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Multiple edges of a quantum Hall system in a strong electric field
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In this paper we show that if the electrons in a quantum Hall sample are subjected to a constant electric field
in the plane of the material, comparable in magnitude to the background magnetic field on the system of
electrons, a multiplicity of edge states localized at different regions of space is produced in the sample. The
actions governing the dynamics of these edge states are obtained starting from the well-knowdm&ehro
field theory for a system of nonrelativistic electrons, where on top of the constant background electric and
magnetic fields, the electrons are further subject to slowly varying weak electromagnetic fields. In the regions
between the edges, dubbed as the “bulk,” the fermions can be integrated out entirely and the dynamics
expressed in terms of a local effective action involving the slowly varying electromagnetic potentials. It is
further shown how the bulk action is gauge noninvariant in a particular way, and how the edge states conspire
to restore theJ (1) electromagnetic gauge invariance of the system. In the edge action we obtain a heretofore
unnoticed gauge-invariant term that depends on the particular edge. We argue that this term may be detected
experimentally as different edges respond differently to a monochromatic probe due to this term.
[S0163-182696)03835-0

I. INTRODUCTION Ref. 1. However, it is also clear from Ref. 1 that for any
finite value of the chemical potential, only a finite number of
Field theories of planar systems have enjoyed a considefdge states are encountered. This can be traced back to the
able measure of popularity in recent years, particularly in théact_ that the single-particle wave functions are required to
sphere of condensed-matter physics. Specifically, the fielf2nish at the sample boundary. We have addressed a some-
theory of the quantum Hall effedQHE), in its various in- \;V;ritp?elﬁs\/ri?k?t;Itgc?::sotg:teﬁé\é\t/r?chﬁ\é%Coonﬁlrdizﬁglsnp;nr?ig:tee
Zir?ta\t,'vzgsh:;stggebgogg\s,e?;aa%ﬁ%tézalﬁr?;:%?i;ﬁ;ﬁglwwa"e functions are not required to vanish at any spatial

o : point. The presence of the electric field ensures that the
supports gapless excitations at the edgige statgswhich o amica| potential, no matter what its value is, intersects all

e ) , A "Bhe Landau levels, thereby producing an infinite number of
the edge excitations plays a crucial role in maintaining theedges.

electromagnetit) (1) gauge invarianc&,” and it would be a An interesting feature of this work is that we have devel-
worthwhile endeavor to extract this action in a clean fashioryped an operator technique which permits a gauge-invariant
from the underlying microscopic action describing the ge-treatment of the strong magnetic and electric fields. The Lan-
neric QHE. dau gauge and the symmetric gauge, for instance, which are

In the sequel, we have developed a technique which alamong the popular choices for a strong magnetic field, can
lows us to calculate the effective action for strong magneticde easily seen to lead to the same operator algebra. This is
and electric fields in a QH sample. A key ingredient is thealso true for any interpolating gauge choice between them. It
proper splitting of the microscopic action into two pieces,is important to notice that the splitting of the electromagnetic
one leading to a local effective action in the bulk and thefield between the constant strong magnetic and electric com-
other to the edge states. Perturbation theory must be orgg@onents and the slowly varyingveak background depends
nized in a different fashion for the two pieces. The mainte-on the gauge choice for the former. Although it is indeed
nance of thdJ (1) gauge invariance emerges in a rather non-technically possible to work within a given gauge with its
trivial fashion. explicit single-particle wave functions, the gauge invariance

We begin with a system of planar nonrelativistic electronsof the slowly varying background will be lost in the effective
in a constant strong magnetic field perpendicular to theaction unless a great deal of caution is exercised. The gauge-
plane, and a constant electric field in the plane. The electritndependent operator algebra obviates this problem. It fur-
field need not be small. In fact we shall see that if the electridher avoids using explicit single-particle electronic wave
field is comparable to the magnetic field, an infinite numberfunctions, which simplifies the calculations immeasurably.
of edges are created even when the chemical potential is Another interesting discussion included here concerns the
small. On the other hand, if, for a given chemical potential,role of the electron mass. Since we are working in a nonrel-
we reduce the strength of the electric field, the distance beativistic theory for the electrons, it is implicit than’>B,
tween edges becomes very large, and hence only one edged hence any term suppressed by $hould be considered
need be considered in a realistic situation. smaller than the same term suppressed kB1However, it

The appearance of an edge state every time the chemical quite easy to realize the scenai>>m?. Although a
potential crosses a Landau level can already be inferred fromroper treatment of this case would require the full relativis-
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tic theory, our calculation exhibits the flexibility required to taken to be of comparable magnitude. The action corre-
adapt to this relationship between the external parametersponding to(2.1) has the obvioud) (1) gauge invariance

That is, finite-mass effects can be incorporated systemati-

cally. P(x, 1) —exp O(x,1) P(x.1),
Last but not least, we have provided what we believe to
be a very clear derivation of the edge actions. We also dis- dlak(x,t) + A*(x, 1) =" 6(x,t).

cuss in detail the ambiguities inherent to anomalous gaugg, the sequel, we shall not display the dependence of the

theories, and how they can be accommodated to obtain @ynctions onx andt explicitly. This action may be written in
perfectly gauge-invariant effective action once the contribu more transparent form

tions from the bulk have been taken into account.
Having established the salient features of this work, we go - ~ 0 -

on to its organizational details. In Sec. II, we establish the S:f dx dtyg(x, O[T —h]e(x,1), 2.4
notation, and discuss the operator algebra for the unperturbed _ . . ) o
system together with the classification of the perturbations ifhereh is the corresponding single-particle Hamiltonian
powers of the large background magnetic field. We further 1
discuss the role of the chemical potentiahich specifies the h=-— (—iV-A—a)’+Ex+a°, (2.5
ground state of the systenm defining the edge of the system 2m
in the presence of a constant electric field. We note that, negyng
the edges, the derivative expansion that we have envisioned R
is bound to fail. We indicate how to excise small neighbor- I1°=ig,—A°+Ex.
hoods of the edges and reserve them for a separate treatmelntt, ing the fermi btai tect .
thereby establishing a clear domain of validity for the deriva- "o Jrafing the fermions out, one obtains an effective action
tive expansion. In Sec. lll, we provide a detailed example of" terms of thea,
the d_erivativg expansion we haye perfc_)rmed, and indicate Ser=—1i Tr In[ﬁo—h]. (2.6)
how interesting terms emerge with a minimum effort. Sec-
tion IV contains the final results of the derivative expansionTo evaluateS; exactly, we need to know the exact spectrum
in the bulk, where we establish how potentially damagingof h, which is not possible as the“ are arbitrary. However,
terms cancel out in a clean fashion. The net effect of this 1
expansion is to provide a local electromagnetic effective ac- T v _aN2
tion governing the bulk of the system. This effective action is ho= 2m (Z1V=A)"+Ex 27
hot gartljggz Il’lv;’;ll’lar:;[ In ltslelfé bUt\?" the %augﬁ nonln\éarlia\n(_:%as a well-known spectrum. We thus obtain the effective
lcf]g:]seiehbtor: es gist.h n dec. J weds_ OV\t'f ovr\]/_to ?ﬁ. W't%ction by perturbing around the eigenbasisigfwith 1/B as

€ighbornoods ot the edges in a direct fashion. 1NIS 1eg,q gy parameter. It should be remarked that the actual
sults in the emergence oftll dimensional anomalous chiral

. arameter is the ratio of any gauge invariant local configu-
gauge theories at the edges. We show that local counterter Stion of the dimensions dimas constructed out of*
can be added to the basic anomaly to cancel fully the 9aUg€ih B In the following we have this in mind when ,vve

dependence of the bulk action obtained in Sec. IV. SeCtio%ention the order in B of any given term

VI is reserved for indicating further avenues of work along We set up a gauge-independent algebraic procedure for

t_hese I|ne§. Nontr|\(|al mampulatlc_)ns required in the Calcma'extracting the spectrum df,. We take
tion are displayed in the Appendix.

AP=EXaq,
IIl. NOTATION AND FORMULATION . .
: . . . A*=(1-a)Et+pBY, (2.9
The system we wish to discuss is described by the La-
grangian density AY=—(1-)BX,
. 1 R where it is clear that these potentials lead to the correct back-
L= h(x,1)[iDg+ >m D?|¢(x,t1). (2.1 ground fields irrespective of the arbitrary parameterand
m B. We further define the single-particle operators

Here #(x,t) is the second quantized fermion field operator = i AX, 2.9

satisfying the standard anticommutation relation
{0, 9y )}= 8% (x—y). Here

E
w=—id,—AV+m=. (2.10
iDo=id,—a’x,t)—A%(x,t) (2.2 y B
and The associated commutator
7 Xv ™= _IB 21
—iD=—iV—A(Xt) —axt). 2.3 Lo, 7] (213

is seen to be independent of the arbitrary parametersd 8.
The uniform background fields andB arise fromAg andA.  We further define the single-particle operators
E is in the plane and taken to be along thelirection, and R
the magnetic fieldB is perpendicular to the plane. They are X0=t, (2.12
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~ 1 with
X=Xx— B 7y, (2.13
we m[E\?
En(X)Ean+ EX+7+E E . (229)
~ 1
Y=y+ — 7 2.1 .
y B ™ (214 The indexn labels the Landau levels. In the event tBat0,

X measures the degeneracy of each Landau Ilgue)l. The

electric field lifts this degeneracy. It is important to note that

i the unperturbed single-particle spectrum is unbounded be-

(2.15 low. In the second-quantized many-body problem, however,
the ground state will be specified as the one where all the

0 Sou - single-particle states are occupied up to a given energy. This

[I7,XT]=i. (2.16 is done by an appropriate choice of the chemical potential.

These commutators are also seen to be independenanﬂ For definiteness, we shall take the chemical pOtentia| such

B. X andY are referred to in the literature as guiding centerthat all the energy levels up 8,(0) are filled up. This is

coordinates. We can also see quite easily that equivalent to redefining the origin of energies by dropping
the constant terme/2)+ (m/2)(E/B)? in (2.29, which we

[7X]=[#Y,X]=[#*,Y]=[#¥,Y]=0. (2.17  shall do in the rest of the paper. Hence

with the associated commutators

Further, E,(X)—E(X)=nw.+EX.
[TI0, 7X]=[TI°, #¥]=[I1°,X]=[T1°,Y]=0 For a givenn, the shifted energy becomes negative when
and We
X< —X,=— =n. (2.293

[X°,7)=[X° #1=[X°X]=[X° Y]=0.
These relations are also insensitive to the choice ahd S.
They further indicate that the spectrum of é (the cyclo-

t tion is ind dent of that of andY (th idi
fon motion is independent of tha andY (the guiding filling only the negative-energy states corresponding=+d.

center motion . X ;
We can now construct holomorphic and antiholomorphic! US the system exists only upto=0, which forn=0is the
same ax=0. Hence, fom=0, the system exhibits an edge

combinations of the operators ; ;
P in real space at=0.° For |E|=B, however, all LL’s contrib-

Furthermore, fotE|<B, only X,=0 remains finite. All other
X, for n#0 go to minus infinity. Thus in this case the filling
of all negative-energy single-particle states is tantamount to

T=a* =i, (2.18 ute to the ground state. In this case, an edge develops for
eachX,.
=i, (2.19 An interesting observation that has to be made is that
o away from X=X,,, the size of(n,X|h|n,X) is roughly
Z=X+iY, (2.20 E,(X), which is O(B). However, in the neighborhood of
o X~Xp, sinceE,(X)~0 the size ofn,X|h|n,X) depends on
Z=X—iY, (2.21) the slowly varying electromagnetic potentials and turns out

to beO(1). Thus, near the edges given Ky, the perturba-
tion theory abouh, fails. To ensure its validity, we excise
~ At neighborhoods of th¥,, out from the integral oveX, which
[m,m]=28 2.22 arises when we calculate the tra@®) in the |n,X) basis,
and and treat the fermion modes in these neighborhoods sepa-
rately. For the remaining modes, the perturbation is obvi-
(2.23 ously valid. These fermion modes that are treated separately
lead to the edge states of the system.
Having discussed these finer points, let us now go on to
organize the perturbative expansion. The perturbationsg,on

and the corresponding commutation relations are

=

[2,2]=

W N

With these operatordy, can be reexpressed as

1 ... A~ we M 2 are given by
ho:ﬁﬂ 7T+EX+?+§ E y (224} 1
= —_ = 0 —_— 2— (=1 —_ — (=1 —_ .

w.=B/m is the cyclotron frequency. It is easily seen thgt V=h—hy=a’+ 2m [a°—a (ZIV=A)=(=iV-A)-a].
is diagonalized by the bas{$n,X)}, where (2.30

770, X) = \/ﬁ|n—1,x>, (2.29 We_ define the holomorphic and the antiholomo_rphic combi—

nations of the components of the vector potential. That is,
R _
' |n,X)=2Bn|n,X), (2.2 A=a'+ia
X|n,X)=X|n,X), (227  and

ho|n,X)=EL(X)|n,X), (2.29 A=a*—ia’.
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Further, o E 1 1 5
O=a’+—-a’——b+-—a°. (2.39
Z=Xx+iy B 2m 2m
and Here all the functions are antinormal ordered with respect to
Z=x—iy 2,2, even though the antinormalization symbol has not been

We note that

[7,A(Z,2)]=—2id,A (2.31)
and
[A(z,2),7"=2i57A. (2.32
Here we have used the relations
PP B
z2=7— E 7TT,
(2.33
s~ | _
=7+ E T,

that are obtained froni2.13), (2.14), and (2.18—(2.21). In
terms of these quantities, the perturbati@r80 is written as

E 1 1
V=al+ - a’'— — b+ — -

1 _
(Aot
B 2m 2m 2m (AmtaA).

Hereb=g,a”— d,a*. Furthermore, any analytic function

(D=3 — (%)

pa P!Q!

Plj\d . s
E) P4 9,P9,9F(Z,2) 4.

Here the symbok # simply indicates the antinormal order-

ing forced ontoZ,Z due to the normal ordering of, .

Using these(2.30 may be rewritten and expanded in powers

of 1/B as
V=V yO 4y D (2,34

where

1 R o
v = — 5o (AT+ m'A), (2.39

i g
VO=0— o [#20A— (7)) 20,A— 71 (A= 07A) ],

(2.3
[ .
VO =2 (70— 7' 9,0)
1 e —2aY
- 4mBZ ™ (zazﬂ?A_aZ )
1 R . J—
T 7127(20,05A— 9,2A),  (2.37)
(-1) Loys i A ST222
\% :E ' wd,07) + amB? 3,07 ,A— d7A) T “ar°.
(2.38

Here

displayed explicitly. In(2.37 and (2.38, we have omitted
off-diagonal terms that do not contribute to the order we are
working at. Reinserting all this back into the expression for
the effective action given ii2.6), expanding the logarithm
and retaining contributions up®©(1/B2), we obtain

Seff: i Tr

6
~InD+ >, Li},
i=1

1
|_1=5 (V(0)+V(*l)),

LZZE Ty ly

(1/2)
2D D ’

1

1
Ls=5 V(2 5 vi-12, (2.40

11 1
|_4:55 v 5 V(O),

1 1 1
L5:5 V(l/2) 5 V(l/2) 5 V(0>,

LGZE V(12 i V(172 i v(12 % V(l/Z)'

D D D

where D=II,—h,. The first term in the trace iri2.40,

—In D, does not involve the perturbative electromagnetic po-
tentials. It is just the vacuum energy, and we are not inter-
ested in it in the present paper. The trace is realized in terms
of the tensor product of the basis luf given earlier with the
basis of eigenfunctions dii’. Indeed, sincellI°,h,] =0, the
eigenvectors oD read

D|n,X,w)=Tp1(X,0)|n,X,w),

(2.4
I'n(X,0)=w—Ey(X),
such thain,X,w)=|n,X)|w), where
fIO|w)=W|w>. (2.42

The specification of the ground state of the system,
namely, that all the negative-energy single-particle states are
filled, means that the integral over the frequercynust be
defined such that

=i 6[—E,(X)]. (2.43

dw
J 27 Th(X, )

Furthermore, as we mentioned earlier, we have to exeise
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neighborhoods oK= — X, to ensure the validity of the per- Ill. SAMPLE CALCULATION
turbation theory. This has the following direct consequence.

Consider the derivative o.43 with respect tcE, (X), In this section, we provide a nontrivial instance where the

perturbative calculation outlined in Sec. Il is actually per-
formed. We choose to work out the telrg in Eq. (2.40 in
detail. Realizing the trace operation as mentioned earlier, this

d 1 :
f % X~ i 5(En(X)). (244 termis

_ L do 1 1/2) (-1/2)
Since, for a givem, E,(X)=0 only whenX=—-X,, the Ls_nzo de 27 (n. Xl D D v [n.X, ).
function never contributes as= —X,, is not permitted ac- (3.1
cording to the criteria adopted above to define a valid per-
turbation theory. Hence coincident denominators can b&Ve now use the action af and 7' on the basis states from
dropped owing to the exclusion of tleneighborhoods. We (2.25 and its complex conjugate, and thatffrom (2.4
shall do so consistently in the sequel. to obtain

2n(n+1 —
L3—ﬁnzof f {F Fn+l(X,n,wl[Zi(nJrl)]ﬁAﬁﬁ&zﬂﬁ+<r](+)>ﬁAM(azr?YA—%&iA)ﬁIX,nM

(X,n,o|(— 2|n)1¢A1i1¢z9—Q1i’+ (3.2

! g):wA:NwN(M —1AA) #]X,N,0)
1“1“n 1 2%z v '

We have writtenl’,, as a shorthand foF ,(X,w). We have also assumed that the commutator Bf Wwith any function
f(Z,Z,t) is suppressed by B/[see(A9)], and hence it does not contributeltg at the order we are considering. However,
there are contributions th, emanating from such a commutator. We can now use propégi2§ and(2.26 to bring the
Landau-level index in the states to zero with no other alteration®2). We next introduce the identitfdt|t)(t| in the |w)
subspace. Sincg|w)=¢e ~19t all the » dependence in the states disappears, and it only remaifs. iWe have

Zmnodef 2 ol

nin-1)\ — 5
T (- 2In)1¢A1¢1¢&—91¢+(T EAY# (9,078~ 202A) #[X,0)). (3.3

(X O[2i(n+1)]#At #9,08 +

2n(n+1) — .
T) BAS 4 (9,07A— 29;A) #]X,0)

Fn z

We use|X) for |X,0) in the following. 1
At this point we recall that all the functions & andZ Ls= m f de f [ (F__ I‘_)
above are separately antinormal ordered. However, as dis- n+i n

played in the Appendix itiA6), the product of two individu- 1

ally antinormal ordered quantities can itself be reexpressed  X(X|Ad, Q|X>+ = n(n+ 1)( - —)<X|A(t9 oA
as an infinite series of antinormal ordered quantities, more Foca T

and more subleading ifl/B). In the order we are working, 10 —2im) 1

only the first term in the series contributesltg. However, —20;A)[X)+ B F__ Ty <X|A‘7_Q|X>

the next to leading term in the series contributesLto
Hence we can just substitute the separate antinormal order-
ings in (3.3 by a global antinormal ordering which we will
not explicitly write down[e.g., for the first term ir{3.3) we (3.4
have t At #9,Q4 ~#Ad,Q04—Ad,Q]. We then use Egs. '
(A10) and(A11) from the Appendix to disentangle the mul- which can be further simplified using12)—(A15). Thus we
tiple denominators irf3.2). This yields reduce all the denominators to the same fdign This en-

1
1_‘n—l

2 1 - 1.2 8y
+gnn=1)| 7 (X|A(9,07A—305A)|X) |,
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ables us to us€2.43 to integrate ovew and obtain thed We obtain
function displayed therein. This means that fr¢g4) we

. n 2n n(n—1
Obtam L1=Q— E b+ E (927929— % (92(9?3, (42)

1 < 2m
ngﬁ 2 f de dt[g 9[—En(X)]<X|(AﬁzQ 1 — 1 — — 1 —
n=0 L,=— %AA'FWB((??AO"ZA‘F ’?ZAa?A)_E —1AdA

— 4in — 5
— - gl - -A—1 E
A2 = g A= EaOOJXIAW:02A =2 7:A) FIAGA— = [A(TA—I7A) ~ AlFA—7A )]}, 4.3

+A(az(9;6\—%a%A)|x>}. (3.5 P on — _
Ls=g [A7z0-Ad0] - —= [A(- 30707A+ d79,A) + A
In its turn, thed function is used to yield am-dependent

upper bound on th& integral. That is, theX integral goes (—30,0,A+ d79,A)], (4.9
from —o to —X,,. Furthermore, as shown i#A5), the inte-

gral over X of a function that is antinormal ordered and 2n+1 —

evaluated in theX basis can be easily reexpressed as the La=— g 9AdA (4.5

integral over real space of @number-valued function that
can be readily obtained from the original antinormal-ordered i - - -
g-number valued function. In this integral over real space, Ls=5 5 (~AAJZA+AAIA+AAILA—AAIZA),

thex integral ranges from-o to —X,,, a consequence of the (4.6)
restricted range of integration of. They integral, on the
other hand, is over the entigeaxis. Thus, going through this Le=0. 4.7

last step, forL; we have

A few comments are in order. The second and third terms

E 1 in the first line of(4.3) arise from the renormal ordering of
B 5m the first term[see . The second line it4.3) arises from

a’+ = a b he fi msee(A6)]. Th d line i4.3) arises f
the fact thatD andV*? do not commutdsee(A9)].

i - 7xn
L3=—EHZO f_x dxf dyf dt

b

1 2n - A few cancellations can be readily seen fro4n2)—(4.7).
+ >m a2l + ey (Ad,07A+ Ad,d7A— SAIZA The term (1/mM)AA from (4.3) cancels against the same
term in Q) from (4.2). Equation(4.6) cancels against the
o i = 1 terms with (1/2n)AA in Q from (4.4). As we indicated in
- %A(?Z;A) + o Eo J dyJ dt| aa¥— m a¥(b (2.43, the integral ovemw gives rise to a step function. This
=

step function, in turn, provides a finite upper limit to tke
integral. We show inA1)—(A5) how this translates into a
. (3.6)  finite upper bound for the integral. Therefore partial inte-
x=-X, gration with respect ta gives rise to boundary terms which
must be kept. Let us divide the final result into bulk and

E
—a’)+g (ah)?

We note here that apart from terms that obviously live in thepoyndary terms. In each contribution there are both mass-
bulk, there are terms that live at the edges of the bulk. inde_&endent and mass_dependent terms. We also refvrite

some terms in the bulk in a convenient form through judi-; . Consider first the bulk effective action. We obtain
cious integrations by parts. Notice also that we have taken

the e neighborhoods to zero at the end of the calculation. 1 =X,

Sk=o— > f dxf dyf dt(LP+L™), (4.9
n=0 J -

IV. RESULTS FOR THE BULK

Now that the perturbation theory in the bulk has been LioP—= _Llcuvrg 594 —B| a +E a (4.9
. T ) 2 wlvlp 0 B Y/’ .
scrupulously defined, and a significant example of a calcula:
tion has been shown in Sec. Ill, we proceed to display the
results for the various contributions §8.40). Notice that the Lm— _ 2n+1 b2+ 2n+1 bB 4.10
first term in(2.40 is just an irrelevant vacuum contribution 2m 2m ' '
that wg drop. Let us organize the remaining contributions e boundary effective action reads
follows:
1
o bound_ to m
do S ——fdyf dt(L™P+L™), (4.1)
Shk=i > dxf dyJ’ dtf —fo|x|<x,o,w|x,y,t>|2 2m
n=0 27
6 top n 0 E y ya0 y\2
" 1 o @1 L®=-Sa|a+ga’|-5|ala+ (@’)°],
I X,w) &1 7" ' (4.12
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n? 2n+1 ~Xpte dw -

LM=— B db+ am a(a¥)?. (4.13 SgUveP= —j Jx:e de Py (p,X,w|In| ITy—hy—a°
Notice that the bulk action is gauge invariant but the bound- 1 atr
ary action is not. This is so because on the one hand there are 5 a¥y— >m AA+ >m (? +1 b}|p,x,w)
explicit gauge-noninvariant terms i@.13 and (4.14), and
on the other hand the gauge variation(4f9) gives rise to ~Xpte do
boundary contributions due to the Chern-Simons term in =—if de 2—<0,X,w||n I'p[0X, w)
(4.10. We shall see in Sec. V how the edge states fix up the “Xpe 7

lack of gauge invariance at the boundary.

A Ao B A ~A A~
[p:=Tp(Io,X,Y):=Tlg— — p=EX+,(X,Y),

V. EDGE STATES (5.4
In Sec. Il, we excluded small neighborhoods aroud
from the calculation, which correspond to zero modes of the
Hamiltonianh,. In these neighborhoods, is O(B®) instead
of O(BY), and hence the perturbation theory must be reorg
nized. Notice first tha¥ 2 andV ! are still perturbations.
We shall ignore them for the moment, and see later on th

they actually give rise to higher-order terms. Let us then split

X V)= a0 = aVh - AAY — (2p+1)b

#let us next insert the identity into the subspd&et), and
Jfse the representation

D into its diagonal and off-diagonal parts, X= B dy, ﬁ0=iﬁt. (5.5
D=04+A0, We have
OuTip—ho—a0— C av— = aAt = [T 1) cagen_ _; [T gy [ 9@
d— 1o o—a B a 2m 2m B ’ SO =—1 f_x . dXJ’ Z f dYJ dt(O,X,w|0,Y,t)
p
AO=A0Y?+A0°, (5.2 i
XIn Ty idy, B Ay, Y |{0,Y,t|0.X, w). (5.6
1 N
12— i
A0 - 2m (Am+mA), Using the explicit expression for the wave function,
i i B 1/2
o__ ' 2. L a2 0.Y,t|0X,w =(—) gl wtgiBXY (5.7
AO >mB d7AT >mB dAT" . ( | ) 2

The effective action for all these neighborhoods reads and making the shift

k
X— =X+

B’ (5.9

* —Xpte * do
sedge%—iZf PAxS | == (n.X,0|In(04
p=0 J—Xp—e n=0 2w
we have
+A0)|n, X, w), (5.2

eB
whereX, is defined in(2.293. Let us next focus on a fixed S —if % f d—w J’ dtf de dt In( w— E k
p. Notice that whene—0, only singular terms make a finite —e 27 ) 27 B
contribution t0S*% Those may occur only wheny, is close E

to zero. Otherwise, a local expansion abbyt which gives +id—i B v+ fp(Xp,Y)) +0O(e). (5.9
rise to piecewise continuous functions, as we have seen in

Sec. IV, is legitimate.h, gets close to zero only if For eB—oo, the above is nothing but the effective action

n=p,px1l atthe Qrder we are interested in. Consider ther}or a 1+1-dimensional chiral fermion, the Lagrangian for
the formal expansion

which reads
—Xpte * do
edgep _ _ i P - . . E E
S If—xp—gdanO o (n,X,w|{In Oy Lghf:J’ dtj dy lﬂT(lé’t—l g O’;Y_aO_ E ay
+§ (_1)r+l ! AO r X 5.3 ! 2 1)b ! AA 1
2 7 lo, In.X,0) (5.3 +om (2pt ) ~om . (5.10

Let us first focus on the first term in the expansion. For Notice that(5.9) is alreadyO(B°), and hence any contri-
this term it is clear that only=p gives rise to a smak,.  bution suppressed by B/should be consistently neglected.
The remaining terms 5.3 also make contributions with In particular, that includes contributions from =2 and
smallh, for n=p and forn=p=1, which will be calculated V=Y which we have already disregarded. Form(8al0) is
further on. Fom=p, not yet the right Lagrangian for the edge states, but it con-
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tains its essential features, which we would like to commengauge anomaly, the non-gauge-invariant local counterterms
upon__First of all there is only one term, namely,(1/ are automatically fixed. The only freedom we have are
2m)AA, which is not gauge invariant. This term cancels outgauge-invariant local countertermigp to total derivatives in
with other terms which also contribute to the edge action, as andy) at the edge. Let us list them below:
we will see below, so we shall disregard it in the following
discussion. The remaining terms can be split into mass-
independent and mass-dependent terms. The mass- d=1:a° @&,
independent terms, which are identical for any eflgende-
pendent, and hence identical to the ones obtained for the
only edge that exist when the electric field is wéadorre_:- d=2:9,a°% 4,aY, (5.1
spond to the usual Lagrangian for & 1 chiral fermion(chi-
ral Schwinger modegl The coefficient of the mass-dependent
term depends on the particular edge dependent and to d=3:02a°. 52a)
our knowledge has not been found before. X X

It is well known that the chiral Schwinger model is
anomaloug:” This means that not all the symmetries of the The coefficients of these terms contribute to the observables,
classical Lagrangian can be implemented at the quanturand must be fitted experimentally or calculated numerically
level. This is due to UV singularities, and implies that thefrom the fundamental theory.
guantum theory is defined up to local counterterms. The lo- One may wonder at this point as to how it comes about
cal counterterms encode the inherent ambiguity of an anomdhat even though we started with a well-defined problem we
lous gauge theor§ They can also be regarded as a reminderend up with a few free parameters that we cannot calculate.
of the possible different results one can obtain at the quanfhe answer is that for the bulk and edge calculations, as-
tum level by using different regularizations. In the relativistic sumptions about, the cutoff which separates the edge and
chiral Schwinger model, one usually requires Lorentz symbulk, are different. For the perturbation theory at the bulk to
metry at the quantum level. This forces gauge invariance the correct one needge>(\/Ba/m), (a'al/m), and a°
be spoiled, and reduces the number of possible local courwhereas for the derivation of the edge stafas<a® is un-
terterms. In our case the physical situation is quite differentderstood. Therefore there is a region, presumably small, in
In condensed-matter physics Lorentz symmetry is not supwhich none of the expansions hold. What is remarkable,
posed to play an important role. Although in time—co limit however, is that our ignorance about this region can be sum-
the edge action enjoys a+ll Lorentz symmetry(taking  marized into only a few gauge-invariant local counterterms
c=E/B), it is not clear that it must be considered a funda-at the edges.
mental symmetry. In fact, the only fundamental symmetry Let us next analyze the remaining terms in expansion
that we have in our system is thi1) electromagnetic gauge (5.3). Recall first that D4 is O(B®) at the edge bu®(B?)
invariance. Then the most reasonable criterion to define thelsewhere, and thatO contains a piec®(BY?) and a piece
edge effective action quantum mechanically is to requiréD(B°). We notice that only a very particular class of terms
gauge invariance in the whole system. Since the bulk actiomakes contributions of the same order (&s4). Indeed, if
contains a Chern-Simons term which gives rise to the gaug&/Oy is at the edgeA O brings the following 10 out of the
anomaly at the boundary, we must define the edge action iadge. The nexA O may either keep the next@j out of the
such a way that cancels out this gauge anomaly, togethexdge or bring it back to the edge. In the first case we obtain
with the rest of non-gauge-invariant local counterterms. Rea term which is suppressed at least by a power Bf @ith
call that the cancellation of the gauge anomaly coming fronrespect ta5.4). In the second case we obtain a contribution
the Chern-Simons term in the bulk cannot be carried out byf the same order a$.4) due toAOY2 whereasA O° gives
means of local counterterms at the edge. It actually requiresse to contributions suppressed byB1/Therefore we must
the existence of extra degrees of freedom at the edge, in thadd up all the terms corresponding to the second case in
case the chiral fermion. Therefore once we have chosen which onlyAO*?is involved. From this discussion it is clear
regularization for the edge effective action which cancels thehat onlyn=p,p=1 will contribute. Forn=p, we have

~Xpte do « 1 1 J
edgep _ _ P e _ = _ _
So |J_Xp_€dxf > le 3 <p,X,w (Od AO o, AO) p,X,w>
[ Xpte do & 1 1] 1 pBAA 1 (p+1)BAAJ\
__Ij—xp—stJ _71']21 —2—j<p,X,w (F_p[l“pl 2m* TI,_; 2m? p.Xe
.J_Xp+fdxf do < 1 0X 1 A_JOX .
R 2w & 2\ i “Tp,2m) | @l (5.12
p

Forn=p=x1, we have
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—Xpte do < 1 1 1 1 i
dgep_ _; p i _ 1 1 1 1
= 'ﬁx 7def 2 ;O 2G+1) <pi1,X,w - AO( AO AO) 5; AO‘ptl,X,w>

, o O4 = O4
1+
_1y1%1/2 - _
_ffxpﬁdxf do g L ox N L )AA LAAl -
ox e 2w 2 2D (0%l T, om/ | T, 2m) 10%@)- (513
|
A few technical cgmments are in orddr, above must be A<5X10P\.=5AX.

understood as theX(Y)-valued operator defined if5.4). A

andA are also functions ofX,Y). AlthoughX andY do not  This constraint will be met automatically if we choaséess
commute, its_commutator i©(1/B). Hence we have com- thanAX, as required by resolvability. From this discussion it
mutedA and A at will. The commutator of 17,.; with A follows that the pertinent term i5.14) should be detectable
andA is alsoO(1/B), and has also_ been neglected. Howeverjn an actual experiment.

the commutator of 17, with A andA is O(BY) and must be

kept. Instead, the cyclic property of the trace has been used VI. DISCUSSION AND CONCLUSIONS
in (5.13 in order to bring the firsA andA together.
If we add(5.12 and(5.13 to (5.4), we see that the only In this paper, we have focused on the rather interesting

effect on the latter is the cancellation of the gauge-phenomenon that, in an arbitrarily strong electric field along
noninvariant term,—(1/2m)AA, as claimed above. We fi- the plane, a system of planar electrons exhibits a multiplicity
nally have of edges. The calculation here exhibits a number of interest-
ing features. First, we have shown that we do not have to
chf_ <. _E o E y make a specific gauge choice for the background electric and
Lp _f dtf dY gplia—i goy—a—ga magnetic fields. In fact, we have set up a gauge-independent
algebra for the set of operators that diagonalizes the unper-
1 turbed Hamiltonianh,. This is to be contrasted with most
+ 2m (2p+1)b)¢p' (514 calculations in the literature, where a gauge chdiei¢her
Landau or symmetrjcis made at the onset for the back-
The last term in(5.4) is not instrumental in the mainte- ground fields. Moreover, at no point in the calculation are we
nance of gauge invariance, which may be the reason why galled upon to use the explicit wave functions of the higher
has not been obtained before. This term depends on the eleeandau levels. It is at the very end of the calculation that we
tron mass and, more importantly, on the particular edge. If have to use the explicit wave functions of the lowest Landau
were a constant field, we could reformulate the problem ievel, in order to make contact with the real spatial coordi-
terms ofB+ b, which would have resulted in a small shift in nates. Most of the manipulations are at the operator level,
the location of the edges. In that event, this term would no@nd integrals have to be performed only at the ultimate
appear in(5.14). A simple way to implement this in the edge Stages. This alleviates the tedium of a derivative expansion
action(5.14) is by a field redefinitiony,— e'(l’zm)(P*l)bt(/,p_ considerably. Furthermore, the only expansion has been with
However, we have envisioned a perturbation that depends digspect to the large background magnetic field. The electron
space and time, for instance an electromagnetic wave, whefgass has been retained throughout as an arbitrary parameter,
this term cannot be removed. and hence finite-mass effects have already been incorporated.
In what follows, we argue that this term may be detectedVe have further seen that to set up a viable perturbation
experimentally. For definiteness, we consider an experimertheory, ane neighborhood of the edge due to each Landau
tal situation similar to the setup in Ref. 15. We tdke 15T, level has to be excised, and the fermion modes in these in-
and E/c=3x10 °T. From (2.293 we obtain that the dis- tervals treated separately. These modes cannot be integrated
tance between successive edgesAin105)\cz 107 A, out and reexpressed through local terms involving the per-
where), is the Compton wavelength. Given the dimensionsturbative gauge potentials. We have dealt with these sepa-
of the sample in Ref. 15, a relatively large number of edgesately to obtain the chiral edge fermionic actions. The re-
(~1000 fit into it. If we imagine that the edges are probed maining fermionic modes can be integrated out and
by a monochromatic electromagnetic wave, we immediatelyeexpressed in terms of a local effective action involving the
see that the wavelength must be less than the interedge digauge potentials. This is the “bulk” action. Thus a clear
tanceAX in order to resolve between them. To ensure thaseparation of the bulk and the edge has been effected in this
we detect a different response from each edge, we mug@lculation. The bulk action is expectedly not gauge invari-
verify that the last term if5.14) is at least of the order of the ant by itself. The edge fermionic systems also possess the

other terms. This implies, for a probe with wavelength well-known U(1) gauge anomaly. The basic anomaly is,
however, seen to be insufficient to compensate for the non-

E A invariance of the bulk. We also need to include local coun-
cB N terterms constructed out the operators in the edge fermionic

action to render the total effective description gauge invari-
This in turn means that ant. While this procedure is quite familiar to aficionados of
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the theory of anomalies, it is instructive to encounter it in a X,
more everyday condensed-matter context. Apart from the f dXx|(x
terms in the fermionic edge action which lead to the
anomaly, we have also found an interesting gauge-invaria
term that depends both on the electron mass and on the p
ticular edge. We have argued that the existence of this
can be verified experimentally.

Turning from enumerating the virtues of our calculation,
we outline future as well as ongoing projects in the general _ ) )
direction. We are currently involved in generalizing to the 1. From the |0X) basis to space-time functions
case of relativistic fermions, in which case the electronic spin  Next we indicate the simplication of the following expres-
is introduced in a natural manner. One of the objectives is t&jon which occurs frequently in the text:
see whether the spin could become an important degree of
freedom even in a strong magnetic fiéit!. Another issue j_x

B
0’X>|2—>E 0 — (x+ X1 (A4)

— o0

*his means that, on performing th¢ integral, the upper

: it on the integral, due to the specification of the ground
€MBtate, devolves on to the integral over the spatial coordinate
X.

that will bear closer scrutiny is the effect of the Coulomb ndX<0,X|1¢f(Z,Z)ﬂl¢|0,X)-
interaction between the electrons and the effect of it on the
edge states of the systéfit'3 The effect of a strong electric

field in the case of the fractional Hall effect can also be
discussed by looking at the integral Hall effect for Jain’'s _x R
“super” fermions* Work in this direction is underway. f ”dx<0,x|f(§,z_)’ 0.X)

— o0

—o0

This can be rewritten as
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APPENDIX -

Xn A2 —Xn *
J dX(O,X|1.‘»1‘(2,2)1¢|0,X>=2E f dxj dyf(x,y).
In this appendix, we shall provide some of the computa-~ T o (A5)
tional details omitted in the main body of the paper. As we
noted in Sec. lll, we have to translate results obtained in the
{In,X,w)} basis to the space-time basis. For this, as we shall 2. Reantinormal ordering
see below, we neelix|0.X)[>. This may be worked out by

) e ; Again, in the text, we come across expressions of the
going to a specific gauge. Here we choose to work in the

form #f# #g#, where each of the functions and g are
separately antinormal orderedZnandZ. However, this can
be written again in @ suitably antinormal-ordered form by

commutingZ acrossZ wherever they do not ocgur in anti-
normal order in the productf# #g#. As Z andZ are ca-

A=(0,—BXx) (A1)

gauge. In this gauge, we have

14 12 nonically conjugatgup to factors, this leads to an infinite
(x|0X)= (E (E e~ IB(X+mE/B?)y g~ (B/2)(x~X)? series of antinormal functions of increasingly higher order in
! T 2 1/B. That is,
. _ 1
In fact, in Sec. Ill, we were required to evaluate ﬁfﬁﬁgﬂ:ﬁfgﬁ—g gofo,9+--- (AB)
S~ XndX|(x|0.X)[2. With the wave function from(A2), we
obtain

where the - indicate terms of higher order i1/B) that have
been dropped. Hence, usif®5) and (A6), we have
7Xn B
f dXKX|0X)P=5= er — VB(x+X,)], (A3)

o 2

fg

—Xn B —Xn *
f_m dX<X|1ifMgﬂ|X>=zf_m de_xdy

where erfQ)=(1/\/7)* .dy e ¥’ In the limit of a strong
magnetic field, from the value of the error function as its

. . S ; (A7)
argument goes to either plus or minus infinity, we obtain

1
-5 g+
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3. Commuting 1D with f(X,Y,1) 1 1/ 1 1
Furthermore, we also encounter expressions like | I Y N ¢ (Fnﬂ_ F_n) (A10)
1
D does not commute witli or g as it containsX and f[o. Plp-1 o\l Ty
However, using
e Furthermore, we have
[D,f]=—i aner[Ho,f], (A8)
where [ﬁo,f] =ig,f in the space-time basis, we have > (;+1) = Fl (A12)
n=0 n+1 n=0 n
1
<n,X.w|1if1¢ o) ﬂgﬂln,x,w>
“oon “on+1
1 = : (A13)
=<n,X,w D #fd o4 I’],X,w> nzo | Y ,Zo r,
+<X 1[D1¢f1¢]11¢1¢ X> Z n(n+l) & n(n—1)
n,X, ol < , — #0# N, X,w). n(n+ n(n—
D D 2 T2 (AL4)
(A9) n=0 n+1 n=0 n
The second term on the right-hand sid¢1/B) suppressed and
with respect to the first term. The formula above can be
further iterated until one obtains all [l/s acting on the
states, plus higher-order terms. “ nin-1) & n(n+1)
> =2 (A15)

4. Multiple denominators

We also have to perform a bit of algebra with(X)

defined in Eq(2.42). The principal results that we note here  Other results may be obtained as required by repeated

are applications of(A10) and (Al1l).
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