PHYSICAL REVIEW B, VOLUME 63, 134104

Development of a tight-binding potential for bcc Zr: Application to the study
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We present a tight-binding potential based on the moment expansion of the density of states, which includes
up to the fifth moment. The potential is fitted to bcc and hcp Zr and it is applied to the computation of
vibrational properties of bcc Zr. In particular, we compute the isothermal elastic constants in the temperature
range 1200 KT<2000 K by means of standard Monte Carlo simulation techniques. The agreement with
experimental results is satisfactory, especially in the case of the stability of the lattice with respect to the shear
associated witlC’. However, the temperature decrease of the Cauchy pressure is not reproduc€e: 0ke
phonon frequencies of bcc Zr are also computed. The potential predicts several instabilities of the bcc structure,
and a crossing of the longitudinal and transverse modes (001 direction. This is in agreement with recent
ab initio calculations in Sc, Ti, Hf, and La.
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[. INTRODUCTION the elastic constants of hcp and fcc TM’s as a function of
band filling”

A fundamental problem in condensed matter physics is Zirconium, as is the case of other metals and alloys, is
how to project microscopic interactions in many-body sys-close packed at low temperatures, but undergoes a structural
tems onto a description in terms of a reasonably small numphase transition of the Martensitic type to a bcc structure at
ber of degrees of freedofriThis is particularly important in higher temperaturés'® Some features of this phase trans-
computer simulation studies. Atomic-level simulations are formation in Zr were previously StUdl'zed by using the second-
intrinsically, large-scale calculations, and in spite of the hugdn@ment approximation TB modé}:. ~Here, we shall not
improvement nowadays available in computing capacity, afocus on the structural phase transition itself but rather con-

efficient method to rapidly evaluate energies which also treaf[t:entratetour tl)nterehst on ”;]e_ ;’If%t'c protp(ejrttlesbof the Ih'g?'
forces in a physically realistic way still remains a major dif- emperature bcc phase, g‘ﬁlt'-,c IS accepted to be mainly sta-
) bilized by entropy effect$>1°In particular we calculate the
ficulty to be solved. . .

temperature behavior of the relevant elastic constants by us-

. The computaﬂon of S.Ohd propgrtles always requires a .pari'ng standard Monte Carlo simulation techniques. The results
ticular choice for the interatomic potential. In the choice

here i ise b hvsi 4 effici c thus obtained are compared with the available experimental
there Is a compromise between physics and efficiency. COMyaa The agreement is rather satisfactory, but it does not
putational efficiency makes empirical or semiempirical po-g)i6\y ys to draw conclusions about the reliability of the po-

tentials desirablg, but at_the same time one should requirgniial. This is provided by the computation of the phonon
that the underlying physics behind the model potential bgjispersion curves for the bee Zrit=0 K. Indeed, the com-
able to reproduce the properties of the system or at leagarison with recenab initio calculation® is indicative that
those of interest. most of the fundamental physics governing the vibrational

Several years ago Friedebuggested that the starting properties of bce Zr is contained in the interatomic potential
point in the description of transition metd[EM’s) is a band  model.
picture with a strongl character. In this sense, the remark- The paper is organized as follows. The next section is
able parabolalike behavior of the cohesive energy and thdevoted to the construction of the interatomic potential. In
bulk modulus exhibited by most TM's as a function of the Sec. 11l we describe the fitting procedure to Zr. In Sec. IV we
number ofd electrond® clearly indicates that cohesion is present and discuss the results and in Sec. V conclusions are
mainly dominated by thel states. This has motivated the drawn.
development of many-body potentials based on the tight-
binding (TB) approximatioft® (for a review see Ref.)6 || pEvELOPMENT OF THE INTERATOMIC POTENTIAL
They are semiempirical in nature, which makes them very
appealing for computer simulation studies, and at the same The interatomic potential is developed following the
time they incorporate the band character of the metallic cotight-binding bond mode[TBBM) by Suttonet al*”*8in the
hesion so that the attractive part of the interatomic energywo-center orthogonal approximation. The basis set of the
turns out to be many body. TB Hamiltonian only includesl atomic orbitals and crystal

In the present work, we develop a TB potential based orfield interactions are neglected.
the moment expansion of the density of states, which in- The cohesive energy is decomposed into two terms,
cludes up to the fifth moment. It has been suggested that this
is the lowest order needed to reproduce the general trends in Econ=Ebonat Epair - (2.7
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The termE,,;, is an empirical pair potential which stands for equal toa.., b.. which gives rise to the well-known square
electrostatic and exchange-correlation interactidras)d the  root terminator of the continued fraction expansion of the

bond energy is diagonal elements of the Green functf@rhe integration of
. the LDOS in order to obtain the bond energy is performed
_ F . numerically.
Ebona= 2.: J’ ni(B)(E~e)dE, 2.2 To completely specify the bond energy we need to define

the functional form of the off-diagonal Hamiltonian matrix
lements in the atomic orbital representation, known as cou-
ling strengths or hopping integrals. In the two-center ap-

whereEr is the Fermi energye; are the on-site Hamiltonian

matrix elements in the atomic orbital representation, an

ni(E) are the local densities of statdsDOS). proximation the coupling strengths between sitasdj can
In this TB model, thes-d hybridization, which is known o \yritten as

to make a considerable contribution to the cohesive energy

of TM’s,'% is not treated appropriately. Nevertheless, it can (ia|H|j,8)=[CI>gﬁ(rij Itii)Vadet P ap(rij /1) Vada

be assumed that such a contribution is included implicitly in 5

the pair term, as in the paper by Girshiekal.?° or either T @1 ITi)) VaasIR(rij), 2.9

that this contribution should be proportional to tidand where® ,4(r;; /r;;) is the angular dependence given by the

width and therefore it is included in the bond term. symmetry of thed orbitals, as shown by Slater and Koster,
The condition of local charge neutrality is fulfilled by 5,4 R(r;;) is the dependence on distance of thir, dd,

defining local Fermi energies. This is done through the relaznqqds bonds, which is assumed to be equal for all of them.

tion The relative strength of the couplin®;4, : Vaar :Vaqs are
Er the canonical values 6:4:—1.
f 'n(E)dE=Ny, (2.3 For the radial dependence we take
whereNy is the number ofl electrons per site and the atomic exp(—ar), r<ry,
orbital energy is chosen to be the energy zere,0 Vi. This R(r)=1{ exp—qr)(a+ br+cr?)(r,—r), r,<r<r,,
method is equivalent to shifting the LDOS rigidly, whereas 0, r>r,,
adjusting the on-site energies self-consistently, as proposed (2.5
by Suttonet al, means that the shifts of the LDOS are ac- , .
companied by a distortion of their shape. wherea, b andc are con.stants fixed by the cqndmon that
The LDOS are constructed from their momepti‘é,‘) fol- R(r) and its two first derivatives must be continuous gt

: : —(2r2_ 2 3 phe(—

lowing the formalism of the recursion method of Hayd®ck Which gives ;:1—(3r1 3r1r2+rzg/(r2 ry)° b=(=3r

as if the moments corresponded tosapand. In this way the T 72)/(r2—r1)", andc=1/(r,—r4)”. By constructionR(r)
computed LDOS are rotationally invariaitThat is, from IS @lso continuous at the cutoff distance .

the second to the fifth moments we compute the coefficients Finally the pair term of the cohesive energy is taken to be
b,, a;, by, anda, of the recursion method. Since the coef-

ficientsa,, b,, are convergent oscillating seri&stheir limit Epair= E Vpair(rij), (2.6

a.., b, is estimated as..=(a;+a,)/2 andb..=(b;+b,)/ RIS

2, and the coefficienta,, b, with n>2 are assumed to be with

Alexp(—pir)+Eexp(—por)], r<ry,
Vpair(1)=9{ Alexp(—pir)+&exp —por)](a+br+cr?)(rp,—r)?, T,<r<r,, (2.7
0, r>T,,

wherea, b, andc are constants fixed by the condition that &s fitting parameters although they are not completely free
Vpair(r) and its first two derivatives must be continuous SInce they are constrained by their physical character.

at ry, which gives a=(6r2—4rr,+r3)/(r,—1)*% b

=2(—4r,+1,)/(r,—r1)* and ¢c=3/(r,—T,)* By con- Il. FITTING TO Zr
s’iryctlon,vpair(r) and its first derivative are also continuous In this section we discuss the procedure used to fit the
atr,.

o S model parameters to the zero-temperature properties of Zr,
The model has, in principle, six fitting parametéxsé,  both in the hcp and the unstable bce phases.
P1, P2, Vads, andq. Nevertheless, the number of electrons,  Since the bec structure is only stableTat 1135 K, the

Ng, and the cutoff distancas, r,, r,, andr, are also used values of some properties used in the fitting procedure are
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extrapolated from the high-temperature experimental datgg!)u"e since the contribution of the pair potential term to
whereas others are obtained fra initio calculations afl  this quantity is equal to its contribution to the cohesive en-

=0 K. Most of theab initio results have been calculated in ergy. For the present interatomic potential, in the bcc lattice
this work using thewlEN97 C0d92,6 which follows the full we get the following approximate relation:
potential linearized augmented plane wave method within
density functional theory. All the computed quantities are (EI/)”meb‘:—Epair—0-52Ebond- (3.2
obtained in the generalized gradient approximatiG@GA)
by Perdew, Burke, and ErnzerRbffor the exchange- Taking into account Eq2.1) we therefore get
correlation potential.

The properties of bcc Zr that we have considered in the Epond=[(E{)""e*+ E,,]/0.48= 8.0 eV. (3.3
fitting procedure are the cohesive energy, the lattice param-
eter, the elastic constants, and the unrelaxed vacancy formahis result is consistent with the value predicted by the
tion energy. Moreover, we have also taken some propertie€enormalized-atom method of Geladt al'® provided that
of hcp Zr atT=0 K into account, mainly its elastic con- the contribution to the cohesive energy of 8 hybridiza-
stants, lattice parameter, théa ratio, and the energy differ- tion is assumed to be contained in the bond term
ence between both structures. (Ed band broadenirig Es-d hybridizatior™ — 7.8 €V).

From the literature we obtain physical values for the num-
ber of electronsNy= 2.536%° bandwidthw=7.8 eV3°and
) ] the derivative of the bandwidth with respect to the atomic
_ The coupling stre_ngths are essentially short-range fU”CVOIume, —30d InWdQ=3.973%32 which is related to the
tions. Therefore, we impose that they fall to zero between th%arameteq. In order to extract the value of the parameger
second and third nearest neighbors and choose fom this relation we approximate the bandwidth ¥As
=1.2434.. For the matching point of the tail of the function . /2] that is, proportional to the square root of the second
we chose ;=0.92acc, which lies between the first and sec- \ament of the density of statdsnd using the radial form of
ond nearest neighbors. Notice that in this way the tail of thg,o coupling strengths defined in E€2.5), we obtaing

coupling strengths interferes with the fitting procedure. The:4 36&1;1 In the present model the bandwidthg=E,
H . cc op
values chosen for these parameters are those which a”OW—aEbonom:4boc which is proportional to the parameter

better.reproductmn of the properties of hcp Zr. ... Vygs- Therefore we can usé/ instead ofV 445 as the fitting
An important property of the elastic constants exploited in . .

the fitting procedure is that the Cauchy pressure given b aRarameter without loss of generality.

interator%ig otential which satisfies thyepmechanigal e ui)llib- Using these physical values for the paramefdgs W,

) c P q and g, in the bcc lattice the interatomic potential gives a

rium conditions only depends on the many-body term of the

potential; that is, the Cauchy pressure is independent of th\éalue Of Epong=—7.5 €V, which is consistent with the

. L lue predicted by the unrelaxed vacancy formation energy
air term2 Considering both the bcc and hep structures we' & . .
Eave three Cauchy prgssures to deal with. gne of these. t Eq. (3.3)]. Nevertheless, the Cauchy pressure obtained with

Cauchy pressur€,,— Cgq of the hep lattice, is affected by thiese parametersC(,— Capc=104 GPa, is unacceptably

an internal relaxation of the lattice under strain. In order tohlgh [see Eq(3.1]. We have, therefore, to find an alterna-

avoid the determination of the internal relaxation and its ef-t've way of f|tt|ng.them. Wwe shall procee_d by paying more
X - attention to the directly observable physical quantities such

fect on the Cauchy pressure during the fitting procedure, as . ) .
. : . as cohesive energy, lattice parameter, elastic constants, and

the test value for this quantity, we use only its homogeneous

contribution (without internal relaxationobtained from the vacancy formation energy rather than to the physical inter-
: . . retation of the parameters.

experimental Cauchy pressure by subtracting the mhomogé)- For a aiven value olN.  the parametersV and g are

neous contribution determined froab initio calculations. In 9 d: P d

the hcp lattice the elastic constants affected by internal reQietermmed numerically to reproduce the Cauchy pressure of

laxations areCy;, Cyp, andCeg=(Cy1— C1,)/2, and the in- the bcc lattice given in Eq(3.1) and the bond energy,

homogeneous contribution 10, is the same as that @, Epond= _8‘0 eV[Eaq. (3.3]. We repeat this fitting proce-
; oo -dure for different values dily and compute the Cauchy pres-
but with the opposite sign. Therefore, we need only to esti-

. L L sures of the hcp lattice. The results are given in Table I.
mate the inhomogeneous contribution @ which is | These Cauchy pressures are computed using the lattice pa-
=7 GPa?® Using the experimental values of the elastic con- yp P 9 P

stants together with thab initio results, the three Cauchy rameter and/a ratio of the hc_p lattice at which t_h|s structure
pressures are is stabilized by the interatomic potential. For this purpose we

use an arbitrary pair contribution fitted to the lattice param-
(C1o— Cad)pec=57.4 GPa (Ref. 28, eter, cohesive energy, and elastic constants of the bcc struc-
ture. In all casesay.p, andc/a are close to the experimental
(Cio— c%mggmg:g GPa (Refs. 9,28, (3.1  and ideal values, respectively, although we observe a ten-
dency ofc/a to increase as the number of electrons is in-
(C1s—Cagncp=28 GPa (Ref. 9. creased. The value df; which allows reproduction of the
three Cauchy pressures simultaneoudBg. (3.1)] is Ny
Another property which strongly depends on the many-=1.45, which is substantially lower than its physical value,
body term is the unrelaxed vacancy formation energyNy=2.5362° Nevertheless, there are two additional reasons

A. Fitting of the bond energy
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TABLE I. Cauchy pressures of hcp Zr for different valued\pf. The parameteq and the bandwidthV
are also shown.

Nq A(@pco W (eV) (C12~Cednep °* (GPa (C15~Cadnep (GPA
1.35 3.730 13.8 1 28
1.40 3.680 13.4 5 30
1.45 3.634 13.0 9 32
1.50 3.592 12.6 13 34
1.60 3.498 12.0 21 37
1.80 3.342 10.9 34 44
2.00 3.201 10.1 44 49
2.20 3.099 9.2 53 53
2.40 3.012 8.9 57 55
2.60 2.953 8.5 62 57
for adopting the value oN4=1.45: (i) TB studies on the IEcon
relative stability of hcp and fcc lattices as a functionNyf Ja =0. 3.4
(Ref. 29 have shown that the hcp lattice is only stable for 8= 8pcc

Ny<2 (in the range 0.5N4<4.5), and(ii) the low value of

thec/a ratio in group-1V hcp metals can be justified in terms _ )
of the different contribution to the bond energy from nearest The parameterp;, p,, and{ are given by the cohesive
neighbors located on the basal plane and those located off @nergy and elastic constartty; and C, of the bcc lattice.

only if Ng<2.1732 Notice that the elastic constafl,, is automatically repro-
The radial dependence of the coupling strengths is showduced by fittingC,, since the Cauchy pressure is fixed by the
in Fig. 1. bond energy.
The functional form of the pair potential is shown in Fig.
1.
B. Fitting of the pair potential The values of the fitted parameters are given in Table II

The cutoff distance of the pair potential is chosen to be2nd the properties of bec and hep Zr used for the fit are given
72:2 217, which lies between the seventh and eighthin Tables Il and 1V, respectively. In the fitting procedure we
nearest neiachbors in the bce structure. This value has bedlfiVe Priorized the reproduction of the properties of bce Zr

adjusted in order to reproduce the properties of the hcp laSince the interatomic potential will be used to study the vi-
tice. The value of; is almost irrelevant since it does not brational properties of this structure. This has led to different

really affect the functional form of the pair potential. We accuracy in the fitted quantities of bcc and hepiaire Tables

choser;=1.2a,... For given values of the parametays, Il and IV).

p,, and¢, the parameteA is determined from the mechani-

cal equilibrium condition of the bcc lattice: TABLE II. Parameters of the interatomic potential and their
physical values fronab initio calculations.

1sE 11s Parameter Interatomic potential  Ab initio
Ng 1.45 2.538
: _ a(aps) 3.634 =4.30°
o If 11 5 W (eV) 13.0 7.8¢
< - w r1(peo) 0.92
C) >g r2(apeo) 1.24
>’§ o5 b los2 A (eV) 640.476022
& pi(apd) 8.45462323
£ (dimensionless —1.80733296—-05
ol 0 Pa(ap) —0.961306397
Fl(abcc) 1.20
05 1 15 2 To(@pco) 2.211

r (a,,)
o :Reference 29.
FIG. 1. Pair potentialsolid line) and radial term of the coupling CReference 30.
strengthgdashed lingvs interatomic distance. Reference 31.
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TABLE lIl. Properties of bcc Zr used for the fit. perature, an instability which gives rise to thephase. The
frequency of theé=2/3 phonon is approximately zero, as
Interatomic potential ~ Experimea) initio  \ya5 obtained by Het al*® from ab initio calculations, and
a (nm) 0.3574 0.3574, 0.35809 the minimum of thg bra_nch is at gboﬂ# 17/24
E.on (€V) —6.15 ST (4) In the (001) direction there is a crossing between the
C,, (GPa 81.7 81.p longitudinal and transverse branches.
C,, (GPa 93.4 93.48 Several of these features, not observed experimentally at
C., (GPa 36 3@ high temperature, were obtained fraab initio calculations
C’ (GPa 58 ey in Sc, Ti, Hf, and La afT=0 K.!° In these materials the
(Ef)ume ev) 232 236 whole T1(£0) branch has imaginary frequencigghe
phonons in thé€112) direction have not been compuiedhe
®Reference 37. instability around the&=2/3 L(£££) mode is also predicted,
°Reference 28. although the minimum of the branch is not located éat
‘Reference 12. =17/24 but at=7/12 for all elementgexcept Sc, which has
‘Reference 38. the minimum até¢=2/3). Finally, the crossing of the longi-
tudinal and transverse branches in {80 direction is also
IV. CALCULATION OF THE VIBRATIONAL observed.
PROPERTIES OF bcc Zr Moreover, in these materials the &g¢) branch has

. . . . . imaginary frequencies around thepoint. The slope of this
In this section we use the interatomic potential alreadybranch is given by the elastic constaBl,— Cy,+C
11 12 44,

obt_amed tS compute the phonpn dlspersm.n curves of the bCv(\:/hich in Zr is positive, and thus this feature cannot be ob-
lattice atT=0 K and the elastic constants in the temperature

. served.
range 12Q0 KT<2000 K, where, experimentally, the bee From the force constants we also compute the elastic con-
structure is stable.

stants following the method of long wavé&sand recover the
values obtained by means of homogeneous deformations.
A. Phonon frequencies of bce Zr at zero temperature This can be used as a test of the internal consistency of the

. . interatomic potentiat’
In order to obtain the phonon frequencies of bcc Zr, we eratomic potential

first compute the interatomic force constants by means of
standard numerical differentiation. It is worth pointing out
that the interatomic potential gives rise to long-range force
constants. In particular, the range of the pair potential con- The bcc Zr high-temperature elastic constants are ob-
tribution is the range of the potential, which in the presenttained from Monte Carl¢MC) simulations in the canonical
case is up to the seventh nearest neighbors. The range of tResemble T,V,N) using the atomic volume obtained from
bond term contribution is much larger. For coupling MC simulations in the isobaric-isothermal ensemble
strengths extending up to the second nearest neighbors afdi,P,N) at zero pressure. The theoretical background of
including up to the fifth moment of the LDOS in the com- such simulations can be found in the work by McDon3&ld.
putation of the bond energy, the range of the force constants The second-order isothermal elastic constants are com-
extends up to the 22th nearest neighbors. This is due to theuted using the fluctuation formdfa

many-body character of the bond energy together with the

B. High-temperature elastic constants of bcc Zr

dependence of the high-order moments on the position of TABLE IV. Properties of hcp Zr used for the fit.
distant atoms.

In Table V we show the results for the computed force Experiment/
constants. From these values we construct the dynamical ma- Interatomic potential  ab initio
trix and compute the phonon frequencies in the harmonic
approximation along the high-symmetry directions of the re-2 ("M 0.3196 0.3229
ciprocal space(Fig. 2. Since the interatomic potential is ¢/@ 1.6284 1592
fitted to theT=0 K elastic constants of bcc Zr, the slope of (Econ)bec™ (Econnep (€V) 0.044 0.047°0.09°
the phonon dispersion curves around Fheoint is expected  Chi™°° (GPa 161.8 162'°
to be correct. There are several features of the phonon di€is™® (GPa 60.1 607
persion curves that deserve special comment. C13(GPa 68.2 64.6

(1) The whole T1££0) branch is unstable. C44 (GP3 36.6 36.F

(2) The T1(¢£2¢) branch has a positive slope around theCs; (GPa 179.5 172.5
I" point (consistent with the associated combination of elastiacio™9 (GPa 50.8 519e
constants but it rapidly softens and becomes unstable. Be{E!)u"e (ev) 2.44 2.07
fore matching the T14£0) branch at thé\ point, it becomes
stable again at about=1/3. *Reference 39. YReference 28.

(3) The softening of the L{££) branch arounc=2/3  PReference 12. *Reference 9.
observed experimentally at high temperature is, at zero tenfReference 15. 'Reference 38.
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TABLE V. Force constants of bcc-Zr obtained from the tight-binding interatomic potefiial

102 N/m).
Shell Coork 2 XX vy zz yz Xz Xy

1 111 —5495.93 —5495.93 —5495.93 -—13410.85 —13410.85 —13410.85

2 200 4320.75 —6704.46 —6704.46 0 0 0

3 220 —45485 —45485 —620.49 0 0 —932.34

4 311 —2418.67 —95.44 —95.44 —410.94 —437.91 —437.91

5 222 592.90 592.90 592.90 306.61 306.61 306.61

6 400 584.12 —42.25 —42.25 0 0 0

7 331 957.30 957.30 191.96 346.44 346.44 934.45

8 420 —73.56 21.17 14.13 0 0 —55.33

9 422 —122.99 7.54 7.54 —7.77 —70.19 —70.19
10 333 —98.35 —98.35 —98.35 —107.07 —107.07 —107.07
10 511 —82.20 10.22 10.22 -3.17 —14.81 —14.81
11 440 —34.35 —34.35 19.05 0 0 —44.28
12 531 —29.68 —10.22 3.53 -3.35 -8.72 —23.40
13 442 —14.60 —14.60 —3.05 —8.83 —8.83 —17.23
13 600 —64.36 6.10 6.10 0 0 0
14 620 —27.97 -3.05 3.05 0 0 —12.88
15 533 —-8.94 -3.53 —-3.53 -3.53 -6.23 -6.23
16 622 -13.71 -1.52 —-1.52 —1.52 -6.30 —6.30
17 444 —-6.47 -6.47 —-6.47 —6.47 -6.47 -6.47
18 551 0 0 0 0 0 0
18 711 —12.22 0 0 0 —2.66 —2.66
19 640 0 0 0 0 0 0
20 642 0 0 0 0 0 0
21 553 0 0 0 0 0 0
21 731 0 0 0 0 0 0
22 800 —-4.67 0 0 0 0 0

;1 9PF 1/ 0%Econ 1 IE con IEcon change is also proposed. The simulations aré 40d 5

CijkI:\_/ de dew  V KTV x10* MCS long in the isobaric-isothermal and canonical
175K B ensembles, respectively.

<5Ecoh> < 3Ecoh>] NkgT Due to the many-body character of the bond energy, the

36”56H aE” afm

v (Gudktdidi), (4D change in the total cohesive energy due to a single-atom
movement involves recalculation of the contribution to bond
where F is the Helmholtz free energy;; are the elastic energy of about 65—-110 atoms, depending on temperature.
strains,V is the total volumekg is the Boltzmann constarif, = Nevertheless, this computation can be highly optimized and
is the temperature, ard is the number of atoms. only requires about 6 times the CPU time needed to compute
The derivatives of the cohesive energy with respect to thehe contribution to the bond energy of a single atom.
elastic strains are computed numerically. Since the second In Fig. 3 we show the computed lattice parameter vs tem-
derivative of both the pair potential and the coupling perature. Although at temperatures above 1200 K the com-
strengths is not continuous at the cutoff distance, the numerputed lattice parameter is about 0.6% smaller than the ex-
cal derivative must be calculated using the same radial angerimental value, the thermal expansion coefficistipg is
pair functions in both the strained and unstrained states akproduced to great accuracy8=1N(dV/dT)=3.0
the lattice, for each of the atomic pairs. That is, if for a givenx 107° K~ (Bey,=2.8x10"> K~ 1.%') Notice that the lin-
pair of atoms the distanaeis r;<r <r,, the radial function ear extrapolation of the computed lattice parameter to zero
used for the computation of the bond energy of both theéemperature does not match the fitted value. This is because
strained and unstrained lattices will be that defined in thisat low temperature the thermal expansion given by the inter-
region, regardless of the fact that in the strained lattice wetomic potential is strongly nonlinear. This is probably re-
may haver>r,. lated to the fact that the bcc structure is unstable, although
The simulations are performed on ax<4x4x2=128 this behavior is not observed when comparing the high-
site bce lattice with periodic boundary conditions. The at-temperature experimental resdltsiith the zero-temperature
tempted configurational changes are single-atom displaceb initio calculations(see Table II).
ments and after eadN of these attempts=1 Monte Carlo In Fig. 4 we show the temperature dependence of the
step(MCS9)], in the isobaric-isothermal ensemble a volumerelevant elastic constants obtained from Monte Carlo simu-

56” afm
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FIG. 4. Isothermal second-order elastic constants of bcc Zr vs
temperature. Open symbols are the computed values, and solid
symbols are the experimental results. The horizontal dashed line
emphasizes the change of the sign of the elastic conGtaahd the

. . . . .splid lines are guides to the eye. The elastic constantsCafe
lations. The main success of the present interatomic potentl?fircles) Cy, (squarel Cy (triangles, and C’ (diamonds. The
is that it renders a positiv€’ at high temperature. More-  ggistical error of the computed values is smaller than the size of
over, the value predicted for the whole set of elastic conye symnols

stantsC,4, C4,, andC,, is rather accurate. The main failure

is that it is unable to reproduce the large value@fob-  term, and the kinetic term. We get the rather unusual result
served experimentally. This failure comes mainly from thethat the fluctuation term o€, is nearly zero. This means

values of the elastic constaf;, which experiments have that the strains in different directions are uncorrelated in the
shown to decrease strongly with temperature. This markedimulations:

decrease o€,, together with the nearly constant behavior

of C44, means that the Cauchy pressure decreases with tem-

perature. We were unable to reproduce such behavior. In <aEc0h 5Ecoh> <¢9Ecoh><¢9Ecoh>

several tests during the parametrization of the interatomic =

potential we always found a Cauchy pressure nearly inde-

pendent of temperature.

In Table VI'we show separately the different contribu-  gjnce the contribution of the fluctuation term @, is

tions to the elastic constants: the Born term, the fluctuatiorpjsua”y negative and the interatomic potential is unable to

reproduce the low value &, observed experimentally, we

FIG. 2. Computed phonon dispersion curves for bcc ZiT at
=0 K (solid line) and experimental results at 1200—1500 K from
Heiming et al. (Ref. 37 (symbols.

4.2

J€xyx J€yy 0€yy d€yy

0.365 conclude that this lack of correlation given by the inter-
0364 atomic potential is possibly unphysical.
0.363 ¢ V. DISCUSSION AND CONCLUSIONS
g 0.362 ¢ In the present paper we have developed a TB interatomic
E potential suitable for the study of the vibrational properties
s 0361 o of bcc Zr. The interatomic potential has been fitted to The
036 E ° ] =0 K properties of Zr in both the hcp and bcc structures.
: ° Although among the vibrational properties only the elastic
0359 £ constants are used in the fitting procedure, the TB potential
] shows a remarkable capacity of predicting fre0 K pho-
0358 00 300 1500 e o005 100 non frequencies of the bcc structure along the high-
Temperature (K) symmetry dlrecthns studied. As regards the high-
temperature elastic constants, the general trends are

FIG. 3. Lattice parameter of bce Zr at zero pressure vs temperaeproduced, especially the stability of the bcc structure with

ture. The solid line is the experimental result and the circles are théespect to the shear associated with the elastic con€tant
computed values. The statistical error is denoted by the size of thhlevertheless, the interatomic potential is unable to reproduce
circles. the temperature decrease of the Cauchy pressure.
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TABLE VI. Born, fluctuation, and kinetic contributions to the second-order isothermal elastic constants
(in GPa obtained from the Monte Carlo simulations in the canonical ensemble at different tempe(atures
K) and zero pressure.

T ockm o cym cEm ot ol ol o o o
1188 126.8 92.6 486  —38.3 3.4 —16.3 1.4 0 0.7
1300 128.2 92.4 484  —395 3.7 —16.4 15 0 0.8
1400 129.8 92.2 48.2 —37.9 1.7 —16.5 17 0 0.8
1483 131.0 91.8 480 —39.7 1.9 —16.8 1.7 0 0.9
1600 131.7 91.7 477  —40.0 0.9 -17.0 1.9 0 0.9
1700 1325 91.5 475 —40.1 -0.4 —-17.3 2.0 0 1.0
1800 133.1 91.1 472 —404 -14 —-17.2 21 0 11
1883 1335 90.7 46.8 —40.8 -2.2 —-17.9 2.2 0 11
2000 135.0 90.8 469 —414 -3.9 —-17.4 2.3 0 12

The reliability of the experimental values of the high- =2000 K the atoms are far from their equilibrium positions
temperature elastic constants should, however, be quegnd this rapidly increases the number of neighbors involved
tioned. The elastic constants cannot be obtained from megn the computation of the moments up4o110. In order to
surements of the velocity of acoustic waves in the materiatorrectly compute the moments we must therefore take into
because the temperature at which the bcc phase is stable {§.qunt the neighbors up to the 13th coordination Si2&88

too high. Heiminget al®’ therefore derived the elastic con- atoms. An increase in the cutoff distance of the hopping
stants from the force constants obtained from a fit to thq .

. : . tegrals involves an increase of the number of neighbors to
phonon dispersion relations. In order to keep the number of g g

: o e taken into account in the computation of the moments,
force constants reasonably small, in the fitting procedureand thus. we decided to choose the lowest possible value
they impose that the range is up to the fifth-neighbor shell ' P

which is rather short. On the other hand, the elastic constan%@hICh allowed us .to obtain physwally reasonf';\ble res.ults..
obtained depend critically on the frequencies of the phonons T_he seco_npl point concems the pair potential contrlbu_tlon.
close to thd” point of the Brioullin zone, and thus have large Durlr_1g the f'tt'_ng procedure We_observed that the capacity of
error bars. We have tried to derive the elastic constants frorf{€ intératomic potential to simultaneously reproduce the
the phonon frequencies of Heimireg al,” but we only were properties of both the hcp and _bcc strugtures is strongly dg—
able to reproduce the elastic constait to any accuracy. pendent on.the range of the pair pote.ntlal_. In other words, if
The values of all the other elastic constants strongly depenée take a different range to that used in this paper, the results
on the phonons considered and the method of fitting. are rather worse. This is indicative that the geometry of the
In spite of the remarkable success of the interatomic podifferent coordination shells has an important effect on the
tential in reproducing thd =0 K phonon frequencies, we elastic constants. Moreover, although at the cutoff distance
should mention the difficulties we have found during thethe pair potential and its first derivative are continuous, the
fitting procedure, and discuss which features of the TB podecay to zero is still sharp, and the contribution to the elastic
tential are expected to correctly reproduce the physics of theonstants by the last coordination shell is unphysically high.
material and which are not. Finally, we should mention that the-d hybridization,
The first point concerns the range of the hopping inte-which is not explicitly included in the TB potential, has an
grals, which in fact is too small. In the hcp lattice they important contribution to the cohesive ener@bout 2 eV
should fall between the second and third nearest neighborgRef. 19]. We have considered ontyatomic orbitals in the
at least, and only the nearest neighbors are taken into abasis setin order to minimize computation time and the com-
count. This leads to a bond energy contribution in the hcpplexity of the TB potential.
lattice that is smaller than in the bcc lattice, which is just the The problems encountered when trying to use the physical
opposite to the expected result. This fact is compensated byalues for the quantitiedly, W, and g have already been
the pair potential contribution to give the correct energy dif-discussed. Nevertheless, the treatment of these quantities as
ference between both structures, but it is still clearly reflecteditting parameters gives enough flexibility to the interatomic
in the unrelaxed vacancy formation energies. potential to reproduce to reasonable accuracy all the magni-
The reason for choosing such a low value for the cutofftudes described in the paper.
distance of the hopping integrals is computational conve- A significant improvement in the behavior of the elastic
nience. The range of the hopping integrals in the bcc latticeonstants requires a better determination of the Fermi en-
is up to second nearest neighb¢td atoms involved This  ergy, together with a more detailed description of the DOS,
means that in the perfect lattice =0 K the number of especially around this point. Nevertheless, the inclusion of
neighbors involved in the computation of the moments is 6igh-order moments into the interatomic potential is compu-
(up to the sixth coordination shgll Nevertheless, aff  tationally very expensive.
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