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Development of a tight-binding potential for bcc Zr: Application to the study
of vibrational properties
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~Received 18 September 2000; published 6 March 2001!

We present a tight-binding potential based on the moment expansion of the density of states, which includes
up to the fifth moment. The potential is fitted to bcc and hcp Zr and it is applied to the computation of
vibrational properties of bcc Zr. In particular, we compute the isothermal elastic constants in the temperature
range 1200 K,T,2000 K by means of standard Monte Carlo simulation techniques. The agreement with
experimental results is satisfactory, especially in the case of the stability of the lattice with respect to the shear
associated withC8. However, the temperature decrease of the Cauchy pressure is not reproduced. TheT50 K
phonon frequencies of bcc Zr are also computed. The potential predicts several instabilities of the bcc structure,
and a crossing of the longitudinal and transverse modes in the~001! direction. This is in agreement with recent
ab initio calculations in Sc, Ti, Hf, and La.
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I. INTRODUCTION

A fundamental problem in condensed matter physics
how to project microscopic interactions in many-body s
tems onto a description in terms of a reasonably small n
ber of degrees of freedom.1 This is particularly important in
computer simulation studies. Atomic-level simulations a
intrinsically, large-scale calculations, and in spite of the hu
improvement nowadays available in computing capacity,
efficient method to rapidly evaluate energies which also tr
forces in a physically realistic way still remains a major d
ficulty to be solved.

The computation of solid properties always requires a p
ticular choice for the interatomic potential. In the choi
there is a compromise between physics and efficiency. C
putational efficiency makes empirical or semiempirical p
tentials desirable, but at the same time one should req
that the underlying physics behind the model potential
able to reproduce the properties of the system or at l
those of interest.

Several years ago Friedel2 suggested that the startin
point in the description of transition metals~TM’s! is a band
picture with a strongd character. In this sense, the remar
able parabolalike behavior of the cohesive energy and
bulk modulus exhibited by most TM’s as a function of th
number ofd electrons2,3 clearly indicates that cohesion
mainly dominated by thed states. This has motivated th
development of many-body potentials based on the tig
binding ~TB! approximation4,5 ~for a review see Ref. 6!.
They are semiempirical in nature, which makes them v
appealing for computer simulation studies, and at the sa
time they incorporate the band character of the metallic
hesion so that the attractive part of the interatomic ene
turns out to be many body.

In the present work, we develop a TB potential based
the moment expansion of the density of states, which
cludes up to the fifth moment. It has been suggested that
is the lowest order needed to reproduce the general tren
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the elastic constants of hcp and fcc TM’s as a function
band filling.7

Zirconium, as is the case of other metals and alloys
close packed at low temperatures, but undergoes a struc
phase transition of the Martensitic type to a bcc structure
higher temperatures.8–10 Some features of this phase tran
formation in Zr were previously studied by using the secon
moment approximation TB model.11,12 Here, we shall not
focus on the structural phase transition itself but rather c
centrate our interest on the elastic properties of the hi
temperature bcc phase, which is accepted to be mainly
bilized by entropy effects.13–15 In particular we calculate the
temperature behavior of the relevant elastic constants by
ing standard Monte Carlo simulation techniques. The res
thus obtained are compared with the available experime
data. The agreement is rather satisfactory, but it does
allow us to draw conclusions about the reliability of the p
tential. This is provided by the computation of the phon
dispersion curves for the bcc Zr atT50 K. Indeed, the com-
parison with recentab initio calculations16 is indicative that
most of the fundamental physics governing the vibratio
properties of bcc Zr is contained in the interatomic poten
model.

The paper is organized as follows. The next section
devoted to the construction of the interatomic potential.
Sec. III we describe the fitting procedure to Zr. In Sec. IV w
present and discuss the results and in Sec. V conclusion
drawn.

II. DEVELOPMENT OF THE INTERATOMIC POTENTIAL

The interatomic potential is developed following th
tight-binding bond model~TBBM! by Suttonet al.17,18 in the
two-center orthogonal approximation. The basis set of
TB Hamiltonian only includesd atomic orbitals and crysta
field interactions are neglected.

The cohesive energy is decomposed into two terms,

Ecoh5Ebond1Epair . ~2.1!
©2001 The American Physical Society04-1
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The termEpair is an empirical pair potential which stands f
electrostatic and exchange-correlation interactions,17 and the
bond energy is

Ebond5(
i
EEF

ni~E!~E2e i !dE, ~2.2!

whereEF is the Fermi energy,e i are the on-site Hamiltonian
matrix elements in the atomic orbital representation, a
ni(E) are the local densities of states~LDOS!.

In this TB model, thes-d hybridization, which is known
to make a considerable contribution to the cohesive ene
of TM’s,19 is not treated appropriately. Nevertheless, it c
be assumed that such a contribution is included implicitly
the pair term, as in the paper by Girshicket al.,20 or either
that this contribution should be proportional to thed-band
width and therefore it is included in the bond term.

The condition of local charge neutrality is fulfilled b
defining local Fermi energies. This is done through the re
tion

EEFi
ni~E!dE5Nd , ~2.3!

whereNd is the number ofd electrons per site and the atom
orbital energy is chosen to be the energy zero,e i50 ; i . This
method is equivalent to shifting the LDOS rigidly, where
adjusting the on-site energies self-consistently, as propo
by Suttonet al., means that the shifts of the LDOS are a
companied by a distortion of their shape.

The LDOS are constructed from their momentsm i
(n) fol-

lowing the formalism of the recursion method of Haydock21

as if the moments corresponded to ans band. In this way the
computed LDOS are rotationally invariant.22 That is, from
the second to the fifth moments we compute the coefficie
b1 , a1 , b2, anda2 of the recursion method. Since the coe
ficientsan , bn are convergent oscillating series,23 their limit
a` , b` is estimated asa`5(a11a2)/2 andb`5(b11b2)/
2, and the coefficientsan , bn with n.2 are assumed to b
at
us

s

s
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equal toa` , b` which gives rise to the well-known squar
root terminator of the continued fraction expansion of t
diagonal elements of the Green function.24 The integration of
the LDOS in order to obtain the bond energy is perform
numerically.

To completely specify the bond energy we need to defi
the functional form of the off-diagonal Hamiltonian matr
elements in the atomic orbital representation, known as c
pling strengths or hopping integrals. In the two-center a
proximation the coupling strengths between sitesi and j can
be written as

^ iauHu j b&5@Fab
s ~r i j /r i j !Vdds1Fab

p ~r i j /r i j !Vddp

1Fab
d ~r i j /r i j !Vddd#R~r i j !, ~2.4!

whereFab(r i j /r i j ) is the angular dependence given by t
symmetry of thed orbitals, as shown by Slater and Koster25

andR(r i j ) is the dependence on distance of thedds, ddp,
andddd bonds, which is assumed to be equal for all of the
The relative strength of the couplingsVdds :Vddp :Vddd are
the canonical values26:4:21.

For the radial dependence we take

R~r !5H exp~2qr !, r ,r 1 ,

exp~2qr !~a1br1cr2!~r 22r !, r 1,r ,r 2 ,

0, r .r 2 ,
~2.5!

wherea, b, and c are constants fixed by the condition th
R(r ) and its two first derivatives must be continuous atr 1,
which gives a5(3r 1

223r 1r 21r 2
2)/(r 22r 1)3, b5(23r 1

1r 2)/(r 22r 1)3, andc51/(r 22r 1)3. By construction,R(r )
is also continuous at the cutoff distancer 2.

Finally the pair term of the cohesive energy is taken to

Epair5 (
i , j (Þ i )

Vpair~r i j !, ~2.6!

with
Vpair~r !5H A@exp~2p1r !1j exp~2p2r !#, r , r̃ 1 ,

A@exp~2p1r !1j exp~2p2r !#~ ã1b̃r 1 c̃r 2!~ r̃ 22r !2, r̃ 1,r , r̃ 2 ,

0, r . r̃ 2 ,

~2.7!
ree

the
Zr,

are
where ã, b̃, and c̃ are constants fixed by the condition th
Vpair(r ) and its first two derivatives must be continuo

at r̃ 1, which gives ã5(6r̃ 1
224r̃ 1r̃ 21 r̃ 2

2)/( r̃ 22 r̃ 1)4, b̃

52(24r̃ 11 r̃ 2)/( r̃ 22 r̃ 1)4, and c̃53/(r̃ 22 r̃ 1)4. By con-
struction,Vpair(r ) and its first derivative are also continuou

at r̃ 2.
The model has, in principle, six fitting parametersA, j,

p1 , p2 , Vddd , andq. Nevertheless, the number of electron
Nd , and the cutoff distancesr 1 , r 2 , r̃ 1, andr̃ 2 are also used
,

as fitting parameters although they are not completely f
since they are constrained by their physical character.

III. FITTING TO Zr

In this section we discuss the procedure used to fit
model parameters to the zero-temperature properties of
both in the hcp and the unstable bcc phases.

Since the bcc structure is only stable atT.1135 K, the
values of some properties used in the fitting procedure
4-2
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extrapolated from the high-temperature experimental d
whereas others are obtained fromab initio calculations atT
50 K. Most of theab initio results have been calculated
this work using theWIEN97 code,26 which follows the full
potential linearized augmented plane wave method wit
density functional theory. All the computed quantities a
obtained in the generalized gradient approximation~GGA!
by Perdew, Burke, and Ernzerhof27 for the exchange-
correlation potential.

The properties of bcc Zr that we have considered in
fitting procedure are the cohesive energy, the lattice par
eter, the elastic constants, and the unrelaxed vacancy fo
tion energy. Moreover, we have also taken some prope
of hcp Zr at T50 K into account, mainly its elastic con
stants, lattice parameter, thec/a ratio, and the energy differ
ence between both structures.

A. Fitting of the bond energy

The coupling strengths are essentially short-range fu
tions. Therefore, we impose that they fall to zero between
second and third nearest neighbors and chooser 2
51.24abcc . For the matching point of the tail of the functio
we choser 150.92abcc , which lies between the first and se
ond nearest neighbors. Notice that in this way the tail of
coupling strengths interferes with the fitting procedure. T
values chosen for these parameters are those which allo
better reproduction of the properties of hcp Zr.

An important property of the elastic constants exploited
the fitting procedure is that the Cauchy pressure given by
interatomic potential which satisfies the mechanical equi
rium conditions only depends on the many-body term of
potential; that is, the Cauchy pressure is independent of
pair term.20 Considering both the bcc and hcp structures
have three Cauchy pressures to deal with. One of these
Cauchy pressureC122C66 of the hcp lattice, is affected by
an internal relaxation of the lattice under strain. In order
avoid the determination of the internal relaxation and its
fect on the Cauchy pressure during the fitting procedure
the test value for this quantity, we use only its homogene
contribution ~without internal relaxation! obtained from the
experimental Cauchy pressure by subtracting the inhomo
neous contribution determined fromab initio calculations. In
the hcp lattice the elastic constants affected by internal
laxations areC11, C12, andC665(C112C12)/2, and the in-
homogeneous contribution toC12 is the same as that ofC11
but with the opposite sign. Therefore, we need only to e
mate the inhomogeneous contribution toC11 which is I
.7 GPa.28 Using the experimental values of the elastic co
stants together with theab initio results, the three Cauch
pressures are

~C122C44!bcc557.4 GPa ~Ref. 28!,

~C122C66!hcp
homog59 GPa ~Refs. 9,28!, ~3.1!

~C132C44!hcp528 GPa ~Ref. 9!.

Another property which strongly depends on the ma
body term is the unrelaxed vacancy formation ener
13410
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(EV
f )unrelx, since the contribution of the pair potential term

this quantity is equal to its contribution to the cohesive e
ergy. For the present interatomic potential, in the bcc latt
we get the following approximate relation:

~EV
f !unrelx.2Epair20.52Ebond. ~3.2!

Taking into account Eq.~2.1! we therefore get

Ebond.@~EV
f !unrelx1Ecoh#/0.48.28.0 eV. ~3.3!

This result is consistent with the value predicted by t
renormalized-atom method of Gelattet al.19 provided that
the contribution to the cohesive energy of thes-d hybridiza-
tion is assumed to be contained in the bond te
(Ed band broadening1Es-d hybridization.27.8 eV).

From the literature we obtain physical values for the nu
ber of electrons,Nd52.536,29 bandwidthW57.8 eV,30 and
the derivative of the bandwidth with respect to the atom
volume, 23Vd ln W/dV53.97,30,31 which is related to the
parameterq. In order to extract the value of the parameteq
from this relation we approximate the bandwidth asW
}Am (2), that is, proportional to the square root of the seco
moment of the density of states,3 and using the radial form o
the coupling strengths defined in Eq.~2.5!, we obtain q
.4.36abcc

21 . In the present model the bandwidth isW5Etop

2Ebottom54b` which is proportional to the paramete
Vddd . Therefore we can useW instead ofVddd as the fitting
parameter without loss of generality.

Using these physical values for the parametersNd , W,
and q, in the bcc lattice the interatomic potential gives
value of Ebond.27.5 eV, which is consistent with the
value predicted by the unrelaxed vacancy formation ene
@Eq. ~3.3!#. Nevertheless, the Cauchy pressure obtained w
these parameters, (C122C44)bcc.104 GPa, is unacceptabl
high @see Eq.~3.1!#. We have, therefore, to find an altern
tive way of fitting them. We shall proceed by paying mo
attention to the directly observable physical quantities s
as cohesive energy, lattice parameter, elastic constants
vacancy formation energy rather than to the physical in
pretation of the parameters.

For a given value ofNd , the parametersW and q are
determined numerically to reproduce the Cauchy pressur
the bcc lattice given in Eq.~3.1! and the bond energy
Ebond528.0 eV @Eq. ~3.3!#. We repeat this fitting proce
dure for different values ofNd and compute the Cauchy pre
sures of the hcp lattice. The results are given in Table
These Cauchy pressures are computed using the lattice
rameter andc/a ratio of the hcp lattice at which this structur
is stabilized by the interatomic potential. For this purpose
use an arbitrary pair contribution fitted to the lattice para
eter, cohesive energy, and elastic constants of the bcc s
ture. In all cases,ahcp andc/a are close to the experimenta
and ideal values, respectively, although we observe a
dency ofc/a to increase as the number of electrons is
creased. The value ofNd which allows reproduction of the
three Cauchy pressures simultaneously@Eq. ~3.1!# is Nd
51.45, which is substantially lower than its physical valu
Nd52.536.29 Nevertheless, there are two additional reaso
4-3
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TABLE I. Cauchy pressures of hcp Zr for different values ofNd . The parameterq and the bandwidthW
are also shown.

Nd q(abcc
21 ) W ~eV! (C122C66)hcp

homog ~GPa! (C132C44)hcp ~GPa!

1.35 3.730 13.8 1 28
1.40 3.680 13.4 5 30
1.45 3.634 13.0 9 32
1.50 3.592 12.6 13 34
1.60 3.498 12.0 21 37
1.80 3.342 10.9 34 44
2.00 3.201 10.1 44 49
2.20 3.099 9.2 53 53
2.40 3.012 8.9 57 55
2.60 2.953 8.5 62 57
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for adopting the value ofNd51.45: ~i! TB studies on the
relative stability of hcp and fcc lattices as a function ofNd
~Ref. 29! have shown that the hcp lattice is only stable
Nd,2 ~in the range 0.5,Nd,4.5), and~ii ! the low value of
thec/a ratio in group-IV hcp metals can be justified in term
of the different contribution to the bond energy from near
neighbors located on the basal plane and those located
only if Nd,2.17,32

The radial dependence of the coupling strengths is sh
in Fig. 1.

B. Fitting of the pair potential

The cutoff distance of the pair potential is chosen to
r̃ 252.211abcc which lies between the seventh and eigh
nearest neighbors in the bcc structure. This value has b
adjusted in order to reproduce the properties of the hcp
tice. The value ofr̃ 1 is almost irrelevant since it does no
really affect the functional form of the pair potential. W
choser̃ 151.2abcc . For given values of the parametersp1 ,
p2, andj, the parameterA is determined from the mechan
cal equilibrium condition of the bcc lattice:

FIG. 1. Pair potential~solid line! and radial term of the coupling
strengths~dashed line! vs interatomic distance.
13410
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]Ecoh
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50. ~3.4!

The parametersp1 , p2, andj are given by the cohesive
energy and elastic constantsC11 and C12 of the bcc lattice.
Notice that the elastic constantC44 is automatically repro-
duced by fittingC12 since the Cauchy pressure is fixed by t
bond energy.

The functional form of the pair potential is shown in Fi
1.

The values of the fitted parameters are given in Table
and the properties of bcc and hcp Zr used for the fit are gi
in Tables III and IV, respectively. In the fitting procedure w
have priorized the reproduction of the properties of bcc
since the interatomic potential will be used to study the
brational properties of this structure. This has led to differ
accuracy in the fitted quantities of bcc and hcp Zr~see Tables
III and IV!.

TABLE II. Parameters of the interatomic potential and the
physical values fromab initio calculations.

Parameter Interatomic potential Ab initio

Nd 1.45 2.536a

q(abcc
21 ) 3.634 .4.36b,c

W ~eV! 13.0 7.8b,c

r 1(abcc) 0.92
r 2(abcc) 1.24
A ~eV! 640.476022
p1(abcc

21 ) 8.45462323
j ~dimensionless! 21.80733296E205
p2(abcc

21 ) 20.961306397

r̃ 1(abcc) 1.20

r̃ 2(abcc) 2.211

aReference 29.
b
Reference 30.

c
Reference 31.
4-4
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IV. CALCULATION OF THE VIBRATIONAL
PROPERTIES OF bcc Zr

In this section we use the interatomic potential alrea
obtained to compute the phonon dispersion curves of the
lattice atT50 K and the elastic constants in the temperat
range 1200 K,T,2000 K, where, experimentally, the bc
structure is stable.

A. Phonon frequencies of bcc Zr at zero temperature

In order to obtain the phonon frequencies of bcc Zr,
first compute the interatomic force constants by means
standard numerical differentiation. It is worth pointing o
that the interatomic potential gives rise to long-range fo
constants. In particular, the range of the pair potential c
tribution is the range of the potential, which in the prese
case is up to the seventh nearest neighbors. The range o
bond term contribution is much larger. For couplin
strengths extending up to the second nearest neighbors
including up to the fifth moment of the LDOS in the com
putation of the bond energy, the range of the force const
extends up to the 22th nearest neighbors. This is due to
many-body character of the bond energy together with
dependence of the high-order moments on the position
distant atoms.

In Table V we show the results for the computed for
constants. From these values we construct the dynamical
trix and compute the phonon frequencies in the harmo
approximation along the high-symmetry directions of the
ciprocal space~Fig. 2!. Since the interatomic potential i
fitted to theT50 K elastic constants of bcc Zr, the slope
the phonon dispersion curves around theG point is expected
to be correct. There are several features of the phonon
persion curves that deserve special comment.

~1! The whole T1(jj0) branch is unstable.
~2! The T1(jj2j) branch has a positive slope around t

G point ~consistent with the associated combination of ela
constants!, but it rapidly softens and becomes unstable. B
fore matching the T1(jj0) branch at theN point, it becomes
stable again at aboutj51/3.

~3! The softening of the L(jjj) branch aroundj52/3
observed experimentally at high temperature is, at zero t

TABLE III. Properties of bcc Zr used for the fit.

Interatomic potential Experiment/ab initio

a ~nm! 0.3574 0.3574,a 0.3580b

Ecoh ~eV! 26.15 .26.15c

C11 ~GPa! 81.7 81.7b

C12 ~GPa! 93.4 93.4b

C44 ~GPa! 36 36b

C8 ~GPa! 25.8 25.8b

(EV
f )unrelx ~eV! 2.32 2.30d

aReference 37.
bReference 28.
cReference 12.
dReference 38.
13410
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perature, an instability which gives rise to thev phase. The
frequency of thej52/3 phonon is approximately zero, a
was obtained by Hoet al.33 from ab initio calculations, and
the minimum of the branch is at aboutj517/24

~4! In the ~001! direction there is a crossing between t
longitudinal and transverse branches.

Several of these features, not observed experimentall
high temperature, were obtained fromab initio calculations
in Sc, Ti, Hf, and La atT50 K.16 In these materials the
whole T1(jj0) branch has imaginary frequencies@the
phonons in the~112! direction have not been computed#. The
instability around thej52/3 L(jjj) mode is also predicted
although the minimum of the branch is not located atj
517/24 but atj57/12 for all elements~except Sc, which has
the minimum atj52/3). Finally, the crossing of the longi
tudinal and transverse branches in the~100! direction is also
observed.

Moreover, in these materials the T(jjj) branch has
imaginary frequencies around theG point. The slope of this
branch is given by the elastic constantC112C121C44,
which in Zr is positive, and thus this feature cannot be o
served.

From the force constants we also compute the elastic c
stants following the method of long waves,34 and recover the
values obtained by means of homogeneous deformati
This can be used as a test of the internal consistency of
interatomic potential.17

B. High-temperature elastic constants of bcc Zr

The bcc Zr high-temperature elastic constants are
tained from Monte Carlo~MC! simulations in the canonica
ensemble (T,V,N) using the atomic volume obtained from
MC simulations in the isobaric-isothermal ensemb
(T,P,N) at zero pressure. The theoretical background
such simulations can be found in the work by McDonald35

The second-order isothermal elastic constants are c
puted using the fluctuation formula36

TABLE IV. Properties of hcp Zr used for the fit.

Interatomic potential
Experiment/

ab initio

a ~nm! 0.3196 0.3229a

c/a 1.6284 1.592a

(Ecoh)bcc2(Ecoh)hcp ~eV! 0.044 0.04,b,c 0.09d

C11
homog ~GPa! 161.8 162d,e

C12
homog ~GPa! 60.1 60d,e

C13 ~GPa! 68.2 64.6e

C44 ~GPa! 36.6 36.3e

C33 ~GPa! 179.5 172.5e

C66
homog ~GPa! 50.8 51d,e

(EV
f )unrelx ~eV! 2.44 2.07f

aReference 39. dReference 28.
bReference 12. eReference 9.
cReference 15. fReference 38.
4-5
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TABLE V. Force constants of bcc-Zr obtained from the tight-binding interatomic potential~in
1023 N/m).

Shell Coord32 xx yy zz yz xz xy

1 111 25495.93 25495.93 25495.93 213410.85 213410.85 213410.85
2 200 4320.75 26704.46 26704.46 0 0 0
3 220 2454.85 2454.85 2620.49 0 0 2932.34
4 311 22418.67 295.44 295.44 2410.94 2437.91 2437.91
5 222 592.90 592.90 592.90 306.61 306.61 306.6
6 400 584.12 242.25 242.25 0 0 0
7 331 957.30 957.30 191.96 346.44 346.44 934.4
8 420 273.56 21.17 14.13 0 0 255.33
9 422 2122.99 7.54 7.54 27.77 270.19 270.19

10 333 298.35 298.35 298.35 2107.07 2107.07 2107.07
10 511 282.20 10.22 10.22 23.17 214.81 214.81
11 440 234.35 234.35 19.05 0 0 244.28
12 531 229.68 210.22 3.53 23.35 28.72 223.40
13 442 214.60 214.60 23.05 28.83 28.83 217.23
13 600 264.36 6.10 6.10 0 0 0
14 620 227.97 23.05 3.05 0 0 212.88
15 533 28.94 23.53 23.53 23.53 26.23 26.23
16 622 213.71 21.52 21.52 21.52 26.30 26.30
17 444 26.47 26.47 26.47 26.47 26.47 26.47
18 551 0 0 0 0 0 0
18 711 212.22 0 0 0 22.66 22.66
19 640 0 0 0 0 0 0
20 642 0 0 0 0 0 0
21 553 0 0 0 0 0 0
21 731 0 0 0 0 0 0
22 800 24.67 0 0 0 0 0
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L

2 K ]Ecoh
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L K ]Ecoh

]ekl
L J 1

NkBT

V
~d i l d jk1d ikd j l !, ~4.1!

where F is the Helmholtz free energy,e i j are the elastic
strains,V is the total volume,kB is the Boltzmann constant,T
is the temperature, andN is the number of atoms.

The derivatives of the cohesive energy with respect to
elastic strains are computed numerically. Since the sec
derivative of both the pair potential and the coupli
strengths is not continuous at the cutoff distance, the num
cal derivative must be calculated using the same radial
pair functions in both the strained and unstrained state
the lattice, for each of the atomic pairs. That is, if for a giv
pair of atoms the distancer is r 1,r ,r 2, the radial function
used for the computation of the bond energy of both
strained and unstrained lattices will be that defined in t
region, regardless of the fact that in the strained lattice
may haver .r 2.

The simulations are performed on a 43434325128
site bcc lattice with periodic boundary conditions. The
tempted configurational changes are single-atom displ
ments and after eachN of these attempts@51 Monte Carlo
step ~MCS!#, in the isobaric-isothermal ensemble a volum
13410
e
nd

ri-
d
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e
s
e

-
e-

change is also proposed. The simulations are 105 and 5
3104 MCS long in the isobaric-isothermal and canonic
ensembles, respectively.

Due to the many-body character of the bond energy,
change in the total cohesive energy due to a single-a
movement involves recalculation of the contribution to bo
energy of about 65–110 atoms, depending on tempera
Nevertheless, this computation can be highly optimized a
only requires about 6 times the CPU time needed to comp
the contribution to the bond energy of a single atom.

In Fig. 3 we show the computed lattice parameter vs te
perature. Although at temperatures above 1200 K the c
puted lattice parameter is about 0.6% smaller than the
perimental value, the thermal expansion coefficient~slope! is
reproduced to great accuracy,b51/V(]V/]T)53.0
31025 K21 (bexpt52.831025 K21.37! Notice that the lin-
ear extrapolation of the computed lattice parameter to z
temperature does not match the fitted value. This is beca
at low temperature the thermal expansion given by the in
atomic potential is strongly nonlinear. This is probably r
lated to the fact that the bcc structure is unstable, altho
this behavior is not observed when comparing the hi
temperature experimental results37 with the zero-temperature
ab initio calculations~see Table III!.

In Fig. 4 we show the temperature dependence of
relevant elastic constants obtained from Monte Carlo sim
4-6
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lations. The main success of the present interatomic pote
is that it renders a positiveC8 at high temperature. More
over, the value predicted for the whole set of elastic c
stantsC11, C12, andC44 is rather accurate. The main failur
is that it is unable to reproduce the large value ofC8 ob-
served experimentally. This failure comes mainly from t
values of the elastic constantC12 which experiments have
shown to decrease strongly with temperature. This mar
decrease ofC12, together with the nearly constant behavi
of C44, means that the Cauchy pressure decreases with
perature. We were unable to reproduce such behavior
several tests during the parametrization of the interato
potential we always found a Cauchy pressure nearly in
pendent of temperature.

In Table VI we show separately the different contrib
tions to the elastic constants: the Born term, the fluctua

FIG. 2. Computed phonon dispersion curves for bcc Zr aT
50 K ~solid line! and experimental results at 1200–1500 K fro
Heiming et al. ~Ref. 37! ~symbols!.

FIG. 3. Lattice parameter of bcc Zr at zero pressure vs temp
ture. The solid line is the experimental result and the circles are
computed values. The statistical error is denoted by the size o
circles.
13410
ial

-

d

m-
In
ic
e-

n

term, and the kinetic term. We get the rather unusual re
that the fluctuation term ofC12 is nearly zero. This mean
that the strains in different directions are uncorrelated in
simulations:

K ]Ecoh

]exx

]Ecoh

]eyy
L .K ]Ecoh

]exx
L K ]Ecoh

]eyy
L . ~4.2!

Since the contribution of the fluctuation term toC12 is
usually negative and the interatomic potential is unable
reproduce the low value ofC12 observed experimentally, we
conclude that this lack of correlation given by the inte
atomic potential is possibly unphysical.

V. DISCUSSION AND CONCLUSIONS

In the present paper we have developed a TB interato
potential suitable for the study of the vibrational propert
of bcc Zr. The interatomic potential has been fitted to theT
50 K properties of Zr in both the hcp and bcc structure
Although among the vibrational properties only the elas
constants are used in the fitting procedure, the TB poten
shows a remarkable capacity of predicting theT50 K pho-
non frequencies of the bcc structure along the hig
symmetry directions studied. As regards the hig
temperature elastic constants, the general trends
reproduced, especially the stability of the bcc structure w
respect to the shear associated with the elastic constanC8.
Nevertheless, the interatomic potential is unable to reprod
the temperature decrease of the Cauchy pressure.

a-
e

he

FIG. 4. Isothermal second-order elastic constants of bcc Z
temperature. Open symbols are the computed values, and
symbols are the experimental results. The horizontal dashed
emphasizes the change of the sign of the elastic constantC8 and the
solid lines are guides to the eye. The elastic constants areC11

~circles!, C12 ~squares!, C44 ~triangles!, and C8 ~diamonds!. The
statistical error of the computed values is smaller than the siz
the symbols
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TABLE VI. Born, fluctuation, and kinetic contributions to the second-order isothermal elastic cons
~in GPa! obtained from the Monte Carlo simulations in the canonical ensemble at different temperatu~in
K! and zero pressure.

T C11
Born C12

Born C44
Born C11

f luct C12
f luct C44

f luct C11
kin C12

kin C44
kin

1188 126.8 92.6 48.6 238.3 3.4 216.3 1.4 0 0.7

1300 128.2 92.4 48.4 239.5 3.7 216.4 1.5 0 0.8

1400 129.8 92.2 48.2 237.9 1.7 216.5 1.7 0 0.8

1483 131.0 91.8 48.0 239.7 1.9 216.8 1.7 0 0.9

1600 131.7 91.7 47.7 240.0 0.9 217.0 1.9 0 0.9

1700 132.5 91.5 47.5 240.1 20.4 217.3 2.0 0 1.0

1800 133.1 91.1 47.2 240.4 21.4 217.2 2.1 0 1.1

1883 133.5 90.7 46.8 240.8 22.2 217.9 2.2 0 1.1

2000 135.0 90.8 46.9 241.4 23.9 217.4 2.3 0 1.2
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The reliability of the experimental values of the hig
temperature elastic constants should, however, be q
tioned. The elastic constants cannot be obtained from m
surements of the velocity of acoustic waves in the mate
because the temperature at which the bcc phase is stab
too high. Heiminget al.37 therefore derived the elastic con
stants from the force constants obtained from a fit to
phonon dispersion relations. In order to keep the numbe
force constants reasonably small, in the fitting proced
they impose that the range is up to the fifth-neighbor sh
which is rather short. On the other hand, the elastic const
obtained depend critically on the frequencies of the phon
close to theG point of the Brioullin zone, and thus have larg
error bars. We have tried to derive the elastic constants f
the phonon frequencies of Heiminget al.,37 but we only were
able to reproduce the elastic constantC8 to any accuracy.
The values of all the other elastic constants strongly dep
on the phonons considered and the method of fitting.

In spite of the remarkable success of the interatomic
tential in reproducing theT50 K phonon frequencies, we
should mention the difficulties we have found during t
fitting procedure, and discuss which features of the TB
tential are expected to correctly reproduce the physics of
material and which are not.

The first point concerns the range of the hopping in
grals, which in fact is too small. In the hcp lattice the
should fall between the second and third nearest neighb
at least, and only the nearest neighbors are taken into
count. This leads to a bond energy contribution in the h
lattice that is smaller than in the bcc lattice, which is just t
opposite to the expected result. This fact is compensate
the pair potential contribution to give the correct energy d
ference between both structures, but it is still clearly reflec
in the unrelaxed vacancy formation energies.

The reason for choosing such a low value for the cut
distance of the hopping integrals is computational con
nience. The range of the hopping integrals in the bcc lat
is up to second nearest neighbors~14 atoms involved!. This
means that in the perfect lattice atT50 K the number of
neighbors involved in the computation of the moments is
~up to the sixth coordination shell!. Nevertheless, atT
13410
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52000 K the atoms are far from their equilibrium positio
and this rapidly increases the number of neighbors invol
in the computation of the moments up to.110. In order to
correctly compute the moments we must therefore take
account the neighbors up to the 13th coordination shell~258
atoms!. An increase in the cutoff distance of the hoppin
integrals involves an increase of the number of neighbor
be taken into account in the computation of the momen
and thus, we decided to choose the lowest possible v
which allowed us to obtain physically reasonable results.

The second point concerns the pair potential contributi
During the fitting procedure we observed that the capacity
the interatomic potential to simultaneously reproduce
properties of both the hcp and bcc structures is strongly
pendent on the range of the pair potential. In other words
we take a different range to that used in this paper, the res
are rather worse. This is indicative that the geometry of
different coordination shells has an important effect on
elastic constants. Moreover, although at the cutoff dista
the pair potential and its first derivative are continuous,
decay to zero is still sharp, and the contribution to the ela
constants by the last coordination shell is unphysically hi

Finally, we should mention that thes-d hybridization,
which is not explicitly included in the TB potential, has a
important contribution to the cohesive energy@about 2 eV
~Ref. 19!#. We have considered onlyd atomic orbitals in the
basis set in order to minimize computation time and the co
plexity of the TB potential.

The problems encountered when trying to use the phys
values for the quantitiesNd , W, and q have already been
discussed. Nevertheless, the treatment of these quantitie
fitting parameters gives enough flexibility to the interatom
potential to reproduce to reasonable accuracy all the ma
tudes described in the paper.

A significant improvement in the behavior of the elas
constants requires a better determination of the Fermi
ergy, together with a more detailed description of the DO
especially around this point. Nevertheless, the inclusion
high-order moments into the interatomic potential is comp
tationally very expensive.
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