀ

2m2 1
1

Gp21

~p11!BAĀ

2m2 G D jUp,X,vL
;2 i E

2Xp2e

2Xp1e

dXE dv

2p (
j51

`

2
1

2 j K 0,X,vUS 2
1

Gp

AĀ

2mD jU0,X,vL . ~5.12!

For n5p61, we have
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S6
edgep52 i E

2Xp2e

2Xp1e

dXE dv

2p (
j50

`

2
1

2~ j11! K p61,X,vU 1

Od
DOS 1

Od
DO

1

Od
DOD j 1

Od
DOUp61,X,vL

;2 i E
2Xp2e

2Xp1e

dXE dv

2p (
j50

`

2
1

2~ j11!
^0,X,vuS ~21!161/2S p1

161

2 D
Gp

AĀ

2m
D S 2

1

Gp

AĀ

2mD j u0,X,v&. ~5.13!

A few technical comments are in order.Gp above must be
understood as the (X̂,Ŷ)-valued operator defined in~5.4!. A
andĀ are also functions of (X̂,Ŷ). AlthoughX̂ andŶ do not
commute, its commutator isO(1/B). Hence we have com-
mutedA and Ā at will. The commutator of 1/Gp61 with A
andĀ is alsoO(1/B), and has also been neglected. However,
the commutator of 1/Gp with A andĀ is O(B0) and must be
kept. Instead, the cyclic property of the trace has been used
in ~5.13! in order to bring the firstA and Ā together.

If we add ~5.12! and ~5.13! to ~5.4!, we see that the only
effect on the latter is the cancellation of the gauge-
noninvariant term,2(1/2m)ĀA, as claimed above. We fi-
nally have

Lp
chf5E dtE dY cp

†S i ] t2 i
E

B
]Y2a02

E

B
ay

1
1

2m
~2p11!bDcp . ~5.14!

The last term in~5.4! is not instrumental in the mainte-
nance of gauge invariance, which may be the reason why it
has not been obtained before. This term depends on the elec-
tron mass and, more importantly, on the particular edge. Ifb
were a constant field, we could reformulate the problem in
terms ofB1b, which would have resulted in a small shift in
the location of the edges. In that event, this term would not
appear in~5.14!. A simple way to implement this in the edge
action~5.14! is by a field redefinitioncp→ei (1/2m)(p11)btcp .
However, we have envisioned a perturbation that depends on
space and time, for instance an electromagnetic wave, where
this term cannot be removed.

In what follows, we argue that this term may be detected
experimentally. For definiteness, we consider an experimen-
tal situation similar to the setup in Ref. 15. We takeB515T,
andE/c5331025T. From ~2.29a! we obtain that the dis-
tance between successive edges isDX.105lc.102 Å,
wherelc is the Compton wavelength. Given the dimensions
of the sample in Ref. 15, a relatively large number of edges
~;1000! fit into it. If we imagine that the edges are probed
by a monochromatic electromagnetic wave, we immediately
see that the wavelength must be less than the interedge dis-
tanceDX in order to resolve between them. To ensure that
we detect a different response from each edge, we must
verify that the last term in~5.14! is at least of the order of the
other terms. This implies, for a probe with wavelengthl,

E

cB
;

lc

l
.

This in turn means that

l<53105lc55DX.

This constraint will be met automatically if we choosel less
thanDX, as required by resolvability. From this discussion it
follows that the pertinent term in~5.14! should be detectable
in an actual experiment.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have focused on the rather interesting
phenomenon that, in an arbitrarily strong electric field along
the plane, a system of planar electrons exhibits a multiplicity
of edges. The calculation here exhibits a number of interest-
ing features. First, we have shown that we do not have to
make a specific gauge choice for the background electric and
magnetic fields. In fact, we have set up a gauge-independent
algebra for the set of operators that diagonalizes the unper-
turbed Hamiltonianh0. This is to be contrasted with most
calculations in the literature, where a gauge choice~either
Landau or symmetric! is made at the onset for the back-
ground fields. Moreover, at no point in the calculation are we
called upon to use the explicit wave functions of the higher
Landau levels. It is at the very end of the calculation that we
have to use the explicit wave functions of the lowest Landau
level, in order to make contact with the real spatial coordi-
nates. Most of the manipulations are at the operator level,
and integrals have to be performed only at the ultimate
stages. This alleviates the tedium of a derivative expansion
considerably. Furthermore, the only expansion has been with
respect to the large background magnetic field. The electron
mass has been retained throughout as an arbitrary parameter,
and hence finite-mass effects have already been incorporated.
We have further seen that to set up a viable perturbation
theory, ane neighborhood of the edge due to each Landau
level has to be excised, and the fermion modes in these in-
tervals treated separately. These modes cannot be integrated
out and reexpressed through local terms involving the per-
turbative gauge potentials. We have dealt with these sepa-
rately to obtain the chiral edge fermionic actions. The re-
maining fermionic modes can be integrated out and
reexpressed in terms of a local effective action involving the
gauge potentials. This is the ‘‘bulk’’ action. Thus a clear
separation of the bulk and the edge has been effected in this
calculation. The bulk action is expectedly not gauge invari-
ant by itself. The edge fermionic systems also possess the
well-known U~1! gauge anomaly. The basic anomaly is,
however, seen to be insufficient to compensate for the non-
invariance of the bulk. We also need to include local coun-
terterms constructed out the operators in the edge fermionic
action to render the total effective description gauge invari-
ant. While this procedure is quite familiar to aficionados of
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the theory of anomalies, it is instructive to encounter it in a
more everyday condensed-matter context. Apart from the
terms in the fermionic edge action which lead to the
anomaly, we have also found an interesting gauge-invariant
term that depends both on the electron mass and on the par-
ticular edge. We have argued that the existence of this term
can be verified experimentally.

Turning from enumerating the virtues of our calculation,
we outline future as well as ongoing projects in the general
direction. We are currently involved in generalizing to the
case of relativistic fermions, in which case the electronic spin
is introduced in a natural manner. One of the objectives is to
see whether the spin could become an important degree of
freedom even in a strong magnetic field.9,10 Another issue
that will bear closer scrutiny is the effect of the Coulomb
interaction between the electrons and the effect of it on the
edge states of the system.11–13The effect of a strong electric
field in the case of the fractional Hall effect can also be
discussed by looking at the integral Hall effect for Jain’s
‘‘super’’ fermions.14 Work in this direction is underway.
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APPENDIX

In this appendix, we shall provide some of the computa-
tional details omitted in the main body of the paper. As we
noted in Sec. III, we have to translate results obtained in the
$un,X,v&% basis to the space-time basis. For this, as we shall
see below, we needz^xu0,X&z2. This may be worked out by
going to a specific gauge. Here we choose to work in the

A[~0,2Bx! ~A1!

gauge. In this gauge, we have

^xu0,X&5S Bp D 1/4S B

2p D 1/2e2 iB~X1mE/B2!ye2~B/2!~x2X!2.

~A2!

In fact, in Sec. III, we were required to evaluate
*

2`
2XndXz^xu0,X& z2. With the wave function from~A2!, we
obtain

E
2`

2Xn
dXz^xu0,X& z25

B

2p
erf@2AB~x1Xn!#, ~A3!

where erf(x)[(1/Ap)*2`
x dy e2y2. In the limit of a strong

magnetic field, from the value of the error function as its
argument goes to either plus or minus infinity, we obtain

E
2`

2Xn
dXz^xu0,X& z2→

B

2p
u@2~x1Xn!#. ~A4!

This means that, on performing theX integral, the upper
limit on the integral, due to the specification of the ground
state, devolves on to the integral over the spatial coordinate
x.

1. From the z0,X‹ basis to space-time functions

Next we indicate the simplication of the following expres-
sion which occurs frequently in the text:

E
2`

2Xn
dX^0,Xu] f ~ Ẑ,Ẑ̄!]u0,X&.

This can be rewritten as

E
2`

2Xn
dX^0,Xu f ~ ẑ, ẑ̄!u0,X&

in view of the fact that normal-ordered products ofp̂ andp̂†

give zero matrix elements in the lowest Landau level@recall
~2.33!#. Inserting the identity operator in terms of the spatial
basis, namely*dxux&^xu5I , into the above expression, we
obtain

E dx f ~x,y!E
2`

2Xn
dXz^xu0,X& z2.

Using ~A4!, this yields

E
2`

2Xn
dX^0,Xu] f ~ Ẑ, ẑ̄!]u0,X&5

B

2p E
2`

2Xn
dxE

2`

`

dy f~x,y!.

~A5!

2. Reantinormal ordering

Again, in the text, we come across expressions of the
form ] f]]g], where each of the functionsf and g are
separately antinormal ordered inẐ andZC . However, this can
be written again in a suitably antinormal-ordered form by
commutingẐ acrossZC wherever they do not occur in anti-
normal order in the product] f]]g]. As Ẑ andZC are ca-
nonically conjugate~up to factors!, this leads to an infinite
series of antinormal functions of increasingly higher order in
1/B. That is,

] f]]g]5] f g]2
1

B
]] z̄ f ]zg]1••• , ~A6!

where the••• indicate terms of higher order in~1/B! that have
been dropped. Hence, using~A5! and ~A6!, we have

E
2`

2Xn
dX^Xu] f]]g]uX&5

B

2p E
2`

2Xn
dxE

2`

`

dyF f g
2
1

B
] z̄ f ]zg1••• G . ~A7!
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3. Commuting 1/D with f „X̂,Ŷ, t̂…

Furthermore, we also encounter expressions like

K n,X,vU] f] 1

D
]g]Un,X,v L .

D does not commute withf or g as it containsX̂ and P̂0.
However, using

@D, f #52 i
E

B
]yf1@P̂0 , f #, ~A8!

where [P̂0 , f ]5 i ] t f in the space-time basis, we have

K n,X,vu] f]
1

D
]g]un,X,v L

5 K n,X,vU 1D ] f]]g]Un,X,v L
1 K n,X,vU 1D @D,] f]#

1

D
]g]Un,X,v L .

~A9!

The second term on the right-hand sideO(1/B) suppressed
with respect to the first term. The formula above can be
further iterated until one obtains all 1/D ’s acting on the
states, plus higher-order terms.

4. Multiple denominators

We also have to perform a bit of algebra withGn(X)
defined in Eq.~2.42!. The principal results that we note here
are

1

GnGn11
5

1

vc
S 1

Gn11
2

1

Gn
D , ~A10!

1

GnGn21
5

1

vc
S 1Gn

2
1

Gn21
D . ~A11!

Furthermore, we have

(
n50

`
~n11!

Gn11
5 (

n50

`
n

Gn
, ~A12!

(
n50

`
n

Gn21
5 (

n50

`
n11

Gn
, ~A13!

(
n50

`
n~n11!

Gn11
5 (

n50

`
n~n21!

Gn
, ~A14!

and

(
n50

`
n~n21!

Gn21
5 (

n50

`
n~n11!

Gn
. ~A15!

Other results may be obtained as required by repeated
applications of~A10! and ~A11!.
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